1
|
Owjfard M, Rahimian Z, Karimi F, Borhani-Haghighi A, Mallahzadeh A. A comprehensive review on the neuroprotective potential of resveratrol in ischemic stroke. Heliyon 2024; 10:e34121. [PMID: 39082038 PMCID: PMC11284444 DOI: 10.1016/j.heliyon.2024.e34121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 06/07/2024] [Accepted: 07/03/2024] [Indexed: 08/02/2024] Open
Abstract
Stroke is the second leading cause of death and the third leading cause of disability worldwide. Globally, 68 % of all strokes are ischemic, with 32 % being hemorrhagic. Ischemic stroke (IS) poses significant challenges globally, necessitating the development of effective therapeutic strategies. IS is among the deadliest illnesses. Major functions are played by neuroimmunity, inflammation, and oxidative stress in the multiple intricate pathways of IS. Secondary brain damage is specifically caused by the early pro-inflammatory activity that follows cerebral ischemia, which is brought on by excessive activation of local microglia and the infiltration of circulating monocytes and macrophages. Resveratrol, a natural polyphenol found in grapes and berries, has shown promise as a neuroprotective agent in IS. This review offers a comprehensive overview of resveratrol's neuroprotective role in IS, focusing on its mechanisms of action and therapeutic potential. Resveratrol exerts neuroprotective effects by activating nuclear factor erythroid 2-related factor 2 (NRF2) and sirtuin 1 (SIRT1) pathways. SIRT1 activation by resveratrol triggers the deacetylation and activation of downstream targets like peroxisome proliferator-activated receptor-gamma coactivator 1 alpha (PGC-1α) and forkhead box protein O (FOXO), regulating mitochondrial biogenesis, antioxidant defense, and cellular stress response. Consequently, resveratrol promotes cellular survival and inhibits apoptosis in IS. Moreover, resveratrol activates the NRF2 pathway, a key mediator of the cellular antioxidant response. Activation of NRF2 through resveratrol enhances the expression of antioxidant enzymes, like heme oxygenase-1 (HO-1) and NAD(P)H quinone oxidoreductase 1 (NQO1), which neutralize reactive oxygen species and mitigate oxidative stress in the ischemic brain. Combined, the activation of SIRT1 and NRF2 pathways contributes to resveratrol's neuroprotective effects by reducing oxidative stress, inflammation, and apoptosis in IS. Preclinical studies demonstrate that resveratrol improves functional outcomes, reduces infarct size, regulates cerebral blood flow and preserves neuronal integrity. Gaining a comprehensive understanding of these mechanisms holds promise for the development of targeted therapeutic interventions aimed at promoting neuronal survival and facilitating functional recovery in IS patients and to aid future studies in this matter.
Collapse
Affiliation(s)
- Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Rahimian
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | | - Arashk Mallahzadeh
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
2
|
Owjfard M, Rahimian Z, Ghaderpanah R, Rafiei E, Sadrian S, Sabaghan M, Karimi F. Therapeutic Effects of Intranasal Administration of Resveratrol on the Rat Model of Brain Ischemia. Heliyon 2024; 10:e32592. [PMID: 38952360 PMCID: PMC11215267 DOI: 10.1016/j.heliyon.2024.e32592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 05/16/2024] [Accepted: 06/05/2024] [Indexed: 07/03/2024] Open
Abstract
Background Resveratrol is a natural phenolic compound widely found in plants. Previous studies have suggested its neuroprotective role in cerebral ischemia due to its anti-oxidative, anti-inflammatory, and anti-apoptotic effects. Intranasal administration of resveratrol enhances its capacity to penetrate the blood-brain barrier, increasing therapeutic efficacy and safety. Objective We aimed to examine the therapeutic potential of intranasal administration of resveratrol treatment in rats exposed to cerebral ischemia. Methods Sixty-four male rats were divided into three groups: the sham group, which was exposed to only surgical stress; the vehicle and resveratrol groups, which received intranasal vehicle or 50 mg/kg resveratrol for 7 days following middle cerebral artery occlusion, respectively. We assessed the modified neurologic severity scores, wire hanging tests, blood-brain barrier disruption, brain water content, and infarct volume. Levels of matrix metalloproteinase-9, nuclear factor-kappa B, B-cell lymphoma protein 2, and B-cell lymphoma protein 2-associated X messenger RNA expression were examined. Results At 3- and 7-days post-ischemia, rats receiving intranasal resveratrol had lower modified neurological severity scores and a smaller brain infarct volume than the rats receiving vehicle. Additionally, the intranasal resveratrol-treated rats showed significantly prolonged wire-hanging performance at the 7-day mark post-ischemia compared to the vehicle group. The blood-brain barrier disruption and brain water content were significantly lower in the resveratrol group than in the vehicle group. Furthermore, the resveratrol-treated group displayed lower expression of Matrix Metalloproteinase-9 and Nuclear Factor-Kappa B in contrast to the vehicle group, while the difference in expression levels of B-cell lymphoma protein 2-associated X and B-cell lymphoma protein 2 were not significant. Conclusion Intranasal administration of resveratrol showed neuroprotective effects on ischemic stroke by improving neurobehavioral function, reducing blood-brain barrier disruption, cerebral edema, and infarct volume. This treatment also downregulated Matrix Metalloproteinase-9 and Nuclear Factor-Kappa B expression, indicating its potential as a therapeutic option for ischemic stroke.
Collapse
Affiliation(s)
- Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
- Shiraz University of Applied Science and Technology (UAST), Shiraz, Iran
| | - Zahra Rahimian
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Rezvan Ghaderpanah
- Students Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Elahe Rafiei
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyedhassan Sadrian
- Students Research Committee, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | | |
Collapse
|
3
|
López-Morales MA, Castelló-Ruiz M, Burguete MC, Hervás D, Pérez-Pinzón MA, Salom JB. Effect and mechanisms of resveratrol in animal models of ischemic stroke: A systematic review and Bayesian meta-analysis. J Cereb Blood Flow Metab 2023; 43:2013-2028. [PMID: 37802493 PMCID: PMC10925864 DOI: 10.1177/0271678x231206236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Revised: 08/03/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023]
Abstract
Resveratrol (RSV) holds promise as cerebroprotective treatment in cerebral ischemia. This systematic review aims to assess the effects and mechanisms of RSV in animal models of ischemic stroke. We searched Medline, Embase and Web of Science to identify 75 and 57 eligible rodent studies for qualitative and quantitative syntheses, respectively. Range of evidence met 10 of 13 STAIR criteria. Median (Q1, Q3) quality score was 7 (5, 8) on the CAMARADES 15-item checklist. Bayesian meta-analysis showed SMD estimates (95% CI) favoring RSV: infarct size (-1.72 [-2.03; -1.41]), edema size (-1.61 [-2.24; -0.98]), BBB impairment (-1.85 [-2.54; -1.19]), neurofunctional impairment (-1.60 [-1.92; -1.29]), and motor performance (1.39 [0.64; 2.08]); and less probably neuronal survival (0.63 [-1.40; 2.48]) and apoptosis (-0.96 [-2.87; 1.02]). Species (rat vs mouse) was associated to a larger benefit. Sensitivity analyses confirmed robustness of the estimates. Reduction of oxidative stress, inflammation, and apoptosis underlie these effects. Our results quantitatively state the beneficial effects of RSV on structural and functional outcomes in rodent stroke models, update the evidence on the mechanisms of action, and provide an exhaustive list of targeted signaling pathways. Current evidence highlights the need for conducting further high-quality preclinical research to better inform clinical research.
Collapse
Affiliation(s)
- Mikahela A López-Morales
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
| | - María Castelló-Ruiz
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Departamento de Biología Celular, Biología Funcional y Antropología Física, Universidad de Valencia, Valencia, Spain
| | - María C Burguete
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Departamento de Fisiología, Universidad de Valencia, Valencia, Spain
| | - David Hervás
- Departamento de Estadística e Investigación Operativa Aplicadas y Calidad, Universitat Politècnica de València, Valencia, Spain
| | - Miguel A Pérez-Pinzón
- Peritz Scheinberg Cerebral Vascular Disease Research Laboratories, Department of Neurology, Miller School of Medicine, University of Miami, Miami, USA
| | - Juan B Salom
- Unidad Mixta de Investigación Cerebrovascular, Instituto de Investigación Sanitaria La Fe, Valencia, Spain
- Departamento de Fisiología, Universidad de Valencia, Valencia, Spain
| |
Collapse
|
4
|
Mondal A, Sharma R, Abiha U, Ahmad F, Karan A, Jayaraj RL, Sundar V. A Spectrum of Solutions: Unveiling Non-Pharmacological Approaches to Manage Autism Spectrum Disorder. MEDICINA (KAUNAS, LITHUANIA) 2023; 59:1584. [PMID: 37763703 PMCID: PMC10536417 DOI: 10.3390/medicina59091584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/22/2023] [Accepted: 08/29/2023] [Indexed: 09/29/2023]
Abstract
Autism spectrum disorder (ASD) is a developmental disorder that causes difficulty while socializing and communicating and the performance of stereotyped behavior. ASD is thought to have a variety of causes when accompanied by genetic disorders and environmental variables together, resulting in abnormalities in the brain. A steep rise in ASD has been seen regardless of the numerous behavioral and pharmaceutical therapeutic techniques. Therefore, using complementary and alternative therapies to treat autism could be very significant. Thus, this review is completely focused on non-pharmacological therapeutic interventions which include different diets, supplements, antioxidants, hormones, vitamins and minerals to manage ASD. Additionally, we also focus on complementary and alternative medicine (CAM) therapies, herbal remedies, camel milk and cannabiodiol. Additionally, we concentrate on how palatable phytonutrients provide a fresh glimmer of hope in this situation. Moreover, in addition to phytochemicals/nutraceuticals, it also focuses on various microbiomes, i.e., gut, oral, and vaginal. Therefore, the current comprehensive review opens a new avenue for managing autistic patients through non-pharmacological intervention.
Collapse
Affiliation(s)
- Arunima Mondal
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Ghudda 151401, India
| | - Rashi Sharma
- Department of Biotechnology, Delhi Technological University, Bawana, Delhi 110042, India
| | - Umme Abiha
- IDRP, Indian Institute of Technology, Jodhpur 342030, India
- All India Institute of Medical Sciences, Jodhpur 342005, India
| | - Faizan Ahmad
- Department of Medical Elementology and Toxicology, Jamia Hamdard University, Delhi 110062, India
| | | | - Richard L. Jayaraj
- Department of Pediatrics, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain 15551, United Arab Emirates
| | - Vaishnavi Sundar
- Department of Internal Medicine, University of Nebraska Medical Center, Omaha, NE 68198, USA
| |
Collapse
|
5
|
Butterfield DA, Boyd-Kimball D, Reed TT. Cellular Stress Response (Hormesis) in Response to Bioactive Nutraceuticals with Relevance to Alzheimer Disease. Antioxid Redox Signal 2023; 38:643-669. [PMID: 36656673 PMCID: PMC10025851 DOI: 10.1089/ars.2022.0214] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 01/08/2023] [Indexed: 01/20/2023]
Abstract
Significance: Alzheimer's disease (AD) is the most common form of dementia associated with aging. As the large Baby Boomer population ages, risk of developing AD increases significantly, and this portion of the population will increase significantly over the next several decades. Recent Advances: Research suggests that a delay in the age of onset by 5 years can dramatically decrease both the incidence and cost of AD. In this review, the role of nuclear factor erythroid 2-related factor 2 (Nrf2) in AD is examined in the context of heme oxygenase-1 (HO-1) and biliverdin reductase-A (BVR-A) and the beneficial potential of selected bioactive nutraceuticals. Critical Issues: Nrf2, a transcription factor that binds to enhancer sequences in antioxidant response elements (ARE) of DNA, is significantly decreased in AD brain. Downstream targets of Nrf2 include, among other proteins, HO-1. BVR-A is activated when biliverdin is produced. Both HO-1 and BVR-A also are oxidatively or nitrosatively modified in AD brain and in its earlier stage, amnestic mild cognitive impairment (MCI), contributing to the oxidative stress, altered insulin signaling, and cellular damage observed in the pathogenesis and progression of AD. Bioactive nutraceuticals exhibit anti-inflammatory, antioxidant, and neuroprotective properties and are potential topics of future clinical research. Specifically, ferulic acid ethyl ester, sulforaphane, epigallocatechin-3-gallate, and resveratrol target Nrf2 and have shown potential to delay the progression of AD in animal models and in some studies involving MCI patients. Future Directions: Understanding the regulation of Nrf2 and its downstream targets can potentially elucidate therapeutic options for delaying the progression of AD. Antioxid. Redox Signal. 38, 643-669.
Collapse
Affiliation(s)
- D. Allan Butterfield
- Department of Chemistry, University of Kentucky, Lexington, Kentucky, USA
- Sanders-Brown Center on Aging, University of Kentucky, Lexington, Kentucky, USA
| | - Debra Boyd-Kimball
- Department of Biochemistry, Chemistry, and Physics, University of Mount Union, Alliance, Ohio, USA
| | - Tanea T. Reed
- Department of Chemistry, Eastern Kentucky University, Richmond, Kentucky, USA
| |
Collapse
|
6
|
Monsour M, Croci DM, Agazzi S, Borlongan CV. Getting the guts to expand stroke treatment: The potential for microbiome targeted therapies. CNS Neurosci Ther 2022. [PMID: 36217699 DOI: 10.1111/cns.13988] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/07/2022] [Accepted: 08/11/2022] [Indexed: 11/28/2022] Open
Abstract
AIMS This review focuses on the recent literature regarding the role of the gut-brain axis (GBA) following ischemic stroke. DISCUSSION Stroke is the 5th leading cause of death and disability in the United States; however, few therapies have been developed to improve prognoses. There is a plethora of evidence suggesting peripheral inflammatory responses play a large role in the pathogenesis of stroke. Additionally, hyperglycemic conditions may play a significant role in worsening stroke outcomes due to microbiome dysbiosis. CONCLUSION Recent research has illuminated the vital role of the GBA in propagating poor clinical outcomes, such as hemorrhagic transformation, following ischemic stroke. Considering this detrimental consequence of stroke, and the apparent role of the GBA role, future therapeutics should aim to mitigate this peripheral contribution to stroke complications.
Collapse
Affiliation(s)
- Molly Monsour
- University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| | - Davide M Croci
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Siviero Agazzi
- Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, Florida, USA
| | - Cesario V Borlongan
- Center of Excellence for Aging and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, Florida, USA
| |
Collapse
|
7
|
Li C, Wu Z, Xue H, Gao Q, Zhang Y, Wang C, Zhao P. Ferroptosis contributes to hypoxic-ischemic brain injury in neonatal rats: Role of the SIRT1/Nrf2/GPx4 signaling pathway. CNS Neurosci Ther 2022; 28:2268-2280. [PMID: 36184790 PMCID: PMC9627393 DOI: 10.1111/cns.13973] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 09/04/2022] [Accepted: 09/08/2022] [Indexed: 02/06/2023] Open
Abstract
AIMS Hypoxic-ischemic brain injury (HIBI) often results in cognitive impairments. Herein, we investigated the roles of ferroptosis in HIBI and the underlying signaling pathways. METHODS Ferrostatin-1 (Fer-1) or resveratrol (Res) treatments were administered intracerebroventricularly 30 min before HIBI in 7-day-old rats. Glutathione peroxidase 4 (GPx4) expression, malondialdehyde (MDA) concentration, iron content, mitochondrial morphology, and the expression of silent information regulator factor 2-related enzyme 1 (SIRT1) and nuclear factor erythroid-2-related factor 2 (Nrf2) were measured after HIBI. Additionally, the weight ratio of left/right hemisphere, brain morphology, Nissl staining, and the Morris water maze test were conducted to estimate brain damage. RESULTS At 24-h post-HIBI, GPx4 expression was decreased, and MDA concentration and iron content were increased in the hippocampus. HIBI led to mitochondrial atrophy, brain atrophy/damage, and resultant learning and memory impairments, which were alleviated by Fer-1-mediated inhibition of ferroptosis. Furthermore, Res-mediated SIRT1 upregulation increased Nrf2 and GPx4 expression, thereby attenuating ferroptosis, reducing brain atrophy/damage, and improving learning and memory abilities. CONCLUSION The results demonstrated that during HIBI, ferroptosis occurs via the SIRT1/Nrf2/GPx4 signaling pathway, suggesting it as a potential therapeutic target for inhibiting ferroptosis and ameliorating HIBI-induced cognitive impairments.
Collapse
Affiliation(s)
- Chang Li
- Department of AnesthesiologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Ziyi Wu
- Department of AnesthesiologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Hang Xue
- Department of AnesthesiologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Qiushi Gao
- Department of AnesthesiologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Yahan Zhang
- Department of AnesthesiologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| | - Changming Wang
- Department of AnesthesiologyPeople's Hospital of China Medical University (Liaoning Provincial People's Hospital)ShenyangLiaoningChina
| | - Ping Zhao
- Department of AnesthesiologyShengjing Hospital of China Medical UniversityShenyangLiaoningChina
| |
Collapse
|
8
|
Nephroprotective effects of 4-4(hydroxyl-3 methoxyphenyl)-2-butane against sodium tellurite induced acute kidney dysfunction by attenuating oxidative stress and inflammatory cytokines in rats. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.103857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
|
9
|
Liu J, He J, Huang Y, Hu Z. Resveratrol has an Overall Neuroprotective Role in Ischemic Stroke: A Meta-Analysis in Rodents. Front Pharmacol 2022; 12:795409. [PMID: 34987407 PMCID: PMC8721173 DOI: 10.3389/fphar.2021.795409] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/03/2021] [Indexed: 12/16/2022] Open
Abstract
Background: Resveratrol, a natural polyphenolic phytoalexin, is broadly presented in dietary sources. Previous research has suggested its potential neuroprotective effects on ischemic stroke animal models. However, these results have been disputable. Here, we conducted a meta-analysis to comprehensively evaluate the effect of resveratrol treatment in ischemic stroke rodent models. Objective: To comprehensively evaluate the effect of resveratrol treatment in ischemic stroke rodent models. Methods: A literature search of the databases Pubmed, Embase, and Web of science identified 564 studies that were subjected to pre-defined inclusion criteria. 54 studies were included and analyzed using a random-effects model to calculate the standardized mean difference (SMD) with corresponding confidence interval (CI). Results: As compared with controls, resveratrol significantly decreased infarct volume (SMD −4.34; 95% CI −4.98 to −3.69; p < 0.001) and the neurobehavioral score (SMD −2.26; 95% CI −2.86 to −1.67; p < 0.001) in rodents with ischemic stroke. Quality assessment was performed using a 10-item checklist. Studies quality scores ranged from 3 to 8, with a mean value of 5.94. In the stratified analysis, a significant decrease of infarct volume and the neurobehavioral score was achieved in resveratrol sub-groups with a dosage of 20–50 mg/kg. In the meta-regression analysis, the impact of the delivery route on an outcome is the possible source of high heterogeneity. Conclusion: Generally, resveratrol treatment presented neuroprotective effects in ischemic stroke models. Furthermore, this study can direct future preclinical and clinical trials, with important implications for human health.
Collapse
Affiliation(s)
- Jianyang Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jialin He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yan Huang
- National Health Commission Key Laboratory of Birth Defects Research, Prevention, and Treatment, Hunan Provincial Maternal and Child Health Care Hospital, Changsha, China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
10
|
Demyanenko S, Dzreyan V, Sharifulina S. Histone Deacetylases and Their Isoform-Specific Inhibitors in Ischemic Stroke. Biomedicines 2021; 9:biomedicines9101445. [PMID: 34680562 PMCID: PMC8533589 DOI: 10.3390/biomedicines9101445] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 10/06/2021] [Accepted: 10/09/2021] [Indexed: 01/01/2023] Open
Abstract
Cerebral ischemia is the second leading cause of death in the world and multimodal stroke therapy is needed. The ischemic stroke generally reduces the gene expression due to suppression of acetylation of histones H3 and H4. Histone deacetylases inhibitors have been shown to be effective in protecting the brain from ischemic damage. Histone deacetylases inhibitors induce neurogenesis and angiogenesis in damaged brain areas promoting functional recovery after cerebral ischemia. However, the role of different histone deacetylases isoforms in the survival and death of brain cells after stroke is still controversial. This review aims to analyze the data on the neuroprotective activity of nonspecific and selective histone deacetylase inhibitors in ischemic stroke.
Collapse
|
11
|
Huang Q, Di L, Yu F, Feng X, Liu Z, Wei M, Luo Y, Xia J. Alterations in the gut microbiome with hemorrhagic transformation in experimental stroke. CNS Neurosci Ther 2021; 28:77-91. [PMID: 34591349 PMCID: PMC8673707 DOI: 10.1111/cns.13736] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVE Hemorrhagic transformation (HT) is a life-threatening complication of stroke. Whether changes in gut microbial composition underlie the development of HT remains unknown. This study aimed to investigate whether the gut microbiota is altered in HT rats and examine the association between these changes and inflammatory responses. METHODS HT was successfully established in rats injected with 50% glucose (6 ml/Kg, i.p.) 15 min before middle cerebral artery occlusion (MCAO, 90 min occlusion) with reperfusion. After 5 days, rats were euthanized, and their brains used to estimate infarct volume. The inflammatory factors, the analysis of gut microbiota, and short-chain fatty acids (SCFA) were assessed. RESULTS In contrast with non-HT rats, gut microbiota sequencing showed an elevation in the relative abundance of Proteobacteria and Actinobacteria in HT rats. Total SCFAs, especially butyrate and valeric acid, were significantly lower in the cecal contents of HT rats than in those of non-HT rats. Hyperglycemia-induced HT exacerbation was not observed when rats were treated with antibiotics, suggesting that altered microbiota play a critical role in hyperglycemic HT pathogenesis. Furthermore, rats whose gut was colonized with HT rat microbiota showed increased susceptibility to HT. CONCLUSION This study provides important information about the gut microbiota profiles and SCFA levels of MCAO rats with HT or non-HT. The susceptibility to HT in MCAO rats is associated with inflammation and gut microbiota modulation.
Collapse
Affiliation(s)
- Qin Huang
- Department of neurology, Xiangya Hospital Central South University, Changsha, Hunan P.R., China
| | - Liao Di
- Department of neurology, Xiangya Hospital Central South University, Changsha, Hunan P.R., China
| | - Fang Yu
- Department of neurology, Xiangya Hospital Central South University, Changsha, Hunan P.R., China
| | - Xianjing Feng
- Department of neurology, Xiangya Hospital Central South University, Changsha, Hunan P.R., China
| | - Zeyu Liu
- Department of neurology, Xiangya Hospital Central South University, Changsha, Hunan P.R., China
| | - Minping Wei
- Department of neurology, Xiangya Hospital Central South University, Changsha, Hunan P.R., China
| | - Yunfang Luo
- Department of neurology, Xiangya Hospital Central South University, Changsha, Hunan P.R., China
| | - Jian Xia
- Department of neurology, Xiangya Hospital Central South University, Changsha, Hunan P.R., China.,Hunan Clinical Research Center for Cerebrovascular Disease, Changsha, China
| |
Collapse
|
12
|
Kim YK, Song J. Therapeutic Applications of Resveratrol in Hepatic Encephalopathy through Its Regulation of the Microbiota, Brain Edema, and Inflammation. J Clin Med 2021; 10:jcm10173819. [PMID: 34501267 PMCID: PMC8432232 DOI: 10.3390/jcm10173819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/22/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023] Open
Abstract
Hepatic encephalopathy is a common complication in patients with liver cirrhosis and portosystemic shunting. Patients with hepatic encephalopathy present a variety of clinical features, including neuropsychiatric manifestations, cognitive dysfunction, impaired gut barrier function, hyperammonemia, and chronic neuroinflammation. These pathogeneses have been linked to various factors, including ammonia-induced oxidative stress, neuronal cell death, alterations in the gut microbiome, astrocyte swelling, and blood-brain barrier disruptions. Many researchers have focused on identifying novel therapeutics and prebiotics in the hope of improving the treatment of these conditions. Resveratrol is a natural polyphenic compound and is known to exert several pharmacological effects, including antioxidant, anti-inflammatory, and neuroprotective activities. Recent studies suggest that resveratrol contributes to improving the neuropathogenic effects of liver failure. Here, we review the current evidence describing resveratrol's effects in neuropathogenesis and its impact on the gut-liver axis relating to hepatic encephalopathy. We highlight the hypothesis that resveratrol exerts diverse effects in hepatic encephalopathy and suggest that these effects are likely mediated by changes to the gut microbiota, brain edema, and neuroinflammation.
Collapse
Affiliation(s)
- Young-Kook Kim
- Department of Biochemistry, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Korea;
| | - Juhyun Song
- Department of Anatomy, Chonnam National University Medical School, Hwasun 58128, Jeollanam-do, Korea
- Correspondence: ; Tel.: +82-61-379-2706; Fax: +82-61-375-5834
| |
Collapse
|
13
|
Sarkaki A, Rashidi M, Ranjbaran M, Asareh Zadegan Dezfuli A, Shabaninejad Z, Behzad E, Adelipour M. Therapeutic Effects of Resveratrol on Ischemia-Reperfusion Injury in the Nervous System. Neurochem Res 2021; 46:3085-3102. [PMID: 34365594 DOI: 10.1007/s11064-021-03412-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 07/25/2021] [Accepted: 07/27/2021] [Indexed: 01/07/2023]
Abstract
Resveratrol is a phenol compound produced by some plants in response to pathogens, infection, or physical injury. It is well-known that resveratrol has antioxidant and protective roles in damages potentially caused by cancer or other serious disorders. Thus, it is considered as a candidate agent for the prevention and treatment of human diseases. Evidence has confirmed other bioactive impacts of resveratrol, including cardioprotective, anti-tumorigenic, anti-inflammatory, phytoestrogenic, and neuroprotective effects. Ischemia-reperfusion (IR) can result in various disorders, comprising myocardial infarction, stroke, and peripheral vascular disease, which may continue to induce debilitating conditions and even mortality. In virtue of chronic ischemia or hypoxia, cells switch to anaerobic metabolism, giving rise to some dysfunctions in mitochondria. As the result of lactate accumulation, adenosine triphosphate levels and pH decline in cells. This condition leads cells to apoptosis, necrosis, and autophagy. However, restoring oxygen level upon reperfusion after ischemia by producing reactive oxygen species is an outcome of mitochondrial dysfunction. Considering the neuroprotective effect of resveratrol and neuronal injury that comes from IR, we focused on the mechanism(s) involved in IR injury in the nervous system and also on the functions of resveratrol in the protection, inhibition, and treatment of this injury.
Collapse
Affiliation(s)
- Alireza Sarkaki
- Department of Physiology, School of Medicine, Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Rashidi
- Department of Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mina Ranjbaran
- Department of Physiology, Faculty of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Aram Asareh Zadegan Dezfuli
- Department of Microbiology, Faculty of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Shabaninejad
- Department of Nanotechnology, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ebrahim Behzad
- Neurology Department, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Maryam Adelipour
- Department of Biochemistry, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| |
Collapse
|
14
|
Luo Y, Chen H, Tsoi B, Wang Q, Shen J. Danggui-Shaoyao-San (DSS) Ameliorates Cerebral Ischemia-Reperfusion Injury via Activating SIRT1 Signaling and Inhibiting NADPH Oxidases. Front Pharmacol 2021; 12:653795. [PMID: 33935765 PMCID: PMC8082392 DOI: 10.3389/fphar.2021.653795] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/22/2021] [Indexed: 12/18/2022] Open
Abstract
Danggui-Shayao-San (DSS) is a famous Traditional Chinese Medicine formula that used for treating pain disorders and maintaining neurological health. Recent studies indicate that DSS has neuroprotective effects against ischemic brain damage but its underlining mechanisms remain unclear. Herein, we investigated the neuroprotective mechanisms of DSS for treating ischemic stroke. Adult male Sprague-Dawley (S.D.) rats were subjected to 2 h of middle cerebral artery occlusion (MCAO) plus 22 h of reperfusion. Both ethanol extract and aqueous extract of DSS (12 g/kg) were orally administrated into the rats at 30 min prior to MCAO ischemic onset. We found that 1) ethanol extract of DSS, instead of aqueous extract, reduced infarct sizes and improved neurological deficit scores in the post-ischemic stroke rats; 2) Ethanol extract of DSS down-regulated the expression of the cleaved-caspase 3 and Bax, up-regulated bcl-2 and attenuated apoptotic cell death in the ischemic brains; 3) Ethanol extract of DSS decreased the production of superoxide and peroxynitrite; 4) Ethanol extract of DSS significantly down-regulated the expression of p67phox but has no effect on p47phox and iNOS statistically. 5) Ethanol extract of DSS significantly up-regulated the expression of SIRT1 in the cortex and striatum of the post-ischemic brains; 6) Co-treatment of EX527, a SIRT1 inhibitor, abolished the DSS’s neuroprotective effects. Taken together, DSS could attenuate oxidative/nitrosative stress and inhibit neuronal apoptosis against cerebral ischemic-reperfusion injury via SIRT1-dependent manner.
Collapse
Affiliation(s)
- Yunxia Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China.,Department of Endocrinology, Fourth Clinical Medical College, Guangzhou University of Chinese Medicine, Shenzhen, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hansen Chen
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Bun Tsoi
- School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Qi Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,Institute of Clinical Pharmacology, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiangang Shen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, China.,School of Chinese Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| |
Collapse
|
15
|
The Hsp90 Inhibitor 17-DMAG Attenuates Hyperglycemia-Enhanced Hemorrhagic Transformation in Experimental Stroke. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6668442. [PMID: 33614785 PMCID: PMC7878095 DOI: 10.1155/2021/6668442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 01/07/2021] [Accepted: 01/17/2021] [Indexed: 11/17/2022]
Abstract
Introduction Hemorrhagic transformation (HT) is one of the most common complications of ischemic stroke which is exacerbated by hyperglycemia. Oxidative stress, inflammatory response, and matrix metalloproteinases (MMPs) have been evidenced to play a vital role in the pathophysiology of HT. Our previous study has reported that 17-DMAG, an Hsp90 inhibitor, protects the brain against ischemic injury via inhibiting inflammation and reducing MMP-9 after ischemia. However, whether 17-DMAG would attenuate HT in hyperglycemic middle cerebral artery occlusion (MCAO) rats is still unknown. Methods Acute hyperglycemia was induced by an injection of 50% dextrose. Rats were pretreated with 17-DMAG before MCAO. Infarction volume, hemorrhagic volume neurological scores, expressions of inflammatory molecules and tight junction proteins, and activity of MMP-2 and MMP-9 were assessed 24 h after MCAO. Results 17-DMAG was found to reduce HT, improve neurological function, and inhibit expressions of inflammatory molecules and the activation of MMPs at 24 h after MCAO. Conclusion These results implicated that Hsp90 could be a novel therapeutic target in HT following ischemic stroke.
Collapse
|
16
|
Mohsenpour H, Pesce M, Patruno A, Bahrami A, Pour PM, Farzaei MH. A Review of Plant Extracts and Plant-Derived Natural Compounds in the Prevention/Treatment of Neonatal Hypoxic-Ischemic Brain Injury. Int J Mol Sci 2021; 22:E833. [PMID: 33467663 PMCID: PMC7830094 DOI: 10.3390/ijms22020833] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 01/05/2021] [Accepted: 01/11/2021] [Indexed: 12/13/2022] Open
Abstract
Neonatal hypoxic-ischemic (HI) brain injury is one of the major drawbacks of mortality and causes significant short/long-term neurological dysfunction in newborn infants worldwide. To date, due to multifunctional complex mechanisms of brain injury, there is no well-established effective strategy to completely provide neuroprotection. Although therapeutic hypothermia is the proven treatment for hypoxic-ischemic encephalopathy (HIE), it does not completely chang outcomes in severe forms of HIE. Therefore, there is a critical need for reviewing the effective therapeutic strategies to explore the protective agents and methods. In recent years, it is widely believed that there are neuroprotective possibilities of natural compounds extracted from plants against HIE. These natural agents with the anti-inflammatory, anti-oxidative, anti-apoptotic, and neurofunctional regulatory properties exhibit preventive or therapeutic effects against experimental neonatal HI brain damage. In this study, it was aimed to review the literature in scientific databases that investigate the neuroprotective effects of plant extracts/plant-derived compounds in experimental animal models of neonatal HI brain damage and their possible underlying molecular mechanisms of action.
Collapse
Affiliation(s)
- Hadi Mohsenpour
- Department of Pediatrics, Imam Reza Hospital, Kermanshah University of Medical Sciences, Kermanshah 75333–67427, Iran;
| | - Mirko Pesce
- Department of Medicine and Aging Sciences, University G. d’Annunzio, 66100 Chieti, Italy
| | - Antonia Patruno
- Department of Medicine and Aging Sciences, University G. d’Annunzio, 66100 Chieti, Italy
| | - Azam Bahrami
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 67158-47141, Iran;
| | - Pardis Mohammadi Pour
- Department of Pharmacognosy, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan 81746-73461, Iran;
| | - Mohammad Hosein Farzaei
- Medical Technology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 67158-47141, Iran;
| |
Collapse
|
17
|
The Protective Effects of Flavonoids in Cataract Formation through the Activation of Nrf2 and the Inhibition of MMP-9. Nutrients 2020; 12:nu12123651. [PMID: 33261005 PMCID: PMC7759919 DOI: 10.3390/nu12123651] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/11/2022] Open
Abstract
Cataracts account for over half of global blindness. Cataracts formations occur mainly due to aging and to the direct insults of oxidative stress and inflammation to the eye lens. The nuclear factor-erythroid-2-related factor 2 (Nrf2), a transcriptional factor for cell cytoprotection, is known as the master regulator of redox homeostasis. Nrf2 regulates nearly 600 genes involved in cellular protection against contributing factors of oxidative stress, including aging, disease, and inflammation. Nrf2 was reported to disrupt the oxidative stress that activates Nuclear factor-κB (NFκB) and proinflammatory cytokines. One of these cytokines is matrix metalloproteinase 9 (MMP-9), which participates in the decomposition of lens epithelial cells (LECs) extracellular matrix and has been correlated with cataract development. Thus, during inflammatory processes, MMP production may be attenuated by the Nrf2 pathway or by the Nrf2 inhibition of NFκB pathway activation. Moreover, plant-based polyphenols have garnered attention due to their presumed safety and efficacy, nutritional, and antioxidant effects. Polyphenol compounds can activate Nrf2 and inhibit MMP-9. Therefore, this review focuses on discussing Nrf2's role in oxidative stress and cataract formation, epigenetic effect in Nrf2 activity, and the association between Nrf2 and MMP-9 in cataract development. Moreover, we describe the protective role of flavonoids in cataract formation, targeting Nrf2 activation and MMP-9 synthesis inhibition as potential molecular targets in preventing cataracts.
Collapse
|
18
|
Ye M, Wu H, Li S. Resveratrol alleviates oxygen/glucose deprivation/reoxygenation‑induced neuronal damage through induction of mitophagy. Mol Med Rep 2020; 23:73. [PMID: 33236158 PMCID: PMC7716397 DOI: 10.3892/mmr.2020.11711] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 10/19/2020] [Indexed: 01/09/2023] Open
Abstract
Resveratrol confers neuroprotective effects in cerebral ischemia; however, the involvement of mitophagy in the neuroprotective function of resveratrol remains unclear. The aim of the present study was to investigate whether resveratrol exerts neuroprotective effects on primary cortical neurons subjected to oxygen/glucose deprivation/reoxygenation (OGD/R) via modulating mitophagy. The data demonstrated that resveratrol at 1–10 µM during reoxygenation improved cell viability and suppressed apoptosis following OGD/R in a concentration-dependent manner. Moreover, resveratrol alleviated OGD/R-induced loss of mitochondrial membrane potential and excessive oxidative stress. Confocal imaging of LC3 and TOM20 antibody-labeled mitochondria, as well as western blot analysis, demonstrated that mitophagy was further enhanced following resveratrol treatment. In addition, resveratrol was revealed to stimulate the phosphatase and tensin homolog-induced kinase 1/Parkin pathway. Mitophagy inhibition then inhibited the protective effects of resveratrol. These results indicated that resveratrol exerts its protective effects against OGD/R damage, at least in part, by promoting mitophagy.
Collapse
Affiliation(s)
- Ming Ye
- Department of Geriatrics, Yichang Central People's Hospital, Yichang, Hubei 443003, P.R. China
| | - Hui Wu
- The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei 443003, P.R. China
| | - Shuguo Li
- Department of Geriatrics, Yichang Central People's Hospital, Yichang, Hubei 443003, P.R. China
| |
Collapse
|
19
|
Zhang X, Tang H, Mao S, Li B, Zhou Y, Yue H, Wang D, Wang Y, Fu J. Transplanted hair follicle stem cells migrate to the penumbra and express neural markers in a rat model of cerebral ischaemia/reperfusion. Stem Cell Res Ther 2020; 11:413. [PMID: 32967732 PMCID: PMC7510278 DOI: 10.1186/s13287-020-01927-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 08/16/2020] [Accepted: 09/07/2020] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Ischaemic stroke has become the main cause of death and severe neurological disorders, for which effective restorative treatments are currently limited. While stem cell transplantation offers therapeutic potential through neural regeneration, this approach is associated with the challenges of limited applicable sources. Hair follicle stem cells (HFSCs) are multipotential cells that can differentiate into ectodermal and mesodermal lineages and proliferate for long periods. The therapeutic potentials of HFSCs have not been investigated in ischaemic stroke models, and therefore, in this study, we aimed to determine whether they could survive and migrate to ischaemic areas after a stroke attack. METHODS A rat model of middle cerebral artery ischaemia/reperfusion was established and intravenously administered HFSCs. The potential of HFSCs to migrate and differentiate into neuron-like cells as well as their ability to reduce the infarct size was evaluated. Rat brain tissue samples were collected 2 weeks after cell transplantation and analysed via TTC staining, immunofluorescence and immunohistochemistry methods. The data were statistically analysed and presented as the means ± standard deviations. RESULTS Intravenously administrated rat HFSCs were able to migrate to the penumbra where they expressed neuron-specific markers, reduced the infarct volume and promoted neurological recovery. CONCLUSION HFSC transplantation has therapeutic potential for ischaemic stroke and is, therefore, worthy of further investigation toward possible clinical development for treating stroke patients.
Collapse
Affiliation(s)
- Xuemei Zhang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang Province, China
| | - Hao Tang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang Province, China
| | - Senlin Mao
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang Province, China
| | - Bing Li
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang Province, China
| | - Yinglian Zhou
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang Province, China
| | - Hui Yue
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang Province, China
| | - Duo Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang Province, China
| | - Yifei Wang
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang Province, China
| | - Jin Fu
- Department of Neurology, The Second Affiliated Hospital of Harbin Medical University, No.246 Xuefu Road, Nangang District, Harbin, 150086, Heilongjiang Province, China.
| |
Collapse
|
20
|
Evans LW, Stratton MS, Ferguson BS. Dietary natural products as epigenetic modifiers in aging-associated inflammation and disease. Nat Prod Rep 2020; 37:653-676. [PMID: 31993614 PMCID: PMC7577396 DOI: 10.1039/c9np00057g] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Covering: up to 2020Chronic, low-grade inflammation is linked to aging and has been termed "inflammaging". Inflammaging is considered a key contributor to the development of metabolic dysfunction and a broad spectrum of diseases or disorders including declines in brain and heart function. Genome-wide association studies (GWAS) coupled with epigenome-wide association studies (EWAS) have shown the importance of diet in the development of chronic and age-related diseases. Moreover, dietary interventions e.g. caloric restriction can attenuate inflammation to delay and/or prevent these diseases. Common themes in these studies entail the use of phytochemicals (plant-derived compounds) or the production of short chain fatty acids (SCFAs) as epigenetic modifiers of DNA and histone proteins. Epigenetic modifications are dynamically regulated and as such, serve as potential therapeutic targets for the treatment or prevention of age-related disease. In this review, we will focus on the role for natural products that include phytochemicals and short chain fatty acids (SCFAs) as regulators of these epigenetic adaptations. Specifically, we discuss regulators of methylation, acetylation and acylation, in the protection from chronic inflammation driven metabolic dysfunction and deterioration of neurocognitive and cardiac function.
Collapse
Affiliation(s)
- Levi W Evans
- Department of Nutrition, University of Nevada, Reno, NV 89557, USA.
| | | | | |
Collapse
|
21
|
Dietary Phytochemicals as Neurotherapeutics for Autism Spectrum Disorder: Plausible Mechanism and Evidence. ADVANCES IN NEUROBIOLOGY 2020; 24:615-646. [DOI: 10.1007/978-3-030-30402-7_23] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
22
|
Park DJ, Kang JB, Shah FA, Koh PO. Resveratrol modulates the Akt/GSK-3β signaling pathway in a middle cerebral artery occlusion animal model. Lab Anim Res 2019; 35:18. [PMID: 32257906 PMCID: PMC7081686 DOI: 10.1186/s42826-019-0019-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 09/25/2019] [Indexed: 12/22/2022] Open
Abstract
Cerebral ischemia is a major cause of neurodegenerative disease. It induces neuronal vulnerability and susceptibility, and leads to neuronal cell death. Resveratrol is a polyphenolic compound that acts as an anti-oxidant. It exerts a neuroprotective effect against focal cerebral ischemic injury. Akt signaling pathway is accepted as a representative cell survival pathway, including proliferation, growth, and glycogen synthesis. This study investigated whether resveratrol regulates Akt/glycogen synthase kinase-3β (GSK-3β) pathway in a middle cerebral artery occlusion (MCAO)-induced ischemic brain injury. Adult male rats were intraperitoneally injected with vehicle or resveratrol (30 mg/kg) and cerebral cortices were isolated 24 h after MCAO. Neurological behavior test, corner test, brain edema measurment, and 2,3,5-triphenyltetrazolium chloride staining were performed to elucidate the neuroprotective effects of resveratrol. Phospho-Akt and phospho-GSK-3β expression levels were measured using Western blot analysis. MCAO injury led to severe neurobehavioral deficit, infraction, and histopathological changes in cerebral cortex. However, resveratrol treatment alleviated these changes caused by MCAO injury. Moreover, MCAO injury induced decreases in phospho-Akt and phospho-GSK-3β protein levels, whereas resveratrol attenuated these decreases. Phosphorylations of Akt and GSK-3β act as a critical role for the suppression of apoptotic cell death. Thus, our finding suggests that resveratrol attenuates neuronal cell death in MCAO-induced cerebral ischemia and Akt/GSK-3β signaling pathway contributes to the neuroprotective effect of resveratrol.
Collapse
Affiliation(s)
- Dong-Ju Park
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828 South Korea
| | - Ju-Bin Kang
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828 South Korea
| | - Fawad-Ali Shah
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828 South Korea
| | - Phil-Ok Koh
- Department of Anatomy, College of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju, 52828 South Korea
| |
Collapse
|
23
|
Dou Z, Rong X, Zhao E, Zhang L, Lv Y. Neuroprotection of Resveratrol Against Focal Cerebral Ischemia/Reperfusion Injury in Mice Through a Mechanism Targeting Gut-Brain Axis. Cell Mol Neurobiol 2019; 39:883-898. [PMID: 31140018 PMCID: PMC11462841 DOI: 10.1007/s10571-019-00687-3] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/12/2019] [Indexed: 02/02/2023]
Abstract
Increasing evidences have shown that resveratrol could protect the brain from ischemic injury; the mechanisms underlying its neuroprotective effects are multifactorial and not fully understood. It remains unclear whether resveratrol could exert neuroprotection through modulating gut-brain axis, which plays important roles in stroke pathology. In this study, C57BL/6 mice underwent middle cerebral artery occlusion (60 min) followed by reperfusion for 3 days. Resveratrol, when applied immediately after MCAO onset for 3 days, promoted Th1/Th2 balance towards Th2 polarization and skewed Treg/Th17 balance towards Treg in the small intestinal lamina propria (SI-LP), and decreased small intestinal pro-inflammatory cytokines expression through modulating intestinal flora at 3 days post-ischemia (dpi). Resveratrol attenuated cerebral ischemia-induced increase in the epithelial and vascular permeability of small intestine as evidenced by reduced evans blue extravasasion and decreased protein leakage by feces/plasma albumin ratio at 3 dpi. The blood levels of pro-inflammatory cytokines at 3 dpi were also attenuated by resveratrol due to inhibiting intestinal pro-inflammatory immunity and decreasing epithelial and vascular permeability. Resveratrol robustly protected against post-stroke inflammation-induced blood-brain barrier disruption not only in the cortex but also in the striatum at 3 dpi. Furthermore, resveratrol mediated smaller cerebral infarcts and less neurological deficits via decreasing the levels of pro-inflammatory cytokines in the peri-infarct area at 3 dpi. Our results for the first time demonstrated that resveratrol may inhibit systemic post-stroke inflammation and neuroinflammation via modulating intestinal flora-mediated Th17/Tregs and Th1/Th2 polarity shift in SI-LP, which may be one of the mechanisms underlying the neuroprotective effects of resveratrol.
Collapse
Affiliation(s)
- Zhongci Dou
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 Jian-she East Road, Zhengzhou, 450000, Henan, China
| | - Xiongfei Rong
- Department of Anesthesiology, People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, Zhengzhou, Henan, China
| | - Erxian Zhao
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 Jian-she East Road, Zhengzhou, 450000, Henan, China
| | - Lixia Zhang
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 Jian-she East Road, Zhengzhou, 450000, Henan, China
| | - Yunqi Lv
- Department of Anesthesiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou University, 1 Jian-she East Road, Zhengzhou, 450000, Henan, China.
| |
Collapse
|
24
|
Grewal AK, Singh N, Singh TG. Effects of resveratrol postconditioning on cerebral ischemia in mice: role of the sirtuin-1 pathway. Can J Physiol Pharmacol 2019; 97:1094-1101. [PMID: 31340128 DOI: 10.1139/cjpp-2019-0188] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Evidence has demonstrated that resveratrol preconditioning exhibits neuroprotection against cerebral ischemia-reperfusion (IR) injury. The current investigation aimed to explore whether pharmacological postconditioning, by administering resveratrol, after a sustained ischemia and prior to prolonged reperfusion abrogates cerebral IR injury. Cerebral IR-induced injury mice model was employed in this study to evaluate the neuroprotective effects of pharmacological postconditioning with resveratrol (30 mg/kg; i.p.) administered 5 min before reperfusion. We administered sirtinol, a SIRT1/2 selective inhibitor (10 mg/kg; i.p.) 10 min before ischemia (17 min) and reperfusion (24 h), to elucidate whether the neuroprotection with resveratrol postconditioning depends on SIRT1 activation. Various biochemical and behavioural parameters and histopathological changes were assessed to examine the effect of pharmacological postconditioning. Infarct size is estimated using TTC staining. It was established that resveratrol postconditioning abrogated the deleterious effects of IR injury expressed with regard to biochemical parameters of oxidative stress (TBARS, SOD, GSH), acetylcholinesterase activity, behavioural parameters (memory, motor coordination), infarct size, and histopathological changes. Sirtinol significantly reversed the effect of resveratrol postconditioning. We conclude that induced neuroprotective benefits of resveratrol postconditioning may be the consequence of SIRT1 activation and resveratrol can be considered, for further studies, as potential agent inducing pharmacological postconditioning in clinical situations.
Collapse
Affiliation(s)
| | - Nirmal Singh
- Department of Pharmaceutical Sciences and Drug Research, Punjabi University, Patiala 147002, Punjab, India
| | | |
Collapse
|
25
|
Farrokhi E, Ghatreh-Samani K, Salehi-Vanani N, Mahmoodi A. The effect of resveratrol on expression of matrix metalloproteinase 9 and its tissue inhibitors in vascular smooth muscle cells. ARYA ATHEROSCLEROSIS 2019; 14:157-162. [PMID: 30627191 PMCID: PMC6312567 DOI: 10.22122/arya.v14i4.1484] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Matrix metalloproteinase 9 (MMP-9) is involved in extracellular matrix degradation and remodeling. An increase in MMP-9 expression by vascular component cells plays an important role in atherosclerotic plaque formation and rupture. Resveratrol, a polyphenolic substance, was suggested to play a role in preventing the progress of atherosclerotic disease. The aim of this study was to investigate the effect of resveratrol on MMP-9 and tissue inhibitors of metalloproteinases (TIMPs) in vascular smooth muscle cells (VSMCs) after treatment with H2O2. METHODS Cultured VSMCs were pre-treated with 0.2 mM of H2O2 before stimulation with different concentration of resveratrol. Expression of MMP-9, TIMP-1, and TIMP-3 genes were measured using real-time polymerase chain reaction (PCR) method, and MMP-9 protein level was detected using western blot analysis. RESULTS Resveratrol at 120 μmol/l concentration reduced the elevated level of MMP-9 induced by H2O2 in VSMCs as 1.85 ± 0.35 folds (P < 0.050) and 8.70 ± 1.20 folds (P < 0.050) after 24 and 48 hours, respectively. Resveratrol increased the diminished level of TIMP-1 induced by H2O2 as 2.5 ± 0.48 folds following the treatment with 120 μmol/l after 48 hours (P < 0.050). CONCLUSION Resveratrol as an antioxidant can decrease MMP-9 production, not only by suppressing MMP-9 expression, but also by augmenting TIMP-1 production. Altogether, resveratrol as an antioxidant can regulate the MMP-9/TIMP-1 balance, and may be considered as a preservative agent in the treatment and prevention of atherosclerosis.
Collapse
Affiliation(s)
- Effat Farrokhi
- Assistant Professor, Department of Molecular Medicine, School of Advanced Technologies, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Keihan Ghatreh-Samani
- Associate Professor, Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Najmeh Salehi-Vanani
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Amin Mahmoodi
- Clinical Biochemistry Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
26
|
Alam MF, Safhi MM, Anwer T, Siddiqui R, Khan G, Moni SS. Therapeutic potential of Vanillylacetone against CCl 4 induced hepatotoxicity by suppressing the serum marker, oxidative stress, inflammatory cytokines and apoptosis in Swiss albino mice. Exp Mol Pathol 2018; 105:81-88. [PMID: 29909158 DOI: 10.1016/j.yexmp.2018.06.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 05/31/2018] [Accepted: 06/13/2018] [Indexed: 12/22/2022]
Abstract
The aim of this research was to investigate the therapeutic potential of Vanillylacetone against carbon tetrachloride (CCl4) induced hepatotoxicity in mice through understanding the serum marker, oxidative stress mechanism and cytokine networks. Carbon tetrachloride is highly hepatotoxic used as research based on animal model. The mice were classified into five groups and each had eight mice. Group-I was controlled and the vehicle was given orally. Group-II was toxic and carbon tetrachloride (1.5 ml/kg) twice a week for 15 days was administered by intra-peritoneal injections. Group- III and IV were pre-treated with Vanillylacetone 50 & 100 mg kg-1 body weight given every day p.o. while, Group-V received only Vanillylacetone (100 mg kg-1 body weight) for 15 days orally. The finding indicates that the administration of CCl4 causes significant elevation of enzyme markers, oxidative stress, inflammatory cytokine and apoptotic markers in Group-II as compared to Group-I. The administration of Vanillylacetone (50 and100 mg kg-1) significantly suppresses the elevated serum enzymes, oxidative stress (TBARS), an inflammatory cytokine (IL2 and TNFα) and apoptotic markers (Caspase-3 and 9) in Group-III and IV as compared to Group-II. It was also noticed that the higher dose of Vanillylacetone (100 mg) is more effective than lower dose of Vanillylacetone (50 mg). There were no significant changes observed with higher dose of Vanillylacetone (100 mg kg-1) in Group-V as compared to Group-I. Histopathological analysis also supported the above findings. Overall, this results shows that Vanillylacetone has a good antioxidant and therapeutic properties which can help in preventing the chemically (CCl4) induced hepatotoxicity.
Collapse
Affiliation(s)
- Mohammad Firoz Alam
- Neuroscience and Toxicology Unit, Pharmacology & Toxicology Department, Pharmacy College, Jazan University, Gizan, Saudi Arabia.
| | - Mohammed M Safhi
- Neuroscience and Toxicology Unit, Pharmacology & Toxicology Department, Pharmacy College, Jazan University, Gizan, Saudi Arabia
| | - Tarique Anwer
- Neuroscience and Toxicology Unit, Pharmacology & Toxicology Department, Pharmacy College, Jazan University, Gizan, Saudi Arabia
| | - Rahimullah Siddiqui
- Neuroscience and Toxicology Unit, Pharmacology & Toxicology Department, Pharmacy College, Jazan University, Gizan, Saudi Arabia
| | - Gyas Khan
- Division of Pharmaceutical Biotechnology, Pharmaceutics Department, Pharmacy College, Jazan University, Gizan, Saudi Arabia
| | - Sivakumar Sivagurunathan Moni
- Division of Pharmaceutical Biotechnology, Pharmaceutics Department, Pharmacy College, Jazan University, Gizan, Saudi Arabia
| |
Collapse
|
27
|
Rivaroxaban does not influence hemorrhagic transformation in a diabetes ischemic stroke and endovascular thrombectomy model. Sci Rep 2018; 8:7408. [PMID: 29743683 PMCID: PMC5943582 DOI: 10.1038/s41598-018-25820-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 04/30/2018] [Indexed: 12/31/2022] Open
Abstract
Managing endovascular thrombectomy (ET) in diabetic ischemic stroke (IS) with novel anticoagulants is challenging due to putative risk of intracerebral hemorrhage. The study evaluates increased hemorrhagic transformation (HT) risk in Rivaroxaban-treated diabetic rats post ET. Diabetes was induced in male Sprague-Dawley rats by intraperitoneal injection of 60 mg/kg streptozotocin. After 4-weeks, rats were pretreated orally with 30 mg/kg Rivaroxaban/saline; prothrombin time was monitored. IS and ET was induced after 1 h, by thread-induced transient middle cerebral artery occlusion (tMCAO) that mimicked mechanical ET for proximal MCA occlusion at 60 min. After 24 h reperfusion, infarct volumes, HT, blood-brain barrier (BBB) permeability, tight junction at peri-ischemic lesion and matrix metalloproteinase-9 (MMP-9) activity was measured. Diabetic rats seemed to exhibit increased infarct volume and HT at 24 h after ET than normal rats. Infarct volumes and functional outcomes did not differ between Rivaroxaban and diabetic control groups. A significant increase in HT volumes and BBB permeability under Rivaroxaban treatment was not detected. Compared to diabetic control group, neither the occludin expression was remarkably lower in the Rivaroxaban group nor the MMP-9 activity was higher. Together, Rivaroxaban does not increase HT after ET in diabetic rats with proximal MCA occlusion, since Rivaroxaban has fewer effects on post-ischemic BBB permeability.
Collapse
|
28
|
de Queiroz KB, dos Santos Fontes Pereira T, Araújo MSS, Gomez RS, Coimbra RS. Resveratrol Acts Anti-Inflammatory and Neuroprotective in an Infant Rat Model of Pneumococcal Meningitis by Modulating the Hippocampal miRNome. Mol Neurobiol 2018; 55:8869-8884. [DOI: 10.1007/s12035-018-1037-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Accepted: 03/23/2018] [Indexed: 12/21/2022]
|
29
|
Mechanism of salvianolic acid B neuroprotection against ischemia/reperfusion induced cerebral injury. Brain Res 2018; 1679:125-133. [DOI: 10.1016/j.brainres.2017.11.027] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 11/07/2017] [Accepted: 11/24/2017] [Indexed: 01/06/2023]
|
30
|
Tabrizian K, Shahraki J, Bazzi M, Rezaee R, Jahantigh H, Hashemzaei M. Neuro-Protective Effects of Resveratrol on Carbon Monoxide-Induced Toxicity in Male Rats. Phytother Res 2017. [PMID: 28635041 DOI: 10.1002/ptr.5855] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Acute carbon monoxide (CO) poisoning causes neurotoxicity through induction of necrosis, apoptosis, lipid peroxidation and oxidative stress. Resveratrol (RES) is a natural polyphenolic phytoalexin that exhibits neuroprotective effects in ischemia/reperfusion due to its anti-apoptotic, anti-necrotic and strong anti-oxidant properties as well as its ability to activate pro-survival pathways. In this study, rats were exposed to CO 3000 ppm for 1 h. Immediately after poisoning and on the next four consecutive days, RES (1, 5 and 10 mg/kg) was administered intraperitoneally. On the fifth day, animals' brains were excised, and necrosis, lipid peroxidation level and the level of Akt, BAX and BCL2 expression were evaluated. The results showed that RES 10 mg/kg significantly reduced lipid peroxidation, but RES 1 and 5 mg/kg had no significant effect on this parameter. Furthermore, RES 5 and 10 mg/kg significantly increased Akt expression level, while BAX/BCL2 ratio was reduced by RES 1, 5 and 10 mg/kg. Moreover, RES reduced necrotic foci in the brain, but the best results were seen following treatment with RES 10 mg/kg. In summary, RES showed neuroprotective effect in CO-poisoned rats as it decreased necrosis and BAX/BCL2 ratio and increased Akt expression levels. Copyright © 2017 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Kaveh Tabrizian
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran.,Students Research Committee, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Jafar Shahraki
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran.,Students Research Committee, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Mohadeseh Bazzi
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran.,Students Research Committee, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| | - Ramin Rezaee
- Clinical Research Unit, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hosseinali Jahantigh
- Department of Pathology, Amiralmomenin Hospital, Zabol University of Medical Sciences, Zabol, Iran
| | - Mahmoud Hashemzaei
- Department of Pharmacodynamics and Toxicology, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran.,Students Research Committee, School of Pharmacy, Zabol University of Medical Sciences, Zabol, Iran
| |
Collapse
|
31
|
Singh N, Bansal Y, Bhandari R, Marwaha L, Singh R, Chopra K, Kuhad A. Resveratrol protects against ICV collagenase-induced neurobehavioral and biochemical deficits. JOURNAL OF INFLAMMATION-LONDON 2017; 14:14. [PMID: 28615993 PMCID: PMC5466723 DOI: 10.1186/s12950-017-0158-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 05/23/2017] [Indexed: 01/09/2023]
Abstract
Background Indeed, intracerebral hemorrhage (ICH) account for only 15% of all strokes but it is one of the most devastating subtype of stroke associated with behavioral, cognitive and neurological deficits. The primary cause of neurological deficits in ICH is the hematoma growth, generation of free radicals, inflammatory cytokines and exhausting endogenous anti-oxidant machinery. It has been found that neuroinflammation following ICH leads to exaggeration of hallmarks of ICH. With this background, the study was aimed to evaluate the protective effect of resveratrol (RSV) in intracerebroventricular (ICV) collagenase (COL) induced neurological deficits in rats. Methods The present study was designed to explore the protective effects of resveratrol (5, 10, 20 mg/kg) against ICV-COL induced ICH. Animals were subjected to a battery of behavioral tests to access behavioral changes, including neurological scoring tests (cylinder test, spontaneous motility, righting reflex, horizontal bar test, forelimb flexion), actophotometer, rotarod, Randall Sellito and von Frey. Post stroke depression was estimated using forced swim test (FST). Memory deficit was monitored using Morris water maze (MWM). Results Chronic treatment with RSV (20 mg/kg) for 21 days restored various behavioral changes, including neurological scoring tests (cylinder test, spontaneous motility, righting reflex, horizontal bar test, forelimb flexion), actophotometer, rotarod, Randall Sellito and Von Frey. RSV also restores increase in immobility time forced swim test used to evaluate post stroke depression and impaired memory deficit in Morris water maze. RSV administration also attenuated increased nitro-oxidative stress and TNF-α level. RSV being a potent antioxidant also restores changes in endogenous anti-oxidant levels. Conclusion In conclusion, our research demonstrates that RSV has a protective effect against ICH by virtue of its anti-inflammatory property and antioxidant and nitrosative stress restoring property.
Collapse
Affiliation(s)
- Navdeep Singh
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, 160 014 India
| | - Yashika Bansal
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, 160 014 India
| | - Ranjana Bhandari
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, 160 014 India
| | - Lovish Marwaha
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, 160 014 India
| | - Raghunath Singh
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, 160 014 India
| | - Kanwaljit Chopra
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, 160 014 India
| | - Anurag Kuhad
- Pharmacology Research Laboratory, University Institute of Pharmaceutical Sciences, UGC-Centre of Advanced Study, Panjab University, Chandigarh, 160 014 India
| |
Collapse
|
32
|
Li Z, You Z, Li M, Pang L, Cheng J, Wang L. Protective Effect of Resveratrol on the Brain in a Rat Model of Epilepsy. Neurosci Bull 2017; 33:273-280. [PMID: 28161868 PMCID: PMC5567521 DOI: 10.1007/s12264-017-0097-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2016] [Accepted: 11/15/2016] [Indexed: 12/28/2022] Open
Abstract
Accumulating evidence has suggested resveratrol as a promising drug candidate for the treatment of epilepsy. To validate this, we tested the protective effect of resveratrol on a kainic acid (KA)-induced epilepsy model in rats and investigated the underlying mechanism. We found that acute resveratrol application partially inhibited evoked epileptiform discharges in the hippocampal CA1 region. During acute, silent and chronic phases of epilepsy, the expression of hippocampal kainate glutamate receptor (GluK2) and the GABAA receptor alpha1 subunit (GABAAR-alpha1) was up-regulated and down-regulated, respectively. Resveratrol reversed these effects and induced an antiepileptic effect. Furthermore, in the chronic phase, resveratrol treatment inhibited the KA-induced increased glutamate/GABA ratio in the hippocampus. The antiepileptic effects of resveratrol may be partially attributed to the reduction of glutamate-induced excitotoxicity and the enhancement in GABAergic inhibition.
Collapse
MESH Headings
- Animals
- Anticonvulsants/administration & dosage
- Anticonvulsants/pharmacology
- CA1 Region, Hippocampal/drug effects
- CA1 Region, Hippocampal/metabolism
- CA1 Region, Hippocampal/physiopathology
- Disease Models, Animal
- Down-Regulation
- Epilepsy, Temporal Lobe/chemically induced
- Epilepsy, Temporal Lobe/drug therapy
- Epilepsy, Temporal Lobe/metabolism
- Excitatory Amino Acid Agonists/pharmacology
- Glutamic Acid/drug effects
- Kainic Acid/pharmacology
- Male
- Neuroprotective Agents/administration & dosage
- Neuroprotective Agents/pharmacology
- Rats
- Rats, Wistar
- Receptors, GABA-A/drug effects
- Receptors, Kainic Acid/drug effects
- Resveratrol
- Stilbenes/administration & dosage
- Stilbenes/pharmacology
- Up-Regulation
- gamma-Aminobutyric Acid/drug effects
- GluK2 Kainate Receptor
Collapse
Affiliation(s)
- Zhen Li
- Department of Pharmacology, Anhui Medical University, Hefei, 230032, China
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Zhuyan You
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Min Li
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Liang Pang
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Juan Cheng
- Department of Pharmacology, Anhui Medical University, Hefei, 230032, China
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Liecheng Wang
- Department of Pharmacology, Anhui Medical University, Hefei, 230032, China.
- Department of Physiology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
33
|
Agarwal R, Agarwal P. Targeting extracellular matrix remodeling in disease: Could resveratrol be a potential candidate? Exp Biol Med (Maywood) 2017; 242:374-383. [PMID: 27798117 PMCID: PMC5298538 DOI: 10.1177/1535370216675065] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 09/23/2016] [Indexed: 01/29/2023] Open
Abstract
Disturbances of extracellular matrix homeostasis are associated with a number of pathological conditions. The ability of extracellular matrix to provide contextual information and hence control the individual or collective cellular behavior is increasingly being recognized. Hence, newer therapeutic approaches targeting extracellular matrix remodeling are widely investigated. We reviewed the current literature showing the effects of resveratrol on various aspects of extracellular matrix remodeling. This review presents a summary of the effects of resveratrol on extracellular matrix deposition and breakdown. Mechanisms of action of resveratrol in extracellular matrix deposition involving growth factors and their signaling pathways are discussed. Involvement of phosphoinositol-3-kinase/Akt and mitogen-activated protein kinase pathways and role of transcription factors and sirtuins on the effects of resveratrol on extracellular matrix homeostasis are summarized. It is evident from the literature presented in this review that resveratrol has significant effects on both the synthesis and breakdown of extracellular matrix. The major molecular targets of the action of resveratrol are growth factors and their signaling pathways, phosphoinositol-3-kinase/Akt and mitogen-activated protein kinase pathways, transcription factors, and SIRT-1. The effects of resveratrol on extracellular matrix and the molecular targets appear to be related to experimental models, experimental environment as well as the doses.
Collapse
Affiliation(s)
- Renu Agarwal
- Faculty of Medicine, Universiti Teknologi MARA, Sungai Buloh, Selangor 47000, Malaysia
| | - Puneet Agarwal
- Department of Ophthalmology, School of Medicine, International Medical University, Jalan Rasah, Seremban 70300, Malaysia
| |
Collapse
|
34
|
Bhandari R, Kuhad A. Resveratrol suppresses neuroinflammation in the experimental paradigm of autism spectrum disorders. Neurochem Int 2017; 103:8-23. [DOI: 10.1016/j.neuint.2016.12.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Revised: 11/27/2016] [Accepted: 12/20/2016] [Indexed: 01/08/2023]
|
35
|
Matrix Metalloproteinase-9 and Recovery of Acute Ischemic Stroke. J Stroke Cerebrovasc Dis 2017; 26:733-740. [PMID: 28063771 DOI: 10.1016/j.jstrokecerebrovasdis.2016.09.043] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 08/17/2016] [Accepted: 09/24/2016] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Stroke outcome can be predicted by clinical features, biochemical parameters, and some risk factors. Matrix metalloproteinase-9 (MMP-9) is involved in various stages of stroke pathology. MMP-9 inhibitors are potential stroke therapeutic agents. Little is known about the relation between MMP-9-after the acute stage-and clinical recovery. OBJECTIVE The study aimed to investigate the serum level of MMP-9 at stroke onset as predictor of stroke outcome and the relation between the level of MMP-9 after 30 days and stroke recovery. METHODS The National Institutes of Health Stroke Scale, modified Rankin Scale, and serum level of MMP-9 were assessed in 30 patients with acute ischemic stroke during the first 24 hours of onset and then a month later. None of the patients received thrombolytic therapy. Thirty normal volunteers of matched age and sex were included in the control group. RESULTS The serum level of MMP-9 at stroke onset was independently positively correlated with stroke outcome. The serum level of MMP-9 30 days after stroke onset was positively correlated with initial stroke severity and outcome, as well as with clinical recovery. CONCLUSION Higher serum level of MMP-9 at stroke onset can be a predictor of poor stroke outcome. However, beyond the acute stage, MMP-9 may play beneficial role in stroke recovery.
Collapse
|
36
|
Li L, Wang N, Jin Q, Wu Q, Liu Y, Wang Y. Protection of Tong-Qiao-Huo-Xue Decoction against Cerebral Ischemic Injury through Reduction Blood–Brain Barrier Permeability. Chem Pharm Bull (Tokyo) 2017; 65:1004-1010. [DOI: 10.1248/cpb.c17-00267] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Lili Li
- Key Laboratory of Xin’an Medicine, Ministry of Education
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine
- College of Pharmacy, Anhui University of Chinese Medicine
| | - Ning Wang
- Key Laboratory of Xin’an Medicine, Ministry of Education
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine
- College of Pharmacy, Anhui University of Chinese Medicine
| | - Qizhong Jin
- Key Laboratory of Xin’an Medicine, Ministry of Education
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine
| | - Qian Wu
- Key Laboratory of Xin’an Medicine, Ministry of Education
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine
| | - Yafang Liu
- Key Laboratory of Xin’an Medicine, Ministry of Education
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine
- College of Pharmacy, Anhui University of Chinese Medicine
| | - Yan Wang
- Key Laboratory of Xin’an Medicine, Ministry of Education
- Institute for Pharmacodynamics and Safety Evaluation of Chinese Medicine, Anhui Academy of Chinese Medicine
| |
Collapse
|
37
|
Chen FQ, Li Q, Pan CS, Liu YY, Yan L, Sun K, Mao XW, Mu HN, Wang MX, Wang CS, Fan JY, Cui YC, Zhang YP, Yang JY, Bai W, Han JY. Kudiezi Injection®Alleviates Blood-Brain Barrier Disruption After Ischemia-Reperfusion in Rats. Microcirculation 2016; 23:426-37. [DOI: 10.1111/micc.12288] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 05/08/2016] [Indexed: 11/26/2022]
|
38
|
Comparative effect of immature neuronal or glial cell transplantation on motor functional recovery following experimental traumatic brain injury in rats. Exp Ther Med 2016; 12:1671-1680. [PMID: 27602084 PMCID: PMC4998226 DOI: 10.3892/etm.2016.3527] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 04/11/2016] [Indexed: 01/19/2023] Open
Abstract
The present study evaluated the comparative effect of stereotaxically transplanted immature neuronal or glial cells in brain on motor functional recovery and cytokine expression after cold-induced traumatic brain injury (TBI) in adult rats. A total of 60 rats were divided into four groups (n=15/group): Sham group; TBI only group; TBI plus neuronal cells-transplanted group (NC-G); and TBI plus glial cells-transplanted group (GC-G). Cortical lesions were induced by a touching metal stamp, frozen with liquid nitrogen, to the dura mater over the motor cortex of adult rats. Neuronal and glial cells were isolated from rat embryonic and newborn cortices, respectively, and cultured in culture flasks. Rats received neurons or glia grafts (~1×106 cells) 5 days after TBI was induced. Motor functional evaluation was performed with the rotarod test prior to and following glial and neural cell grafts. Five rats from each group were sacrificed at 2, 4 and 6 weeks post-cell transplantation. Immunofluorescence staining was performed on brain section to identify the transplanted neuronal or glial cells using neural and astrocytic markers. The expression levels of cytokines, including transforming growth factor-β, glial cell-derived neurotrophic factor and vascular endothelial growth factor, which have key roles in the proliferation, differentiation and survival of neural cells, were analyzed by immunohistochemistry and western blotting. A localized cortical lesion was evoked in all injured rats, resulting in significant motor deficits. Transplanted cells successfully migrated and survived in the injured brain lesion, and the expression of neuronal and astrocyte markers were detected in the NC-G and GC-G groups, respectively. Rats in the NC-G and GC-G cell-transplanted groups exhibited significant motor functional recovery and reduced histopathologic lesions, as compared with the TBI-G rats that did not receive neural cells (P<0.05, respectively). Furthermore, GC-G treatment induced significantly improved motor functional recovery, as compared with the NC-G group (P<0.05). Increased cytokine expression levels were detected in the NC-G and GC-G groups, as compared with the TBI-G; however, no differences were found between the two groups. These data suggested that transplanted immature neural cells may promote the survival of neural cells in cortical lesion and motor functional recovery. Furthermore, transplanted glial cells may be used as an effective therapeutic tool for TBI patients with abnormalities in motor functional recovery and cytokine expression.
Collapse
|
39
|
Xu SH, Yin MS, Liu B, Chen ML, He GW, Zhou PP, Cui YJ, Yang D, Wu YL. Tetramethylpyrazine-2'-O-sodium ferulate attenuates blood-brain barrier disruption and brain oedema after cerebral ischemia/reperfusion. Hum Exp Toxicol 2016; 36:670-680. [PMID: 27387348 DOI: 10.1177/0960327116657401] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Disruption of blood-brain barrier (BBB) and subsequent oedema are major causes of the pathogenesis in ischaemic stroke with which the current clinical therapy remains unsatisfied. In this study, we examined the therapeutic effect of tetramethylpyrazine-2'-O-sodium ferulate (TSF)-a novel analogue of tetramethylpyrazine in alleviating BBB breakdown and brain oedema after cerebral ischaemia/reperfusion (I/R). Then, we explored the potential mechanism of the protection on BBB disruption in cerebral I/R rat models. Male Sprague-Dawley rats (250-300 g) were subjected to 120 min middle cerebral artery occlusion (MCAO), followed by 48 h reperfusion. TSF (10.8, 18 and 30 mg kg-1) and ozagrel (18 mg kg-1) were administrated by intravenous injection immediately for the first time and then received the same dose every 24 h for 2 days. We found that TSF treatment significantly attenuated the cerebral water content, infarction volume and improved neurological outcomes in MCAO rats compared to I/R models. Moreover, we investigated the effect of TSF on the BBB for that cerebral oedema is closely related to the permeability of the BBB. We found that the permeability of BBB was improved significantly in TSF groups compared to I/R model group by Evans blue leakage testing. Furthermore, the expressions of tight junction (TJ) proteins junction adhesion molecule-1 and occludin significantly decreased, but the protein expression of matrix metalloproteinase-9 (MMP-9) and aquaporin 4 (AQP4) increased after cerebral I/R, all of which were alleviated by TSF treatment. In conclusion, TSF significantly reduced BBB permeability and brain oedema, which were correlated with regulating the expression of TJ proteins, MMP-9 and AQP4. These findings provide a novel approach to the treatment of ischaemic stroke.
Collapse
Affiliation(s)
- S-H Xu
- 1 Department of Physiology, China Pharmaceutical University, Nanjing, China
| | - M-S Yin
- 2 School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,3 Institute of Materia Medica, Shandong Academy of Medical Sciences, Jinan, China
| | - B Liu
- 4 Eye Hospital of Wenzhou Medical University, Wenzhou, China
| | - M-L Chen
- 1 Department of Physiology, China Pharmaceutical University, Nanjing, China
| | - G-W He
- 5 Hefei Yigong Medicine Co., Ltd, Hefei, China
| | - P-P Zhou
- 1 Department of Physiology, China Pharmaceutical University, Nanjing, China
| | - Y-J Cui
- 1 Department of Physiology, China Pharmaceutical University, Nanjing, China
| | - D Yang
- 1 Department of Physiology, China Pharmaceutical University, Nanjing, China
| | - Y-L Wu
- 1 Department of Physiology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
40
|
Mitochondrial function in hypoxic ischemic injury and influence of aging. Prog Neurobiol 2016; 157:92-116. [PMID: 27321753 DOI: 10.1016/j.pneurobio.2016.06.006] [Citation(s) in RCA: 275] [Impact Index Per Article: 30.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2015] [Revised: 03/30/2016] [Accepted: 06/12/2016] [Indexed: 12/11/2022]
Abstract
Mitochondria are a major target in hypoxic/ischemic injury. Mitochondrial impairment increases with age leading to dysregulation of molecular pathways linked to mitochondria. The perturbation of mitochondrial homeostasis and cellular energetics worsens outcome following hypoxic-ischemic insults in elderly individuals. In response to acute injury conditions, cellular machinery relies on rapid adaptations by modulating posttranslational modifications. Therefore, post-translational regulation of molecular mediators such as hypoxia-inducible factor 1α (HIF-1α), peroxisome proliferator-activated receptor γ coactivator α (PGC-1α), c-MYC, SIRT1 and AMPK play a critical role in the control of the glycolytic-mitochondrial energy axis in response to hypoxic-ischemic conditions. The deficiency of oxygen and nutrients leads to decreased energetic reliance on mitochondria, promoting glycolysis. The combination of pseudohypoxia, declining autophagy, and dysregulation of stress responses with aging adds to impaired host response to hypoxic-ischemic injury. Furthermore, intermitochondrial signal propagation and tissue wide oscillations in mitochondrial metabolism in response to oxidative stress are emerging as vital to cellular energetics. Recently reported intercellular transport of mitochondria through tunneling nanotubes also play a role in the response to and treatments for ischemic injury. In this review we attempt to provide an overview of some of the molecular mechanisms and potential therapies involved in the alteration of cellular energetics with aging and injury with a neurobiological perspective.
Collapse
|
41
|
Abstract
Stroke is the second foremost cause of mortality worldwide and a major cause of long-term disability. Due to changes in lifestyle and an aging population, the incidence of stroke continues to increase and stroke mortality predicted to exceed 12 % by the year 2030. However, the development of pharmacological treatments for stroke has failed to progress much in over 20 years since the introduction of the thrombolytic drug, recombinant tissue plasminogen activator. These alarming circumstances caused many research groups to search for alternative treatments in the form of neuroprotectants. Here, we consider the potential use of phytochemicals in the treatment of stroke. Their historical use in traditional medicine and their excellent safety profile make phytochemicals attractive for the development of therapeutics in human diseases. Emerging findings suggest that some phytochemicals have the ability to target multiple pathophysiological processes involved in stroke including oxidative stress, inflammation and apoptotic cell death. Furthermore, epidemiological studies suggest that the consumption of plant sources rich in phytochemicals may reduce stroke risk, and so reinforce the possibility of developing preventative or neuroprotectant therapies for stroke. In this review, we describe results of preclinical studies that demonstrate beneficial effects of phytochemicals in experimental models relevant to stroke pathogenesis, and we consider their possible mechanisms of action.
Collapse
|
42
|
Chen H, Guan B, Shen J. Targeting ONOO -/HMGB1/MMP-9 Signaling Cascades: Potential for Drug Development from Chinese Medicine to Attenuate Ischemic Brain Injury and Hemorrhagic Transformation Induced by Thrombolytic Treatment. ACTA ACUST UNITED AC 2016. [DOI: 10.1159/000442468] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
43
|
Lopez MS, Dempsey RJ, Vemuganti R. Resveratrol neuroprotection in stroke and traumatic CNS injury. Neurochem Int 2015; 89:75-82. [PMID: 26277384 DOI: 10.1016/j.neuint.2015.08.009] [Citation(s) in RCA: 123] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 08/07/2015] [Accepted: 08/08/2015] [Indexed: 02/02/2023]
Abstract
Resveratrol, a stilbene formed in many plants in response to various stressors, elicits multiple beneficial effects in vertebrates. Particularly, resveratrol was shown to have therapeutic properties in cancer, atherosclerosis and neurodegeneration. Resveratrol-induced benefits are modulated by multiple synergistic pathways that control oxidative stress, inflammation and cell death. Despite the lack of a definitive mechanism, both in vivo and in vitro studies suggest that resveratrol can induce a neuroprotective state when administered acutely or prior to experimental injury to the CNS. In this review, we discuss the neuroprotective potential of resveratrol in stroke, traumatic brain injury and spinal cord injury, with a focus on the molecular pathways responsible for this protection.
Collapse
Affiliation(s)
- Mary S Lopez
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Robert J Dempsey
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
44
|
Zhou Y, Zhang XM, Ma A, Zhang YL, Chen YY, Zhou H, Li WJ, Jin X. Orally administrated pterostilbene attenuates acute cerebral ischemia–reperfusion injury in a dose- and time-dependent manner in mice. Pharmacol Biochem Behav 2015; 135:199-209. [DOI: 10.1016/j.pbb.2015.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2014] [Revised: 06/09/2015] [Accepted: 06/13/2015] [Indexed: 01/28/2023]
|
45
|
Lin Y, Xu M, Wan J, Wen S, Sun J, Zhao H, Lou M. Docosahexaenoic acid attenuates hyperglycemia-enhanced hemorrhagic transformation after transient focal cerebral ischemia in rats. Neuroscience 2015; 301:471-9. [PMID: 26102005 DOI: 10.1016/j.neuroscience.2015.06.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/13/2015] [Accepted: 06/15/2015] [Indexed: 11/19/2022]
Abstract
Hemorrhagic transformation (HT) is a feared complication of cerebral ischemic infarction, especially following the use of thrombolytic therapy. In this study, we examined whether docosahexaenoic acid (DHA; 22:6n-3), an omega-3 essential fatty acid family member, can protect the brain from injury and whether DHA can decrease the risk of HT enhanced by hyperglycemia after focal ischemic injury. Male Sprague-Dawley rats were injected with 50% dextrose (6ml/kg intraperitoneally) to induce hyperglycemia 10min before 1.5h of filament middle cerebral artery occlusion (MCAO) was performed. Treatment with DHA (10mg/kg) 5min before reperfusion reduced HT and further improved the 7-day neurological outcome. It also reduced infarct volume, which is consistent with the restricted DWI and T2WI hyperintensive area. Reduced Evans Blue extravasation and increased expression of collagen IV indicated the improved integrity of the blood-brain barrier (BBB) in DHA-treated rats. Moreover, DHA reduced the expression of the intercellular adhesion molecule-1 (ICAM-1) in the ischemic injured brain. Therefore, we conclude that DHA attenuated hyperglycemia-enhanced HT and improved neurological function by preserving the integrity of BBB and reducing inflammation.
Collapse
Affiliation(s)
- Y Lin
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University, School of Medicine, #88 Jiefang Road, Hangzhou, China
| | - M Xu
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University, School of Medicine, #88 Jiefang Road, Hangzhou, China
| | - J Wan
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University, School of Medicine, #88 Jiefang Road, Hangzhou, China
| | - S Wen
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University, School of Medicine, #88 Jiefang Road, Hangzhou, China
| | - J Sun
- Department of Radiology, The Second Affiliated Hospital, Zhejiang University, School of Medicine, #88 Jiefang Road, Hangzhou, China
| | - H Zhao
- Department of Neurosurgery, Stanford University School of Medicine, MSLS Building, P306, 1201 Welch Road, Room P306, Stanford, CA 94305-5327, USA
| | - M Lou
- Department of Neurology, The Second Affiliated Hospital, Zhejiang University, School of Medicine, #88 Jiefang Road, Hangzhou, China.
| |
Collapse
|
46
|
Organ-Protective Effects of Red Wine Extract, Resveratrol, in Oxidative Stress-Mediated Reperfusion Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:568634. [PMID: 26161238 PMCID: PMC4487914 DOI: 10.1155/2015/568634] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 10/09/2014] [Indexed: 12/25/2022]
Abstract
Resveratrol, a polyphenol extracted from red wine, possesses potential antioxidative and anti-inflammatory effects, including the reduction of free radicals and proinflammatory mediators overproduction, the alteration of the expression of adhesion molecules, and the inhibition of neutrophil function. A growing body of evidence indicates that resveratrol plays an important role in reducing organ damage following ischemia- and hemorrhage-induced reperfusion injury. Such protective phenomenon is reported to be implicated in decreasing the formation and reaction of reactive oxygen species and pro-nflammatory cytokines, as well as the mediation of a variety of intracellular signaling pathways, including the nitric oxide synthase, nicotinamide adenine dinucleotide phosphate oxidase, deacetylase sirtuin 1, mitogen-activated protein kinase, peroxisome proliferator-activated receptor-gamma coactivator 1 alpha, hemeoxygenase-1, and estrogen receptor-related pathways. Reperfusion injury is a complex pathophysiological process that involves multiple factors and pathways. The resveratrol is an effective reactive oxygen species scavenger that exhibits an antioxidative property. In this review, the organ-protective effects of resveratrol in oxidative stress-related reperfusion injury will be discussed.
Collapse
|
47
|
Tang H, Pan CS, Mao XW, Liu YY, Yan L, Zhou CM, Fan JY, Zhang SY, Han JY. Role of NADPH oxidase in total salvianolic acid injection attenuating ischemia-reperfusion impaired cerebral microcirculation and neurons: implication of AMPK/Akt/PKC. Microcirculation 2015; 21:615-27. [PMID: 24702968 DOI: 10.1111/micc.12140] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 04/02/2014] [Indexed: 11/30/2022]
Abstract
OBJECTIVE TSI is a new drug derived from Chinese medicine for treatment of ischemic stroke in China. The aim of this study was to verify the therapeutic effect of TSI in a rat model of MCAO, and further explore the mechanism for its effect. METHODS Male Sprague-Dawley rats were subjected to right MCAO for 60 minutes followed by reperfusion. TSI (1.67 mg/kg) was administrated before reperfusion via femoral vein injection. Twenty-four hours after reperfusion, the fluorescence intensity of DHR 123 in, leukocyte adhesion to and albumin leakage from the cerebral venules were observed. Neurological scores, TTC staining, brain water content, Nissl staining, TUNEL staining, and MDA content were assessed. Bcl-2/Bax, cleaved caspase-3, NADPH oxidase subunits p47(phox)/p67(phox)/gp91(phox), and AMPK/Akt/PKC were analyzed by Western blot. RESULTS TSI attenuated I/R-induced microcirculatory disturbance and neuron damage, activated AMPK, inhibited NADPH oxidase subunits membrane translocation, suppressed Akt phosphorylation, and PKC translocation. CONCLUSIONS TSI attenuates I/R-induced brain injury in rats, supporting its clinic use for treatment of acute ischemic stroke. The role of TSI may benefit from its antioxidant activity, which is most likely implemented via inactivation of NADPH oxidase through a signaling pathway implicating AMPK/Akt/PKC.
Collapse
Affiliation(s)
- Hao Tang
- The Fourth Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Pirhan D, Yüksel N, Emre E, Cengiz A, Kürşat Yıldız D. Riluzole- and Resveratrol-Induced Delay of Retinal Ganglion Cell Death in an Experimental Model of Glaucoma. Curr Eye Res 2015; 41:59-69. [PMID: 25658983 DOI: 10.3109/02713683.2015.1004719] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
PURPOSE To evaluate the effects of the neuroprotective agents riluzole and resveratrol on the survival of retinal ganglion cells (RGCs) when administered alone or in combination. MATERIALS AND METHODS Experimental glaucoma was induced by injecting hyaluronic acid into the anterior chamber of Wistar albino rats weekly for a six-week period. Intraocular pressure was measured before and immediately after glaucoma induction. The neuroprotective effects of daily intraperitoneal injections of riluzole (8 mg/kg) and resveratrol (10 mg/kg) were evaluated and compared. After the six-week period, dextran tetramethylrhodamine was applied into the optic nerve and the density of surviving RGCs was evaluated by counting the labeled RGCs in whole mount retinas for retrograde labeling of RGCs. RESULTS The mean numbers of RGCs were significantly preserved in all treatment groups compared to the vehicle-treated glaucoma group (G). The mean number of RGCs in mm(2) were 1207 ± 56 in the control group (C), 404 ± 65 in G group, 965 ± 56 in riluzole-treated group in the early phase of glaucoma (E-Ri), 714 ± 25 in riluzole-treated group in the late phase of glaucoma (L-Ri), 735 ± 29 in resveratrol-treated group in the early phase of glaucoma (E-Re), 667 ± 20 in resveratrol-treated group in the late phase of glaucoma (L-Re), and 1071 ± 49 in riluzole and resveratrol combined-treated group in the early phase of glaucoma (E-RiRe group). CONCLUSIONS When used either alone or in combination, both riluzole and resveratrol, two agents with different mechanisms of action in glaucoma, significantly delayed RGC loss in this study's experimental glaucoma model.
Collapse
Affiliation(s)
| | | | - Esra Emre
- a Department of Ophthalmology , School of Medicine
| | - Abdulkadir Cengiz
- b Department of Technical Education , Technical Education Faculty , and
| | - Demir Kürşat Yıldız
- c Department of Pathology , School of Medicine, University of Kocaeli , Kocaeli , Turkey
| |
Collapse
|
49
|
Park EJ, Pezzuto JM. The pharmacology of resveratrol in animals and humans. Biochim Biophys Acta Mol Basis Dis 2015; 1852:1071-113. [PMID: 25652123 DOI: 10.1016/j.bbadis.2015.01.014] [Citation(s) in RCA: 197] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2014] [Revised: 01/01/2015] [Accepted: 01/21/2015] [Indexed: 12/12/2022]
Abstract
In addition to thousands of research papers related to resveratrol (RSV), approximately 300 review articles have been published. Earlier research tended to focus on pharmacological activities of RSV related to cardiovascular systems, inflammation, and carcinogenesis/cancer development. More recently, the horizon has been broadened by exploring the potential effect of RSV on the aging process, diabetes, neurological dysfunction, etc. Herein, we primarily focus on the in vivo pharmacological effects of RSV reported over the past 5 years (2009-2014). In addition, recent clinical intervention studies performed with resveratrol are summarized. Some discrepancies exist between in vivo studies with animals and clinical studies, or between clinical studies, which are likely due to disparate doses of RSV, experimental settings, and subject variation. Nevertheless, many positive indications have been reported with mammals, so it is reasonable to advocate for the conduct of more definitive clinical studies. Since the safety profile is pristine, an added advantage is the use of RSV as a dietary supplement. This article is part of a Special Issue entitled: Resveratrol: Challenges in translating pre-clinical findings to improved patient outcomes.
Collapse
Affiliation(s)
- Eun-Jung Park
- The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, HI 96720, USA
| | - John M Pezzuto
- The Daniel K. Inouye College of Pharmacy, University of Hawai'i at Hilo, Hilo, HI 96720, USA.
| |
Collapse
|
50
|
Cho KS, Lee EJ, Kwon KJ, Gonzales ELT, Kim YB, Cheong JH, Bahn GH, Lee J, Han SH, Kim YT, Shin CY. Resveratrol down-regulates a glutamate-induced tissue plasminogen activator via Erk and AMPK/mTOR pathways in rat primary cortical neurons. Food Funct 2014; 5:951-60. [PMID: 24599349 DOI: 10.1039/c3fo60397k] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Resveratrol (3,5,4'-trihydroxy-trans-stilbene, RSV) is a polyphenolic compound present in a variety of plant species (including grapes) that produces a myriad of biological activities including anti-inflammatory, antioxidant and neuroprotective effects. In this study, we investigate the effects of resveratrol on the basal and glutamate-stimulated expression and activity of a tissue plasminogen activator (tPA) that plays neuromodulatory or neurotoxic roles in many different neurological situations. Under basal conditions, resveratrol decreased the tPA expression and activity without affecting the tPA mRNA level in rat primary cortical neurons. RSV induced AMPK phosphorylation and inhibited mTOR phosphorylation. Inhibition of AMPK phosphorylation using compound C prevented resveratrol-induced down-regulation of tPA activity. This suggested that AMPK/mTOR-dependent translational inhibition contributes to the down-regulation of the tPA. Under glutamate-stimulated conditions of rat primary cortical neurons, tPA activity and expression were increased along with increased tPA mRNA expression but afterward treatment of RSV inhibited the glutamate-induced increase in tPA activity and expression and tPA mRNA expression. Glutamate stimulation induced activation of Akt and MAPK pathways as well as mTOR which were inhibited by RSV. Interestingly, the Erk pathway inhibitor U0126, but neither PI3K-Akt inhibitor LY294002 nor p38 inhibitor SB203580, mimicked the inhibitory action of RSV on glutamate-induced tPA up-regulation. This suggested the essential role of Erk in the transcriptional up-regulation of tPA expression, which is targeted by RSV. Glutamate stimulation induced neuronal cell death as determined by PI staining and MTT assay. However, RSV protected the cultured rat primary cortical neurons from glutamate-induced cell death as paralleled with the changes in tPA expression. These results suggested that RSV can modulate tPA activity under basal and stimulated conditions by both translational and transcriptional mechanisms. The regulation of the tPA by RSV provides additional therapeutic targets on top of the growing number of molecular substrates of RSV's action in the brain.
Collapse
Affiliation(s)
- Kyu Suk Cho
- Department of Neuroscience and Institute of Functional Genomics, Department of Pharmacology, School of Medicine, Konkuk University, 1 Hwayang-Dong, Gwangjin-Gu, Seoul 143-701, Korea.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|