1
|
Cui L, Liu B, Ling Z, Liu K, Tan S, Gong Z, Xiao W. Characterization of physicochemical properties of different epigallocatechin-3-gallate nanoparticles and their effect on bioavailability. Food Chem 2025; 480:143935. [PMID: 40147275 DOI: 10.1016/j.foodchem.2025.143935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 02/28/2025] [Accepted: 03/16/2025] [Indexed: 03/29/2025]
Abstract
Epigallocatechin-3-gallate (EGCG), a major catechin in green tea, exhibits potent antioxidant and disease-preventive properties, but its application is limited by poor stability and bioavailability. This study aimed to address these challenges by preparing and characterizing three EGCG-loaded nanoparticles: chitosan-EGCG-tripolyphosphate nanoparticles (CE-NPs), β-cyclodextrin-EGCG (BE-NPs), and EGCG-nanostructured lipid carriers (NE-NPs). BE-NPs exhibited the highest loading performance and retention rate under thermal environment (89.78 % after 10 h at 80 °C). NE-NPs had the highest EGCG stability in alkaline condition (45 % after 4 h at pH 7.4). Compared to free EGCG, all NPs significantly improved in vitro bioaccessibility following incubation in simulated gastrointestinal digestion for 4 h; BE-NPs enhanced oral bioavailability by 1.71 times in vivo. Additionally, CE-NPs and NE-NPs increased the relative abundance of Faecalibaculum, Erysipelotrichaceae, and Bifidobacterium in the colons of Sprague-Dawley rats. These findings suggest that BE-NPs are a promising nano-delivery system for enhancing EGCG stability and bioavailability in healthy organisms.
Collapse
Affiliation(s)
- Lidan Cui
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China
| | - Baogui Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China
| | - Zhihui Ling
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China
| | - Kehong Liu
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China
| | - Simin Tan
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China
| | - Zhihua Gong
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.
| | - Wenjun Xiao
- Key Laboratory of Tea Science of Ministry of Education, Hunan Agricultural University, Changsha, Hunan 410128, China; National Research Center of Engineering Technology for Utilization of Botanical Functional Ingredients, Hunan Agricultural University, Changsha, Hunan 410128, China; Hunan Agricultural University, Co-Innovation Center of Education Ministry for Utilization of Botanical Functional Ingredients, Changsha, Hunan 410128, China.
| |
Collapse
|
2
|
Liu B, Tian H, Momeni MR. The interplay of exercise and green tea: a new road in cancer therapy. Cancer Cell Int 2025; 25:6. [PMID: 39773739 PMCID: PMC11705833 DOI: 10.1186/s12935-024-03632-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 12/31/2024] [Indexed: 01/11/2025] Open
Abstract
Exercise is one of the most important activities for every individual due to its proven health beneficials. Several investigations have highlighted the advantageous impacts of aerobic exercise, largely attributed to its capacity to enhance the body's capability to defend against threats against oxidative stress. The information currently accessible suggests that adding regular aerobic exercise to a daily routine greatly decreases the chances of developing serious cancer and passing away. An unevenness in the levels of free radicals and the body's antioxidant defenses, made up of enzyme and non-enzyme antioxidants, results in oxidative pressure. Generally, an imbalance in the levels of oxidative stress triggers the creation of harmful reactive oxygen or nitrogen compounds, causing the development or progression of numerous ailments, including cancer. The equilibrium between pro-oxidant and antioxidant substances is a direct indicator of this imbalance. Green tea and its derivatives are rich sources of bioactive substances such as flavonoids and polyphenols which possess antioxidant abilities. Moreover, modulation of epigenetic targets as well as inflammatory pathways including ERK1/2 and NF-κB are other proposed mechanisms for its antioxidant activity. Recent studies demonstrate the promise of green tea as an antioxidant, showing its ability to decrease the likelihood of developing cancer by impacting actions like cell growth, blood vessel formation, and spread of cancer cells. This summary will concentrate on the complex network of different pathways related to physical activity and consumption of green tea. In particular, the focus of this research will be on examining how oxidative stress contributes to health and investigating the potential antioxidant properties of green tea, and the interconnected relationship between exercise and green tea in the treatment of cancer. Elucidation of these different pathways would help scientists for development of better therapeutic targets and further increase of current anticancer agents efficiency.
Collapse
Affiliation(s)
- Bing Liu
- Henan University of Chinese Medicine, Zhengzhou, 450000, Henan, China
| | - Heyu Tian
- Henan University of Chinese Medicine, Zhengzhou, 450000, Henan, China.
| | | |
Collapse
|
3
|
Chen N, Yao P, Farid MS, Zhang T, Luo Y, Zhao C. Effect of bioactive compounds in processed Camellia sinensis tea on the intestinal barrier. Food Res Int 2025; 199:115383. [PMID: 39658174 DOI: 10.1016/j.foodres.2024.115383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Revised: 10/18/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
The human intestinal tract plays a pivotal role in safeguarding the body against noxious substances and microbial pathogens by functioning as a barrier. This barrier function is achieved through the combined action of physical, chemical, microbial, and immune components. Tea (Camellia sinensis) is the most widely consumed beverage in the world, and it is consumed and appreciated in a multitude of regions across the globe. Tea can be classified into various categories, including green, white, yellow, oolong, black, and dark teas, based on the specific processing methods employed. In recent times, there has been a notable surge in scientific investigation into the various types of tea. The recent surge in research on tea can be attributed to the plethora of bioactive compounds it contains, including polyphenols, polysaccharides, pigments, and theanine. The processing of different teas affects the active ingredients to varying degrees, resulting in a range of chemical reactions and the formation of different types and quantities of ingredients. The bioactive compounds present in tea are of great importance for the maintenance of the integrity of the intestinal barrier, operating through a variety of mechanisms. This literature review synthesizes scientific studies on the impact of the primary bioactive compounds and different processing methods of tea on the intestinal barrier function. This review places particular emphasis on the exploration of the barrier repair and regulatory effects of these compounds, including the mitigation of damage to different barriers following intestinal diseases. Specifically, the active ingredients in tea can alleviate damage to physical barriers and chemical barriers by regulating barrier protein expression. At the same time, they can also maintain the stability of immune and biological barriers by regulating the expression of inflammatory factors and the metabolism of intestinal flora. This investigation can establish a strong theoretical foundation for the future development of innovative tea products.
Collapse
Affiliation(s)
- Nan Chen
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Peng Yao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | | | - Tiehua Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| | - Yangchao Luo
- Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269, United States.
| | - Changhui Zhao
- College of Food Science and Engineering, Jilin University, Changchun 130062, China.
| |
Collapse
|
4
|
Liu GH, Yao ZQ, Chen GQ, Li YL, Liang B. Potential Benefits of Green Tea in Prostate Cancer Prevention and Treatment: A Comprehensive Review. Chin J Integr Med 2024; 30:1045-1055. [PMID: 38561489 DOI: 10.1007/s11655-024-4100-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2023] [Indexed: 04/04/2024]
Abstract
Prostate cancer is a prevalent and debilitating disease that necessitates effective prevention and treatment strategies. Green tea, a well-known beverage derived from the Camellia sinensis plant, contains bioactive compounds with potential health benefits, including catechins and polyphenols. This comprehensive review aims to explore the potential benefits of green tea in prostate cancer prevention and treatment by examining existing literature. Green tea possesses antioxidant, anti-inflammatory, and anti-carcinogenic properties attributed to its catechins, particularly epigallocatechin gallate. Epidemiological studies have reported an inverse association between green tea consumption and prostate cancer risk, with potential protection against aggressive forms of the disease. Laboratory studies demonstrate that green tea components inhibit tumor growth, induce apoptosis, and modulate signaling pathways critical to prostate cancer development and progression. Clinical trials and human studies further support the potential benefits of green tea. Green tea consumption has been found to be associated with a reduction in prostate-specific antigen levels, tumor markers, and played a potential role in slowing disease progression. However, challenges remain, including optimal dosage determination, formulation standardization, and conducting large-scale, long-term clinical trials. The review suggests future research should focus on combinatorial approaches with conventional therapies and personalized medicine strategies to identify patient subgroups most likely to benefit from green tea interventions.
Collapse
Affiliation(s)
- Gui-Hong Liu
- Department of Urology, Sanya Central Hospital (The Third People's Hospital of Hainan Province), Sanya City, Hainan Province, 572000, China
| | - Ze-Qin Yao
- Department of Urology, Sanya Central Hospital (The Third People's Hospital of Hainan Province), Sanya City, Hainan Province, 572000, China
| | - Guo-Qiang Chen
- Department of Urology, Sanya Central Hospital (The Third People's Hospital of Hainan Province), Sanya City, Hainan Province, 572000, China
| | - Ya-Lang Li
- Department of Urology, Yuzhou People's Hospital, Xuchang City, Henan Province, 461670, China
| | - Bing Liang
- Department of Urology, Sanya Central Hospital (The Third People's Hospital of Hainan Province), Sanya City, Hainan Province, 572000, China.
| |
Collapse
|
5
|
Luo Q, Luo L, Zhao J, Wang Y, Luo H. Biological potential and mechanisms of Tea's bioactive compounds: An Updated review. J Adv Res 2024; 65:345-363. [PMID: 38056775 PMCID: PMC11519742 DOI: 10.1016/j.jare.2023.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 11/28/2023] [Accepted: 12/02/2023] [Indexed: 12/08/2023] Open
Abstract
BACKGROUND Tea (Camellia sinensis) has a rich history and is widely consumed across many countries, and is categorized into green tea, white tea, oolong tea, yellow tea, black tea, and dark tea based on the level of fermentation. Based on a review of previous literature, the commonly recognized bioactive substances in tea include tea polyphenols, amino acids, polysaccharides, alkaloids, terpenoids, macro minerals, trace elements, and vitamins, which have been known to have various potential health benefits, such as anticancer, antioxidant, anti-inflammatory, anti-diabetes, and anti-obesity properties, cardiovascular protection, immune regulation, and control of the intestinal microbiota. Most studies have only pointed out the characteristics of tea's bioactivities, so a comprehensive summary of the pharmacological characteristics and mechanisms of tea's bioactivities and their use risks are vital. AIM OF REVIEW This paper aims to summarize tea's bioactive substances of tea and their pharmacological characteristics and mechanisms, providing a scientific basis for the application of bioactive substances in tea and outlining future research directions for the study of bioactive substances in tea. KEY SCIENTIFIC CONCEPTS OF REVIEW This review summarizes the main biologically active substances, pharmacological effects, and mechanisms and discusses the potential risks. It may help researchers grasp more comprehensive progress in the study of tea bioactive substances to further promote the application of tea as a natural bioactive substance in the medical field.
Collapse
Affiliation(s)
- Qiaoxian Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China
| | - Longbiao Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China
| | - Jinmin Zhao
- College of Pharmacy, Guangxi Medical University, Nanning, 530021, PR China
| | - Yitao Wang
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China.
| | - Hua Luo
- Macau Centre for Research and Development in Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, 999078, PR China; College of Pharmacy, Guangxi Medical University, Nanning, 530021, PR China.
| |
Collapse
|
6
|
Niu M, Li R, Li X, Yang H, Ding J, Zhou X, He Y, Xu Y, Qu Q, Liu Z, Li J. Insights into the Metabolite Profiles of Two Camellia (Theaceae) Species in Yunnan Province through Metabolomic and Transcriptomic Analysis. Biomolecules 2024; 14:1106. [PMID: 39334872 PMCID: PMC11430766 DOI: 10.3390/biom14091106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 08/13/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Tea (Camellia sinensis) falls into the family Theaceae, is a valuable commercial crop, and tea products made from its buds and young leaves are favored by consumers all over the world. The more common Thea plant is Camellia sinensis (C. sinensis), but its most important relative, Camellia taliensis (C. taliensis), is also utilized by locals in the area of cultivation to manufacture tea. In this investigation, C. taliensis (DL) and C. sinensis (QJZ) were characterized in terms of their agronomic traits, physicochemical indices, metabolomics, and transcriptomics. The leaf area of DL is larger than that of QJZ; the color of DL's buds and leaves is yellowish-green, while that of QJZ's is green. DL's buds and leaves are more densely velvety than those of QJZ. The HPLC results indicated that the physicochemical contents varied considerably between the two samples, with DL having greater concentrations of EGCG and GABA than QJZ, while QJZ had remarkably higher concentrations of C, CA, and EGC than DL. A total of 2269 metabolites and 362,190,414 genes were positively identified, with the number of DAMs and DEGs being 1001 and 34,026, respectively. The flavonoids, phenolic acids, and alkaloid metabolites were dramatically different between the two tea group plants. Bioinformatics profiling revealed that the DAMs and DEGs of the two tea group plants interacted with each other and were involved in metabolic pathways, including "biosynthesis of secondary metabolites", "biosynthesis of amino acids", "biosynthesis of cofactors", "phenylpropanoid biosynthesis", and "flavonoid biosynthesis". Overall, these results provide statistical support for germplasm conservation and production for both C. taliensis and C. sinensis.
Collapse
Affiliation(s)
- Miao Niu
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Ranyang Li
- College of Horticulture, Hunan Agricultural University, Changsha 410128, China
| | - Xiongyu Li
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Hongyan Yang
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Jianliang Ding
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Xianxiu Zhou
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Yuqi He
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Yawen Xu
- College of Pu-Erh Tea, West Yunnan University of Applied Sciences, Puer 665000, China
| | - Qian Qu
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Zhiwei Liu
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| | - Jiahua Li
- College of Tea Science, Yunnan Agricultural University, Kunming 650201, China
| |
Collapse
|
7
|
Sumi MJ, Zaman SB, Imran S, Sarker P, Rhaman MS, Gaber A, Skalicky M, Moulick D, Hossain A. An investigation of the pigments, antioxidants and free radical scavenging potential of twenty medicinal weeds found in the southern part of Bangladesh. PeerJ 2024; 12:e17698. [PMID: 39071122 PMCID: PMC11276756 DOI: 10.7717/peerj.17698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/17/2024] [Indexed: 07/30/2024] Open
Abstract
Despite their overlooked status, weeds are increasingly recognized for their therapeutic value, aligning with historical reliance on plants for medicine and nutrition. This study investigates the medicinal potential of native weed species in Bangladesh, specifically pigments, antioxidants, and free radical scavenging abilities. Twenty different medicinal weed species were collected from the vicinity of Khulna Agricultural University and processed in the Crop Botany Department Laboratory. Pigment levels were determined using spectrophotometer analysis, and phenolics, flavonoids, and DPPH were quantified accordingly. Chlorophyll levels in leaves ranged from 216.70 ± 9.41 to 371.14 ± 28.67 µg g-1 FW, and in stems from 51.98 ± 3.21 to 315.89 ± 17.19 µg g-1 FW. Flavonoid content also varied widely, from 1,624.62 ± 102.03 to 410.00 ± 115.58 mg CE 100 g-1 FW in leaves, and from 653.08 ± 32.42 to 80.00 ± 18.86 mg CE 100 g-1 FW in stems. In case of phenolics content Euphorbia hirta L. displaying the highest total phenolic content in leaves (1,722.33 ± 417.89 mg GAE 100 g-1 FW) and Ruellia tuberosa L. in stems (977.70 ± 145.58 mg GAE 100 g-1 FW). The lowest DPPH 2.505 ± 1.028 mg mL-1was found in Heliotropium indicum L. leaves. Hierarchical clustering links species with pigment, phenolic/flavonoid content, and antioxidant activity. PCA, involving 20 species and seven traits, explained 70.07% variability, with significant PC1 (14.82%) and PC2 (55.25%). Leaves were shown to be superior, and high-performing plants such as E. hirta and H. indicum stood out for their chemical composition and antioxidant activity. Thus, this research emphasizes the value of efficient selection while concentrating on the therapeutic potential of native weed species.
Collapse
Affiliation(s)
- Mousumi Jahan Sumi
- Department of Crop Botany, Khulna Agricultural University, Khulna, Bangladesh
| | - Samia Binta Zaman
- Faculty of Agriculture, Khulna Agricultural University, Khulna, Bangladesh
| | - Shahin Imran
- Department of Agronomy, Khulna Agricultural University, Khulna, Bangladesh
- Institute of Plant Science and Resources, Okayama University, Kurashiki, Japan
| | - Prosenjit Sarker
- Department of Crop Botany, Khulna Agricultural University, Khulna, Bangladesh
| | - Mohammad Saidur Rhaman
- Department of Seed Science and Technology, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Ahmed Gaber
- Department of Biology, Faculty of Science, Taif University, Taif, Saudi Arabia
| | - Milan Skalicky
- Department of Botany and Plant Physiology, Faculty of Agrobiology, Food, and Natural Resources, Czech University of Life Sciences Prague, Prague, Czech Republic
| | - Debojyoti Moulick
- Department of Environmental Science, University of Kalyani, Nadia, West Bengal, India
| | - Akbar Hossain
- Division of Soil Science, Bangladesh Wheat and Maize Research Institute, Dinajpur, Rangpur, Bangladesh
| |
Collapse
|
8
|
Dhamodiran M, Chinnaperumal K, J D, Venkatesan G, A Alshiekheid M, Suseem SR. Isolation, structural elucidation of bioactive compounds and their wound-healing ability, antibacterial and In silico molecular docking applications. ENVIRONMENTAL RESEARCH 2024; 252:119023. [PMID: 38685295 DOI: 10.1016/j.envres.2024.119023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 04/13/2024] [Accepted: 04/24/2024] [Indexed: 05/02/2024]
Abstract
Andrographis echioides has been extensively utilized in traditional Indian folk medicines for several skin disorders and other biological actions such as diuretic, antimicrobial, anthelmintic, anti-ulcer, and hepatoprotective properties. Different crude extracts were extracted from A. echioides leaves using various solvents such as methanol and water. The prepared crude extracts were utilized to formulate different herbal ointments. Further, the prepared ointments were examined against wounds and bacterial pathogens. The wound healing ability of the prepared formulations was observed for F1, F2, and F3, to be (89.84%, 95.11%, and 95.75%) respectively. Moreover, wound healing capabilities were compared with standard Betadine which exhibits 98.12%, those results indicating that the prepared herbal ointment also has a promising wound healing ability. The F2 formulations outperform the other two formulations (F1 and F2) in terms of their antibacterial ability to combat Staphylococcus aureus, Klebsiella pneumoniae Bacillus subtilis, and Escherichia coli. Moreover, there are two compounds were successfully isolated and identified from methanolic extract, which are 2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-chromene-3,5,7-triol and 3-(3,4-Dihydroxyphenyl)-2-propenoic acid. Meanwhile, the molecular docking investigation exposed high binding energy Staphylococcus aureus TyrRS (-8.9 kcal/mol), Isoleucyl-tRNA synthetase (-7.5 kcal/mol), Penicillin-binding protein 2a (-8.0 kcal/mol), S. aureus DNA Gyrase (-7.2 kcal/mol), GSK-3beta (Glycogen synthase kinase-3 beta) (-8.3 kcal/mol) and TGF - Beta Receptor Type 1 Kinase Domain (-8.7 kcal/mol) indicating high degree of interaction between Compound-1 2-(3,4-dihydroxyphenyl)-3,4-dihydro-2H-chromene-3,5,7-triol (DHPDHC) and 7 clinically important skin infective pathogen Staphylococcus aureus proteins at the active sites. Additionally, the standard drug Povidone iodine, Sulphothiazole, and Nitrofurazone (<-8 kcal/mol), displayed low binding affinity on targeted proteins. A molecular dynamics simulation research with high free energy showed stable interaction between the ligand and protein. Which endorses the capabilities of A. echioides derived compounds as a potential wound healer and antibacterial therapeutic candidate for drug development in the future.
Collapse
Affiliation(s)
- Mathivanan Dhamodiran
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Kamaraj Chinnaperumal
- Interdisciplinary Institute of Indian System of Medicine (IIISM), Directorate of Research, SRM Institute of Science and Technology (SRMIST), Chengalpattu District, Kattankulathur, 603203, Tamil Nadu, India.
| | - Dhanish J
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore, 632014, Tamil Nadu, India
| | - Geetha Venkatesan
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Saveetha University, Chennai, 600 077, India
| | - Maha A Alshiekheid
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh - 11451, Saudi Arabia
| | - S R Suseem
- Department of Chemistry, School of Advanced Sciences, VIT University, Vellore, 632014, Tamil Nadu, India.
| |
Collapse
|
9
|
Alqarni S, Alsebai M, Alsaigh BA, Alrashedy AS, Albahrani IT, Aljohar AY, Alazmi AO. Do polyphenols affect body fat and/or glucose metabolism? Front Nutr 2024; 11:1376508. [PMID: 38919387 PMCID: PMC11198119 DOI: 10.3389/fnut.2024.1376508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Accepted: 05/17/2024] [Indexed: 06/27/2024] Open
Abstract
Background Obesity is reaching epidemic proportions with 51% of the population expected to be obese by 2030. Recently, polyphenols have been highlighted as an effective approach to managing obesity and associated risks. Polyphenols are a large class of bioactive plant compounds classified into two major categories: flavonoids which are distinguished by the fundamental C6-C3-C6 skeleton and non-flavonoids. Objective This systematic review evaluated the effect of different polyphenol sources in overweight and obese people with and without type 2 diabetes. The primary outcome was lipid profile and the secondary outcomes were blood glucose, HbA1c (%), HOMA-IR, weight, and body mass index. Method A search was undertaken in PubMed, Web of Science, Medline, and Wiley for randomized control trials that assessed different sources of polyphenols in overweight and obese people with or without type 2 diabetes. The quality of the included studies was assessed using the National Heart, Lung, and Blood Institute Quality Assessment Tool. Result The search yielded 935 studies, of which six randomized control trials met the inclusion criteria. Five studies found no significant difference in lipid profile between the control and intervention groups in triglycerides, total cholesterol, LDL cholesterol, and HDL cholesterol. However, one study showed significant differences in triglycerides (p = 0.04) and HDL cholesterol (p = 0.05) between the two groups with no significant difference in total cholesterol and LDL cholesterol. There were no significant changes in blood glucose observed in the included studies, with only two studies reporting a significant difference in A1c between the groups. Four studies found no difference in HOMA-IR, while one study showed a significant decrease in HOMA-IR in the intervention group compared to the control group. Three studies reported no difference in BMI or weight between the two groups. Conclusion The data associated with the specific health benefits of polyphenols and their sources in people with overweight, obese, and type 2 diabetes are still limited, so further research is required to support their use and prove their benefits.
Collapse
Affiliation(s)
- Saleha Alqarni
- Department of Clinical Nutrition, College of Applied Medical Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Mashael Alsebai
- Department of Clinical Nutrition, Nottingham University, Nottingham, United Kingdom
| | - Batool Adal Alsaigh
- Department of Clinical Nutrition, College of Applied Medical Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Abeer Sayer Alrashedy
- Department of Clinical Nutrition, College of Applied Medical Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Israa Talal Albahrani
- Department of Clinical Nutrition, College of Applied Medical Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Albandri Yousef Aljohar
- Department of Clinical Nutrition, College of Applied Medical Science, King Faisal University, Al-Ahsa, Saudi Arabia
| | - Amjad Obaid Alazmi
- Department of Clinical Nutrition, College of Applied Medical Science, King Faisal University, Al-Ahsa, Saudi Arabia
| |
Collapse
|
10
|
Bhutia GT, De AK, Bhowmik M, Bera T. Shellac and locust bean gum coacervated curcumin, epigallocatechin gallate nanoparticle ameliorates diabetic nephropathy in a streptozotocin-induced mouse model. Int J Biol Macromol 2024; 271:132369. [PMID: 38750846 DOI: 10.1016/j.ijbiomac.2024.132369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 05/07/2024] [Accepted: 05/12/2024] [Indexed: 05/27/2024]
Abstract
Curcumin and epigallocatechin gallate have the disadvantage of low aqueous solubility and first-pass metabolism, resulting in limited bioavailability. This work aimed to enhance oral bioavailability by forming gastric pH-stable shellac nanoparticles containing curcumin and epigallocatechin gallate using locust bean gum by anti-solvent precipitation (CESL-NP). The nanoparticles were characterized by their particle size, morphology, zeta potential, gastric pH stability, release profile, drug loading, and entrapment efficiency. The findings showed that a network of hydrolyzed shellac, locust bean gum, curcumin, and epigallocatechin gallate successfully entrapped individual particles inside a complex system. The morphological investigation of the CESL-NP formulation using FESEM, TEM, and AFM revealed the presence of spherical particles. FTIR, DSC, and XRD analysis revealed that curcumin and epigallocatechin gallate were amorphous due to their bond interactions with the matrix. Streptozotocin-treated mice, upon treatment with CESL-NP, showed kidney and pancreatic improvements with normalized kidney hypertrophy index and histopathology, maintained biochemical parameters, increased beta cell count, and a 38.68-fold higher blood glucose level inhibition were observed when compared to free-(CUR + EGCG). This research affirms that the shellac-locust bean gum complex shows potential for the sustained oral delivery of curcumin and epigallocatechin gallate, specifically for treating diabetic nephropathy.
Collapse
Affiliation(s)
- Gyamcho Tshering Bhutia
- Laboratory of Nanomedicine, Division of Pharmaceutical Biotech., Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032, West Bengal, India
| | - Asit Kumar De
- Department of Chemistry, Jadavpur University, Kolkata 700032, West Bengal, India
| | - Manas Bhowmik
- Pharmaceutics Research laboratory II, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032, West Bengal, India
| | - Tanmoy Bera
- Laboratory of Nanomedicine, Division of Pharmaceutical Biotech., Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700 032, West Bengal, India.
| |
Collapse
|
11
|
Król M, Skowron P, Skowron K, Gil K. The Fetal Alcohol Spectrum Disorders-An Overview of Experimental Models, Therapeutic Strategies, and Future Research Directions. CHILDREN (BASEL, SWITZERLAND) 2024; 11:531. [PMID: 38790526 PMCID: PMC11120554 DOI: 10.3390/children11050531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024]
Abstract
Since the establishment of a clear link between maternal alcohol consumption during pregnancy and certain birth defects, the research into the treatment of FASD has become increasingly sophisticated. The field has begun to explore the possibility of intervening at different levels, and animal studies have provided valuable insights into the pathophysiology of the disease, forming the basis for implementing potential therapies with increasingly precise mechanisms. The recent reports suggest that compounds that reduce the severity of neurodevelopmental deficits, including glial cell function and myelination, and/or target oxidative stress and inflammation may be effective in treating FASD. Our goal in writing this article was to analyze and synthesize current experimental therapeutic interventions for FASD, elucidating their potential mechanisms of action, translational relevance, and implications for clinical application. This review exclusively focuses on animal models and the interventions used in these models to outline the current direction of research. We conclude that given the complexity of the underlying mechanisms, a multifactorial approach combining nutritional supplementation, pharmacotherapy, and behavioral techniques tailored to the stage and severity of the disease may be a promising avenue for further research in humans.
Collapse
Affiliation(s)
- Magdalena Król
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St. 18, 31-121 Krakow, Poland; (M.K.); (K.S.)
| | - Paweł Skowron
- Department of Physiology and Pathophysiology, Wroclaw Medical University, T. Chalubinskiego St. 10, 50-368 Wrocław, Poland;
| | - Kamil Skowron
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St. 18, 31-121 Krakow, Poland; (M.K.); (K.S.)
| | - Krzysztof Gil
- Department of Pathophysiology, Jagiellonian University Medical College, Czysta St. 18, 31-121 Krakow, Poland; (M.K.); (K.S.)
| |
Collapse
|
12
|
Hasumura T, Kinoshita K, Minegishi Y, Ota N. Combination of tea catechins and ornithine effectively activates the urea cycle: an in vitro and human pilot study. Eur J Appl Physiol 2024; 124:827-836. [PMID: 37707596 DOI: 10.1007/s00421-023-05310-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/26/2023] [Indexed: 09/15/2023]
Abstract
PURPOSE Accumulation of ammonia causes central and peripheral fatigue. This study aimed to investigate the synergistic effect of tea catechins and low-dose ornithine in activating the urea cycle to reduce blood ammonia levels during exercise. METHODS We used hepatocyte-like cells derived from human-induced pluripotent stem (iPS) cells to assess the effect of tea catechins combined with ornithine on urea cycle activity. The urea production and expression of key genes involved in the metabolism of urea were investigated. We then examined the synergistic improvement in ammonia metabolism by tea catechins in combination with ornithine in a human pilot study. RESULTS Tea catechins combined with ornithine increased urea cycle activity in hepatocyte-like cells derived from human iPS cells. Intake of 538.6 mg of tea catechins with 1592 mg of ornithine for 2 consecutive days during exercise loading suppressed the exercise-induced increase in the blood ammonia concentration as well as stabilized blood glucose levels. CONCLUSION Controlling the levels of ammonia, a toxic waste produced in the body, is important in a variety of situations, including exercise. The present study suggests that a heterogeneous combination of polyphenols and amino acids efficiently suppresses elevated ammonia during exercise in humans by a mechanism that includes urea cycle activation. TRIAL REGISTRATION This study was registered in the University Hospital Medical Information Network Clinical Trial Registry (No. UMIN000035484, dated January 8, 2019).
Collapse
Affiliation(s)
- Takahiro Hasumura
- Biological Science Research, Kao Corporation, Haga-gun, Tochigi, 321-3497, Japan
| | - Keita Kinoshita
- Health and Wellness Products Research Laboratories, Kao Corporation, Sumida, Tokyo, 131-8501, Japan
| | - Yoshihiko Minegishi
- Biological Science Research, Kao Corporation, Haga-gun, Tochigi, 321-3497, Japan.
| | - Noriyasu Ota
- Biological Science Research, Kao Corporation, Haga-gun, Tochigi, 321-3497, Japan
| |
Collapse
|
13
|
Pham TH, Tian X, Zhao H, Li T, Lu L. Genome-wide characterization of COMT family and regulatory role of CsCOMT19 in melatonin synthesis in Camellia sinensis. BMC PLANT BIOLOGY 2024; 24:51. [PMID: 38225581 PMCID: PMC10790539 DOI: 10.1186/s12870-023-04702-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 12/20/2023] [Indexed: 01/17/2024]
Abstract
BACKGROUND Caffeic acid O-methyltransferase (COMT) is a key enzyme that regulates melatonin synthesis and is involved in regulating the growth, development, and response to abiotic stress in plants. Tea plant is a popular beverage consumed worldwide, has been used for centuries for its medicinal properties, including its ability to reduce inflammation, improve digestion, and boost immune function. By analyzing genetic variation within the COMT family, while helping tea plants resist adversity, it is also possible to gain a deeper understanding of how different tea varieties produce and metabolize catechins, then be used to develop new tea cultivars with desired flavor profiles and health benefits. RESULTS In this study, a total of 25 CsCOMT genes were identified based on the high-quality tea (Camellia sinensis) plant genome database. Phylogenetic tree analysis of CsCOMTs with COMTs from other species showed that COMTs divided into four subfamilies (Class I, II, III, IV), and CsCOMTs was distributed in Class I, Class II, Class III. CsCOMTs not only undergoes large-scale gene recombination in pairs internally in tea plant, but also shares 2 and 7 collinear genes with Arabidopsis thaliana and poplar (Populus trichocarpa), respectively. The promoter region of CsCOMTs was found to be rich in cis-acting elements associated with plant growth and stress response. By analyzing the previously transcriptome data, it was found that some members of CsCOMT family exhibited significant tissue-specific expression and differential expression under different stress treatments. Subsequently, we selected six CsCOMTs to further validated their expression levels in different tissues organ using qRT-PCR. In addition, we silenced the CsCOMT19 through virus-induced gene silencing (VIGS) method and found that CsCOMT19 positively regulates the synthesis of melatonin in tea plant. CONCLUSION These results will contribute to the understanding the functions of CsCOMT gene family and provide valuable information for further research on the role of CsCOMT genes in regulating tea plant growth, development, and response to abiotic stress.
Collapse
Affiliation(s)
- Thanh Huyen Pham
- College of Life Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, People's Republic of China
| | - Xingyu Tian
- College of Life Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, People's Republic of China
| | - Huimin Zhao
- College of Life Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, People's Republic of China
| | - Tong Li
- College of Tea Science, Guizhou University, Guiyang, 550025, People's Republic of China.
| | - Litang Lu
- College of Life Science, The Key Laboratory of Plant Resources Conservation and Germplasm Innovation in the Mountainous Region (Ministry of Education), Guizhou University, Guiyang, 550025, People's Republic of China.
- College of Tea Science, Guizhou University, Guiyang, 550025, People's Republic of China.
| |
Collapse
|
14
|
Bhat Y, Thrishna MR, Banerjee S. Molecular targets and therapeutic strategies for triple-negative breast cancer. Mol Biol Rep 2023; 50:10535-10577. [PMID: 37924450 DOI: 10.1007/s11033-023-08868-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 09/29/2023] [Indexed: 11/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is known for its heterogeneous complexity and is often difficult to treat. TNBC lacks the expression of major hormonal receptors like estrogen receptor, progesterone receptor, and human epidermal growth factor receptor-2 and is further subdivided into androgen receptor (AR) positive and AR negative. In contrast, AR negative is also known as quadruple-negative breast cancer (QNBC). Compared to AR-positive TNBC, QNBC has a great scarcity of prognostic biomarkers and therapeutic targets. QNBC shows excessive cellular growth and proliferation of tumor cells due to increased expression of growth factors like EGF and various surface proteins. This study briefly reviews the limited data available as protein biomarkers that can be used as molecular targets in treating TNBC as well as QNBC. Targeted therapy and immune checkpoint inhibitors have recently changed cancer treatment. Many studies in medicinal chemistry continue to focus on the synthesis of novel compounds to discover new antiproliferative medicines capable of treating TNBC despite the abundance of treatments currently on the market. Drug repurposing is one of the therapeutic methods for TNBC that has been examined. Moreover, some additional micronutrients, nutraceuticals, and functional foods may be able to lower cancer risk or slow the spread of malignant diseases that have already been diagnosed with cancer. Finally, nanomedicines, or applications of nanotechnology in medicine, introduce nanoparticles with variable chemistry and architecture for the treatment of cancer. This review emphasizes the most recent research on nutraceuticals, medication repositioning, and novel therapeutic strategies for the treatment of TNBC.
Collapse
Affiliation(s)
- Yashasvi Bhat
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - M R Thrishna
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India
| | - Satarupa Banerjee
- School of Bio Science and Technology, Vellore Institute of Technology (VIT), Vellore, Tamil Nadu, 632014, India.
| |
Collapse
|
15
|
Han S, Washio J, Abiko Y, Zhang L, Takahashi N. Green Tea-Derived Catechins Suppress the Acid Productions of Streptococcus mutans and Enhance the Efficiency of Fluoride. Caries Res 2023; 57:255-264. [PMID: 37699359 PMCID: PMC10641802 DOI: 10.1159/000534055] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 08/18/2023] [Indexed: 09/14/2023] Open
Abstract
Green tea-derived catechins, which can be divided into galloylated (epicatechin gallate: ECG, epigallocatechin gallate: EGCG) and non-galloylated (catechin: C, epicatechin: EC, epigallocatechin: EGC) catechins, are considered to be the main contributors to the caries control potential of green tea. In this study, we intended to compare the antimicrobial effects of these representative green tea-derived catechins and their combined effects with fluoride on the acid production and aggregation of Streptococcus mutans. The effects of different catechins on the growth, aggregation and acid production of S. mutans, and the combined effect of catechins and potassium fluoride (2 mm at pH 7.0, 0.3 mm at pH 5.5) on S. mutans acid production were measured by anaerobic culture, turbidity changes due to aggregation, and pH-stat methods. Molecular docking simulations were also performed to investigate the interactions between catechins and membrane-embedded enzyme II complex (EIIC), a component of the phosphoenolpyruvate-dependent phosphotransferase system (sugar uptake-related enzyme). ECG or EGCG at 1 mg/mL significantly inhibited the growth of S. mutans, induced bacterial aggregation, and decreased glucose-induced acid production (p < 0.05). All catechins were able to bind to EIIC in silico, in the following order of affinity: EGCG, ECG, EGC, EC, and C. Furthermore, they enhanced the inhibitory effects of fluoride at pH 5.5 and significantly inhibited S. mutans acid production by 47.5-86.6% (p < 0.05). These results suggest that both galloylated and non-galloylated catechins exhibit antimicrobial activity, although the former type demonstrates stronger activity, and that the caries control effects of green tea may be due to the combined effects of multiple components, such as catechins and fluoride. The detailed mechanisms underlying these phenomena and the in vivo effect need to be explored further.
Collapse
Affiliation(s)
- Sili Han
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jumpei Washio
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Yuki Abiko
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| | - Linglin Zhang
- State Key Laboratory of Oral Diseases and National Center for Stomatology and National Clinical Research Center for Oral Diseases and Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Nobuhiro Takahashi
- Division of Oral Ecology and Biochemistry, Tohoku University Graduate School of Dentistry, Sendai, Japan
| |
Collapse
|
16
|
Epigallocatechin-3-gallate enhances sterilization of irradiated whole bovine casein and protects alpha and beta caseins from gamma radiation: Depending on polyphenol/protein ratio. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2023. [DOI: 10.1016/j.jrras.2023.100531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
17
|
Holm MO, Bye A, Falkmer U, Tobberup R, Rasmussen HH, Lauridsen C, Yilmaz MK, Søndergaard J, Poulsen LØ. The effect of nutritional interventions in acute radiation-induced diarrhoea in patients with primary pelvic cancer: A systematic review. Crit Rev Oncol Hematol 2023:104038. [PMID: 37236410 DOI: 10.1016/j.critrevonc.2023.104038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 05/08/2023] [Accepted: 05/23/2023] [Indexed: 05/28/2023] Open
Abstract
Acute radiation-induced diarrhoea (RID) is a well-known side effect of external radiation therapy for pelvic cancer. Acute RID is an unresolved clinical problem in approximately 80% of patients. We investigated the effect of nutritional interventions on acute RID in patients with pelvic cancer treated with curative radiotherapy. A search was conducted using PubMed, Embase.com, CINAHL, and Cochrane Library, from 1 January 2005 until 10 October 2022. We included randomised controlled trials or prospective observational studies. Eleven of the 21 identified studies had low quality of evidence, mainly because of low patient numbers distributed among several cancer diagnoses, and non-systematic assessment of acute RID. Interventions included probiotics (n = 6), prebiotics (n = 6), glutamine (n = 4), and others (n = 5). Five studies, of which two provided high quality evidence, showed that probiotics improved acute RID. Future well-designed studies investigating the effects of probiotics on acute RID are warranted. PROSPERO ID: CRD42020209499).
Collapse
Affiliation(s)
- Mette Overgaard Holm
- Center for Nutrition and Intestinal Failure, Department of Gastroenterology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; National Research Network on Nutrition in Cancer, Denmark; Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Danish Nutrition Science Center, Aalborg University Hospital, Aalborg, Denmark.
| | - Asta Bye
- Department of Nursing and Health Promotion, Faculty of Health Sciences, Oslo Metropolitan University, Oslo, Norway; European Palliative Care Research Centre (PRC), Department of Oncology, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Ursula Falkmer
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; National Research Network on Nutrition in Cancer, Denmark; Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Oncology, Aalborg University Hospital, Aalborg, Denmark
| | - Randi Tobberup
- Center for Nutrition and Intestinal Failure, Department of Gastroenterology, Aalborg University Hospital, Aalborg, Denmark; National Research Network on Nutrition in Cancer, Denmark; Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Danish Nutrition Science Center, Aalborg University Hospital, Aalborg, Denmark
| | - Henrik Højgaard Rasmussen
- Center for Nutrition and Intestinal Failure, Department of Gastroenterology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; National Research Network on Nutrition in Cancer, Denmark; Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Danish Nutrition Science Center, Aalborg University Hospital, Aalborg, Denmark
| | - Charlotte Lauridsen
- Center for Nutrition and Intestinal Failure, Department of Gastroenterology, Aalborg University Hospital, Aalborg, Denmark; Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; National Research Network on Nutrition in Cancer, Denmark; Danish Nutrition Science Center, Aalborg University Hospital, Aalborg, Denmark; Department of Animal and Veterinary Sciences, Aarhus University, Aarhus, Denmark
| | - Mette Karen Yilmaz
- National Research Network on Nutrition in Cancer, Denmark; Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Oncology, Aalborg University Hospital, Aalborg, Denmark
| | - Jimmi Søndergaard
- Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Oncology, Aalborg University Hospital, Aalborg, Denmark
| | - Laurids Østergaard Poulsen
- Department of Clinical Medicine, Aalborg University, Aalborg, Denmark; National Research Network on Nutrition in Cancer, Denmark; Clinical Cancer Research Center, Aalborg University Hospital, Aalborg, Denmark; Department of Oncology, Aalborg University Hospital, Aalborg, Denmark
| |
Collapse
|
18
|
Gao Y, Wang H, Li X, Niu X. Molecular mechanism of green tea polyphenol epicatechin gallate attenuating Staphylococcus aureus pathogenicity by targeting Ser/Thr phosphatase Stp1. Food Funct 2023; 14:4792-4806. [PMID: 37128867 DOI: 10.1039/d3fo00170a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
In this study, through virtual screening and in vitro bioactivity assays, we discovered that (-)-epicatechin gallate (ECG), a polyphenol compound extracted from green tea, demonstrated marked anti-Ser/Thr phosphatase (Stp1) activity towards Staphylococcus aureus (S. aureus) with an IC50 value of 8.35 μM. By targeting S. aureus Stp1, ECG prevented the up-regulation of virulence gene and the formation of antibody membrane and protected the mice from S. aureus infection. Through MD simulation, the allosteric inhibitory mechanism of ECG on Stp1 was determined. The Stp1-ECG complex model underwent a significant change in conformation; its flap subdomain changed from opening to closing, whereas Stp1 activity was lost when bound to ECG. In addition, the MD simulation results of Stp1 and several tea polyphenol compounds showed that gallate groups and fewer adjacent phenolic hydroxyl groups contributed to the binding of Stp1 and inhibitors. As an inhibitor targeting S. aureus Stp1, ECG reduced the pathogenicity of S. aureus without inhibiting S. aureus, which largely reduced the possibility of drug resistance. Our findings demonstrated a novel molecular mechanism of green tea as the usual drink against S. aureus infection and elucidated the future design of allosteric inhibitors targeting Stp1.
Collapse
Affiliation(s)
- Yawen Gao
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China.
| | - Hongsu Wang
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China.
| | - Xuening Li
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China.
| | - Xiaodi Niu
- College of Food Science and Engineering, Jilin University, Changchun 130062, P.R. China.
| |
Collapse
|
19
|
Zhang F, Wang X, Guo N, Dai H, Wang Y, Sun Y, Zhu G. Influence of Different pH Values on Gels Produced from Tea Polyphenols and Low Acyl Gellan Gum. Gels 2023; 9:gels9050368. [PMID: 37232960 DOI: 10.3390/gels9050368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/27/2023] Open
Abstract
To explore the influence of pH values on the properties of a compound system containing tea polyphenols (TPs) and low acyl gellan gum (LGG), the color, texture characteristics, rheological properties, water holding capacity (WHC), and microstructure of the compound system were measured. The results showed that the pH value noticeably affects the color and WHC of compound gels. Gels from pH 3 to 5 were yellow, gels from pH 6 to 7 were light brown, and gels from pH 8 to 9 were dark brown. The hardness decreased and the springiness increased with an increase in pH. The steady shear results showed that the viscosity of the compound gel solutions with different pH values decreased with increasing shear rates, indicating that all of the compound gel solutions were pseudoplastic fluids. The dynamic frequency results showed that the G' and G″ of the compound gel solutions gradually decreased with increasing pH and that G' was higher than G″. No phase transition occurred in the gel state under heating or cooling conditions at pH 3, indicating that the pH 3 compound gel solution was elastic. The WHC of the pH 3 compound gel was only 79.97% but the WHC of compound gels pH 6 and pH 7 was almost 100%. The network structure of the gels was dense and stable under acidic conditions. The electrostatic repulsion between the carboxyl groups was shielded by H+ with increasing acidity. The three-dimensional network structure was easily formed by an increase in the interactions of the hydrogen bonds.
Collapse
Affiliation(s)
- Fangyan Zhang
- Department of Biological and Food Engineering, Hefei Normal University, Lian Hua Road, Hefei 230601, China
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resoures Exploration, Hefei 230601, China
| | - Xiangcun Wang
- Department of Biological and Food Engineering, Hefei Normal University, Lian Hua Road, Hefei 230601, China
| | - Na Guo
- Department of Biological and Food Engineering, Hefei Normal University, Lian Hua Road, Hefei 230601, China
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resoures Exploration, Hefei 230601, China
| | - Huanhuan Dai
- Department of Biological and Food Engineering, Hefei Normal University, Lian Hua Road, Hefei 230601, China
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resoures Exploration, Hefei 230601, China
| | - Yimei Wang
- Department of Biological and Food Engineering, Hefei Normal University, Lian Hua Road, Hefei 230601, China
| | - Yiwei Sun
- Department of Biological and Food Engineering, Hefei Normal University, Lian Hua Road, Hefei 230601, China
| | - Guilan Zhu
- Department of Biological and Food Engineering, Hefei Normal University, Lian Hua Road, Hefei 230601, China
- Anhui Engineering Laboratory for Medicinal and Food Homologous Natural Resoures Exploration, Hefei 230601, China
| |
Collapse
|
20
|
Chang M, Ma J, Sun Y, Fu M, Liu L, Chen Q, Zhang Z, Song C, Sun J, Wan X. Role of Endophytic Bacteria in the Remobilization of Leaf Nitrogen Mediated by CsEGGT in Tea Plants ( Camellia sinensis L.). JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:5208-5218. [PMID: 36970979 DOI: 10.1021/acs.jafc.2c08909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
As an important economic plant, tea (Camellia sinensis) has a good economic value and significant health effects. Theanine is an important nitrogen reservoir, and its synthesis and degradation are considered important for nitrogen storage and remobilization in tea plants. Our previous research indicated that the endophyte CsE7 participates in the synthesis of theanine in tea plants. Here, the tracking test confirmed that CsE7 tended to be exposed to mild light and preferentially colonized mature tea leaves. CsE7 also participated in glutamine, theanine, and glutamic acid circulatory metabolism (Gln-Thea-Glu) and contributed to nitrogen remobilization, mediated by the γ-glutamyl-transpeptidase (CsEGGT) with hydrolase preference. The reisolation and inoculation of endophytes further verified their role in accelerating the remobilization of nitrogen, especially in the reuse of theanine and glutamine. This is the first report about the photoregulated endophytic colonization and the positive effect of endophytes on tea plants mediated and characterized by promoting leaf nitrogen remobilization.
Collapse
Affiliation(s)
- Manman Chang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Jingyu Ma
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Ying Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Maoyin Fu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Linlin Liu
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Qi Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Chuankui Song
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Jun Sun
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
- College of Horticulture, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| | - Xiaochun Wan
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, 130 West Changjiang Road, Hefei City, Anhui Province 230036, P. R. China
| |
Collapse
|
21
|
Das P, Chettri V, Ghosh S, Ghosh C. Micromorphological studies of the leaf and stem of Camellia sinensis (L.) Kuntze with reference to their taxonomic significance. Microsc Res Tech 2023; 86:465-472. [PMID: 36582166 DOI: 10.1002/jemt.24287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 11/22/2022] [Accepted: 12/17/2022] [Indexed: 12/31/2022]
Abstract
The micro-morphological examinations of the leaf lamina, petiole and stem for Camellia sinensis (L.) Kuntze (Theaceae) was carried out using a variety of microscopic techniques widely implemented in the area of medicine. The objective of this study was the micromorphological characterization of stem, petiole, lamina, stomata, leaf trichomes and other internal characters. The anatomical studies included the cross section of stem and leaf of Camellia sinensis thereby exhibiting a typical pattern of arrangement of tissues similar to woody plants. Some idioblastic sclereids like astrosclereids, osteosclereids were found in the medullary parenchyma of tea stem and leaf. Large numbers of sclereids were found mainly in the parenchymatous tissue of leaf petiole. Other micro-morphological features like trichomes, stomata, and different tissue layer were also recorded. The leaf trichomes were unicellular, long and densely present in the lower surface of immature leaf but a decrease in amount of trichomes was seen in the mature leaf making it a prime taxonomic feature of the tea leaf. The microscopic morphological analysis of the stem, petiole, lamina, stomata, leaf trichomes of Camellia sinensis can be used for its identification. In addition, these techniques can be further implemented for the taxonomic characterization thereby establishing a genetic relationship and solving taxonomic disputes in the field of plant systematics.
Collapse
Affiliation(s)
- Priyanka Das
- Department of Tea Science, University of North Bengal, Siliguri, India
| | - Vivek Chettri
- Department of Tea Science, University of North Bengal, Siliguri, India
| | - Sandipan Ghosh
- Department of Botany, University of North Bengal, Siliguri, India
| | - Chandra Ghosh
- Department of Tea Science, University of North Bengal, Siliguri, India
| |
Collapse
|
22
|
Cytoprotective remedies for ameliorating nephrotoxicity induced by renal oxidative stress. Life Sci 2023; 318:121466. [PMID: 36773693 DOI: 10.1016/j.lfs.2023.121466] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/27/2023] [Accepted: 01/27/2023] [Indexed: 02/11/2023]
Abstract
AIMS Nephrotoxicity is the hallmark of anti-neoplastic drug metabolism that causes oxidative stress. External chemical agents and prescription drugs release copious amounts of free radicals originating from molecular oxidation and unless sustainably scavenged, they stimulate membrane lipid peroxidation and disruption of the host antioxidant mechanisms. This review aims to provide a comprehensive collection of potential cytoprotective remedies in surmounting the most difficult aspect of cancer therapy as well as preventing renal oxidative stress by other means. MATERIALS AND METHODS Over 400 published research and review articles spanning several decades were scrutinised to obtain the relevant data which is presented in 3 categories; sources, mechanisms, and mitigation of renal oxidative stress. KEY-FINDINGS Drug and chemical-induced nephrotoxicity commonly manifests as chronic or acute kidney disease, nephritis, nephrotic syndrome, and nephrosis. Renal replacement therapy requirements and mortalities from end-stage renal disease are set to rapidly increase in the next decade for which 43 different cytoprotective compounds which have the capability to suppress experimental nephrotoxicity are described. SIGNIFICANCE The renal system performs essential homeostatic functions that play a significant role in eliminating toxicants, and its accumulation and recurrence in nephric tissues results in tubular degeneration and subsequent renal impairment. Global statistics of the latest chronic kidney disease prevalence is 13.4 % while the end-stage kidney disease requiring renal replacement therapy is 4-7 million per annum. The remedial compounds discussed herein had proven efficacy against nephrotoxicity manifested consequent to impaired antioxidant mechanisms in preclinical models produced by renal oxidative stress activators.
Collapse
|
23
|
Oh JW, Muthu M, Pushparaj SSC, Gopal J. Anticancer Therapeutic Effects of Green Tea Catechins (GTCs) When Integrated with Antioxidant Natural Components. Molecules 2023; 28:molecules28052151. [PMID: 36903395 PMCID: PMC10004647 DOI: 10.3390/molecules28052151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
After decades of research and development concerning cancer treatment, cancer is still at large and very much a threat to the global human population. Cancer remedies have been sought from all possible directions, including chemicals, irradiation, nanomaterials, natural compounds, and the like. In this current review, we surveyed the milestones achieved by green tea catechins and what has been accomplished in cancer therapy. Specifically, we have assessed the synergistic anticarcinogenic effects when green tea catechins (GTCs) are combined with other antioxidant-rich natural compounds. Living in an age of inadequacies, combinatorial approaches are gaining momentum, and GTCs have progressed much, yet there are insufficiencies that can be improvised when combined with natural antioxidant compounds. This review highlights that there are not many reports in this specific area and encourages and recommends research attention in this direction. The antioxidant/prooxidant mechanisms of GTCs have also been highlighted. The current scenario and the future of such combinatorial approaches have been addressed, and the lacunae in this aspect have been discussed.
Collapse
Affiliation(s)
- Jae-Wook Oh
- Department of Stem Cell and Regenerative Biology, Konkuk University, Seoul 05029, Republic of Korea
| | - Manikandan Muthu
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Suraj Shiv Charan Pushparaj
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
| | - Judy Gopal
- Department of Research and Innovation, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai 602105, India
- Correspondence: ; Tel.: +91-44-66726677; Fax: +91-44-2681-1009
| |
Collapse
|
24
|
Aksenova MA, Nechaeva TL, Zubova MY, Goncharuk EA, Kazantseva VV, Katanskaya VM, Lapshin PV, Zagoskina NV. Influence of Different Precursors on Content of Polyphenols in Camellia sinensis In Vitro Callus Culture. PLANTS (BASEL, SWITZERLAND) 2023; 12:796. [PMID: 36840145 PMCID: PMC9965760 DOI: 10.3390/plants12040796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/27/2023] [Accepted: 02/06/2023] [Indexed: 06/18/2023]
Abstract
Plant tissue cultures are considered as potential producers of biologically active plant metabolites, which include various phenolic compounds that can be used to maintain human health. Moreover, in most cases, their accumulation is lower than in the original explants, which requires the search for factors and influences for the intensification of this process. In this case, it is very promising to use the precursors of their biosynthesis as potential "regulators" of the various metabolites' formation. The purpose of our research was to study the effect of L-phenylalanine (PhA, 3 mM), trans-cinnamic acid (CA, 1 mM) and naringenin (NG, 0.5 mM), as components of various stages of phenolic metabolism, on accumulation of various phenolic compound classes, including phenylpropanoids, flavans and proanthocyanidins, as well as the content of malondialdehyde in in vitro callus culture of the tea plant (Camellia sinensis L.). According to the data obtained, the precursors' influence did not lead to changes in the morphology and water content of the cultures. At the same time, an increase in the total content of phenolic compounds, as well as phenylpropanoids, flavans and proanthocyanidins, was noted in tea callus cultures. Effectiveness of precursor action depends on its characteristics and the exposure duration, and was more pronounced in the treatments with PhA. This compound can be considered as the most effective precursor regulating phenolic metabolism, contributing to a twofold increase in the total content of phenolic compounds, flavanes and proanthocyanidins, and a fourfold increase in phenylpropanoids in tea callus cultures.
Collapse
|
25
|
Oanh NC, Thu CTT, Hong NT, Giang NTP, Hornick JL, Dang PK. Growth performance, meat quality, and blood characteristics of finisher crossbred pigs fed diets supplemented with different levels of green tea ( Camellia sinensis) by-products. Vet World 2023; 16:27-34. [PMID: 36855349 PMCID: PMC9967713 DOI: 10.14202/vetworld.2023.27-34] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/28/2022] [Indexed: 01/09/2023] Open
Abstract
Background and Aim Dietary supplementation with green tea by-product shows special effects on animal parameters. This study aimed to assess the effects of green tea by-products (GTBP) in the diet on some blood parameters, growth performance, and carcass characteristics of finishing pigs and on meat quality, and nutritional composition of pork. Materials and Methods One hundred and sixty crossbred pigs with an initial body weight of 65.15 ± 0.38 kg, were distributed into four dietary treatments, with four replicates of 10 pigs each. The dietary treatments were a basal diet (control diet, CON), and three experimental diets (GTBP8, GTBP16, and GTBP24) based on the CON diet supplemented with GTBP at 8, 16, and 24 g/kg of feed. The studied parameters were examined during the experimental period of 10 weeks. Results No statistical differences in average daily feed intake, average daily gain, and feed conversion ratio were observed between the diet treatments (p > 0.05). Backfat thickness decreased (linear, p < 0.05) according to the GTBP levels but no other carcass parameters. Meat quality was not influenced by the GTBP levels (p > 0.05). However, pigs fed with GTBP had a decrease in cholesterol content and an increase in crude protein and total omega-3 content of pork compared to the CON diet (p < 0.05). Moreover, dietary supplementation with GTBP significantly decreased plasma cholesterol (p < 0.05), and trends for the decrease in low-density lipoprotein cholesterol and urea nitrogen were observed (linear, p = 0.08). Conclusion Up to 24 g/kg GTBP in the diet for finishing pigs does not impair animal performance and makes carcass leaner with softer meat as well as positive effects on cholesterol and fatty acid metabolism. Further experiments are needed to determine the optimal levels of GTBP addition in finishing pig diet to produce higher meat quality.
Collapse
Affiliation(s)
- Nguyen Cong Oanh
- Department of Animal Physiology and Behavior, Faculty of Animal Science, Vietnam National University of Agriculture, Trau Quy, Gialam, 131000 Hanoi, Vietnam,Department of Veterinary Management of Animal Resources, FARAH Center, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, 4000 Liège, Belgium
| | - Cu Thi Thien Thu
- Department of Animal Physiology and Behavior, Faculty of Animal Science, Vietnam National University of Agriculture, Trau Quy, Gialam, 131000 Hanoi, Vietnam
| | - Nguyen Thi Hong
- Central Lab, Faculty of Food Science and Technology, Vietnam National University of Agriculture, Trau Quy, Gialam, 131000 Hanoi, Vietnam
| | - Nguyen Thi Phuong Giang
- Department of Animal Physiology and Behavior, Faculty of Animal Science, Vietnam National University of Agriculture, Trau Quy, Gialam, 131000 Hanoi, Vietnam
| | - Jean-Luc Hornick
- Department of Animal Physiology and Behavior, Faculty of Animal Science, Vietnam National University of Agriculture, Trau Quy, Gialam, 131000 Hanoi, Vietnam,Department of Veterinary Management of Animal Resources, FARAH Center, Faculty of Veterinary Medicine, University of Liège, Quartier Vallée 2, 4000 Liège, Belgium
| | - Pham Kim Dang
- Department of Animal Physiology and Behavior, Faculty of Animal Science, Vietnam National University of Agriculture, Trau Quy, Gialam, 131000 Hanoi, Vietnam,Corresponding author: Pham Kim Dang, e-mail: Co-authors: NCO: , CTTT: , NTH: , NTPG: , JH:
| |
Collapse
|
26
|
Chattree V, Singh K, Singh K, Goel A, Maity A, Lone A. A comprehensive review on modulation of SIRT1 signaling pathways in the immune system of COVID-19 patients by phytotherapeutic melatonin and epigallocatechin-3-gallate. J Food Biochem 2022; 46:e14259. [PMID: 35662052 PMCID: PMC9347991 DOI: 10.1111/jfbc.14259] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 04/30/2022] [Accepted: 05/10/2022] [Indexed: 01/13/2023]
Abstract
SARS-CoV-2 infection has now become the world's most significant health hazard, with the World Health Organization declaring a pandemic on March 11, 2020. COVID-19 enters the lungs through angiotensin-converting enzyme 2 (ACE2) receptors, alters various signaling pathways, and causes immune cells to overproduce cytokines, resulting in mucosal inflammation, lung damage, and multiple organ failure in COVID-19 patients. Although several antiviral medications have been effective in managing the virus, they have not been effective in lowering the inflammation and symptoms of the illness. Several studies have found that epigallocatechin-3-gallate and melatonin upregulate sirtuins proteins, which leads to downregulation of pro-inflammatory gene transcription and NF-κB, protecting organisms from oxidative stress in autoimmune, respiratory, and cardiovascular illnesses. As a result, the purpose of this research is to understand more about the molecular pathways through which these phytochemicals affect COVID-19 patients' impaired immune systems, perhaps reducing hyperinflammation and symptom severity. PRACTICAL APPLICATIONS: Polyphenols are natural secondary metabolites that are found to be present in plants. EGCG a polyphenol belonging to the flavonoid family in tea has potent anti-inflammatory and antioxidative properties that helps to counter the inflammation and oxidative stress associated with many neurodegenerative diseases. Melatonin, another strong antioxidant in plants, has been shown to possess antiviral function and alleviate oxidative stress in many inflammatory diseases. In this review, we propose an alternative therapy for COVID-19 patients by supplementing their diet with these nutraceuticals that perhaps by modulating sirtuin signaling pathways counteract cytokine storm and oxidative stress, the root causes of severe inflammation and symptoms in these patients.
Collapse
Affiliation(s)
- Vineeta Chattree
- Department of Biochemistry, Deshbandhu CollegeDelhi UniversityNew DelhiIndia
| | - Kamana Singh
- Department of Biochemistry, Deshbandhu CollegeDelhi UniversityNew DelhiIndia
| | - Kanishk Singh
- Department of Biochemistry, Deshbandhu CollegeDelhi UniversityNew DelhiIndia
| | - Aayush Goel
- Department of Biochemistry, Deshbandhu CollegeDelhi UniversityNew DelhiIndia
| | - Amritaparna Maity
- Department of Biochemistry, Deshbandhu CollegeDelhi UniversityNew DelhiIndia
| | - Asif Lone
- Department of Biochemistry, Deshbandhu CollegeDelhi UniversityNew DelhiIndia
| |
Collapse
|
27
|
Kim ME, Kim DH, Lee JS. Transcription Factors as Targets of Natural Compounds in Age-Related Diseases and Cancer: Potential Therapeutic Applications. Int J Mol Sci 2022; 23:ijms232213882. [PMID: 36430361 PMCID: PMC9696520 DOI: 10.3390/ijms232213882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/03/2022] [Accepted: 11/09/2022] [Indexed: 11/12/2022] Open
Abstract
Inflammation exacerbates systemic pathophysiological conditions and chronic inflammation is a sustained and systemic phenomenon that aggravates aging that can lead to chronic age-related diseases. These inflammatory phenomena have recently been redefined and delineated at the molecular, cellular, and systemic levels. Many transcription factors that are activated in response to tumor metabolic state have been reported to be regulated by a class of histone deacetylase called sirtuins (SIRTs). Sirtuins play a pivotal role in the regulation of tumor cell metabolism, proliferation, and angiogenesis, including oxidative stress and inflammation. The SIRT1-mediated signaling pathway in diabetes and cancer is the SIRT1/forkhead-box class O (FoxO)/nuclear factor-kappa B (NF-κB) pathway. In this review, we describe the accumulation of SIRT1-, NF-κB-, and FoxO-mediated inflammatory processes and cellular proinflammatory signaling pathways. We also describe the proinflammatory mechanisms underlying metabolic molecular pathways in various diseases such as liver cancer and diabetes. Finally, the regulation of cancer and diabetes through the anti-inflammatory effects of natural compounds is highlighted. Evidence from inflammation studies strongly suggests that cells may be a major source of cytokines secreted during various diseases. A better understanding of the mechanisms that underpin the inflammatory response and palliative role of natural compounds will provide insights into the molecular mechanisms of inflammation and various diseases for potential intervention.
Collapse
Affiliation(s)
- Mi Eun Kim
- Department of Life Science, Immunology Research Lab, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Dong-gu, Gwangju 61452, Korea
| | - Dae Hyun Kim
- Department of Life Science, Immunology Research Lab, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Dong-gu, Gwangju 61452, Korea
- Correspondence: (D.H.K.); (J.S.L.); Tel.: +82-062-230-6651 (J.S.L.)
| | - Jun Sik Lee
- Department of Life Science, Immunology Research Lab, BK21-plus Research Team for Bioactive Control Technology, College of Natural Sciences, Chosun University, Dong-gu, Gwangju 61452, Korea
- LKBio Inc., Chosun University Business Incubator (CUBI) Building, Dong-gu, Gwangju 61452, Korea
- Correspondence: (D.H.K.); (J.S.L.); Tel.: +82-062-230-6651 (J.S.L.)
| |
Collapse
|
28
|
Wang M, Yang J, Li J, Zhou X, Xiao Y, Liao Y, Tang J, Dong F, Zeng L. Effects of temperature and light on quality-related metabolites in tea [Camellia sinensis (L.) Kuntze] leaves. Food Res Int 2022; 161:111882. [DOI: 10.1016/j.foodres.2022.111882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 07/30/2022] [Accepted: 08/25/2022] [Indexed: 11/15/2022]
|
29
|
Zhang J, Li H, Liu Y, Zhao K, Wei S, Sugarman ET, Liu L, Zhang G. Targeting HSP90 as a Novel Therapy for Cancer: Mechanistic Insights and Translational Relevance. Cells 2022; 11:cells11182778. [PMID: 36139353 PMCID: PMC9497295 DOI: 10.3390/cells11182778] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 08/27/2022] [Accepted: 09/01/2022] [Indexed: 11/16/2022] Open
Abstract
Heat shock protein (HSP90), a highly conserved molecular chaperon, is indispensable for the maturation of newly synthesized poly-peptides and provides a shelter for the turnover of misfolded or denatured proteins. In cancers, the client proteins of HSP90 extend to the entire process of oncogenesis that are associated with all hallmarks of cancer. Accumulating evidence has demonstrated that the client proteins are guided for proteasomal degradation when their complexes with HSP90 are disrupted. Accordingly, HSP90 and its co-chaperones have emerged as viable targets for the development of cancer therapeutics. Consequently, a number of natural products and their analogs targeting HSP90 have been identified. They have shown a strong inhibitory effect on various cancer types through different mechanisms. The inhibitors act by directly binding to either HSP90 or its co-chaperones/client proteins. Several HSP90 inhibitors—such as geldanamycin and its derivatives, gamitrinib and shepherdin—are under clinical evaluation with promising results. Here, we review the subcellular localization of HSP90, its corresponding mechanism of action in the malignant phenotypes, and the recent progress on the development of HSP90 inhibitors. Hopefully, this comprehensive review will shed light on the translational potential of HSP90 inhibitors as novel cancer therapeutics.
Collapse
Affiliation(s)
- Jian Zhang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Houde Li
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Yu Liu
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Road, Sai Ying Pun, Hong Kong 999077, China
| | - Kejia Zhao
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Shiyou Wei
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Eric T. Sugarman
- Philadelphia College of Osteopathic Medicine, Philadelphia, PA 19131, USA
| | - Lunxu Liu
- Institute of Thoracic Oncology and Department of Thoracic Surgery, West China Hospital of Sichuan University, Chengdu 610041, China
- Western China Collaborative Innovation Center for Early Diagnosis and Multidisciplinary Therapy of Lung Cancer, Sichuan University, Chengdu 610041, China
| | - Gao Zhang
- Faculty of Dentistry, The University of Hong Kong, Prince Philip Dental Hospital, 34 Hospital Road, Sai Ying Pun, Hong Kong 999077, China
- Correspondence:
| |
Collapse
|
30
|
Study on the color effects of (-)-epigallocatechin-3-gallate under different pH and temperatures in a model beverage system. Food Control 2022. [DOI: 10.1016/j.foodcont.2022.109112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
31
|
Islam F, Bepary S, Nafady MH, Islam MR, Emran TB, Sultana S, Huq MA, Mitra S, Chopra H, Sharma R, Sweilam SH, Khandaker MU, Idris AM. Polyphenols Targeting Oxidative Stress in Spinal Cord Injury: Current Status and Future Vision. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8741787. [PMID: 36046682 PMCID: PMC9423984 DOI: 10.1155/2022/8741787] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 07/03/2022] [Accepted: 08/03/2022] [Indexed: 02/07/2023]
Abstract
A spinal cord injury (SCI) occurs when the spinal cord is deteriorated or traumatized, leading to motor and sensory functions lost even totally or partially. An imbalance within the generation of reactive oxygen species and antioxidant defense levels results in oxidative stress (OS) and neuroinflammation. After SCI, OS and occurring pathways of inflammations are significant strenuous drivers of cross-linked dysregulated pathways. It emphasizes the significance of multitarget therapy in combating SCI consequences. Polyphenols, which are secondary metabolites originating from plants, have the promise to be used as alternative therapeutic agents to treat SCI. Secondary metabolites have activity on neuroinflammatory, neuronal OS, and extrinsic axonal dysregulated pathways during the early stages of SCI. Experimental and clinical investigations have noted the possible importance of phenolic compounds as important phytochemicals in moderating upstream dysregulated OS/inflammatory signaling mediators and axonal regeneration's extrinsic pathways after the SCI probable significance of phenolic compounds as important phytochemicals in mediating upstream dysregulated OS/inflammatory signaling mediators. Furthermore, combining polyphenols could be a way to lessen the effects of SCI.
Collapse
Affiliation(s)
- Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Sristy Bepary
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Mohamed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza, Egypt
| | - Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Sharifa Sultana
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh
| | - Md. Amdadul Huq
- Department of Food and Nutrition, Chung Ang University, Anseong-Si, Gyeonggi-Do 17546, Republic of Korea
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh
| | - Hitesh Chopra
- Chitkara College of Pharmacy, Chitkara University, Punjab 140401, India
| | - Rohit Sharma
- Department of Rasashastra and Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Sherouk Hussein Sweilam
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia
- Department of Pharmacognosy, Faculty of Pharmacy, Egyptian Russian University, Cairo-Suez Road, Badr City 11829, Egypt
| | - Mayeen Uddin Khandaker
- Centre for Applied Physics and Radiation Technologies, School of Engineering and Technology, Sunway University, 47500 Bandar Sunway, Selangor, Malaysia
| | - Abubakr M. Idris
- Department of Chemistry, College of Science, King Khalid University, Abha 62529, Saudi Arabia
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 62529, Saudi Arabia
| |
Collapse
|
32
|
Fabrication and Characterization of Alginate Hydrogels for Control Release System of Catechin-Derived Tea Leave Extract. JOURNAL OF BIOMIMETICS BIOMATERIALS AND BIOMEDICAL ENGINEERING 2022. [DOI: 10.4028/p-63176q] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Polyphenolic chemicals found in tea leaves are frequently used in pharmaceutics and the food industry. Catechin is a polyphenol that has antimicrobial, antioxidant, and antibacterial effects, as well as other health advantages. The goal of this study was to create a catechin-encapsulated alginate hydrogel (Cate-ALG) that would protect catechin from degradation and bioactivity loss in stressful environments while also delivering catechin. The antioxidant ability of catechin was found to be greater than that of vitamin C using the 2,2-diphenyl-1-pierylhyrazyl assay. The FT-IR spectra revealed the distinct peaks of catechin and alginate. Additionally, due to the hydrogen bond interaction between alginate and catechin molecules, frequency downshifting was observed in the carbonyl and hydroxyl regions. Furthermore, release profile revealed a burst release of 5% catechin-ALG in the first 25 min. On the other hand, the 3% Cate-ALG approached the controlled release profile of catechin and increased the release time by more than 40 minutes. The catechin in alginate hydrogel has the potential for controlled release via transdermal and wound dressing applications.
Collapse
|
33
|
Lee MM, Yu EY, Chau JH, Lam JW, Kwok RT, Wang D, Tang BZ. Inspiration from nature: BioAIEgens for biomedical and sensing applications. Biomaterials 2022; 288:121712. [DOI: 10.1016/j.biomaterials.2022.121712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 07/28/2022] [Accepted: 07/31/2022] [Indexed: 11/30/2022]
|
34
|
Gopinath D, Hui LM, Veettil SK, Balakrishnan Nair A, Maharajan MK. Comparative Efficacy of Interventions for the Management of Oral Submucous Fibrosis: A Systematic Review and Network Meta-Analysis. J Pers Med 2022; 12:jpm12081272. [PMID: 36013221 PMCID: PMC9409832 DOI: 10.3390/jpm12081272] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/30/2022] Open
Abstract
Introduction: Oral submucous fibrosis (OSMF) is a chronic premalignant condition and is characterized by fibroblastic change of lamina propria and stiffness of oral mucosa. Though there are several treatment options available, the best agent is not yet identified. This study assessed the comparative efficacy and safety of medical interventions in the management of OSMF. Methods: A systematic review was performed to identify randomized controlled trials (RCTs) that compared the efficacy of interventions for OSMF with each other, or placebo. A network meta-analysis was performed, and the interventions were ranked according to their efficacy based on the surface under the cumulative ranking. (PROSPERO Registration no: CRD42021255094). Results: Thirty-two RCTs comprising 2063 patients were eligible for quantitative analysis. In terms of therapeutic efficacy in the improvement of mouth opening Oxitard, a herbal formulation was ranked as the most efficacious agent, [MD, 10.29 (95%CI 6.34–14.25)] followed by combination therapy of Lycopene with corticosteroids and hyaluronidase [MD, 7.07 (95%CI 1.82–12.31)]. For improvement of burning sensation aloe vera was ranked first [MD, 6.14 (95%CI 4.58–7.70)] followed by corticosteroids with antioxidants [MD, 6.13 (95%CI 4.12–8.14)] and corticosteroids in combination with hyaluronidase with antioxidants [MD, 5.95 (95%CI 3.79–8.11)]. In terms of safety, most of the drugs were reported to cause mild adverse effects only. Significant inconsistencies could be identified in the analysis for both the outcomes assessed and were further explored. Conclusions: Our study highlighted the potential efficacy of several agents over placebo in the improvement of mouth opening and burning sensation in OSMF patients. However, the RCTs lacked methodological soundness. Well-designed studies with a larger number of participants with a rigorous randomization process and stringent methodology are recommended to strengthen the results obtained, which may help to construct a clinical guideline for OSMF management.
Collapse
Affiliation(s)
- Divya Gopinath
- Clinical Oral Health Sciences, International Medical University, Kuala Lumpur 57000, Malaysia
- Correspondence:
| | - Lai Mong Hui
- School of Postgraduate Studies, International Medical University, Kuala Lumpur 57000, Malaysia;
| | - Sajesh K. Veettil
- Department of Pharmacotherapy, College of Pharmacy, University of Utah, Salt Lake City, UT 84112, USA;
| | | | | |
Collapse
|
35
|
Bae KH, Chan KH, Kurisawa M. Autoxidation-Resistant, ROS-Scavenging, and Anti-Inflammatory Micellar Nanoparticles Self-Assembled from Poly(acrylic acid)-Green Tea Catechin Conjugates. ACS Macro Lett 2022; 11:835-840. [PMID: 35713474 DOI: 10.1021/acsmacrolett.2c00239] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
(-)-Epigallocatechin-3-O-gallate (EGCG), the most bioactive catechin in green tea, has drawn significant interest as a potent antioxidant and anti-inflammatory compound. However, the application of EGCG has been limited by its rapid autoxidation at physiological pH, which generates cytotoxic levels of reactive oxygen species (ROS). Herein, we report the synthesis of poly(acrylic acid)-EGCG conjugates with tunable degrees of substitution and their spontaneous self-assembly into micellar nanoparticles with enhanced resistance against autoxidation. These nanoparticles not only exhibited superior oxidative stability and cytocompatibility over native EGCG, but also showed excellent ROS-scavenging and anti-inflammatory effects. This work presents a potential strategy to overcome the stability and cytotoxicity issues of EGCG, making it one step closer toward its widespread application.
Collapse
Affiliation(s)
- Ki Hyun Bae
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| | - Kiat Hwa Chan
- Division of Science, Yale-NUS College, 16 College Avenue West, Singapore 138527, Singapore
| | - Motoichi Kurisawa
- Institute of Bioengineering and Bioimaging, 31 Biopolis Way, The Nanos, Singapore 138669, Singapore
| |
Collapse
|
36
|
Longobardi C, Ferrara G, Andretta E, Montagnaro S, Damiano S, Ciarcia R. Ochratoxin A and Kidney Oxidative Stress: The Role of Nutraceuticals in Veterinary Medicine-A Review. Toxins (Basel) 2022; 14:398. [PMID: 35737059 PMCID: PMC9231272 DOI: 10.3390/toxins14060398] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 02/01/2023] Open
Abstract
The problem of residues of toxic contaminants in food products has assumed considerable importance in terms of food safety. Naturally occurring contaminants, such as mycotoxins, are monitored routinely in the agricultural and food industries. Unfortunately, the consequences of the presence of mycotoxins in foodstuffs are evident in livestock farms, where both subacute and chronic effects on animal health are observed and could have non-negligible effects on human health. Ochratoxin A (OTA) is a common mycotoxin that contaminates food and feeds. Due to its thermal stability, the eradication of OTA from the food chain is very difficult. Consequently, humans and animals are frequently exposed to OTA in daily life. In this review article, we will devote time to highlighting the redox-based nephrotoxicity that occurs during OTA intoxication. In the past few decades, the literature has improved on the main molecules and enzymes involved in the redox signaling pathway as well as on some new antioxidant compounds as therapeutic strategies to counteract oxidative stress. The knowledge shown in this work will address the use of nutraceutical substances as dietary supplements, which would in turn improve the prophylactic and pharmacological treatment of redox-associated kidney diseases during OTA exposure, and will attempt to promote animal feed supplementation.
Collapse
Affiliation(s)
- Consiglia Longobardi
- Department of Mental, Physical Health and Preventive Medicine, University of Campania “Luigi Vanvitelli”, Largo Madonna delle Grazie n.1, 80138 Naples, Italy;
| | - Gianmarco Ferrara
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy; (G.F.); (E.A.); (S.M.); (R.C.)
| | - Emanuela Andretta
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy; (G.F.); (E.A.); (S.M.); (R.C.)
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy; (G.F.); (E.A.); (S.M.); (R.C.)
| | - Sara Damiano
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy; (G.F.); (E.A.); (S.M.); (R.C.)
| | - Roberto Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy; (G.F.); (E.A.); (S.M.); (R.C.)
| |
Collapse
|
37
|
DERVİŞOĞLU G, YEMENİCİOĞLU A. The Use of Organic Sun-Dried Fruits for Delivery of Phenolic Compounds. INTERNATIONAL JOURNAL OF SECONDARY METABOLITE 2022. [DOI: 10.21448/ijsm.1078277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
|
38
|
Senthil R, Sumathi V, Tamilselvi A, Kavukcu SB, Aruni AW. Functionalized electrospun nanofibers for high efficiency removal of particulate matter. Sci Rep 2022; 12:8411. [PMID: 35589800 PMCID: PMC9120196 DOI: 10.1038/s41598-022-12505-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 04/25/2022] [Indexed: 11/09/2022] Open
Abstract
In recent years, introducing electrospun airfilters to enhance the removal of PM2.5 and PM10–2.5 has received much interest. In this study, a novel poly-(vinyl) alcohol (PVA)/carbon nanoparticle (CNP)/tea leaf extract (TLE), functionalized nanofibrous air filter (FNA) was fabricated using an electrospinning method. Novelty of the unique work in the blending of CNP and TLE, first of its kind, for the preparation of FNA. Polysaccharide crosslinked FNA has a carbon complex with two monosaccharide units to produce the intrinsic properties of the PM2.5 and PM10–2.5 removal efficiency. The FNA had promising traits of UV protection. The prepared FNA was characterized using physicochemical, mechanical, antimicrobial activity, etc., in addition to its PM2.5 and PM10–2.5 removal efficiency. Pore size and distribution study using the capillary flow porometry method has proved the structure of FNA. FNA exhibited excellent low pressure drop (110 Pa), which are promising characteristics for air purification. FNA from PVA: CNP: TLE exhibited high PM2.5 and PM10–2.5 removal efficiencies of 99.25% and 99.29%, respectively. Hence, the study proved.
Collapse
Affiliation(s)
- Rethinam Senthil
- Engineering Faculty, Leather Engineering Department, Ege University, 35100, Bornova, Izmir, Turkey. .,School of Bio & Chemical Engineering, Sathyabama University, Chennai, Tamilnadu, 600 199, India.
| | - Vijayan Sumathi
- School of Electrical Engineering and Centre for Automation, VIT Chennai Campus, Chennai, Tamilnadu, 600 127, India
| | - Alagumuthu Tamilselvi
- Unit for Science Dissemination, Central Leather Research Institute-CSIR, Chennai, 600020, India
| | | | - A Wilson Aruni
- California University of Science and Medicine, 217 E Club Centre Dr suite a, San Bernardino, CA, 92408, USA
| |
Collapse
|
39
|
Sahadevan R, Singh S, Binoy A, Sadhukhan S. Chemico-biological aspects of (-)-epigallocatechin- 3-gallate (EGCG) to improve its stability, bioavailability and membrane permeability: Current status and future prospects. Crit Rev Food Sci Nutr 2022; 63:10382-10411. [PMID: 35491671 DOI: 10.1080/10408398.2022.2068500] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Natural products have been a bedrock for drug discovery for decades. (-)-Epigallocatechin-3-gallate (EGCG) is one of the widely studied natural polyphenolic compounds derived from green tea. It is the key component believed to be responsible for the medicinal value of green tea. Significant studies implemented in in vitro, in cellulo, and in vivo models have suggested its anti-oxidant, anti-cancer, anti-diabetic, anti-inflammatory, anti-microbial, neuroprotective activities etc. Despite having such a wide array of therapeutic potential and promising results in preclinical studies, its applicability to humans has encountered with rather limited success largely due to the poor bioavailability, poor membrane permeability, rapid metabolic clearance and lack of stability of EGCG. Therefore, novel techniques are warranted to address those limitations so that EGCG or its modified analogs can be used in the clinical setup. This review comprehensively covers different strategies such as structural modifications, nano-carriers as efficient drug delivery systems, synergistic studies with other bioactivities to improve the chemico-biological aspects (e.g., stability, bioavailability, permeability, etc.) of EGCG for its enhanced pharmacokinetics and pharmacological properties, eventually enhancing its therapeutic potentials. We think this review article will serve as a strong platform with comprehensive literature on the development of novel techniques to improve the bioavailability of EGCG so that it can be translated to the clinical applications.
Collapse
Affiliation(s)
- Revathy Sahadevan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India
| | - Satyam Singh
- Department of Biosciences and Biomedical Engineering, Indian Institute of Technology Indore, Madhya Pradesh, India
| | - Anupama Binoy
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India
| | - Sushabhan Sadhukhan
- Department of Chemistry, Indian Institute of Technology Palakkad, Kerala, India
- Department of Biological Sciences and Engineering, Indian Institute of Technology Palakkad, Kerala, India
| |
Collapse
|
40
|
Truong VL, Jeong WS. Antioxidant and anti-inflammatory roles of tea polyphenols in inflammatory bowel diseases. FOOD SCIENCE AND HUMAN WELLNESS 2022. [DOI: 10.1016/j.fshw.2021.12.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
41
|
Islam MR, Islam F, Nafady MH, Akter M, Mitra S, Das R, Urmee H, Shohag S, Akter A, Chidambaram K, Alhumaydhi FA, Emran TB, Cavalu S. Natural Small Molecules in Breast Cancer Treatment: Understandings from a Therapeutic Viewpoint. Molecules 2022; 27:2165. [PMID: 35408561 PMCID: PMC9000328 DOI: 10.3390/molecules27072165] [Citation(s) in RCA: 78] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/21/2022] [Accepted: 03/23/2022] [Indexed: 12/12/2022] Open
Abstract
Breast cancer (BrCa) is the most common malignancy in women and the second most significant cause of death from cancer. BrCa is one of the most challenging malignancies to treat, and it accounts for a large percentage of cancer-related deaths. The number of cases requiring more effective BrCa therapy has increased dramatically. Scientists are looking for more productive agents, such as organic combinations, for BrCa prevention and treatment because most chemotherapeutic agents are linked to cancer metastasis, the resistance of the drugs, and side effects. Natural compounds produced by living organisms promote apoptosis and inhibit metastasis, slowing the spread of cancer. As a result, these compounds may delay the spread of BrCa, enhancing survival rates and reducing the number of deaths caused by BrCa. Several natural compounds inhibit BrCa production while lowering cancer cell proliferation and triggering cell death. Natural compounds, in addition to therapeutic approaches, are efficient and potential agents for treating BrCa. This review highlights the natural compounds demonstrated in various studies to have anticancer properties in BrCa cells. Future research into biological anti-BrCa agents may pave the way for a new era in BrCa treatment, with natural anti-BrCa drugs playing a key role in improving BrCa patient survival rates.
Collapse
Affiliation(s)
- Md. Rezaul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.R.I.); (F.I.); (M.A.); (A.A.)
| | - Fahadul Islam
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.R.I.); (F.I.); (M.A.); (A.A.)
| | - Mohamed H. Nafady
- Faculty of Applied Health Science Technology, Misr University for Science and Technology, Giza 12568, Egypt;
| | - Muniya Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.R.I.); (F.I.); (M.A.); (A.A.)
| | - Saikat Mitra
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (S.M.); (R.D.)
| | - Rajib Das
- Department of Pharmacy, Faculty of Pharmacy, University of Dhaka, Dhaka 1000, Bangladesh; (S.M.); (R.D.)
| | - Humaira Urmee
- Department of Pharmaceutical Science, North South University, Dhaka 1229, Bangladesh;
| | - Sheikh Shohag
- Department of Biochemistry and Molecular Biology, Faculty of Life Science, Bangabandhu Sheikh Mujibur Rahman Science and Technology University, Gopalganj 8100, Bangladesh;
| | - Aklima Akter
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka 1207, Bangladesh; (M.R.I.); (F.I.); (M.A.); (A.A.)
| | - Kumarappan Chidambaram
- Department of Pharmacology and Toxicology, College of Pharmacy, King Khalid University, Abha 62529, Saudi Arabia;
| | - Fahad A. Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 52571, Saudi Arabia;
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong 4381, Bangladesh
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, 410087 Oradea, Romania
| |
Collapse
|
42
|
Kim SH, Lee YC. Plant-Derived Nanoscale-Encapsulated Antioxidants for Oral and Topical Uses: A Brief Review. Int J Mol Sci 2022; 23:ijms23073638. [PMID: 35409001 PMCID: PMC8998173 DOI: 10.3390/ijms23073638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 03/23/2022] [Accepted: 03/24/2022] [Indexed: 02/04/2023] Open
Abstract
Several plant-based nanoscale-encapsulated antioxidant compounds (rutin, myricetin, β-carotene, fisetin, lycopene, quercetin, genkwanin, lutein, resveratrol, eucalyptol, kaempferol, glabridin, pinene, and whole-plant bio-active compounds) are briefly introduced in this paper, along with their characteristics. Antioxidants’ bioavailability has become one of the main research topics in bio-nanomedicine. Two low patient compliance drug delivery pathways (namely, the oral and topical delivery routes), are described in detail in this paper, for nanoscale colloidal systems and gel formulations. Both routes and/or formulations seek to improve bioavailability and maximize the drug agents’ efficiency. Some well-known compounds have been robustly studied, but many remain elusive. The objective of this review is to discuss recent studies and advantages of nanoscale formulations of plant-derived antioxidant compounds.
Collapse
|
43
|
Liu S, Zhang Q, Li H, Qiu Z, Yu Y. Comparative Assessment of the Antibacterial Efficacies and Mechanisms of Different Tea Extracts. Foods 2022; 11:foods11040620. [PMID: 35206096 PMCID: PMC8870964 DOI: 10.3390/foods11040620] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 02/14/2022] [Accepted: 02/17/2022] [Indexed: 12/03/2022] Open
Abstract
Tea is a popular beverage known for its unique taste and vast health benefits. The main components in tea change greatly during different processing methods, which makes teas capable of having different biological activities. We compared the antibacterial activity of four varieties of tea, including green, oolong, black, and Fuzhuan tea. All tea extracts showed antibacterial activity and Gram-positive bacteria (Enterococcus faecalis and Staphylococcus aureus) were more susceptible to tea extracts than Gram-negative bacteria (Escherichia coli and Salmonella typhimurium). Green tea extracts inhibited bacterial pathogens much more effectively in all four varieties of tea with the minimum inhibitory concentration (MIC) values at 20 mg/mL, 10 mg/mL, 35 mg/mL, and 16 mg/mL for E. faecalis, S. aureus, E. coli, and S. typhimurium, respectively. Catechins should be considered as the main antibiotic components of the four tea extracts. Total catechins were extracted from green tea and evaluated their antibacterial activity. Additional studies showed that the catechins damaged the cell membrane and increased cell membrane permeability, leading to changes in the relative electrical conductivity and the release of certain components into the cytoplasm. Tea extracts, especially green tea extracts, should be considered as safe antibacterial food additives.
Collapse
Affiliation(s)
| | | | | | | | - Youben Yu
- Correspondence: ; Tel.: +86-1872-9565-376
| |
Collapse
|
44
|
Abstract
Nowadays, a general interest in improving health in order to achieve better conditions of life is increasing. Diet is a complex factor affecting health conditions. We analysed the biological activities of three types of alcohol-free lager beer (a blond, a pale-blond and a stout beer) as well as epicatechin gallate (ECG) as one of their most abundant phenols with the aim of revealing them as nutraceuticals. For that purpose, we carried out safety and protective assays of the tested substances in the well-known Drosophila melanogaster animal model. Moreover, chemoprevention studies on human leukaemia cells (HL-60) in an in vitro model were carried out to evaluate the viability and genomic damage potential of the studied compounds on the tumour cell line. Results suggest the safety properties of all compounds, although pale-blond and stout beer only showed genotoxic activity at the lowest concentrations assayed. Moreover, alcohol-free beers and phenols were able to protect against H2O2 oxidative damage as well as to induce an increase in longevity with an improvement of the quality of life in the in vivo animal model assayed. Promising results were obtained with the alcohol-free beers and ECG in the in vitro assays with human leukaemia cells as they inhibited the tumour cells’ growth, induced DNA damage and modified the methylation status of such a cancer cell line. To sum up, alcohol-free beers should be of interest not only because of their reduced calories and isotonic properties but because they can be recognised as nutraceutical substances.
Collapse
|
45
|
Xu X, Jia L, Ma X, Li H, Sun C. Application Potential of Plant-Derived Medicines in Prevention and Treatment of Platinum-Induced Peripheral Neurotoxicity. Front Pharmacol 2022; 12:792331. [PMID: 35095502 PMCID: PMC8793340 DOI: 10.3389/fphar.2021.792331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Accepted: 12/23/2021] [Indexed: 11/23/2022] Open
Abstract
As observed with other chemotherapeutic agents, the clinical application of platinum agents is a double-edged sword. Platinum-induced peripheral neuropathy (PIPN) is a common adverse event that negatively affects clinical outcomes and patients’ quality of life. Considering the unavailability of effective established agents for preventing or treating PIPN and the increasing population of cancer survivors, the identification and development of novel, effective interventions are the need of the hour. Plant-derived medicines, recognized as ideal agents, can not only help improve PIPN without affecting chemotherapy efficacy, but may also produce synergy. In this review, we present a brief summary of the mechanisms of platinum agents and PIPN and then focus on exploring the preventive or curative effects and underlying mechanisms of plant-derived medicines, which have been evaluated under platinum-induced neurotoxicity conditions. We identified 11 plant extracts as well as 17 plant secondary metabolites, and four polyherbal preparations. Their effects against PIPN are focused on oxidative stress and mitochondrial dysfunction, glial activation and inflammation response, and ion channel dysfunction. Also, ten clinical trials have assessed the effect of herbal products in patients with PIPN. The understanding of the molecular mechanism is still limited, the quality of clinical trials need to be further improved, and in terms of their efficacy, safety, and cost effectiveness studies have not provided sufficient evidence to establish a standard practice. But plant-derived medicines have been found to be invaluable sources for the development of natural agents with beneficial effects in the prevention and treatment of PIPN.
Collapse
Affiliation(s)
- Xiaowei Xu
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Liqun Jia
- Oncology Department of Integrative Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Xiaoran Ma
- College of First Clinical Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Huayao Li
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Changgang Sun
- Department of Oncology, Weifang Traditional Chinese Hospital, Weifang, China.,Qingdao Academy of Chinese Medical Sciences, Shandong University of Traditional Chinese Medicine, Qingdao, China.,College of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
| |
Collapse
|
46
|
XENOHORMESIS UNDERLYES THE ANTI-AGING AND HEALTHY PROPERTIES OF OLIVE POLYPHENOLS. Mech Ageing Dev 2022; 202:111620. [PMID: 35033546 DOI: 10.1016/j.mad.2022.111620] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Revised: 12/08/2021] [Accepted: 01/05/2022] [Indexed: 02/08/2023]
Abstract
The paper provides a comprehensive and foundational mechanistic framework of hormesis that establishes its centrality in medicine and public health. This hormetic framework is applied to the assessment of olive polyphenols with respect to their capacity to slow the onset and reduce the magnitude of a wide range of age-related disorders and neurodegenerative diseases, including Alzheimer's Disease and Parkinson's Disease. It is proposed that olive polyphenol-induced anti-inflammatory protective effects are mediated in large part via the activation of AMPK and the upregulation of Nrf2 pathway. Consistently, herein we also review the importance of the modulation of Nrf2-related stress responsive vitagenes by olive polyphenols, which at low concentration according to the hormesis theory activates this neuroprotective cascade to preserve brain health and its potential use in the prevention and therapy against aging and age-related cognitive disorders in humans.
Collapse
|
47
|
YU L, WU Y, LIU D, SHENG Z, LIU J, CHEN H, FENG W. The kinetic behavior of antioxidant activity and the stability of aqueous and organic polyphenol extracts from navel orange peel. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.90621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Limei YU
- Zhong kai University of Agriculture and Engineering, China; Zhong kai University of Agriculture and Engineering, China; Lingnan Specialty Food Science and Technology, China; Ministry of Agriculture, China
| | - Yingxian WU
- Zhong kai University of Agriculture and Engineering, China
| | - Dongjie LIU
- Zhong kai University of Agriculture and Engineering, China
| | | | | | - Haiguang CHEN
- Zhong kai University of Agriculture and Engineering, China; Zhong kai University of Agriculture and Engineering, China; Ministry of Agriculture, China
| | - Weihua FENG
- Zhong kai University of Agriculture and Engineering, China; Ministry of Agriculture, China
| |
Collapse
|
48
|
Fakhri S, Abbaszadeh F, Moradi SZ, Cao H, Khan H, Xiao J. Effects of Polyphenols on Oxidative Stress, Inflammation, and Interconnected Pathways during Spinal Cord Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:8100195. [PMID: 35035667 PMCID: PMC8759836 DOI: 10.1155/2022/8100195] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/11/2021] [Indexed: 02/05/2023]
Abstract
Despite the progression in targeting the complex pathophysiological mechanisms of neurodegenerative diseases (NDDs) and spinal cord injury (SCI), there is a lack of effective treatments. Moreover, conventional therapies suffer from associated side effects and low efficacy, raising the need for finding potential alternative therapies. In this regard, a comprehensive review was done regarding revealing the main neurological dysregulated pathways and providing alternative therapeutic agents following SCI. From the mechanistic point, oxidative stress and inflammatory pathways are major upstream orchestras of cross-linked dysregulated pathways (e.g., apoptosis, autophagy, and extrinsic mechanisms) following SCI. It urges the need for developing multitarget therapies against SCI complications. Polyphenols, as plant-derived secondary metabolites, have the potential of being introduced as alternative therapeutic agents to pave the way for treating SCI. Such secondary metabolites presented modulatory effects on neuronal oxidative stress, neuroinflammatory, and extrinsic axonal dysregulated pathways in the onset and progression of SCI. In the present review, the potential role of phenolic compounds as critical phytochemicals has also been revealed in regulating upstream dysregulated oxidative stress/inflammatory signaling mediators and extrinsic mechanisms of axonal regeneration after SCI in preclinical and clinical studies. Additionally, the coadministration of polyphenols and stem cells has shown a promising strategy for improving post-SCI complications.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Fatemeh Abbaszadeh
- Department of Neuroscience, Faculty of Advanced Technologies in Medical Sciences, Iran University of Medical Sciences, Tehran, Iran
- Neurobiology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6734667149, Iran
| | - Hui Cao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University Mardan, 23200, Pakistan
| | - Jianbo Xiao
- Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Food Science and Technology, University of Vigo-Ourense Campus, E-32004 Ourense, Spain
- Institute of Food Safety and Nutrition, Jinan University, Guangzhou 510632, China
| |
Collapse
|
49
|
Han Y, Jia F, Bai S, Xiao Y, Meng X, Jiang L. Effect of operating conditions on size of catechin/β-cyclodextrin nanoparticles prepared by nanoprecipitation and characterization of their physicochemical properties. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2021.112447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
50
|
Santos MDO, Camilo CJ, Macedo JGF, Lacerda MNSD, Lopes CMU, Rodrigues AYF, Costa JGMD, Souza MMDA. Copaifera langsdorffii Desf.: A chemical and pharmacological review. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2021.102262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|