1
|
Berdowska I, Matusiewicz M, Fecka I. Methylglyoxal in Cardiometabolic Disorders: Routes Leading to Pathology Counterbalanced by Treatment Strategies. Molecules 2023; 28:7742. [PMID: 38067472 PMCID: PMC10708463 DOI: 10.3390/molecules28237742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 11/13/2023] [Accepted: 11/21/2023] [Indexed: 12/18/2023] Open
Abstract
Methylglyoxal (MGO) is the major compound belonging to reactive carbonyl species (RCS) responsible for the generation of advanced glycation end products (AGEs). Its upregulation, followed by deleterious effects at the cellular and systemic levels, is associated with metabolic disturbances (hyperglycemia/hyperinsulinemia/insulin resistance/hyperlipidemia/inflammatory processes/carbonyl stress/oxidative stress/hypoxia). Therefore, it is implicated in a variety of disorders, including metabolic syndrome, diabetes mellitus, and cardiovascular diseases. In this review, an interplay between pathways leading to MGO generation and scavenging is addressed in regard to this system's impairment in pathology. The issues associated with mechanistic MGO involvement in pathological processes, as well as the discussion on its possible causative role in cardiometabolic diseases, are enclosed. Finally, the main strategies aimed at MGO and its AGEs downregulation with respect to cardiometabolic disorders treatment are addressed. Potential glycation inhibitors and MGO scavengers are discussed, as well as the mechanisms of their action.
Collapse
Affiliation(s)
- Izabela Berdowska
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | | | - Izabela Fecka
- Department of Pharmacognosy and Herbal Medicines, Wroclaw Medical University, 50-556 Wroclaw, Poland
| |
Collapse
|
2
|
Park SY, Suh KS, Jung WW, Chin SO. Spironolactone Attenuates Methylglyoxal-induced Cellular Dysfunction in MC3T3-E1 Osteoblastic Cells. J Korean Med Sci 2021; 36:e265. [PMID: 34609092 PMCID: PMC8490790 DOI: 10.3346/jkms.2021.36.e265] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 08/29/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Methylglyoxal (MG) is associated with the pathogenesis of age- and diabetes-related complications. Spironolactone is a competitive antagonist of aldosterone that is widely employed in the treatment of hypertension and heart failure. This study examined the effects of spironolactone on MG-induced cellular dysfunction in MC3T3-E1 osteoblastic cells. METHODS MC3T3-E1 cells were treated with spironolactone in the presence of MG. The mitochondrial function, bone formation activity, oxidative damage, inflammatory cytokines, glyoxalase I activity, and glutathione (GSH) were measured. RESULTS Pretreatment of MC3T3-E1 osteoblastic cells with spironolactone prevented MG-induced cell death, and improved bone formation activity. Spironolactone reduced MG-induced endoplasmic reticulum stress, production of intracellular reactive oxygen species, mitochondrial superoxides, cardiolipin peroxidation, and inflammatory cytokines. Pretreatment with spironolactone also increased the level of reduced GSH and the activity of glyoxalase I. MG induced mitochondrial dysfunction, but markers of mitochondrial biogenesis such as mitochondrial membrane potential, adenosine triphosphate, proliferator-activated receptor gamma coactivator 1α, and nitric oxide were significantly improved by treatment of spironolactone. CONCLUSION Spironolactone could prevent MG-induced cytotoxicity in MC3T3-E1 osteoblastic cells by reduction of oxidative stress. The oxidative stress reduction was explained by spironolactone's inhibition of advanced glycation end-product formation, restoring mitochondrial dysfunction, and anti-inflammatory effect.
Collapse
Affiliation(s)
- So Young Park
- Department of Endocrinology and Metabolism, Kyung Hee University Hospital, Seoul, Korea
| | - Kwang Sik Suh
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, Korea
| | - Woon-Won Jung
- Department of Biomedical Laboratory Science, College of Health and Medical Sciences, Cheongju University, Cheongju, Korea
| | - Sang Ouk Chin
- Department of Endocrinology and Metabolism, Kyung Hee University Hospital, Seoul, Korea
- Department of Endocrinology and Metabolism, Kyung Hee University School of Medicine, Seoul, Korea.
| |
Collapse
|
3
|
Greenshields JT, Keeler JM, Freemas JA, Baker TB, Johnson BD, Carter SJ, Schlader ZJ. Cutaneous microvascular vasodilatory consequences of acute consumption of a caffeinated soft drink sweetened with high-fructose corn syrup. Physiol Rep 2021; 9:e15074. [PMID: 34676680 PMCID: PMC8531600 DOI: 10.14814/phy2.15074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/09/2021] [Accepted: 09/19/2021] [Indexed: 11/24/2022] Open
Abstract
This study tested the hypotheses that compared to drinking water, consumption of a caffeinated soft drink sweetened with high-fructose corn syrup (HFCS) attenuates the cutaneous vasodilatory response to local skin heating without (Protocol 1) and following ischemia-reperfusion injury (Protocol 2). In a randomized, counterbalanced crossover design, 14 healthy adults (25 ± 3 year, 6 women) consumed 500 ml of water (water) or a caffeinated soft drink sweetened with HFCS (Mtn. Dew, DEW). Thirty minutes following beverage consumption local skin heating commenced on the right forearm (Protocol 1), while on the left forearm ischemia-reperfusion commenced with 20 min of ischemia followed by 20 min of reperfusion and then local skin heating (Protocol 2). Local skin heating involved 40 min of heating to 39℃ followed by 20 min of heating to 44℃. Skin blood flow (SkBf, laser Doppler) data were normalized to mean arterial pressure and are presented as a cutaneous vascular conductance (CVC) and as percentage of the CVC response during heating to 44℃ (%CVCmax ). Protocol 1: During local heating at 39℃, no differences were observed in CVC (water: 2.0 ± 0.6 PU/mmHg; DEW: 2.0 ± 0.8 PU/mmHg, p = 0.83) or %CVCmax (water: 59 ± 14%; DEW 60 ± 15%, p = 0.84) between trials. Protocol 2: During local skin heating at 39℃, no differences were observed in CVC (water: 1.7 ± 0.5 PU/mmHg; DEW: 1.5 ± 0.5 PU/mmHg, p = 0.33) or %CVCmax (water: 64 ± 15%; DEW 61 ± 15% p = 0.62) between trials. The cutaneous microvascular vasodilator response to local heating with or without prior ischemia-reperfusion injury is not affected by acute consumption of a caffeinated soft drink sweetened with HFCS.
Collapse
Affiliation(s)
- Joel T. Greenshields
- H.H. Morris Human Performance LaboratoriesDepartment of KinesiologySchool of Public HealthIndiana UniversityBloomingtonIndianaUSA
| | - Jason M. Keeler
- H.H. Morris Human Performance LaboratoriesDepartment of KinesiologySchool of Public HealthIndiana UniversityBloomingtonIndianaUSA
| | - Jessica A. Freemas
- H.H. Morris Human Performance LaboratoriesDepartment of KinesiologySchool of Public HealthIndiana UniversityBloomingtonIndianaUSA
| | - Tyler B. Baker
- H.H. Morris Human Performance LaboratoriesDepartment of KinesiologySchool of Public HealthIndiana UniversityBloomingtonIndianaUSA
| | - Blair D. Johnson
- H.H. Morris Human Performance LaboratoriesDepartment of KinesiologySchool of Public HealthIndiana UniversityBloomingtonIndianaUSA
| | - Stephen J. Carter
- H.H. Morris Human Performance LaboratoriesDepartment of KinesiologySchool of Public HealthIndiana UniversityBloomingtonIndianaUSA
- Cancer Prevention and Control ProgramIndiana University Melvin and Bren Simon Comprehensive Cancer CenterIndianapolisIndianaUSA
| | - Zachary J. Schlader
- H.H. Morris Human Performance LaboratoriesDepartment of KinesiologySchool of Public HealthIndiana UniversityBloomingtonIndianaUSA
| |
Collapse
|
4
|
Golonka RM, Cooper JK, Issa R, Devarasetty PP, Gokula V, Busken J, Zubcevic J, Hill J, Vijay-Kumar M, Menon B, Joe B. Impact of Nutritional Epigenetics in Essential Hypertension: Targeting microRNAs in the Gut-Liver Axis. Curr Hypertens Rep 2021; 23:28. [PMID: 33961141 PMCID: PMC8105193 DOI: 10.1007/s11906-021-01142-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/25/2021] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW To review the current knowledge on interactions between dietary factors and microRNAs (miRNAs) in essential hypertension (EH) pathogenesis. RECENT FINDINGS There exists an integration of maintenance signals generated by genetic, epigenetic, immune, and environmental (e.g., dietary) factors that work to sustain balance in the gut-liver axis. It is well established that an imbalance in this complex, intertwined system substantially increases the risk for EH. As such, pertinent research has been taken to decipher how each signal operates in isolation and together in EH progression. Recent literature indicates that both macro- and micronutrients interrupt regulatory miRNA expressions and thus, alter multiple cellular processes that contribute to EH and its comorbidities. We highlight how carbohydrates, lipids, proteins, salt, and potassium modify miRNA signatures during EH. The disruption in miRNA expression can negatively impact communication systems such as over activating the renin-angiotensin-aldosterone system, modulating the vascular smooth muscle cell phenotype, and promoting angiogenesis to favor EH. We also delineate the prognostic value of miRNAs in EH and discuss the pros and cons of surgical vs dietary prophylactic approaches in EH prevention. We propose that dietary-dependent perturbation of the miRNA profile is one mechanism within the gut-liver axis that dictates EH development.
Collapse
Affiliation(s)
- Rachel M Golonka
- Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Block Health Science Bldg, 3000 Arlington Ave, Toledo, OH, 43614, USA
| | | | - Rochell Issa
- The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | | | - Veda Gokula
- The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Joshua Busken
- The University of Toledo College of Medicine and Life Sciences, Toledo, OH, USA
| | - Jasenka Zubcevic
- Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Block Health Science Bldg, 3000 Arlington Ave, Toledo, OH, 43614, USA
- Department of Physiological Sciences and Center for Environmental and Human Toxicology, University of Florida Genetics Institute, Interdisciplinary Program in Biomedical Sciences Neuroscience, College of Veterinary Medicine, University of Florida, Gainesville, FL, 32611, USA
| | - Jennifer Hill
- Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Block Health Science Bldg, 3000 Arlington Ave, Toledo, OH, 43614, USA
| | - Matam Vijay-Kumar
- Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Block Health Science Bldg, 3000 Arlington Ave, Toledo, OH, 43614, USA
| | - Bindu Menon
- Department of Medical Education, University of Toledo College of Medicine and Life Sciences, Room 3105B, CCE Bldg, 2920 Arlington Ave, Toledo, OH, 43614, USA.
| | - Bina Joe
- Microbiome Consortium, Center for Hypertension and Precision Medicine, Department of Physiology and Pharmacology, The University of Toledo College of Medicine and Life Sciences, Block Health Science Bldg, 3000 Arlington Ave, Toledo, OH, 43614, USA.
| |
Collapse
|
5
|
Methylglyoxal-Dependent Glycative Stress Is Prevented by the Natural Antioxidant Oleuropein in Human Dental Pulp Stem Cells through Nrf2/Glo1 Pathway. Antioxidants (Basel) 2021; 10:antiox10050716. [PMID: 34062923 PMCID: PMC8147383 DOI: 10.3390/antiox10050716] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 04/25/2021] [Accepted: 04/29/2021] [Indexed: 12/13/2022] Open
Abstract
Methylglyoxal (MG) is a potent precursor of glycative stress (abnormal accumulation of advanced glycation end products, AGEs), a relevant condition underpinning the etiology of several diseases, including those of the oral cave. At present, synthetic agents able to trap MG are known; however, they have never been approved for clinical use because of their severe side effects. Hence, the search of bioactive natural scavengers remains a sector of strong research interest. Here, we investigated whether and how oleuropein (OP), the major bioactive component of olive leaf, was able to prevent MG-dependent glycative stress in human dental pulp stem cells (DPSCs). The cells were exposed to OP at 50 µM for 24 h prior to the administration of MG at 300 µM for additional 24 h. We found that OP prevented MG-induced glycative stress and DPSCs impairment by restoring the activity of Glyoxalase 1 (Glo1), the major detoxifying enzyme of MG, in a mechanism involving the redox-sensitive transcription factor Nrf2. Our results suggest that OP holds great promise for the development of preventive strategies for MG-derived AGEs-associated oral diseases and open new paths in research concerning additional studies on the protective potential of this secoiridoid.
Collapse
|
6
|
Gulubova MV, Tolekova AN, Ivanova K, Hamza S, Hadzhi M, Chonov D, Ananiev J. Fructose-induced metabolic disturbances in rats and its impact on stomach endocrine cell number and smooth muscle contractility. Arch Physiol Biochem 2020; 126:440-448. [PMID: 30633582 DOI: 10.1080/13813455.2018.1555601] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Context: Gastric ghrelin-positive endocrine cells (GHR + EC) were most dense in the oxyntic mucosa.Objective: We evaluated ECs and contractile activity in rat stomach with metabolic disorders.Materials and methods: Male Wistar rats were divided into two groups: Control (n = 9) received tap water and Fructose (n = 9) drank 15% fructose solution for 12 weeks. Streptozotocin was applied in a dose of 20 mg/kg b.w. two weeks after the beginning of the experiment on Fructose group. Smooth-muscle strips from the stomach were influenced by Angiotensin II for analysis of parameters of contractions. Stomach samples were elaborated with immunohistochemistry for ghrelin, somatostatin, gastrin antibodies and with double immunofluorescence.Results: In treated animals, GHR + EC were significantly increased in the corpus where somatostatin-positive cells were decreased. Contractile activity was decreased.Conclusions: The increase number of GHR + EC was discussed in the context of Somatostatin and Gastrin-positive ECs variations and correlated with the decrease of smooth muscle contraction.
Collapse
Affiliation(s)
- Maya V Gulubova
- Department of General and Clinical Pathology, Trakia University, Stara Zagora, Bulgaria
| | - Anna N Tolekova
- Department of Physiology, Pathophysiology and Pharmacology, Trakia University, Stara Zagora, Bulgaria
| | - Koni Ivanova
- Department of General and Clinical Pathology, Trakia University, Stara Zagora, Bulgaria
| | - Sevinch Hamza
- Department of Anatomy, Trakia University, Stara Zagora, Bulgaria
| | - Mehmed Hadzhi
- Department of General and Clinical Pathology, Trakia University, Stara Zagora, Bulgaria
| | - Dimitar Chonov
- Department of General and Clinical Pathology, Trakia University, Stara Zagora, Bulgaria
| | - Julian Ananiev
- Department of General and Clinical Pathology, Trakia University, Stara Zagora, Bulgaria
| |
Collapse
|
7
|
Schalkwijk CG, Stehouwer CDA. Methylglyoxal, a Highly Reactive Dicarbonyl Compound, in Diabetes, Its Vascular Complications, and Other Age-Related Diseases. Physiol Rev 2020; 100:407-461. [DOI: 10.1152/physrev.00001.2019] [Citation(s) in RCA: 176] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The formation and accumulation of methylglyoxal (MGO), a highly reactive dicarbonyl compound, has been implicated in the pathogenesis of type 2 diabetes, vascular complications of diabetes, and several other age-related chronic inflammatory diseases such as cardiovascular disease, cancer, and disorders of the central nervous system. MGO is mainly formed as a byproduct of glycolysis and, under physiological circumstances, detoxified by the glyoxalase system. MGO is the major precursor of nonenzymatic glycation of proteins and DNA, subsequently leading to the formation of advanced glycation end products (AGEs). MGO and MGO-derived AGEs can impact on organs and tissues affecting their functions and structure. In this review we summarize the formation of MGO, the detoxification of MGO by the glyoxalase system, and the biochemical pathways through which MGO is linked to the development of diabetes, vascular complications of diabetes, and other age-related diseases. Although interventions to treat MGO-associated complications are not yet available in the clinical setting, several strategies to lower MGO have been developed over the years. We will summarize several new directions to target MGO stress including glyoxalase inducers and MGO scavengers. Targeting MGO burden may provide new therapeutic applications to mitigate diseases in which MGO plays a crucial role.
Collapse
Affiliation(s)
- C. G. Schalkwijk
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands; and Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| | - C. D. A. Stehouwer
- CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Maastricht, The Netherlands; and Department of Internal Medicine, Maastricht University Medical Centre, Maastricht, The Netherlands
| |
Collapse
|
8
|
Choi EM, Suh KS, Jung WW, Yun S, Park SY, Chin SO, Rhee SY, Chon S. Catalpol protects against 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced cytotoxicity in osteoblastic MC3T3-E1 cells. J Appl Toxicol 2019; 39:1710-1719. [PMID: 31429101 DOI: 10.1002/jat.3896] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/12/2019] [Accepted: 07/23/2019] [Indexed: 01/23/2023]
Abstract
2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD) is a well-known environmental contaminant that produces a wide variety of adverse effects in humans. Catalpol, a major bioactive compound enriched in the dried root of Rehmannia glutinosa, is a major iridoid glycoside that alleviates bone loss. However, the detailed mechanisms underlying the effects of catalpol remain unclear. The present study evaluated the effects of catalpol on TCDD-induced cytotoxicity in osteoblastic MC3T3-E1 cells. Catalpol inhibited TCDD-induced reduction in cell viability and increases in apoptosis and autophagic activity in osteoblastic MC3T3-E1 cells. Additionally, pretreatment with catalpol significantly decreased the nitric oxide and nitrite levels compared with a control in TCDD-treated cells and significantly inhibited TCDD-induced increases in the levels of cytochrome P450 1A1 and extracellular signal-regulated kinase. Pretreatment with catalpol also effectively restored the expression of superoxide dismutase and extracellular signal-regulated kinase 1 and significantly enhanced the expression of glutathione peroxidase 4 and osteoblast differentiation markers, including alkaline phosphatase and osterix. Taken together, these findings demonstrate that catalpol has preventive effects against TCDD-induced damage in MC3T3-E1 osteoblastic cells.
Collapse
Affiliation(s)
- Eun Mi Choi
- Department of Endocrinology & Metabolism, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Kwang Sik Suh
- Department of Endocrinology & Metabolism, College of Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Woon-Won Jung
- Department of Biomedical Laboratory Science, College of Health Sciences, Cheongju University, Cheongju-si, Chungcheongbuk-do, Republic of Korea
| | - Soojin Yun
- Department of Medicine, Graduate School, Kyung Hee University, Seoule, Republic of Korea.,Department of Endocrinology & Metabolism, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - So Young Park
- Department of Endocrinology & Metabolism, College of Medicine, Kyung Hee University, Seoul, Republic of Korea.,Department of Endocrinology & Metabolism, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Sang Ouk Chin
- Department of Endocrinology & Metabolism, College of Medicine, Kyung Hee University, Seoul, Republic of Korea.,Department of Endocrinology & Metabolism, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Sang Youl Rhee
- Department of Endocrinology & Metabolism, College of Medicine, Kyung Hee University, Seoul, Republic of Korea.,Department of Endocrinology & Metabolism, Kyung Hee University Hospital, Seoul, Republic of Korea
| | - Suk Chon
- Department of Endocrinology & Metabolism, College of Medicine, Kyung Hee University, Seoul, Republic of Korea.,Department of Endocrinology & Metabolism, Kyung Hee University Hospital, Seoul, Republic of Korea
| |
Collapse
|
9
|
Souto DL, Lima ÉDS, Dantas JR, Zajdenverg L, Rodacki M, Rosado EL. Postprandial metabolic effects of fructose and glucose in type 1 diabetes patients: a pilot randomized crossover clinical trial. ARCHIVES OF ENDOCRINOLOGY AND METABOLISM 2019; 63:376-384. [PMID: 31365624 PMCID: PMC10528643 DOI: 10.20945/2359-3997000000148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Accepted: 12/12/2018] [Indexed: 11/23/2022]
Abstract
OBJECTIVE To test the influence of oral fructose and glucose dose-response solutions in blood glucose (BG), glucagon, triglycerides, uricaemia, and malondialdehyde in postprandial states in type 1 diabetes mellitus (T1DM) patients. SUBJECTS AND METHODS The study had a simple-blind, randomized, two-way crossover design in which T1DM patients were selected to receive fructose and glucose solutions (75g of sugars dissolved in 200 mL of mineral-water) in two separate study days, with 2-7 weeks washout period. In each day, blood samples were drawn after 8h fasting and at 180 min postprandial to obtain glucose, glucagon, triglycerides, uric acid, lactate, and malondialdehyde levels. RESULTS Sixteen T1DM patients (seven men) were evaluated, with a mean age of 25.19 ± 8.8 years, a mean duration of disease of 14.88 ± 4.73 years, and glycated hemoglobin of 8.13 ± 1.84%. Fructose resulted in lower postprandial BG levels than glucose (4.4 ± 5.5 mmol/L; and 12.9 ± 4.1 mmol/L, respectively; p < 0.01). Uric acid levels increased after fructose (26.1 ± 49.9 µmol/L; p < 0.01) and reduced after glucose (-13.6 ± 9.5 µmol/L; p < 0.01). The malondialdehyde increased after fructose (1.4 ± 1.6 µmol/L; p < 0.01) and did not change after glucose solution (-0.2 ± 1.6 µmol/L; p = 0.40). Other variables did not change. CONCLUSIONS Fructose and glucose had similar sweetness, flavor and aftertaste characteristics and did not change triglycerides, lactate or glucagon levels. Although fructose resulted in lower postprandial BG than glucose, it increased uric acid and malondialdehyde levels in T1DM patients. Therefore it should be used with caution. ClinicalTrials.gov registration: NCT01713023.
Collapse
Affiliation(s)
- Débora Lopes Souto
- Universidade Federal do Rio de JaneiroUniversidade Federal do Rio de JaneiroInstituto de Nutrição Josué de CastroDepartamento de Nutrição e DietéticaRio de JaneiroRJBrasilUniversidade Federal do Rio de Janeiro (UFRJ), Instituto de Nutrição Josué de Castro, Departamento de Nutrição e Dietética, Rio de Janeiro, RJ, Brasil
| | - Érika dos Santos Lima
- Universidade Federal do Rio de JaneiroUniversidade Federal do Rio de JaneiroInstituto de Nutrição Josué de CastroDepartamento de Nutrição e DietéticaRio de JaneiroRJBrasilUniversidade Federal do Rio de Janeiro (UFRJ), Instituto de Nutrição Josué de Castro, Departamento de Nutrição e Dietética, Rio de Janeiro, RJ, Brasil
| | - Joana Rodrigues Dantas
- Universidade Federal do Rio de JaneiroUniversidade Federal do Rio de JaneiroDepartamento de Medicina InternaRio de JaneiroRJBrasilUniversidade Federal do Rio de Janeiro (UFRJ), Departamento de Medicina Interna, Seção de Diabetes e Nutrologia, Rio de Janeiro, RJ, Brasil
| | - Lenita Zajdenverg
- Universidade Federal do Rio de JaneiroUniversidade Federal do Rio de JaneiroDepartamento de Medicina InternaRio de JaneiroRJBrasilUniversidade Federal do Rio de Janeiro (UFRJ), Departamento de Medicina Interna, Seção de Diabetes e Nutrologia, Rio de Janeiro, RJ, Brasil
| | - Melanie Rodacki
- Universidade Federal do Rio de JaneiroUniversidade Federal do Rio de JaneiroDepartamento de Medicina InternaRio de JaneiroRJBrasilUniversidade Federal do Rio de Janeiro (UFRJ), Departamento de Medicina Interna, Seção de Diabetes e Nutrologia, Rio de Janeiro, RJ, Brasil
| | - Eliane Lopes Rosado
- Universidade Federal do Rio de JaneiroUniversidade Federal do Rio de JaneiroInstituto de Nutrição Josué de CastroDepartamento de Nutrição e DietéticaRio de JaneiroRJBrasilUniversidade Federal do Rio de Janeiro (UFRJ), Instituto de Nutrição Josué de Castro, Departamento de Nutrição e Dietética, Rio de Janeiro, RJ, Brasil
| |
Collapse
|
10
|
Suh KS, Chon S, Choi EM. Protective effects of piceatannol on methylglyoxal-induced cytotoxicity in MC3T3-E1 osteoblastic cells. Free Radic Res 2018; 52:712-723. [DOI: 10.1080/10715762.2018.1467010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Affiliation(s)
- Kwang Sik Suh
- Department of Endocrinology and Metabolism, School of Medicine, Kyung Hee University, Dongdaemun-gu, Republic of Korea
| | - Suk Chon
- Department of Endocrinology and Metabolism, School of Medicine, Kyung Hee University, Dongdaemun-gu, Republic of Korea
| | - Eun Mi Choi
- Department of Endocrinology and Metabolism, School of Medicine, Kyung Hee University, Dongdaemun-gu, Republic of Korea
| |
Collapse
|
11
|
Suh KS, Choi EM, Jung WW, Park SY, Chin SO, Rhee SY, Pak YK, Chon S. 27-Deoxyactein prevents 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced cellular damage in MC3T3-E1 osteoblastic cells. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2018; 53:561-570. [PMID: 29364047 DOI: 10.1080/10934529.2018.1428275] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
2,3,7,8-Tetrachlorodibenzo-p-dioxin (TCDD) is a well-known environmental contaminant that exerts its toxicity through a variety of signaling mechanisms. The present study evaluated the effects of 27-deoxyactein, one of the major constituents isolated from Cimicifuga racemosa, on TCDD-induced toxicity in osteoblastic MC3T3-E1 cells. TCDD reduced cell survival, markedly increased apoptosis, and enhanced autophagy activity. However, pre-treatment with 27-deoxyactein attenuated all TCDD-induced effects and significantly decreased intracellular calcium (Ca2+) concentrations, the collapse of the mitochondrial membrane potential (MMP), the level of reactive oxygen species (ROS), and cardiolipin peroxidation compared to the TCDD-treated controls. Additionally, TCDD-induced increases in the levels of aryl hydrocarbon receptor (AhR), cytochrome P450 1A1 (CYP1A1), and extracellular signal-regulated kinase (ERK) were significantly inhibited by 27-deoxyactein. The mRNA levels of superoxide dismutase (SOD), ERK1, and nuclear factor kappa B (NF-κB) were also effectively restored by pre-treatment with 27-deoxyactein. Furthermore, 27-deoxyactein significantly increased the expressions of genes associated with osteoblast differentiation, including alkaline phosphatase (ALP), osteocalcin, bone sialoprotein (BSP), and osterix. Taken together, the present findings demonstrate the preventive effects of 27-deoxyactein on TCDD-induced damage in osteoblasts.
Collapse
Affiliation(s)
- Kwang Sik Suh
- a Department of Endocrinology & Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Eun Mi Choi
- a Department of Endocrinology & Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Woon-Won Jung
- b Department of Biomedical Laboratory Science , College of Health Sciences, Cheongju University , Cheongju , Chungbuk , Republic of Korea
| | - So Young Park
- c Department of Medicine , Graduate School, Kyung Hee University , Seoul , Republic of Korea
| | - Sang Ouk Chin
- a Department of Endocrinology & Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Sang Youl Rhee
- a Department of Endocrinology & Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Youngmi Kim Pak
- d Department of Physiology , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Suk Chon
- a Department of Endocrinology & Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| |
Collapse
|
12
|
Bellahcène A, Nokin MJ, Castronovo V, Schalkwijk C. Methylglyoxal-derived stress: An emerging biological factor involved in the onset and progression of cancer. Semin Cancer Biol 2018; 49:64-74. [DOI: 10.1016/j.semcancer.2017.05.010] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2017] [Revised: 05/18/2017] [Accepted: 05/22/2017] [Indexed: 02/07/2023]
|
13
|
Suh KS, Choi EM, Kim HS, Park SY, Chin SO, Rhee SY, Pak YK, Choe W, Ha J, Chon S. Xanthohumol ameliorates 2,3,7,8-tetrachlorodibenzo-p-dioxin-induced cellular toxicity in cultured MC3T3-E1 osteoblastic cells. J Appl Toxicol 2018. [DOI: 10.1002/jat.3613] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Affiliation(s)
- Kwang Sik Suh
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 130-702 Republic of Korea
| | - Eun Mi Choi
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 130-702 Republic of Korea
| | - Hyun-Sook Kim
- Department of Biomedical Laboratory Science, College of Health Sciences; Cheongju University; Cheongju Chungbuk 360-764 Republic of Korea
| | - So Young Park
- Department of Medicine, Graduate School; Kyung Hee University; Seoul 130-702 Republic of Korea
| | - Sang Ouk Chin
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 130-702 Republic of Korea
| | - Sang Youl Rhee
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 130-702 Republic of Korea
| | - Youngmi Kim Pak
- Department of Physiology; Kyung Hee University, College of Medicine; Seoul 130-701 Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology; Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University; Seoul 130-701 Republic of Korea
| | - Joohun Ha
- Department of Biochemistry and Molecular Biology; Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University; Seoul 130-701 Republic of Korea
| | - Suk Chon
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; Seoul 130-702 Republic of Korea
| |
Collapse
|
14
|
Antognelli C, Talesa VN. Glyoxalases in Urological Malignancies. Int J Mol Sci 2018; 19:ijms19020415. [PMID: 29385039 PMCID: PMC5855637 DOI: 10.3390/ijms19020415] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2017] [Revised: 01/25/2018] [Accepted: 01/26/2018] [Indexed: 12/16/2022] Open
Abstract
Urological cancers include a spectrum of malignancies affecting organs of the reproductive and/or urinary systems, such as prostate, kidney, bladder, and testis. Despite improved primary prevention, detection and treatment, urological cancers are still characterized by an increasing incidence and mortality worldwide. While advances have been made towards understanding the molecular bases of these diseases, a complete understanding of the pathological mechanisms remains an unmet research goal that is essential for defining safer pharmacological therapies and prognostic factors, especially for the metastatic stage of these malignancies for which no effective therapies are currently being used. Glyoxalases, consisting of glyoxalase 1 (Glo1) and glyoxalase 2 (Glo2), are enzymes that catalyze the glutathione-dependent metabolism of cytotoxic methylglyoxal (MG), thus protecting against cellular damage and apoptosis. They are generally overexpressed in numerous cancers as a survival strategy by providing a safeguard through enhancement of MG detoxification. Increasing evidence suggests that glyoxalases, especially Glo1, play an important role in the initiation and progression of urological malignancies. In this review, we highlight the critical role of glyoxalases as regulators of tumorigenesis in the prostate through modulation of various critical signaling pathways, and provide an overview of the current knowledge on glyoxalases in bladder, kidney and testis cancers. We also discuss the promise and challenges for Glo1 inhibitors as future anti-prostate cancer (PCa) therapeutics and the potential of glyoxalases as biomarkers for PCa diagnosis.
Collapse
Affiliation(s)
- Cinzia Antognelli
- Department of Experimental Medicine, University of Perugia, 06132 Perugia, Italy.
| | | |
Collapse
|
15
|
Malakul W, Pengnet S, Kumchoom C, Tunsophon S. Naringin ameliorates endothelial dysfunction in fructose-fed rats. Exp Ther Med 2018; 15:3140-3146. [PMID: 29456717 DOI: 10.3892/etm.2018.5759] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/08/2018] [Indexed: 12/26/2022] Open
Abstract
High fructose consumption is associated with metabolic disorders including hyperglycemia and dyslipidemia, in addition to endothelial dysfunction. Naringin, a flavonoid present in citrus fruit, has been reported to exhibit lipid lowering, antioxidant, and cardiovascular protective properties. Therefore, the present study investigated the effect of naringin on fructose-induced endothelial dysfunction in rats and its underlying mechanisms. Male Sprague-Dawley rats were given 10% fructose in drinking water for 12 weeks, whereas control rats were fed drinking water alone. Naringin (100 mg/kg) was orally administered to fructose fed rats during the last 4 weeks of the study. Following 12 weeks, blood samples were collected for measurement of blood glucose, serum lipid profile and total nitrate/nitrite (NOx). Vascular function was assessed by isometric tension recording. Aortic expression of endothelial nitric oxide synthase (eNOS), phosphorylated eNOS (p-eNOS), and nitrotyrosine were evaluated by western blot analysis. Fructose feeding induced increased levels of blood glucose, total cholesterol, triglyceride, and low density lipoprotein. In rat aortae, fructose reduced acethycholine-induced vasorelaxation, without affecting sodium nitroprusside-induced vasorelaxation. Treatment of fructose-fed rats with naringin restored fructose-induced metabolic alterations and endothelial dysfunction. Fructose-fed rats also exhibited decreased serum NOx level, reduced eNOS and p-eNOS protein expression, and enhanced nitrotyrosine expression in aortae. These alterations were improved by naringin treatment. The results of the present study suggested that naringin treatment preserves endothelium-dependent relaxation in aortae from fructose fed rats. This effect is primarily mediated through an enhanced NO bioavailability via increased eNOS activity and decreased NO inactivated to peroxynitrite in aortae.
Collapse
Affiliation(s)
- Wachirawadee Malakul
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sirinat Pengnet
- Division of Physiology, School of Medical Science, University of Phayao, Phayao 56000, Thailand
| | - Chanon Kumchoom
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| | - Sakara Tunsophon
- Department of Physiology, Faculty of Medical Science, Naresuan University, Phitsanulok 65000, Thailand
| |
Collapse
|
16
|
Limonene protects osteoblasts against methylglyoxal-derived adduct formation by regulating glyoxalase, oxidative stress, and mitochondrial function. Chem Biol Interact 2017; 278:15-21. [DOI: 10.1016/j.cbi.2017.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Revised: 09/26/2017] [Accepted: 10/02/2017] [Indexed: 01/05/2023]
|
17
|
Suh KS, Chon S, Jung WW, Choi EM. Magnolol protects pancreatic β-cells against methylglyoxal-induced cellular dysfunction. Chem Biol Interact 2017; 277:101-109. [DOI: 10.1016/j.cbi.2017.09.014] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2017] [Revised: 08/28/2017] [Accepted: 09/13/2017] [Indexed: 12/17/2022]
|
18
|
Suh KS, Chon S, Choi EM. Cytoprotective effects of xanthohumol against methylglyoxal-induced cytotoxicity in MC3T3-E1 osteoblastic cells. J Appl Toxicol 2017; 38:180-192. [DOI: 10.1002/jat.3521] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 07/22/2017] [Accepted: 08/11/2017] [Indexed: 12/11/2022]
Affiliation(s)
- Kwang Sik Suh
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; 1, Hoegi-dong, Dongdaemun-gu Seoul 02447 Republic of Korea
| | - Suk Chon
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; 1, Hoegi-dong, Dongdaemun-gu Seoul 02447 Republic of Korea
| | - Eun Mi Choi
- Department of Endocrinology & Metabolism, School of Medicine; Kyung Hee University; 1, Hoegi-dong, Dongdaemun-gu Seoul 02447 Republic of Korea
| |
Collapse
|
19
|
Suh KS, Choi EM, Rhee SY, Oh S, Kim SW, Pak YK, Choe W, Ha J, Chon S. Tetrabromobisphenol A induces cellular damages in pancreatic β-cells in vitro. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2017; 52:624-631. [PMID: 28301301 DOI: 10.1080/10934529.2017.1294964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Tetrabromobisphenol A (TBBPA) is a well-known organobrominated flame retardant. TBBPA has been detected in the environment. The roles played by environmental pollutants in increasing the prevalence of metabolic syndrome are attracting increasing concern. In the present work, we investigated the effects of TBBPA on rat pancreatic β-cells (the RIN-m5F cell line). RIN-m5F cells were incubated with different concentrations of TBBPA for 48 h, and cell viability and the extent of apoptosis were determined. We also measured the levels of inflammatory cytokines, reactive oxygen species (ROS), mitochondrial adenosine triphosphate (ATP), and cardiolipin, as well as the extent of cytochrome c release from mitochondria. TBBPA reduced the ATP level, induced cardiolipin peroxidation and cytochrome c release, and triggered apoptotic cell death. Moreover, TBBPA increased the levels of inflammatory cytokines (TNF-α and IL-1β), nitric oxide, intracellular ROS, and mitochondrial superoxide. Together, our results indicate that TBBPA damages pancreatic β-cells by triggering mitochondrial dysfunction and inducing apoptosis.
Collapse
Affiliation(s)
- Kwang Sik Suh
- a Department of Endocrinology and Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Eun Mi Choi
- a Department of Endocrinology and Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Sang Youl Rhee
- a Department of Endocrinology and Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Seungjoon Oh
- a Department of Endocrinology and Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Sung Woon Kim
- a Department of Endocrinology and Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Youngmi Kim Pak
- b Department of Physiology , Kyung Hee University, College of Medicine , Seoul , Republic of Korea
| | - Wonchae Choe
- c Department of Biochemistry and Molecular Biology , Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Joohun Ha
- c Department of Biochemistry and Molecular Biology , Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| | - Suk Chon
- a Department of Endocrinology and Metabolism , School of Medicine, Kyung Hee University , Seoul , Republic of Korea
| |
Collapse
|
20
|
Suh KS, Choi EM, Kim YJ, Hong SM, Park SY, Rhee SY, Oh S, Kim SW, Pak YK, Choe W, Chon S. Perfluorooctanoic acid induces oxidative damage and mitochondrial dysfunction in pancreatic β-cells. Mol Med Rep 2017; 15:3871-3878. [PMID: 28440430 DOI: 10.3892/mmr.2017.6452] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 02/09/2017] [Indexed: 11/05/2022] Open
Abstract
Several environmental contaminants have been linked to the development of diabetes and increased diabetes‑associated mortality. Perfluorooctanoic acid (PFOA) is a widely used perfluoroalkane found in surfactants and lubricants, and in processing aids used in the production of polymers. Furthermore, PFOA has been detected in humans, wildlife and the environment. The present study investigated the toxic effects of PFOA on rat pancreatic β‑cell‑derived RIN‑m5F cells. Cell viability, apoptosis, reactive oxygen and nitrogen species, cytokine release and mitochondrial parameters, including membrane potential collapse, reduced adenosine triphosphate levels, cardiolipin peroxidation and cytochrome c release were assessed. PFOA significantly decreased RIN‑m5F cell viability and increased apoptosis. Exposure to PFOA increased the formation of reactive oxygen species, mitochondrial superoxide, nitric oxide and proinflammatory cytokines. Furthermore, PFOA induced mitochondrial membrane potential collapse and reduced adenosine triphosphate levels, cardiolipin peroxidation and cytochrome c release. These results indicate that PFOA is associated with the induction of apoptosis in RIN-m5F cells, and induces cytotoxicity via increased oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- Kwang Sik Suh
- Department of Endocrinology and Metabolism, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Eun Mi Choi
- Department of Endocrinology and Metabolism, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yu Jin Kim
- Department of Medicine, Graduate School, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Soo Min Hong
- Department of Medicine, Graduate School, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - So Yong Park
- Department of Medicine, Graduate School, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sang Youl Rhee
- Department of Endocrinology and Metabolism, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Seungjoon Oh
- Department of Endocrinology and Metabolism, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sung Woon Kim
- Department of Endocrinology and Metabolism, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Youngmi Kim Pak
- Department of Physiology, School of Medicine, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Wonchae Choe
- Department of Biochemistry and Molecular Biology (BK21 Project), School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Suk Chon
- Department of Endocrinology and Metabolism, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
21
|
Suh KS, Chon S, Choi EM. Actein protects against methylglyoxal-induced oxidative damage in osteoblastic MC3T3-E1 cells. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2017; 97:207-214. [PMID: 26991449 DOI: 10.1002/jsfa.7713] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/24/2016] [Accepted: 03/07/2016] [Indexed: 06/05/2023]
Abstract
BACKGROUND Methylglyoxal (MG) is an endogenous product of glucose metabolism known to be toxic to cells and to be present in elevated concentrations under certain pathophysiological conditions. In the present study the effect of actein isolated from black cohosh on MG-induced cytotoxicity was investigated in MC3T3-E1 osteoblastic cells. RESULTS Treatment of MC3T3-E1 osteoblastic cells with actein prevented MG-induced cell death and the production of intracellular reactive oxygen species (ROS), mitochondrial superoxide, inflammatory cytokines and soluble receptor for advanced glycation end-products (sRAGE). In addition, actein increased the activity of glyoxalase I and levels of reduced glutathione (GSH) and the transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2). These findings suggest that actein protects against MG-induced cell damage by reducing oxidative stress and increasing MG detoxification. Treatment with actein prior to MG exposure reduced MG-induced mitochondrial dysfunction by preventing mitochondrial membrane potential dissipation and adenosine triphosphate (ATP) loss. Additionally, peroxisome proliferator-activated receptor gamma coactivator 1 alpha (PGC-1α), nuclear respiratory factor 1 (NRF-1) and nitric oxide (NO) levels were significantly increased by actein, suggesting that actein may induce mitochondrial biogenesis. CONCLUSION This study demonstrates that actein reduces MG-induced damage in osteoblastic MC3T3-E1 cells by enhancing antioxidant defenses, the glyoxalase system and mitochondrial biogenesis. © 2016 Society of Chemical Industry.
Collapse
Affiliation(s)
- Kwang Sik Suh
- Research Institute of Endocrinology, Kyung Hee University Hospital, 1, Hoegi-dong, Dongdaemun-gu, Seoul, 130-702, Republic of Korea
| | - Suk Chon
- Department of Endocrinology and Metabolism, School of Medicine, Kyung Hee University, 1, Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| | - Eun Mi Choi
- Department of Endocrinology and Metabolism, School of Medicine, Kyung Hee University, 1, Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, Republic of Korea
| |
Collapse
|
22
|
Transient Decrease in Circulatory Testosterone and Homocysteine Precedes the Development of Metabolic Syndrome Features in Fructose-Fed Sprague Dawley Rats. J Nutr Metab 2016; 2016:7510840. [PMID: 27818793 PMCID: PMC5080489 DOI: 10.1155/2016/7510840] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 08/26/2016] [Accepted: 09/21/2016] [Indexed: 02/06/2023] Open
Abstract
Background. Increased fructose consumption is linked to the development of metabolic syndrome (MS). Here we investigated the time course of development of MS features in high-fructose-fed Sprague Dawley rats along with circulatory testosterone and homocysteine levels. Methods. Rats were divided into control and experimental groups and fed with diets containing 54.5% starch and fructose, respectively, for 4, 12, and 24 weeks. Plasma testosterone and homocysteine levels were measured along with insulin, glucose, and lipids. Body composition, insulin resistance, and hepatic lipids were measured. Results. Increase in hepatic triglyceride content was first observed in metabolic disturbance followed by hypertriglyceridemia and systemic insulin resistance in fructose-fed rats. Hepatic lipids were increased in time-dependent manner by fructose-feeding starting from 4 weeks, but circulatory triglyceride levels were increased after 12 weeks. Fasting insulin and Homeostatis Model Assessment of Insulin Resistance (HOMA-IR) were increased after 12 weeks of fructose-feeding. Decreased visceral adiposity, circulatory testosterone, and homocysteine levels were observed after 4 weeks of fructose-feeding, which were normalized at 12 and 24 weeks. Conclusions. We conclude that transient decrease in circulatory testosterone and homocysteine levels and increased hepatic triglyceride content are the earliest metabolic disturbances that preceded hypertriglyceridemia and insulin resistance in fructose-fed SD rats.
Collapse
|
23
|
Osman I, Poulose N, Ganapathy V, Segar L. High fructose-mediated attenuation of insulin receptor signaling does not affect PDGF-induced proliferative signaling in vascular smooth muscle cells. Eur J Pharmacol 2016; 791:703-710. [PMID: 27729247 DOI: 10.1016/j.ejphar.2016.10.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 10/05/2016] [Accepted: 10/07/2016] [Indexed: 12/11/2022]
Abstract
Insulin resistance is associated with accelerated atherosclerosis. Although high fructose is known to induce insulin resistance, it remains unclear as to how fructose regulates insulin receptor signaling and proliferative phenotype in vascular smooth muscle cells (VSMCs), which play a major role in atherosclerosis. Using human aortic VSMCs, we investigated the effects of high fructose treatment on insulin receptor substrate-1 (IRS-1) serine phosphorylation, insulin versus platelet-derived growth factor (PDGF)-induced phosphorylation of Akt, S6 ribosomal protein, and extracellular signal-regulated kinase (ERK), and cell cycle proteins. In comparison with PDGF (a potent mitogen), neither fructose nor insulin enhanced VSMC proliferation and cyclin D1 expression. d-[14C(U)]fructose uptake studies revealed a progressive increase in fructose uptake in a time-dependent manner. Concentration-dependent studies with high fructose (5-25mM) showed marked increases in IRS-1 serine phosphorylation, a key adapter protein in insulin receptor signaling. Accordingly, high fructose treatment led to significant diminutions in insulin-induced phosphorylation of downstream signaling components including Akt and S6. In addition, high fructose significantly diminished insulin-induced ERK phosphorylation. Nevertheless, high fructose did not affect PDGF-induced key proliferative signaling events including phosphorylation of Akt, S6, and ERK and expression of cyclin D1 protein. Together, high fructose dysregulates IRS-1 phosphorylation state and proximal insulin receptor signaling in VSMCs, but does not affect PDGF-induced proliferative signaling. These findings suggest that systemic insulin resistance rather than VSMC-specific dysregulation of insulin receptor signaling by high fructose may play a major role in enhancing atherosclerosis and neointimal hyperplasia.
Collapse
Affiliation(s)
- Islam Osman
- Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Ninu Poulose
- Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA
| | - Vadivel Ganapathy
- Department of Biochemistry and Molecular Biology, Augusta University, Augusta, GA, USA
| | - Lakshman Segar
- Center for Pharmacy and Experimental Therapeutics, University of Georgia College of Pharmacy, Augusta, GA, USA; Charlie Norwood VA Medical Center, Augusta, GA, USA; Vascular Biology Center, Department of Pharmacology and Toxicology, Augusta University, Augusta, GA, USA; Department of Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA.
| |
Collapse
|
24
|
Suh KS, Chon S, Choi EM. Luteolin alleviates methylglyoxal-induced cytotoxicity in osteoblastic MC3T3-E1 cells. Cytotechnology 2016; 68:2539-2552. [PMID: 27221336 DOI: 10.1007/s10616-016-9977-y] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 04/22/2016] [Indexed: 01/01/2023] Open
Abstract
Methylglyoxal (MG), a reactive sugar-derived metabolite, exerts harmful effects by inducing oxidative stress, which aggravates a series of diabetic complications, including osteoporosis. The present study was performed to examine the effects of luteolin, a dietary polyphenolic flavonoid, on MG-induced cytotoxicity in MC3T3-E1 osteoblastic cells. Pretreatment of MC3T3-E1 osteoblastic cells with luteolin prevented MG-induced cell death and production of tumor necrosis factor-alpha, intracellular reactive oxygen species, mitochondrial superoxide, and cardiolipin peroxidation. In addition, luteolin increased the levels of glutathione and nuclear factor erythroid 2-related factor 2 (Nrf2) and decreased the inhibition of heme oxygenase-1 activity by MG. Pretreatment with luteolin prior to MG exposure reduced MG-induced mitochondrial dysfunction and increased the peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α) and nitric oxide levels, suggesting that luteolin may induce mitochondrial biogenesis. Taken together, these observations indicated that luteolin has potential as a preventive agent against the development of diabetic osteopathy related to MG-induced oxidative stress in diabetes.
Collapse
Affiliation(s)
- Kwang Sik Suh
- Research Institute of Endocrinology, Kyung Hee University Hospital, 1, Hoegi-dong, Dongdaemun-gu, Seoul, 130-702, South Korea
| | - Suk Chon
- Department of Endocrinology and Metabolism, School of Medicine, Kyung Hee University, 1, Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, South Korea
| | - Eun Mi Choi
- Department of Endocrinology and Metabolism, School of Medicine, Kyung Hee University, 1, Hoegi-dong, Dongdaemun-gu, Seoul, 130-701, South Korea.
| |
Collapse
|
25
|
Huang Q, Chen Y, Gong N, Wang YX. Methylglyoxal mediates streptozotocin-induced diabetic neuropathic pain via activation of the peripheral TRPA1 and Nav1.8 channels. Metabolism 2016; 65:463-74. [PMID: 26975538 DOI: 10.1016/j.metabol.2015.12.002] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/02/2015] [Accepted: 12/12/2015] [Indexed: 01/05/2023]
Abstract
OBJECTIVE Methylglyoxal is known to be associated with the development of nephropathy, retinopathy, and other complications in diabetes. The present study tested the hypothesis that endogenously increased levels of methylglyoxal in diabetes are causally associated with the induction of neuropathic pain. MATERIALS AND METHODS Streptozotocin- and methylglyoxal-induced pain models were established in rats, and the anti-nociceptive effects of the methylglyoxal scavenging agents, selective transient receptor potential channel ankyrin 1 (TRPA1) antagonist, and Nav1.8 antagonist were tested. RESULTS Systemic injection of streptozotocin in rats induced a prolonged increase in plasma methylglyoxal by approximately 60%, which was correlated with the progressive development of mechanical allodynia and thermal hyperalgesia. Local subcutaneous injection of methylglyoxal into the hindpaw produced dose-dependent and biphasic flinching nociceptive responses, which resembled formaldehyde (formalin)-induced nociception. The local methylglyoxal nociception was significantly blocked by co-injection into the hindpaw of the selective transient receptor potential channel ankyrin 1 (TRPA1) antagonist, A967079, and the Nav1.8 antagonist, A803467. Co-incubation with the methylglyoxal scavengers, aminoguanidine, d-arginine, and metformin, reduced the level of free methylglyoxal by more than 90%, and injection of their incubation solutions into the hindpaw produced negligible (3-17%) nociception. Like the clinically effective anti-diabetic neuropathic pain drug gabapentin, systemic injection of aminoguanidine, d-arginine, and metformin at doses that effectively inhibit paw-injected methylglyoxal-induced nociception significantly blocked streptozotocin-induced mechanical allodynia. CONCLUSION Endogenously increased methylglyoxal may mediate diabetic neuropathic pain via activation of both TRPA1 and Nav1.8 expressed on primary afferent sensory neurons, and injection of methylglyoxal into the hindpaw may serve as a simple and robust model for testing the anti-diabetic pain drugs.
Collapse
Affiliation(s)
- Qian Huang
- King's Laboratory, School of Pharmacy, Shanghai Jiao Tong University, China.
| | - Yuan Chen
- King's Laboratory, School of Pharmacy, Shanghai Jiao Tong University, China.
| | - Nian Gong
- King's Laboratory, School of Pharmacy, Shanghai Jiao Tong University, China.
| | - Yong-Xiang Wang
- King's Laboratory, School of Pharmacy, Shanghai Jiao Tong University, China.
| |
Collapse
|
26
|
Choi EM, Suh KS, Kim YJ, Hong SM, Park SY, Chon S. Glabridin Alleviates the Toxic Effects of Methylglyoxal on Osteoblastic MC3T3-E1 Cells by Increasing Expression of the Glyoxalase System and Nrf2/HO-1 Signaling and Protecting Mitochondrial Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:226-235. [PMID: 26670935 DOI: 10.1021/acs.jafc.5b05157] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Methylglyoxal (MG) contributes to the pathogenesis of age- and diabetes-associated complications. The present study investigated the effects of glabridin on MG-induced cytotoxicity in MC3T3-E1 osteoblastic cells. MC3T3-E1 cells were treated with glabridin in the presence of MG, and markers of mitochondrial function and oxidative damage were examined. Pretreatment of MC3T3-E1 osteoblastic cells with glabridin prevented MG-induced cell death, the production of intracellular reactive oxygen species and mitochondrial superoxides, cardiolipin peroxidation, and the production of inflammatory cytokines. The soluble form of receptor for advanced glycation end products (sRAGEs)/RAGE ratio increased upon MG treatment, but less so after pretreatment with glabridin, which also increased the level of reduced glutathione and the activities of glyoxalase I and heme oxygenase-1, all of which were reduced by MG. In addition, glabridin elevated the level of nuclear factor erythroid 2-related factor 2. These findings suggest that glabridin protects against MG-induced cell damage by inhibiting oxidative stress and increasing MG detoxification. Pretreatment of MC3T3-E1 osteoblastic cells with glabridin reduced MG-induced mitochondrial dysfunction. Additionally, the nitric oxide level significantly increased upon glabridin pretreatment. Together, these data show that glabridin may potentially serve to prevent the development of diabetic bone disease associated with MG-induced oxidative stress.
Collapse
Affiliation(s)
- Eun Mi Choi
- Department of Endocrinology & Metabolism, School of Medicine, Kyung Hee University , 1, Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Kwang Sik Suh
- Research Institute of Endocrinology, Kyung Hee University Hospital , 1, Hoegi-dong, Dongdaemun-gu, Seoul 130-702, Republic of Korea
| | - Yu Jin Kim
- Department of Endocrinology & Metabolism, School of Medicine, Kyung Hee University , 1, Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Soo Min Hong
- Department of Endocrinology & Metabolism, School of Medicine, Kyung Hee University , 1, Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
- Department of Medicine, Graduate School, Kyung Hee University , Hoegi-dong, Dongdaemun-gu, Seoul 130-702, Republic of Korea
| | - So Yong Park
- Department of Endocrinology & Metabolism, School of Medicine, Kyung Hee University , 1, Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| | - Suk Chon
- Department of Endocrinology & Metabolism, School of Medicine, Kyung Hee University , 1, Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea
| |
Collapse
|
27
|
Suh KS, Chon S, Choi EM. Protective effects of honokiol against methylglyoxal-induced osteoblast damage. Chem Biol Interact 2016; 244:169-77. [DOI: 10.1016/j.cbi.2015.12.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Revised: 12/14/2015] [Accepted: 12/21/2015] [Indexed: 12/29/2022]
|
28
|
Bo J, Xie S, Guo Y, Zhang C, Guan Y, Li C, Lu J, Meng QH. Methylglyoxal Impairs Insulin Secretion of Pancreatic β-Cells through Increased Production of ROS and Mitochondrial Dysfunction Mediated by Upregulation of UCP2 and MAPKs. J Diabetes Res 2016; 2016:2029854. [PMID: 26779540 PMCID: PMC4686727 DOI: 10.1155/2016/2029854] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Revised: 06/12/2015] [Accepted: 07/01/2015] [Indexed: 01/07/2023] Open
Abstract
Methylglyoxal (MG) is a highly reactive glucose metabolic intermediate and a major precursor of advanced glycation end products. MG level is elevated in hyperglycemic disorders such as diabetes mellitus. Substantial evidence has shown that MG is involved in the pathogenesis of diabetes and diabetic complications. We investigated the impact of MG on insulin secretion by MIN6 and INS-1 cells and the potential mechanisms of this effect. Our study demonstrates that MG impaired insulin secretion by MIN6 or ISN-1 cells in a dose-dependent manner. It increased reactive oxygen species (ROS) production and apoptosis rate in MIN6 or ISN-1 cells and inhibited mitochondrial membrane potential (MMP) and ATP production. Furthermore, the expression of UCP2, JNK, and P38 as well as the phosphorylation JNK and P38 was increased by MG. These effects of MG were attenuated by MG scavenger N-acetyl cysteine. Collectively, these data indicate that MG impairs insulin secretion of pancreatic β-cells through increasing ROS production. High levels of ROS can damage β-cells directly via JNK/P38 upregulation and through activation of UCP2 resulting in reduced MMP and ATP production, leading to β-cell dysfunction and impairment of insulin production.
Collapse
Affiliation(s)
- Jinshuang Bo
- Wenzhou Medical University School of Laboratory Medicine and Life Sciences, Wenzhou, Zhejiang 325035, China
| | - Shiya Xie
- Wenzhou Medical University School of Laboratory Medicine and Life Sciences, Wenzhou, Zhejiang 325035, China
| | - Yi Guo
- Wenzhou Medical University School of Laboratory Medicine and Life Sciences, Wenzhou, Zhejiang 325035, China
| | - Chunli Zhang
- Wenzhou Medical University School of Laboratory Medicine and Life Sciences, Wenzhou, Zhejiang 325035, China
| | - Yanming Guan
- Wenzhou Medical University School of Laboratory Medicine and Life Sciences, Wenzhou, Zhejiang 325035, China
| | - Chunmei Li
- Wenzhou Medical University School of Laboratory Medicine and Life Sciences, Wenzhou, Zhejiang 325035, China
| | - Jianxin Lu
- Wenzhou Medical University School of Laboratory Medicine and Life Sciences, Wenzhou, Zhejiang 325035, China
- Key Laboratory of Laboratory Medicine, Ministry of Education, Wenzhou, Zhejiang 325035, China
- Zhejiang Provincial Key Laboratory of Medical Genetics, Wenzhou, Zhejiang 325035, China
| | - Qing H. Meng
- Wenzhou Medical University School of Laboratory Medicine and Life Sciences, Wenzhou, Zhejiang 325035, China
- Department of Laboratory Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
- *Qing H. Meng:
| |
Collapse
|
29
|
The role of methylglyoxal and the glyoxalase system in diabetes and other age-related diseases. Clin Sci (Lond) 2015; 128:839-61. [PMID: 25818485 DOI: 10.1042/cs20140683] [Citation(s) in RCA: 241] [Impact Index Per Article: 24.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The formation and accumulation of advanced glycation endproducts (AGEs) are related to diabetes and other age-related diseases. Methylglyoxal (MGO), a highly reactive dicarbonyl compound, is the major precursor in the formation of AGEs. MGO is mainly formed as a byproduct of glycolysis. Under physiological circumstances, MGO is detoxified by the glyoxalase system into D-lactate, with glyoxalase I (GLO1) as the key enzyme in the anti-glycation defence. New insights indicate that increased levels of MGO and the major MGO-derived AGE, methylglyoxal-derived hydroimidazolone 1 (MG-H1), and dysfunctioning of the glyoxalase system are linked to several age-related health problems, such as diabetes, cardiovascular disease, cancer and disorders of the central nervous system. The present review summarizes the mechanisms through which MGO is formed, its detoxification by the glyoxalase system and its effect on biochemical pathways in relation to the development of age-related diseases. Although several scavengers of MGO have been developed over the years, therapies to treat MGO-associated complications are not yet available for application in clinical practice. Small bioactive inducers of GLO1 can potentially form the basis for new treatment strategies for age-related disorders in which MGO plays a pivotal role.
Collapse
|
30
|
Suh KS, Rhee SY, Kim YS, Choi EM. Protective effect of liquiritigenin against methylglyoxal cytotoxicity in osteoblastic MC3T3-E1 cells. Food Funct 2015; 5:1432-40. [PMID: 24789098 DOI: 10.1039/c4fo00127c] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Methylglyoxal (MG), a reactive dicarbonyl compound, is a metabolic byproduct of glycolysis and elevated MG levels contribute to diabetic complications. Glycation reactions of MG with amino acids can induce oxidative stress, leading to subsequent cytotoxicity. In the present study, the effect of liquiritigenin on MG-induced cytotoxicity was investigated using osteoblastic MC3T3-E1 cells. Pretreatment of MC3T3-E1 cells with liquiritigenin prevented the MG-induced cell death and production of protein adduct, intracellular reactive oxygen species, mitochondrial superoxide, cardiolipin peroxidation, and TNF-α in osteoblastic MC3T3-E1 cells. In addition, liquiritigenin increased the activity of glyoxalase I inhibited by MG. These findings suggest that liquiritigenin provides a protective action against MG-induced cell damage by reducing oxidative stress and by increasing MG detoxification. Pretreatment with liquiritigenin prior to MG exposure reduced MG-induced mitochondrial dysfunction by preventing mitochondrial membrane potential dissipation and adenosine triphosphate loss. Additionally, the nitric oxide and PGC-1α levels were significantly increased by liquiritigenin, suggesting that liquiritigenin may induce mitochondrial biogenesis. Our findings indicate that liquiritigenin might exert its therapeutic effects via enhancement of glyoxalase I activity and mitochondrial function, and anti-oxidant and anti-inflammatory activities. Taken together, liquiritigenin has potential as a preventive agent against the development of diabetic osteopathy related to MG-induced oxidative stress in diabetes.
Collapse
Affiliation(s)
- Kwang Sik Suh
- Research Institute of Endocrinology, Kyung Hee University Hospital, 1, Hoegi-dong, Dongdaemun-gu, Seoul 130-702, Republic of Korea
| | | | | | | |
Collapse
|
31
|
DiNicolantonio JJ, O'Keefe JH, Lucan SC. An unsavory truth: sugar, more than salt, predisposes to hypertension and chronic disease. Am J Cardiol 2014; 114:1126-8. [PMID: 25212553 DOI: 10.1016/j.amjcard.2014.07.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 07/08/2014] [Indexed: 11/29/2022]
|
32
|
Choi EM, Suh KS, Rhee SY, Kim YS. Inhibitory effect of paeoniflorin on methylglyoxal-mediated oxidative stress in osteoblastic MC3T3-E1 cells. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2014; 21:1170-1177. [PMID: 24916708 DOI: 10.1016/j.phymed.2014.05.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2014] [Revised: 04/03/2014] [Accepted: 05/11/2014] [Indexed: 06/03/2023]
Abstract
PURPOSE Methylglyoxal (MG) has been suggested to be one major source of intracellular reactive carbonyl compounds. In the present study, the effect of paeoniflorin on MG-induced cytotoxicity was investigated using osteoblastic MC3T3-E1 cells. METHODS Osteoblastic MC3T3-E1 cells were pre-incubated with paeoniflorin before treatment with MG, and markers of oxidative damage and mitochondrial function were examined. RESULTS Pretreatment of MC3T3-E1 cells with paeoniflorin prevented the MG-induced cell death and formation of intracellular reactive oxygen species, cardiolipin peroxidation, and protein adduct in osteoblastic MC3T3-E1 cells. In addition, paeoniflorin increased glutathione level and restored the activity of glyoxalase I to almost the control level. These findings suggest that paeoniflorin provide a protective action against MG-induced cell damage by reducing oxidative stress and by increasing MG detoxification system. Pretreatment with paeoniflorin prior to MG exposure reduced MG-induced mitochondrial dysfunction by preventing mitochondrial membrane potential dissipation and adenosine triphosphate loss. Additionally, the nitric oxide and nuclear respiratory factor 1 levels were significantly increased by paeoniflorin, suggesting that paeoniflorin may induce mitochondrial biogenesis. Paeoniflorin treatment decreased the levels of proinflammatory cytokines such as TNF-α and IL-6. CONCLUSIONS These findings indicate that paeoniflorin might exert its therapeutic effects via upregulation of glyoxalase system and mitochondrial function. Taken together, paeoniflorin may prove to be an effective treatment for diabeteic osteopathy.
Collapse
Affiliation(s)
- Eun Mi Choi
- Department of Food & Nutrition, Kyung Hee University, 1, Hoegi-dong, Dongdaemun-gu, Seoul 130-701, Republic of Korea.
| | - Kwang Sik Suh
- Research Institute of Endocrinology, Kyung Hee University Hospital, 1, Hoegi-dong, Dongdaemun-gu, Seoul 130-702, Republic of Korea
| | - Sang Youl Rhee
- Department of Endocrinology & Metabolism, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| | - Young Seol Kim
- Department of Endocrinology & Metabolism, School of Medicine, Kyung Hee University, Seoul 130-701, Republic of Korea
| |
Collapse
|
33
|
Suh KS, Rhee SY, Kim YS, Choi EM. Inhibitory effect of apocynin on methylglyoxal-mediated glycation in osteoblastic MC3T3-E1 cells. J Appl Toxicol 2014; 35:350-7. [PMID: 25042521 DOI: 10.1002/jat.3016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Revised: 03/17/2014] [Accepted: 03/17/2014] [Indexed: 12/31/2022]
Abstract
Methylglyoxal (MG), a highly reactive metabolite of hyperglycemia, can enhance protein glycation, oxidative stress or inflammation. The present study investigated the effects of apocynin on the mechanisms associated with MG toxicity in osteoblastic MC3T3-E1 cells. Pretreatment of MC3T3-E1 cells with apocynin prevented the MG-induced protein glycation and formation of intracellular reactive oxygen species and mitochondrial superoxide in MC3T3-E1 cells. In addition, apocynin increased glutathione levels and restored the activity of glyoxalase I inhibited by MG. These findings suggest that apocynin provide a protective action against MG-induced cell damage by reducing oxidative stress and by increasing the MG detoxification system. Apocynin treatment decreased the levels of proinflammatory cytokines such as tumor necrosis factor-α and interleukin-6 induced by MG. Additionally, the nitric oxide level reduced by MG was significantly increased by apocynin. These findings indicate that apocynin might exert its therapeutic effects via upregulation of glyoxalase system and antioxidant activity. Taken together, apocynin may prove to be an effective treatment for diabetic osteopathy.
Collapse
Affiliation(s)
- Kwang Sik Suh
- Research Institute of Endocrinology, Kyung Hee University Hospital, 1, Hoegi-dong, Dongdaemun-gu, Seoul, 130-702, Republic of Korea
| | | | | | | |
Collapse
|
34
|
Huang Q, Sparatore A, Del Soldato P, Wu L, Desai K. Hydrogen sulfide releasing aspirin, ACS14, attenuates high glucose-induced increased methylglyoxal and oxidative stress in cultured vascular smooth muscle cells. PLoS One 2014; 9:e97315. [PMID: 24896242 PMCID: PMC4045575 DOI: 10.1371/journal.pone.0097315] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Accepted: 04/18/2014] [Indexed: 12/21/2022] Open
Abstract
Hydrogen sulfide is a gasotransmitter with vasodilatory and anti-inflammatory properties. Aspirin is an irreversible cyclooxygenase inhibitor anti-inflammatory drug. ACS14 is a novel synthetic hydrogen sulfide releasing aspirin which inhibits cyclooxygenase and has antioxidant effects. Methylglyoxal is a chemically active metabolite of glucose and fructose, and a major precursor of advanced glycation end products formation. Methylglyoxal is harmful when produced in excess. Plasma methylglyoxal levels are significantly elevated in diabetic patients. Our aim was to investigate the effects of ACS14 on methylglyoxal levels in cultured rat aortic vascular smooth muscle cells. We used cultured rat aortic vascular smooth muscle cells for the study. Methylglyoxal was measured by HPLC after derivatization, and nitrite+nitrate with an assay kit. Western blotting was used to determine NADPH oxidase 4 (NOX4) and inducible nitric oxide synthase (iNOS) protein expression. Dicholorofluorescein assay was used to measure oxidative stress. ACS14 significantly attenuated elevation of intracellular methylglyoxal levels caused by incubating cultured vascular smooth muscle cells with methylglyoxal (30 µM) and high glucose (25 mM). ACS14, but not aspirin, caused a significant attenuation of increase in nitrite+nitrate levels caused by methylglyoxal or high glucose. ACS14, aspirin, and sodium hydrogen sulfide (NaHS, a hydrogen sulfide donor), all attenuated the increase in oxidative stress caused by methylglyoxal and high glucose in cultured cells. ACS14 prevented the increase in NOX4 expression caused by incubating the cultured VSMCs with MG (30 µM). ACS14, aspirin and NaHS attenuated the increase in iNOS expression caused by high glucose (25 mM). In conclusion, ACS14 has the novel ability to attenuate an increase in methylglyoxal levels which in turn can reduce oxidative stress, decrease the formation of advanced glycation end products and prevent many of the known deleterious effects of elevated methylglyoxal. Thus, ACS14 has the potential to be especially beneficial for diabetic patients pending further in vivo studies.
Collapse
Affiliation(s)
- Qian Huang
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- King's Lab, School of Pharmacy, Shanghai Jiao Tong University, Shanghai, China
| | - Anna Sparatore
- Dipartimento di Scienze Farmaceutiche, Università degli Studi di Milano, Milan, Italy
| | | | - Lingyun Wu
- Department of Health Sciences, Lakehead University, Thunder Bay, Ontario, Canada
- Thunder Bay Regional Research Institute, Thunder Bay, Ontario, Canada
- * E-mail: (KD); (LW)
| | - Kaushik Desai
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- * E-mail: (KD); (LW)
| |
Collapse
|
35
|
Choi EM, Suh KS, Rhee SY, Kim YS. Sciadopitysin alleviates methylglyoxal-mediated glycation in osteoblastic MC3T3-E1 cells by enhancing glyoxalase system and mitochondrial biogenesis. Free Radic Res 2014; 48:729-39. [DOI: 10.3109/10715762.2014.903562] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
36
|
Suh KS, Choi EM, Rhee SY, Kim YS. Methylglyoxal induces oxidative stress and mitochondrial dysfunction in osteoblastic MC3T3-E1 cells. Free Radic Res 2013; 48:206-17. [PMID: 24164256 DOI: 10.3109/10715762.2013.859387] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Methylglyoxal is a reactive dicarbonyl compound produced by glycolytic processing and identified as a precursor of advanced glycation end products. The elevated methylglyoxal levels in patients with diabetes are believed to contribute to diabetic complications, including bone defects. The objective of this study was to evaluate the effect of methylglyoxal on the function of osteoblastic MC3T3-E1 cells. The data indicated that methylglyoxal decreased osteoblast differentiation and induced osteoblast cytotoxicity. Pretreatment of MC3T3-E1 cells with aminoguanidine (a carbonyl scavenger), Trolox (an antioxidant), and cyclosporin A (a blocker of the mitochondrial permeability transition pore) prevented methylglyoxal-induced cytotoxicity in MC3T3-E1 cells. However, BAPTA/AM (an intracellular Ca(2+) chelator) and dantrolene (an inhibitor of endoplasmic reticulum Ca(2+) release) did not reverse the cytotoxic effect of methylglyoxal. Methylglyoxal increased the formation of intracellular reactive oxygen species, mitochondrial superoxide, and cardiolipin peroxidation in osteoblastic MC3T3-E1 cells. Methylglyoxal also decreased the mitochondrial membrane potential and intracellular ATP and nitric oxide levels, suggesting that carbonyl stress-induced loss of mitochondrial integrity contributes to the cytotoxicity of methylglyoxal. Furthermore, the results demonstrated that methylglyoxal induced protein adduct formation, inactivation of glyoxalase I, and activation of glyoxalase II. Aminoguanidine reversed all aforementioned effects of methylglyoxal. Taken together, these data support the notion that high methylglyoxal concentrations have detrimental effects on osteoblasts through a mechanism involving oxidative stress and mitochondrial dysfunction.
Collapse
Affiliation(s)
- K S Suh
- Research Institute of Endocrinology, Kyung Hee University Hospital , Seoul , Republic of Korea
| | | | | | | |
Collapse
|
37
|
Su Y, Qadri SM, Wu L, Liu L. Methylglyoxal modulates endothelial nitric oxide synthase-associated functions in EA.hy926 endothelial cells. Cardiovasc Diabetol 2013; 12:134. [PMID: 24050620 PMCID: PMC4015749 DOI: 10.1186/1475-2840-12-134] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2013] [Accepted: 09/02/2013] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Increased levels of the sugar metabolite methylglyoxal (MG) in vivo were shown to participate in the pathophysiology of vascular complications in diabetes. Alterations of endothelial nitric oxide synthase (eNOS) activity by hypophosphorylation of the enzyme and enhanced monomerization are found in the diabetic milieu, and the regulation of this still remains undefined. Using various pharmacological approaches, we elucidate putative mechanisms by which MG modulates eNOS-associated functions of MG-stimulated superoxide O₂•⁻ production, phosphorylation status and eNOS uncoupling in EA.hy926 human endothelial cells. METHODS In cultured EA.hy926 endothelial cells, the effects of MG treatment, tetrahydrobiopterin (BH4; 100 μM) and sepiapterin (20 μM) supplementation, NOS inhibition by N(G)-nitro-L-arginine methyl ester (L-NAME; 50 μM), and inhibition of peroxynitrite (ONOO⁻) formation (300 μM Tempol plus 50 μM L-NAME) on eNOS dimer/monomer ratios, Ser-1177 eNOS phosphorylation and 3-nitrotyrosine (3NT) abundance were quantified using immunoblotting. O₂•⁻-dependent fluorescence was determined using a commercially available kit and tissue biopterin levels were measured by fluorometric HPLC analysis. RESULTS In EA.hy926 cells, MG treatment significantly enhanced O₂•⁻ generation and 3NT expression and reduced Ser-1177 eNOS phosphorylation, eNOS dimer/monomer ratio and cellular biopterin levels indicative of eNOS uncoupling. These effects were significantly mitigated by administration of BH4, sepiapterin and suppression of ONOO⁻ formation. L-NAME treatment significantly blunted eNOS-derived O₂•⁻ generation but did not modify eNOS phosphorylation or monomerization. CONCLUSION MG triggers eNOS uncoupling and hypophosphorylation in EA.hy926 endothelial cells associated with O₂•⁻ generation and biopterin depletion. The observed effects of the glycolysis metabolite MG presumably account, at least in part, for endothelial dysfunction in diabetes.
Collapse
Affiliation(s)
- Yang Su
- Department of Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, Canada
| | - Syed M Qadri
- Department of Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, Canada
| | - Lingyun Wu
- Department of Health Sciences, Lakehead University and Thunder Bay Regional Research Institute, Thunder Bay, ON, Canada
| | - Lixin Liu
- Department of Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, SK, Canada
| |
Collapse
|
38
|
Wei Y, Wang D, Moran G, Estrada A, Pagliassotti MJ. Fructose-induced stress signaling in the liver involves methylglyoxal. Nutr Metab (Lond) 2013; 10:32. [PMID: 23566306 PMCID: PMC3635994 DOI: 10.1186/1743-7075-10-32] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 04/01/2013] [Indexed: 11/10/2022] Open
Abstract
Background Fructose produces hepatic insulin resistance in humans and animals. We have proposed that the selective metabolism of fructose by the liver can, under conditions of elevated fructose delivery, inflict a metabolic insult that is localized to the hepatocyte. The present study was designed to identify potential cellular effectors of this insult. Methods Primary hepatocytes were incubated with 8 mM glucose and 0.12% inulin (G, n = 6) or 8 mM glucose, 0.12% inulin and 28 mU of inulinase (GF, n = 6) in the presence or absence of insulin for 0, 2, or 4 h. Results GF produced fructose concentrations of ~0.7 mM over the 4 h experiment. GF induced phosphorylation of MKK7 and JNK, phosphorylation of serine307 on IRS-1, and reduced tyrosine phosphorylation of IRS-1 and -2. GF increased ceramide levels and reactive oxygen species (ROS); however inhibitors of ceramide synthesis or ROS accumulation did not prevent GF-mediated changes in MKK7, JNK or IRS proteins. GF increased cellular methylglyoxal concentrations and a selective increase in methylglyoxal recapitulated the GF-induced changes in MKK7, JNK and IRS proteins. Conclusions We hypothesize that GF-mediated changes in stress signaling involve methylglyoxal in primary hepatocytes.
Collapse
Affiliation(s)
- Yuren Wei
- Department of Food Science and Human Nutrition, Colorado State University, 234 Gifford, Fort Collins, CO 80523-1571, USA
| | - Dong Wang
- Department of Food Science and Human Nutrition, Colorado State University, 234 Gifford, Fort Collins, CO 80523-1571, USA
| | - Gretchen Moran
- Department of Food Science and Human Nutrition, Colorado State University, 234 Gifford, Fort Collins, CO 80523-1571, USA
| | - Andrea Estrada
- Department of Food Science and Human Nutrition, Colorado State University, 234 Gifford, Fort Collins, CO 80523-1571, USA
| | - Michael J Pagliassotti
- Department of Food Science and Human Nutrition, Colorado State University, 234 Gifford, Fort Collins, CO 80523-1571, USA
| |
Collapse
|
39
|
Lu J, Ji J, Meng H, Wang D, Jiang B, Liu L, Randell E, Adeli K, Meng QH. The protective effect and underlying mechanism of metformin on neointima formation in fructose-induced insulin resistant rats. Cardiovasc Diabetol 2013; 12:58. [PMID: 23561047 PMCID: PMC3642024 DOI: 10.1186/1475-2840-12-58] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 04/02/2013] [Indexed: 12/02/2022] Open
Abstract
Background Insulin resistance is strongly associated with the development of type 2 diabetes and cardiovascular disease. However, the underlying mechanisms linking insulin resistance and the development of atherosclerosis have not been fully elucidated. Moreover, the protective effect of antihyperglycemic agent, metformin, is not fully understood. This study investigated the protective effects and underlying mechanisms of metformin in balloon-injury induced stenosis in insulin resistant rats. Methods After 4 weeks high fructose diet, rats received balloon catheter injury on carotid arteries and were sacrificed at 1 and 4 weeks post injury. Biochemical, histological, and molecular changes were investigated. Results Plasma levels of glucose, insulin, total cholesterol, triglyceride, free fatty acids, and methylglyoxal were highly increased in fructose-induced insulin resistant rats and treatment with metformin significantly improved this metabolic profile. The neointimal formation of the carotid arteries was enhanced, and treatment with metformin markedly attenuated neointimal hyperplasia. A significant reduction in BrdU-positive cells in the neointima was observed in the metformin-treated group (P < 0.01). Insulin signaling pathways were inhibited in insulin resistant rats while treatment with metformin enhanced the expression of insulin signaling pathways. Increased expression of JNK and NFKB was suppressed following metformin treatment. Vasoreactivity was impaired while treatment with metformin attenuated phenylephrine-induced vasoconstriction and enhanced methacholine-induced vasorelaxation of the balloon injured carotid arteries in insulin resistant rats. Conclusion The balloon-injury induced neointimal formation of the carotid arteries is enhanced by insulin resistance. Treatment with metformin significantly attenuates neointimal hyperplasia through inhibition of smooth muscle cell proliferation, migration, and inflammation as well as by improvement of the insulin signaling pathway.
Collapse
Affiliation(s)
- Jianxin Lu
- Key Laboratory of Laboratory Medicine, Ministry of Education, Zhejiang Provincial Key Laboratory of Medical Genetics, School of Laboratory Medicine, Wenzhou Medical College, Wenzhou, China
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Adolphe JL, Drew MD, Huang Q, Silver TI, Weber LP. Postprandial impairment of flow-mediated dilation and elevated methylglyoxal after simple but not complex carbohydrate consumption in dogs. Nutr Res 2012; 32:278-84. [PMID: 22575041 DOI: 10.1016/j.nutres.2012.03.002] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2011] [Revised: 03/01/2012] [Accepted: 03/06/2012] [Indexed: 01/01/2023]
Abstract
Hyperglycemia produces oxidative stress, which may impair endothelial function. Methylglyoxal, a reactive intermediate metabolite of glucose, is known to cause oxidative stress and is produced when excess carbohydrate is consumed in diabetic patients, but postprandial responses in healthy patients are unknown. We hypothesize that methylglyoxal levels will cause impaired endothelial function via increased oxidative stress after consuming a high glycemic index meal in healthy animals. Normal-weight laboratory beagles (n = 6) were used in a crossover study that tested postprandial responses of 4 complex carbohydrate sources (barley, corn, peas, rice) vs a simple carbohydrate (glucose). Blood samples were taken prefeeding and at timed intervals after feeding to measure serum glucose, insulin, nitrotyrosine, and methylglyoxal. Flow-mediated dilation (FMD), cardiac function (echocardiography), and blood pressure measurements were determined before and 60 minutes after feeding. The mean (±SEM) glycemic indices of the complex carbohydrate sources were 29 ± 5 for peas, 47 ± 10 for corn, 51 ± 7 for barley, and 55 ± 6 for rice. Postprandial FMD was lowest in the glucose group and significantly different from both the corn group and the FMD value for all complex carbohydrates combined. Methylglyoxal was significantly elevated at 60 minutes postprandial after glucose compared with the other carbohydrate sources. No significant effects of carbohydrate source were observed for blood pressure, nitrotyrosine, or echocardiographic variables. The novel finding of this study was that methylglyoxal levels increased after a single feeding of simple carbohydrate and may be linked to the observed postprandial decrease in endothelial function. Thus, consuming low-glycemic-index foods may protect the cardiovascular system by reducing oxidative stress.
Collapse
Affiliation(s)
- Jennifer L Adolphe
- Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, Saskatchewan, Canada S7N 5B4
| | | | | | | | | |
Collapse
|
41
|
Liu J, Wang R, Desai K, Wu L. Upregulation of aldolase B and overproduction of methylglyoxal in vascular tissues from rats with metabolic syndrome. Cardiovasc Res 2011; 92:494-503. [PMID: 21890532 DOI: 10.1093/cvr/cvr239] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
AIMS Methylglyoxal (MG) overproduction has been reported in metabolic syndrome with hyperglycaemia (diabetes) or without hyperglycaemia (hypertension), and the underlying mechanism was investigated. METHODS AND RESULTS Contributions of different pathways or enzymes to MG formation were evaluated in aorta or cultured vascular smooth muscle cells (VSMCs). In all four animal models of metabolic syndrome, i.e. chronically fructose-fed hypertensive Sprague-Dawley rats, spontaneously hypertensive rats, obese non-diabetic Zucker rats, and diabetic Zucker rats, serum and aortic MG and fructose levels were increased, and the expression of GLUT5 (transporting fructose) and aldolase B (converting fructose to MG) in aorta were up-regulated. Aortic expressions of aldolase A, semicarbazide-sensitive amine oxidase (SSAO), and cytochrome P450 2E1 (CYP 2E1), accounting for MG formation during glycolysis, protein, and lipid metabolism, respectively, was unchanged/reduced. Fructose (25 mM) treatment of VSMCs up-regulated the expression of GLUT5 and aldolase B and accelerated MG formation. Insulin (100 nM) increased GLUT5 expression and augmented fructose-increased cellular fructose accumulation and MG formation. Glucose (25 mM) treatment activated the polyol pathway and enhanced fructose formation, leading to aldolase B upregulation and MG overproduction. Inhibition of the polyol pathway reduced the glucose-increased aldolase B expression and MG generation. The excess formation of MG in under these conditions was eliminated by knock-down of aldolase B, but not by knock-down of aldolase A or inhibition of SSAO or CYP 2E1. CONCLUSION Upregulation of aldolase B by accumulated fructose is a common mechanism for MG overproduction in VSMCs and aorta in different models of metabolic syndrome.
Collapse
Affiliation(s)
- Jianghai Liu
- Department of Pharmacology, College of Medicine, University of Saskatchewan, A120 Health Sciences Building, 107 Wiggins Road, Saskatoon, SK, Canada S7N 5E5
| | | | | | | |
Collapse
|
42
|
Korandji C, Zeller M, Guilland J, Collin B, Lauzier B, Sicard P, Duvillard L, Goirand F, Moreau D, Cottin Y, Rochette L, Vergely C. Time course of asymmetric dimethylarginine (ADMA) and oxidative stress in fructose-hypertensive rats: A model related to metabolic syndrome. Atherosclerosis 2011; 214:310-5. [DOI: 10.1016/j.atherosclerosis.2010.11.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2010] [Revised: 11/08/2010] [Accepted: 11/11/2010] [Indexed: 10/18/2022]
|
43
|
Vasudevan H, Lau S, Jiang J, McNeill JH. Effects of insulin resistance and testosterone on the participation of cyclooxygenase isoforms in vascular reactivity. J Exp Pharmacol 2010; 2:169-79. [PMID: 27186103 PMCID: PMC4863301 DOI: 10.2147/jep.s14989] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Testosterone plays an important role in mediating hypertension and altered vascular reactivity associated with insulin resistance. In addition to other pathways, testosterone-dependent changes in aortic cyclooxygenase (COX-2) mRNA levels affect blood pressure following insulin resistance. However their effects on vascular tone are unclear. We studied the changes in contraction response to phenylephrine (PE) in the aorta and superior mesenteric artery (SMA) from intact and gonadectomized fructose-fed rats. Constriction response to PE was studied in tissues incubated with the COX-1 and COX-2-selective antagonists, SC-560 and NS-398, respectively, and indomethacin, in addition to assessing its role in endothelium-dependent relaxation. Finally changes in COX-2 protein expression and plasma thromboxane A2 (TXA2), a downstream vasoconstrictor metabolite of COX-2, were measured. In fructose-fed rats, castration prevented the increase in blood pressure but not insulin resistance. The involvement of COX-2 in mediating the alpha-adrenergic vasoconstriction was higher in intact rat aorta compared to COX-1, which was prevented by castration. However, in the SMA, COX-2 participation was dependent on testosterone alone. Fructose-induced attenuation of endothelial relaxation was restored by indomethacin, which suggests a pro-vasoconstrictor role for COX. Both diet and testosterone did not alter vascular COX-2 expression thus suggesting the involvement of downstream testosterone-dependent pathways. This is supported by increased plasma TXA2 in the castrated rats compared to intact rats. Isoform-specific actions of COX are tissue-selective in states of insulin resistance and involve potential testosterone-dependent downstream targets. Further studies are needed to investigate the role of androgens and insulin resistance in vascular arachidonic acid metabolism.
Collapse
Affiliation(s)
- Harish Vasudevan
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Sally Lau
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| | - Jihong Jiang
- Pediatric Oncology, Children and Women's Hospital, Child and Family Research Institute, Vancouver, British Columbia, Canada
| | - John H McNeill
- Division of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
44
|
|
45
|
Chang T, Untereiner A, Liu J, Wu L. Interaction of methylglyoxal and hydrogen sulfide in rat vascular smooth muscle cells. Antioxid Redox Signal 2010; 12:1093-100. [PMID: 19803740 DOI: 10.1089/ars.2009.2918] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Hydrogen sulfide (H(2)S) is a gasotransmitter with multifaceted physiological functions, including the regulation of glucose metabolism. Methylglyoxal (MG) is an intermediate of glucose metabolism and plays an important role in the pathogenesis of insulin resistance syndromes. In the present study, we investigated the effect of MG on H(2)S synthesis and the interaction between these two endogenous substances. In cultured vascular smooth muscle cells (VSMCs), MG (10, 30, and 50 microM) significantly decreased cellular H(2)S levels in a concentration-dependent manner, while H(2)S donor, NaHS (30, 60, and 90 microM), significantly decreased cellular MG levels. The expression level and activity of H(2)S-producing enzyme, cystathionine gamma-lyase (CSE), were significantly decreased by MG treatment. NaHS (30-90 microM) significantly inhibited MG (10 or 30 microM)-induced ROS production. Cellular levels of GSH, cysteine, and homocysteine were also increased by MG or NaHS treatment. Furthermore, direct reaction of H(2)S with MG in both concentration- and time-dependent manners were observed in in vitro incubations. In conclusion, MG regulates H(2)S level in VSMCs by downregulating CSE protein expression and directly reacting with H(2)S molecule. Interaction of MG with H(2)S may be one of future directions for the studies on glucose metabolism and the development of insulin resistance syndromes.
Collapse
Affiliation(s)
- Tuanjie Chang
- Department of Pharmacology, College of Medicine, University of Saskatchewan, 107 Wiggins Road, Saskatoon, Saskatchewan, Canada
| | | | | | | |
Collapse
|
46
|
Methylglyoxal-induced mitochondrial dysfunction in vascular smooth muscle cells. Biochem Pharmacol 2009; 77:1709-16. [PMID: 19428325 DOI: 10.1016/j.bcp.2009.02.024] [Citation(s) in RCA: 79] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 02/20/2009] [Accepted: 02/24/2009] [Indexed: 11/20/2022]
Abstract
The effects of methylglyoxal (MG) on mitochondria with specific foci on peroxynitrite (ONOO(-)) production, manganese superoxide dismutase (MnSOD) activity, and mitochondrial functions in vascular smooth muscle A-10 cells were investigated. Mitochondrial MG content was significantly increased after A-10 cells were treated with exogenous MG, and so did advanced glycated endproducts (AGEs) formation, indicated by the appearance of N(epsilon)-(carboxyethyl) lysine, in A-10 cells. The levels of mitochondrial reactive oxygen species (mtROS) and ONOO(-) were significantly increased by MG treatment. Application of ONOO(-) specific scavenger uric acid lowered the level of mtROS. MG significantly enhanced the production of mitochondrial superoxide (O(2)(-)) and nitric oxide (NO), which were inhibited by SOD mimic 4-hydroxy-tempo and mitochondrial nitric oxide synthase (mtNOS) specific inhibitor 7-nitroindazole, respectively. The activity of MnSOD was decreased by MG treatment. Furthermore, MG decreased respiratory complex III activity and ATP synthesis in mitochondria, indicating an impaired mitochondrial respiratory chain. AGEs cross-link breaker alagebrium reversed all aforementioned mitochondrial effects of MG. Our data demonstrated that mitochondrial function is under the control of MG. By inhibiting Complex III activity, MG induces mitochondrial oxidative stress and reduces ATP production. These discoveries will help unmask molecular mechanisms for various MG-induced mitochondrial dysfunction-related cellular disorders.
Collapse
|
47
|
Hipkiss AR. Carnosine and its possible roles in nutrition and health. ADVANCES IN FOOD AND NUTRITION RESEARCH 2009; 57:87-154. [PMID: 19595386 DOI: 10.1016/s1043-4526(09)57003-9] [Citation(s) in RCA: 150] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
The dipeptide carnosine has been observed to exert antiaging activity at cellular and whole animal levels. This review discusses the possible mechanisms by which carnosine may exert antiaging action and considers whether the dipeptide could be beneficial to humans. Carnosine's possible biological activities include scavenger of reactive oxygen species (ROS) and reactive nitrogen species (RNS), chelator of zinc and copper ions, and antiglycating and anticross-linking activities. Carnosine's ability to react with deleterious aldehydes such as malondialdehyde, methylglyoxal, hydroxynonenal, and acetaldehyde may also contribute to its protective functions. Physiologically carnosine may help to suppress some secondary complications of diabetes, and the deleterious consequences of ischemic-reperfusion injury, most likely due to antioxidation and carbonyl-scavenging functions. Other, and much more speculative, possible functions of carnosine considered include transglutaminase inhibition, stimulation of proteolysis mediated via effects on proteasome activity or induction of protease and stress-protein gene expression, upregulation of corticosteroid synthesis, stimulation of protein repair, and effects on ADP-ribose metabolism associated with sirtuin and poly-ADP-ribose polymerase (PARP) activities. Evidence for carnosine's possible protective action against secondary diabetic complications, neurodegeneration, cancer, and other age-related pathologies is briefly discussed.
Collapse
Affiliation(s)
- Alan R Hipkiss
- School of Clinicial and Experimental Medicine, College of Medical and Dental Sciences, The Univeristy of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
48
|
Abstract
Methylglyoxal (MG) is a reactive dicarbonyl intermediate of the glycolytic pathway. Increased oxidative stress is associated with conditions of increased MG, such as diabetes mellitus. Increased oxidative stress is due to an increase in highly reactive by-products of metabolic pathways, the so-called reactive oxygen species, such as superoxide anion, hydroxyl radical, hydrogen peroxide, nitric oxide and peroxynitrite. These reactive species react with a variety of proteins, enzymes, lipids, DNA and other molecules and disrupt their normal function. Oxidative stress causes many pathological changes that lead to vascular complications of diabetes mellitus, hypertension, neurodegenerative diseases and aging. In this review we summarize the correlation of elevated MG and various reactive oxygen species, and the enzymes that produce them or take part in their disposal, such as antioxidant enzymes and cofactors. The findings reported in various studies reviewed have started filling in gaps in our knowledge that will ultimately provide us with a clear picture of how the whole process that causes cellular dysfunction is initiated.
Collapse
Affiliation(s)
- Kaushik M Desai
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | | |
Collapse
|
49
|
Dhar A, Desai K, Kazachmov M, Yu P, Wu L. Methylglyoxal production in vascular smooth muscle cells from different metabolic precursors. Metabolism 2008; 57:1211-20. [PMID: 18702946 DOI: 10.1016/j.metabol.2008.04.014] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2007] [Accepted: 04/24/2008] [Indexed: 10/21/2022]
Abstract
Methylglyoxal (MG), a metabolic by-product, reacts with certain proteins to yield irreversible advanced glycation end products (AGEs) and increases oxidative stress that causes the pathophysiological changes in diabetes, hypertension, and aging. Although MG production from glucose has been well documented, the contribution of other intermediates of different metabolic pathways to MG formation is far less known. Our aim was to determine and compare the formation of MG, MG-induced AGE, N(epsilon)-carboxyethyl-lysine (CEL), inducible nitric oxide synthase (iNOS), nitric oxide, and peroxynitrite from different metabolic precursors in cultured rat aortic vascular smooth muscle cells (VSMCs). High-performance liquid chromatography was used to determine MG levels, whereas nitrite + nitrate, indicators of nitric oxide production, and peroxynitrite levels were measured with specific assay kits. The CEL and iNOS were detected using immunocytochemistry. There was a concentration-dependent increase in MG levels in VSMCs after 3-hour incubation with 5, 15, and 25 mmol/L of D-glucose, fructose, or aminoacetone. Aminoacetone produced a 7-fold increase in MG levels above the basal value followed by fructose (3.9-fold), D-glucose (3.5-fold), acetol (2.8-fold), and sucrose (2.3-fold) after a 3-hour incubation with 25 mmol/L of each precursor. L-Glucose, 3-O-methylglucose, and mannitol had no effect on MG production. All precursors, except l-glucose, 3-O-methylglucose and mannitol, increased CEL. Aminoacetone, D-glucose, and fructose significantly increased iNOS, nitrite/nitrate, and peroxynitrite levels. In conclusion, aminoacetone is the most potent precursor of MG production in VSMCs, followed by fructose and d-glucose. This could have important implications in relation to high dietary fructose and protein intake.
Collapse
Affiliation(s)
- Arti Dhar
- Department of Pharmacology, College of Medicine, University of Saskatchewan, Saskatoon, SK, Canada S7N 5E5
| | | | | | | | | |
Collapse
|
50
|
Attenuation of hypertension development by scavenging methylglyoxal in fructose-treated rats. J Hypertens 2008; 26:765-72. [PMID: 18327087 DOI: 10.1097/hjh.0b013e3282f4a13c] [Citation(s) in RCA: 67] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Methylglyoxal is a reactive dicarbonyl intermediate of metabolism produced in the body. It reacts with certain proteins and forms damaging advanced glycation endproducts (AGEs) such as N epsilon-carboxyethyl-lysine (CEL) and N epsilon-carboxymethyl-lysine (CML). Increased methylglyoxal levels are found in diabetes mellitus and associated with hypertension development in the spontaneously hypertensive rats (SHR). The purpose of this study was to investigate whether increased endogenous formation of methylglyoxal and methylglyoxal-induced AGEs caused hypertension development in normotensive Sprague Dawley rats. METHODS The rats were fed chronically for 16 weeks with fructose, a known precursor of methylglyoxal formation. One group of rats was cotreated with fructose and metformin, an AGEs formation inhibitor. Methylglyoxal and reduced glutathione (GSH) were measured by high performance liquid chromatography, whereas hydrogen peroxide was measured by a dicholorofluorescin assay. Immunohistochemistry was performed for endothelial nitric oxide synthase (eNOS), CEL and CML. RESULTS Fructose-fed rats had elevated blood pressure, serum methylglyoxal and triglycerides and reduced serum levels of GSH. Methylglyoxal, hydrogen peroxide and CEL were increased in the aorta, whereas eNOS was reduced. CEL and CML were also increased in the mesenteric artery endothelium along with media/lumen ratio, signifying structural remodelling. All the harmful changes in fructose-fed rats were attenuated in metformin and fructose cotreated rats. CONCLUSION Increased methylglyoxal, AGEs, oxidative stress and reduced eNOS along with structural remodeling of the vessel wall in the aorta and mesenteric artery likely play a role in the pathogenesis of hypertension.
Collapse
|