1
|
Pramanik U, Das A, Brown EM, Struckman HL, Wang H, Stealey S, Sprunger ML, Wasim A, Fascetti J, Mondal J, Silva JR, Zustiak SP, Jackrel ME, Rudra JS. Histidine-rich enantiomeric peptide coacervates enhance antigen sequestration and presentation to T cells. Chem Sci 2025:d5sc01163a. [PMID: 40171024 PMCID: PMC11955804 DOI: 10.1039/d5sc01163a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Accepted: 03/24/2025] [Indexed: 04/03/2025] Open
Abstract
Peptides and peptidomimetics that self-assemble through LLPS have recently emerged as vital building blocks for creating functional biomaterials, thanks to their unique physicochemical properties and dynamic nature. One of life's most distinctive features is its selectivity for chiral molecules. To date, coacervates comprised of d-amino acids have not been reported. Here, we demonstrate that histidine-rich repeats of (GHGXY)4 (X = L/V/P) and their enantiomers undergo LLPS, paving the way for improved coacervate stability. Through a series of biophysical studies, we found that the droplet size can be tuned based on L, V, or P substitution, and molecular cargo between 600 and 150 000 Da is efficiently recruited in a bioactivity-preserving aqueous environment during phase separation. Mechanistic studies reveal that the droplets enter cells via energy-dependent endocytic pathways, exhibit composition-selective fusion properties, and effectively deliver molecular therapeutics across various cell types. Finally, we demonstrate that the coacervates enhance antigen presentation to CD4+ and CD8+ T cells, resulting in robust proliferation and the production of functional cytokines. Our study outlines the development and characterization of enantiomeric peptide coacervates as promising vaccine delivery vehicles with tunable physicochemical properties.
Collapse
Affiliation(s)
- Ushasi Pramanik
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis St. Louis MO 63130 USA
| | - Anirban Das
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis St. Louis MO 63130 USA
- Department of Chemistry, Washington University in St. Louis St. Louis MO 63130 USA
| | - Elise M Brown
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis St. Louis MO 63130 USA
| | - Heather L Struckman
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis St. Louis MO 63130 USA
| | - Huihao Wang
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis St. Louis MO 63130 USA
| | - Samuel Stealey
- Department of Biomedical Engineering, Saint Louis University St. Louis MO 63103 USA
| | - Macy L Sprunger
- Department of Chemistry, Washington University in St. Louis St. Louis MO 63130 USA
| | - Abdul Wasim
- Tata Institute of Fundamental Research Hyderabad Hyderabad 500046 India
| | - Jonathan Fascetti
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis St. Louis MO 63130 USA
| | - Jagannath Mondal
- Tata Institute of Fundamental Research Hyderabad Hyderabad 500046 India
| | - Jonathan R Silva
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis St. Louis MO 63130 USA
| | - Silviya P Zustiak
- Department of Biomedical Engineering, Saint Louis University St. Louis MO 63103 USA
| | - Meredith E Jackrel
- Department of Chemistry, Washington University in St. Louis St. Louis MO 63130 USA
| | - Jai S Rudra
- Department of Biomedical Engineering, McKelvey School of Engineering, Washington University in St. Louis St. Louis MO 63130 USA
| |
Collapse
|
2
|
Zhu L, Li L, Wu J. FcRn inhibitors: Transformative advances and significant impacts on IgG-mediated autoimmune diseases. Autoimmun Rev 2025; 24:103719. [PMID: 39672251 DOI: 10.1016/j.autrev.2024.103719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Revised: 12/06/2024] [Accepted: 12/06/2024] [Indexed: 12/15/2024]
Abstract
Pathogenic IgG autoantibodies play a crucial role in the pathogenesis of autoimmune diseases, and removal of pathogenic IgG autoantibodies is an important therapeutic approach and tool for such diseases. The neonatal Fc receptor (FcRn) interacts with IgG and protects it from lysosomal degradation. FcRn inhibitors accelerate the clearance of IgG antibodies, including pathogenic IgG autoantibodies, by targeting and blocking the binding of FcRn to IgG. Theoretically, FcRn inhibitors can be applied for the treatment of IgG-mediated autoimmune diseases. With successful completion of multiple relevant clinical trials, key evidence-based data have been provided for FcRn inhibitors in the treatment of IgG-mediated autoimmune diseases, and several FcRn inhibitors have been approved for these indications. Additional trials are being planned or conducted. This review examines all available high-quality clinical trials of FcRn inhibitors assessing IgG-mediated autoimmune diseases.
Collapse
Affiliation(s)
- Lina Zhu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, China
| | - Lanjun Li
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, China
| | - Jun Wu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, 450052 Zhengzhou, China..
| |
Collapse
|
3
|
Hou X, Ai X, Liu Z, Yang J, Wu Y, Zhang D, Feng N. Wheat germ agglutinin modified mixed micelles overcome the dual barrier of mucus/enterocytes for effective oral absorption of shikonin and gefitinib. Drug Deliv Transl Res 2025; 15:325-342. [PMID: 38656402 DOI: 10.1007/s13346-024-01602-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2024] [Indexed: 04/26/2024]
Abstract
The combination of shikonin (SKN) and gefitinib (GFB) can reverse the drug resistance of lung cancer cells by affecting energy metabolism. However, the poor solubility of SKN and GFB limits their clinical application because of low bioavailability. Wheat germ agglutinin (WGA) can selectively bind to sialic acid and N-acetylglucosamine on the surfaces of microfold cells and enterocytes, and is a targeted biocompatible material. Therefore, we created a co-delivery micelle system called SKN/GFB@WGA-micelles with the intestinal targeting functions to enhance the oral absorption of SKN and GFB by promoting mucus penetration for nanoparticles via oral administration. In this study, Caco-2/HT29-MTX-E12 co-cultured cells were used to simulate a mucus/enterocyte dual-barrier environment, and HCC827/GR cells were used as a model of drug-resistant lung cancer. We aimed to evaluate the oral bioavailability and anti-tumor effect of SKN and GFB using the SKN/GFB@WGA-micelles system. In vitro and in vivo experimental results showed that WGA promoted the mucus penetration ability of micelles, significantly enhanced the uptake efficiency of enterocytes, improved the oral bioavailability of SKN and GFB, and exhibited good anti-tumor effects by reversing drug resistance. The SKN/GFB@WGA-micelles were stable in the gastrointestinal tract and provided a novel safe and effective drug delivery strategy.
Collapse
Affiliation(s)
- Xuefeng Hou
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, NO. 1200 Cailun Road, Shanghai, 201203, China
- School of Pharmacy, Wannan Medical College, Wuhu, 241002, China
| | - Xinyi Ai
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, NO. 1200 Cailun Road, Shanghai, 201203, China
| | - Zhenda Liu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, NO. 1200 Cailun Road, Shanghai, 201203, China
| | - Jiayi Yang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, NO. 1200 Cailun Road, Shanghai, 201203, China
| | - Yihan Wu
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, NO. 1200 Cailun Road, Shanghai, 201203, China
| | - Di Zhang
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, NO. 1200 Cailun Road, Shanghai, 201203, China
| | - Nianping Feng
- School of Pharmacy, Shanghai University of Traditional Chinese Medicine, NO. 1200 Cailun Road, Shanghai, 201203, China.
| |
Collapse
|
4
|
Fan M, Wu H, Sferruzzi-Perri AN, Wang YL, Shao X. Endocytosis at the maternal-fetal interface: balancing nutrient transport and pathogen defense. Front Immunol 2024; 15:1415794. [PMID: 38957469 PMCID: PMC11217186 DOI: 10.3389/fimmu.2024.1415794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 06/03/2024] [Indexed: 07/04/2024] Open
Abstract
Endocytosis represents a category of regulated active transport mechanisms. These encompass clathrin-dependent and -independent mechanisms, as well as fluid phase micropinocytosis and macropinocytosis, each demonstrating varying degrees of specificity and capacity. Collectively, these mechanisms facilitate the internalization of cargo into cellular vesicles. Pregnancy is one such physiological state during which endocytosis may play critical roles. A successful pregnancy necessitates ongoing communication between maternal and fetal cells at the maternal-fetal interface to ensure immunologic tolerance for the semi-allogenic fetus whilst providing adequate protection against infection from pathogens, such as viruses and bacteria. It also requires transport of nutrients across the maternal-fetal interface, but restriction of potentially harmful chemicals and drugs to allow fetal development. In this context, trogocytosis, a specific form of endocytosis, plays a crucial role in immunological tolerance and infection prevention. Endocytosis is also thought to play a significant role in nutrient and toxin handling at the maternal-fetal interface, though its mechanisms remain less understood. A comprehensive understanding of endocytosis and its mechanisms not only enhances our knowledge of maternal-fetal interactions but is also essential for identifying the pathogenesis of pregnancy pathologies and providing new avenues for therapeutic intervention.
Collapse
Affiliation(s)
- Mingming Fan
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hongyu Wu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Amanda N. Sferruzzi-Perri
- Centre for Trophoblast Research, Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom
| | - Yan-Ling Wang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| | - Xuan Shao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- Key Laboratory of Organ Regeneration and Reconstruction, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
5
|
Wang D, Zhang L, He D, Zhang Y, Zhao L, Miao Z, Cheng W, Zhu C, Shao Y, Ge G, Zhu H, Jin H, Zhang W, Pan H. A natural hydrogel complex improves intervertebral disc degeneration by correcting fatty acid metabolism and inhibiting nucleus pulposus cell pyroptosis. Mater Today Bio 2024; 26:101081. [PMID: 38741924 PMCID: PMC11089368 DOI: 10.1016/j.mtbio.2024.101081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/26/2024] [Accepted: 05/02/2024] [Indexed: 05/16/2024] Open
Abstract
The degeneration of intervertebral discs is strongly associated with the occurrence of pyroptosis in nucleus pulposus (NP) cells. This pyroptosis is characterized by abnormal metabolism of fatty acids in the degenerative pathological state, which is further exacerbated by the inflammatory microenvironment and degradation of the extracellular matrix. In order to address this issue, we have developed a fibrin hydrogel complex (FG@PEV). This intricate formulation amalgamates the beneficial attributes of platelet extravasation vesicles, contributing to tissue repair and regeneration. Furthermore, this complex showcases exceptional stability, gradual-release capabilities, and a high degree of biocompatibility. In order to substantiate the biological significance of FG@PEV in intervertebral disc degeneration (IVDD), we conducted a comprehensive investigation into its potential mechanism of action through the integration of RNA-seq sequencing and metabolomics analysis. Furthermore, these findings were subsequently validated through experimentation in both in vivo and in vitro models. The experimental results revealed that the FG@PEV intervention possesses the capability to reshape the inflammatory microenvironment within the disc. It also addresses the irregularities in fatty acid metabolism of nucleus pulposus cells, consequently hindering cellular pyroptosis and slowing down disc degeneration through the regulation of extracellular matrix synthesis and degradation. As a result, this injectable gel system represents a promising and innovative therapeutic approach for mitigating disc degeneration.
Collapse
Affiliation(s)
- Dong Wang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, 310007, Zhejiang Province, PR China
| | - Liangping Zhang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Du He
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Yujun Zhang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Lan Zhao
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
| | - Zhimin Miao
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
| | - Wei Cheng
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
| | - Chengyue Zhu
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, 310007, Zhejiang Province, PR China
| | - Yinyan Shao
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Guofen Ge
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - Hang Zhu
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
| | - HongTing Jin
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Wei Zhang
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, 310007, Zhejiang Province, PR China
| | - Hao Pan
- Department of Orthopaedics, Hangzhou TCM Hospital Affiliated to Zhejiang Chinese Medical University (Hangzhou Hospital of Traditional Chinese Medicine), Hangzhou, 310000, Zhejiang Province, PR China
- Department of Orthopaedics, Hangzhou Dingqiao Hospital, Huanding Road NO 1630, Hangzhou, 310021, Zhejiang Province, PR China
- Institute of Orthopaedics and Traumatology, Hangzhou Traditional Chinese Medicine Hospital Affiliated to Zhejiang Chinese Medical University, Tiyuchang Road NO 453, Hangzhou, 310007, Zhejiang Province, PR China
| |
Collapse
|
6
|
Satou M, Wang J, Nakano-Tateno T, Teramachi M, Aoki S, Sugimoto H, Chik C, Tateno T. Autophagy inhibition suppresses hormone production and cell growth in pituitary tumor cells: A potential approach to pituitary tumors. Mol Cell Endocrinol 2024; 586:112196. [PMID: 38462123 DOI: 10.1016/j.mce.2024.112196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/26/2024] [Accepted: 02/27/2024] [Indexed: 03/12/2024]
Abstract
Pituitary tumors (PTs) represent about 10% of all intracranial tumors, and most are benign. However, some PTs exhibit continued growth despite multimodal therapies. Although temozolomide (TMZ), an alkylating chemotherapeutic agent, is a first-line medical treatment for aggressive PTs, some PTs are resistant to TMZ. Existing literature indicated the involvement of autophagy in cell growth in several types of tumors, including PTs, and autophagy inhibitors have anti-tumor effects. In this study, the expression of several autophagy-inducible genes, including Atg3, Beclin1, Map1lc3A, Map1lc3b, Ulk1, Wipi2, and Tfe3 in two PT cell lines, the mouse corticotroph AtT-20 cells and the rat mammosomatotroph GH4 cells were identified. Down regulation of Tfe3, a master switch of basal autophagy, using RNA interference, suppressed cell proliferation in AtT-20 cells, suggesting basal autophagy contributes to the maintenance of cellular functions in PT cells. Expectedly, treatment with bafilomycin A1, an autophagy inhibitor, suppressed cell proliferation, increased the cleavage of PARP1, and reduced ACTH production in AtT-20 cells. Treatment with two additional autophagy inhibitors, chloroquine (CQ) and monensin, demonstrated similar effects on cell proliferation, apoptosis, and ACTH production in AtT-20 cells. Also, treatment with CQ suppressed cell proliferation and growth hormone production in GH4 cells. Moreover, the combination of CQ and TMZ had an additive effect on the inhibition of cell proliferation in AtT-20 and GH4 cells. The additive effect of anti-cancer drugs such as CQ alone or in combination with TMZ may represent a novel therapeutic approach for PTs, in particular tumors with resistance to TMZ.
Collapse
Affiliation(s)
- Motoyasu Satou
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada; Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Jason Wang
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Tae Nakano-Tateno
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Mariko Teramachi
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Shigeki Aoki
- Laboratory of Biopharmaceutics, Graduate School of Pharmaceutical Sciences, Chiba University, Chiba, Japan
| | - Hiroyuki Sugimoto
- Department of Biochemistry, Dokkyo Medical University School of Medicine, Mibu, Tochigi, Japan
| | - Constance Chik
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada
| | - Toru Tateno
- Division of Endocrinology and Metabolism, Department of Medicine, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
7
|
Sabnis N, Raut S, Nagarajan B, Kapic A, Dossou AS, Lothstein L, Fudala R, Bunnell BA, Lacko AG. A Spontaneous Assembling Lipopeptide Nanoconjugate Transporting the Anthracycline Drug N-Benzyladriamycin-14-valerate for Personalized Therapy of Ewing Sarcoma. Bioconjug Chem 2024; 35:187-202. [PMID: 38318778 DOI: 10.1021/acs.bioconjchem.3c00429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
To meet the current need for a tumor-selective, targeted therapy regimen associated with reduced toxicity, our laboratory has developed a spontaneously assembled nanostructure that resembles high-density lipoproteins (HDLs). These myristoyl-5A (MYR-5A) nanotransporters are designed to safely transport lipophilic pharmaceuticals, including a novel anthracycline drug (N-benzyladriamycin-14-valerate (AD198)). This formulation has been found to enhance the therapeutic efficacy and reduced toxicity of drugs in preclinical studies of 2D and 3D models of Ewing sarcoma (EWS) and cardiomyocytes. Our findings indicate that the MYR-5A/AD198 nanocomplex delivers its payload selectively to cancer cells via the scavenger receptor type B1 (SR-B1), thus providing a solid proof of concept for the development of an improved and highly effective, potentially personalized therapy for EWS while protecting against treatment-associated cardiotoxicity.
Collapse
Affiliation(s)
- Nirupama Sabnis
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Sangram Raut
- Department of Physiology and Anatomy, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Bhavani Nagarajan
- North Texas Research Eye Institute, Department of Pharmacology and Neuroscience, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Ammar Kapic
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Akpedje Serena Dossou
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Leonard Lothstein
- Department of Pathology and Laboratory Medicine, The University of Tennessee Health Science Center, Memphis, Tennessee 38103, United States
| | - Rafal Fudala
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Bruce A Bunnell
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| | - Andras G Lacko
- Lipoprotein Drug Delivery Research Laboratory, Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center, Fort Worth, Texas 76107, United States
| |
Collapse
|
8
|
Carney CP, Pandey N, Kapur A, Saadi H, Ong HL, Chen C, Winkles JA, Woodworth GF, Kim AJ. Impact of Targeting Moiety Type and Protein Corona Formation on the Uptake of Fn14-Targeted Nanoparticles by Cancer Cells. ACS NANO 2023; 17:19667-19684. [PMID: 37812740 DOI: 10.1021/acsnano.3c02575] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
The TWEAK receptor, Fn14, is a promising candidate for active targeting of cancer nanotherapeutics to many solid tumor types, including metastatic breast and primary brain cancers. Targeting of therapeutic nanoparticles (NPs) has been accomplished using a range of targeting moieties including monoclonal antibodies and related fragments, peptides, and small molecules. Here, we investigated a full-length Fn14-specific monoclonal antibody, ITEM4, or an ITEM4-Fab fragment as a targeting moiety to guide the development of a clinical formulation. We formulated NPs with varying densities of the targeting moieties while maintaining the decreased nonspecific adhesivity with receptor targeting (DART) characteristics. To model the conditions that NPs experience following intravenous infusion, we investigated the impact of serum exposure in relation to the targeting moiety type and surface density. To further evaluate performance at the cancer cell level, we performed experiments to assess differences in cellular uptake and trafficking in several cancer cell lines using confocal microscopy, imaging flow cytometry, and total internal reflection fluorescence microscopy. We observed that Fn14-targeted NPs exhibit enhanced cellular uptake in Fn14-high compared to Fn14-low cancer cells and that in both cell lines uptake levels were greater than observed with control, nontargeted NPs. We found that serum exposure increased Fn14-targeted NP specificity while simultaneously reducing the total NP uptake. Importantly, serum exposure caused a larger reduction in cancer cell uptake over time when the targeting moiety was an antibody fragment (Fab region of the monoclonal antibody) compared with the full-length monoclonal antibody targeting moiety. Lastly, we uncovered that full monoclonal antibody-targeted NPs enter cancer cells via clathrin-mediated endocytosis and traffic through the endolysosomal pathway. Taken together, these results support a pathway for developing a clinical formulation using a full-length Fn14 monoclonal antibody as the targeting moiety for a DART cancer nanotherapeutic agent.
Collapse
Affiliation(s)
- Christine P Carney
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Nikhil Pandey
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Anshika Kapur
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Hassan Saadi
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Hwei Ling Ong
- Secretory Physiology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland 20892, United States
| | - Chixiang Chen
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Department of Epidemiology & Public Health, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Jeffrey A Winkles
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Center for Vascular and Inflammatory Diseases, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
| | - Graeme F Woodworth
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, Maryland 20742, United States
| | - Anthony J Kim
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Fischell Department of Bioengineering, A. James Clarke School of Engineering, University of Maryland, College Park, Maryland 20742, United States
- Department of Pharmacology, University of Maryland School of Medicine, Baltimore, Maryland 21201, United States
- Department of Pharmaceutical Sciences, University of Maryland School of Pharmacy, Baltimore, Maryland 21201, United States
| |
Collapse
|
9
|
Tam LKB, Lo PC, Cheung PCK, Ng DKP. A Tetrazine-Caged Carbon-Dipyrromethene as a Bioorthogonally Activatable Fluorescent Probe. Chem Asian J 2023; 18:e202300562. [PMID: 37489571 DOI: 10.1002/asia.202300562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/19/2023] [Accepted: 07/25/2023] [Indexed: 07/26/2023]
Abstract
A water-soluble 1,2,4,5-tetrazine-substituted carbon-dipyrromethene (C-DIPY) was synthesized from the previously reported carbonyl pyrrole dimer through a two-step procedure. Owing to the presence of a tetrazine moiety, the fluorescence emission of this compound was largely quenched in phosphate-buffered saline at pH 7.4. Upon addition of a bicyclo[6.1.0]non-4-yne (BCN) derivative, the tetrazine-based quenching component of the compound was disrupted through the inverse electron-demand Diels-Alder reaction to restore the fluorescence in up to 6.6-fold. This bioorthogonal activation was also demonstrated using U-87 MG human glioblastoma cells, in which the fluorescence intensity of this C-DIPY could be enhanced by 8.7-fold upon post-incubation with the BCN derivative. The results showed that this tetrazine-caged C-DIPY can serve as a bioorthogonally activatable fluorescent probe for bioimaging. The compound, however, was found to reside preferentially in the lysosomes instead of the mitochondria of the cells as predicted based on its cationic character, which could be attributed to its energy-dependent endocytic cellular uptake pathway, for which lysosomes are the end station.
Collapse
Affiliation(s)
- Leo K B Tam
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| | - Pui-Chi Lo
- Department of Biomedical Sciences, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, China
| | - Peter Chi Keung Cheung
- School of Life Sciences, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| | - Dennis K P Ng
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, N. T., Hong Kong, China
| |
Collapse
|
10
|
Ejazi SA, Louisthelmy R, Maisel K. Mechanisms of Nanoparticle Transport across Intestinal Tissue: An Oral Delivery Perspective. ACS NANO 2023. [PMID: 37410891 DOI: 10.1021/acsnano.3c02403] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2023]
Abstract
Oral drug administration has been a popular choice due to patient compliance and limited clinical resources. Orally delivered drugs must circumvent the harsh gastrointestinal (GI) environment to effectively enter the systemic circulation. The GI tract has a number of structural and physiological barriers that limit drug bioavailability including mucus, the tightly regulated epithelial layer, immune cells, and associated vasculature. Nanoparticles have been used to enhance oral bioavailability of drugs, as they can act as a shield to the harsh GI environment and prevent early degradation while also increasing uptake and transport of drugs across the intestinal epithelium. Evidence suggests that different nanoparticle formulations may be transported via different intracellular mechanisms to cross the intestinal epithelium. Despite the existence of a significant body of work on intestinal transport of nanoparticles, many key questions remain: What causes the poor bioavailability of the oral drugs? What factors contribute to the ability of a nanoparticle to cross different intestinal barriers? Do nanoparticle properties such as size and charge influence the type of endocytic pathways taken? In this Review, we summarize the different components of intestinal barriers and the types of nanoparticles developed for oral delivery. In particular, we focus on the various intracellular pathways used in nanoparticle internalization and nanoparticle or cargo translocation across the epithelium. Understanding the gut barrier, nanoparticle characteristics, and transport pathways may lead to the development of more therapeutically useful nanoparticles as drug carriers.
Collapse
Affiliation(s)
- Sarfaraz Ahmad Ejazi
- Fischell Department of Bioengineering, University of Maryland, 3120 A. James Clark Hall, College Park, Maryland 20742, United States
| | - Rebecca Louisthelmy
- Fischell Department of Bioengineering, University of Maryland, 3120 A. James Clark Hall, College Park, Maryland 20742, United States
| | - Katharina Maisel
- Fischell Department of Bioengineering, University of Maryland, 3120 A. James Clark Hall, College Park, Maryland 20742, United States
| |
Collapse
|
11
|
Hameedat F, Pinto S, Marques J, Dias S, Sarmento B. Functionalized zein nanoparticles targeting neonatal Fc receptor to enhance lung absorption of peptides. Drug Deliv Transl Res 2023; 13:1699-1715. [PMID: 36587110 PMCID: PMC10126044 DOI: 10.1007/s13346-022-01286-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/21/2022] [Indexed: 01/02/2023]
Abstract
Peptides have a distinguished therapeutic potential for several chronic conditions, and more than 80 peptides exist in the global market. However, most of these marketed peptide drugs are currently delivered intravenously or subcutaneously due to their fast degradation and limited absorption through non-invasive routes. The pulmonary route is favored as a non-invasive route. Neonatal Fc receptor (FcRn) is expressed in adult human lungs and has a role in enhancing the pulmonary absorption of monoclonal antibodies. In this work, we developed and characterized candidate protein delivery systems for the pulmonary administration of peptides. The prepared bare and loaded zein nanoparticles (ZNPs), targeted, physically, and covalently PEGylated ZNPs showed hydrodynamic diameters between 137 and 155 nm and a narrow distribution index. Insulin, which was used as a protein model, showed an association efficiency of 72%, while the FcRn-targeted peptide conjugation efficiency was approximately 68%. The physically adsorbed poloxamer 407 on insulin-loaded ZNPs showed slower and controlled insulin release. The in vitro cell culture model consists of the NCI-H441 epithelial cell line, which confirmed its expression of the targeted receptor, FcRn. The safety of ZNPs was verified after incubation with both cell lines of the in vitro pulmonary model, namely NCI-H441 and HPMEC-ST1.6R, for 24 h. It was observed that targeted ZNPs enhanced insulin permeability by showing a higher apparent permeation coefficient than non-targeted ZNPs. Overall, both targeted PEGylated ZNPs showed to be suitable peptide carriers and adequately fit the demands of delivery systems designed for pulmonary administration.
Collapse
Affiliation(s)
- Fatima Hameedat
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- NANOMED EMJMD, Pharmacy School, Faculty of Health, University of Angers, Angers, France
- INEB - Instituto de Engenharia Biomédica, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
| | - Soraia Pinto
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Joana Marques
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- FFUP - Faculty of Pharmacy, University of Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Sofia Dias
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- INEB - Instituto de Engenharia Biomédica, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal
- ICBAS - Instituto de Ciências Biomédicas Abel Salazar, University of Porto, Rua Jorge Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
- INEB - Instituto de Engenharia Biomédica, University of Porto, Rua Alfredo Allen 208, 4200-135, Porto, Portugal.
- IUCS - CESPU, Rua Central de Gandra 1317, 4585-116, Gandra, Portugal.
| |
Collapse
|
12
|
Wang F, Peters R, Jia J, Mudd M, Salemi M, Allers L, Javed R, Duque TLA, Paddar MA, Trosdal ES, Phinney B, Deretic V. ATG5 provides host protection acting as a switch in the atg8ylation cascade between autophagy and secretion. Dev Cell 2023; 58:866-884.e8. [PMID: 37054706 PMCID: PMC10205698 DOI: 10.1016/j.devcel.2023.03.014] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 01/26/2023] [Accepted: 03/20/2023] [Indexed: 04/15/2023]
Abstract
ATG5 is a part of the E3 ligase directing lipidation of ATG8 proteins, a process central to membrane atg8ylation and canonical autophagy. Loss of Atg5 in myeloid cells causes early mortality in murine models of tuberculosis. This in vivo phenotype is specific to ATG5. Here, we show using human cell lines that absence of ATG5, but not of other ATGs directing canonical autophagy, promotes lysosomal exocytosis and secretion of extracellular vesicles and, in murine Atg5fl/fl LysM-Cre neutrophils, their excessive degranulation. This is due to lysosomal disrepair in ATG5 knockout cells and the sequestration by an alternative conjugation complex, ATG12-ATG3, of ESCRT protein ALIX, which acts in membrane repair and exosome secretion. These findings reveal a previously undescribed function of ATG5 in its host-protective role in murine experimental models of tuberculosis and emphasize the significance of the branching aspects of the atg8ylation conjugation cascade beyond the canonical autophagy.
Collapse
Affiliation(s)
- Fulong Wang
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Ryan Peters
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Jingyue Jia
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Michal Mudd
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Michelle Salemi
- Proteomics Core Facility, UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Lee Allers
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Ruheena Javed
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Thabata L A Duque
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Masroor A Paddar
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Einar S Trosdal
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA
| | - Brett Phinney
- Proteomics Core Facility, UC Davis Genome Center, University of California, Davis, Davis, CA 95616, USA
| | - Vojo Deretic
- Autophagy, Inflammation and Metabolism Center of Biochemical Research Excellence, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA; Department of Molecular Genetics and Microbiology, University of New Mexico School of Medicine, 915 Camino de Salud, NE, Albuquerque, NM 87131, USA.
| |
Collapse
|
13
|
Nasir G, Sinnis P. Transport of antibody into the skin is only partially dependent upon the neonatal Fc-receptor. PLoS One 2023; 18:e0273960. [PMID: 37093800 PMCID: PMC10124839 DOI: 10.1371/journal.pone.0273960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Accepted: 03/30/2023] [Indexed: 04/25/2023] Open
Abstract
The dermis is the portal of entry for most vector-transmitted pathogens, making the host's immune response at this site critical in mitigating the magnitude of infection. For malaria, antibody-mediated neutralization of Plasmodium parasites in the dermis was recently demonstrated. However, surprisingly little is known about the mechanisms that govern antibody transport into the skin. Since the neonatal Fc receptor (FcRn) has been shown to transcytose IgG into various tissues, we sought to understand its contribution to IgG transport into the skin and antibody-mediated inhibition of Plasmodium parasites following mosquito bite inoculation. Using confocal imaging, we show that the transport of an anti-Langerin mAb into the skin occurs but is only partially reduced in mice lacking FcRn. To understand the relevance of FcRn in the context of malaria infection, we use the rodent parasite Plasmodium berghei and show that passively-administered anti-malarial antibody in FcRn deficient mice, does not reduce parasite burden to the same extent as previously observed in wildtype mice. Overall, our data suggest that FcRn plays a role in the transport of IgG into the skin but is not the major driver of IgG transport into this tissue. These findings have implications for the rational design of antibody-based therapeutics for malaria as well as other vector-transmitted pathogens.
Collapse
Affiliation(s)
- Gibran Nasir
- Johns Hopkins Malaria Institute and Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| | - Photini Sinnis
- Johns Hopkins Malaria Institute and Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, United States of America
| |
Collapse
|
14
|
Serulla M, Anees P, Hallaj A, Trofimenko E, Kalia T, Krishnan Y, Widmann C. Plasma membrane depolarization reveals endosomal escape incapacity of cell-penetrating peptides. Eur J Pharm Biopharm 2023; 184:116-124. [PMID: 36709921 DOI: 10.1016/j.ejpb.2023.01.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 12/12/2022] [Accepted: 01/23/2023] [Indexed: 01/27/2023]
Abstract
Cell-penetrating peptides (CPPs) are short (<30 amino acids), generally cationic, peptides that deliver diverse cargos into cells. CPPs access the cytosol either by direct translocation through the plasma membrane or via endocytosis followed by endosomal escape. Both direct translocation and endosomal escape can occur simultaneously, making it non-trivial to specifically study endosomal escape alone. Here we depolarize the plasma membrane and showed that it inhibits the direct translocation of several CPPs but does not affect their uptake into endosomes. Despite good endocytic uptake many CPPs previously considered to access the cytosol via endosomal escape, failed to access the cytosol once direct translocation was abrogated. Even CPPs designed for enhanced endosomal escape actually showed negligible endosomal escape into the cytosol. Our data reveal that cytosolic localization of CPPs occurs mainly by direct translocation across the plasma membrane. Cell depolarization represents a simple manipulation to stringently test the endosomal escape capacity of CPPs.
Collapse
Affiliation(s)
- Marc Serulla
- Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Palapuravan Anees
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Ali Hallaj
- Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Evgeniya Trofimenko
- Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland
| | - Tara Kalia
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
| | - Yamuna Krishnan
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA; Grossman Institute of Neuroscience, Quantitative Biology and Human Behavior, The University of Chicago, Chicago, IL 60637, USA
| | - Christian Widmann
- Department of Biomedical Sciences, University of Lausanne, 1005 Lausanne, Switzerland.
| |
Collapse
|
15
|
Pandita P, Bhalla R, Saini A, Mani I. Emerging tools for studying receptor endocytosis and signaling. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 194:19-48. [PMID: 36631193 DOI: 10.1016/bs.pmbts.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Ligands, agonists, or antagonists use receptor-mediated endocytosis (RME) to reach their intracellular targets. After the internalization of ligand-receptor complexes, it traffics through different subcellular organelles such as early endosome, recycling endosome, lysosome, etc. Further, after the ligand binding to the receptor, different second messengers are generated, such as cGMP, cAMP, IP3, etc. Several methods have been used, such as radioligand binding assay, western blotting, co-immunoprecipitation (co-IP), qRT-PCR, immunofluorescence and confocal microscopy, microRNA/siRNA, and bioassays to understand the various events, such as internalization, subcellular trafficking, signaling, metabolic degradation, etc. This chapter briefly discusses the key principles and methods used to study internalization, subcellular trafficking, signaling, and metabolic degradation of numerous receptors.
Collapse
Affiliation(s)
- Pratiksha Pandita
- Faculty of Medicine, Department of Infectious Disease, Imperial College London, London, United Kingdom
| | - Rhea Bhalla
- ICMR-National Institute of Virology, Pune, Maharashtra, India
| | - Ashok Saini
- Department of Microbiology, Institute of Home Economics, University of Delhi, New Delhi, India
| | - Indra Mani
- Department of Microbiology, Gargi College, University of Delhi, New Delhi, India.
| |
Collapse
|
16
|
Alkafaas SS, Abdallah AM, Ghosh S, Loutfy SA, Elkafas SS, Abdel Fattah NF, Hessien M. Insight into the role of clathrin-mediated endocytosis inhibitors in SARS-CoV-2 infection. Rev Med Virol 2023; 33:e2403. [PMID: 36345157 PMCID: PMC9877911 DOI: 10.1002/rmv.2403] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 10/08/2022] [Accepted: 10/10/2022] [Indexed: 11/10/2022]
Abstract
Emergence of SARS-CoV-2 variants warrants sustainable efforts to upgrade both the diagnostic and therapeutic protocols. Understanding the details of cellular and molecular basis of the virus-host cell interaction is essential for developing variant-independent therapeutic options. The internalization of SARS-CoV-2, into lung epithelial cells, is mediated by endocytosis, especially clathrin-mediated endocytosis (CME). Although vaccination is the gold standard strategy against viral infection, selective inhibition of endocytic proteins, complexes, and associated adaptor proteins may present a variant-independent therapeutic strategy. Although clathrin and/or dynamins are the most important proteins involved in CME, other endocytic mechanisms are clathrin and/or dynamin independent and rely on other proteins. Moreover, endocytosis implicates some subcellular structures, like plasma membrane, actin and lysosomes. Also, physiological conditions, such as pH and ion concentrations, represent an additional factor that mediates these events. Accordingly, endocytosis related proteins are potential targets for small molecules that inhibit endocytosis-mediated viral entry. This review summarizes the potential of using small molecules, targeting key proteins, participating in clathrin-dependent and -independent endocytosis, as variant-independent antiviral drugs against SARS-CoV-2 infection. The review takes two approaches. The first outlines the potential role of endocytic inhibitors in preventing endocytosis-mediated viral entry and its mechanism of action, whereas in the second computational analysis was implemented to investigate the selectivity of common inhibitors against endocytic proteins in SARS-CoV-2 endocytosis. The analysis revealed that remdesivir, methyl-β-cyclodextrin, rottlerin, and Bis-T can effectively inhibit clathrin, HMG-CoA reductase, actin, and dynamin I GTPase and are more potent in inhibiting SARS-CoV-2 than chloroquine. CME inhibitors for SARS-CoV-2 infection remain understudied.
Collapse
Affiliation(s)
- Samar Sami Alkafaas
- Molecular Cell Biology UniteDivision of BiochemistryDepartment of ChemistryFaculty of ScienceTanta UniversityTantaEgypt
| | - Abanoub Mosaad Abdallah
- Narcotic Research DepartmentNational Center for Social and Criminological Research (NCSCR)GizaEgypt
| | - Soumya Ghosh
- Department of GeneticsFaculty of Natural and Agricultural SciencesUniversity of the Free StateBloemfonteinSouth Africa
| | - Samah A. Loutfy
- Virology and Immunology UnitCancer Biology DepartmentNational Cancer Institute (NCI)Cairo UniversityCairoEgypt
- Nanotechnology Research CenterBritish UniversityCairoEgypt
| | - Sara Samy Elkafas
- Production Engineering and Mechanical Design DepartmentFaculty of EngineeringMenofia UniversityMenofiaEgypt
| | - Nasra F. Abdel Fattah
- Virology and Immunology UnitCancer Biology DepartmentNational Cancer Institute (NCI)Cairo UniversityCairoEgypt
| | - Mohamed Hessien
- Molecular Cell Biology UniteDivision of BiochemistryDepartment of ChemistryFaculty of ScienceTanta UniversityTantaEgypt
| |
Collapse
|
17
|
Specific Binding and Endocytosis of Liposomes to HEK293T Cells via Myrisoylated Pre-S1 Peptide Bound to Sodium Taurocholate Cotransporting Polypeptide. Vaccines (Basel) 2022; 10:vaccines10122050. [PMID: 36560460 PMCID: PMC9782868 DOI: 10.3390/vaccines10122050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 11/22/2022] [Accepted: 11/26/2022] [Indexed: 12/05/2022] Open
Abstract
(1) Background: Sodium taurocholate cotransporting polypeptide (NTCP) functions as a key receptor for the hepatitis B virus (HBV) infection. Analyzing HBV and NTCP interaction is an important issue not only for basic research but also for the development of anti-HBV therapeutics. We developed here a novel model system to analyze the interaction of NTCP with liposomes instead of HBV. (2) Methods: Liposomal binding and endocytosis through NTCP in HEK293T cells were achieved by serial treatments of HEL293T cells transiently expressing NTCP-green fluorescence protein (GFP) fusion protein with a synthetic biotinylated pre-S1 peptide (Myr47-Bio) and streptavidin (SA) complex (i.e., Myr47-Bio+SA) followed by biotinylated liposomes. By this procedure, binding of [biotinylated liposomes]-[Myr47-Bio+SA]-[NTCP-GFP] was formed. (3) Results: Using this model system, we found that liposomal binding to NTCP on the cell surface via Myr47-Bio+SA was far more efficient than that to scavenger receptor class B type 1 (SR-B1). Furthermore, liposomes bound to cell surface NTCP via Myr47-Bio+SA were endocytosed into cells after cells were cultured at 37 °C. However, this endocytosis was suppressed by 4 °C or cytochalasin B treatment. (4) Conclusions: This model system will be useful for not only analyzing HBV entry mechanisms but also screening substances to prevent HBV infection.
Collapse
|
18
|
Kapteijn R, Shitut S, Aschmann D, Zhang L, de Beer M, Daviran D, Roverts R, Akiva A, van Wezel GP, Kros A, Claessen D. Endocytosis-like DNA uptake by cell wall-deficient bacteria. Nat Commun 2022; 13:5524. [PMID: 36138004 PMCID: PMC9500057 DOI: 10.1038/s41467-022-33054-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 08/31/2022] [Indexed: 11/29/2022] Open
Abstract
Horizontal gene transfer in bacteria is widely believed to occur via conjugation, transduction and transformation. These mechanisms facilitate the passage of DNA across the protective cell wall using sophisticated machinery. Here, we report that cell wall-deficient bacteria can engulf DNA and other extracellular material via an endocytosis-like process. Specifically, we show that L-forms of the filamentous actinomycete Kitasatospora viridifaciens can take up plasmid DNA, polysaccharides (dextran) and 150-nm lipid nanoparticles. The process involves invagination of the cytoplasmic membrane, leading to formation of intracellular vesicles that encapsulate extracellular material. DNA uptake is not affected by deletion of genes homologous to comEC and comEA, which are required for natural transformation in other species. However, uptake is inhibited by sodium azide or incubation at 4 °C, suggesting the process is energy-dependent. The encapsulated materials are released into the cytoplasm upon degradation of the vesicle membrane. Given that cell wall-deficient bacteria are considered a model for early life forms, our work reveals a possible mechanism for primordial cells to acquire food or genetic material before invention of the bacterial cell wall. Horizontal gene transfer in bacteria can occur through mechanisms such as conjugation, transduction and transformation, which facilitate the passage of DNA across the cell wall. Here, Kapteijn et al. show that cell wall-deficient bacteria can take up DNA and other extracellular materials via an endocytosis-like process.
Collapse
Affiliation(s)
- Renée Kapteijn
- Institute of Biology, Leiden University, Sylviusweg 72, 2333, Leiden, The Netherlands
| | - Shraddha Shitut
- Institute of Biology, Leiden University, Sylviusweg 72, 2333, Leiden, The Netherlands
| | - Dennis Aschmann
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333, Leiden, The Netherlands
| | - Le Zhang
- Institute of Biology, Leiden University, Sylviusweg 72, 2333, Leiden, The Netherlands
| | - Marit de Beer
- Electron Microscopy Center, Radboudumc Technology Center Microscopy, Nijmegen, The Netherlands
| | - Deniz Daviran
- Electron Microscopy Center, Radboudumc Technology Center Microscopy, Nijmegen, The Netherlands
| | - Rona Roverts
- Electron Microscopy Center, Radboudumc Technology Center Microscopy, Nijmegen, The Netherlands
| | - Anat Akiva
- Electron Microscopy Center, Radboudumc Technology Center Microscopy, Nijmegen, The Netherlands
| | - Gilles P van Wezel
- Institute of Biology, Leiden University, Sylviusweg 72, 2333, Leiden, The Netherlands.
| | - Alexander Kros
- Department of Supramolecular and Biomaterials Chemistry, Leiden Institute of Chemistry, Leiden University, Einsteinweg 55, 2333, Leiden, The Netherlands
| | - Dennis Claessen
- Institute of Biology, Leiden University, Sylviusweg 72, 2333, Leiden, The Netherlands.
| |
Collapse
|
19
|
Yoshida A, Kitayama Y, Hayakawa N, Mizukawa Y, Nishimura Y, Takano E, Sunayama H, Takeuchi T. Biocompatible polymer-modified gold nanocomposites of different shapes as radiation sensitizers. Biomater Sci 2022; 10:2665-2672. [PMID: 35420601 DOI: 10.1039/d2bm00174h] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Radiation therapy is a powerful approach for cancer treatment due to its low invasiveness. The development of radiation sensitizers is of great importance as they assist in providing radiation therapy at a low dose. In this study, poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC)-modified gold nanocomposites of different shapes were created using the grafting-to approach to serve as a novel radiation sensitizer with high cellular uptake. The effect of the shape of the nanocomposite on cellular uptake by the breast cancer cell line MCF-7 was also investigated. The PMPC-modified gold nanostars showed the highest cellular uptake compared to the other gold nanocomposites (spheres and rods), whereas cell cytotoxicity was negligible among all candidates. Furthermore, the therapeutic effect of radiation of PMPC-modified nanostars was the highest among all the gold nanocomposites. These results clearly indicate that the shape of the gold nanocomposite is an important parameter for cellular uptake and radiation sensitizing effects in breast cancer cells.
Collapse
Affiliation(s)
- Aoi Yoshida
- Graduate School of Engineering, Kobe University, Nada-ku, Kobe 657-8501, Japan.
| | - Yukiya Kitayama
- Graduate School of Engineering, Osaka Prefecture University, 1-1, Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan.
| | - Natsuki Hayakawa
- Graduate School of Engineering, Kobe University, Nada-ku, Kobe 657-8501, Japan.
| | - Yuki Mizukawa
- Graduate School of Engineering, Kobe University, Nada-ku, Kobe 657-8501, Japan.
| | - Yuya Nishimura
- Graduate School of Science, Technology and Innovation, Kobe University, Nada-ku, Kobe 657-8501, Japan
| | - Eri Takano
- Graduate School of Engineering, Kobe University, Nada-ku, Kobe 657-8501, Japan.
| | - Hirobumi Sunayama
- Graduate School of Engineering, Kobe University, Nada-ku, Kobe 657-8501, Japan.
| | - Toshifumi Takeuchi
- Graduate School of Engineering, Kobe University, Nada-ku, Kobe 657-8501, Japan. .,Center for Advanced Medical Engineering Research & Development (CAMED), Kobe University, Chuo-ku, Kobe 650-0047, Japan
| |
Collapse
|
20
|
McGraw E, Roberts JD, Kunte N, Westerfield M, Streety X, Held D, Avila LA. Insight into Cellular Uptake and Transcytosis of Peptide Nanoparticles in Spodoptera frugiperda Cells and Isolated Midgut. ACS OMEGA 2022; 7:10933-10943. [PMID: 35415340 PMCID: PMC8991906 DOI: 10.1021/acsomega.1c06638] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 02/28/2022] [Indexed: 06/14/2023]
Abstract
Silencing genes in insects by introducing double-stranded RNA (dsRNA) in the diet holds promise as a new pest management method. It has been demonstrated that nanoparticles (NPs) can potentiate dsRNA silencing effects by promoting cellular internalization and protecting dsRNA against early degradation. However, many mysteries of how NPs and dsRNA are internalized by gut epithelial cells and, subsequently, transported across the midgut epithelium remain to be unraveled. The sole purpose of the current study is to investigate the role of endocytosis and transcytosis in the transport of branched amphipathic peptide nanocapsules (BAPCs) associated with dsRNA through midgut epithelium cells. Spodoptera frugiperda midguts and the epithelial cell line Sf9, derived from S. frugiperda, were used to study transcytosis and endocytosis, respectively. Results suggest that clathrin-mediated endocytosis and macropinocytosis are largely responsible for cellular uptake, and once within the midgut, transcytosis is involved in shuttling BAPCs-dsRNA from the lumen to the hemolymph. In addition, BAPCs were not found to be toxic to Sf9 cells or generate damaging reactive species once internalized.
Collapse
Affiliation(s)
- Erin McGraw
- Department
of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, Alabama 36849-5412, United States
| | - Jonathan D. Roberts
- Department
of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, Alabama 36849-5412, United States
| | - Nitish Kunte
- Department
of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, Alabama 36849-5412, United States
| | - Matthew Westerfield
- Department
of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, Alabama 36849-5412, United States
| | - Xavier Streety
- Department
of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, Alabama 36849-5412, United States
| | - David Held
- Department
of Entomology and Plant Pathology, Auburn
University, Auburn, Alabama 36849-5412, United States
| | - L. Adriana Avila
- Department
of Biological Sciences, Auburn University, 101 Rouse Life Sciences, Auburn, Alabama 36849-5412, United States
| |
Collapse
|
21
|
Raja IS, Hong SW, Han DW. Reflections and Outlook on Multifaceted Biomedical Applications of Graphene. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1351:253-264. [DOI: 10.1007/978-981-16-4923-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
22
|
Khandelwal R, Sharma AK, Biswa BB, Sharma Y. Extracellular Secretagogin is internalized into the cells through endocytosis. FEBS J 2021; 289:3183-3204. [PMID: 34967502 DOI: 10.1111/febs.16338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 11/29/2022]
Abstract
Secretagogin (SCGN) is a calcium-sensor protein with a regulatory role in glucose metabolism and the secretion of several peptide hormones. Many, but not all, functions of SCGN can be explained by its intracellular manifestation. Despite early data on SCGN secretion, the secretory mechanism, biological fate, physiological implications, and trans-cellular signaling of extracellular SCGN remain unknown. We here report that extracellular SCGN is readily internalized into the C2C12 cells in an energy-dependent manner. Using endocytosis inhibitors, we demonstrate that SCGN internalizes via clathrin-mediated endocytosis, following which, SCGN localizes largely in the cytosol. Exogenous SCGN treatment induces a global proteomic reprogramming in C2C12 cells. Gene ontology search suggests that SCGN-induced proteomic reprogramming favors protein synthesis and cellular growth. We thus validated the cell proliferative action of SCGN using C2C12, HepG2, and NIH-3T3 cell lines. Based on the data, we propose that circulatory SCGN is internalized into the target cells and modulates the expression of cell growth-related proteins. The work suggests that extracellular SCGN is a functional protein, which communicates with specific cell types and directly modulates cell proliferation.
Collapse
Affiliation(s)
- Radhika Khandelwal
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, 500 007, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India
| | - Anand Kumar Sharma
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, 500 007, India
| | - Bhim B Biswa
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, 500 007, India
| | - Yogendra Sharma
- CSIR-Centre for Cellular and Molecular Biology (CCMB), Uppal Road, Hyderabad, 500 007, India.,Academy of Scientific and Innovative Research (AcSIR), New Delhi, India.,Indian Institute of Science Education and Research (IISER), Berhampur, Odisha, 760010, India
| |
Collapse
|
23
|
Wang H, Shan X, Ren M, Shang M, Zhou C. Nucleosomes enter cells by clathrin- and caveolin-dependent endocytosis. Nucleic Acids Res 2021; 49:12306-12319. [PMID: 34865123 PMCID: PMC8643636 DOI: 10.1093/nar/gkab1121] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 10/20/2021] [Accepted: 10/25/2021] [Indexed: 12/30/2022] Open
Abstract
DNA damage and apoptosis lead to the release of free nucleosomes-the basic structural repeating units of chromatin-into the blood circulation system. We recently reported that free nucleosomes that enter the cytoplasm of mammalian cells trigger immune responses by activating cGMP-AMP synthase (cGAS). In the present study, we designed experiments to reveal the mechanism of nucleosome uptake by human cells. We showed that nucleosomes are first absorbed on the cell membrane through nonspecific electrostatic interactions between positively charged histone N-terminal tails and ligands on the cell surface, followed by internalization via clathrin- or caveolae-dependent endocytosis. After cellular internalization, endosomal escape occurs rapidly, and nucleosomes are released into the cytosol, maintaining structural integrity for an extended period. The efficient endocytosis of extracellular nucleosomes suggests that circulating nucleosomes may lead to cellular disorders as well as immunostimulation, and thus, the biological effects exerted by endocytic nucleosomes should be addressed in the future.
Collapse
Affiliation(s)
- Huawei Wang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Xiajing Shan
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mengtian Ren
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Mengdi Shang
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| | - Chuanzheng Zhou
- State Key Laboratory of Elemento-Organic Chemistry and Department of Chemical Biology, College of Chemistry, Nankai University, Tianjin 300071, China
| |
Collapse
|
24
|
Chen H, Zhao Y, Li R, Chen B, Luo Z, Shi Y, Wang K, Zhang W, Lin S. Preparation and in vitro and in vivo Evaluation Of Panax Notoginseng Saponins-loaded Nanoparticles Coated with Trimethyl Chitosan Derivatives. J Pharm Sci 2021; 111:1659-1666. [PMID: 34752811 DOI: 10.1016/j.xphs.2021.11.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/03/2021] [Accepted: 11/03/2021] [Indexed: 02/02/2023]
Abstract
In this study, novel Panax notoginseng saponins (PNS)-loaded nanoparticles coated with the Trimethyl chitosan (TMC) derivatives TMC-VB12 and TMC-Cys (PPTT-NPs) were developed to improve the oral absorption of the constituents. PPTT-NPs were prepared by the double emulsion method and showed different encapsulation effects on the major components, including Rg1, Rb1, and R1, in PNS. In vivo, the absorption rate constant and apparent absorption coefficient of PPTT-NPs were higher than PNS solution. These findings preliminarily proved that PPTT-NPs can promote intestinal absorption to a certain extent. The pharmacokinetic results indicated that the blood concentration and the area under the curve of Rg1 and Rb1 in the PPTT-NPs were higher than Xueshuantong capsules. The cell viability of PPTT-NPs was above 90% within 25-150 μg/mL. PPTT-NPs promoted the cellular uptake of PNS by receptor-mediated endocytosis. In summary, NPs coated with TMC-VB12 and TMC-Cys can be used as promising drug delivery systems.
Collapse
Affiliation(s)
- Hui Chen
- College of Pharmacy, Guilin Medical University, Guilin 541199, Guangxi Province, China.
| | - Ying Zhao
- College of Pharmacy, Guilin Medical University, Guilin 541199, Guangxi Province, China
| | - Ran Li
- College of Pharmacy, Guilin Medical University, Guilin 541199, Guangxi Province, China
| | - Bin Chen
- College of Pharmacy, Guilin Medical University, Guilin 541199, Guangxi Province, China
| | - Zhiman Luo
- College of Pharmacy, Guilin Medical University, Guilin 541199, Guangxi Province, China
| | - Yaling Shi
- College of Pharmacy, Guilin Medical University, Guilin 541199, Guangxi Province, China
| | - Kaiqiu Wang
- College of Pharmacy, Guilin Medical University, Guilin 541199, Guangxi Province, China
| | - Wei Zhang
- College of Pharmacy, Guilin Medical University, Guilin 541199, Guangxi Province, China
| | - Shiyuan Lin
- College of Pharmacy, Guilin Medical University, Guilin 541199, Guangxi Province, China.
| |
Collapse
|
25
|
Chen H, Wang Y, Liu Y, Tang L, Mu Q, Yin X, Zheng L, Chen Y, Liu C. Delivery of Cationic Platinum Prodrugs via Reduction Sensitive Polymer for Improved Chemotherapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2021; 17:e2101804. [PMID: 34554644 DOI: 10.1002/smll.202101804] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/28/2021] [Indexed: 06/13/2023]
Abstract
A cationic monofunctional platinum anticancer drug, phenanthriplatin (PhenPt(II)), exhibits promising anticancer effect on various cancer cell lines. Unlike the conventional platinum(II) drugs, PhenPt(II) is more likely to bind the N7 adenosine base of DNA in situ, and consequently resulting in a unique cellular response profile and unusual potency. However, since this drug is positively charged, it can easily bind to plasma protein that leads to rapid systematic clearance and deleterious toxicities, which greatly limits its in vivo application. Herein, a lipophilic phenanthriplatin (PhenPt(IV)) prodrug is synthesized. To further reduce its toxicity, a negatively charged polymer P1 with reduction responsiveness is assembled with PhenPt(IV) to form PhenPt(IV) NPs. In comparison to cisplatin, PhenPt(IV) NPs exhibit up to 30 times greater in vitro potency against various cancer cell lines. Additionally, in vivo, no obvious side effect is found on PhenPt(IV) NPs. Significant enhancement in tumor accumulation and improvement of drug efficacy in 4T1 tumor model are demonstrated. Taken together, this study provides a promising strategy for the clinical translation of phenanthriplatin.
Collapse
Affiliation(s)
- Hao Chen
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Yushu Wang
- The People's Hospital of Gaozhou, Gaozhou City, 525200, P. R. China
| | - Yulin Liu
- Urology Surgery, Shenzhen Traditional Chinese Medicine Hospital, Guangzhou University of Chinese Medicine, Shenzhen, Guangdong, 518033, P. R. China
| | - Lin Tang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| | - Qingchun Mu
- The People's Hospital of Gaozhou, Gaozhou City, 525200, P. R. China
| | - Xiangye Yin
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, P. R. China
| | - Liuchun Zheng
- School of Textile Science and Engineering, Tiangong University, Tianjin, 300387, P. R. China
| | - Youbai Chen
- Department of Plastic and Reconstructive Surgery, The First Medical Center, Chinese PLA General Hospital, Beijing, 100853, P. R. China
| | - Chaoyong Liu
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, P. R. China
| |
Collapse
|
26
|
Effects of Ipriflavone-Loaded Mesoporous Nanospheres on the Differentiation of Endothelial Progenitor Cells and Their Modulation by Macrophages. NANOMATERIALS 2021; 11:nano11051102. [PMID: 33923311 PMCID: PMC8145259 DOI: 10.3390/nano11051102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Revised: 04/16/2021] [Accepted: 04/21/2021] [Indexed: 12/16/2022]
Abstract
Angiogenic biomaterials are designed to promote vascularization and tissue regeneration. Nanoparticles of bioactive materials loaded with drugs represent an interesting strategy to stimulate osteogenesis and angiogenesis and to inhibit bone resorption. In this work, porcine endothelial progenitor cells (EPCs), essential for blood vessel formation, were isolated and characterized to evaluate the in vitro effects of unloaded (NanoMBGs) and ipriflavone-loaded nanospheres (NanoMBG-IPs), which were designed to prevent osteoporosis. The expression of vascular endothelial growth factor receptor 2 (VEGFR2) was studied in EPCs under different culture conditions: (a) treatment with NanoMBGs or NanoMBG-IPs, (b) culture with media from basal, M1, and M2 macrophages previously treated with NanoMBGs or NanoMBG-IPs, (c) coculture with macrophages in the presence of NanoMBGs or NanoMBG-IPs, and (d) coculture with M2d angiogenic macrophages. The endocytic mechanisms for nanosphere incorporation by EPCs were identified using six different endocytosis inhibitors. The results evidence the great potential of these nanomaterials to enhance VEGFR2 expression and angiogenesis, after intracellular incorporation by EPCs through clathrin-dependent endocytosis, phagocytosis, and caveolae-mediated uptake. The treatment of EPCs with basal, M1, and M2 macrophage culture media and EPC/macrophage coculture studies also confirmed the angiogenic effect of these nanospheres on EPCs, even in the presence of phagocytic cells.
Collapse
|
27
|
Abstract
The majority of infections with SARS-CoV-2 are asymptomatic or mild without the necessity of hospitalization. It is of importance to reveal if these patients develop an antibody response against SARS-CoV-2 and to define which antibodies confer virus neutralization. We conducted a comprehensive serological survey of 49 patients with a mild course of disease and quantified neutralizing antibody responses against a clinical SARS-CoV-2 isolate employing human cells as targets. Four patients (8%), even though symptomatic, did not develop antibodies against SARS-CoV-2, and two other patients (4%) were positive in only one of the six serological assays employed. For the remaining 88%, antibody response against the S protein correlated with serum neutralization whereas antibodies against the nucleocapsid were poor predictors of virus neutralization. None of the sera enhanced infection of human cells with SARS-CoV-2 at any dilution, arguing against antibody-dependent enhancement of infection in our system. Regarding neutralization, only six patients (12%) could be classified as high neutralizers. Furthermore, sera from several individuals with fairly high antibody levels had only poor neutralizing activity. In addition, employing a novel serological Western blot system to characterize antibody responses against seasonal coronaviruses, we found that antibodies against the seasonal coronavirus 229E might contribute to SARS-CoV-2 neutralization. Altogether, we show that there is a wide breadth of antibody responses against SARS-CoV-2 in patients that differentially correlate with virus neutralization. This highlights the difficulty to define reliable surrogate markers for immunity against SARS-CoV-2. IMPORTANCE There is strong interest in the nature of the neutralizing antibody response against SARS-CoV-2 in infected individuals. For vaccine development, it is especially important which antibodies confer protection against SARS-CoV-2, if there is a phenomenon called antibody-dependent enhancement (ADE) of infection, and if there is cross-protection by antibodies directed against seasonal coronaviruses. We addressed these questions and found in accordance with other studies that neutralization is mediated mainly by antibodies directed against the spike protein of SARS-CoV-2 in general and the receptor binding site in particular. In our test system, utilizing human cells for infection experiments, we did not detect ADE. However, using a novel diagnostic test we found that antibodies against the coronavirus 229E might be involved in cross-protection to SARS-CoV-2.
Collapse
|
28
|
Influence of FcRn binding properties on the gastrointestinal absorption and exposure profile of Fc molecules. Bioorg Med Chem 2021; 32:115942. [PMID: 33461147 DOI: 10.1016/j.bmc.2020.115942] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 11/30/2020] [Accepted: 12/08/2020] [Indexed: 01/26/2023]
Abstract
The neonatal Fc receptor (FcRn) represents a transport system with the potential to facilitate absorption of biologics across the gastrointestinal barrier. How biologics interact with FcRn to enable their gastrointestinal absorption, and how these interactions might be optimized in a biological therapeutic are not well understood. Thus, we studied the absorption of Fc molecules from the intestine using three IgG4-derived Fc variants with different, pH-dependent FcRn binding and release profiles. Using several different intestinal models, we consistently observed that FcRn binding affinity correlated with transcytosis. Our findings support targeting FcRn to enable intestinal absorption of biologics and highlight additional strategic considerations for future work.
Collapse
|
29
|
Khan SN, Han P, Chaudhury R, Bickerton S, Lee JS, Calderon B, Pellowe A, Gonzalez A, Fahmy T. Direct Comparison of B Cell Surface Receptors as Therapeutic Targets for Nanoparticle Delivery of BTK Inhibitors. Mol Pharm 2021; 18:850-861. [PMID: 33428414 DOI: 10.1021/acs.molpharmaceut.0c00836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Targeting different cell surface receptors with nanoparticle (NP)-based platforms can result in differential particle binding properties that may impact their localization, bioavailability, and, ultimately, the therapeutic efficacy of an encapsulated payload. Conventional in vitro assays comparing the efficacy of targeted NPs often do not adequately control for these differences in particle-receptor binding, potentially confounding their therapeutic readouts and possibly even limiting their experimental value. In this work, we characterize the conditions under which NPs loaded with Bruton's Tyrosine Kinase (BTK) inhibitor differentially suppress primary B cell activation when targeting either CD19 (internalizing) or B220 (noninternalizing) surface receptors. Surface binding of fluorescently labeled CD19- and B220-targeted NPs was analyzed and quantitatively correlated with the number of bound particles at given treatment concentrations. Using this binding data, suppression of B cell activation was directly compared for differentially targeted (CD19 vs B220) NPs loaded with a BTK inhibitor at a range of particle drug loading concentrations. When NPs were loaded with lower amounts of drug, CD19-mediated internalization demonstrated increased inhibition of B cell proliferation compared with B220 NPs. However, these differences were mitigated when particles were loaded with higher concentrations of BTK inhibitor and B220-mediated "paracrine-like" delivery demonstrated superior suppression of cellular activation when cells were bound to lower overall numbers of NPs. Taken together, these results demonstrate that inhibition of B cell activation can be optimized for NPs targeting either internalizing or noninternalizing surface receptors and that particle internalization is likely not a requisite endpoint when designing particles for delivery of BTK inhibitor to B cells.
Collapse
Affiliation(s)
- Shihan N Khan
- Department of Internal Medicine, Yale School of Medicine, New Haven, Connecticut 06520, United States.,Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Patrick Han
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Rabib Chaudhury
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Sean Bickerton
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Jung Seok Lee
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Brenda Calderon
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Amanda Pellowe
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Anjelica Gonzalez
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, United States
| | - Tarek Fahmy
- Department of Biomedical Engineering, Yale University, New Haven, Connecticut 06511, United States.,Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06511, United States
| |
Collapse
|
30
|
Casarrubios L, Gómez-Cerezo N, Feito MJ, Vallet-Regí M, Arcos D, Portolés MT. Ipriflavone-Loaded Mesoporous Nanospheres with Potential Applications for Periodontal Treatment. NANOMATERIALS 2020; 10:nano10122573. [PMID: 33371499 PMCID: PMC7767486 DOI: 10.3390/nano10122573] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/15/2020] [Accepted: 12/18/2020] [Indexed: 12/16/2022]
Abstract
The incorporation and effects of hollow mesoporous nanospheres in the system SiO2-CaO (nanoMBGs) containing ipriflavone (IP), a synthetic isoflavone that prevents osteoporosis, were evaluated. Due to their superior porosity and capability to host drugs, these nanoparticles are designed as a potential alternative to conventional bioactive glasses for the treatment of periodontal defects. To identify the endocytic mechanisms by which these nanospheres are incorporated within the MC3T3-E1 cells, five inhibitors (cytochalasin B, cytochalasin D, chlorpromazine, genistein and wortmannin) were used before the addition of these nanoparticles labeled with fluorescein isothiocyanate (FITC-nanoMBGs). The results indicate that nanoMBGs enter the pre-osteoblasts mainly through clathrin-dependent mechanisms and in a lower proportion by macropinocytosis. The present study evidences the active incorporation of nanoMBG-IPs by MC3T3-E1 osteoprogenitor cells that stimulate their differentiation into mature osteoblast phenotype with increased alkaline phosphatase activity. The final aim of this study is to demonstrate the biocompatibility and osteogenic behavior of IP-loaded bioactive nanoparticles to be used for periodontal augmentation purposes and to shed light on internalization mechanisms that determine the incorporation of these nanoparticles into the cells.
Collapse
Affiliation(s)
- Laura Casarrubios
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (L.C.); (M.J.F.)
| | - Natividad Gómez-Cerezo
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
| | - María José Feito
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (L.C.); (M.J.F.)
| | - María Vallet-Regí
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
- Correspondence: (M.V.-R.); (D.A.); (M.T.P.)
| | - Daniel Arcos
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain;
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
- Correspondence: (M.V.-R.); (D.A.); (M.T.P.)
| | - María Teresa Portolés
- Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria del Hospital Clínico San Carlos (IdISSC), 28040 Madrid, Spain; (L.C.); (M.J.F.)
- CIBER de Bioingeniería, Biomateriales y Nanomedicina, CIBER-BBN, 28040 Madrid, Spain
- Correspondence: (M.V.-R.); (D.A.); (M.T.P.)
| |
Collapse
|
31
|
A novel cascade strategy using a nanonized targeted prodrug for enhanced oral delivery efficiency. Int J Pharm 2020; 587:119638. [DOI: 10.1016/j.ijpharm.2020.119638] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 06/28/2020] [Accepted: 07/07/2020] [Indexed: 01/27/2023]
|
32
|
Carobolante G, Mantaj J, Ferrari E, Vllasaliu D. Cow Milk and Intestinal Epithelial Cell-derived Extracellular Vesicles as Systems for Enhancing Oral Drug Delivery. Pharmaceutics 2020; 12:E226. [PMID: 32143503 PMCID: PMC7150822 DOI: 10.3390/pharmaceutics12030226] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/28/2020] [Accepted: 03/02/2020] [Indexed: 12/24/2022] Open
Abstract
Ingestion is the preferred way for drug administration. However, many drugs have poor oral bioavailability, warranting the use of injections. Extracellular vesicles (EVs) from cow milk have shown potential utility in improving oral drug bioavailability. However, EVs produced by intestinal epithelial cells have not been investigated for this application. We compared the capacity of cow milk EVs and intestinal epithelial cell-derived counterparts to enhance oral drug bioavailability. EVs were isolated, fluorescently labelled, and loaded with curcumin (CUR) as a model poorly absorbable drug. These were then characterised before testing in an intestinal model (Caco-2). Epithelial cell-derived EVs showed notably higher cell uptake compared to cow milk EVs. Cell uptake was significantly higher in differentiated compared to undifferentiated cells for both types of EVs. While both milk- and cell-derived EVs improved the cell uptake and intestinal permeability of CUR (confirming oral drug bioavailability enhancement potential), epithelial cell EVs demonstrated a superior effect.
Collapse
Affiliation(s)
- Greta Carobolante
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE1 9NH, UK; (G.C.); (J.M.)
- Department of Pharmaceutical and Pharmacological Sciences, Università degli Studi di PADOVA, Via 8 Febbraio, 2, 35122 Padova, Italy
| | - Julia Mantaj
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE1 9NH, UK; (G.C.); (J.M.)
| | - Enrico Ferrari
- School of Life Sciences, University of Lincoln, Lincoln LN6 7TS, UK;
| | - Driton Vllasaliu
- School of Cancer and Pharmaceutical Sciences, Faculty of Life Sciences & Medicine, King’s College London, London SE1 9NH, UK; (G.C.); (J.M.)
| |
Collapse
|
33
|
Matsuzaki T, Nakamura M, Nogita T, Sato A. Cellular Uptake and Release of Intact Lactoferrin and Its Derivatives in an Intestinal Enterocyte Model of Caco-2 Cells. Biol Pharm Bull 2019; 42:989-995. [PMID: 31155596 DOI: 10.1248/bpb.b19-00011] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
An Intact form of lactoferrin (LF) is known to be absorbed from the small intestine and transported into the blood circulation. We reevaluated the cellular uptake and release of LF using an enterocyte model of human small intestinal cells derived from the Caco-2 cell line. In contrast to a previous report, we observed that intact bovine LF was taken up into seven and 21 d-cultured Caco-2 cells and successfully released back into the culture medium, even though the human intestinal LF receptor, intelectin-1, was not immunochemically detectable. Similar observations were made for human LF and its derivatives (the N-terminal half of LF designated N-lobe and Fc fusions). These observations regarding the uptake and release of intact LF in Caco-2 cells were consistent with in vivo observations. Therefore, we propose that the uptake and release of intact LF by Caco-2 cells should be assessed as a potential in vitro model of in vivo LF absorption in human intestines.
Collapse
Affiliation(s)
- Takumi Matsuzaki
- School of Bioscience and Biotechnology, Tokyo University of Technology
| | - Masao Nakamura
- School of Bioscience and Biotechnology, Tokyo University of Technology
| | - Takehide Nogita
- School of Bioscience and Biotechnology, Tokyo University of Technology
| | - Atsushi Sato
- School of Bioscience and Biotechnology, Tokyo University of Technology
| |
Collapse
|
34
|
Mahalingaiah PK, Ciurlionis R, Durbin KR, Yeager RL, Philip BK, Bawa B, Mantena SR, Enright BP, Liguori MJ, Van Vleet TR. Potential mechanisms of target-independent uptake and toxicity of antibody-drug conjugates. Pharmacol Ther 2019; 200:110-125. [DOI: 10.1016/j.pharmthera.2019.04.008] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Accepted: 04/19/2019] [Indexed: 12/13/2022]
|
35
|
Alqaeisoom N, Qian C, Arachchige D, Colvin RA, Holub JM. Inhibiting Phosphorylation of Tau (τ) Proteins at Ser262 Using Peptide-Based R1 Domain Mimetics. Int J Pept Res Ther 2019. [DOI: 10.1007/s10989-018-9689-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
36
|
Mantle JL, Lee KH. Immunoglobulin G transport increases in an in vitro blood–brain barrier model with amyloid‐β and with neuroinflammatory cytokines. Biotechnol Bioeng 2019; 116:1752-1761. [DOI: 10.1002/bit.26967] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 03/11/2019] [Accepted: 03/14/2019] [Indexed: 12/12/2022]
Affiliation(s)
- Jennifer L. Mantle
- Department of Chemical and Biomolecular Engineering Delaware Biotechnology Institute, University of Delaware Newark Delaware
| | - Kelvin H. Lee
- Department of Chemical and Biomolecular Engineering Delaware Biotechnology Institute, University of Delaware Newark Delaware
| |
Collapse
|
37
|
Martins JP, Liu D, Fontana F, Ferreira MPA, Correia A, Valentino S, Kemell M, Moslova K, Mäkilä E, Salonen J, Hirvonen J, Sarmento B, Santos HA. Microfluidic Nanoassembly of Bioengineered Chitosan-Modified FcRn-Targeted Porous Silicon Nanoparticles @ Hypromellose Acetate Succinate for Oral Delivery of Antidiabetic Peptides. ACS APPLIED MATERIALS & INTERFACES 2018; 10:44354-44367. [PMID: 30525379 DOI: 10.1021/acsami.8b20821] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Microfluidics technology is emerging as a promising strategy in improving the oral delivery of proteins and peptides. Herein, a multistage drug delivery system is proposed as a step forward in the development of noninvasive therapies. Undecylenic acid-modified thermally hydrocarbonized porous silicon (UnPSi) nanoparticles (NPs) were functionalized with the Fc fragment of immunoglobulin G for targeting purposes. Glucagon-like peptide-1 (GLP-1) was loaded into the NPs as a model antidiabetic drug. Fc-UnPSi NPs were coated with mucoadhesive chitosan and ultimately entrapped into a polymeric matrix with pH-responsive properties by microfluidic nanoprecipitation. The final formulation showed a controlled and narrow size distribution. The pH-responsive matrix remained intact in acidic conditions, dissolving only in intestinal pH, resulting in a sustained release of the payload. The NPs presented high cytocompatibility and increased levels of interaction with intestinal cells when functionalized with the Fc fragment, which was supported by the validation of the Fc-fragment integrity after conjugation to the NPs. Finally, the Fc-conjugated NPs showed augmented GLP-1 permeability in an intestinal in vitro model. These results highlight the potential of microfluidics as an advanced technique for the preparation of multistage platforms for oral administration. Moreover, this study provides new insights on the potential of the Fc receptor transcytotic capacity for the development of targeted therapies.
Collapse
Affiliation(s)
| | | | | | | | | | - Silvia Valentino
- Department of Drug Sciences , Università degli Studi di Pavia , Viale Taramello 12 , 27100 Pavia , Itália
| | | | | | - Ermei Mäkilä
- Department of Physics and Astronomy , University of Turku , Turku FI-20014 , Finland
| | - Jarno Salonen
- Department of Physics and Astronomy , University of Turku , Turku FI-20014 , Finland
| | | | - Bruno Sarmento
- CESPU-Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde , 4585-116 Gandra , Portugal
| | | |
Collapse
|
38
|
Wang J, Wang L, Li Y, Wang X, Tu P. Apically targeted oral micelles exhibit highly efficient intestinal uptake and oral absorption. Int J Nanomedicine 2018; 13:7997-8012. [PMID: 30538473 PMCID: PMC6263247 DOI: 10.2147/ijn.s183796] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Introduction Polymeric micelles (PMs) hold promise for improving solubility and oral absorption of poorly soluble drugs. Unfortunately, the oral absorption of PMs is also limited by intestinal epithelium. To improve the oral delivery efficiency of micelles, transporter-mediated micelles could enhance the transport efficiency across the epithelial barrier, and they have attracted more attention. Methods Peptide transporter 1 (PepT1)-mediated micelles (Val-PMs/Phe-PMs) were designed by grafting valine (or phenylalanine) onto the surface of curcumin (Cur)-loaded-D-α-tocopheryl polyethylene glycol 1000 succinate micelles (TP-PMs). The oral absorption mechanism and oral bioavailability were further investigated in vitro and in vivo. Results The cellular study showed that Val-PMs/Phe-PMs had a high PepT1 affinity, resulting in a higher drug uptake and transcellular transport than TP-PMs. In rats, Val-PMs/Phe-PMs exhibited higher intestinal accumulation in the apical side of the intestinal epithelium than TP-PMs, promoting drug diffusion across epithelial barrier. The oral bioavailability of Cur was significantly improved by Val-PMs/Phe-PMs, which was about 10.50- and 3.40-fold greater than that of Cur-Sol and TP-PMs, respectively. Conclusion PepT-1-mediated micelles, using PepT1 as a target on intestinal epithelium, have unique functions with intestine and prove promising for oral delivery of poorly water-soluble drugs.
Collapse
Affiliation(s)
- Jinling Wang
- School of Chinese Materia Medica, Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China,
| | - Lifang Wang
- School of Chinese Materia Medica, Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China,
| | - Ying Li
- School of Chinese Materia Medica, Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China,
| | - Xiaohui Wang
- School of Chinese Materia Medica, Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China,
| | - Pengfei Tu
- School of Chinese Materia Medica, Modern Research Center for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 100029, China,
| |
Collapse
|
39
|
Reinholz J, Landfester K, Mailänder V. The challenges of oral drug delivery via nanocarriers. Drug Deliv 2018; 25:1694-1705. [PMID: 30394120 PMCID: PMC6225504 DOI: 10.1080/10717544.2018.1501119] [Citation(s) in RCA: 126] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 07/06/2018] [Accepted: 07/12/2018] [Indexed: 01/11/2023] Open
Abstract
The oral application of pharmaceuticals is unarguably the most convenient method of application. Especially for protein- or peptide-based drugs, however, the effectiveness is significantly reduced due to enzymatic digestion in the stomach as well as a poor bioavailability in the small intestine. For these difficult formulations, the encapsulation into nanocarriers would protect the sensitive drug and thus could considerably improve the efficiency of oral drug delivery. In the last years, many candidate biodegradable nanomaterials for such carrier systems have been published. However, before the cargo can be released, the nanocarrier needs to cross multiple barriers of the human body, including a layer of intestinal mucus and epithelial as well as endothelial cells. For overcoming these cellular barriers, transcytosis is favored over a paracellular transport for most nanomaterials as paracellular transport routes lack selectivity of transported molecules once opened up. The exact mechanisms behind the transcellular translocations are up to now still not completely understood. For the vast majority of nanocarriers, the rate of transcellular transport is not sufficient to realize their application in oral drug delivery. Especially trafficking into the endolysosomal pathway often marks a key problem. In this review, we focus on the molecular mechanisms of overcoming cellular barriers, especially transcytosis, and highlight difficulties of oral drug delivery via nanocarriers.
Collapse
Affiliation(s)
- Jonas Reinholz
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Max Planck Institute for Polymer Research, Mainz, Germany
| | | | - Volker Mailänder
- Department of Dermatology, University Medical Center of the Johannes Gutenberg-University Mainz, Mainz, Germany
- Max Planck Institute for Polymer Research, Mainz, Germany
| |
Collapse
|
40
|
Sakurai N, Nishio S, Akiyama Y, Miyata S, Oshima K, Nadano D, Matsuda T. Apical-to-basolateral transepithelial transport of cow's milk caseins by intestinal Caco-2 cell monolayers: MS-based quantitation of cellularly degraded α- and β-casein fragments. J Biochem 2018; 164:113-125. [PMID: 29490044 DOI: 10.1093/jb/mvy034] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2018] [Accepted: 02/21/2018] [Indexed: 11/12/2022] Open
Abstract
Casein (CN) is the major milk protein to nourish infants but, in certain population, it causes cow's milk allergy, indicating the uptake of antigenic CN and their peptides through the intestinal epithelium. Using human intestinal Caco-2 cell monolayers, the apical-to-basal transepithelial transport of CN was investigated. Confocal microscopy using component-specific antibodies showed that αs1-CN antigens became detectable as punctate signals at the apical-side cytoplasm and reached to the cytoplasm at a tight-junction level within a few hours. Such intracellular CN signals were more remarkable than those of the other antigens, β-lactoglobulin and ovalbumin, colocalized in part with an early endosome marker protein (EEA1) and decreased in the presence of cytochalasin D or sodium azide and also at lowered temperature at 4°C. Liquid chromatography coupled with mass spectroscopy analysis of the protein fraction in the basal-side medium identified the αs1-CB fragment including the N-terminal region and the αs2-CN fragment containing the central part of polypeptide at 100-1,000 fmol per well levels. Moreover, β-CN C-terminal overlapping peptides were identified in the peptide fraction below 10 kDa of the basal medium. These results suggest that CNs are partially degraded by cellular proteases and/or peptidases and immunologically active CN fragments are transported to basal side of the cell monolayers.
Collapse
Affiliation(s)
- Nao Sakurai
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Shunsuke Nishio
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Yuka Akiyama
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Shinji Miyata
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Kenzi Oshima
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Daita Nadano
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Tsukasa Matsuda
- Department of Applied Molecular Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| |
Collapse
|
41
|
Martins JP, D'Auria R, Liu D, Fontana F, Ferreira MPA, Correia A, Kemell M, Moslova K, Mäkilä E, Salonen J, Casettari L, Hirvonen J, Sarmento B, Santos HA. Engineered Multifunctional Albumin-Decorated Porous Silicon Nanoparticles for FcRn Translocation of Insulin. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1800462. [PMID: 29855134 DOI: 10.1002/smll.201800462] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2018] [Revised: 04/18/2018] [Indexed: 06/08/2023]
Abstract
The last decade has seen remarkable advances in the development of drug delivery systems as alternative to parenteral injection-based delivery of insulin. Neonatal Fc receptor (FcRn)-mediated transcytosis has been recently proposed as a strategy to increase the transport of drugs across the intestinal epithelium. FcRn-targeted nanoparticles (NPs) could hijack the FcRn transcytotic pathway and cross the epithelial cell layer. In this study, a novel nanoparticulate system for insulin delivery based on porous silicon NPs is proposed. After surface conjugation with albumin and loading with insulin, the NPs are encapsulated into a pH-responsive polymeric particle by nanoprecipitation. The developed NP formulation shows controlled size and homogeneous size distribution. Transmission electron microscopy (TEM) images show successful encapsulation of the NPs into pH-sensitive polymeric particles. No insulin release is detected at acidic conditions, but a controlled release profile is observed at intestinal pH. Toxicity studies show high compatibility of the NPs with intestinal cells. In vitro insulin permeation across the intestinal epithelium shows approximately fivefold increase when insulin is loaded into FcRn-targeted NPs. Overall, these FcRn-targeted NPs offer a toolbox in the development of targeted therapies for oral delivery of insulin.
Collapse
Affiliation(s)
- João P Martins
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Roberto D'Auria
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Biomolecular Sciences, School of Pharmacy, University of Urbino, Urbino, (PU), 61029, Italy
| | - Dongfei Liu
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, FI-00014, Finland
| | - Flavia Fontana
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Mónica P A Ferreira
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Alexandra Correia
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Marianna Kemell
- Department of Chemistry, University of Helsinki, Helsinki, FI-00014, Finland
| | - Karina Moslova
- Department of Chemistry, University of Helsinki, Helsinki, FI-00014, Finland
| | - Ermei Mäkilä
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Department of Physics and Astronomy, University of Turku, Turku, FI-20014, Finland
| | - Jarno Salonen
- Department of Physics and Astronomy, University of Turku, Turku, FI-20014, Finland
| | - Luca Casettari
- Department of Biomolecular Sciences, School of Pharmacy, University of Urbino, Urbino, (PU), 61029, Italy
| | - Jouni Hirvonen
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
| | - Bruno Sarmento
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Porto, 4200-135, Portugal
- INEB - Instituto de Engenharia Biomédica, University of Porto, Porto, 4200-135, Portugal
- CESPU - Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde, Gandra, 4585-116, Portugal
| | - Hélder A Santos
- Drug Research Program, Division of Pharmaceutical Chemistry and Technology, Faculty of Pharmacy, University of Helsinki, Helsinki, FI-00014, Finland
- Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, FI-00014, Finland
| |
Collapse
|
42
|
Datta-Mannan A, Boyles J, Huang L, Jin ZY, Peariso A, Murphy AT, Ellis B, Douglass N, Norouziyan-Cooper F, Witcher DR. Engineered FcRn Binding Fusion Peptides Significantly Enhance the Half-Life of a Fab Domain in Cynomolgus Monkeys. Biotechnol J 2018; 14:e1800007. [DOI: 10.1002/biot.201800007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 04/25/2018] [Indexed: 01/04/2023]
Affiliation(s)
- Amita Datta-Mannan
- Department of Drug Disposition, Development/Commercialization; Lilly Research Laboratories; Lilly Corporate Center; Indianapolis Indiana
| | - Jeffrey Boyles
- Department of Biotechnology Discovery Research; Lilly Research Laboratories; Lilly Corporate Center; Indianapolis Indiana
| | - Lihua Huang
- Department of Bioproduct Research/Development; Lilly Research Laboratories; Lilly Corporate Center; Indianapolis Indiana
| | - Zhaoyan Y. Jin
- Department of Drug Disposition, Development/Commercialization; Lilly Research Laboratories; Lilly Corporate Center; Indianapolis Indiana
| | - Amber Peariso
- Department of Biotechnology Discovery Research; Lilly Research Laboratories; Lilly Corporate Center; Indianapolis Indiana
| | - Anthony T. Murphy
- Department of Drug Disposition, Development/Commercialization; Lilly Research Laboratories; Lilly Corporate Center; Indianapolis Indiana
| | - Bernice Ellis
- Department of Drug Disposition, Development/Commercialization; Lilly Research Laboratories; Lilly Corporate Center; Indianapolis Indiana
| | - Nicole Douglass
- Department of Drug Disposition, Development/Commercialization; Lilly Research Laboratories; Lilly Corporate Center; Indianapolis Indiana
| | - Fariba Norouziyan-Cooper
- Department of Drug Disposition, Development/Commercialization; Lilly Research Laboratories; Lilly Corporate Center; Indianapolis Indiana
| | - Derrick R. Witcher
- Department of Biotechnology Discovery Research; Lilly Research Laboratories; Lilly Corporate Center; Indianapolis Indiana
| |
Collapse
|
43
|
Ichikawa S, Shimokawa N, Takagi M, Kitayama Y, Takeuchi T. Size-dependent uptake of electrically neutral amphipathic polymeric nanoparticles by cell-sized liposomes and an insight into their internalization mechanism in living cells. Chem Commun (Camb) 2018; 54:4557-4560. [DOI: 10.1039/c8cc00977e] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The size-dependent uptake of amphipathic uncharged-nanoparticles in cell-sized liposomes is emerging as a new insight into their internalization mechanism in living cells.
Collapse
Affiliation(s)
- S. Ichikawa
- Graduate School of Engineering
- Kobe University
- Kobe 657-8501
- Japan
| | - N. Shimokawa
- School of Materials Science
- Japan Advanced Institute of Science and Technology
- Ishikawa 923-1292
- Japan
| | - M. Takagi
- School of Materials Science
- Japan Advanced Institute of Science and Technology
- Ishikawa 923-1292
- Japan
| | - Y. Kitayama
- Graduate School of Engineering
- Kobe University
- Kobe 657-8501
- Japan
| | - T. Takeuchi
- Graduate School of Engineering
- Kobe University
- Kobe 657-8501
- Japan
- Medical Device Fabrication Engineering Center
| |
Collapse
|
44
|
Daeihamed M, Haeri A, Ostad SN, Akhlaghi MF, Dadashzadeh S. Doxorubicin-loaded liposomes: enhancing the oral bioavailability by modulation of physicochemical characteristics. Nanomedicine (Lond) 2017; 12:1187-1202. [DOI: 10.2217/nnm-2017-0007] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Aim: In this study, the effects of liposome characteristics on oral absorption of doxorubicin, as a hydrophilic low-permeability drug, were investigated. Materials & methods: Different doxorubicin-loaded liposomes were prepared, characterized and orally administered to 18 groups of rats. Plasma concentrations of doxorubicin and its aglycone metabolite were measured, and Caco-2 uptake and transport of optimum liposomes were investigated. Results: After studying different factors, a fourfold increase in oral bioavailability was achieved with the non-PEGylated, 120-nm-sized positively charged rigid liposomes (lipid to drug ratio = 10). The extent of drug’s first-pass metabolism as well as endocytosis of nanoparticles were markedly affected by liposomal formulation. Conclusion: Oral absorption is highly dependent on liposomal properties, and optimum formulations are effective for low-permeability drugs.
Collapse
Affiliation(s)
- Marjan Daeihamed
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Azadeh Haeri
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Seyed Nasser Ostad
- Department of Toxicology & Pharmacology, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoud Faghih Akhlaghi
- Department of Medicinal Chemistry, School of Pharmacy, Guilan University of Medical Sciences, Rasht, Iran
| | - Simin Dadashzadeh
- Department of Pharmaceutics, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Pharmaceutical Sciences Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
45
|
Krüger K, Schrader K, Klempt M. Cellular Response to Titanium Dioxide Nanoparticles in Intestinal Epithelial Caco-2 Cells is Dependent on Endocytosis-Associated Structures and Mediated by EGFR. NANOMATERIALS 2017; 7:nano7040079. [PMID: 28387727 PMCID: PMC5408171 DOI: 10.3390/nano7040079] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Revised: 04/05/2017] [Accepted: 04/05/2017] [Indexed: 02/03/2023]
Abstract
Titanium dioxide (TiO₂) is one of the most applied nanomaterials and widely used in food and non-food industries as an additive or coating material (E171). It has been shown that E171 contains up to 37% particles which are smaller than 100 nm and that TiO₂ nanoparticles (NPs) induce cytotoxicity and inflammation. Using a nuclear factor Kappa-light-chain enhancer of activated B cells (NF-κB) reporter cell line (Caco-2nfkb-RE), Real time polymerase chain reaction (PCR), and inhibition of dynamin and clathrin, it was shown that cellular responses induced by 5 nm and 10 nm TiO₂ NPs (nominal size) depends on endocytic processes. As endocytosis is often dependent on the epithelial growth factor receptor (EGFR), further investigations focused on the involvement of EGFR in the uptake of TiO₂ NPs: (1) inhibition of EGFR reduced inflammatory markers of the cell (i.e., nuclear factor (NF)-κB activity, mRNA of IL8, CCL20, and CXCL10); and (2) exposure of Caco-2 cells to TiO₂ NPs activated the intracellular EGFR cascade beginning with EGFR-mediated extracellular signal-regulated kinases (ERK)1/2, and including transcription factor ELK1. This was followed by the expression of ERK1/2 target genes CCL2 and CXCL3. We concluded that TiO₂ NPs enter the cell via EGFR-associated endocytosis, followed by activation of the EGFR/ERK/ELK signaling pathway, which finally induces NF-κB. No changes in inflammatory response are observed in Caco-2 cells exposed to 32 nm and 490 nm TiO₂ particles.
Collapse
Affiliation(s)
- Kristin Krüger
- Max Rubner-Institut (MRI), Federal Research Institute for Nutrition and Food, Department of Safety and Quality of Milk and Fish Products, Hermann-Weigmann-Straße 1, 24103 Kiel, Germany.
| | - Katrin Schrader
- Max Rubner-Institut (MRI), Federal Research Institute for Nutrition and Food, Department of Safety and Quality of Milk and Fish Products, Hermann-Weigmann-Straße 1, 24103 Kiel, Germany.
| | - Martin Klempt
- Max Rubner-Institut (MRI), Federal Research Institute for Nutrition and Food, Department of Safety and Quality of Milk and Fish Products, Hermann-Weigmann-Straße 1, 24103 Kiel, Germany.
| |
Collapse
|
46
|
Price D, Ackland ML, Suphioglu C. Identifying Epithelial Endocytotic Mechanisms of the Peanut Allergens Ara h 1 and Ara h 2. Int Arch Allergy Immunol 2017; 172:106-115. [DOI: 10.1159/000451085] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Accepted: 09/27/2016] [Indexed: 01/08/2023] Open
|
47
|
Gonzalez-Carter D, Goode AE, Fiammengo R, Dunlop IE, Dexter DT, Porter AE. Inhibition of Leptin-ObR Interaction Does not Prevent Leptin Translocation Across a Human Blood-Brain Barrier Model. J Neuroendocrinol 2016; 28. [PMID: 27037668 DOI: 10.1111/jne.12392] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/28/2015] [Revised: 03/31/2016] [Accepted: 03/31/2016] [Indexed: 01/01/2023]
Abstract
The adipocyte-derived hormone leptin regulates appetite and energy homeostasis through the activation of leptin receptors (ObR) on hypothalamic neurones; hence, leptin must be transported through the blood-brain barrier (BBB) to reach its target sites in the central nervous system. During obesity, however, leptin BBB transport is decreased, in part precluding leptin as a viable clinical therapy against obesity. Although the short isoform of the ObR (ObRa) has been implicated in the transport of leptin across the BBB as a result of its elevated expression in cerebral microvessels, accumulating evidence indicates that leptin BBB transport is independent of ObRa. In the present study, we employed an ObR-neutralising antibody (9F8) to directly examine the involvement of endothelial ObR in leptin transport across an in vitro human BBB model composed of the human endothelial cell line hCMEC/D3. Our results indicate that, although leptin transport across the endothelial monolayer was nonparacellular, and energy- and endocytosis-dependent, it was not inhibited by pre-treatment with 9F8, despite the ability of the latter to recognise hCMEC/D3-expressed ObR, prevent leptin-ObR binding and inhibit leptin-induced signal transducer and activator of transcription 3 (STAT-3) phosphorylation in hCMEC/D3 cells. Furthermore, hCMEC/D3 cells expressed the transporter protein low-density lipoprotein receptor-related protein-2 (LRP-2), which is capable of binding and endocytosing leptin. In conclusion, our results demonstrate that leptin binding to and signalling through ObR is not required for efficient transport across human endothelial monolayers, indicating that ObR is not the primary leptin transporter at the human BBB, a role which may fall upon LRP-2. A deeper understanding of leptin BBB transport will help clarify the exact causes for leptin resistance seen in obesity and aid in the development of more efficient BBB-penetrating leptin analogues.
Collapse
Affiliation(s)
- D Gonzalez-Carter
- Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
- Department of Materials, Faculty of Engineering, Imperial College London, London, UK
| | - A E Goode
- Department of Materials, Faculty of Engineering, Imperial College London, London, UK
| | - R Fiammengo
- Centre for Biomolecular Nanotechnologies @ UniLe, Istituto Italiano di Tecnologia (ITT), Arnesano, Lecce, Italy
| | - I E Dunlop
- Department of Materials, Faculty of Engineering, Imperial College London, London, UK
| | - D T Dexter
- Centre for Neuroinflammation and Neurodegeneration, Division of Brain Sciences, Department of Medicine, Imperial College London, London, UK
| | - A E Porter
- Department of Materials, Faculty of Engineering, Imperial College London, London, UK
| |
Collapse
|
48
|
Weis VG, Knowles BC, Choi E, Goldstein AE, Williams JA, Manning EH, Roland JT, Lapierre LA, Goldenring JR. Loss of MYO5B in mice recapitulates Microvillus Inclusion Disease and reveals an apical trafficking pathway distinct to neonatal duodenum. Cell Mol Gastroenterol Hepatol 2016; 2:131-157. [PMID: 27019864 PMCID: PMC4806369 DOI: 10.1016/j.jcmgh.2015.11.009] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2015] [Accepted: 11/25/2015] [Indexed: 12/10/2022]
Abstract
BACKGROUND AND AIMS Inactivating mutations in MYO5B cause severe neonatal diarrhea in Microvillus Inclusion Disease. Loss of active MYO5B causes the formation of pathognomonic inclusions and aberrations in brush border enzymes. METHODS We developed three mouse models of germline, constitutively intestinal targeted and inducible intestinal targeted deletion of MYO5B. The mice were evaluated for enterocyte cellular morphology. RESULTS Germline MYO5B KO mice showed early diarrhea and failure to thrive with evident microvillus inclusions and loss of apical transporters in the duodenum. IgG was present within inclusions. Apical transporters were lost and inclusions were present in the duodenum, but were nearly absent in the ileum. VillinCre;MYO5BF/F mice showed similar pathology and morphological changes in duodenal enterocytes. In contrast, when MYO5B KO was induced with tamoxifen treatment at 8 weeks of age, VillinCreERT2;MYO5BF/F mice developed severe diarrhea with loss of duodenal brush border enzymes, but few inclusions were observed in enterocytes. However, if tamoxifen is administered to 2-day-old VillinCreERT2;MYO5BF/F mice, prominent microvillus inclusions were observed. CONCLUSIONS The microvillus inclusions that develop after MYO5B loss reveal the presence of an unrecognized apical membrane trafficking pathway in neonatal duodenal enterocytes. However, the diarrheal pathology after MYO5B loss is due to deficits in transporter presentation at the apical membrane in duodenal enterocytes.
Collapse
Affiliation(s)
- Victoria G. Weis
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Byron C. Knowles
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Eunyoung Choi
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
- Nashville VA Medical Center, Nashville, Tennessee
| | - Anna E. Goldstein
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Janice A. Williams
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Elizabeth H. Manning
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
- Nashville VA Medical Center, Nashville, Tennessee
| | - Joseph T. Roland
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Lynne A. Lapierre
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
- Nashville VA Medical Center, Nashville, Tennessee
| | - James R. Goldenring
- Department of Surgery, Vanderbilt University School of Medicine, Nashville, Tennessee
- Epithelial Biology Center, Vanderbilt University School of Medicine, Nashville, Tennessee
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
- Nashville VA Medical Center, Nashville, Tennessee
| |
Collapse
|
49
|
Cellular mechanism of oral absorption of solidified polymer micelles. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2015; 11:1993-2002. [DOI: 10.1016/j.nano.2015.07.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2015] [Revised: 06/22/2015] [Accepted: 07/13/2015] [Indexed: 12/23/2022]
|
50
|
Wu CH, Chen YP, Liu SL, Chien FC, Mou CY, Cheng RP. Attenuating HIV Tat/TAR-mediated protein expression by exploring the side chain length of positively charged residues. Org Biomol Chem 2015; 13:11096-104. [PMID: 26399751 DOI: 10.1039/c5ob01729g] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
RNA is a drug target involved in diverse cellular functions and viral processes. Molecules that inhibit the HIV TAR RNA-Tat protein interaction may attenuate Tat/TAR-dependent protein expression and potentially serve as anti-HIV therapeutics. By incorporating positively charged residues with mixed side chain lengths, we designed peptides that bind TAR RNA with enhanced intracellular activity. Tat-derived peptides that were individually substituted with positively charged residues with varying side chain lengths were evaluated for TAR RNA binding. Positively charged residues with different side chain lengths were incorporated at each Arg and Lys position in the Tat-derived peptide to enhance TAR RNA binding. The resulting peptides showed enhanced TAR RNA binding affinity, cellular uptake, nuclear localization, proteolytic resistance, and inhibition of intracellular Tat/TAR-dependent protein expression compared to the parent Tat-derived peptide with no cytotoxicity. Apparently, the enhanced inhibition of protein expression by these peptides was not determined by RNA binding affinity, but by proteolytic resistance. Despite the high TAR binding affinity, a higher binding specificity would be necessary for practical purposes. Importantly, altering the positively charged residue side chain length should be a viable strategy to generate potentially useful RNA-targeting bioactive molecules.
Collapse
Affiliation(s)
- Cheng-Hsun Wu
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | | | | | | | | | | |
Collapse
|