1
|
Jasemi SV, Khazaei H, Morovati MR, Joshi T, Aneva IY, Farzaei MH, Echeverría J. Phytochemicals as treatment for allergic asthma: Therapeutic effects and mechanisms of action. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 122:155149. [PMID: 37890444 DOI: 10.1016/j.phymed.2023.155149] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 08/19/2023] [Accepted: 10/14/2023] [Indexed: 10/29/2023]
Abstract
BACKGROUND Allergic asthma is an inflammatory disease caused by the immune system's reaction to allergens, inflammation and narrowing of the airways, and the production of more than normal mucus. One of the main reasons is an increased production of inflammatory cytokines in the lungs that leads to the appearance of symptoms of asthma, including inflammation and shortness of breath. On the other hand, it has been proven that phytochemicals with their antioxidant and anti-inflammatory properties can be useful in improving allergic asthma. PURPOSE Common chemical treatments for allergic asthma include corticosteroids, which have many side effects and temporarily relieve symptoms but are not a cure. Therefore, taking the help of natural compounds to improve the quality of life of asthmatic patients can be a valuable issue that has been evaluated in the present review. STUDY DESIGN AND METHODS In this study, three databases (Scopus, PubMed, and Cochrane) with the keywords: allergic asthma, phytochemical, plant, and herb were evaluated. The primary result was 5307 articles. Non-English, repetitive, and review articles were deleted from the study. RESULTS AND DISCUSSION Finally, after carefully reading the articles, 102 were included in the study (2006-2022). The results of this review state that phytochemicals suppress the inflammatory pathways via inhibition of inflammatory cytokines production/secretion, genes, and proteins involved in the inflammation process, reducing oxidative stress indicators and symptoms of allergic asthma, such as cough and mucus production in the lungs. CONCLUSION With their antioxidant effects, this study concluded that phytochemicals suppress cytokines and other inflammatory indicators and thus can be considered an adjunctive treatment for improving allergic asthma.
Collapse
Affiliation(s)
- Seyed Vahid Jasemi
- Department of Internal Medicine, Faculty of Medicine, Kermanshah University of Medical Sciences, Iran
| | - Hosna Khazaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mohammad Reza Morovati
- Persian Medicine Department, Faculty of Medicine, Kermanshah University of Medical Sciences, Kermanshah 6714869914, Iran
| | - Tanuj Joshi
- Department of Pharmaceutical Sciences, Bhimtal, Kumaun University (Nainital), Uttarakhand, India
| | - Ina Yosifova Aneva
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia, Bulgaria
| | - Mohammad Hosein Farzaei
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Javier Echeverría
- Departamento de Ciencias del Ambiente, Facultad de Química y Biología, Universidad de Santiago de Chile, Santiago, Chile.
| |
Collapse
|
2
|
Kunnumakkara AB, Rana V, Parama D, Banik K, Girisa S, Henamayee S, Thakur KK, Dutta U, Garodia P, Gupta SC, Aggarwal BB. COVID-19, cytokines, inflammation, and spices: How are they related? Life Sci 2021; 284:119201. [PMID: 33607159 PMCID: PMC7884924 DOI: 10.1016/j.lfs.2021.119201] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 01/20/2021] [Accepted: 01/30/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND Cytokine storm is the exaggerated immune response often observed in viral infections. It is also intimately linked with the progression of COVID-19 disease as well as associated complications and mortality. Therefore, targeting the cytokine storm might help in reducing COVID-19-associated health complications. The number of COVID-19 associated deaths (as of January 15, 2021; https://www.worldometers.info/coronavirus/) in the USA is high (1199/million) as compared to countries like India (110/million). Although the reason behind this is not clear, spices may have some role in explaining this difference. Spices and herbs are used in different traditional medicines, especially in countries such as India to treat various chronic diseases due to their potent antioxidant and anti-inflammatory properties. AIM To evaluate the literature available on the anti-inflammatory properties of spices which might prove beneficial in the prevention and treatment of COVID-19 associated cytokine storm. METHOD A detailed literature search has been conducted on PubMed for collecting information pertaining to the COVID-19; the history, origin, key structural features, and mechanism of infection of SARS-CoV-2; the repurposed drugs in use for the management of COVID-19, and the anti-inflammatory role of spices to combat COVID-19 associated cytokine storm. KEY FINDINGS The literature search resulted in numerous in vitro, in vivo and clinical trials that have reported the potency of spices to exert anti-inflammatory effects by regulating crucial molecular targets for inflammation. SIGNIFICANCE As spices are derived from Mother Nature and are inexpensive, they are relatively safer to consume. Therefore, their anti-inflammatory property can be exploited to combat the cytokine storm in COVID-19 patients. This review thus focuses on the current knowledge on the role of spices for the treatment of COVID-19 through suppression of inflammation-linked cytokine storm.
Collapse
Affiliation(s)
- Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India.
| | - Varsha Rana
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Sahu Henamayee
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam 781039, India
| | - Uma Dutta
- Cell and Molecular Biology Lab, Department of Zoology, Cotton University, Guwahati, Assam 781001, India
| | | | - Subash C Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | | |
Collapse
|
3
|
Majumdar S, Verma R, Saha A, Bhattacharyya P, Maji P, Surjit M, Kundu M, Basu J, Saha S. Perspectives About Modulating Host Immune System in Targeting SARS-CoV-2 in India. Front Genet 2021; 12:637362. [PMID: 33664772 PMCID: PMC7921795 DOI: 10.3389/fgene.2021.637362] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/19/2021] [Indexed: 12/16/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), the causative agent of coronavirus induced disease-2019 (COVID-19), is a type of common cold virus responsible for a global pandemic which requires immediate measures for its containment. India has the world's largest population aged between 10 and 40 years. At the same time, India has a large number of individuals with diabetes, hypertension and kidney diseases, who are at a high risk of developing COVID-19. A vaccine against the SARS-CoV-2, may offer immediate protection from the causative agent of COVID-19, however, the protective memory may be short-lived. Even if vaccination is broadly successful in the world, India has a large and diverse population with over one-third being below the poverty line. Therefore, the success of a vaccine, even when one becomes available, is uncertain, making it necessary to focus on alternate approaches of tackling the disease. In this review, we discuss the differences in COVID-19 death/infection ratio between urban and rural India; and the probable role of the immune system, co-morbidities and associated nutritional status in dictating the death rate of COVID-19 patients in rural and urban India. Also, we focus on strategies for developing masks, vaccines, diagnostics and the role of drugs targeting host-virus protein-protein interactions in enhancing host immunity. We also discuss India's strengths including the resources of medicinal plants, good food habits and the role of information technology in combating COVID-19. We focus on the Government of India's measures and strategies for creating awareness in the containment of COVID-19 infection across the country.
Collapse
Affiliation(s)
| | - Rohit Verma
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Avishek Saha
- Ubiquitous Analytical Techniques, CSIR-Central Scientific Instruments Organisation, Chandigarh, India
| | | | - Pradipta Maji
- Biomedical Imaging and Bioinformatics Lab, Machine Intelligence Unit, Indian Statistical Institute, Kolkata, India
| | - Milan Surjit
- Virology Laboratory, Vaccine and Infectious Disease Research Centre, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | | | - Joyoti Basu
- Department of Chemistry, Bose Institute, Kolkata, India
| | - Sudipto Saha
- Division of Bioinformatics, Bose Institute, Kolkata, India
| |
Collapse
|
4
|
Low Level of Allergens in the Argentinean Plant Zuccagnia punctata Cav.: Screening and Quality Control of North-Western Propolis Using an LC-DAD-QTOF System. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9173546] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
North-western Argentinean propolis (NAP), having promising bioactivity, was recently included into the National Food Code. Zuccagnia punctata Cav., a native shrub of north-western Argentina, is one of the prevalent botanical sources of NAPs, but no information on its allergenic constituents was available so far. A liquid chromatography-diode array detector -quadrupole-time of flight system (LC-DAD-QTOF) was used as a screening method for the reliable identification of sensitizing agents belonging to caffeic acid derivatives in Z. punctata and in two NAPs collected in the provinces of Catamarca and Tucumán. Caffeic acid phenethyl ester, one of the most active allergens in propolis, was never detected in either Z. punctata or NAP. Among 31 sensitizers, only geranyl caffeate was alleged in Z. punctata as <10% of its major constituent, whereas three caffeic acid derivatives with strong allergenic effect, i.e., geranyl, pentenyl, and benzyl caffeates, occurred in NAP samples (29%–36% of the Z. punctata major constituent), indicating other minor botanical sources. However, the high content of chalcones and flavonoids ascribed to Z. punctata significantly contributes to the antiallergenic and antioxidant character of these NAPs. This peculiar chemical profile depends on the extremophile condition in which this shrub grows and suggests other studies to characterize such raw materials for oral and topical formulations.
Collapse
|
5
|
Lee JP, Kang MG, Lee JY, Oh JM, Baek SC, Leem HH, Park D, Cho ML, Kim H. Potent inhibition of acetylcholinesterase by sargachromanol I from Sargassum siliquastrum and by selected natural compounds. Bioorg Chem 2019; 89:103043. [PMID: 31200287 DOI: 10.1016/j.bioorg.2019.103043] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 06/03/2019] [Accepted: 06/03/2019] [Indexed: 12/24/2022]
Abstract
Six hundred forty natural compounds were tested for acetylcholinesterase (AChE) and butyrylcholinesterase (BChE) inhibitory activities. Of those, sargachromanol I (SCI) and G (SCG) isolated from the brown alga Sargassum siliquastrum, dihydroberberine (DB) isolated from Coptis chinensis, and macelignan (ML) isolated from Myristica fragrans, potently and effectively inhibited AChE with IC50 values of 0.79, 1.81, 1.18, and 4.16 µM, respectively. SCI, DB, and ML reversibly inhibited AChE and showed mixed, competitive, and noncompetitive inhibition, respectively, with Ki values of 0.63, 0.77, and 4.46 µM, respectively. Broussonin A most potently inhibited BChE (IC50 = 4.16 µM), followed by ML, SCG, and SCI (9.69, 10.79, and 13.69 µM, respectively). In dual-targeting experiments, ML effectively inhibited monoamine oxidase B with the greatest potency (IC50 = 7.42 µM). Molecular docking simulation suggested the binding affinity of SCI (-8.6 kcal/mol) with AChE was greater than those of SCG (-7.9 kcal/mol) and DB (-8.2 kcal/mol). Docking simulation indicated SCI interacts with AChE at Trp81, and that SCG interacts at Ser119. No hydrogen bond was predicted for the interaction between AChE and DB. This study suggests SCI, SCG, DB, and ML be viewed as new reversible AChE inhibitors and useful lead compounds for the development for the treatment of Alzheimer's disease.
Collapse
Affiliation(s)
- Jae Pil Lee
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Myung-Gyun Kang
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Joon Yeop Lee
- National Development Institute of Korean Medicine, Gyeongsan 38540, Republic of Korea
| | - Jong Min Oh
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Seung Cheol Baek
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Hyun Hee Leem
- National Development Institute of Korean Medicine, Gyeongsan 38540, Republic of Korea
| | - Daeui Park
- Department of Predictive Toxicology, Korea Institute of Toxicology, Daejeon 34114, Republic of Korea
| | - Myoung-Lae Cho
- National Development Institute of Korean Medicine, Gyeongsan 38540, Republic of Korea
| | - Hoon Kim
- Department of Pharmacy, and Research Institute of Life Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea.
| |
Collapse
|
6
|
Pemmari A, Leppänen T, Paukkeri EL, Scotece M, Hämäläinen M, Moilanen E. Attenuating Effects of Nortrachelogenin on IL-4 and IL-13 Induced Alternative Macrophage Activation and on Bleomycin-Induced Dermal Fibrosis. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:13405-13413. [PMID: 30458613 DOI: 10.1021/acs.jafc.8b03023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Excessive alternative macrophage activation contributes to fibrosis. We studied the effects of nortrachelogenin, the major lignan component of Pinus sylvestris knot extract, on alternative (M2) macrophage activation. J774 murine and THP-1 human macrophages were cultured with IL-4+IL-13 to induce alternative activation, together with the extract and its components. Effects of nortrachelogenin were also studied in bleomycin-induced murine dermal fibrosis model. Knot extract significantly decreased the expression of alternative activation markers-arginase 1 in murine macrophages (97.4 ± 1.3% inhibition at 30 μg/mL) and CCL13 and PDGF in human macrophages-as did nortrachelogenin (94.9 ± 2.4% inhibition of arginase 1 at 10 μM). Nortrachelogenin also decreased PPARγ expression but had no effect on STAT6 phosphorylation. In vivo, nortrachelogenin reduced bleomycin-induced increase in skin thickness as well as the expression of collagens COL1A1, COL1A2, and COL3A1 (all by >50%). In conclusion, nortrachelogenin suppressed IL-4+IL-13-induced alternative macrophage activation and ameliorated bleomycin-induced fibrosis, indicating therapeutic potential in fibrosing conditions.
Collapse
Affiliation(s)
- Antti Pemmari
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology , Tampere University and Tampere University Hospital , Tampere , Finland
| | - Tiina Leppänen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology , Tampere University and Tampere University Hospital , Tampere , Finland
| | - Erja-Leena Paukkeri
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology , Tampere University and Tampere University Hospital , Tampere , Finland
| | - Morena Scotece
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology , Tampere University and Tampere University Hospital , Tampere , Finland
| | - Mari Hämäläinen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology , Tampere University and Tampere University Hospital , Tampere , Finland
| | - Eeva Moilanen
- The Immunopharmacology Research Group, Faculty of Medicine and Health Technology , Tampere University and Tampere University Hospital , Tampere , Finland
| |
Collapse
|
7
|
Kunnumakkara AB, Sailo BL, Banik K, Harsha C, Prasad S, Gupta SC, Bharti AC, Aggarwal BB. Chronic diseases, inflammation, and spices: how are they linked? J Transl Med 2018; 16:14. [PMID: 29370858 PMCID: PMC5785894 DOI: 10.1186/s12967-018-1381-2] [Citation(s) in RCA: 194] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Accepted: 01/10/2018] [Indexed: 01/17/2023] Open
Abstract
Extensive research within the last several decades has revealed that the major risk factors for most chronic diseases are infections, obesity, alcohol, tobacco, radiation, environmental pollutants, and diet. It is now well established that these factors induce chronic diseases through induction of inflammation. However, inflammation could be either acute or chronic. Acute inflammation persists for a short duration and is the host defense against infections and allergens, whereas the chronic inflammation persists for a long time and leads to many chronic diseases including cancer, cardiovascular diseases, neurodegenerative diseases, respiratory diseases, etc. Numerous lines of evidence suggest that the aforementioned risk factors induced cancer through chronic inflammation. First, transcription factors NF-κB and STAT3 that regulate expression of inflammatory gene products, have been found to be constitutively active in most cancers; second, chronic inflammation such as pancreatitis, prostatitis, hepatitis etc. leads to cancers; third, activation of NF-κB and STAT3 leads to cancer cell proliferation, survival, invasion, angiogenesis and metastasis; fourth, activation of NF-κB and STAT3 leads to resistance to chemotherapy and radiation, and hypoxia and acidic conditions activate these transcription factors. Therefore, targeting these pathways may provide opportunities for both prevention and treatment of cancer and other chronic diseases. We will discuss in this review the potential of various dietary agents such as spices and its components in the suppression of inflammatory pathways and their roles in the prevention and therapy of cancer and other chronic diseases. In fact, epidemiological studies do indicate that cancer incidence in countries such as India where spices are consumed daily is much lower (94/100,000) than those where spices are not consumed such as United States (318/100,000), suggesting the potential role of spices in cancer prevention.
Collapse
Affiliation(s)
- Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| | - Bethsebie L Sailo
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Choudhary Harsha
- Cancer Biology Laboratory and DBT-AIST International Laboratory for Advanced Biomedicine (DAILAB), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Sahdeo Prasad
- University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Subash Chandra Gupta
- Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Alok Chandra Bharti
- Molecular Oncology Laboratory, Department of Zoology, University of Delhi (North Campus), Delhi, 110007, India
| | | |
Collapse
|
8
|
Kim DE, Lee Y, Kim M, Lee S, Jon S, Lee SH. Bilirubin nanoparticles ameliorate allergic lung inflammation in a mouse model of asthma. Biomaterials 2017. [PMID: 28624706 DOI: 10.1016/j.biomaterials.2017.06.014] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Although asthma, a chronic inflammatory airway disease, is relatively well-managed by inhaled corticosteroids, the side effects associated with the long-term use of these agents precipitate the need for alternative therapeutic options based on differing modes of action. Bilirubin, a potent endogenous antioxidant, and anti-inflammatory molecule have been shown to ameliorate asthmatic symptoms; however, its clinical translation has been limited owing to its water insolubility and associated potential toxicity. Here we report the first application of bilirubin-based nanoparticles (BRNPs) as a nanomedicine for the treatment of allergic lung inflammatory disease. BRNPs were prepared directly from self-assembly of PEGylated bilirubin in aqueous solution and had a hydrodynamic diameter of ∼100 nm. Because allergen-specific type 2 T-helper (Th2) cells play a key role in the pathogenesis and progression of allergic asthma, the effects of BRNPs on Th2 immune responses were investigated both in vivo and in vitro. BRNPs after intravenous injection (i.v.) showed much higher serum concentration and a longer circulation time of bilirubin than the intraperitoneal injection (i.p.) of BRNPs or unconjugated bilirubin (UCB). The anti-asthmatic effects of BRNPs were assessed in a mouse model of allergen-induced asthma. Compared with UCB, treatment with BRNPs suppressed the symptoms of experimental allergic asthma and dramatically ameliorated Th2-related allergic lung inflammation. Consistent with these results, BRNPs caused a reduction of Th2 cell populations and the expression of related cytokines by antibody-stimulated CD4+ T cells in vitro. Therefore, our results establish BRNPs as an important immunomodulatory agent that may be useful as a therapeutic for allergic lung inflammatory disease and other immune-mediated disorders.
Collapse
Affiliation(s)
- Dong Eon Kim
- Biomedical Science and Engineering Interdisciplinary Program, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea; Graduate School of Medical Science and Engineering, Biomedical Research Center, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Yonghyun Lee
- Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - MinGyo Kim
- Graduate School of Medical Science and Engineering, Biomedical Research Center, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Soyoung Lee
- Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea
| | - Sangyong Jon
- Graduate School of Medical Science and Engineering, Biomedical Research Center, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea; Department of Biological Sciences, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea.
| | - Seung-Hyo Lee
- Biomedical Science and Engineering Interdisciplinary Program, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea; Graduate School of Medical Science and Engineering, Biomedical Research Center, KAIST Institute for the BioCentury, Korea Advanced Institute of Science and Technology (KAIST), 291 Daehak-ro, Yuseong-gu, Daejeon, 34141, South Korea.
| |
Collapse
|
9
|
Abourashed EA, El-Alfy AT. Chemical diversity and pharmacological significance of the secondary metabolites of nutmeg ( Myristica fragrans Houtt.). PHYTOCHEMISTRY REVIEWS : PROCEEDINGS OF THE PHYTOCHEMICAL SOCIETY OF EUROPE 2016; 15:1035-1056. [PMID: 28082856 PMCID: PMC5222521 DOI: 10.1007/s11101-016-9469-x] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Accepted: 05/04/2016] [Indexed: 05/19/2023]
Abstract
Nutmeg is a valued kitchen spice that has been used for centuries all over the world. In addition to its use in flavoring foods and beverages, nutmeg has been used in traditional remedies for stomach and kidney disorders. The antioxidant, antimicrobial and central nervous system effects of nutmeg have also been reported in literature. Nutmeg is a rich source of fixed and essential oil, triterpenes, and various types of phenolic compounds. Many of the secondary metabolites of nutmeg exhibit biological activities that may support its use in traditional medicine. This article provides an overview of the chemistry of secondary metabolites isolated from nutmeg kernel and mace including common methods for analysis of extracts and pure compounds as well as recent approaches towards total synthesis of some of the major constituents. A summary of the most significant pharmacological investigations of potential drug leads isolated from nutmeg and reported in the last decade is also included.
Collapse
Affiliation(s)
- Ehab A. Abourashed
- To whom correspondence should be addressed. Phone: 773-821-2159; Fax: 773-821-2595;
| | | |
Collapse
|
10
|
Kiyofuji K, Kurauchi Y, Hisatsune A, Seki T, Mishima S, Katsuki H. A natural compound macelignan protects midbrain dopaminergic neurons from inflammatory degeneration via microglial arginase-1 expression. Eur J Pharmacol 2015; 760:129-35. [PMID: 25917324 DOI: 10.1016/j.ejphar.2015.04.021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 04/05/2015] [Accepted: 04/08/2015] [Indexed: 11/16/2022]
Abstract
Inflammatory events involving activated microglia have been recognized to play an important role in pathogenesis of various neurodegenerative disorders including Parkinson disease. Compounds regulating activation profiles of microglia may provide therapeutic benefits for Parkinson disease characterized by degeneration of midbrain dopaminergic neurons. Here we examined the effect of macelignan, a compound derived from nutmeg, on inflammatory degeneration of midbrain dopaminergic neurons. Treatment of midbrain slice cultures with interferon (IFN)-γ and lipopolysaccharide (LPS) caused a substantial decrease in viable dopaminergic neurons and an increase in nitric oxide (NO) production indicated by extracellular nitrite accumulation. Application of macelignan (10 μM) concomitantly with LPS prevented the loss of dopaminergic neurons. Besides nitrite accumulation, up-regulation of inducible NO synthase protein expression in response to IFN-γ/LPS was confirmed by Western blotting, and immunohistochemical examination revealed expression of inducible NO synthase in a subpopulation of Iba-1-poitive microglia. However, macelignan did not affect any of these NO-related parameters. On the other hand, macelignan promoted expression of arginase-1 in midbrain slice cultures irrespective of the presence or the absence of IFN-γ/LPS treatment. Arginase-1 expression was mainly localized in a subpopulation of Iba-1-positive cells. Importantly, the neuroprotective effect of macelignan was antagonized by N(ω)-hydroxy-nor-L-arginine, a specific arginase inhibitor. The neuroprotective effect of macelignan was also prevented by GW9662, a peroxisome proliferator-activated receptor γ (PPARγ) antagonist. Overall, these results indicate that macelignan, a compound with PPARγ agonist activity, can provide neuroprotective effect on dopaminergic neurons in an arginase-dependent but NO-independent manner.
Collapse
Affiliation(s)
- Kana Kiyofuji
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yuki Kurauchi
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Japan; Program for Leading Graduate Schools "HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, Kumamoto, Japan
| | - Akinori Hisatsune
- Priority Organization for Innovation and Excellence, Kumamoto University, Kumamoto, Japan; Program for Leading Graduate Schools "HIGO (Health Life Science: Interdisciplinary and Glocal Oriented) Program", Kumamoto University, Kumamoto, Japan
| | - Takahiro Seki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan
| | - Satoshi Mishima
- Department of Food and Nutritional Sciences, Graduate School of Bioscience and Biotechnology, Chubu University, Kasugai, Japan
| | - Hiroshi Katsuki
- Department of Chemico-Pharmacological Sciences, Graduate School of Pharmaceutical Sciences, Kumamoto University, Kumamoto, Japan.
| |
Collapse
|
11
|
Liu H, Wu Z, Ma Z, Wu B. Glucuronidation of macelignan by human liver microsomes and expressed UGT enzymes: identification of UGT1A1 and 2B7 as the main contributing enzymes. Biopharm Drug Dispos 2014; 35:513-24. [PMID: 25099990 DOI: 10.1002/bdd.1914] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 07/22/2014] [Accepted: 07/30/2014] [Indexed: 01/14/2023]
Affiliation(s)
- Hongming Liu
- Division of Pharmaceutics, College of Pharmacy; Jinan University; 601 Huangpu Avenue West Guangzhou 510632 China
| | - Zhufeng Wu
- Division of Pharmaceutics, College of Pharmacy; Jinan University; 601 Huangpu Avenue West Guangzhou 510632 China
| | - Zhiguo Ma
- Division of Pharmaceutics, College of Pharmacy; Jinan University; 601 Huangpu Avenue West Guangzhou 510632 China
| | - Baojian Wu
- Division of Pharmaceutics, College of Pharmacy; Jinan University; 601 Huangpu Avenue West Guangzhou 510632 China
| |
Collapse
|
12
|
Huang XP, Tao EX, Feng ZQ, Yang ZL, Zhang WF. Inhibitory effect of sihuangxiechai decoction on ovalbumin-induced airway inflammation in Guinea pigs. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2014; 2014:965429. [PMID: 25101137 PMCID: PMC4101944 DOI: 10.1155/2014/965429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/20/2014] [Accepted: 05/27/2014] [Indexed: 11/17/2022]
Abstract
The aim of this study was to investigate the effect of sihuangxiechai decoction on asthmatic Guinea pig model which was sensitized by intraperitoneal (i.p.) injection of ovalbumin (OVA) and challenged by OVA inhalation to induce chronic airway inflammation. Differential cell counts of cytospins were performed after staining with Giemsa solution. The quantity of leukocytes and its classification in bronchoalveolar lavage fluid (BALF) and blood were evaluated by blood cell analyzer and microscope. Histological analysis of the lung was performed by hematoxylin and eosin (H&E) staining. The levels of interleukin-4 (IL-4) and tumor necrosis factor-alpha (TNF-α) in BALF and serum were detected by radioimmunoassay (RIA). The total number of leukocytes in BALF and blood has no significant difference between Sihuangxiechaitang decoction treated group and dexamethasone (DXM) treated group but was significantly lower than those of asthma group. The percentage of eosinophils in lung tissues of sihuangxiechai decoction treated group was significantly lower than that of asthma group. The results demonstrated that the levels of IL-4 and TNF-α in the sihuangxiechai decoction treated group were significantly reduced compared with the asthma group. In conclusion, these findings demonstrate that sihuangxiechai decoction has a protective effect on OVA-induced asthma in reducing airway inflammation and airway hyperresponsiveness (AHR) in a Guinea pig model and may be useful as an adjuvant therapy for the treatment of bronchial asthma.
Collapse
Affiliation(s)
- Xue Ping Huang
- Department of Radiology, Affiliated Hospital of Weifang Medical University, No. 2428, Yuhe Street, Weifang, Shandong 261031, China
| | - En Xue Tao
- Universtiy Hospital of Weifang Medical University, Weifang, Shandong 261053, China
| | - Zhan Qin Feng
- College of Pharmacy and Biological Science, Weifang Medical University, No. 7166, Baotong West Street, Weifang, Shandong 261053, China
| | - Zhao Lu Yang
- Department of Radiology, Affiliated Hospital of Weifang Medical University, No. 2428, Yuhe Street, Weifang, Shandong 261031, China
| | - Wei Fen Zhang
- College of Pharmacy and Biological Science, Weifang Medical University, No. 7166, Baotong West Street, Weifang, Shandong 261053, China
| |
Collapse
|