1
|
Guetat A. The Genus Deverra DC. (Syn. Pituranthos Viv.): A natural valuable source of bioactive phytochemicals: A review of traditional uses, phytochemistry and pharmacological properties. JOURNAL OF ETHNOPHARMACOLOGY 2022; 284:114447. [PMID: 34737008 DOI: 10.1016/j.jep.2021.114447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/15/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
The genus Deverra DC. (Apiaceae) comprising only 13 taxa (9 species and 4 subspecies level) with disjunctive distribution in South Africa, in North Africa to Arabian Ecoregion. Thesis, books, Scientific journals, and reports were referred to collect information on the Deverra species. This present work reviewed the literature from 1900 to the end of January 2021. The aim of the review is to highlight traditional uses, phytochemistry and pharmacological properties of the species of the genus. The ethnopharmacologial uses of plant taxa belonging to this genus indicated that plant extracts, Essentail Oils (EOs) and infusion of aerial parts (APs) have been used in traditional popular medicine. The plants are used as a treatment of various purposes, such as asthma, rheumatism, fevers, hepatitis, diabetes and digestive difficulties. This present work focuses on ethnopharmacology of the Deverra species, the phytochemistry, pharmacology, toxicology among other studies on the genus. The present article summarizes on known and potential effects of the Deverra species as well as traditional medicine uses corroborated with pharmacological evidences. By the end of the review, Deverra species have a large application of bioactivities and the most described activities of Deverra plants are attributed to the presence of essential oils, coumarins, furocoumarins, flavonoids and phenolics. CONCLUSIONS: The review confirms that some Deverra taxa have been reported as a valuable source for flavoring and as a condiment as well as in the traditional medicine for the treatment of hypertension, to relief stomach pain and against intestinal parasites against spasms, pains, diabetes, hepatitis, digestive difficulties, urinary infections … etc. Nonetheless, for the valorisation of Deverra species in order to prevent and treat various diseases, further pharmacological investigations are strongly required to determine the mechanism of action, test the safety and the efficacity before starting clinical trials at big scale.
Collapse
Affiliation(s)
- Arbi Guetat
- Northern Border University, College of Sciences, Department of Biological Sciences, Arar, Saudi Arabia; University of Carthage, National Institute of Applied Science and Technology, Department of Biology, Laboratory of Plant Biotechnology, B.P. 676, 1080, Tunis Cedex, Tunisia.
| |
Collapse
|
2
|
Li M, Lan L, Zhang S, Xu Y, He W, Xiang D, Liu D, Ren X, Zhang C. IL-6 downregulates hepatic carboxylesterases via NF-κB activation in dextran sulfate sodium-induced colitis. Int Immunopharmacol 2021; 99:107920. [PMID: 34217990 DOI: 10.1016/j.intimp.2021.107920] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 06/13/2021] [Accepted: 06/21/2021] [Indexed: 10/21/2022]
Abstract
Ulcerative colitis (UC) is associated with increased levels of inflammatory factors, which is attributed to the abnormal expression and activity of enzymes and transporters in the liver, affecting drug disposition in vivo. This study aimed to examine the impact of intestinal inflammation on the expression of hepatic carboxylesterases (CESs) in a mouse model of dextran sulfate sodium (DSS)-induced colitis. Two major CESs isoforms, CES1 and CES2, were down-regulated, accompanied by decreases in hepatic microsomal metabolism of clopidogrel and irinotecan. Meanwhile, IL-6 levels significantly increased compared with other inflammatory factors in the livers of UC mice. In contrast, using IL-6 antibody simultaneously reversed the down-regulation of CES1, CES2, pregnane X receptor (PXR), and constitutive androstane receptor (CAR), as well as the nuclear translocation of NF-κB in the liver. We further confirmed that treatment with NF-κB inhibitor abolished IL-6-induced down-regulation of CES1, CES2, PXR, and CAR in vitro. Thus, it was concluded that IL-6 represses hepatic CESs via the NF-κB pathway in DSS-induced colitis. These findings indicate that caution should be exercised concerning the proper and safe use of therapeutic drugs in patients with UC.
Collapse
Affiliation(s)
- Min Li
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430043, China
| | - Lulu Lan
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430043, China
| | - Si Zhang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430043, China
| | - Yanjiao Xu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430043, China
| | - Wenxi He
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430043, China
| | - Dong Xiang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430043, China
| | - Dong Liu
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430043, China.
| | - Xiuhua Ren
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430043, China.
| | - Chengliang Zhang
- Department of Pharmacy, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province 430043, China.
| |
Collapse
|
3
|
Sasikumar R, Vivek K, Jaiswal AK. Effect of spray drying conditions on the physical characteristics, amino acid profile, and bioactivity of blood fruit (
Haematocarpus
validus
Bakh.F. Ex Forman) seed protein isolate. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15568] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Affiliation(s)
- Raju Sasikumar
- Department of Agribusiness Management and Food Technology North Eastern Hill University (NEHU), Tura Campus Tura, West Garo Hills India
| | | | - Amit K. Jaiswal
- School of Food Science and Environmental Health College of Sciences and HealthTechnological University Dublin ‐ City Campus Grangegorman, Dublin Ireland
- Environmental Sustainability and Health Institute Technological University Dublin City Campus Grangegorman, Dublin Ireland
| |
Collapse
|
4
|
Daujat-Chavanieu M, Gerbal-Chaloin S. Regulation of CAR and PXR Expression in Health and Disease. Cells 2020; 9:E2395. [PMID: 33142929 PMCID: PMC7692647 DOI: 10.3390/cells9112395] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 10/22/2020] [Accepted: 10/28/2020] [Indexed: 12/12/2022] Open
Abstract
Pregnane X receptor (PXR, NR1I2) and constitutive androstane receptor (CAR, NR1I3) are members of the nuclear receptor superfamily that mainly act as ligand-activated transcription factors. Their functions have long been associated with the regulation of drug metabolism and disposition, and it is now well established that they are implicated in physiological and pathological conditions. Considerable efforts have been made to understand the regulation of their activity by their cognate ligand; however, additional regulatory mechanisms, among which the regulation of their expression, modulate their pleiotropic effects. This review summarizes the current knowledge on CAR and PXR expression during development and adult life; tissue distribution; spatial, temporal, and metabolic regulations; as well as in pathological situations, including chronic diseases and cancers. The expression of CAR and PXR is modulated by complex regulatory mechanisms that involve the interplay of transcription factors and also post-transcriptional and epigenetic modifications. Moreover, many environmental stimuli affect CAR and PXR expression through mechanisms that have not been elucidated.
Collapse
Affiliation(s)
| | - Sabine Gerbal-Chaloin
- IRMB, University of Montpellier, INSERM, CHU Montpellier, 34295 Montpellier, France;
| |
Collapse
|
5
|
Shen Y, Shi Z, Yan B. Carboxylesterases: Pharmacological Inhibition Regulated Expression and Transcriptional Involvement of Nuclear Receptors and other Transcription Factors. NUCLEAR RECEPTOR RESEARCH 2019. [DOI: 10.32527/2019/101435] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Affiliation(s)
- Yuanjun Shen
- Pittsburgh Heart, Lung and Blood Vascular Medicine Institute, University of Pittsburgh Department of Medicine, Pittsburgh, PA 15261, USA
| | - Zhanquan Shi
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA
| | - Bingfang Yan
- Division of Pharmaceutical Sciences, James L. Winkle College of Pharmacy, University of Cincinnati, Cincinnati, OH 45229, USA
| |
Collapse
|
6
|
Yang X, Zhang X, Liu Y, Xi T, Xiong J. Insulin transcriptionally down-regulates carboxylesterases through pregnane X receptor in an Akt-dependent manner. Toxicology 2019; 422:60-68. [DOI: 10.1016/j.tox.2019.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 03/21/2019] [Accepted: 04/16/2019] [Indexed: 12/28/2022]
|
7
|
Isoflavones enhance pharmacokinetic exposure of active lovastatin acid via the upregulation of carboxylesterase in high-fat diet mice after oral administration of Xuezhikang capsules. Acta Pharmacol Sin 2018; 39:1804-1815. [PMID: 29921884 DOI: 10.1038/s41401-018-0039-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2017] [Accepted: 05/03/2018] [Indexed: 12/23/2022]
Abstract
Xuezhikang capsule (XZK) is a traditional Chinese medicine that contains lovastatin (Lv) for hyperlipidemia treatment, although it has fewer side effects than Lv. However, the pharmacokinetic mechanisms contributing to its distinct efficacy and low side effects are unclear. Mice were fed a high-fat diet (HFD) for 6 weeks to induce hyperlipidemia. We first conducted the pharmacokinetic studies in HFD mice following oral administration of Lv (10 mg/kg, i.g.) and found that HFD remarkably decreased the active form of Lv (the lovastatin acid, LvA) exposure in the circulation system, especially in the targeting organ liver, with a declined conversion from Lv to LvA, whereas the Lv (responsible for myotoxicity) exposure in muscle markedly increased. Then we compared the pharmacokinetic profiles of Lv in HFD mice after the oral administration of XZK (1200 mg/kg, i.g.) or an equivalent dose of Lv (10 mg/kg, i.g.). A higher exposure of LvA and lower exposure of Lv were observed after XZK administration, suggesting a pharmacokinetic interaction of some ingredients in XZK. Further studies revealed that HFD promoted the inflammation and inhibited carboxylesterase (CES) activities in the intestine and the liver, thus contributing to the lower transformation of Lv into LvA. In contrast, XZK inhibited the inflammation and upregulated CES in the intestine and the liver. Finally, we evaluated the effects of monacolins and phytosterols, the fractional extracts of isoflavones, on inflammatory LS174T or HepG2 cells, which showed that isoflavones inhibited inflammation, upregulated CES, and markedly enhanced the conversion of Lv into LvA. For the first time, we provide evidence that isoflavones and Lv in XZK act in concert to enhance the efficacy and reduce the side effects of Lv.
Collapse
|
8
|
Chen F, Li DY, Zhang B, Sun JY, Sun F, Ji X, Qiu JC, Parker RB, Laizure SC, Xu J. Alterations of drug-metabolizing enzymes and transporters under diabetic conditions: what is the potential clinical significance? Drug Metab Rev 2018; 50:369-397. [PMID: 30221555 DOI: 10.1080/03602532.2018.1497645] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Feng Chen
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - De-Yi Li
- School of Life Sciences and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, China
| | - Bo Zhang
- Department of Physiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jie-Yu Sun
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Fang Sun
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Xing Ji
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Jin-Chun Qiu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| | - Robert B. Parker
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - S. Casey Laizure
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, University of Tennessee Health Science Center, Memphis, TN, USA
| | - Jing Xu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
9
|
Wu L, Hafiz MZ, Guan Y, He S, Xiong J, Liu W, Yan B, Li X, Yang J. 17β-estradiol suppresses carboxylesterases by activating c-Jun/AP-1 pathway in primary human and mouse hepatocytes. Eur J Pharmacol 2018; 819:98-107. [DOI: 10.1016/j.ejphar.2017.11.036] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 11/16/2017] [Accepted: 11/21/2017] [Indexed: 11/16/2022]
|
10
|
Luo W, Xin Y, Zhao X, Zhang F, Liu C, Fan H, Xi T, Xiong J. Suppression of carboxylesterases by imatinib mediated by the down-regulation of pregnane X receptor. Br J Pharmacol 2017; 174:700-717. [PMID: 28128444 DOI: 10.1111/bph.13731] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 01/20/2017] [Accepted: 01/20/2017] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND AND PURPOSE Imatinib mesylate (IM) is a first-line treatment for chronic myeloid leukaemia (CML) as a specific inhibitor of BCR-ABL tyrosine kinase. As IM is widely used in CML, in combination with other drugs, the effects of IM on drug-metabolizing enzymes (DMEs) are crucial to the design of rational drug administration. Carboxylesterases (CESs) are enzymes catalysing the hydrolytic biotransformation of several clinically useful drugs. Although IM is known to inhibit cytochromes P450 (CYPs), its effects on DMEs, and CESs in particular, are still largely undefined. EXPERIMENTAL APPROACH Hepatoma cell lines (HepG2 and Huh7) and primary mouse hepatocytes were used. mRNA and protein expression were evaluated by quantitative RT-PCR and Western blot analysis. Reporter luciferase activity was determined by transient co-transfection experiment. Pregnane X receptor (PXR) expression was regulated by overexpression and RNA interference. The activity of CESs was determined by enzymic and toxicological assays. Mice were treated with a range of doses of IM to analyse expression of CESs in mouse liver. KEY RESULTS The expression and activity of CESs were markedly repressed by IM, along with the down-regulation of PXR and inhibited expression and activity of CYP3A4 and P-gp. CONCLUSIONS AND IMPLICATIONS Down-regulation of PXR mediates IM-induced suppression of CESs. IM may inhibit expression of other genes targeted by PXR, thus inducing a wide range of potential drug-drug interactions during treatment of CML. The data deserve further elucidation including clinical trials.
Collapse
Affiliation(s)
- Wenjing Luo
- Department of Pharmacology, Nanjing Medical University, Nanjing, China.,Research Center of Biotechnology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yu Xin
- Department of Pharmacology, Nanjing Medical University, Nanjing, China.,Research Center of Biotechnology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xia Zhao
- Department of Pharmacy, Nanjing Medical University Affiliated Wuxi Second Hospital, Wuxi, China
| | - Feng Zhang
- Research Center of Biotechnology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Changqing Liu
- Clinical Pharmacology Laboratory, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Hongwei Fan
- Clinical Pharmacology Laboratory, Nanjing First Hospital Affiliated to Nanjing Medical University, Nanjing, China
| | - Tao Xi
- Research Center of Biotechnology, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Jing Xiong
- Department of Pharmacology, Nanjing Medical University, Nanjing, China
| |
Collapse
|
11
|
Shan E, Zhu Z, He S, Chu D, Ge D, Zhan Y, Liu W, Yang J, Xiong J. Involvement of pregnane X receptor in the suppression of carboxylesterases by metformin in vivo and in vitro, mediated by the activation of AMPK and JNK signaling pathway. Eur J Pharm Sci 2017; 102:14-23. [PMID: 28238946 DOI: 10.1016/j.ejps.2017.02.031] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 02/16/2017] [Accepted: 02/20/2017] [Indexed: 02/06/2023]
Abstract
Type 2 diabetes mellitus (T2D) is a complex metabolic disorder requiring polypharmacy treatment in clinic, with metformin being widely used antihyperglycemic drug. However, the mechanisms of metformin as a perpetrator inducing potential drug-drug interactions and adverse drug reactions are scarcely known to date. Carboxylesterases (CESs) are major hydrolytic enzymes highly expressed in the liver, including mouse carboxylesterase 1d (Ces1d) and Ces1e. In the present study, experiments are designed to investigate the effects and mechanisms of metformin on Ces1d and Ces1e in vivo and in vitro. In results, metformin suppresses the expression and activity of Ces1d and Ces1e in a dose- and time-dependent manner. The decreased expression of nuclear receptor PXR and its target gene P-gp indicates the involvements of PXR in the suppressed expression of carboxylesterases by metformin. Furthermore, metformin significantly suppresses the phosphorylation of AMPK and JNK, and the suppression of carboxylesterases induced by metformin is repeatedly abolished by AMPK inhibitor Compound C and JNK inhibitor SP600125. It implies that the activation of AMPK and JNK pathways mediates the suppression of carboxylesterases by metformin. The findings deserve further elucidation including clinical trials and have a potential to make contribution for the rational medication in the treatment of T2D patients.
Collapse
Affiliation(s)
- Enfang Shan
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Zhu Zhu
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Shuangcheng He
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Dongbao Chu
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Dinghao Ge
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Yunran Zhan
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Wei Liu
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China
| | - Jian Yang
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| | - Jing Xiong
- Department of Pharmacology, Nanjing Medical University, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
12
|
Hakkola J, Rysä J, Hukkanen J. Regulation of hepatic energy metabolism by the nuclear receptor PXR. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:1072-1082. [PMID: 27041449 DOI: 10.1016/j.bbagrm.2016.03.012] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/21/2016] [Accepted: 03/22/2016] [Indexed: 12/30/2022]
Abstract
The pregnane X receptor (PXR) is a nuclear receptor that is traditionally thought to be specialized for sensing xenobiotic exposure. In concurrence with this feature PXR was originally identified to regulate drug-metabolizing enzymes and transporters. During the last ten years it has become clear that PXR harbors broader functions. Evidence obtained both in experimental animals and humans indicate that ligand-activated PXR regulates hepatic glucose and lipid metabolism and affects whole body metabolic homeostasis. Currently, the consequences of PXR activation on overall metabolic health are not yet fully understood and varying results on the effect of PXR activation or knockout on metabolic disorders and weight gain have been published in mouse models. Rifampicin and St. John's wort, the prototypical human PXR agonists, impair glucose tolerance in healthy volunteers. Chronic exposure to PXR agonists could potentially represent a risk factor for diabetes and metabolic syndrome. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
Collapse
Affiliation(s)
- Jukka Hakkola
- Research Unit of Biomedicine, Pharmacology and Toxicology, University of Oulu, Oulu, Finland; Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland.
| | - Jaana Rysä
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, Kuopio, Finland
| | - Janne Hukkanen
- Medical Research Center Oulu, Oulu University Hospital, University of Oulu, Oulu, Finland; Research Unit of Internal Medicine, University of Oulu, Oulu, Finland; Department of Internal Medicine, Oulu University Hospital, Oulu, Finland; Biocenter Oulu, Oulu, Finland
| |
Collapse
|
13
|
Pedersen BA, Wang W, Taylor JF, Khattab OS, Chen YH, Edwards RA, Yazdi PG, Wang PH. Hepatic proteomic analysis revealed altered metabolic pathways in insulin resistant Akt1(+/-)/Akt2(-/-) mice. Metabolism 2015; 64:1694-703. [PMID: 26455965 PMCID: PMC4641788 DOI: 10.1016/j.metabol.2015.09.008] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Revised: 08/19/2015] [Accepted: 09/08/2015] [Indexed: 10/23/2022]
Abstract
OBJECTIVE The aim of this study was to identify liver proteome changes in a mouse model of severe insulin resistance and markedly decreased leptin levels. METHODS Two-dimensional differential gel electrophoresis was utilized to identify liver proteome changes in AKT1(+/-)/AKT2(-/-) mice. Proteins with altered levels were identified with tandem mass spectrometry. Ingenuity Pathway Analysis was performed for the interpretation of the biological significance of the observed proteomic changes. RESULTS 11 proteins were identified from 2 biological replicates to be differentially expressed by a ratio of at least 1.3 between age-matched insulin resistant (Akt1(+/-)/Akt2(-/-)) and wild type mice. Albumin and mitochondrial ornithine aminotransferase were detected from multiple spots, which suggest post-translational modifications. Enzymes of the urea cycle were common members of top regulated pathways. CONCLUSION Our results help to unveil the regulation of the liver proteome underlying altered metabolism in an animal model of severe insulin resistance.
Collapse
Affiliation(s)
- Brian A Pedersen
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
- Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA
| | - Weiwen Wang
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
- Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA
- Bascom Palmer Eye Institute, Department of Ophthalmology, University of Miami School of Medicine, Miami, FL, 33136
| | - Jared F Taylor
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
- Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA
| | - Omar S Khattab
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
| | - Yu-Han Chen
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
- Department of Physiology & Biophysics, University of California at Irvine, Irvine, CA 92697, USA
| | - Robert A Edwards
- Department of Pathology, University of California at Irvine, Irvine, CA 92697, USA
| | - Puya G Yazdi
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
- Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA
| | - Ping H Wang
- UC Irvine Diabetes Center, University of California at Irvine, Irvine, CA 92697, USA
- Sue and Bill Gross Stem Cell Research Center, University of California at Irvine, Irvine, CA 92697, USA
- Department of Medicine, University of California at Irvine, Irvine, CA 92697, USA
- Department of Biological Chemistry, University of California at Irvine, Irvine, CA 92697, USA
- Department of Physiology & Biophysics, University of California at Irvine, Irvine, CA 92697, USA
| |
Collapse
|
14
|
Chen R, Wang Y, Ning R, Hu J, Liu W, Xiong J, Wu L, Liu J, Hu G, Yang J. Decreased carboxylesterases expression and hydrolytic activity in type 2 diabetic mice through Akt/mTOR/HIF-1α/Stra13 pathway. Xenobiotica 2015; 45:782-93. [PMID: 25801056 DOI: 10.3109/00498254.2015.1020353] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
15
|
Xu J, Yin L, Xu Y, Li Y, Zalzala M, Cheng G, Zhang Y. Hepatic carboxylesterase 1 is induced by glucose and regulates postprandial glucose levels. PLoS One 2014; 9:e109663. [PMID: 25285996 PMCID: PMC4186840 DOI: 10.1371/journal.pone.0109663] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 09/12/2014] [Indexed: 12/15/2022] Open
Abstract
Metabolic syndrome, characterized by obesity, hyperglycemia, dyslipidemia and hypertension, increases the risks for cardiovascular disease, diabetes and stroke. Carboxylesterase 1 (CES1) is an enzyme that hydrolyzes triglycerides and cholesterol esters, and is important for lipid metabolism. Our previous data show that over-expression of mouse hepatic CES1 lowers plasma glucose levels and improves insulin sensitivity in diabetic ob/ob mice. In the present study, we determined the physiological role of hepatic CES1 in glucose homeostasis. Hepatic CES1 expression was reduced by fasting but increased in diabetic mice. Treatment of mice with glucose induced hepatic CES1 expression. Consistent with the in vivo study, glucose stimulated CES1 promoter activity and increased acetylation of histone 3 and histone 4 in the CES1 chromatin. Knockdown of ATP-citrate lyase (ACL), an enzyme that regulates histone acetylation, abolished glucose-mediated histone acetylation in the CES1 chromatin and glucose-induced hepatic CES1 expression. Finally, knockdown of hepatic CES1 significantly increased postprandial blood glucose levels. In conclusion, the present study uncovers a novel glucose-CES1-glucose pathway which may play an important role in regulating postprandial blood glucose levels.
Collapse
Affiliation(s)
- Jiesi Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| | - Liya Yin
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| | - Yang Xu
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| | - Yuanyuan Li
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
| | - Munaf Zalzala
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
- Department of Pharmacology and Toxicology, College of Pharmacy, University of Baghdad, Baghdad, Iraq
| | - Gang Cheng
- Department of Chemical and Biomolecular Engineering, University of Akron, Akron, Ohio, United States of America
| | - Yanqiao Zhang
- Department of Integrative Medical Sciences, Northeast Ohio Medical University, Rootstown, Ohio, United States of America
- * E-mail:
| |
Collapse
|