1
|
Kato Y, Sato K, Nagamine H, Kanatani M, Horikoshi Y, Nakaso K. Cytoprotective effect of melatonin against MPP + toxicity in SH-SY5Y cells: Role sharing of two types of antioxidative activities of melatonin. Biochem Biophys Res Commun 2025; 742:151074. [PMID: 39626365 DOI: 10.1016/j.bbrc.2024.151074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 11/01/2024] [Accepted: 11/25/2024] [Indexed: 12/21/2024]
Abstract
Melatonin is a neurohormone that is not only a regulator of circadian cycles, but also a potent antioxidant. Parkinson's disease (PD) is a major neurodegenerative disease that may result from oxidative stress as a part of its pathogenic cascade. Therefore, antioxidants, including melatonin, have attracted attention as potential candidates for neuroprotection against PD-related neurotoxicity. In this study, we report that melatonin has 2 types of antioxidant mechanisms of neuroprotection in an experimental cellular PD model using 1-Methyl-4-phenylpyridinium ion (MPP+) in human neuroblastoma SH-SY5Y cells. The first mechanism is a classical antioxidative mechanism through the direct action of melatonin, which reduces lipid hydroperoxide and 8-OHdG. The second mechanism is an indirect antioxidative effect via the melatonin receptor (Mel-R)/PI3K/Akt/Nrf2 cascade. Melatonin and Mel-R agonist activated PI3K/Akt signaling and Nrf2. Both Mel-R antagonist and the PI3K inhibitor blocked transcription induced by Nrf2 and the cytoprotective effect of melatonin. Interestingly, the antioxidative effect due to the Nrf2-related mechanism contributed mainly to a decrease of protein carbonyl, but not to lipid hydroperoxide and 8-OHdG. Mel-R agonist also showed a similar effect. Our results elucidate the mechanism of melatonin's powerful antioxidative effect and suggest the application of melatonin therapy to PD-related cytotoxicity.
Collapse
Affiliation(s)
- Yugo Kato
- Division of Biochemistry, Department of Pathophysiological and Therapeutic Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, Japan
| | - Kanon Sato
- Division of Biochemistry, Department of Pathophysiological and Therapeutic Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, Japan
| | - Hidetoshi Nagamine
- Division of Biochemistry, Department of Pathophysiological and Therapeutic Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, Japan
| | - Masahiro Kanatani
- Division of Biochemistry, Department of Pathophysiological and Therapeutic Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, Japan; Division of Neurology, Department of Brain and Neurosciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, Japan
| | - Yosuke Horikoshi
- Division of Biochemistry, Department of Pathophysiological and Therapeutic Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, Japan
| | - Kazuhiro Nakaso
- Division of Biochemistry, Department of Pathophysiological and Therapeutic Sciences, Faculty of Medicine, Tottori University, 86 Nishi-cho, Yonago, Tottori, Japan.
| |
Collapse
|
2
|
Chang S, Xie W, Qu H, Ban J, Ma P, Fei S, Liu F. Exosome miRNA profile and mitigating effect of miR-23a-3p/Cul3 axis on apoptosis in the pathogenesis of SiO 2 dust-induced lung fibrosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 283:116971. [PMID: 39216223 DOI: 10.1016/j.ecoenv.2024.116971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 08/23/2024] [Accepted: 08/27/2024] [Indexed: 09/04/2024]
Abstract
Silicosis is an irreversible interstitial lung fibrosis resulting from persistent inflammation induced by long-term inhalation of SiO2 dust. Treatment and early diagnosis are extremely challenging due to the lack of specific targets and biomarkers. MiRNAs play an important role in the early diagnosis and treatment of various diseases, due to their stability, small variations, and easy detection. Exosomes have become fashionable candidates to deliver miRNAs. However, the specific role of exosomes-loaded miRNAs in silicosis inflammation and fibrosis remains unclear. In the present study, the expression profile of serum exosomal miRNAs in the peripheral blood of silicosis patients was determined by transcritome sequencing. MiR-23a-3p was recognized as a protector against silicosis by bioinformatic analysis. The expression and regulatory axis of miR-23a-3p and its predicted target gene CUL3 were then confirmed. The therapeutic role of the miR-23a-3p/CUL3 axis and its alleviating effect on SiO2-induced apoptosis were verified in mice and in epithelial cells. Furthermore, the communication of exosomes carrying miR-23a-3p between macrophages and epithelial cells was demonstrated using a cell co-culture model. Our results suggest that exosomal miR-23a-3p could be prospective as a biomarker in early diagnose for SiO2-induced lung fibrosis, and provided new threads for the treatment of silicosis.
Collapse
Affiliation(s)
- Shuai Chang
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Weidong Xie
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Huiyan Qu
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Jiaqi Ban
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Pengwei Ma
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China; Aksu Fourth People's Hospital, Aksu, China
| | - Siping Fei
- Liaoning Centers for Disease Control and Prevention, Shenyang, China.
| | - Fangwei Liu
- Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, China; Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China.
| |
Collapse
|
3
|
Alimohammadi M, Rahimzadeh P, Khorrami R, Bonyadi M, Daneshi S, Nabavi N, Raesi R, Farani MR, Dehkhoda F, Taheriazam A, Hashemi M. A comprehensive review of the PTEN/PI3K/Akt axis in multiple myeloma: From molecular interactions to potential therapeutic targets. Pathol Res Pract 2024; 260:155401. [PMID: 38936094 DOI: 10.1016/j.prp.2024.155401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 06/02/2024] [Accepted: 06/09/2024] [Indexed: 06/29/2024]
Abstract
Phosphatase and tensin homolog (PTEN), phosphatidylinositol 3-kinase (PI3K), and protein kinase B (Akt) signaling pathways contribute to the development of several cancers, including multiple myeloma (MM). PTEN is a tumor suppressor that influences the PI3K/Akt/mTOR pathway, which in turn impacts vital cellular processes like growth, survival, and treatment resistance. The current study aims to present the role of PTEN and PI3K/Akt/mTOR signaling in the development of MM and its response to treatment. In addition, the molecular interactions in MM that underpin the PI3K/Akt/mTOR pathway and address potential implications for the development of successful treatment plans are also discussed in detail. We investigate their relationship to both upstream and downstream regulators, highlighting new developments in combined therapies that target the PTEN/PI3K/Akt axis to overcome drug resistance, including the use of PI3K and mitogen-activated protein kinase (MAPK) inhibitors. We also emphasize that PTEN/PI3K/Akt pathway elements may be used in MM diagnosis, prognosis, and therapeutic targets.
Collapse
Affiliation(s)
- Mina Alimohammadi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Payman Rahimzadeh
- Surgical Research Society (SRS), Students' Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Islamic Republic of Iran
| | - Mojtaba Bonyadi
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Islamic Republic of Iran
| | - Salman Daneshi
- Department of Public Health, School of Health, Jiroft University of Medical Sciences, Jiroft, Islamic Republic of Iran
| | - Noushin Nabavi
- Independent Researcher, Victoria, British Columbia V8V 1P7, Canada
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran; Department of Nursing, Torbat Jam Faculty of Medical Sciences, Torbat Jam, Iran
| | - Marzieh Ramezani Farani
- NanoBio High-Tech Materials Research Center, Department of Biological Sciences and Bioengineering, Inha University, 100 Inha-ro, Incheon 22212, Republic of Korea
| | - Farshid Dehkhoda
- Department of Orthopedics, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Islamic Republic of Iran.
| |
Collapse
|
4
|
Bagherifard A, Hosseinzadeh A, Koosha F, Sheibani M, Karimi-Behnagh A, Reiter RJ, Mehrzadi S. Melatonin and bone-related diseases: an updated mechanistic overview of current evidence and future prospects. Osteoporos Int 2023; 34:1677-1701. [PMID: 37393580 DOI: 10.1007/s00198-023-06836-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/16/2023] [Indexed: 07/04/2023]
Abstract
PURPOSE Bone diseases account for an enormous cost burden on health systems. Bone disorders are considered as age-dependent diseases. The aging of world population has encouraged scientists to further explore the most effective preventive modalities and therapeutic strategies to overcome and reduce the high cost of bone disorders. Herein, we review the current evidence of melatonin's therapeutic effects on bone-related diseases. METHODS This review summarized evidences from in vitro, in vivo, and clinical studies regarding the effects of melatonin on bone-related diseases, with a focus on the molecular mechanisms. Electronically, Scopus and MEDLINE®/PubMed databases were searched for articles published on melatonin and bone-related diseases from inception to June 2023. RESULTS The findings demonstrated that melatonin has beneficial effect in bone- and cartilage-related disorders such as osteoporosis, bone fracture healing, osteoarthritis, and rheumatoid arthritis, in addition to the control of sleep and circadian rhythms. CONCLUSION A number of animal and clinical studies have indicated that various biological effects of melatonin may suggest this molecule as an effective therapeutic agent for controlling, diminishing, or suppressing bone-related disorders. Therefore, further clinical studies are required to clarify whether melatonin can be effective in patients with bone-related diseases.
Collapse
Affiliation(s)
- Abolfazl Bagherifard
- Bone and Joint Reconstruction Research Center, Department of Orthopedics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Azam Hosseinzadeh
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Fereshteh Koosha
- Department of Radiology Technology, Faculty of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Sheibani
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Russel J Reiter
- Department of Cellular and Structural Biology, Long School of Medicine, UT Health San Antonio, San Antonio, TX, USA
| | - Saeed Mehrzadi
- Razi Drug Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
5
|
Chen H, Deng J, Gao H, Song Y, Zhang Y, Sun J, Zhai J. Involvement of the SIRT1-NLRP3 pathway in the inflammatory response. Cell Commun Signal 2023; 21:185. [PMID: 37507744 PMCID: PMC10375653 DOI: 10.1186/s12964-023-01177-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 05/25/2023] [Indexed: 07/30/2023] Open
Abstract
The silent information regulator 2 homolog 1-NACHT, LRR and PYD domains-containing protein 3 (SIRT1-NLRP3) pathway has a crucial role in regulation of the inflammatory response, and is closely related to the occurrence and development of several inflammation-related diseases. NLRP3 is activated to produce the NLRP3 inflammasome, which leads to activation of caspase-1 and cleavage of pro-interleukin (IL)-1β and pro-IL-18 to their active forms: IL-1β and IL-18, respectively. They are proinflammatory cytokines which then cause an inflammatory response.SIRT1 can inhibit this inflammatory response through nuclear factor erythroid 2-related factor 2 and nuclear factor-kappa B pathways. This review article focuses mainly on how the SIRT1-NLRP3 pathway influences the inflammatory response and its relationship with melatonin, traumatic brain injury, neuroinflammation, depression, atherosclerosis, and liver damage. Video Abstract.
Collapse
Affiliation(s)
- Huiyue Chen
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China
- School of Pharmaceutical Science, Jilin University, Changchun, Jilin, China
| | - Jiayu Deng
- Department of Pharmacy, Lequn Branch, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Huan Gao
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China
| | - Yanqing Song
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China
- School of Pharmaceutical Science, Jilin University, Changchun, Jilin, China
- Department of Pharmacy, Lequn Branch, the First Hospital of Jilin University, Changchun, Jilin, China
| | - Yueming Zhang
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China
| | - Jingmeng Sun
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China
| | - Jinghui Zhai
- Department of Clinical Pharmacy, the First Hospital of Jilin University, Changchun, , Jilin, China.
| |
Collapse
|
6
|
Lin YC, Zheng G, Liu HT, Wang P, Yuan WQ, Zhang YH, Peng XS, Li GJ, Wu YF, Shen HY. USP7 promotes the osteoclast differentiation of CD14+ human peripheral blood monocytes in osteoporosis via HMGB1 deubiquitination. J Orthop Translat 2023; 40:80-91. [PMID: 37333461 PMCID: PMC10275958 DOI: 10.1016/j.jot.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 05/18/2023] [Accepted: 05/20/2023] [Indexed: 06/20/2023] Open
Abstract
Background Abnormal osteoclast and osteoblast differentiation is an essential pathological process in osteoporosis. As an important deubiquitinase enzyme, ubiquitin-specific peptidase 7 (USP7) participates in various disease processes through posttranslational modification. However, the mechanism by which USP7 regulates osteoporosis remains unknown. Herein, we aimed to investigate whether USP7 regulates abnormal osteoclast differentiation in osteoporosis. Methods The gene expression profiles of blood monocytes were preprocessed to analyze the differential expression of USP genes. CD14+ peripheral blood mononuclear cells (PBMCs) were isolated from whole blood collected from osteoporosis patients (OPs) and healthy donors (HDs), and the expression pattern of USP7 during the differentiation of CD14+ PBMCs into osteoclasts was detected by western blotting. The role of USP7 in the osteoclast differentiation of PBMCs treated with USP7 siRNA or exogenous rUSP7 was further investigated by the F-actin assay, TRAP staining and western blotting. Moreover, the interaction between high-mobility group protein 1 (HMGB1) and USP7 was investigated by coimmunoprecipitation, and the regulation of the USP7-HMGB1 axis in osteoclast differentiation was further verified. Osteoporosis in ovariectomized (OVX) mice was then studied using the USP7-specific inhibitor P5091 to identify the role of USP7 in osteoporosis. Results The bioinformatic analyses and CD14+ PBMCs from osteoporosis patients confirmed that the upregulation of USP7 was associated with osteoporosis. USP7 positively regulates the osteoclast differentiation of CD14+ PBMCs in vitro. Mechanistically, USP7 promoted osteoclast formation by binding to and deubiquitination of HMGB1. In vivo, P5091 effectively attenuates bone loss in OVX mice. Conclusion We demonstrate that USP7 promotes the differentiation of CD14+ PBMCs into osteoclasts via HMGB1 deubiquitination and that inhibition of USP7 effectively attenuates bone loss in osteoporosis in vivo.The translational potential of this article:The study reveals novel insights into the role of USP7 in the progression of osteoporosis and provides a new therapeutic target for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Yu-Cong Lin
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Guan Zheng
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Hua-Tao Liu
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Peng Wang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Wei-Quan Yuan
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Yun-Hui Zhang
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Xiao-Shuai Peng
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Guo-Jian Li
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Yan-Feng Wu
- Center for Biotherapy, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| | - Hui-Yong Shen
- Department of Orthopedics, The Eighth Affiliated Hospital, Sun Yat-sen University, 3025# Shennan Road, Shenzhen, 518000, PR China
| |
Collapse
|
7
|
Araújo MM, Mendes MM, Costa LM, Lima RM, Lanham-New SA, Baiocchi de Carvalho KM, Botelho PB. Determinant factors of bone health after long-term of Roux-en-Y gastric bypass surgery: A cross-sectional study. Nutrition 2023; 108:111937. [PMID: 36640632 DOI: 10.1016/j.nut.2022.111937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVES The aim of this study was to evaluate bone health and the potential influencing factors of bone metabolism disorders in adults ≥5 y after Roux-en-Y gastric bypass (RYGB) surgery. METHODS In this cross-sectional study, patients who were ≥5 y post-RYGB were invited. Bone health considered as bone mineral content (BMC) and bone mineral density (BMD) in this study was assessed by dual x-ray absorptiometry. We also assessed 25-hydroxy-vitamin D concentrations, individual ultraviolet B radiation levels, serum ionized calcium, alkaline phosphatase, parathyroid, anthropometric, and body composition. RESULTS The study evaluated 104 adults (90% women; 49.6 ± 9.1 y old; postoperative period 8.7 ± 2.2 y). Lumbar and femoral BMC and BMD were positively correlated to body mass index (BMI), appendicular lean mass (ALM), and negatively to %excess of weight loss (EWL). Femoral BMD was negatively correlated to age, and both femoral BMD and BMC were positively correlated to weekly exposed body part score. Sex, age, BMI, ALM, and weekly exposed body part score explained 35% and 54% of the total variance of femoral BMD and BMC, respectively. CONCLUSIONS The present findings suggested that older age, lower BMI, higher %EWL, lower ALM, and lower weekly body part exposure score are important determinants in lowering BMD and BMC parameters in long-term post-bariatric surgery individuals, rather than serum 25-hydroxy-vitamin D and parathyroid.
Collapse
Affiliation(s)
| | | | - Lorena Morais Costa
- Graduate Program in Human Nutrition, University of Brasília, Brasília, Brazil
| | - Ricardo Moreno Lima
- Graduate Program in Human Nutrition, University of Brasília, Brasília, Brazil; Graduate Program in Physical Education, University of Brasília, Brasília, Brazil
| | - Susan A Lanham-New
- Department of Nutritional Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | | | | |
Collapse
|
8
|
Shen J, Lin X, Dai F, Chen G, Lin H, Fang B, Liu H. Ubiquitin-specific peptidases: Players in bone metabolism. Cell Prolif 2023:e13444. [PMID: 36883930 PMCID: PMC10392067 DOI: 10.1111/cpr.13444] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 02/22/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023] Open
Abstract
Osteoporosis is an ageing-related disease, that has become a major public health problem and its pathogenesis has not yet been fully elucidated. Substantial evidence suggests a strong link between overall age-related disease progression and epigenetic modifications throughout the life cycle. As an important epigenetic modification, ubiquitination is extensively involved in various physiological processes, and its role in bone metabolism has attracted increasing attention. Ubiquitination can be reversed by deubiquitinases, which counteract protein ubiquitination degradation. As the largest and most structurally diverse cysteinase family of deubiquitinating enzymes, ubiquitin-specific proteases (USPs), comprising the largest and most structurally diverse cysteine kinase family of deubiquitinating enzymes, have been found to be important players in maintaining the balance between bone formation and resorption. The aim of this review is to explore recent findings highlighting the regulatory functions of USPs in bone metabolism and provide insight into the molecular mechanisms governing their actions during bone loss. An in-deep understanding of USPs-mediated regulation of bone formation and bone resorption will provide a scientific rationale for the discovery and development of novel USP-targeted therapeutic strategies for osteoporosis.
Collapse
Affiliation(s)
- Jianlin Shen
- Department of Orthopaedics, Affiliated Hospital of Putian University, Putian, China
| | - Xiaoning Lin
- Department of Orthopaedics, Affiliated Hospital of Putian University, Putian, China
| | - Feifei Dai
- School of Medicine, Putian Universtiy, Putian, China
| | - Guoli Chen
- Department of Orthopaedics, Affiliated Hospital of Putian University, Putian, China
| | - Haibin Lin
- Department of Orthopaedics, Affiliated Hospital of Putian University, Putian, China
| | - Bangjiang Fang
- Department of Emergency, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.,Institute of Emergency and Critical Care Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huan Liu
- Department of Orthopaedics, Affiliated Hospital of Putian University, Putian, China
| |
Collapse
|
9
|
Gancitano G, Reiter RJ. The Multiple Functions of Melatonin: Applications in the Military Setting. Biomedicines 2022; 11:biomedicines11010005. [PMID: 36672513 PMCID: PMC9855431 DOI: 10.3390/biomedicines11010005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/14/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
The aim of this review is to provide the reader with a general overview on the rationale for the use of melatonin by military personnel. This is a technique that is being increasingly employed to manage growing psycho-physical loads. In this context, melatonin, a pleotropic and regulatory molecule, has a potential preventive and therapeutic role in maintaining the operational efficiency of military personnel. In battlefield conditions in particular, the time to treatment after an injury is often a major issue since the injured may not have immediate access to medical care. Any drug that would help to stabilize a wounded individual, especially if it can be immediately administered (e.g., per os) and has a very high safety profile over a large range of doses (as melatonin does) would be an important asset to reduce morbidity and mortality. Melatonin may also play a role in the oscillatory synchronization of the neuro-cardio-respiratory systems and, through its epigenetic action, poses the possibility of restoring the main oscillatory waves of the cardiovascular system, such as the Mayer wave and RSA (respiratory sinus arrhythmia), which, in physiological conditions, result in the oscillation of the heartbeat in synchrony with the breath. In the future, this could be a very promising field of investigation.
Collapse
Affiliation(s)
- Giuseppe Gancitano
- 1st Carabinieri Paratrooper Regiment “Tuscania”, Italian Ministry of Defence, 57127 Livorno, Italy
- Correspondence:
| | - Russel J. Reiter
- Department of Cell Systems and Anatomy, UT Health, Long School of Medicine, San Antonio, TX 78229, USA
| |
Collapse
|
10
|
Yang K, Qiu X, Cao L, Qiu S. The role of melatonin in the development of postmenopausal osteoporosis. Front Pharmacol 2022; 13:975181. [PMID: 36278157 PMCID: PMC9585202 DOI: 10.3389/fphar.2022.975181] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 09/26/2022] [Indexed: 11/28/2022] Open
Abstract
Melatonin is an important endogenous hormone that modulates homeostasis in the microenvironment. Recent studies have indicated that serum melatonin levels are closely associated with the occurrence and development of osteoporosis in postmenopausal women. Exogenous melatonin could also improve bone mass and increase skeletal strength. To determine the underlying mechanisms of melatonin in the prevention and treatment of postmenopausal osteoporosis, we performed this review to analyze the role of melatonin in bone metabolism according to its physiological functions. Serum melatonin is related to bone mass, the measurement of which is a potential method for the diagnosis of osteoporosis. Melatonin has a direct effect on bone remodeling by promoting osteogenesis and suppressing osteoclastogenesis. Melatonin also regulates the biological rhythm of bone tissue, which benefits its osteogenic effect. Additionally, melatonin participates in the modulation of the bone microenvironment. Melatonin attenuates the damage induced by oxidative stress and inflammation on osteoblasts and prevents osteolysis from reactive oxygen species and inflammatory factors. As an alternative drug for osteoporosis, melatonin can improve the gut ecology, remodel microbiota composition, regulate substance absorption and maintain metabolic balance, all of which are beneficial to the health of bone structure. In conclusion, our review systematically demonstrates the effects of melatonin on bone metabolism. Based on the evidence in this review, melatonin will play a more important role in the diagnosis, prevention and treatment of postmenopausal osteoporosis.
Collapse
Affiliation(s)
- Keda Yang
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
| | - Xueshan Qiu
- Department of Pathology, The First Affiliated Hospital of China Medical University and College of Basic Medical Sciences Shenyang, Shenyang, Liaoning, China
| | - Lili Cao
- Department of Medical Oncology, First Hospital of China Medical University, Shenyang, China
- *Correspondence: Lili Cao, ; Shui Qiu,
| | - Shui Qiu
- Department of Orthopedics, First Hospital of China Medical University, Shenyang, China
- *Correspondence: Lili Cao, ; Shui Qiu,
| |
Collapse
|
11
|
Tian Y, Ming J. The role of circadian rhythm in osteoporosis; a review. Front Cell Dev Biol 2022; 10:960456. [PMID: 36238690 PMCID: PMC9550872 DOI: 10.3389/fcell.2022.960456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoporosis is characterized by a high incidence rate, with significant effects on people’s lives. The underlying mechanisms are complex, with no treatments for the condition. Recent studies have indicated that melatonin can be used to treat osteoporosis by promoting osteoblast proliferation and differentiation, and inhibiting osteoclast differentiation. Specifically, in vivo mechanisms are initiated by stabilizing biological rhythms in bone tissue. In healthy organisms, these biological rhythms are present in bone tissue, and are characterized by bone formation during the day, and bone resorption at night. When this rhythm is disrupted, osteoporosis occurs. Thus, taking appropriate medication at different times of the day could produce different effects on osteoporosis rhythms. In this review, we characterized these processes, and provided treatments and management strategies for individuals with osteoporosis.
Collapse
|
12
|
Malakoti F, Zare F, Zarezadeh R, Raei Sadigh A, Sadeghpour A, Majidinia M, Yousefi B, Alemi F. The role of melatonin in bone regeneration: A review of involved signaling pathways. Biochimie 2022; 202:56-70. [PMID: 36007758 DOI: 10.1016/j.biochi.2022.08.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/27/2022] [Accepted: 08/11/2022] [Indexed: 11/29/2022]
Abstract
Increasing bone resorption followed by decreasing bone mineralization are hallmarks of bone degeneration, which mostly occurs in the elderly population and post-menopausal women. The use of mesenchymal stem cells (MSCs) has raised many promises in the field of bone regeneration due to their high osteoblastic differentiation capacity and easy availability from abundant sources. A variety of compounds, including growth factors, cytokines, and other internal factors, have been combined with MSCs to increase their osteoblastic differentiation capacity. One of these factors is melatonin, whose possible regulatory role in bone metabolism and formation has recently been suggested by many studies. Melatonin also is a potential signaling molecule and can affect many of the signaling pathways involved in MSCs osteoblastic differentiation, such as activation of PI3K/AKT, BMP/Smad, MAPK, NFkB, Nrf2/HO-1, Wnt, SIRT/SOD, PERK/ATF4. Furthermore, melatonin in combination with other components such as strontium, vitamin D3, and vitamin K2 has a synergistic effect on bone microstructure and improves bone mineral density (BMD). In this review article, we aim to summarize the regulatory mechanisms of melatonin in osteoblastic differentiation of MSCs and underling involved signaling pathways as well as the clinical potential of using melatonin in bone degenerative disorders.
Collapse
Affiliation(s)
- Faezeh Malakoti
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Farshad Zare
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Zarezadeh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Aydin Raei Sadigh
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Sadeghpour
- Department of Orthopedic Surgery, School of Medicine and Shohada Educational Hospital, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Majidinia
- Solid Tumor Research Center, Urmia University of Medical Sciences, Urmia, Iran
| | - Bahman Yousefi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Forough Alemi
- Department of Biochemistry and Clinical Laboratories, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
13
|
Xie X, Shen TT, Bi HL, Su ZL, Liao ZQ, Zhang Y, Shi L, Xia YL. Melatonin inhibits angiotensin II-induced atrial fibrillation through preventing degradation of Ang II Type I Receptor-Associated Protein (ATRAP). Biochem Pharmacol 2022; 202:115146. [PMID: 35710020 DOI: 10.1016/j.bcp.2022.115146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 05/18/2022] [Accepted: 06/08/2022] [Indexed: 11/29/2022]
Abstract
Angiotensin II (Ang II) induced Atrial fibrillation (AF) often accompanied with reduced ATRAP which is a negative modulator of Ang II type 1 receptor (AT1R). Melatonin can protect against AF, but the underlying molecular mechanism remains poorly understood. In this study, Ang II was used to induce AF, and AF inducibility and duration were documented telemetrically. Ang II-infused mice had a higher AF incidence, which was associated with atrial fibrosis, inflammation, and oxidative stress. Melatonin partially inhibited these effects, and enforced expression of siRNA-ATRAP in atria counteracted the beneficial role of melatonin. Specifically, melatonin inhibited expression of Ang II-induced proteasome and immunoproteasome subunits β2, β2i, β5, and β5i as well as their corresponding trypsin-like and chymotrypsin-like activities and blocked ATRAP degradation. In turn, this inhibited AT1R-mediated NF-κB signaling, transforming growth factor (TGF)-β1/Smad signaling in the atria, and thereby affected atrial remodeling and AF. Melatonin receptor inhibition by the chemical inhibitor luzindole partially inhibited the inhibitory effects of melatonin on proteasome activity and also Ang II-induced pathological changes in the atria. Overall, our study demonstrates that melatonin protects against Ang II-induced AF by inhibiting proteasome activity and stabilizing ATRAP expression, and these effects are partially dependent on melatonin receptor activation.
Collapse
Affiliation(s)
- Xin Xie
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Ting-Ting Shen
- Institute of Cancer Stem Cell, Dalian Medical University, Dalian 116044, China
| | - Hai-Lian Bi
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Zhuo-Lin Su
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Zi-Qi Liao
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Ying Zhang
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116021, China
| | - Lei Shi
- College of Basic Medical Sciences, Dalian Medical University, Dalian 116044, China.
| | - Yun-Long Xia
- Institute of Cardiovascular Diseases, First Affiliated Hospital of Dalian Medical University, Dalian 116021, China.
| |
Collapse
|
14
|
Li SJ, Cheng WL, Kao YH, Chung CC, Trang NN, Chen YJ. Melatonin Inhibits NF-κB/CREB/Runx2 Signaling and Alleviates Aortic Valve Calcification. Front Cardiovasc Med 2022; 9:885293. [PMID: 35795373 PMCID: PMC9251177 DOI: 10.3389/fcvm.2022.885293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/23/2022] [Indexed: 11/30/2022] Open
Abstract
Calcific aortic valve disease (CAVD) is linked to high mortality. Melatonin inhibits nuclear factor-kappa B (NF-κB)/cyclic AMP response element-binding protein (CREB), contributing to CAVD progression. This study determined the role of melatonin/MT1/MT2 signaling in valvular interstitial cell (VIC) calcification. Western blotting and Alizarin red staining were used to analyze NF-κB/CREB/runt-related transcription factor 2 (Runx2) signaling in porcine VICs treated with an osteogenic (OST) medium without (control) or with melatonin for 5 days. Chromatin immunoprecipitation (ChIP) assay was used to analyze NF-κB's transcription regulation of NF-κB on the Runx2 promoter. OST medium-treated VICs exhibited a greater expression of NF-κB, CREB, and Runx2 than control VICs. Melatonin treatment downregulated the effects of the OST medium and reduced VIC calcification. The MT1/MT2 antagonist (Luzindole) and MT1 receptor neutralized antibody blocked the anticalcification effect of melatonin, but an MT2-specific inhibitor (4-P-PDOT) did not. Besides, the NF-κB inhibitor (SC75741) reduced OST medium-induced VIC calcification to a similar extent to melatonin at 10 nmol/L. The ChIP assay demonstrated that melatonin attenuated OST media increased NF-κB binding activity to the promoter region of Runx2. Activation of the melatonin/MT1-axis significantly reduced VIC calcification by targeting the NF-κB/CREB/Runx2 pathway. Targeting melatonin/MT1 signaling may be a potential therapeutic strategy for CAVD.
Collapse
Affiliation(s)
- Shao-Jung Li
- Division of Cardiovascular Surgery, Department of Surgery, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
| | - Wan-Li Cheng
- Division of Cardiovascular Surgery, Department of Surgery, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
| | - Yu-Hsun Kao
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
| | - Cheng-Chih Chung
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | | | - Yi-Jen Chen
- Cardiovascular Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Taipei Heart Institute, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- Division of Cardiovascular Medicine, Department of Internal Medicine, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Division of Cardiology, Department of Internal Medicine, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
- *Correspondence: Yi-Jen Chen
| |
Collapse
|
15
|
Nagata C, Wada K, Yamakawa M, Nakashima Y, Koda S, Uji T, Onuma S, Oba S, Maruyama Y, Hattori A. Associations Between Dietary Melatonin Intake and Total and Cause-Specific Mortality Among Japanese Adults in the Takayama Study. Am J Epidemiol 2021; 190:2639-2646. [PMID: 34387322 DOI: 10.1093/aje/kwab213] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 12/19/2022] Open
Abstract
Potential health benefits of melatonin have been suggested. Although melatonin is present in various foods, little is known about the health effects of dietary melatonin intake. We estimated habitual dietary melatonin intake and examined its association with total and cause-specific mortality in a population-based cohort study in Japan. Study subjects included 13,355 men and 15,724 women aged ≥35 years who responded to a self-administered questionnaire in 1992. Their diets were assessed via a food frequency questionnaire at baseline. The melatonin content in various foods on the questionnaire was measured to estimate melatonin intake. Mortality was ascertained during 16 years of follow-up (1992-2008). Hazard ratios (HRs) and 95% confidence intervals (CIs) for total and cause-specific mortality were calculated according to melatonin quartiles. A total of 5,339 deaths occurred during follow-up. Melatonin intake was significantly associated with decreased risks of total mortality, cardiovascular mortality, and noncancer, noncardiovascular mortality after controlling for covariates; HRs for the highest quartile of melatonin intake versus the lowest were 0.90 (95% CI: 0.82, 0.98; P for trend = 0.05), 0.85 (95% CI: 0.72, 0.99; P for trend = 0.10), and 0.77 (95% CI: 0.67, 0.90; P for trend = 0.003), respectively. The data suggest a potential benefit of dietary melatonin with regard to mortality rates.
Collapse
|
16
|
Sharma A, Khan H, Singh TG, Grewal AK, Najda A, Kawecka-Radomska M, Kamel M, Altyar AE, Abdel-Daim MM. Pharmacological Modulation of Ubiquitin-Proteasome Pathways in Oncogenic Signaling. Int J Mol Sci 2021; 22:11971. [PMID: 34769401 PMCID: PMC8584958 DOI: 10.3390/ijms222111971] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 12/20/2022] Open
Abstract
The ubiquitin-proteasome pathway (UPP) is involved in regulating several biological functions, including cell cycle control, apoptosis, DNA damage response, and apoptosis. It is widely known for its role in degrading abnormal protein substrates and maintaining physiological body functions via ubiquitinating enzymes (E1, E2, E3) and the proteasome. Therefore, aberrant expression in these enzymes results in an altered biological process, including transduction signaling for cell death and survival, resulting in cancer. In this review, an overview of profuse enzymes involved as a pro-oncogenic or progressive growth factor in tumors with their downstream signaling pathways has been discussed. A systematic literature review of PubMed, Medline, Bentham, Scopus, and EMBASE (Elsevier) databases was carried out to understand the nature of the extensive work done on modulation of ubiquitin-proteasome pathways in oncogenic signaling. Various in vitro, in vivo studies demonstrating the involvement of ubiquitin-proteasome systems in varied types of cancers and the downstream signaling pathways involved are also discussed in the current review. Several inhibitors of E1, E2, E3, deubiquitinase enzymes and proteasome have been applied for treating cancer. Some of these drugs have exhibited successful outcomes in in vivo studies on different cancer types, so clinical trials are going on for these inhibitors. This review mainly focuses on certain ubiquitin-proteasome enzymes involved in developing cancers and certain enzymes that can be targeted to treat cancer.
Collapse
Affiliation(s)
- Anmol Sharma
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
| | - Heena Khan
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
| | - Amarjot Kaur Grewal
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, India; (A.S.); (H.K.); (A.K.G.)
| | - Agnieszka Najda
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland; (A.N.); (M.K.-R.)
| | - Małgorzata Kawecka-Radomska
- Department of Vegetable Crops and Medicinal Plants, University of Life Sciences in Lublin, 50A Doświadczalna Street, 20-280 Lublin, Poland; (A.N.); (M.K.-R.)
| | - Mohamed Kamel
- Department of Medicine and Infectious Diseases, Faculty of Veterinary Medicine, Cairo University, Giza 12211, Egypt;
| | - Ahmed E. Altyar
- Department of Pharmacy Practice, Faculty of Pharmacy, King Abdulaziz University, P.O. Box 80260, Jeddah 21589, Saudi Arabia;
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| |
Collapse
|
17
|
Munmun F, Witt-Enderby PA. Melatonin effects on bone: Implications for use as a therapy for managing bone loss. J Pineal Res 2021; 71:e12749. [PMID: 34085304 DOI: 10.1111/jpi.12749] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 05/22/2021] [Accepted: 05/31/2021] [Indexed: 02/06/2023]
Abstract
Melatonin is the primary circadian output signal from the brain and is mainly synthesized in pinealocytes. The rhythm and secretion of melatonin are under the control of an endogenous oscillator located in the SCN or the master biological clock. Disruptions in circadian rhythms by shift work, aging, or light at night are associated with bone loss and increased fracture risk. Restoration of nocturnal melatonin peaks to normal levels or therapeutic levels through timed melatonin supplementation has been demonstrated to provide bone-protective actions in various models. Melatonin is a unique molecule with diverse molecular actions targeting melatonin receptors located on the plasma membrane or mitochondria or acting independently of receptors through its actions as an antioxidant or free radical scavenger to stimulate osteoblastogenesis, inhibit osteoclastogenesis, and improve bone density. Its additional actions on entraining circadian rhythms and improving quality of life in an aging population coupled with its safety profile make it an ideal therapeutic candidate for protecting against bone loss in susceptible populations. The intent of this review is to provide a focused discussion on bone loss and disorders of the bone as it relates to melatonin and conditions that modify melatonin levels with the hope that future therapies include those that include melatonin and correct those factors that modify melatonin levels like circadian disruption.
Collapse
Affiliation(s)
- Fahima Munmun
- Division of Pharmaceutical Sciences, Duquesne University School of Pharmacy, Pittsburgh, PA, USA
| | - Paula A Witt-Enderby
- Division of Pharmaceutical Sciences, Duquesne University School of Pharmacy, Pittsburgh, PA, USA
| |
Collapse
|
18
|
Yang H, Cao Z, Wang Y, Wang J, Gao J, Han B, Yu F, Qin Y, Guo Y. Treadmill exercise influences the microRNA profiles in the bone tissues of mice. Exp Ther Med 2021; 22:1035. [PMID: 34373721 PMCID: PMC8343800 DOI: 10.3892/etm.2021.10467] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 05/28/2021] [Indexed: 12/12/2022] Open
Abstract
As an important regulator involved in cell activity, microRNAs (miRNAs) are important in the process of exercise influencing bone metabolism. The present study aimed to detect and select differentially expressed miRNAs in the bone tissues of mice trained on a treadmill, predict the target genes of these differentially expressed miRNAs and lay a foundation for exploring the effect of treadmill training on bone metabolism through miRNAs. In this experiment, after the mice were trained on a treadmill for 8 weeks, the mechanical properties of mouse femur bone were assessed, and the alkaline phosphatase (ALP) activity and osteocalcin (OCN) protein levels of the bone were assayed. miRNA microarray and reverse transcription-quantitative (RT-q)PCR were performed to select and validate differentially expressed miRNAs in the bone, and the target genes of these miRNAs were predicted with bioinformatics methods. In addition, the differentially expressed miRNAs in the bone tissues were compared with those in mechanically strained osteocytes in vitro. Treadmill training improved the mechanical properties of the femur bones of mice, and elevated the ALP activity and OCN protein level in the bone. In addition, 122 differentially expressed miRNAs were detected in the bone, of which nine were validated via RT-qPCR. Among the target genes of these differentially expressed miRNAs, certain candidates were involved in bone metabolism. A total of eight miRNAs were differentially expressed in both bone tissue and osteocytes, exhibiting the same expression trends, and various target genes of these eight miRNAs were also involved in bone metabolism. Treadmill training resulted in altered miRNA expression profiles in the bones of mice (mainly in osteocytes) and the differentially expressed miRNAs may serve important roles in regulating bone metabolism and osteogenic differentiation.
Collapse
Affiliation(s)
- Huan Yang
- Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Zhen Cao
- Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Yang Wang
- Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China.,Department of Biomedical Engineering, Bioengineering College of Chongqing University, Chongqing 400044, P.R. China
| | - Jiahui Wang
- Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Jintao Gao
- Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Biao Han
- Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Fangmei Yu
- Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Yixiong Qin
- Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| | - Yong Guo
- Department of Biomedical Engineering, College of Biotechnology, Guilin Medical University, Guilin, Guangxi 541004, P.R. China
| |
Collapse
|
19
|
Lee HJ, Kim CO, Lee DC. Association between Daily Sunlight Exposure and Fractures in Older Korean Adults with Osteoporosis: A Nationwide Population-Based Cross-Sectional Study. Yonsei Med J 2021; 62:593-599. [PMID: 34164956 PMCID: PMC8236351 DOI: 10.3349/ymj.2021.62.7.593] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Revised: 04/07/2021] [Accepted: 04/19/2021] [Indexed: 11/27/2022] Open
Abstract
PURPOSE We aimed to investigate the association between daily sunlight exposure duration and fractures in older Korean adults with osteoporosis. MATERIALS AND METHODS We utilized data from the 2008-2011 Korea National Health and Nutrition Examination Survey. Osteoporosis was diagnosed based on a T-score of ≤-2.5 using dual energy X-ray absorptiometry. The duration of daily sunlight exposure and fracture were assessed via intensive health interviews by trained staff using standardized health questionnaires. Fracture was defined as one or more fractures of the femur, wrist, and spine. RESULTS A total of 638 patients with osteoporosis aged ≥65 years were included. The odds ratio (OR) of total fractures was 0.55 times lower in the group with ≥5 h of daily sunlight exposure than in the group with <5 h of exposure after adjusting for age, sex, family history of osteoporosis or fracture, body mass index, bone mineral density of the femoral neck, serum 25-hydroxyvitamin D, current smoking, alcohol intake, daily calcium intake, and physical activity [95% confidence interval (CI) 0.31-0.97, p=0.040]. In patients with vitamin D insufficiency, the OR of total fracture was 0.52 times lower in the group with ≥5 h of daily sunlight exposure than in the group with less exposure after adjusting the above variables (95% CI 0.28-0.97, p=0.041). CONCLUSION Sunlight exposure for ≥5 h a day was significantly associated with a decreased OR of fracture in older Korean adults with osteoporosis. This association was also significant in patients with vitamin D insufficiency.
Collapse
Affiliation(s)
- Hye Jun Lee
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Choon Ok Kim
- Department of Clinical Pharmacology, Severance Hospital, Yonsei University Health System, Seoul, Korea.
| | - Duk Chul Lee
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
20
|
Ren LR, Yao RB, Wang SY, Gong XD, Xu JT, Yang KS. MiR-27a-3p promotes the osteogenic differentiation by activating CRY2/ERK1/2 axis. Mol Med 2021; 27:43. [PMID: 33902432 PMCID: PMC8077963 DOI: 10.1186/s10020-021-00303-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 04/14/2021] [Indexed: 01/16/2023] Open
Abstract
Background Osteoporosis seriously disturbs the life of people. Meanwhile, inhibition or weakening of osteogenic differentiation is one of the important factors in the pathogenesis of osteoporosis. It was reported that miR-27a-3p reduced the symptoms of osteoporosis. However, the mechanism by which miR-27a-3p in osteogenic differentiation remains largely unknown. Methods To induce the osteogenic differentiation in MC3T3-E1 cells, cells were treated with osteogenic induction medium (OIM). RT-qPCR was used to evaluate the mRNA expression of miR-27a-3p and CRY2 in cells. The protein levels of CRY2, Runt-related transcription factor 2 (Runx2), osteopontin (OPN), osteocalcin (OCN) and the phosphorylation level of extracellular regulated protein kinases (ERK) 1/2 in MC3T3-E1 cells were evaluated by western blotting. Meanwhile, calcium nodules and ALP activity were tested by alizarin red staining and ALP kit, respectively. Luciferase reporter gene assay was used to analyze the correlation between CRY2 and miR-27a-3p. Results The expression of miR-27a-3p and the phosphorylation level of ERK1/2 were increased by OIM in MC3T3-E1 cells, while CRY2 expression was decreased. In addition, OIM-induced increase of calcified nodules, ALP content and osteogenesis-related protein expression was significantly reversed by downregulation of miR-27a-3p and overexpression of CRY2. In addition, miR-27a-3p directly targeted CRY2 and negatively regulated CRY2. Meanwhile, the inhibitory effect of miR-27a-3p inhibitor on osteogenic differentiation was reversed by knockdown of CRY2 or using honokiol (ERK1/2 signal activator). Furthermore, miR-27a-3p significantly inhibited the apoptosis of MC3T3-E1 cells treated by OIM. Taken together, miR-27a-3p/CRY2/ERK axis plays an important role in osteoblast differentiation. Conclusions MiR-27a-3p promoted osteoblast differentiation via mediation of CRY2/ERK1/2 axis. Thereby, miR-27a-3p might serve as a new target for the treatment of osteoporosis.
Collapse
Affiliation(s)
- Li-Rong Ren
- Department of Spine Surgery, The First Affiliated Hospital of Dali University, No.32, Jiashibo Avenue, Dali, 671000, Yunnan Province, People's Republic of China
| | - Ru-Bin Yao
- Department of Spine Surgery, The First Affiliated Hospital of Dali University, No.32, Jiashibo Avenue, Dali, 671000, Yunnan Province, People's Republic of China
| | - Shi-Yong Wang
- Department of Spine Surgery, The First Affiliated Hospital of Dali University, No.32, Jiashibo Avenue, Dali, 671000, Yunnan Province, People's Republic of China
| | - Xiang-Dong Gong
- Department of Spine Surgery, The First Affiliated Hospital of Dali University, No.32, Jiashibo Avenue, Dali, 671000, Yunnan Province, People's Republic of China
| | - Ji-Tao Xu
- Department of Spine Surgery, The First Affiliated Hospital of Dali University, No.32, Jiashibo Avenue, Dali, 671000, Yunnan Province, People's Republic of China
| | - Kai-Shun Yang
- Department of Spine Surgery, The First Affiliated Hospital of Dali University, No.32, Jiashibo Avenue, Dali, 671000, Yunnan Province, People's Republic of China.
| |
Collapse
|
21
|
Wang X, Chen T, Deng Z, Gao W, Liang T, Qiu X, Gao B, Wu Z, Qiu J, Zhu Y, Chen Y, Liang Z, Zhou H, Xu C, Liang A, Su P, Peng Y, Huang D. Melatonin promotes bone marrow mesenchymal stem cell osteogenic differentiation and prevents osteoporosis development through modulating circ_0003865 that sponges miR-3653-3p. Stem Cell Res Ther 2021; 12:150. [PMID: 33632317 PMCID: PMC7908669 DOI: 10.1186/s13287-021-02224-w] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 02/14/2021] [Indexed: 12/15/2022] Open
Abstract
Background Little is known about the implications of circRNAs in the effects of melatonin (MEL) on bone marrow mesenchymal stem cell (BMSC) osteogenic differentiation and osteoporosis (OP) progression. The aim of our study was to investigate circRNAs in MEL-regulated BMSC differentiation and OP progression. Methods BMSC osteogenic differentiation was measured by qRT-PCR, western blot (WB), Alizarin Red, and alkaline phosphatase (ALP) staining. Differential circRNA and mRNA profiles of BMSCs treated by MEL were characterized by deep sequencing, followed by validation using RT-PCR, Sanger sequencing, and qRT-PCR. Silencing and overexpression of circ_0003865 were conducted for functional investigations. The sponged microRNAs and targeted mRNAs were predicted by bioinformatics and validated by qRT-PCR, RNA pull-down, and dual-luciferase reporter assay. The function of miR-3653-3p and circ_0003865/miR-3653-3p/growth arrest-specific gene 1 (GAS1) cascade was validated for the osteogenic differentiation of BMSCs by CCK-8, qRT-PCR, WB, Alizarin Red, and ALP staining. The effects of circ_0003865 on OP development were tested in murine OP model. Results MEL promoted osteogenic differentiation of BMSCs. RNA sequencing revealed significant alterations in circRNA and mRNA profiles associated with multiple biological processes and signaling pathways. Circ_0003865 expression in BMSCs was significantly decreased by MEL treatment. Silencing of circ_0003865 had no effect on proliferation while promoted osteogenic differentiation of BMSCs. Overexpression of circ_0003865 abrogated the promotion of BMSC osteogenic differentiation induced by MEL, but proliferation of BMSCs induced by MEL had no change whether circ_0003865 was overexpression or not. Furthermore, circ_0003865 sponged miR-3653-3p to promote GAS1 expression in BMSCs. BMSC osteogenic differentiation was enhanced by miR-3653-3p overexpression while BMSC proliferation was not affected. By contrast, miR-3653-3p silencing mitigated the promoted BMSC osteogenic differentiation caused by circ_0003865 silencing, but had no effect on proliferation. Finally, circ_0003865 silencing repressed OP development in mouse model. Conclusion MEL promotes BMSC osteogenic differentiation and inhibits OP pathogenesis by suppressing the expression of circ_0003865, which regulates GAS1 gene expression via sponging miR-3653-3p.
Collapse
Affiliation(s)
- Xudong Wang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, 510120, China.,Department of Orthopedics, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Taiqiu Chen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, 510120, China
| | - Zhihuai Deng
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, 510120, China
| | - Wenjie Gao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, 510120, China
| | - Tongzhou Liang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, 510120, China
| | - Xianjian Qiu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, 510120, China
| | - Bo Gao
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, 510120, China
| | - Zizhao Wu
- Department of Orthopedics, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jincheng Qiu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, 510120, China
| | - Yuanxin Zhu
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, 510120, China
| | - Yanbo Chen
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, 510120, China
| | - Zhancheng Liang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, 510120, China
| | - Hang Zhou
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, 510120, China
| | - Caixia Xu
- Research Centre for Translational Medicine, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Anjing Liang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, 510120, China
| | - Peiqiang Su
- Department of Orthopedics, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China.,Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan Peng
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, 510120, China.
| | - Dongsheng Huang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, #107 West Yan Jiang Road, Guangzhou, Guangdong, 510120, China.
| |
Collapse
|
22
|
Fock EM, Parnova RG. Protective Effect of Mitochondria-Targeted Antioxidants against Inflammatory Response to Lipopolysaccharide Challenge: A Review. Pharmaceutics 2021; 13:pharmaceutics13020144. [PMID: 33499252 PMCID: PMC7910823 DOI: 10.3390/pharmaceutics13020144] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/15/2021] [Accepted: 01/17/2021] [Indexed: 12/16/2022] Open
Abstract
Lipopolysaccharide (LPS), the major component of the outer membrane of Gram-negative bacteria, is the most abundant proinflammatory agent. Considerable evidence indicates that LPS challenge inescapably causes oxidative stress and mitochondrial dysfunction, leading to cell and tissue damage. Increased mitochondrial reactive oxygen species (mtROS) generation triggered by LPS is known to play a key role in the progression of the inflammatory response. mtROS at excessive levels impair electron transport chain functioning, reduce the mitochondrial membrane potential, and initiate lipid peroxidation and oxidative damage of mitochondrial proteins and mtDNA. Over the past 20 years, a large number of mitochondria-targeted antioxidants (mito-AOX) of different structures that can accumulate inside mitochondria and scavenge free radicals have been synthesized. Their protective role based on the prevention of oxidative stress and the restoration of mitochondrial function has been demonstrated in a variety of common diseases and pathological states. This paper reviews the current data on the beneficial application of different mito-AOX in animal endotoxemia models, in either in vivo or in vitro experiments. The results presented in our review demonstrate the promising potential of approaches based on mito-AOX in the development of new treatment strategies against Gram-negative infections and LPS per se.
Collapse
|
23
|
Meng Y, Tao Z, Zhou S, Da W, Tao L. Research Hot Spots and Trends on Melatonin From 2000 to 2019. Front Endocrinol (Lausanne) 2021; 12:753923. [PMID: 34917024 PMCID: PMC8669723 DOI: 10.3389/fendo.2021.753923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 11/09/2021] [Indexed: 12/25/2022] Open
Abstract
Research on melatonin remains one of the major hot spots in the field of disease treatment, but relevant data are numerous. The purpose of this study was to quantitatively and qualitatively analyze the progress of melatonin research through the method of bibliometrics and to predict hot spots and trends in melatonin research. This study retrieved all the studies on melatonin from 2000 to 2019 in the Web of Science and PubMed and analysed the publishing trends in the literature on a bibliometric online analysis platform and CiteSpace software. The research results were also visually analysed to summarize melatonin research hot spots through gCLUTO and pubMR. The study retrieved a total of 20,351 publications, of which the number of US publications ranked first, accounting for 21.46%, with the greatest impact (centrality = 0.31). The University of Texas Health Science Center at San Antonio and Harvard University had the highest average number of citations at 43.19 and 33.96, respectively. Journal of Pineal Research had the highest average number of citations in 2,993 journals. Professor Reiter made the largest contribution to this area. We further analysed 100 highly cited articles for clinical applications and ongoing related clinical drug trials based on the first hot spot. We systematically analysed melatonin for nearly 20 years while predicting the main research trends in the future, which may provide new directions and ideas for melatonin research. The structure and normal physiological functions of melatonin have been intensively studied in the past few years. And clinical application research and target of melatonin treatment for different diseases and target-based drug design will certainly become the focus of melatonin research.
Collapse
|
24
|
Systems biology analysis of osteogenic differentiation behavior by canine mesenchymal stem cells derived from bone marrow and dental pulp. Sci Rep 2020; 10:20703. [PMID: 33244029 PMCID: PMC7692528 DOI: 10.1038/s41598-020-77656-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2020] [Accepted: 11/13/2020] [Indexed: 12/20/2022] Open
Abstract
Utilization of canine mesenchymal stem cells (cMSCs) for regenerating incorrigible bone diseases has been introduced. However, cMSCs harvested from different sources showed distinct osteogenicity. To clarify this, comparative proteomics-based systems biology analysis was used to analyze osteogenic differentiation behavior by cMSCs harvested from bone marrow and dental pulp. The results illustrated that canine dental pulp stem cells (cDPSCs) contained superior osteogenicity comparing with canine bone marrow-derived MSCs (cBM-MSCs) regarding alkaline phosphatase activity, matrix mineralization, and osteogenic marker expression. Global analyses by proteomics platform showed distinct protein clustering and expression pattern upon an in vitro osteogenic induction between them. Database annotation using Reactome and DAVID revealed contrast and unique expression profile of osteogenesis-related proteins, particularly on signaling pathways, cellular components and processes, and cellular metabolisms. Functional assay and hierarchical clustering for tracking protein dynamic change confirmed that cBM-MSCs required the presences of Wnt, transforming growth factor (TGF)-beta, and bone-morphogenetic protein (BMP) signaling, while cDPSCs mainly relied on BMP signaling presentation during osteogenic differentiation in vitro. Therefore, these findings illustrated the comprehensive data regarding an in vitro osteogenic differentiation behavior by cBM-MSCs and cDPSCs which is crucial for further mechanism study and the establishment of cMSC-based bone tissue engineering (BTE) for veterinary practice.
Collapse
|
25
|
Cao Y, Zhu H, He R, Kong L, Shao J, Zhuang R, Xi J, Zhang J. Proteasome, a Promising Therapeutic Target for Multiple Diseases Beyond Cancer. DRUG DESIGN DEVELOPMENT AND THERAPY 2020; 14:4327-4342. [PMID: 33116419 PMCID: PMC7585272 DOI: 10.2147/dddt.s265793] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 09/22/2020] [Indexed: 12/14/2022]
Abstract
Proteasome is vital for intracellular protein homeostasis as it eliminates misfolded and damaged protein. Inhibition of proteasome has been validated as a powerful strategy for anti-cancer therapy, and several drugs have been approved for treatment of multiple myeloma. Recent studies indicate that proteasome has potent therapeutic effects on a variety of diseases besides cancer, including parasite infectious diseases, bacterial/fungal infections diseases, neurodegenerative diseases and autoimmune diseases. In this review, recent developments of proteasome inhibitors for various diseases and related structure activity relationships are going to be summarized.
Collapse
Affiliation(s)
- Yu Cao
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, 310015, People's Republic of China
| | - Huajian Zhu
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, 310015, People's Republic of China
| | - Ruoyu He
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang Province, 310023 People's Republic of China
| | - Limin Kong
- Department of Pharmacy, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang Province, 310003, People's Republic of China
| | - Jiaan Shao
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, 310015, People's Republic of China
| | - Rangxiao Zhuang
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang Province, 310023 People's Republic of China
| | - Jianjun Xi
- Department of Pharmaceutical Preparation, Hangzhou Xixi Hospital, Hangzhou, Zhejiang Province, 310023 People's Republic of China
| | - Jiankang Zhang
- School of Medicine, Zhejiang University City College, Hangzhou, Zhejiang Province, 310015, People's Republic of China
| |
Collapse
|
26
|
Shi Y, Li M, Yu Y, Zhou Y, Zhang W, Hua H, Wang S. Stress response in periodontal ligament stem cells may contribute to bisphosphonate‑associated osteonecrosis of the jaw: A gene expression array analysis. Mol Med Rep 2020; 22:2043-2051. [PMID: 32705175 PMCID: PMC7411417 DOI: 10.3892/mmr.2020.11276] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Accepted: 06/03/2020] [Indexed: 01/22/2023] Open
Abstract
Gene expression alterations in periodontal ligament stem cells (PDLSCs) during bisphosphonate (BP) usage and the transcriptomic mechanism underlying BP-related osteonecrosis of the jaw have not been fully elucidated. In the present study, human PDLSCs were isolated from adults with no history of periodontal disease, and subsequently incubated and treated with zoledronate on days 3 and 5. Subsequently, PDLSCs from all timepoints were screened using an Affymetrix Gene Expression Array. Limma differential expression analysis was performed on a normalized gene expression matrix, followed by cluster analysis, pathway and network analyses. Overall, 906 genes (352 upregulated and 554 downregulated) exhibited differential expression levels between days 0 and 5, and these were termed slow-response genes. These slow-response genes were enriched in cellular stress response signaling pathways (upregulated genes), as well as proliferation- and ossification-associated signaling pathways (downregulated genes). Furthermore, 168 (day 3 vs. 0) and 105 (day 5 vs. 3) genes were differentially expressed between adjacent timepoints. These genes were also enriched in stress response- and proliferation-associated signaling pathways, but not in ossification-associated signaling pathways. Poly(ADP-ribose) polymerase 1 (PARP1) and CYLD lysine 63 deubiquitinase (CYLD) had the most protein-protein interaction partners among the slow-response genes and were connected with both stress- (e.g. caspase-1) and ossification-associated genes [e.g. secreted phosphoprotein 1 and collagen type I α1 chain (COL1A1)]. BP treatment induced stress response-like transcriptional alterations in PDLSCs, followed by inhibition of proliferation and ossification. These alterations may contribute to the onset of jaw osteonecrosis. PARP1 and CYLD may be two key genes involved in this pathological procedure.
Collapse
Affiliation(s)
- Yueqi Shi
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Mengyu Li
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Yejia Yu
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Yuqiong Zhou
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Wenjie Zhang
- Shanghai Key Laboratory of Stomatology and Shanghai Research Institute of Stomatology; National Clinical Research Center of Stomatology, Shanghai 200011, P.R. China
| | - Hongfei Hua
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| | - Shaoyi Wang
- Department of Oral Surgery, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, P.R. China
| |
Collapse
|
27
|
Zhao L, Wang X, Pomlok K, Liao H, Yang G, Yang X, Chen YG. DDB1 promotes the proliferation and hypertrophy of chondrocytes during mouse skeleton development. Dev Biol 2020; 465:100-107. [PMID: 32479761 DOI: 10.1016/j.ydbio.2020.05.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2019] [Revised: 05/17/2020] [Accepted: 05/20/2020] [Indexed: 10/24/2022]
Abstract
The proliferation and hypertrophy of chondrocytes play important roles in endochondral ossification, which is tightly regulated during skeleton development. However, the regulation mechanism remains largely unknown. Here we show that DDB1 (Damaged DNA Binding Protein 1) has a critical function in the development of growth plates. Using chondrocyte-specific DDB1 knockout mice, we found that DDB1 deletion in chondrocytes results in dwarfism due to the aberrant skeleton development. The structure of growth plate in tibia becomes disordered at P21, not in femur. But at P70, the changes are severer in femur than tibia. Chondrocyte proliferation and differentiation are attenuated and asynchronous in both tibia and femur at P7 and P21. Furthermore, DDB1 deficiency induces p27 upregulation and subsequent cell cycle arrest in primary chondrocytes. Therefore, our data reveal that DDB1 is essential for the skeleton development by controlling chondrocyte proliferation and differentiation.
Collapse
Affiliation(s)
- Lianzheng Zhao
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Xiaodan Wang
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Kumpanat Pomlok
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Hongwei Liao
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Guan Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Xiao Yang
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences, Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Ye-Guang Chen
- The State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
28
|
Cui C, Lin T, Gong Z, Zhu Y. Relationship between autophagy, apoptosis and endoplasmic reticulum stress induced by melatonin in osteoblasts by septin7 expression. Mol Med Rep 2020; 21:2427-2434. [PMID: 32323792 PMCID: PMC7185281 DOI: 10.3892/mmr.2020.11063] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 03/17/2020] [Indexed: 12/21/2022] Open
Abstract
Melatonin secreted by the pineal body is associated with the occurrence and development of idiopathic scoliosis. Melatonin has a concentration-dependent dual effect on osteoblast proliferation, in which higher concentrations can inhibit osteoblast proliferation and induce apoptosis; however, the underlying mechanism remains unclear. In the present study, flow cytometry was used to demonstrate that osteoblast cells treated with melatonin exhibited significantly increased early and late stage apoptotic rates as the concentration increased. Chromatin condensation in the nucleus and apoptotic body formation could be observed using fluorescent microscopy in osteoblast cells treated with 2 mM melatonin. Western blotting results showed that there was an upregulation in the expression of apoptosis marker proteins [poly (ADP-ribose) polymerase 1 (PARP-1)], endoplasmic reticulum stress [ERS; C/EBP homologous protein (CHOP) and glucose-regulated protein, 78 kDa (GRP78)] and autophagy [microtubule-associated protein 1 light chain 3β (LC3)-I/LC3II]. PARP-1 expression was not altered when treated with ERS inhibitor 4PBA and autophagy inhibitor 3MA, whereas 4PBA or 3MA in combination with 2 mM melatonin (or the three together) significantly increased PARP-1 expression. Furthermore, the use of septin7 small interfering RNA confirmed that increased expression of GRP78 and CHOP was related to septin7, and melatonin- mediated ERS was necessary for septin7 activation. These findings suggest that ERS and autophagy might occur in the early stage of treatment with a high concentration of melatonin, and each might play a protective role in promoting survival; in a later stage, ERS and autophagy might interact and contribute to the induction of apoptosis. Overall, the results indicated that septin7 may be a target protein of melatonin-induced ERS.
Collapse
Affiliation(s)
- Cui Cui
- Department of Orthopaedics, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Tao Lin
- Department of Orthopaedics, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Zunlei Gong
- Department of Orthopaedics, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| | - Yue Zhu
- Department of Orthopaedics, First Hospital of China Medical University, Shenyang, Liaoning 110001, P.R. China
| |
Collapse
|
29
|
Importance of Melatonin in Assisted Reproductive Technology and Ovarian Aging. Int J Mol Sci 2020; 21:ijms21031135. [PMID: 32046301 PMCID: PMC7036809 DOI: 10.3390/ijms21031135] [Citation(s) in RCA: 133] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/04/2020] [Accepted: 02/06/2020] [Indexed: 12/19/2022] Open
Abstract
Melatonin is probably produced in all cells but is only secreted by the pineal gland. The pineal secretion of melatonin is determined by the light–dark cycle, and it is only released at night. Melatonin regulates biological rhythms via its receptors located in the suprachiasmatic nuclei of the hypothalamus. Melatonin also has strong antioxidant activities to scavenge free radicals such as reactive oxygen species (ROS). The direct free radical scavenging actions are receptor independent. ROS play an important role in reproductive function including in the ovulatory process. However, excessive ROS can also have an adverse effect on oocytes because of oxidative stress, thereby causing infertility. It is becoming clear that melatonin is located in the ovarian follicular fluid and in the oocytes themselves, which protects these cells from oxidative damage as well as having other beneficial actions in oocyte maturation, fertilization, and embryo development. Trials on humans have investigated the improvement of outcomes of assisted reproductive technology (ART), such as in vitro fertilization and embryo transfer (IVF-ET), by way of administering melatonin to patients suffering from infertility. In addition, clinical research has examined melatonin as an anti-aging molecule via its antioxidative actions, and its relationship with the aging diseases, e.g., Alzheimer’s and Parkinson’s disease, is also underway. Melatonin may also reduce ovarian aging, which is a major issue in assisted reproductive technology. This review explains the relationship between melatonin and human reproductive function, as well as the clinical applications expected to improve the outcomes of assisted reproductive technology such as IVF, while also discussing possibilities for melatonin in preventing ovarian aging.
Collapse
|
30
|
Melatonin as an Agent for Direct Pulp-Capping Treatment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17031043. [PMID: 32041360 PMCID: PMC7037898 DOI: 10.3390/ijerph17031043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 01/31/2020] [Accepted: 02/04/2020] [Indexed: 12/15/2022]
Abstract
Melatonin plays an essential role in the regulation of bone growth. The actions that melatonin exerts on odontoblasts may be similar to its action on osteoblasts. This research aimed to evaluate the pulp response to melatonin used for direct pulp capping to evaluate the antioxidant effect of melatonin administered orally and its influence on dental pulp. Direct pulp capping was performed on the upper molars of Sprague Dawley rats using melatonin or Mineral Trioxide Aggregate (MTA). The study groups were: MTA; Melatonin; MTA + Melatonin administered orally; and Melatonin + Melatonin administered orally. In the latter two groups, the animals drank water dosed with melatonin ad libitum (10 mg/100 mL). After 30 days, the animals were sacrificed, and 5 ml of blood, the kidneys, and the liver were extracted in order to evaluate oxidative stress using thiobarbituric acid reactive substances testing (TBARS). Fragments of the maxilla containing the study molars were prepared for histological evaluation. The degree of pulp inflammation and pulp necrosis, the presence of reparative dentin and dentin bridging the pulp chamber, the presence and regularity of the odontoblastic layer, and the presence of pulp fibrosis were evaluated. No significant differences were found between the four study groups for any of the studied histological variables. The oral administration of melatonin did not modify the local effects of MTA or melatonin on dental pulp, or reduce basal-level oxidative stress. The effect of melatonin on pulp is similar to that of MTA and may be used as an agent for direct pulp capping.
Collapse
|
31
|
Yang YR, Li CW, Wang JH, Huang XS, Yuan YF, Hu J, Liu K, Liang BC, Liu Z, Shi XL. Ubiquitylomes Analysis of the Whole blood in Postmenopausal Osteoporosis Patients and healthy Postmenopausal Women. Orthop Surg 2019; 11:1187-1200. [PMID: 31762184 PMCID: PMC6904657 DOI: 10.1111/os.12556] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/30/2019] [Accepted: 09/18/2019] [Indexed: 12/13/2022] Open
Abstract
Objectives To determine the mechanisms of ubiquitination in postmenopausal osteoporosis and investigate the ubiquitinated spectrum of novel targets between healthy postmenopausal women and postmenopausal osteoporosis patients, we performed ubiquitylome analysis of the whole blood of postmenopausal women and postmenopausal osteoporosis patients. Methods To obtain a more comprehensive understanding of the postmenopausal osteoporosis mechanism, we performed a quantitative assessment of the ubiquitylome in whole blood from seven healthy postmenopausal women and seven postmenopausal osteoporosis patients using high‐performance liquid chromatography fractionation, affinity enrichment, and liquid chromatography coupled to tandem mass spectrometry (LC‐MS/MS). To examine the ubiquitylome data, we performed enrichment analysis using an ubiquitylated amino acid motif, Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. Results Altogether, 133 ubiquitinated sites and 102 proteins were quantified. A difference of more than 1.2 times is considered significant upregulation and less than 0.83 significant downregulation; 32 ubiquitinated sites on 25 proteins were upregulated and 101 ubiquitinated sites on 77 proteins were downregulated. These quantified proteins, both with differently ubiquitinated sites, participated in various cellular processes, such as cellular processes, biological regulation processes, response to stimulus processes, single‐organism and metabolic processes. Ubiquitin conjugating enzyme activity and ubiquitin‐like protein conjugating enzyme activity were the most highly enriched in molecular function of upregulated sites with corresponding proteins, but they were not enriched in downregulated in sites with corresponding proteins. The KEGG pathways analysis of quantified proteins with differentiated ubiquitinated sites found 13 kinds of molecular interactions and functional pathways, such as glyoxylate and decarboxylate metabolism, dopaminergic synapse, ubiquitin‐mediated proteolysis, salivary secretion, coagulation and complement cascades, Parkinson's disease, and hippo signaling pathway. In addition, hsa04120 ubiquitin‐mediated proteolysis was the most highly enriched in proteins with upregulated sites, hsa04610 complement and coagulation cascades was the most highly enriched in proteins with downregulated ubiquitinated sites, and hsa04114 Oocyte meiosis was the most highly enriched among all differential proteins. Conclusion Our study expands the understanding of the spectrum of novel targets that are differentially ubiquitinated in whole blood from healthy postmenopausal women and postmenopausal osteoporosis patients. The findings will contribute toward our understanding of the underlying proteostasis pathways in postmenopausal osteoporosis and the potential identification of diagnostic biomarkers in whole blood.
Collapse
Affiliation(s)
- Yi-Ran Yang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Chun-Wen Li
- Department of Diagnostics of Traditional Chinese Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun-Hua Wang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiao-Sheng Huang
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yi-Feng Yuan
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jiong Hu
- The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Kang Liu
- The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bo-Cheng Liang
- The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhong Liu
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiao-Lin Shi
- The Second Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
32
|
Salehi B, Sharopov F, Fokou PVT, Kobylinska A, Jonge LD, Tadio K, Sharifi-Rad J, Posmyk MM, Martorell M, Martins N, Iriti M. Melatonin in Medicinal and Food Plants: Occurrence, Bioavailability, and Health Potential for Humans. Cells 2019; 8:cells8070681. [PMID: 31284489 PMCID: PMC6678868 DOI: 10.3390/cells8070681] [Citation(s) in RCA: 96] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 06/25/2019] [Accepted: 07/03/2019] [Indexed: 12/15/2022] Open
Abstract
Melatonin is a widespread molecule among living organisms involved in multiple biological, hormonal, and physiological processes at cellular, tissue, and organic levels. It is well-known for its ability to cross the blood–brain barrier, and renowned antioxidant effects, acting as a free radical scavenger, up-regulating antioxidant enzymes, reducing mitochondrial electron leakage, and interfering with proinflammatory signaling pathways. Detected in various medicinal and food plants, its concentration is widely variable. Plant generative organs (e.g., flowers, fruits), and especially seeds, have been proposed as having the highest melatonin concentrations, markedly higher than those found in vertebrate tissues. In addition, seeds are also rich in other substances (lipids, sugars, and proteins), constituting the energetic reserve for a potentially growing seedling and beneficial for the human diet. Thus, given that dietary melatonin is absorbed in the gastrointestinal tract and transported into the bloodstream, the ingestion of medicinal and plant foods by mammals as a source of melatonin may be conceived as a key step in serum melatonin modulation and, consequently, health promotion.
Collapse
Affiliation(s)
- Bahare Salehi
- Student Research Committee, School of Medicine, Bam University of Medical Sciences, Bam 44340847, Iran
| | - Farukh Sharopov
- Department of Pharmaceutical Technology, Avicenna Tajik State Medical University, 73400 Dushanbe, Tajikistan
| | | | - Agnieszka Kobylinska
- Laboratory of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland
| | - Lilian de Jonge
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA 22030, USA
| | - Kathryn Tadio
- Department of Nutrition and Food Studies, George Mason University, Fairfax, VA 22030, USA
| | - Javad Sharifi-Rad
- Zabol Medicinal Plants Research Center, Zabol University of Medical Sciences, Zabol 61615-585, Iran.
| | - Malgorzata M Posmyk
- Laboratory of Plant Ecophysiology, Faculty of Biology and Environmental Protection, University of Lodz, 90-237 Lodz, Poland.
| | - Miquel Martorell
- Department of Nutrition and Dietetics, Faculty of Pharmacy, University of Concepcion, Concepcion 4070386, Chile
| | - Natália Martins
- Faculty of Medicine, University of Porto, 4200-319 Porto, Portugal.
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal.
| | - Marcello Iriti
- Department of Agricultural and Environmental Sciences, Milan State University, 20133 Milan, Italy.
| |
Collapse
|
33
|
Zhou C, Zhang D, Zou J, Li X, Zou S, Xie J. Substrate Compliance Directs the Osteogenic Lineages of Stem Cells from the Human Apical Papilla via the Processes of Mechanosensing and Mechanotransduction. ACS APPLIED MATERIALS & INTERFACES 2019; 11:26448-26459. [PMID: 31251564 DOI: 10.1021/acsami.9b07147] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Chenchen Zhou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Demao Zhang
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jing Zou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Xiaobing Li
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Shujuan Zou
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610064, China
| |
Collapse
|
34
|
Liu H, Liu Z, Man CW, Guo J, Han X, Hu Z, Ng TB, Zhao Z, Li J, Wang W, Chun TC, Qiao J, Shi B, Xu L, Bao H, Jiang Q, Lam TP, Cheng JCY, Qiu Y, Zhu Z. The effect of exogenous melatonin on reducing scoliotic curvature and improving bone quality in melatonin-deficient C57BL/6J mice. Sci Rep 2019; 9:6202. [PMID: 30996275 PMCID: PMC6470154 DOI: 10.1038/s41598-019-42467-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Accepted: 03/25/2019] [Indexed: 11/17/2022] Open
Abstract
It is well-documented that melatonin deficiency has been linked to the etiopathogenesis of adolescent idiopathic scoliosis. In this study, we intended to apply melatonin in melatonin-deficient mice to ascertain whether melatonin could reduce the incidence/severity of scoliosis, and investigate the role of melatonin on bone mineral density in scoliosis. A total of 80 mice were divided into 4 groups: 20 quadrupedal mice and 20 bipedal mice served as controls; 20 quadrupedal and 20 bipedal mice received oral melatonin (8 mg/kg BW) daily. After 5th, 10th, 15th and 20th weeks of treatment, radiographs and in vivo micro-CT were used to determine the incidence of scoliosis and bone qualities, respectively. Upon sacrifice, the levels of melatonin were measured in each group. At 20th week, the occurrence of scoliosis was 80%, 30%, 22% and 5% in bipedal, quadrupedal, bipedal + melatonin and quadrupedal + melatonin group, respectively. The trabecular bone quality of the vertebral body was significantly ameliorated in the melatonin-treated bipedal models. Likewise, the number of osteoclasts was significantly less in those treated with melatonin. Our results indicated that melatonin deficiency may be crucial for scoliotic development, and restoration of melatonin levels can prevent scoliotic development with the improvement in bone density.
Collapse
Affiliation(s)
- Hao Liu
- Department of Neurosurgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Zhen Liu
- Department of Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
- Joint Scoliosis Research Center of the Chinese University of Hong Kong & Nanjing University, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Chi-Wai Man
- SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
- Joint Scoliosis Research Center of the Chinese University of Hong Kong & Nanjing University, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Jing Guo
- Spine Surgery, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao Han
- Department of Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
- Joint Scoliosis Research Center of the Chinese University of Hong Kong & Nanjing University, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Zongshan Hu
- SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
- Joint Scoliosis Research Center of the Chinese University of Hong Kong & Nanjing University, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Tzi Bun Ng
- School of Biomedical Sciences, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Zhihui Zhao
- Department of Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
- Joint Scoliosis Research Center of the Chinese University of Hong Kong & Nanjing University, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Jie Li
- Department of Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
- Joint Scoliosis Research Center of the Chinese University of Hong Kong & Nanjing University, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Weijun Wang
- Department of Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
- Joint Scoliosis Research Center of the Chinese University of Hong Kong & Nanjing University, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Tseng-Chang Chun
- Department of Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
- Joint Scoliosis Research Center of the Chinese University of Hong Kong & Nanjing University, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Jun Qiao
- Department of Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
- Joint Scoliosis Research Center of the Chinese University of Hong Kong & Nanjing University, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Benlong Shi
- Department of Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
- Joint Scoliosis Research Center of the Chinese University of Hong Kong & Nanjing University, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Leilei Xu
- Department of Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
- Joint Scoliosis Research Center of the Chinese University of Hong Kong & Nanjing University, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Hongda Bao
- Department of Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
- Joint Scoliosis Research Center of the Chinese University of Hong Kong & Nanjing University, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Qing Jiang
- Department of Sports Medicine and Adult Reconstructive Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
| | - Tsz Ping Lam
- SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
- Joint Scoliosis Research Center of the Chinese University of Hong Kong & Nanjing University, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Jack Chun Yiu Cheng
- SH Ho Scoliosis Research Laboratory, Department of Orthopaedics and Traumatology, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
- Joint Scoliosis Research Center of the Chinese University of Hong Kong & Nanjing University, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Yong Qiu
- Department of Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China
- Joint Scoliosis Research Center of the Chinese University of Hong Kong & Nanjing University, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China
| | - Zezhang Zhu
- Department of Spine Surgery, The Affiliated Drum Tower Hospital of Nanjing University Medical School, Nanjing University, Nanjing, China.
- Joint Scoliosis Research Center of the Chinese University of Hong Kong & Nanjing University, The Chinese University of Hong Kong, Shatin, NT, Hong Kong SAR, China.
| |
Collapse
|
35
|
Ōmura S, Crump A. Lactacystin: first-in-class proteasome inhibitor still excelling and an exemplar for future antibiotic research. J Antibiot (Tokyo) 2019; 72:189-201. [PMID: 30755736 PMCID: PMC6760633 DOI: 10.1038/s41429-019-0141-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2018] [Revised: 12/12/2018] [Accepted: 01/07/2019] [Indexed: 01/28/2023]
Abstract
Lactacystin exemplifies the role that serendipity plays in drug discovery and why “finding things without actually looking for them” retains such a pivotal role in the search for the useful properties of chemicals. The first proteasome inhibitor discovered, lactacystin stimulated new possibilities in cancer control. New and innovative uses are regularly being found for lactacystin, including as a model to study dementia, while new formulations and delivery systems may facilitate its use clinically as an anticancer agent. All this provides yet more evidence that we need a comprehensive, collaborative and coordinated programme to fully investigate all new and existing chemical compounds, especially those of microbial origin. We need to do so in order to avoid failing to detect and successfully exploit unsought yet potentially life-saving or extremely advantageous properties of microbial metabolites.
Collapse
Affiliation(s)
- Satoshi Ōmura
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan.
| | - Andy Crump
- Kitasato Institute for Life Sciences, Kitasato University, 5-9-1 Shirokane, Minato-ku, Tokyo, 108-8641, Japan
| |
Collapse
|
36
|
Wang B, Wen H, Smith W, Hao D, He B, Kong L. Regulation effects of melatonin on bone marrow mesenchymal stem cell differentiation. J Cell Physiol 2019; 234:1008-1015. [PMID: 30145787 DOI: 10.1002/jcp.27090] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2018] [Accepted: 06/28/2018] [Indexed: 12/26/2022]
Abstract
Melatonin's therapeutic potential has been highly underestimated because its biological functional roles are diverse and relevant mechanisms are complicated. Among the numerous biological activities of melatonin, its regulatory effects on pluripotent mesenchymal stem cells (MSCs), which are found in bone marrow stem cells (BMSCs) and adipose tissue (AD-MSC), have been recently proposed, which has received increasingly more attention in recent studies. Moreover, receptor-dependent and receptor-independent responses to melatonin are identified to occur in these cells by regulating signaling pathways, which drive the commitment and differentiation of MSCs into osteogenic, chondrogenic, or adipogenic lineages. Therefore, the aim of our current review is to summarize the evidence related to the utility of melatonin as a regulatory agent by focusing on its relationship with the differentiation of MSCs. In particular, we aimed to review its roles in promoting osteogenic and chondrogenic differentiation and the relevant signaling cascades involved. Also, the roles that melatonin and, particularly, its receptors play in these processes are highlighted.
Collapse
Affiliation(s)
- Biao Wang
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Hao Wen
- Department of Orthopedic, Yan'an University Medical School, Yan'an, China
| | - Wanli Smith
- Department of Psychiatry and Behavioral Sciences, School of Medicine, Johns Hopkins University, Baltimore, Maryland
| | - Dingjun Hao
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Baorong He
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| | - Lingbo Kong
- Department of Spine Surgery, Honghui Hospital, Xi'an Jiaotong University College of Medicine, Xi'an, China
| |
Collapse
|
37
|
Miao Y, Chen Y, Liu X, Diao J, Zhao N, Shi X, Wang Y. Melatonin decorated 3D-printed beta-tricalcium phosphate scaffolds promoting bone regeneration in a rat calvarial defect model. J Mater Chem B 2019. [DOI: 10.1039/c8tb03361g] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
3D-printed β-TCP scaffolds decorated with melatonin via dopamine mussel-inspired chemistry enhance the osteogenesis and in vivo bone regeneration.
Collapse
Affiliation(s)
- Yali Miao
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology
| | - Yunhua Chen
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology
| | - Xiao Liu
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology
- Guangzhou 510006
- China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology
- Guangzhou 510006
| | - Jingjing Diao
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology
- Guangzhou 510006
- China
- Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology
- Guangzhou 510006
| | - Naru Zhao
- School of Materials Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology
| | - Xuetao Shi
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology
- Guangzhou 510006
- China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology
- Guangzhou 510006
| | - Yingjun Wang
- National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology
- Guangzhou 510006
- China
- Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology
- Guangzhou 510006
| |
Collapse
|
38
|
Hardeland R. Melatonin and inflammation-Story of a double-edged blade. J Pineal Res 2018; 65:e12525. [PMID: 30242884 DOI: 10.1111/jpi.12525] [Citation(s) in RCA: 302] [Impact Index Per Article: 43.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Revised: 09/10/2018] [Accepted: 09/14/2018] [Indexed: 12/13/2022]
Abstract
Melatonin is an immune modulator that displays both pro- and anti-inflammatory properties. Proinflammatory actions, which are well documented by many studies in isolated cells or leukocyte-derived cell lines, can be assumed to enhance the resistance against pathogens. However, they can be detrimental in autoimmune diseases. Anti-inflammatory actions are of particular medicinal interest, because they are observed in high-grade inflammation such as sepsis, ischemia/reperfusion, and brain injury, and also in low-grade inflammation during aging and in neurodegenerative diseases. The mechanisms contributing to anti-inflammatory effects are manifold and comprise various pathways of secondary signaling. These include numerous antioxidant effects, downregulation of inducible and inhibition of neuronal NO synthases, downregulation of cyclooxygenase-2, inhibition of high-mobility group box-1 signaling and toll-like receptor-4 activation, prevention of inflammasome NLRP3 activation, inhibition of NF-κB activation and upregulation of nuclear factor erythroid 2-related factor 2 (Nrf2). These effects are also reflected by downregulation of proinflammatory and upregulation of anti-inflammatory cytokines. Proinflammatory actions of amyloid-β peptides are reduced by enhancing α-secretase and inhibition of β- and γ-secretases. A particular role in melatonin's actions seems to be associated with the upregulation of sirtuin-1 (SIRT1), which shares various effects known from melatonin and additionally interferes with the signaling by the mechanistic target of rapamycin (mTOR) and Notch, and reduces the expression of the proinflammatory lncRNA-CCL2. The conclusion on a partial mediation by SIRT1 is supported by repeatedly observed inhibitions of melatonin effects by sirtuin inhibitors or knockdown.
Collapse
Affiliation(s)
- Rüdiger Hardeland
- Johann Friedrich Blumenbach Institute of Zoology and Anthropology, University of Göttingen, Göttingen, Germany
| |
Collapse
|
39
|
Guo YC, Wang MY, Zhang SW, Wu YS, Zhou CC, Zheng RX, Shao B, Wang Y, Xie L, Liu WQ, Sun NY, Jing JJ, Ye L, Chen QM, Yuan Q. Ubiquitin-specific protease USP34 controls osteogenic differentiation and bone formation by regulating BMP2 signaling. EMBO J 2018; 37:embj.201899398. [PMID: 30181118 DOI: 10.15252/embj.201899398] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 07/30/2018] [Accepted: 08/13/2018] [Indexed: 02/05/2023] Open
Abstract
The osteogenic differentiation of mesenchymal stem cells (MSCs) is governed by multiple mechanisms. Growing evidence indicates that ubiquitin-dependent protein degradation is critical for the differentiation of MSCs and bone formation; however, the function of ubiquitin-specific proteases, the largest subfamily of deubiquitylases, remains unclear. Here, we identify USP34 as a previously unknown regulator of osteogenesis. The expression of USP34 in human MSCs increases after osteogenic induction while depletion of USP34 inhibits osteogenic differentiation. Conditional knockout of Usp34 from MSCs or pre-osteoblasts leads to low bone mass in mice. Deletion of Usp34 also blunts BMP2-induced responses and impairs bone regeneration. Mechanically, we demonstrate that USP34 stabilizes both Smad1 and RUNX2 and that depletion of Smurf1 restores the osteogenic potential of Usp34-deficient MSCs in vitro Taken together, our data indicate that USP34 is required for osteogenic differentiation and bone formation.
Collapse
Affiliation(s)
- Yu-Chen Guo
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Meng-Yuan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shi-Wen Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yun-Shu Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chen-Chen Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ri-Xin Zheng
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Bin Shao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yuan Wang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Liang Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Wei-Qing Liu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ning-Yuan Sun
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Jun-Jun Jing
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ling Ye
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Qian-Ming Chen
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Quan Yuan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
40
|
Dolcino M, Pelosi A, Fiore PF, Patuzzo G, Tinazzi E, Lunardi C, Puccetti A. Long Non-Coding RNAs Play a Role in the Pathogenesis of Psoriatic Arthritis by Regulating MicroRNAs and Genes Involved in Inflammation and Metabolic Syndrome. Front Immunol 2018; 9:1533. [PMID: 30061880 PMCID: PMC6054935 DOI: 10.3389/fimmu.2018.01533] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2018] [Accepted: 06/21/2018] [Indexed: 01/03/2023] Open
Abstract
Psoriatic arthritis (PsA) is an inflammatory arthritis, characterized by inflammation of entheses and synovium, leading to joint erosions and new bone formation. It affects 10-30% of patients with psoriasis, and has an estimated prevalence of approximately 1%. PsA is considered to be primarily an autoimmune disease, driven by autoreactive T cells directed against autoantigens present in the skin and in the joints. However, an autoinflammatory origin has recently been proposed. Long noncoding RNAs (lncRNAs) are RNAs more than 200 nucleotides in length that do not encode proteins. LncRNAs play important roles in several biological processes, including chromatin remodeling, transcription control, and post-transcriptional processing. Several studies have shown that lncRNAs are expressed in a stage-specific or lineage-specific manner in immune cells that have a role in the development, activation, and effector functions of immune cells. LncRNAs are thought to play a role in several diseases, including autoimmune disorders. Indeed, a few lncRNAs have been identified in systemic lupus erythematosus, rheumatoid arthritis, and psoriasis. Although several high-throughput studies have been performed to identify lncRNAs, their biological and pathological relevance are still unknown, and most transcriptome studies in autoimmune diseases have only assessed protein-coding transcripts. No data are currently available on lncRNAs in PsA. Therefore, by microarray analysis, we have investigated the expression profiles of more than 50,000 human lncRNAs in blood samples from PsA patients and healthy controls using Human Clariom D Affymetrix chips, suitable to detect rare and low-expressing transcripts otherwise unnoticed by common sequencing methodologies. Network analysis identified lncRNAs targeting highly connected genes in the PsA transcriptome. Such genes are involved in molecular pathways crucial for PsA pathogenesis, including immune response, glycolipid metabolism, bone remodeling, type 1 interferon, wingless related integration site, and tumor necrosis factor signaling. Selected lncRNAs were validated by RT-PCR in an expanded cohort of patients. Moreover, modulated genes belonging to meaningful pathways were validated by RT-PCR in PsA PBMCs and/or by ELISA in PsA sera. The findings indicate that lncRNAs are involved in PsA pathogenesis by regulating both microRNAs and genes and open new avenues for the identification of new biomarkers and therapeutical targets.
Collapse
Affiliation(s)
- Marzia Dolcino
- Department of Medicine, University of Verona, Verona, Italy
| | - Andrea Pelosi
- Immunology Area, Pediatric Hospital Bambino Gesù, Rome, Italy
| | | | | | - Elisa Tinazzi
- Department of Medicine, University of Verona, Verona, Italy
| | | | - Antonio Puccetti
- Department of Experimental Medicine - Section of Histology, University of Genova, Genova, Italy
| |
Collapse
|
41
|
Liu L, Liu K, Yan Y, Chu Z, Tang Y, Tang C. Two Transcripts of FBXO5 Promote Migration and Osteogenic Differentiation of Human Periodontal Ligament Mesenchymal Stem Cells. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7849294. [PMID: 29850565 PMCID: PMC5933072 DOI: 10.1155/2018/7849294] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 03/03/2018] [Accepted: 03/13/2018] [Indexed: 12/15/2022]
Abstract
OBJECTIVES Enhanced migration and osteogenic differentiation of mesenchymal stem cells (MSCs) are beneficial for MSC-mediated periodontal tissue regeneration, a promising method for periodontitis treatment. FBXO5, a member of the F-box protein family, is involved in the osteogenic differentiation of MSCs. Here, we investigated the effect of FBXO5 on human periodontal ligament stem cells (hPDLSCs). MATERIALS AND METHODS hPDLSCs were isolated from periodontal ligament tissue. Lentivirus FBXO5 shRNA was used to silence FBXO5 expression. Two transcripts of FBXO5 were overexpressed and transduced into hPDLSCs via retroviral infection. Migration and osteogenic differentiation of hPDLSCs were evaluated using the scratch migration assay, alkaline phosphatase (ALP) activity, ALP staining, alizarin red staining, western blotting, and real-time polymerase chain reaction. RESULTS The expression of FBXO5 was upregulated after osteogenic induction in hPDLSCs. FBXO5 knockdown attenuated migration, inhibited ALP activity and mineralization, and decreased RUNX2, OSX, and OCN expression, while the overexpression of two transcript isoforms significantly accelerated migration, enhanced ALP activity and mineralization, and increased RUNX2, OSX, and OCN expression in hPDLSCs. CONCLUSIONS Both isoforms of FBXO5 promoted the migration and osteogenic differentiation potential of hPDLSCs, which identified a potential target for improving periodontal tissue regeneration.
Collapse
Affiliation(s)
- Lin Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kun Liu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yanzhe Yan
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhuangzhuang Chu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yi Tang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chunbo Tang
- Department of Dental Implantology, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
42
|
CUL4B promotes the pathology of adjuvant-induced arthritis in rats through the canonical Wnt signaling. J Mol Med (Berl) 2018; 96:495-511. [DOI: 10.1007/s00109-018-1635-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2017] [Revised: 02/07/2018] [Accepted: 03/22/2018] [Indexed: 12/19/2022]
|
43
|
Reiter RJ, Tan DX, Rosales-Corral S, Galano A, Zhou XJ, Xu B. Mitochondria: Central Organelles for Melatonin's Antioxidant and Anti-Aging Actions. Molecules 2018; 23:E509. [PMID: 29495303 PMCID: PMC6017324 DOI: 10.3390/molecules23020509] [Citation(s) in RCA: 251] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 02/13/2018] [Accepted: 02/16/2018] [Indexed: 02/07/2023] Open
Abstract
Melatonin, along with its metabolites, have long been known to significantly reduce the oxidative stress burden of aging cells or cells exposed to toxins. Oxidative damage is a result of free radicals produced in cells, especially in mitochondria. When measured, melatonin, a potent antioxidant, was found to be in higher concentrations in mitochondria than in other organelles or subcellular locations. Recent evidence indicates that mitochondrial membranes possess transporters that aid in the rapid uptake of melatonin by these organelles against a gradient. Moreover, we predicted several years ago that, because of their origin from melatonin-producing bacteria, mitochondria likely also synthesize melatonin. Data accumulated within the last year supports this prediction. A high content of melatonin in mitochondria would be fortuitous, since these organelles produce an abundance of free radicals. Thus, melatonin is optimally positioned to scavenge the radicals and reduce the degree of oxidative damage. In light of the "free radical theory of aging", including all of its iterations, high melatonin levels in mitochondria would be expected to protect against age-related organismal decline. Also, there are many age-associated diseases that have, as a contributing factor, free radical damage. These multiple diseases may likely be deferred in their onset or progression if mitochondrial levels of melatonin can be maintained into advanced age.
Collapse
Affiliation(s)
- Russel J Reiter
- Department of Cellular and Structural Biology UT Health San Antonio, San Antonio, SD 78229, USA.
| | - Dun Xian Tan
- Department of Cellular and Structural Biology UT Health San Antonio, San Antonio, SD 78229, USA.
| | - Sergio Rosales-Corral
- Centro de Investigacion Biomedica de Occidente, Instituo Mexicana del Seguro Social, Guadalajara 44346, Mexico.
| | - Annia Galano
- Departamento de Quimica, Universidad Autonoma Metropolitana-Iztapatapa, Mexico D.F. 09340, Mexico.
| | - Xin Jia Zhou
- Department of Cellular and Structural Biology UT Health San Antonio, San Antonio, SD 78229, USA.
| | - Bing Xu
- Department of Cellular and Structural Biology UT Health San Antonio, San Antonio, SD 78229, USA.
| |
Collapse
|
44
|
Neuroprotective Effects of Melatonin on Experimental Allergic Encephalomyelitis Mice Via Anti-Oxidative Stress Activity. J Mol Neurosci 2018; 64:233-241. [DOI: 10.1007/s12031-017-1022-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/20/2017] [Indexed: 11/26/2022]
|
45
|
Peng C, Shen J, Lin X, Su KJ, Greenbaum J, Zhu W, Lou HL, Liu F, Zeng CP, Deng WF, Deng HW. Genetic sharing with coronary artery disease identifies potential novel loci for bone mineral density. Bone 2017; 103:70-77. [PMID: 28651948 PMCID: PMC5796548 DOI: 10.1016/j.bone.2017.06.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2017] [Revised: 06/21/2017] [Accepted: 06/22/2017] [Indexed: 12/30/2022]
Abstract
Bone mineral density (BMD) is a complex trait with high missing heritability. Numerous evidences have shown that BMD variation has a relationship with coronary artery disease (CAD). This relationship may come from a common genetic basis called pleiotropy. By leveraging the pleiotropy with CAD, we may be able to improve the detection power of genetic variants associated with BMD. Using a recently developed conditional false discovery rate (cFDR) method, we jointly analyzed summary statistics from two large independent genome wide association studies (GWAS) of lumbar spine (LS) BMD and CAD. Strong pleiotropic enrichment and 7 pleiotropic SNPs were found for the two traits. We identified 41 SNPs for LS BMD (cFDR<0.05), of which 20 were replications of previous GWASs and 21 were potential novel SNPs that were not reported before. Four genes encompassed by 9 cFDR-significant SNPs were partially validated in the gene expression assay. Further functional enrichment analysis showed that genes corresponding to the cFDR-significant LS BMD SNPs were enriched in GO terms and KEGG pathways that played crucial roles in bone metabolism (adjP<0.05). In protein-protein interaction analysis, strong interactions were found between the proteins produced by the corresponding genes. Our study demonstrated the reliability and high-efficiency of the cFDR method on the detection of trait-associated genetic variants, the present findings shed novel insights into the genetic variability of BMD as well as the shared genetic basis underlying osteoporosis and CAD.
Collapse
Affiliation(s)
- Cheng Peng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China; Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, China
| | - Jie Shen
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Xu Lin
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China
| | - Kuan-Jui Su
- Center for Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, USA
| | - Jonathan Greenbaum
- Center for Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, USA
| | - Wei Zhu
- Center for Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, USA
| | - Hui-Ling Lou
- Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, China
| | - Feng Liu
- Department of Geriatrics, National Key Clinical Specialty, Guangzhou First People's Hospital, Guangzhou Medical University, 510180, China
| | - Chun-Ping Zeng
- Department of Endocrinology and Metabolism, Affiliated Nanhai Hospital of Southern Medical University, Guangzhou, China
| | | | - Hong-Wen Deng
- Department of Endocrinology and Metabolism, The Third Affiliated Hospital of Southern Medical University, Guangzhou 510630, China; Center for Bioinformatics and Genomics, Department of Global Biostatistics and Data Science, Tulane University, New Orleans, LA, USA.
| |
Collapse
|
46
|
Lo Sardo F, Muti P, Blandino G, Strano S. Melatonin and Hippo Pathway: Is There Existing Cross-Talk? Int J Mol Sci 2017; 18:ijms18091913. [PMID: 28878191 PMCID: PMC5618562 DOI: 10.3390/ijms18091913] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 08/30/2017] [Accepted: 09/01/2017] [Indexed: 12/16/2022] Open
Abstract
Melatonin is an indolic hormone that regulates a plethora of functions ranging from the regulation of circadian rhythms and antioxidant properties to the induction and maintenance of tumor suppressor pathways. It binds to specific receptors as well as to some cytosolic proteins, leading to several cellular signaling cascades. Recently, the involvement of melatonin in cancer insurgence and progression has clearly been demonstrated. In this review, we will first describe the structure and functions of melatonin and its receptors, and then discuss both molecular and epidemiological evidence on melatonin anticancer effects. Finally, we will shed light on potential cross-talk between melatonin signaling and the Hippo signaling pathway, along with the possible implications for cancer therapy.
Collapse
Affiliation(s)
- Federica Lo Sardo
- Oncogenomic and Epigenetic Unit, Molecular Chemoprevention Group, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy.
| | - Paola Muti
- Department of Oncology, Juravinski Cancer Center, McMaster University, Hamilton, ON L8S 4L8, Canada.
| | - Giovanni Blandino
- Oncogenomic and Epigenetic Unit, Molecular Chemoprevention Group, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy.
| | - Sabrina Strano
- Oncogenomic and Epigenetic Unit, Molecular Chemoprevention Group, Department of Research, Diagnosis and Innovative Technologies, Translational Research Area, Regina Elena National Cancer Institute, via Elio Chianesi 53, 00144 Rome, Italy.
| |
Collapse
|
47
|
Han Y, Kim YM, Kim HS, Lee KY. Melatonin promotes osteoblast differentiation by regulating Osterix protein stability and expression. Sci Rep 2017; 7:5716. [PMID: 28720849 PMCID: PMC5515917 DOI: 10.1038/s41598-017-06304-x] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Accepted: 06/09/2017] [Indexed: 12/11/2022] Open
Abstract
Although the biological role of melatonin in osteogenic differentiation has been suggested, the mechanism of osteoblast differentiation remains unclear. Thus, the present study investigated the underlying molecular mechanisms based on osteoblast-specific transcription factors. We found that melatonin enhanced BMP-4-induced osteogenic differentiation and increased the expression of osteogenic markers, especially Osterix, which is an essential transcription factor for the differentiation of preosteoblasts into mature osteoblasts in the late stage of osteoblast differentiation. Melatonin treatment increased the expression of Osterix during osteoblast differentiation and stabilized its expression by the inhibition of ubiquitin-proteasome-mediated degradation of Osterix, leading to up-regulated Osterix transcriptional activity on the osteogenic promoter and promoting alkaline phosphatase activity and bone mineralization. Furthermore, treatment with protein kinase A (PKA) inhibitor H89 and protein kinase C (PKC) inhibitor Go6976 blocked the melatonin-induced transcriptional activity and phosphorylation of Osterix, indicating that melatonin regulates Osterix expression via the PKA and PKC signaling pathways. Overall, these findings suggest that melatonin directly regulates the late stage of osteoblast differentiation by enhancing Osterix expression; this provides further evidence of melatonin as a potent agent for treating osteoporosis.
Collapse
Affiliation(s)
- Younho Han
- College of Pharmacy & Research Institute of Drug Development, Chonnam National University, Gwangju, Republic of Korea
| | - Young-Mi Kim
- Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Science and Technology, Hanyang University, Ansan, Gyeonggi-do, 15588, Republic of Korea
| | - Hyung Sik Kim
- Division of Toxicology, College of Pharmacy, Sungkyunkwan University, Seoburo 2066, Suwon, Gyeonggi-Do, 440-746, Republic of Korea
| | - Kwang Youl Lee
- College of Pharmacy & Research Institute of Drug Development, Chonnam National University, Gwangju, Republic of Korea.
| |
Collapse
|
48
|
Lai M, Jin Z, Tang Q, Lu M. Sustained release of melatonin from TiO2 nanotubes for modulating osteogenic differentiation of mesenchymal stem cells in vitro. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:1651-1664. [DOI: 10.1080/09205063.2017.1342334] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Affiliation(s)
- Min Lai
- School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Ziyang Jin
- School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Qiang Tang
- School of Life Science, Jiangsu Normal University, Xuzhou, China
| | - Min Lu
- School of Life Science, Jiangsu Normal University, Xuzhou, China
| |
Collapse
|
49
|
Koronkowski MJ, Semla TP, Schmader KE, Hanlon JT. Recent Literature Update on Medication Risk in Older Adults, 2015-2016. J Am Geriatr Soc 2017; 65:1401-1405. [PMID: 28369729 DOI: 10.1111/jgs.14887] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Medications can pose considerable risk in older adults. This article annotates four articles addressing this concern from 2016. The first provides national data on the use of specific prescription, over-the-counter and dietary supplements in older adults and their change over time. The second discusses the opportunity of deprescribing ineffective/unnecessary stool softeners (i.e., docusate) routinely given to older hospital patients. The third national study examines common adverse drug events in older emergency room patients. Finally, a study published demonstrating a potential association between melatonin and fractures is discussed. This manuscript is intended to provide a narrative review of key publications in medication safety for clinicians and researchers committed to improving medication safety in older adults.
Collapse
Affiliation(s)
- Michael J Koronkowski
- Department of Pharmacy Practice, College of Pharmacy, University of Illinois, Chicago, Illinois
| | - Todd P Semla
- Department of Veterans Affairs, Pharmacy Benefits Management Services, Hines, Illinois.,Departments of Medicine and Psychiatry & Behavioral Sciences, Feinberg School of Medicine, Northwestern University, Chicago, Illinois
| | - Kenneth E Schmader
- Department of Medicine, School of Medicine, Duke University Medical Center, Durham, North Carolina.,Geriatric Research Education and Clinical Center, Durham Veterans Affairs Medical Center, Durham, North Carolina
| | - Joseph T Hanlon
- Department of Medicine (Geriatrics), School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pharmacy and Therapeutics, School of Pharmacy, University of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania.,Geriatric Research Education and Clinical Center, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania.,Center for Health Equity Research and Promotion, Veterans Affairs Pittsburgh Healthcare System, Pittsburgh, Pennsylvania
| |
Collapse
|
50
|
Rood MTM, Spa SJ, Welling MM, ten Hove JB, van Willigen DM, Buckle T, Velders AH, van Leeuwen FWB. Obtaining control of cell surface functionalizations via Pre-targeting and Supramolecular host guest interactions. Sci Rep 2017; 7:39908. [PMID: 28057918 PMCID: PMC5216351 DOI: 10.1038/srep39908] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 11/28/2016] [Indexed: 12/18/2022] Open
Abstract
The use of mammalian cells for therapeutic applications is finding its way into modern medicine. However, modification or "training" of cells to make them suitable for a specific application remains complex. By envisioning a chemical toolbox that enables specific, but straight-forward and generic cellular functionalization, we investigated how membrane-receptor (pre)targeting could be combined with supramolecular host-guest interactions based on β-cyclodextrin (CD) and adamantane (Ad). The feasibility of this approach was studied in cells with membranous overexpression of the chemokine receptor 4 (CXCR4). By combining specific targeting of CXCR4, using an adamantane (Ad)-functionalized Ac-TZ14011 peptide (guest; KD = 56 nM), with multivalent host molecules that entailed fluorescent β-CD-Poly(isobutylene-alt-maleic-anhydride)-polymers with different fluorescent colors and number of functionalities, host-guest cell-surface modifications could be studied in detail. A second set of Ad-functionalized entities enabled introduction of additional surface functionalities. In addition, the attraction between CD and Ad could be used to drive cell-cell interactions. Combined we have shown that supramolecular interactions, that are based on specific targeting of an overexpressed membrane-receptor, allow specific and stable, yet reversible, surface functionalization of viable cells and how this approach can be used to influence the interaction between cells and their surroundings.
Collapse
Affiliation(s)
- Mark T. M. Rood
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, PO BOX 9600, 2300 RC, Leiden, The Netherlands
| | - Silvia J. Spa
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, PO BOX 9600, 2300 RC, Leiden, The Netherlands
| | - Mick M. Welling
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, PO BOX 9600, 2300 RC, Leiden, The Netherlands
| | - Jan Bart ten Hove
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, PO BOX 9600, 2300 RC, Leiden, The Netherlands
- Laboratory of BioNanoTechnology, Axis, Building 118, Bornse weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Danny M. van Willigen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, PO BOX 9600, 2300 RC, Leiden, The Netherlands
| | - Tessa Buckle
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, PO BOX 9600, 2300 RC, Leiden, The Netherlands
| | - Aldrik H. Velders
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, PO BOX 9600, 2300 RC, Leiden, The Netherlands
- Laboratory of BioNanoTechnology, Axis, Building 118, Bornse weilanden 9, 6708 WG Wageningen, The Netherlands
| | - Fijs W. B. van Leeuwen
- Interventional Molecular Imaging Laboratory, Department of Radiology, Leiden University Medical Center, Albinusdreef 2, PO BOX 9600, 2300 RC, Leiden, The Netherlands
- Laboratory of BioNanoTechnology, Axis, Building 118, Bornse weilanden 9, 6708 WG Wageningen, The Netherlands
| |
Collapse
|