1
|
Zhang H, Xiong P, Zheng T, Hu Y, Guo P, Shen T, Zhou X. Combination of Berberine and Evodiamine Alleviates Obesity by Promoting Browning in 3T3-L1 Cells and High-Fat Diet-Induced Mice. Int J Mol Sci 2025; 26:4170. [PMID: 40362407 PMCID: PMC12072149 DOI: 10.3390/ijms26094170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 04/13/2025] [Accepted: 04/24/2025] [Indexed: 05/15/2025] Open
Abstract
Traditional Chinese medicine has long acknowledged the therapeutic potential of Tetradium ruticarpum (A.Juss.) T.G.Hartley together with Coptis chinensis Franch in managing metabolic disorders. However, their combined anti-obesity effects and the underlying mechanisms remain poorly characterized. This study investigates the synergistic anti-obesity effects and mechanisms of a combined berberine and evodiamine treatment (BBE) in high-fat diet (HFD)-induced C57BL/6J mice and 3T3-L1 cells. In vitro, cell viability was evaluated using the Cell Counting Kit-8 (CCK-8), while lipid accumulation was assessed through Oil Red O staining and triglyceride content determination. Molecular docking simulations performed with AutoDockTools 1.5.6 software Vina predicted interactions between BBE and key proteins. The analysis of genes and proteins involved in browning and thermogenesis was conducted using quantitative reverse transcription polymerase chain reaction and Western blotting. In vivo, HFD-induced mice were assessed for serum lipids profiles, glucose, insulin, adipocytokines, fat tissue morphology (Hematoxylin and eosin staining), mitochondrial activity (flow cytometry), and protein expression (immunofluorescence). Molecular docking analysis revealed strong binding affinities between BBE and key target proteins, including UCP1, PGC-1α, PRDM16, CIDEA, FGF21, and FGFR1c. BBE significantly reduced lipid accumulation in 3T3-L1 cells, upregulated the mRNA expression of Prdm16, Cidea, Ucp1, and Dio2, elevated UCP1 and PGC-1α protein levels, and activated the FGF21/PGC-1α signaling pathway. In HFD-induced mice, BBE administration led to reduced body weight, smaller adipocyte size, increased adipocyte number, and alleviated hepatic steatosis. Furthermore, it lowered serum total cholesterol (TC), low-density lipoprotein cholesterol (LDL-C), and levels of triglycerides (TG), while simultaneously increasing concentrations of high-density lipoprotein cholesterol (HDL-C). BBE also improved glucose tolerance, reduced fasting insulin levels, and modulated adipocytokine levels (reduced leptin, increased adiponectin), while promoting browning gene and protein expression. Overall, the combination of berberine and evodiamine mitigates obesity by enhancing browning and activating the FGF21/PGC-1α signaling pathway.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xin Zhou
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; (H.Z.); (P.X.); (T.Z.); (Y.H.); (P.G.); (T.S.)
| |
Collapse
|
2
|
Song WF, Wang RJ, Yao RX, Jiang QY, Feng J, Luo K, Di ZH, Ma CM, Xie L. Pulsatilla chinensis functions as a novel antihyperlipidemic agent by upregulating LDLR in an ERK-dependent manner. Chin Med 2024; 19:172. [PMID: 39696673 DOI: 10.1186/s13020-024-01044-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 12/07/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND Pulsatilla chinensis (PC) is a traditional Chinese medicine (TCM) known for its beneficial activities. It has been historically used to treat dysentery, vaginal trichomoniasis, bacterial infections, and malignant tumors. The therapeutic potential of PC in the management of hypercholesterolemia remains largely unexplored. METHODS A high-throughput screening based on high-throughput sequencing was conducted in HepG2 cells to construct gene expression profiles for several hundred TCMs. In vivo evaluation of the efficacy of PC was performed using rats with hypercholesterolemia. Transcriptome analysis was carried out on PC-treated rat livers and HepG2 cells to investigate the mechanism of action of PC in vitro. The findings were further validated using RT-qPCR and western blot techniques. RESULTS PC was identified as similar to Rhizoma Coptidis based on signature genes related to metabolism. Administration of PC via gavage in rats with hypercholesterolemia for 11 weeks resulted in substantially reduced serum total cholesterol and low-density lipoprotein (LDL) cholesterol and ameliorated fatty liver. Transcriptome analysis revealed that PC regulated various pathways associated with lipid metabolism. The LDL receptor (LDLR), a key player in cholesterol metabolism, was upregulated by PC both in vivo and in vitro. It was discovered that PC achieved this upregulation by activating extracellular regulated protein kinase (ERK) signaling in HepG2 cells. To uncover the major bioactive components responsible for the anti- hypercholesterolemia effect of PC, two major saponins, named Pulsatilla saponin D (PCD) and PC anemoside B4 (PCB4), were assessed. PCD, but not PCB4, was identified as the active ingredient responsible for the upregulation of LDLR by PC. CONCLUSION These findings demonstrated that PC acts as an antihypercholesterolemic agent by upregulating LDLR in an ERK-dependent manner and holds potential in the treatment of hypercholesterolemia.
Collapse
Affiliation(s)
- Wei-Fang Song
- Department of Pathophysiology, Fenyang College, Shanxi Medical University, Fenyang, 032200, China
| | - Rui-Jun Wang
- Department of Pathophysiology, Fenyang College, Shanxi Medical University, Fenyang, 032200, China
| | - Rui-Xin Yao
- Department of Pathophysiology, Fenyang College, Shanxi Medical University, Fenyang, 032200, China
| | - Qiu-Yan Jiang
- Department of Pathophysiology, Fenyang College, Shanxi Medical University, Fenyang, 032200, China
| | - Juan Feng
- Medical Systems Biology Research Center, Tsinghua University School of Medicine, Beijing, 100084, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China
- College of Health Science and Environmental Engineering, Shenzhen Technology University, Shenzhen, 518118, China
| | - Kun Luo
- Medical Systems Biology Research Center, Tsinghua University School of Medicine, Beijing, 100084, China
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China
| | - Zheng-Han Di
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China
| | - Cheng-Mei Ma
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China
| | - Lan Xie
- Medical Systems Biology Research Center, Tsinghua University School of Medicine, Beijing, 100084, China.
- National Engineering Research Center for Beijing Biochip Technology, Beijing, 102206, China.
| |
Collapse
|
3
|
Nechchadi H, Nadir Y, Benhssaine K, Alem C, Sellam K, Boulbaroud S, Berrougui H, Ramchoun M. Hypolipidemic activity of phytochemical combinations: A mechanistic review of preclinical and clinical studies. Food Chem 2024; 459:140264. [PMID: 39068825 DOI: 10.1016/j.foodchem.2024.140264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/10/2024] [Accepted: 06/26/2024] [Indexed: 07/30/2024]
Abstract
Hyperlipidemia, a condition characterized by elevated levels of lipids in the blood, poses a significant risk factor for various health disorders, notably cardiovascular diseases. Phytochemical compounds are promising alternatives to the current lipid-lowering drugs, which cause many undesirable effects. Based on in vivo and clinical studies, combining phytochemicals with other phytochemicals, prebiotics, and probiotics and their encapsulation in nanoparticles is more safe and effective for managing hyperlipidemia than monotherapy. To this end, the results obtained and the mechanisms of action of these combinations were examined in detail in this review.
Collapse
Affiliation(s)
- Habiba Nechchadi
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco.
| | - Youssef Nadir
- Laboratory of Biological Engineering, Faculty of Sciences and Techniques, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Khalid Benhssaine
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Chakib Alem
- Biochemistry of Natural Products Team, Faculty of Sciences and Techniques, Moulay Ismail University, 52000 Errachidia, Morocco
| | - Khalid Sellam
- Biology, Environment and Health Team, Faculty of sciences and Techniques, Moulay Ismail University, 52000 Errachidia, Morocco
| | - Samira Boulbaroud
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Hicham Berrougui
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| | - Mhamed Ramchoun
- Department of Biology, Polydisciplinary Faculty, University Sultan Moulay Slimane, 23000 Beni Mellal, Morocco
| |
Collapse
|
4
|
Wu Z, Lee S, Kang B, Lee S, Koo K, Lee J, Lim S. Determination of Luteolin 7-Glucuronide in Perilla frutescens (L.) Britt. Leaf Extracts from Different Regions of China and Republic of Korea and Its Cholesterol-Lowering Effect. Molecules 2023; 28:7007. [PMID: 37894485 PMCID: PMC10609570 DOI: 10.3390/molecules28207007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 10/07/2023] [Accepted: 10/08/2023] [Indexed: 10/29/2023] Open
Abstract
Lowering blood cholesterol levels is crucial for reducing the risk of cardiovascular disease in patients with familial hypercholesterolemia. To develop Perilla frutescens (L.) Britt. leaves as a functional food with a cholesterol-lowering effect, in this study, we collected P. frutescens (L.) Britt. leaves from different regions of China and Republic of Korea. On the basis of the extraction yield (all components; g/kg), we selected P. frutescens (L.) Britt. leaves from Hebei Province, China with an extract yield of 60.9 g/kg. After evaluating different concentrations of ethanol/water solvent for P. frutescens (L.) Britt. leaves, with luteolin 7-glucuronide as the indicator component, we selected a 30% ethanol/water solvent with a high luteolin 7-glucuronide content of 0.548 mg/g in Perilla. frutescens (L.) Britt. leaves. Subsequently, we evaluated the cholesterol-lowering effects of P. frutescens (L.) Britt. leaf extract and luteolin 7-glucuronide by detecting total cholesterol in HepG2 cells. The 30% ethanol extract lowered cholesterol levels significantly by downregulating 3-hydroxy-3-methyl-glutaryl-coenzyme A reductase expression. This suggests that P. frutescens (L.) Britt leaves have significant health benefits and can be explored as a potentially promising food additive for the prevention of hypercholesterolemia-related diseases.
Collapse
Affiliation(s)
- Zhaoyang Wu
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea; (Z.W.); (S.L.)
| | - Sangyoun Lee
- Institute for Liver and Digestive Diseases, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea;
| | - Beomgoo Kang
- Department of Biochemistry, College of Medicine, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea; (B.K.); (J.L.)
| | - Sookyeong Lee
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea; (Z.W.); (S.L.)
- Institute of Korean Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea
| | - Kyochul Koo
- COSFarm Co., Ltd., Corporate Research Institute, 3F 162, Saeteo-gil, Seonggeo-eup, Seobuk-gu, Cheonan-si 12446, Republic of Korea;
| | - Jaeyong Lee
- Department of Biochemistry, College of Medicine, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea; (B.K.); (J.L.)
| | - Soonsung Lim
- Department of Food Science and Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea; (Z.W.); (S.L.)
- Institute of Korean Nutrition, Hallym University, 1 Hallymdeahak-gil, Chuncheon 24252, Republic of Korea
| |
Collapse
|
5
|
Utami AR, Maksum IP, Deawati Y. Berberine and Its Study as an Antidiabetic Compound. BIOLOGY 2023; 12:973. [PMID: 37508403 PMCID: PMC10376565 DOI: 10.3390/biology12070973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/13/2023] [Accepted: 06/15/2023] [Indexed: 07/30/2023]
Abstract
Diabetes mellitus (DM) is a metabolic disorder that causes hyperglycemia conditions and leads to various chronic complications that causes death. The prevalence of diabetes is predicted to continue to increase, and with the high toxicity levels of current diabetes drugs, the exploration of natural compounds as alternative diabetes treatment has been widely carried out, one of which is berberine. Berberine and several other alkaloid compounds, including some of its derivatives, have shown many bioactivities, such as neuraminidase and hepatoprotective activity. Berberine also exhibits antidiabetic activity. As an antidiabetic compound, berberine is known to reduce blood glucose levels, increase insulin secretion, and weaken glucose tolerance and insulin resistance by activating the AMPK pathway. Apart from being an antidiabetic compound, berberine also exhibits various other activities such as being anti-adipogenic, anti-hyperlipidemic, anti-inflammatory, and antioxidant. Many studies have been conducted on berberine, but its exact mechanism still needs to be clarified and requires further investigation. This review will discuss berberine and its mechanism as a natural compound with various activities, mainly as an antidiabetic.
Collapse
Affiliation(s)
- Ayudiah Rizki Utami
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Iman Permana Maksum
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia
| | - Yusi Deawati
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Padjadjaran, Sumedang 45363, Indonesia
| |
Collapse
|
6
|
Mokgalaboni K, Phoswa WN. Corchorus olitorius extract exhibit anti-hyperglycemic and anti-inflammatory properties in rodent models of obesity and diabetes mellitus. Front Nutr 2023; 10:1099880. [PMID: 37090773 PMCID: PMC10113448 DOI: 10.3389/fnut.2023.1099880] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 03/22/2023] [Indexed: 04/09/2023] Open
Abstract
Obesity and type 2 diabetes (T2D) are chronic conditions with detrimental impacts on the overall health of individuals. Presently, the use of pharmacological agents in obesity and T2D offers limited benefits and pose side effects. This warrant studies on remedies that are less toxic and inexpensive while effective in ameliorating secondary complications in obesity and T2D. Plant-based remedies have been explored increasingly due to their remarkable properties and safety profile. We searched for pre-clinical evidence published from inception until 2023 on PubMed, Scopus, Google, and Semantic scholar on Corchorus olitorius (C. olitorius) in both obesity and T2D. Our focus was to understand the beneficial impact of this plant-based remedy on basic glycemic, lipid, inflammatory, and biomarkers of oxidative stress. The evidence gathered in this review suggests that C. olitorius treatment may significantly reduce blood glucose, body weight, total cholesterol, triglycerides, and low-density lipoprotein (LDL) in concomitant with increasing high-density lipoprotein-cholesterol (HDL-c) in rodent models of obesity and T2D. Interestingly, this effect was consistent with the reduction of malonaldehyde, superoxide dismutase and catalases, tumor necrosis factor-alpha, interleukins, and leptin. Some of the mechanisms by which C. olitorius reduces blood glucose levels is through stimulation of insulin secretion, increasing β-cell proliferation, thus promoting insulin sensitivity; the process which is mediated by ascorbic acid present in this plant. C. olitorius anti-hyperlipidemia is attributable to the content of ferulic acid found in this plant, which inhibits 3-Hydroxy-3-methyl glutaryl coenzyme A (HMG-CoA) reductase inhibitors and thus results in reduced synthesis of cholesterol and increased hepatic LDL-c receptor expression, respectively. The present review provides extensive knowledge and further highlights the potential benefits of C. olitorius on basic metabolic parameters, lipid profile, inflammation, and oxidative stress in rodent models of obesity and T2D.
Collapse
|
7
|
He H, Deng J, Yang M, An L, Ye X, Li X. Jatrorrhizine from Rhizoma Coptidis exerts an anti-obesity effect in db/db mice. JOURNAL OF ETHNOPHARMACOLOGY 2022; 298:115529. [PMID: 35835345 DOI: 10.1016/j.jep.2022.115529] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 06/16/2022] [Accepted: 07/06/2022] [Indexed: 06/15/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Obesity is closely related to diabetes. Jatrorrhizine (JAT) from Rhizoma Coptidis (RC) can reduce blood glucose and lipid levels. However, the molecular mechanisms for JAT's anti-obesity effect are still not clear. AIM OF THE STUDY To explore the effect of JAT in the treatment of obesity and the underlying molecular mechanisms. MATERIALS AND METHODS db/db mice were used as a typical obese animal model in current study. The anti-obesity effects of five alkaloids from RC were compared by feeding the mice for 8 weeks with a dosage of 105 mg/kg while the dose-dependent study (35 mg/kg and 105 mg/kg) of JAT on obese mice was conducted in another 8-week-long animal experiment. Meanwhile, RNA-seq analysis, in vitro experiments, and western blotting were utilized to predict and confirm the potential pathway that JAT participated in improving obesity. RESULTS The experimental results demonstrated that five RC alkaloids caused different degrees of weight loss in db/db obese mice. Among them, JAT showed the best effect. It could significantly reduce the body weight, blood lipid levels, and epididymal fat weight of db/db mice. H&E and Oil red O staining results showed that it could also dramatically improve liver lipid metabolism. The results from RNA-seq suggested that JAT had significantly altered 207 DEGs for the treatment of obesity, among which IRS1 changed the most. Next, GO and KEGG analysis enriched four major lipid metabolism-related pathways: biosynthesis of unsaturated fatty acids, PI3K-AKT signaling pathway, metabolic pathways, and fatty acid elongation. Finally, in vitro experiments and western blotting proved that JAT regulated the expression of IRS1/PI3K/AKT pathway-related proteins in a dose-dependent manner to address obesity. CONCLUSIONS In conclusion, JAT from RC has an effect on treating obesity, and its anti-obesity effect may be exerted via the IRS1/PI3K/AKT signaling pathway.
Collapse
Affiliation(s)
- Huan He
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China
| | - Jianling Deng
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China
| | - Maochun Yang
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China
| | - Linjing An
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China
| | - Xiaoli Ye
- School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Xuegang Li
- Engineering Research Center of Coptis Development & Utilization (Ministry of Education), College of Pharmaceutical Sciences, Southwest University, Chongqing, 400716, China
| |
Collapse
|
8
|
Laka K, Makgoo L, Mbita Z. Cholesterol-Lowering Phytochemicals: Targeting the Mevalonate Pathway for Anticancer Interventions. Front Genet 2022; 13:841639. [PMID: 35391801 PMCID: PMC8981032 DOI: 10.3389/fgene.2022.841639] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/07/2022] [Indexed: 11/15/2022] Open
Abstract
There are a plethora of cancer causes and the road to fully understanding the carcinogenesis process remains a dream that keeps changing. However, a list of role players that are implicated in the carcinogens process is getting lengthier. Cholesterol is known as bad sterol that is heavily linked with cardiovascular diseases; however, it is also comprehensively associated with carcinogenesis. There is an extensive list of strategies that have been used to lower cholesterol; nevertheless, the need to find better and effective strategies remains vastly important. The role played by cholesterol in the induction of the carcinogenesis process has attracted huge interest in recent years. Phytochemicals can be dubbed as magic tramp cards that humans could exploit for lowering cancer-causing cholesterol. Additionally, the mechanisms that are regulated by phytochemicals can be targeted for anticancer drug development. One of the key role players in cancer development and suppression, Tumour Protein 53 (TP53), is crucial in regulating the biogenesis of cholesterol and is targeted by several phytochemicals. This minireview covers the role of p53 in the mevalonate pathway and how bioactive phytochemicals target the mevalonate pathway and promote p53-dependent anticancer activities.
Collapse
Affiliation(s)
| | | | - Zukile Mbita
- Department of Biochemistry, Microbiology and Biotechnology, University of Limpopo, Sovenga, South Africa
| |
Collapse
|
9
|
The Effects and Safety of Chinese Herbal Medicine on Blood Lipid Profiles in Placebo-Controlled Weight-Loss Trials: A Systematic Review and Meta-Analysis. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:1368576. [PMID: 35082903 PMCID: PMC8786479 DOI: 10.1155/2022/1368576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/13/2021] [Accepted: 12/22/2021] [Indexed: 02/03/2023]
Abstract
This study was conducted to assess the effects and safety of Chinese herbal medicine (CHM) on blood lipids among adults with overweight or obesity. Fourteen bibliographic databases were comprehensively searched, from their respective inceptions up to April 2021, for randomised placebo-controlled weight-loss trials using CHM formulation on total cholesterol, triglycerides, LDL cholesterol, and HDL cholesterol over ≥4 weeks. Data collection, risk of bias assessment, and statistical analyses were guided by the Cochrane Handbook (v6.1). Continuous outcomes were expressed as the mean difference with 95% confidence intervals, and categorical outcomes were expressed as a risk ratio with 95% confidence intervals. All analyses were two-tailed with a statistical significance of p < 0.05. Fifteen eligible studies with 1,533 participants were included in this meta-analysis. Findings from meta-analyses indicated that CHM interventions, compared to placebo, reduced triglyceride (MD −0.21 mmol/L, 95% CI −0.41 to −0.02, I2 = 81%) and increased HDL cholesterol (MD 0.16 mmol/L, 95% CI 0.04 to 0.27, I2 = 94%) over a median of 12 weeks. The reduction in total cholesterol and LDL cholesterol were not statistically significant. Furthermore, the tendency of reduced triglycerides was identified among overweight participants with high baseline triglycerides. Attrition rates and frequency of adverse events were indifferent between the two groups. CHM may provide lipid-modulating benefits on triglycerides and HDL cholesterol among participants with overweight/obesity, with the tendency for significant triglyceride reduction observed among overweight participants with high baseline triglycerides. However, rigorously conducted randomised controlled trials with larger sample sizes are required to validate these findings.
Collapse
|
10
|
Xie L, Feng S, Zhang X, Zhao W, Feng J, Ma C, Wang R, Song W, Cheng J. Biological Response Profiling Reveals the Functional Differences of Main Alkaloids in Rhizoma Coptidis. Molecules 2021; 26:molecules26237389. [PMID: 34885971 PMCID: PMC8658997 DOI: 10.3390/molecules26237389] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/25/2021] [Accepted: 12/01/2021] [Indexed: 02/07/2023] Open
Abstract
Rhizoma Coptidis (RC) is a widely used traditional Chinese medicine. Although modern research has found that some alkaloids from RC are the pharmacologically active constituents, the differences in their biological effects are not completely clear. This study analyzed the differences in the typical alkaloids in RC at a systematic level and provided comprehensive information on the pharmaceutical mechanisms of the different alkaloids. The ethanol RC extract (RCE) was characterized using HPLC assay. HepG2, 3T3-L1, and RAW264.7 cells were used to detect the cytotoxicity of alkaloids. Transcriptome analyses were performed to elucidate the cellular pathways affected by RCE and alkaloids. HPLC analysis revealed that the typical alkaloids of RCE were berberine, coptisine, and palmatine. Coptisine and berberine displayed a stronger inhibitory effect on cell proliferation than palmatine. The overlapping ratios of differentially expressed genes between RCE and berberine, coptisine, and palmatine were 70.8%, 52.6%, and 42.1%, respectively. Pathway clustering analysis indicated that berberine and coptisine possessed a certain similarity to RCE, and both compounds affected the cell cycle pathway; moreover, some pathways were uniquely enriched by berberine or coptisine. Berberine and coptisine had different regulatory effects on genes involved in lipid metabolism. These results provide comprehensive information on the pharmaceutical mechanisms of the different RC alkaloids and insights into their better combinatory use for the treatment of diseases.
Collapse
Affiliation(s)
- Lan Xie
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China; (L.X.); (J.F.)
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China; (S.F.); (X.Z.); (W.Z.); (C.M.)
| | - Shanshan Feng
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China; (S.F.); (X.Z.); (W.Z.); (C.M.)
| | - Xiaoling Zhang
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China; (S.F.); (X.Z.); (W.Z.); (C.M.)
| | - Wenlong Zhao
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China; (S.F.); (X.Z.); (W.Z.); (C.M.)
| | - Juan Feng
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China; (L.X.); (J.F.)
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China; (S.F.); (X.Z.); (W.Z.); (C.M.)
| | - Chengmei Ma
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China; (S.F.); (X.Z.); (W.Z.); (C.M.)
| | - Ruijun Wang
- Department of Pathophysiology, Fenyang College, Shanxi Medical University, Fenyang 032200, China; (R.W.); (W.S.)
| | - Weifang Song
- Department of Pathophysiology, Fenyang College, Shanxi Medical University, Fenyang 032200, China; (R.W.); (W.S.)
| | - Jing Cheng
- Medical Systems Biology Research Center, School of Medicine, Tsinghua University, Beijing 100084, China; (L.X.); (J.F.)
- National Engineering Research Center for Beijing Biochip Technology, Beijing 102206, China; (S.F.); (X.Z.); (W.Z.); (C.M.)
- Correspondence:
| |
Collapse
|
11
|
Li R, Wang C, Chen Y, Li N, Wang Q, Zhang M, He C, Chen H. A combined network pharmacology and molecular biology approach to investigate the active ingredients and potential mechanisms of mulberry (Morus alba L.) leaf on obesity. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2021; 92:153714. [PMID: 34508977 DOI: 10.1016/j.phymed.2021.153714] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 07/05/2021] [Accepted: 08/15/2021] [Indexed: 06/13/2023]
Abstract
BACKGROUND As one of traditional Chinese medicine, mulberry leaf is abundant in diverse active ingredients and widely used for the treatment of metabolic disease and its complications. However, there are a few of reports on its application in the prevention and treatment of obesity. And the molecular mechanism on the anti-obesity of mulberry leaf are unknown till now. PURPOSE The present study aimed to evaluate the potential ingredients and targets of mulberry leaf and uncover the anti-obesity mechanisms by using the network pharmacology tactics and verify its effect by biological experiments. STUDY DESIGN Active ingredients and key targets of mulberry leaf, genes related to obesity were screened through public database. Based on the results of network pharmacology, the flavonoids-enriched fraction of mulberry leaf (MLF) was extracted and composition of this fraction was identified. After that, HepG2 cells model of lipid accumulation was established for verifying the effect of MLF and related mechanisms. RESULTS A total of 37 active ingredients in mulberry leaf, 192 predicted biological targets and 8813 obesity-related targets were determined, of which 180 overlapping targets might have obvious curative effects on obesity. The networks showed that mulberry leaf might play a role through key targets, such as AKT, MAPK and IL-6, and regulated PI3K-Akt signaling pathway. Based on HPLC-ESI-QQQ-MS analysis, 13 constituents of MLF were identified, including 9 flavonoids. Furthermore, HepG2 cells model of lipid accumulation was established. The results indicated that MLF treatment could down-regulate the secretion of inflammatory cytokines, as well as clearly inhibited lipid droplets formation and alleviated TC, TG, HDL-C and LDL-C levels. Positive effect was observed on hypolipidemic efficacy due to the regulation of PI3K/Akt/Bcl-xl pathway, as indicated by the amelioration of PI3K, Akt and Bcl-xl gene and protein expression. CONCLUSION This study firstly systematically disclose the multi-ingredients, multi-targets mechanisms of mulberry leaf on obesity by using network pharmacology approach, and validate in HepG2 cells that the protective effect of MLF against obesity involved both inflammation response and lipid metabolism involving PI3K/Akt/Bcl-xl signaling pathway. It provides indications for further mechanistic research of mulberry leaf and also for the development as a potential candidate for the therapy for obese patients.
Collapse
Affiliation(s)
- Ruilin Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Chunli Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Yue Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Nannan Li
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Qirou Wang
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China
| | - Min Zhang
- Tianjin Agricultural University, Tianjin 300384, P.R. China; State Key Laboratory of Nutrition and Safety, Tianjin University of Science & Technology, Tianjin 300457, P.R. China
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, PR China
| | - Haixia Chen
- Tianjin Key Laboratory for Modern Drug Delivery & High-Efficiency, School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, 300072, P. R. China.
| |
Collapse
|
12
|
Plant isoquinoline alkaloids: Advances in the chemistry and biology of berberine. Eur J Med Chem 2021; 226:113839. [PMID: 34536668 DOI: 10.1016/j.ejmech.2021.113839] [Citation(s) in RCA: 92] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 01/08/2023]
Abstract
Alkaloids are one of the most important classes of plant bioactives. Among these isoquinoline alkaloids possess varied structures and exhibit numerous biological activities. Basically these are biosynthetically produced via phenylpropanoid pathway. However, occasionally some mixed pathways may also occur to provide structural divergence. Among the various biological activities anticancer, antidiabetic, antiinflammatory, and antimicrobial are important. A few notable bioactive isoquinoline alkaloids are antidiabetic berberine, anti-tussive codeine, analgesic morphine, and muscle relaxant papaverine etc. Berberine is one of the most discussed bioactives from this class possessing broad-spectrum pharmacological activities. Present review aims at recent updates of isoquinoline alkaloids with major emphasis on berberine, its detailed chemistry, important biological activities, structure activity relationship and implementation in future research.
Collapse
|
13
|
Kwon OJ, Noh JW, Lee BC. Mechanisms and Effect of Coptidis Rhizoma on Obesity-Induced Inflammation: In Silico and In Vivo Approaches. Int J Mol Sci 2021; 22:ijms22158075. [PMID: 34360840 PMCID: PMC8347796 DOI: 10.3390/ijms22158075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/20/2022] Open
Abstract
Obesity is characterized as a chronic, low-grade inflammation state accompanied by the infiltration of immune cells into adipose tissue and higher levels of inflammatory cytokines and chemokines. This study aimed to investigate the mechanisms and effects of Coptidis Rhizoma (CR) on obesity and its associated inflammation. First, we applied a network pharmacology strategy to search the target genes and pathways regulated by CR in obesity. Next, we performed in vivo experiments to confirm the antiobesity and anti-inflammatory effects of CR. Mice were assigned to five groups: normal chow (NC), control (high-fat diet (HFD)), HFD + CR 200 mg/kg, HFD + CR 400 mg/kg, and HFD + metformin 200 mg/kg. After 16 weeks of the experimental period, CR administration significantly reduced the weight of the body, epididymal fat, and liver; it also decreased insulin resistance, as well as the area under the curve of glucose in the oral glucose tolerance test and triglyceride in the oral fat tolerance test. We observed a decrease in adipose tissue macrophages (ATMs) and inflammatory M1 ATMs, as well as an increase in anti-inflammatory M2 ATMs. Gene expression levels of inflammatory cytokines and chemokines, including tumor necrosis factor-α, F4/80, and C-C motif chemokine (CCL)-2, CCL4, and CCL5, were suppressed in adipose tissue in the CR groups than levels in the control group. Additionally, histological analyses suggested decreased fat accumulation in the epididymal fat pad and liver in the CR groups than that in the control group. Taken together, these results suggest that CR has a therapeutic effect on obesity-induced inflammation, and it functions through the inhibition of macrophage-mediated inflammation in adipose tissue.
Collapse
|
14
|
Miao L, Yun X, Yang X, Jia S, Jiao C, Shao R, Hao J, Chang Y, Fan G, Zhang J, Geng Q, Wichai N, Gao X. An inhibitory effect of Berberine from herbal Coptis chinensis Franch on rat detrusor contraction in benign prostatic hyperplasia associated with lower urinary tract symptoms. JOURNAL OF ETHNOPHARMACOLOGY 2021; 268:113666. [PMID: 33301912 DOI: 10.1016/j.jep.2020.113666] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 11/28/2020] [Accepted: 12/01/2020] [Indexed: 06/12/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Coptis chinensis Franch (CCF), also known as Huang Lian in China, is a traditional Chinese medicine that commonly used for more than 2000 years. Clinically, CCF often used as anti-inflammatory, immune regulation and other effects. It has been reported that the decoction containing CCF can be used for the treatment of benign prostatic hyperplasia (BPH) or lower urinary tract symptoms (LUTS). AIM OF THE STUDY This research aims to investigate the effect of CCF on inhibition of BPH development in vivo and in vitro, and further identify the active compound (s) and the possible mechanism involved in BPH-related bladder dysfunction. MATERIALS AND METHODS Oestrodial/testosterone-induced BPH rat model was established as the in vivo model. The prostate index (PI) was calculated, the pathogenesis was analyzed and the micturition parameters were determined in the shamed-operated, BPH model and BPH + CCF groups after 4-week administration. The tension in detrusor strips was then assessed upon KCl or ACh stimulation with or without incubation of CCF or active compounds. To further investigate the signaling involved, rat detrusor cells were cultured as the in vitro models, the instantaneous calcium influx was measured and the ROCK-1 expression was detected. RESULTS Increased PI value and the aggravated prostatic pathology were observed with voiding dysfunction in BPH rats, which were significantly blocked by oral CCF taken. ACh or KCl-induced contractile responses in detrusor strips were significantly inhibited and the micturition parameters were improved when incubation with CCF or its active compounds such as berberine. Both CCF and berberine suppressed the cellular calcium influx and ROCK-1 expression upon ACh stimulation, demonstrating that berberine was one of the active compounds that contributed to CCF-improved micturition symptoms and function. CONCLUSIONS Taken together, our findings give evidence that CCF and its active compound berberine inhibited BPH and bladder dysfunction via Ca2+ and ROCK signaling, supporting their clinical use for BPH and BPH-related LUTS treatment.
Collapse
Affiliation(s)
- Lin Miao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin Health Industry Park, Jinghai District, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin Health Industry Park, Jinghai District, Tianjin, 301617, China.
| | - Xiaoting Yun
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin Health Industry Park, Jinghai District, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Xiaohua Yang
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin Health Industry Park, Jinghai District, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin Health Industry Park, Jinghai District, Tianjin, 301617, China
| | - Sitong Jia
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin Health Industry Park, Jinghai District, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin Health Industry Park, Jinghai District, Tianjin, 301617, China
| | - Chanyuan Jiao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin Health Industry Park, Jinghai District, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Rui Shao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin Health Industry Park, Jinghai District, Tianjin, 301617, China
| | - Jia Hao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin Health Industry Park, Jinghai District, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yanxu Chang
- Tianjin Key Laboratory of Phytochemistry and Pharmaceutical Analysis, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Guanwei Fan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin Health Industry Park, Jinghai District, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Ju Zhang
- Department of Biochemistry and Molecular Biology, College of Life Sciences, And Bioactive Materials Key Lab of Ministry of Education (J.Z.), Nankai University, Tianjin, 300071, China
| | - Qiang Geng
- Department of Andrology, The First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin, 300193, China
| | - Nuttapong Wichai
- Faculty of Pharmacy, Mahasarakham University, Mahasarakham, 44150, Thailand
| | - Xiumei Gao
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin Health Industry Park, Jinghai District, Tianjin, 301617, China; State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China; Key Laboratory of Pharmacology of Traditional Chinese Medical Formula, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin Health Industry Park, Jinghai District, Tianjin, 301617, China.
| |
Collapse
|
15
|
Ning Y, Xu F, Xin R, Yao F. Palmatine regulates bile acid cycle metabolism and maintains intestinal flora balance to maintain stable intestinal barrier. Life Sci 2020; 262:118405. [PMID: 32926925 DOI: 10.1016/j.lfs.2020.118405] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 09/03/2020] [Accepted: 09/03/2020] [Indexed: 11/19/2022]
Abstract
OBJECTIVE Palmatine (PAL) is a natural isoquinoline alkaloid that has been widely used in the pharmaceutical field. The current study aimed to investigate the function of PAL in improving hyperlipidemia induced by high-fat diet (HFD) in rats. METHODS Biochemical analysis of triglyceride (TG), total cholesterol (TC), low-density lipoprotein-cholesterol (LDL-C), and high-density lipoprotein cholesterol (HDLC) was performed on rats. Total bile acid (TBA) and stool TC and TBA were also measured to assess the changes in total bile acid excretion. RT-qPCR was employed to detect the expression of genes related to bile acid metabolism, and the Western blot assay was used to detect the levels of CYP7A1, ZO-1, ZO-2, and Claudin-1. The siRNA experiment was employed to further investigate whether PAL regulated CYP7A1 through PPARα. Lipopolysaccharide (LPS) and FITC-dextran (FD-4) were also tested to assess the intestinal permeability. RESULTS AL-treated rats had lower TC, TG, LDL-C levels, lower serum TBA levels, and increased fecal TBA and TC levels. Furthermore, CYP7A1 protein expression was up-regulated in PAL-treated rats. Additionally, PAL regulated bile acid metabolism by up-regulating the expression of CYP7A1 and PPARα and down-regulating the expression of FXR. Besides, the area of plasma FD-4 and LPS content in the PAL group were reduced, and the expression of proteins ZO-1, ZO-2 and Claudin-1 related to intestinal permeability was increased. CONCLUSION All in all, PAL could mediate the PPARα-CYP7A1 pathway to maintain the balance of intestinal flora, regulate the bile acid metabolism, and reduce the blood lipids of rats, thereby protecting against hyperlipidemia.
Collapse
Affiliation(s)
- Yayuan Ning
- Department of Cardiology, the Second Hospital of Jilin University, Changchun 130041, PR China
| | - Fei Xu
- Department of Acupuncture, the Second Hospital of Jilin University, Changchun 130041, PR China
| | - Rui Xin
- Department of Radiology, the Second Hospital of Jilin University, Changchun 130041, PR China
| | - Fang Yao
- Department of Cardiology, the Second Hospital of Jilin University, Changchun 130041, PR China.
| |
Collapse
|
16
|
Shang XF, Yang CJ, Morris-Natschke SL, Li JC, Yin XD, Liu YQ, Guo X, Peng JW, Goto M, Zhang JY, Lee KH. Biologically active isoquinoline alkaloids covering 2014-2018. Med Res Rev 2020; 40:2212-2289. [PMID: 32729169 PMCID: PMC7554109 DOI: 10.1002/med.21703] [Citation(s) in RCA: 125] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 06/08/2020] [Accepted: 06/18/2020] [Indexed: 12/13/2022]
Abstract
Isoquinoline alkaloids, an important class of N-based heterocyclic compounds, have attracted considerable attention from researchers worldwide since the early 19th century. Over the past 200 years, many compounds from this class were isolated, and most of them and their analogs possess various bioactivities. In this review, we survey the updated literature on bioactive alkaloids and highlight research achievements of this alkaloid class during the period of 2014-2018. We reviewed over 400 molecules with a broad range of bioactivities, including antitumor, antidiabetic and its complications, antibacterial, antifungal, antiviral, antiparasitic, insecticidal, anti-inflammatory, antioxidant, neuroprotective, and other activities. This review should provide new indications or directions for the discovery of new and better drugs from the original naturally occurring isoquinoline alkaloids.
Collapse
Affiliation(s)
- Xiao-Fei Shang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Cheng-Jie Yang
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Susan L. Morris-Natschke
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Jun-Cai Li
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xiao-Dan Yin
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Ying-Qian Liu
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Xiao Guo
- Tibetan Medicine Research Center of Qinghai University, Qinghai University Tibetan Medical College, Qinghai University, 251 Ningda Road, Xining 810016, P.R. China
| | - Jing-Wen Peng
- School of Pharmacy, Lanzhou University, Lanzhou 730000, P.R. China
| | - Masuo Goto
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
| | - Ji-Yu Zhang
- Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, PR China
| | - Kuo-Hsiung Lee
- Natural Products Research Laboratories, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599
- Chinese Medicine Research and Development Center, China Medical University and Hospital, Taichung 40402, Taiwan
| |
Collapse
|
17
|
The Potential Mechanism of Wuwei Qingzhuo San against Hyperlipidemia Based on TCM Network Pharmacology and Validation Experiments in Hyperlipidemia Hamster. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5369025. [PMID: 32454862 PMCID: PMC7212318 DOI: 10.1155/2020/5369025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Revised: 02/21/2020] [Accepted: 02/24/2020] [Indexed: 11/17/2022]
Abstract
Wuwei Qingzuo San (WWQZS), as a renowned traditional Mongolian patent medicine approved by Chinese State Food and Drug Administration, is used to treat hyperlipidemia, indigestion, and other ailments related to disorder of production of essence and phlegm, a typical abnormal metabolism of blood in traditional Mongolian medicine. A combination of network pharmacology and validation experiments in hyperlipidemia hamster is used to understand the potential mechanism of WWQZS for hypolipidemic effects, further for an integrated concept of traditional theory, bioactive constituents, and molecular mechanism for TMM. Through network pharmacology, we obtained 212 components, 219 predicted targets, and 349 known hyperlipidemia-related targets form public database and used Metascape to carry out enrichment analysis of 43 potential and 45 candidate targets to imply numerous BP concerned with metabolism of lipid, regulation of kinases and MF related to lipid binding, phosphatase binding, and receptor ligand activity that are involved in anti-hyperlipidemia. In addition, KEGG pathways that explicated hypolipidemic effect were involved in pathways including metabolism associated with kinase function according to MAPK signaling pathway, AMPK signaling pathway, and PI3K-Akt signaling pathway. Meanwhile, in HFD-induced hamster model, WWQZS could significantly reduce TC and ALT and help decrease TG, LDL-C as well; liver pathological section implied that WWQZS could relieve liver damage and lipid accumulation. Western blot indicated that WWQZS may upregulate CYP7A1 and activate AMPK to suppress the expression of HMGCR in livers. In conclusion, our results suggest that WWQSZS plays important dual hypolipidemic and liver-protective role in livers in HFD-induced hamster model. Through this research, a new reference is also provided to other researches in the study of ethnopharmacology.
Collapse
|
18
|
Fatahian A, Haftcheshmeh SM, Azhdari S, Farshchi HK, Nikfar B, Momtazi-Borojeni AA. Promising Anti-atherosclerotic Effect of Berberine: Evidence from In Vitro, In Vivo, and Clinical Studies. Rev Physiol Biochem Pharmacol 2020; 178:83-110. [PMID: 32789786 DOI: 10.1007/112_2020_42] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Elevated levels of plasma cholesterol, impaired vascular wall, and presence of inflammatory macrophages are important atherogenic risk factors contributing to atherosclerotic plaque formation and progression. The interventions modulating these risk factors have been found to protect against atherosclerosis development and to decrease atherosclerosis-related cardiovascular disorders. Nutritional approaches involving supplements followed by improving dietary habits and lifestyle have become growingly attractive and acceptable methods used to control atherosclerosis risk factors, mainly high levels of plasma cholesterol. There are a large number of studies that show berberine, a plant bioactive compound, could ameliorate atherosclerosis-related risk factors. In the present literature review, we put together this studies and provide integrated evidence that exhibits berberine has the potential atheroprotective effect through reducing increased levels of plasma cholesterol, particularly low-density lipoprotein (LDL) cholesterol (LDL-C) via LDL receptor (LDLR)-dependent and LDL receptor-independent mechanisms, inhibiting migration and inflammatory activity of macrophages, improving the functionality of endothelial cells via anti-oxidant activities, and suppressing proliferation of vascular smooth muscle cells. In conclusion, berberine can exert inhibitory effects on the atherosclerotic plaque development mainly through LDL-lowering activity and suppressing atherogenic functions of mentioned cells. As the second achievement of this review, among the signaling pathways through which berberine regulates intracellular processes, AMP-activated protein kinase (AMPK) has a central and critical role, showing that enhancing activity of AMPK pathway can be considered as a promising therapeutic approach for atherosclerosis treatment.
Collapse
Affiliation(s)
- Alireza Fatahian
- Department of Cardiology, Cardiovascular Research Center, Mazandaran University of Medical Sciences, Sari, Iran
| | | | - Sara Azhdari
- Department of Anatomy and Embryology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Helaleh Kaboli Farshchi
- Department of Horticulture, Faculty of Agriculture, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Banafsheh Nikfar
- Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran.
| | - Amir Abbas Momtazi-Borojeni
- Halal research center of IRI, FDA, Tehran, Iran.
- Department of Medical Biotechnology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
19
|
Wang J, Wang L, Lou GH, Zeng HR, Hu J, Huang QW, Peng W, Yang XB. Coptidis Rhizoma: a comprehensive review of its traditional uses, botany, phytochemistry, pharmacology and toxicology. PHARMACEUTICAL BIOLOGY 2019; 57:193-225. [PMID: 30963783 PMCID: PMC6461078 DOI: 10.1080/13880209.2019.1577466] [Citation(s) in RCA: 253] [Impact Index Per Article: 42.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 01/04/2019] [Accepted: 01/20/2019] [Indexed: 05/09/2023]
Abstract
CONTEXT Coptidis rhizome (CR), also known as Huanglian in Chinese, is the rhizome of Coptis chinensis Franch., C. deltoidea C.Y. Cheng et Hsiao, or C. teeta Wall (Ranunculaceae). It has been widely used to treat bacillary dysentery, diabetes, pertussis, sore throat, aphtha, and eczema in China. OBJECTIVES The present paper reviews the latest advances of CR, focusing on the botany, phytochemistry, traditional usages, pharmacokinetics, pharmacology and toxicology of CR and its future perspectives. METHODS Studies from 1985 to 2018 were reviewed from books; PhD. and MSc. dissertations; the state and local drug standards; PubMed; CNKI; Scopus; the Web of Science; and Google Scholar using the keywords Coptis, Coptidis Rhizoma, Huanglian, and goldthread. RESULTS Currently, 128 chemical constituents have been isolated and identified from CR. Alkaloids are the characteristic components, together with organic acids, coumarins, phenylpropanoids and quinones. The extracts/compounds isolated from CR cover a wide pharmacological spectrum, including antibacterial, antivirus, antifungal, antidiabetic, anticancer and cardioprotective effects. Berberine is the most important active constituent and the primary toxic component of CR. CONCLUSIONS As an important herbal medicine in Chinese medicine, CR has the potential to treat various diseases. However, further research should be undertaken to investigate the clinical effects, toxic constituents, target organs and pharmacokinetics, and to establish criteria for quality control, for CR and its related medications. In addition, the active constituents, other than alkaloids, in both raw and processed products of CR should be investigated.
Collapse
Affiliation(s)
- Jin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Lin Wang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Guan-Hua Lou
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Hai-Rong Zeng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ju Hu
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qin-Wan Huang
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Wei Peng
- College of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiang-Bo Yang
- Ya'an Xun Kang Pharmaceutical Co., Ltd, Ya'an, China
| |
Collapse
|
20
|
Wang Z, Yang Y, Liu M, Wei Y, Liu J, Pei H, Li H. Rhizoma Coptidis for Alzheimer's Disease and Vascular Dementia: A Literature Review. Curr Vasc Pharmacol 2019; 18:358-368. [PMID: 31291876 DOI: 10.2174/1570161117666190710151545] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Revised: 05/16/2019] [Accepted: 05/16/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND Alzheimer's disease (AD) and vascular dementia (VaD) are major types of dementia, both of which cause heavy economic burdens for families and society. However, no currently available medicines can control dementia progression. Rhizoma coptidis, a Chinese herbal medicine, has been used for >2000 years and is now gaining attention as a potential treatment for AD and VaD. METHODS We reviewed the mechanisms of the active ingredients of Rhizoma coptidis and Rhizoma coptidis-containing Chinese herbal compounds in the treatment of AD and VaD. We focused on studies on ameliorating the risk factors and the pathological changes of these diseases. RESULTS The Rhizoma coptidis active ingredients include berberine, palmatine, coptisine, epiberberine, jatrorrhizine and protopine. The most widely studied ingredient is berberine, which has extensive therapeutic effects on the risk factors and pathogenesis of dementia. It can control blood glucose and lipid levels, regulate blood pressure, ameliorate atherosclerosis, inhibit cholinesterase activity, Aβ generation, and tau hyperphosphorylation, decrease neuroinflammation and oxidative stress and alleviate cognitive impairment. Other ingredients (such as jatrorrhizine, coptisine, epiberberine and palmatine) also regulate blood lipids and blood pressure; however, there are relatively few studies on them. Rhizoma coptidis-containing Chinese herbal compounds like Huanglian-Jie-Du-Tang, Huanglian Wendan Decoction, Banxia Xiexin Decoction and Huannao Yicong Formula have anti-inflammatory and antioxidant stress activities, regulate insulin signaling, inhibit γ-secretase activity, neuronal apoptosis, tau hyperphosphorylation, and Aβ deposition, and promote neural stem cell differentiation, thereby improving cognitive function. CONCLUSION The "One-Molecule, One-Target" paradigm has suffered heavy setbacks, but a "multitarget- directed ligands" strategy may be viable. Rhizoma coptidis active ingredients and Rhizoma coptidiscontaining Chinese herbal compounds have multi-aspect therapeutic effects on AD and VaD.
Collapse
Affiliation(s)
- Zhiyong Wang
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yang Yang
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Meixia Liu
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Yun Wei
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Jiangang Liu
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Hui Pei
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| | - Hao Li
- Department of Geriatrics, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing 100091, China
| |
Collapse
|
21
|
Palmatine: A review of its pharmacology, toxicity and pharmacokinetics. Biochimie 2019; 162:176-184. [DOI: 10.1016/j.biochi.2019.04.008] [Citation(s) in RCA: 113] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/07/2019] [Indexed: 12/22/2022]
|
22
|
Effects of Huanglian-Renshen-Decoction, a Fixed Mixture of Traditional Chinese Medicine, on the Improvement of Glucose Metabolism by Maintenance of Pancreatic β Cell Identity in db/db Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 2019:1232913. [PMID: 31015847 PMCID: PMC6444265 DOI: 10.1155/2019/1232913] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 01/10/2019] [Accepted: 01/27/2019] [Indexed: 02/07/2023]
Abstract
Huanglian-Renshen-Decoction (HRD) is widely used to treat type 2 diabetes mellitus (T2DM) in China. However, the underlying mechanism is unclear. We aimed to investigate the mechanism by which HRD regulates the glucose level. Forty 7-8-week-old db/db (BSK) mice were randomly assigned to the following four groups: model, low dose HRD (LHRD), high dose HRD (HHRD), and saxagliptin (SAX). Additionally, 10 db/m mice were assigned to control group. The experimental mice were administered 3.03g/kg/d and 6.06g/kg/d of HRD in the LHRD and HHRD groups, respectively, and 10mg/kg/d saxagliptin in the SAX group for 8 weeks. The control and model groups were supplied with distilled water. After the intervention, the pancreas and blood were collected and tested. Compared with that of model group, the fasting blood glucose (FBG) was significantly decreased in all intervention groups (p < 0.05 or 0.01), whereas fasting serum insulin (FINS) was increased significantly in both HHRD and SAX groups. The immunofluorescence images showed that the mass of insulin+ cells was increased and that of glucagon+ cells was reduced obviously in experimental groups compared to those of the model group. In addition, the coexpression of insulin, glucagon, and PDX1 was decreased in HHRD group, and the level of caspase 12 in islet was decreased significantly in all intervention groups. However, little difference was found in the number and morphology of islet, and the expression of ki67, bcl2, bax, caspase 3, and cleaved-caspase 3 in the pancreas among groups. Interestingly, the cleaved-Notch1 level was increased and the Ngn3 level in islet was decreased significantly in HHRD group. The HRD showed dose-dependent effects on glucose metabolism improvement through maintenance of β cell identity via a mechanism that might involve the Notch1/Ngn3 signal pathway in db/db mice.
Collapse
|
23
|
Yang X, Lu F, Li L, Li J, Luo J, Zhang S, Liu X, Chen G. Wu-Mei-wan protects pancreatic β cells by inhibiting NLRP3 Inflammasome activation in diabetic mice. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2019; 19:35. [PMID: 30704457 PMCID: PMC6357370 DOI: 10.1186/s12906-019-2443-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2018] [Accepted: 01/17/2019] [Indexed: 12/16/2022]
Abstract
Background Wu-Mei-Wan (WMW) is a traditional Chinese herbal formulation that is clinically prescribed to treat diabetes mellitus in China. WMW has been shown to alleviate damage in pancreatic β cells, but the underlying mechanism remains unclear. This study aims to explore how WMW plays a protective role in pancreatic islets. Methods Drug testing and mechanism analyses were performed on mice treated with three concentrations of WMW (4800, 9600, and 19,200 mg/kg/bw) for four consecutive weeks. Blood was collected from both db/db and wild-type mice to determine fasting blood glucose (FBG) and serum insulin levels. The expression of proteins related to apoptosis, cysteinyl aspartate-specific proteinase 12 (caspase-12) and B-cell leukemia 2 (Bcl-2), was measured by western blot. Interleukin-1β (IL-1β), interleukin-18 (IL-18), monocyte chemoattractant protein-1α (MCP-1α), and tumor necrosis factor-α (TNF-α) in the pancreas were tested with enzyme-linked immunosorbent assay (ELISA). Immunohistochemistry staining of F4/80 was performed to measure the pancreatic infiltration of macrophages. Western blot and immunofluorescence staining of the NLRP3 inflammasome were used to measure the expression of proteins related to apoptosis and inflammation. Results WMW dose-dependently reduced FBG and promoted serum insulin secretion in db/db mice compared to the wild-type controls. WMW protected pancreatic β cells with a pattern of decreasing caspase-12 and increasing Bcl-2 expression. WMW also reversed the upregulated production of IL-1β, IL-18, MCP-1α, and macrophage-specific surface glycoprotein F4/80 in diabetic mice. In addition, the protein expression levels of NLRP3 inflammasome components NLRP3, ASC, and caspase-1 (P20) were higher in db/db mice than in wild-type controls. Conclusions WMW inhibits the activation of the NLRP3 inflammasome to protect pancreatic β cells and prevent type 2 diabetes mellitus development. Electronic supplementary material The online version of this article (10.1186/s12906-019-2443-6) contains supplementary material, which is available to authorized users.
Collapse
|
24
|
Zhou L, Yang F, Li G, Huang J, Liu Y, Zhang Q, Tang Q, Hu C, Zhang R. Coptisine Induces Apoptosis in Human Hepatoma Cells Through Activating 67-kDa Laminin Receptor/cGMP Signaling. Front Pharmacol 2018; 9:517. [PMID: 29867512 PMCID: PMC5968218 DOI: 10.3389/fphar.2018.00517] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Accepted: 04/30/2018] [Indexed: 12/21/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary cancer of the liver. Hence, new anti-liver cancer treatment strategies need to be urgently developed. Coptisine is a natural alkaloid extracted from rhizoma coptidis which exhibits anticancer activity in various preclinical models, including liver cancer. However, the molecular mechanisms underlying the anti-liver cancer effects of coptisine remains unclear. We used flow cytometry to assess the binding of coptisine to 67LR expressed on the surface of SMMC7721, HepG2, LO2 and H9 cells. Then SMMC7721, HepG2 and BEL7402 cells, belonging to the HCC cell lines, were treated with coptisine. The cell viability was detected using a cell counting kit-8 assay. Apoptosis was evaluated using flow cytometry and transferase-mediated dUTP nick-end labeling (TUNEL) assay. Apoptotic-related proteins and tumor death receptor 67-kDa laminin receptor (67LR) were detected using Western blot analysis. The cyclic guanosine 3′,5′-monophosphate (cGMP) concentration was determined using enzyme-linked immunosorbent assay. sh67LR lentivirus, anti67LR antibody, and cGMP inhibitor NS2028 were used to determine how a 67LR/cGMP signaling pathway regulated coptisine-induced apoptosis. Tumor growth inhibited by coptisine was confirmed in a SMMC7721 cell xenograft mouse model. Coptisine selectively exhibited cell viability in human hepatoma cells but not in normal human hepatocyte cell line LO2 cells. Coptisine promoted SMMC7721 and HepG2 cell apoptosis by increasing 67LR activity. Both 67LR antibody and sh67LR treatment blocked coptisine-induced apoptosis and inhibition of cell viability. Coptisine upregulated the expression of cGMP. Moreover, cGMP inhibitor NS2028 significantly decreased coptisine-induced apoptosis and inhibition of cell viability. In vivo experiments confirmed that coptisine could significantly suppress the tumor growth and induce apoptosis in SMMC7721 xenografts through a 67LR/cGMP pathway. Coptisine-mediated 67LR activation may be a new therapeutic strategy for treating hepatic malignancy.
Collapse
Affiliation(s)
- Li Zhou
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Fan Yang
- Department of Orthopaedic, General Hospital of Tibetan Military Command Lhasa, Lhasa, China
| | - Guobing Li
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Jingbin Huang
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Yali Liu
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Qian Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Qin Tang
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Changpeng Hu
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Rong Zhang
- Department of Pharmacy, The Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
25
|
Berberine induces miR-373 expression in hepatocytes to inactivate hepatic steatosis associated AKT-S6 kinase pathway. Eur J Pharmacol 2018; 825:107-118. [DOI: 10.1016/j.ejphar.2018.02.035] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2017] [Revised: 02/20/2018] [Accepted: 02/21/2018] [Indexed: 12/28/2022]
|
26
|
Chen N, Yang XY, Guo CE, Bi XN, Chen JH, Chen HY, Li HP, Lin HY, Zhang YJ. The oral bioavailability, excretion and cytochrome P450 inhibition properties of epiberberine: an in vivo and in vitro evaluation. DRUG DESIGN DEVELOPMENT AND THERAPY 2017; 12:57-65. [PMID: 29343943 PMCID: PMC5749554 DOI: 10.2147/dddt.s151660] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Epiberberine (EPI) is a novel and potentially effective therapeutic and preventive agent for diabetes and cardiovascular disease. To evaluate its potential value for drug development, a specific, sensitive and robust high-performance liquid chromatography-tandem mass spectrometry assay for the determination of EPI in rat biological samples was established. This assay was used to study the pharmacokinetics, bioavailability and excretion of EPI in rats after oral administration. In addition, a cocktail method was used to compare the inhibition characteristics of EPI on cytochrome P450 (CYP450) isoforms in human liver microsomes (HLMs) and rat liver microsomes (RLMs). The results demonstrated that EPI was rapidly absorbed and metabolized after oral administration (10, 54 or 81 mg/kg) in rats, with Tmax of 0.37–0.42 h and T1/2 of 0.49–2.73 h. The Cmax and area under the curve values for EPI increased proportionally with the dose, and the oral absolute bioavailability was 14.46%. EPI was excreted mainly in bile and feces, and after its oral administration to rats, EPI was eliminated predominantly by the kidneys. A comparison of the current half-maximal inhibitory concentration and Ki values revealed that EPI demonstrated an obvious inhibitory effect on CYP2C9 and CYP2D6. Furthermore, its effect was stronger in HLM than in RLM, more likely to be a result of noncompetitive inhibition.
Collapse
Affiliation(s)
- Ning Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing
| | - Xiao-Yan Yang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing.,Nanjing Sanhome Pharmaceutical Co., Ltd., Nanjing, China
| | - Chang-E Guo
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing
| | - Xin-Ning Bi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing
| | - Jian-Hua Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing
| | - Hong-Ying Chen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing
| | - Hong-Pin Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing
| | - Hong-Ying Lin
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing
| | - Yu-Jie Zhang
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing
| |
Collapse
|
27
|
Protective effect of Coptisine from Rhizoma Coptidis on LPS/D-GalN-induced acute liver failure in mice through up-regulating expression of miR-122. Biomed Pharmacother 2017; 98:180-190. [PMID: 29253766 DOI: 10.1016/j.biopha.2017.11.133] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2017] [Revised: 11/20/2017] [Accepted: 11/27/2017] [Indexed: 12/12/2022] Open
Abstract
Coptisine (COP), one of the main active ingredients of Rhizoma Coptidis, reportedly has anti-inflammatory, anti-colon cancer properties, but it remains elusive whether COP owns hepatoprotective activity. Mice were pretreated with COP for 7d prior to lipopolysaccharide/d-galactosamine (LPS/D-GalN) administration to detect the hepatic protective effects of COP. The mechanism was explored in using HepG2 cells with low level of miR-122 and LO2 cells with high level of miR-122, combining with miR-122 agomir transfection by means of detecting the expression of miR-122 and proteins, clinical index and apoptosis. COP ameliorated the LPS/D-GalN-induced liver failure by lowering serum levels of ALT and AST, raising hepatic GSH and SOD levels, and maintaining the morphology of hepatocytes, along with an increase in miR-122 expression in mice. The results in vitro indicated that, after miR-122 mimic administration, the alone treatment of COP and the co-treatment of COP and LPS transfection obviously promoted the apoptosis of HepG2, which was increased by 152.67% and 113.97% compared with NC (P < 0.05 vs NC). LPS significantly induced the apoptosis of L02 cells, but COP treatment attenuated that of L02 cells. Further analysis showed that COP increased the miR-122 level and the expression of Bax, cleaved-casp3 and decreased Bcl-2, Bcl-xL in LPS-treated HepG2 cells. COP increased the miR-122 level but decreased the expression of TLR4, Bcl-2, Bcl-xL in LPS-treated L02 cells. COP attenuated LPS/D-GalN-induced ALF by up-regulating the level of miR-122, synergistically promoting apoptosis, and suggesting COP which showed a potential protective effect on ALF.
Collapse
|
28
|
Zhao X, Wang Y, Zheng L, Sun C, Wang C, Cong H, Xiang T, Zhang L, Zhang H, deng S, Zhang B, Wu B, Huo X. Comparative pharmacokinetics study of five alkaloids in rat plasma and related compound–herb interactions mechanism after oral administration of Shuanghua Baihe tablets. Nat Prod Res 2017; 32:2031-2036. [DOI: 10.1080/14786419.2017.1365075] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Affiliation(s)
- Xinyu Zhao
- College of Pharmacy and College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, PR China
| | - Yan Wang
- College of Pharmacy and College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, PR China
- Department of Pharmacy and Traditional Chinese Medicine, The 210th Hospital of PLA, Dalian, PR China
| | - Lu Zheng
- Department of New Drugs, Shanghai Haini Pharmaceutical Co. Ltd., Shanghai, PR China
| | - Chengpeng Sun
- College of Pharmacy and College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, PR China
| | - Chao Wang
- College of Pharmacy and College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, PR China
| | - Haijian Cong
- Department of New Drugs, Shanghai Haini Pharmaceutical Co. Ltd., Shanghai, PR China
| | - Ting Xiang
- Department of New Drugs, Yangtze River Pharmaceutical Group, Taizhou, PR China
| | - Lin Zhang
- College of Pharmacy and College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, PR China
| | - Houli Zhang
- College of Pharmacy and College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, PR China
| | - Sa deng
- College of Pharmacy and College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, PR China
| | - Baojing Zhang
- College of Pharmacy and College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, PR China
| | - Bin Wu
- Shanghai Center for Drug Evaluation and Inspection, SHFDA, Shanghai, PR China
| | - Xiaokui Huo
- College of Pharmacy and College (Institute) of Integrative Medicine, Dalian Medical University, Dalian, PR China
| |
Collapse
|
29
|
Huang T, Xiao Y, Yi L, Li L, Wang M, Tian C, Ma H, He K, Wang Y, Han B, Ye X, Li X. Coptisine from Rhizoma Coptidis Suppresses HCT-116 Cells-related Tumor Growth in vitro and in vivo. Sci Rep 2017; 7:38524. [PMID: 28165459 PMCID: PMC5292956 DOI: 10.1038/srep38524] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 11/11/2016] [Indexed: 12/21/2022] Open
Abstract
Colorectal cancer is one of the most common causes of cancer-related death in humans. Coptisine (COP) is a natural alkaloid from Coptidis Rhizoma with unclear antitumor mechanism. Human colon cancer cells (HCT-116) and xenograft mice were used to systematically explore the anti-tumor activity of COP in this study. The results indicated that COP exhibited remarkably cytotoxic activities against the HCT-116 cells by inducing G1-phase cell cycle arrest and increasing apoptosis, and preferentially inhibited the survival pathway and induced the activation of caspase proteases family of HCT-116 cells. Experimental results on male BALB/c nude mice confirmed that orally administration of COP at high-dose (150 mg/kg) could suppress tumor growth, and may reduce cancer metastasis risk by inhibiting the RAS-ERK pathway in vivo. Taken together, the results suggested that COP may be potential as a novel anti-tumor candidate in the HCT-116 cells-related colon cancer, further studies are still needed to suggest COP for the further use.
Collapse
Affiliation(s)
- Tao Huang
- School of Chinese Traditional Medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Yubo Xiao
- School of Chinese Traditional Medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
- Department of Clinical Laboratory, Hunan University of Medicine, Hunan 418000, China
| | - Lin Yi
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing Cancer Institute & Hospital & Cancer Center, Chongqing 400030, China
| | - Ling Li
- School of Chinese Traditional Medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Meimei Wang
- School of Chinese Traditional Medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Cheng Tian
- School of Chinese Traditional Medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Hang Ma
- School of Chinese Traditional Medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Kai He
- School of Chinese Traditional Medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
- Department of Clinical Laboratory, Hunan University of Medicine, Hunan 418000, China
| | - Yue Wang
- School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Bing Han
- School of Chinese Traditional Medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
| | - Xiaoli Ye
- School of Life Sciences, Southwest University, Chongqing 400715, China
- Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Chongqing 400716, China
| | - Xuegang Li
- School of Chinese Traditional Medicine, School of Pharmaceutical Sciences, Southwest University, Chongqing 400716, China
- Chongqing Engineering Research Center for Pharmaceutical Process and Quality Control, Chongqing 400716, China
| |
Collapse
|
30
|
Tan HL, Chan KG, Pusparajah P, Duangjai A, Saokaew S, Mehmood Khan T, Lee LH, Goh BH. Rhizoma Coptidis: A Potential Cardiovascular Protective Agent. Front Pharmacol 2016; 7:362. [PMID: 27774066 PMCID: PMC5054023 DOI: 10.3389/fphar.2016.00362] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 09/20/2016] [Indexed: 01/05/2023] Open
Abstract
Cardiovascular diseases (CVDs) are among the leading causes of morbidity and mortality in both the developed and developing world. Rhizoma coptidis (RC), known as Huang Lian in China, is the dried rhizome of medicinal plants from the family Ranunculaceae, such as Coptis chinensis Franch, C. deltoidea C.Y. Cheng et Hsiao, and C. teeta Wall which has been used by Chinese medicinal physicians for more than 2000 years. In China, RC is a common component in traditional medicines used to treat CVD associated problems including obesity, diabetes mellitus, hyperlipidemia, hyperglycemia and disorders of lipid metabolism. In recent years, numerous scientific studies have sought to investigate the biological properties of RC to provide scientific evidence for its traditional medical uses. RC has been found to exert significant beneficial effects on major risk factors for CVDs including anti-atherosclerotic effect, lipid-lowering effect, anti-obesity effect and anti-hepatic steatosis effect. It also has myocardioprotective effect as it provides protection from myocardial ischemia-reperfusion injury. These properties have been attributed to the presence of bioactive compounds contained in RC such as berberine, coptisine, palmatine, epiberberine, jatrorrhizine, and magnoflorine; all of which have been demonstrated to have cardioprotective effects on the various parameters contributing to the occurrence of CVD through a variety of pathways. The evidence available in the published literature indicates that RC is a herb with tremendous potential to reduce the risks of CVDs, and this review aims to summarize the cardioprotective properties of RC with reference to the published literature which overall indicates that RC is a herb with remarkable potential to reduce the risks and damage caused by CVDs.
Collapse
Affiliation(s)
- Hui-Li Tan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University MalaysiaBandar Sunway, Malaysia
| | - Kok-Gan Chan
- Division of Genetic and Molecular Biology, Faculty of Science, Institute of Biological Sciences, University of Malaya Kuala Lumpur, Malaysia
| | - Priyia Pusparajah
- Biomedical Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia Bandar Sunway, Malaysia
| | - Acharaporn Duangjai
- Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand; Division of Physiology, School of Medical Sciences, University of PhayaoPhayao, Thailand
| | - Surasak Saokaew
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand; Faculty of Pharmaceutical Sciences, Pharmaceutical Outcomes Research Center, Naresuan UniversityPhitsanulok, Thailand
| | - Tahir Mehmood Khan
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Department of Pharmacy, Abasyn University PeshawarPeshawar, Pakistan
| | - Learn-Han Lee
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| | - Bey-Hing Goh
- Novel Bacteria and Drug Discovery Research Group, School of Pharmacy, Monash University MalaysiaBandar Sunway, Malaysia; Center of Health Outcomes Research and Therapeutic Safety, School of Pharmaceutical Sciences, University of PhayaoPhayao, Thailand
| |
Collapse
|
31
|
The Effects of Chunghyul-Dan (A Korean Medicine Herbal Complex) on Cardiovascular and Cerebrovascular Diseases: A Narrative Review. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2016; 2016:2601740. [PMID: 27340412 PMCID: PMC4909900 DOI: 10.1155/2016/2601740] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/22/2016] [Accepted: 05/04/2016] [Indexed: 12/20/2022]
Abstract
Chunghyul-dan (CHD) is a herbal complex containing 80% ethanol extract and is composed of Scutellariae Radix, Coptidis Rhizoma, Phellodendri Cortex, Gardeniae Fructus, and Rhei Rhizoma. We have published several experimental and clinical research articles on CHD. It has shown antilipidemic, antihypertensive, antiatherosclerotic, and inhibitory effects on ischemic stroke recurrence with clinical safety in the previous studies. The antilipidemic effect of CHD results from 3-hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase and pancreatic lipase-inhibitory activity. The antihypertensive effect likely results from the inhibitory effect on endogenous catecholamine(s) release and harmonization of all components showing the antihypertensive effects. Furthermore, anti-inflammatory and antioxidant effects on endothelial cells are implicated to dictate the antiatherosclerotic effects of CHD. It also showed neuroprotective effects on cerebrovascular and parkinsonian models. These effects of CHD could be helpful for the prevention of the recurrence of ischemic stroke. Therefore, we suggest that CHD could be a promising medication for treating and preventing cerebrovascular and cardiovascular diseases. However, to validate and better understand these findings, well-designed clinical studies are required.
Collapse
|