1
|
Wu XX, Law SK, Ma H, Jiang Z, Li YF, Au DCT, Wong CK, Luo DX. Bio-active metabolites from Chinese Medicinal Herbs for treatment of skin diseases. Nat Prod Res 2025; 39:2872-2894. [PMID: 39155491 DOI: 10.1080/14786419.2024.2391070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/23/2024] [Accepted: 08/07/2024] [Indexed: 08/20/2024]
Abstract
Skin diseases have become serious issues to human health and affect one-third of the world's population according to the World Health Organisation (WHO). These consist of internal (endogenous) and external (exogenous) factors referring to genetics, hormones, and the body's immune system, as well as environmental situations, UV radiation, or environmental pollution respectively. Generally, Western Medicines (WMs) are usually treated with topical creams or strong medications for skin diseases that help superficially, and often do not treat the root cause. The relief may be instant and strong, sometimes these medicines have adverse reactions that are too strong to be able and sustained over a long period, especially steroid drug type. Chinese Medicinal Herbs (CMHs) are natural resources and relatively mild in the treatment of both manifestation and the root cause of disease. Nowadays, CMHs are attractive to many scientists, especially in studying their formulations for the treatment of skin diseases. METHODS The methodology of this review was searched in nine electronic databases including WanFang Data, PubMed, Science Direct, Scopus, Web of Science, Springer Link, SciFinder, and China National Knowledge Infrastructure (CNKI), without regard to language constraints. All eligible studies are analysed and summarised. RESULTS Based on the literature findings, some extracts or active metabolites divided from CMHs, including Curcumin, Resveratrol, Liquorice, Dandelions, Cortex Moutan, and Calendula officinalis L., are effective for the treatment and prevention of skin diseases because of a wide range of pharmacological activities, e.g. anti-bacterial, anti-microbial, anti-virus, and anti-inflammation to enhance the body's immune system. It is also responsible for skin whitening to prevent pigmentation and premature ageing through several mechanisms, such as regulation or inhibition of nuclear factor kappa B (IκB/NF-κB) signalling pathways. CONCLUSION This is possible to develop CMHs, such as Curcumin, Resveratrol, Liquorice, Dandelions, Cortex Moutan and Calendula officinalis L. The ratio of multiple CMH formulations and safety assessments on human skin diseases required studying to achieve better pharmacological activities. Nano formulations are the future investigation for CMHs to combat skin diseases.
Collapse
Affiliation(s)
- Xiao Xiao Wu
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
| | - Siu Kan Law
- Department of Food and Health Sciences, The Technological and Higher Education Institute of Hong Kong, New Territories, Hong Kong, China
| | - Hui Ma
- Institute of Chinese Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong, China
| | - Zhou Jiang
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
| | - Yi Fan Li
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
| | - Dawn Ching Tung Au
- Department of Food and Health Sciences, The Technological and Higher Education Institute of Hong Kong, New Territories, Hong Kong, China
| | - Chun Kwok Wong
- Institute of Chinese Medicine, The Chinese University of Hong Kong, New Territories, Hong Kong, China
- Department of Chemical Pathology, The Chinese University of Hong Kong, Hong Kong, China
- State Key Laboratory of Research on Bioactivities and Clinical Applications of Medicinal Plants, The Chinese University of Hong Kong, Hong Kong, China
- Li Dak Sum Yip Yio Chin R & D Centre for Chinese Medicine, The Chinese University of Hong Kong, Hong Kong, China
| | - Di Xian Luo
- Laboratory Medicine Centre, Shenzhen Nanshan People's Hospital, Shenzhen, China
- Shenzhen University Medical School, Shenzhen, China
| |
Collapse
|
2
|
Kvedariene V, Vaskovic M, Semyte JB. Role of Oxidative Stress and Antioxidants in the Course of Atopic Dermatitis. Int J Mol Sci 2025; 26:4210. [PMID: 40362447 PMCID: PMC12072035 DOI: 10.3390/ijms26094210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2025] [Revised: 04/18/2025] [Accepted: 04/23/2025] [Indexed: 05/15/2025] Open
Abstract
Atopic dermatitis (AD) is one of the forms of allergic dermatitis and the most common chronic recurring inflammatory skin disease. In case of allergic dermatitis, oxidative stress (OS) promotes inflammation, disrupts the skin's barrier function, and facilitates the penetration of allergens into the body. As a result, studying oxidative stress and its influence on the course and spread of these diseases is important in the search for new treatment strategies. This literature review aims to discover the effect of oxidative stress on the course of atopic dermatitis and review additional options for treatment. A comprehensive literature review was performed using the medical databases "PubMed" and the specialized search engine "Google Scholar" using the PICO model. Analyzed scientific articles were published from 2019 to 2024 in English. Of the 167 initial studies, 51 articles were included based on relevance, language, and release date. The other 116 articles were rejected due to incomplete publications and publications involving animals. Key biomarkers are associated with oxidative stress, including urinary 8-hydroxydeoxyguanosine (8-OHdG), malondialdehyde (MDA), glutathione, and glutathione disulfide, and they correlate directly with the severity of atopic dermatitis. This research emphasizes that antioxidants, such as vitamins, sun protection, coenzyme Q10, a balanced diet, melatonin, flavonoids, and NB-UVB therapy may have a positive impact on the pathogenesis and progression of atopic dermatitis.
Collapse
Affiliation(s)
- Violeta Kvedariene
- Faculty of Medicine, Violeta Kvedariene Institute of Biomedical Sciences, LT-03101 Vilnius, Lithuania
| | - Monika Vaskovic
- Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania; (M.V.); (J.B.S.)
| | - Justina B. Semyte
- Faculty of Medicine, Vilnius University, LT-03101 Vilnius, Lithuania; (M.V.); (J.B.S.)
| |
Collapse
|
3
|
Zhang P, Chen T, Yang M. Clinical feature and gene expression analysis in low prostate-specific antigen, high-grade prostate cancer. PLoS One 2025; 20:e0321728. [PMID: 40233079 PMCID: PMC11999122 DOI: 10.1371/journal.pone.0321728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 03/11/2025] [Indexed: 04/17/2025] Open
Abstract
BACKGROUND Prostate cancer (PCa) patients with low prostate-specific antigen (PSA) levels can occasionally present high-grade disease. These patients often exhibit resistance to androgen deprivation therapy and have poor outcomes. The mechanisms underlying these observations remain poorly understood. This study aimed to investigate the clinical characteristics and potential gene expression mechanisms in this subgroup. PATIENTS AND METHODS Clinical data from 365,558 PCa patients were categorized into four groups based on PSA levels and Gleason score (GS): Group 1 (PSA ≤ 2.5 ng/mL, GS < 8), Group 2 (PSA ≤ 2.5 ng/mL, GS ≥ 8), Group 3 (PSA > 2.5 ng/mL, GS < 8), and Group 4 (PSA > 2.5 ng/mL, GS ≥ 8). Clinical characteristics were compared using Kruskal-Wallis H and Pearson's chi-squared tests. Competing-risks regression assessed prostate cancer-specific mortality (PCSM). Gene set enrichment analysis (GSEA) was performed on 219 PCa patients to compare Group A (PSA ≤ 2.5 ng/mL, GS ≥ 8) with Group B (PSA > 2.5 ng/mL, GS ≥ 8). RESULTS Group 2 had a significantly higher tumor stage (p < 0.001) and increased hazard ratio for PCSM (p < 0.001). GSEA in Group A identified 156 upregulated gene sets and highlighted several enriched pathways, including the polycomb repressive complex 2, the epidermal growth factor receptor family, retrograde axonal transport, the tumor necrosis factor/nuclear factor-κB pathway, the Rho guanine nucleotide exchange factor/RhoA pathway, and the phosphoinositide 3-kinase signaling pathways (p < 0.05, false discovery rate-adjusted p < 0.25). CONCLUSION PCa patients with low PSA levels and high GS demonstrated an increased risk of PCSM. They were characterized by the aberrant activation of multiple signaling pathways. Targeted therapeutic strategies aimed at these pathways warrant further investigation for their potential to improve outcomes in this aggressive PCa subtype.
Collapse
Affiliation(s)
- Peng Zhang
- Department of Urology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Tieding Chen
- Department of Urology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| | - Ming Yang
- Department of Urology, Ningbo Medical Center Lihuili Hospital, Ningbo, Zhejiang, China
| |
Collapse
|
4
|
Gupta S, Mehra A, Sangwan R. A review on phytochemicals as combating weapon for multidrug resistance in cancer. JOURNAL OF ASIAN NATURAL PRODUCTS RESEARCH 2025; 27:107-125. [PMID: 39121374 DOI: 10.1080/10286020.2024.2386678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Revised: 07/27/2024] [Accepted: 07/28/2024] [Indexed: 08/11/2024]
Abstract
One can recognize multidrug resistance (MDR) and residue as a biggest difficulty in cancer specialist. Chemotherapy-resistant cancer may be successfully treated by combining MDR-reversing phytochemicals with anticancer drugs. Though, clinical application of phytochemicals either alone or in conjunction with chemotherapy is still in its early stages or requires more research to determine their safety and efficacy. In this review we highlighted topics related to MDR in cancer, including an introduction to subject, mechanism of action of efflux pump, specific proteins involved in drug resistance, altered drug targets, increased drug metabolism, and potential role of phytochemicals in overcoming drug resistance.
Collapse
Affiliation(s)
- Sharwan Gupta
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Anuradha Mehra
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| | - Rekha Sangwan
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India
| |
Collapse
|
5
|
Kaewmanee M, Limpaiboon T, Ngernyuang N. Apigenin Induces Apoptosis and Inhibits Migration in Human Cholangiocarcinoma Cells. TOXICS 2025; 13:112. [PMID: 39997927 PMCID: PMC11860412 DOI: 10.3390/toxics13020112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 01/20/2025] [Accepted: 01/28/2025] [Indexed: 02/26/2025]
Abstract
Cholangiocarcinoma (CCA) is a rare and highly aggressive cancer of the biliary tract, associated with poor clinical outcomes due to late diagnosis, extensive metastasis, drug resistance, and limited treatment options. Apigenin, a natural flavonoid, has been found to exhibit anticancer properties in several types of human cancer cells. Therefore, apigenin may be relevant to developing chemotherapeutic agents for cancer treatment. In this study, we examined the effects of apigenin on cell viability, cell cycle distribution, apoptosis, and cell migration in human CCA cell lines (KKU-M055) under in vitro conditions. The results demonstrate that apigenin significantly suppressed specific CCA cell proliferation by inducing cell cycle arrest at the G2/M phase and promoting cell apoptosis in KKU-M055 cells while exhibiting low toxicity in immortalized MMNK1 cells. Apigenin enhanced apoptotic features, including nuclear fragmentation and the loss of mitochondrial membrane potential. Furthermore, apigenin induced the apoptosis of KKU-M055 cells in both extrinsic and intrinsic pathways by activating caspase-8, -9, and -3/7. Moreover, apigenin inhibited KKU-M055 migration. Our study suggests apigenin as a promising candidate for treating CCA, and these findings provide theoretical support for the further development and potential application of apigenin in clinical CCA therapy.
Collapse
Affiliation(s)
- Mayurachat Kaewmanee
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12120, Thailand;
| | - Temduang Limpaiboon
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002, Thailand;
| | - Nipaporn Ngernyuang
- Chulabhorn International College of Medicine, Thammasat University, Pathumthani 12120, Thailand;
- Centre for Research and Development of Medical Diagnostic Laboratories, Faculty of Associated Medical Science, Khon Kaen University, Khon Kaen 40002, Thailand;
- Thammasat University Research Unit in Biomedical Science, Thammasat University, Pathumthani 12120, Thailand
| |
Collapse
|
6
|
Altundag-Erdogan O, Tutar R, Yüce E, Çelebi-Saltik B. Targeting resistant breast cancer stem cells in a three-dimensional culture model with oleuropein encapsulated in methacrylated alginate microparticles. Daru 2024; 32:471-483. [PMID: 38722566 PMCID: PMC11555036 DOI: 10.1007/s40199-024-00512-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 04/10/2024] [Indexed: 11/12/2024] Open
Abstract
BACKGROUND Cancer stem cells (CSCs) are a subpopulation of cancer cells that are believed to be responsible for tumor initiation, progression, metastasis, and resistance to conventional therapies. Oleuropein as a natural compound found in olive leaves and olive oil, has potential therapeutic effects in cancer treatment, particularly in targeting CSCs. It induces apoptosis in CSCs while sparing normal cells, inhibit proliferation, migration, and invasion, and suppress the self-renewal ability of CSCs. Additionally, oleuropein has shown synergistic effects with conventional chemotherapy drugs, enhancing their efficacy against CSCs. OBJECTIVES This study aims to selectively target therapeutically resistant cancer stem cells (CSCs) within a heterogeneous tumor population by utilizing oleuropein (OLE) encapsulated in methacrylated alginate (OLE-mALG) within an in vivo-like microenvironment. PURPOSE This study aims to target therapeutically resistant cancer stem cells (CSCs) with oleuropein (OLE) encapsulated in the methacrylated alginate (OLE-mALG) in a heterogeneous tumor population with an in vivo-like microenvironment. METHODS Co-culture of CSCs with non-tumorogenic MCF-12 A cells was performed, the 3D breast cancer model was supported with methocel/matrigel/collagen-I, and vascularization was ensured with human umbilical vein endothelial cells (HUVEC). Then, OLE-loaded methacrylated alginate microparticles (mALG) were formed by dual crosslinking in the presence of both ionic and visible light obtained with a droplet based microfluidic system. The characterization and effectiveness of the produced OLE-mALG were evaluated by the FTIR, swelling/degradation/release analysis. Before producing OLE loaded mALG microparticles, a preliminary study was carried out to determine the effective dose of OLE for cells and the duration of OLE action on MCF-7, CSCs and MCF-12 A. Subsequently, CSC viability (WST-1), apoptosis (Bcl-2, Bax, caspase-3, caspase-9), stemness (OCT3/4, NANOG, SOX2), EMT profile (E-cadherin, Vimentin, Slug) and proliferation (SURVIVIN, p21, CYCLIN D1) after OLE-mALG treatment were all evaluated in the 3D model. RESULTS OLE was encapsulated in mALG with an efficiency of 90.49% and released 73% within 7 h. OLE-mALG induced apoptosis through the decrease in anti-apoptotic Bcl-2 and an increase in pro-apoptotic Bax, caspase-3, and caspase-9 protein levels. While Vimentin and Slug protein levels decreased after 200 µg/mL OLE-mALG treatment to 3D breast cancer culture, E-cadherin levels increased. OLE-mALG treatment to CSC co-culture led to a decrease in proliferation by triggering p21/SURVIVIN expressions, and also resulted in an increase in stemness genes (OCT3/4/NANOG/SOX2). CONCLUSION 200 µg/mL OLE-loaded mALG microparticles suppressed epithelial-to-mesenchymal transition by suppressing Vimentin and Slug protein levels, and increased E-cadherin levels in the 3D breast cancer model we created with CSCs, MCF-12 A and HUVECs. This complex system may allow the use of personalized cells for rapid drug screening in preclinical studies compared to animal experiments. OLE-mALG showed apoptotic and metastasis suppressive properties in cancer cells and it was concluded that it can be used in combination with or alternatively with chemotherapeutic agents to target breast cancer stem cells.
Collapse
Affiliation(s)
- Ozlem Altundag-Erdogan
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey
| | - Rumeysa Tutar
- Department of Chemistry, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Elif Yüce
- Department of Chemical Engineering, Faculty of Engineering, Istanbul University-Cerrahpasa, Istanbul, Turkey
| | - Betül Çelebi-Saltik
- Department of Stem Cell Sciences, Graduate School of Health Sciences, Hacettepe University, Ankara, Turkey.
- Center for Stem Cell Research and Development, Hacettepe University, Ankara, Turkey.
| |
Collapse
|
7
|
Garg SS, Dey R, Sharma A, Gupta J. Recent advances in polymer-based nanoformulations for enhancing oral drug delivery in diabetes. J Drug Deliv Sci Technol 2024; 100:106119. [DOI: 10.1016/j.jddst.2024.106119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
8
|
Wang H, Wang X, Wang L, Wang H, Zhang Y. Plant‐Derived Phytochemicals and Their Nanoformulations for Inducing Programed Cell Death in Cancer. ADVANCED THERAPEUTICS 2024; 7. [DOI: 10.1002/adtp.202400197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Indexed: 01/05/2025]
Abstract
AbstractPhytochemicals are a diverse class of compounds found in various plant‐based foods and beverages that have displayed the capacity to exert powerful anticancer effects through the induction of programed cell death (PCD) in malignancies. PCD is a sophisticated process that maintains in upholding tissue homeostasis and eliminating injured or neoplastic cells. Phytochemicals have shown the potential to induce PCD in malignant cells through various mechanisms, including modulation of cell signaling pathways, regulation of reactive oxygen species (ROS), and interaction with critical targets in cells such as DNA. Moreover, recent studies have suggested that nanomaterials loaded with phytochemicals may enhance cell death in tumors, which can also stimulate antitumor immunity. In this review, a comprehensive overview of the current understanding of the anticancer effects of phytochemicals and their potential as a promising approach to cancer therapy, is provided. The impacts of phytochemicals such as resveratrol, curcumin, apigenin, quercetin, and some approved plant‐derived drugs, such as taxanes on the regulation of some types of PCD, including apoptosis, pyroptosis, anoikis, autophagic cell death, ferroptosis, and necroptosis, are discussed. The underlying mechanisms and the potential of nanomaterials loaded with phytochemicals to enhance PCD in tumors are also explained.
Collapse
Affiliation(s)
- Haoyu Wang
- Medical College Xijing University Xi'an Shaanxi 710123 China
- Department of Orthopedics The Second Affiliated Hospital Xi'an Jiaotong University Xi'an Shaanxi 710004 China
| | - Xiaoyang Wang
- Department of Orthopedics The Second Affiliated Hospital Xi'an Jiaotong University Xi'an Shaanxi 710004 China
| | - Long Wang
- Medical College Xijing University Xi'an Shaanxi 710123 China
| | - Haifan Wang
- Department of Orthopedics The Second Affiliated Hospital Xi'an Jiaotong University Xi'an Shaanxi 710004 China
| | - Yuxing Zhang
- Medical College Xijing University Xi'an Shaanxi 710123 China
| |
Collapse
|
9
|
Figueira MI, Carvalho TMA, Macário-Monteiro J, Cardoso HJ, Correia S, Vaz CV, Duarte AP, Socorro S. The Pros and Cons of Estrogens in Prostate Cancer: An Update with a Focus on Phytoestrogens. Biomedicines 2024; 12:1636. [PMID: 39200101 PMCID: PMC11351860 DOI: 10.3390/biomedicines12081636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/14/2024] [Accepted: 07/20/2024] [Indexed: 09/01/2024] Open
Abstract
The role of estrogens in prostate cancer (PCa) is shrouded in mystery, with its actions going from angelic to devilish. The findings by Huggins and Hodges establishing PCa as a hormone-sensitive cancer have provided the basis for using estrogens in therapy. However, despite the clinical efficacy in suppressing tumor growth and the panoply of experimental evidence describing its anticarcinogenic effects, estrogens were abolished from PCa treatment because of the adverse secondary effects. Notwithstanding, research work over the years has continued investigating the effects of estrogens, reporting their pros and cons in prostate carcinogenesis. In contrast with the beneficial therapeutic effects, many reports have implicated estrogens in the disruption of prostate cell fate and tissue homeostasis. On the other hand, epidemiological data demonstrating the lower incidence of PCa in Eastern countries associated with a higher consumption of phytoestrogens support the beneficial role of estrogens in counteracting cancer development. Many studies have investigated the effects of phytoestrogens and the underlying mechanisms of action, which may contribute to developing safe estrogen-based anti-PCa therapies. This review compiles the existing data on the anti- and protumorigenic actions of estrogens and summarizes the anticancer effects of several phytoestrogens, highlighting their promising features in PCa treatment.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Sílvia Socorro
- CICS-UBI, Centro de Investigação em Ciências da Saúde, Universidade da Beira Interior, 6200-506 Covilhã, Portugal; (M.I.F.)
| |
Collapse
|
10
|
Abutayeh RF, Altah M, Mehdawi A, Al-Ataby I, Ardakani A. Chemopreventive Agents from Nature: A Review of Apigenin, Rosmarinic Acid, and Thymoquinone. Curr Issues Mol Biol 2024; 46:6600-6619. [PMID: 39057035 PMCID: PMC11276303 DOI: 10.3390/cimb46070393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 06/15/2024] [Accepted: 06/19/2024] [Indexed: 07/28/2024] Open
Abstract
Cancer, a major challenge to global health and healthcare systems, requires the study of alternative and supportive treatments due to the limitations of conventional therapies. This review examines the chemopreventive potential of three natural compounds: rosmarinic acid, apigenin, and thymoquinone. Derived from various plants, these compounds have demonstrated promising chemopreventive properties in in vitro, in vivo, and in silico studies. Specifically, they have been shown to inhibit cancer cell growth, induce apoptosis, and modulate key signaling pathways involved in cancer progression. The aim of this review is to provide a comprehensive overview of the current research on these phytochemicals, elucidating their mechanisms of action, therapeutic efficacy, and potential as adjuncts to traditional cancer therapies. This information serves as a valuable resource for researchers and healthcare providers interested in expanding their knowledge within the field of alternative cancer therapies.
Collapse
Affiliation(s)
- Reem Fawaz Abutayeh
- Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan;
| | - Maram Altah
- School of Pharmacy, Al-Qadisiyah College, Amman 11118, Jordan;
| | - Amani Mehdawi
- School of Pharmacy, Al-Qadisiyah College, Amman 11118, Jordan;
| | - Israa Al-Ataby
- Faculty of Pharmacy, Applied Science Private University, Amman 11937, Jordan;
| | - Adel Ardakani
- College of Pharmacy, Amman Arab University, Amman 11953, Jordan;
| |
Collapse
|
11
|
Naponelli V, Rocchetti MT, Mangieri D. Apigenin: Molecular Mechanisms and Therapeutic Potential against Cancer Spreading. Int J Mol Sci 2024; 25:5569. [PMID: 38791608 PMCID: PMC11122459 DOI: 10.3390/ijms25105569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 05/26/2024] Open
Abstract
Due to its propensity to metastasize, cancer remains one of the leading causes of death worldwide. Thanks in part to their intrinsic low cytotoxicity, the effects of the flavonoid family in the prevention and treatment of various human cancers, both in vitro and in vivo, have received increasing attention in recent years. It is well documented that Apigenin (4',5,7-trihydroxyflavone), among other flavonoids, is able to modulate key signaling molecules involved in the initiation of cancer cell proliferation, invasion, and metastasis, including JAK/STAT, PI3K/Akt/mTOR, MAPK/ERK, NF-κB, and Wnt/β-catenin pathways, as well as the oncogenic non-coding RNA network. Based on these premises, the aim of this review is to emphasize some of the key events through which Apigenin suppresses cancer proliferation, focusing specifically on its ability to target key molecular pathways involved in angiogenesis, epithelial-to-mesenchymal transition (EMT), maintenance of cancer stem cells (CSCs), cell cycle arrest, and cancer cell death.
Collapse
Affiliation(s)
- Valeria Naponelli
- Department of Medicine and Surgery, University of Parma, Plesso Biotecnologico Integrato, Via Volturno 39, 43126 Parma, Italy
| | - Maria Teresa Rocchetti
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy;
| | - Domenica Mangieri
- Department of Clinical and Experimental Medicine, University of Foggia, Via Pinto 1, 71122 Foggia, Italy;
| |
Collapse
|
12
|
Ziranu P, Pretta A, Aimola V, Cau F, Mariani S, D’Agata AP, Codipietro C, Rizzo D, Dell’Utri V, Sanna G, Moledda G, Cadoni A, Lai E, Puzzoni M, Pusceddu V, Castagnola M, Scartozzi M, Faa G. CD44: A New Prognostic Marker in Colorectal Cancer? Cancers (Basel) 2024; 16:1569. [PMID: 38672650 PMCID: PMC11048923 DOI: 10.3390/cancers16081569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/19/2024] [Accepted: 04/13/2024] [Indexed: 04/28/2024] Open
Abstract
Cluster of differentiation 44 (CD44) is a non-kinase cell surface glycoprotein. It is overexpressed in several cell types, including cancer stem cells (CSCs). Cells overexpressing CD44 exhibit several CSC traits, such as self-renewal, epithelial-mesenchymal transition (EMT) capability, and resistance to chemo- and radiotherapy. The role of CD44 in maintaining stemness and the CSC function in tumor progression is accomplished by binding to its main ligand, hyaluronan (HA). The HA-CD44 complex activates several signaling pathways that lead to cell proliferation, adhesion, migration, and invasion. The CD44 gene regularly undergoes alternative splicing, resulting in the standard (CD44s) and variant (CD44v) isoforms. The different functional roles of CD44s and specific CD44v isoforms still need to be fully understood. The clinicopathological impact of CD44 and its isoforms in promoting tumorigenesis suggests that CD44 could be a molecular target for cancer therapy. Furthermore, the recent association observed between CD44 and KRAS-dependent carcinomas and the potential correlations between CD44 and tumor mutational burden (TMB) and microsatellite instability (MSI) open new research scenarios for developing new strategies in cancer treatment. This review summarises current research regarding the different CD44 isoform structures, their roles, and functions in supporting tumorigenesis and discusses its therapeutic implications.
Collapse
Affiliation(s)
- Pina Ziranu
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio per Sestu, Monserrato, 09042 Cagliari, Italy; (A.P.); (S.M.); (A.P.D.); (C.C.); (D.R.); (V.D.); (G.S.); (G.M.); (A.C.); (E.L.); (M.P.); (V.P.); (M.S.)
| | - Andrea Pretta
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio per Sestu, Monserrato, 09042 Cagliari, Italy; (A.P.); (S.M.); (A.P.D.); (C.C.); (D.R.); (V.D.); (G.S.); (G.M.); (A.C.); (E.L.); (M.P.); (V.P.); (M.S.)
| | - Valentina Aimola
- Division of Pathology, Department of Medical Sciences and Public Health, AOU Cagliari, University of Cagliari, 09124 Cagliari, Italy; (V.A.); (F.C.)
| | - Flaviana Cau
- Division of Pathology, Department of Medical Sciences and Public Health, AOU Cagliari, University of Cagliari, 09124 Cagliari, Italy; (V.A.); (F.C.)
| | - Stefano Mariani
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio per Sestu, Monserrato, 09042 Cagliari, Italy; (A.P.); (S.M.); (A.P.D.); (C.C.); (D.R.); (V.D.); (G.S.); (G.M.); (A.C.); (E.L.); (M.P.); (V.P.); (M.S.)
| | - Alessandra Pia D’Agata
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio per Sestu, Monserrato, 09042 Cagliari, Italy; (A.P.); (S.M.); (A.P.D.); (C.C.); (D.R.); (V.D.); (G.S.); (G.M.); (A.C.); (E.L.); (M.P.); (V.P.); (M.S.)
| | - Claudia Codipietro
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio per Sestu, Monserrato, 09042 Cagliari, Italy; (A.P.); (S.M.); (A.P.D.); (C.C.); (D.R.); (V.D.); (G.S.); (G.M.); (A.C.); (E.L.); (M.P.); (V.P.); (M.S.)
| | - Daiana Rizzo
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio per Sestu, Monserrato, 09042 Cagliari, Italy; (A.P.); (S.M.); (A.P.D.); (C.C.); (D.R.); (V.D.); (G.S.); (G.M.); (A.C.); (E.L.); (M.P.); (V.P.); (M.S.)
| | - Veronica Dell’Utri
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio per Sestu, Monserrato, 09042 Cagliari, Italy; (A.P.); (S.M.); (A.P.D.); (C.C.); (D.R.); (V.D.); (G.S.); (G.M.); (A.C.); (E.L.); (M.P.); (V.P.); (M.S.)
| | - Giorgia Sanna
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio per Sestu, Monserrato, 09042 Cagliari, Italy; (A.P.); (S.M.); (A.P.D.); (C.C.); (D.R.); (V.D.); (G.S.); (G.M.); (A.C.); (E.L.); (M.P.); (V.P.); (M.S.)
| | - Giusy Moledda
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio per Sestu, Monserrato, 09042 Cagliari, Italy; (A.P.); (S.M.); (A.P.D.); (C.C.); (D.R.); (V.D.); (G.S.); (G.M.); (A.C.); (E.L.); (M.P.); (V.P.); (M.S.)
| | - Andrea Cadoni
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio per Sestu, Monserrato, 09042 Cagliari, Italy; (A.P.); (S.M.); (A.P.D.); (C.C.); (D.R.); (V.D.); (G.S.); (G.M.); (A.C.); (E.L.); (M.P.); (V.P.); (M.S.)
| | - Eleonora Lai
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio per Sestu, Monserrato, 09042 Cagliari, Italy; (A.P.); (S.M.); (A.P.D.); (C.C.); (D.R.); (V.D.); (G.S.); (G.M.); (A.C.); (E.L.); (M.P.); (V.P.); (M.S.)
| | - Marco Puzzoni
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio per Sestu, Monserrato, 09042 Cagliari, Italy; (A.P.); (S.M.); (A.P.D.); (C.C.); (D.R.); (V.D.); (G.S.); (G.M.); (A.C.); (E.L.); (M.P.); (V.P.); (M.S.)
| | - Valeria Pusceddu
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio per Sestu, Monserrato, 09042 Cagliari, Italy; (A.P.); (S.M.); (A.P.D.); (C.C.); (D.R.); (V.D.); (G.S.); (G.M.); (A.C.); (E.L.); (M.P.); (V.P.); (M.S.)
| | - Massimo Castagnola
- Proteomics Laboratory, Centro Europeo di Ricerca sul Cervello, IRCCS Fondazione Santa Lucia, 00013 Rome, Italy;
| | - Mario Scartozzi
- Medical Oncology Unit, University Hospital and University of Cagliari, SS 554 km 4500 Bivio per Sestu, Monserrato, 09042 Cagliari, Italy; (A.P.); (S.M.); (A.P.D.); (C.C.); (D.R.); (V.D.); (G.S.); (G.M.); (A.C.); (E.L.); (M.P.); (V.P.); (M.S.)
| | - Gavino Faa
- Department of Medical Sciences and Public Health, AOU Cagliari, University of Cagliari, 09124 Cagliari, Italy;
- Department of Biology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| |
Collapse
|
13
|
Zou JY, Chen QL, Luo XC, Damdinjav D, Abdelmohsen UR, Li HY, Battulga T, Chen HB, Wang YQ, Zhang JY. Natural products reverse cancer multidrug resistance. Front Pharmacol 2024; 15:1348076. [PMID: 38572428 PMCID: PMC10988293 DOI: 10.3389/fphar.2024.1348076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 02/19/2024] [Indexed: 04/05/2024] Open
Abstract
Cancer stands as a prominent global cause of death. One of the key reasons why clinical tumor chemotherapy fails is multidrug resistance (MDR). In recent decades, accumulated studies have shown how Natural Product-Derived Compounds can reverse tumor MDR. Discovering novel potential modulators to reduce tumor MDR by Natural Product-Derived Compounds has become a popular research area across the globe. Numerous studies mainly focus on natural products including flavonoids, alkaloids, terpenoids, polyphenols and coumarins for their MDR modulatory activity. Natural products reverse MDR by regulating signaling pathways or the relevant expressed protein or gene. Here we perform a deep review of the previous achievements, recent advances in the development of natural products as a treatment for MDR. This review aims to provide some insights for the study of multidrug resistance of natural products.
Collapse
Affiliation(s)
- Jia-Yu Zou
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Qi-Lei Chen
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Xiao-Ci Luo
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Davaadagva Damdinjav
- School of Pharmacy, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Usama Ramadan Abdelmohsen
- Deraya Center for Scientific Research, Deraya University, New Minia, Egypt
- Department of Pharmacognosy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Hong-Yan Li
- Ministry of Education Engineering Research Center of Tibetan Medicine Detection Technology, Xizang Minzu University, Xianyang, China
| | - Tungalag Battulga
- School of Pharmacy, Mongolian National University of Medical Sciences, Ulaanbaatar, Mongolia
| | - Hu-Biao Chen
- School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong SAR, China
| | - Yu-Qing Wang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- The Affiliated TCM Hospital, Guangzhou Medical University, Guangzhou, China
| | - Jian-Ye Zhang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, The NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
- The Affiliated Qingyuan Hospital, Guangzhou Medical University, Qingyuan, China
| |
Collapse
|
14
|
Turkekul K, Erdogan S. Potent Suppression of Prostate Cancer Cell Growth and Eradication of Cancer Stem Cells by CD44-targeted Nanoliposome-quercetin Nanoparticles. J Cancer Prev 2023; 28:160-174. [PMID: 38205358 PMCID: PMC10774486 DOI: 10.15430/jcp.2023.28.4.160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/24/2023] [Accepted: 11/28/2023] [Indexed: 01/12/2024] Open
Abstract
The bioavailability of quercetin, a natural compound, is hindered by low solubility, limited absorption, and restricted systemic availability. Therefore, encapsulating it in biocompatible nanoparticles presents a promising solution. This study aimed to target prostate cancer stem cells (CSCs) overexpressing CD44+ receptors as well as cancer cells, employing quercetin-loaded hyaluronic acid-modified nanoliposomes (LP-Quer-HA). Synthesized via a green ethanol injection method, these nanoliposomes had an average diameter of 134 nm and an impressive loading efficiency of 96.9%. Human prostate cancer cells were treated with either 10 μM of free quercetin or the same concentration delivered by LP-Quer-HA for 72 hours. Free quercetin reduced androgen-resistant PC3 cell viability by 16%, while LP-Quer-HA significantly increased cell death to 60%. It induced apoptosis, upregulating cytochrome c, Bax, caspases 3 and 8, and downregulating survivin and Bcl-2 expression. Compared to free quercetin, LP-Quer-HA upregulated E-cadherin expression while inhibiting cell migration and reducing the expression of fibronectin, N-cadherin, and MMP9. Treatment of PC3 cell tumor spheroids with LP-Quer-HA decreased the number of CD44 cells and expression of CD44, Oct3/4 and Wnt. Moreover, LP-Quer-HA inhibited p-ERK expression while increasing p38/MAPK and NF-κB protein expression. In androgen-sensitive LNCaP cells, LP-Quer-HA efficacy was notable, reducing cell viability from 10% to 52% compared to free quercetin. Utilizing HA-modified nanoliposomes as a quercetin delivery system enhanced its potency at lower concentrations, reducing the CD44+ cell population and effectively impeding prostate cancer cell proliferation and migration. These findings underscore the potential of quercetin-loaded cationic nanoliposomes as a robust therapeutic approach.
Collapse
Affiliation(s)
- Kader Turkekul
- Department of Medical Biology, School of Medicine, Trakya University, Balkan Campus, Edirne, Turkey
| | - Suat Erdogan
- Department of Medical Biology, School of Medicine, Trakya University, Balkan Campus, Edirne, Turkey
| |
Collapse
|
15
|
Jameel M, Fatma H, Nadtochii LA, Siddique HR. Molecular Insight into Prostate Cancer: Preventive Role of Selective Bioactive Molecules. Life (Basel) 2023; 13:1976. [PMID: 37895357 PMCID: PMC10608662 DOI: 10.3390/life13101976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/18/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
Prostate cancer (CaP) is one of the most prevalent male malignancies, accounting for a considerable number of annual mortalities. However, the prompt identification of early-stage CaP often faces delays due to diverse factors, including socioeconomic inequalities. The androgen receptor (AR), in conjunction with various other signaling pathways, exerts a central influence on the genesis, progression, and metastasis of CaP, with androgen deprivation therapy (ADT) serving as the primary therapeutic strategy. Therapeutic modalities encompassing surgery, chemotherapy, hormonal intervention, and radiotherapy have been formulated for addressing early and metastatic CaP. Nonetheless, the heterogeneous tumor microenvironment frequently triggers the activation of signaling pathways, culminating in the emergence of chemoresistance, an aspect to which cancer stem cells (CSCs) notably contribute. Phytochemicals emerge as reservoirs of bioactive agents conferring manifold advantages against human morbidity. Several of these phytochemicals demonstrate potential chemoprotective and chemosensitizing properties against CaP, with selectivity exhibited towards malignant cells while sparing their normal counterparts. In this context, the present review aims to elucidate the intricate molecular underpinnings associated with metastatic CaP development and the acquisition of chemoresistance. Moreover, the contributions of phytochemicals to ameliorating CaP initiation, progression, and chemoresistance are also discussed.
Collapse
Affiliation(s)
- Mohd Jameel
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India (H.F.)
| | - Homa Fatma
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India (H.F.)
| | - Liudmila A. Nadtochii
- Department of Microbiology, Saint Petersburg State Chemical & Pharmaceutical University, 197022 Saint Petersburg, Russia
| | - Hifzur R. Siddique
- Molecular Cancer Genetics & Translational Research Lab, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh 202002, India (H.F.)
| |
Collapse
|
16
|
Hashemi M, Taheriazam A, Daneii P, Hassanpour A, Kakavand A, Rezaei S, Hejazi ES, Aboutalebi M, Gholamrezaie H, Saebfar H, Salimimoghadam S, Mirzaei S, Entezari M, Samarghandian S. Targeting PI3K/Akt signaling in prostate cancer therapy. J Cell Commun Signal 2023; 17:423-443. [PMID: 36367667 PMCID: PMC10409967 DOI: 10.1007/s12079-022-00702-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 05/26/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Urological cancers have obtained much attention in recent years due to their mortality and morbidity. The most common and malignant tumor of urological cancers is prostate cancer that imposes high socioeconomic costs on public life and androgen-deprivation therapy, surgery, and combination of chemotherapy and radiotherapy are employed in its treatment. PI3K/Akt signaling is an oncogenic pathway responsible for migration, proliferation and drug resistance in various cancers. In the present review, the role of PI3K/Akt signaling in prostate cancer progression is highlighted. The activation of PI3K/Akt signaling occurs in prostate cancer, while PTEN as inhibitor of PI3K/Akt shows down-regulation. Stimulation of PI3K/Akt signaling promotes survival of prostate tumor cells and prevents apoptosis. The cell cycle progression and proliferation rate of prostate tumor cells increase by PI3K/Akt signaling induction. PI3K/Akt signaling stimulates EMT and enhances metastasis of prostate tumor cells. Silencing PI3K/Akt signaling impairs growth and metastasis of prostate tumor cells. Activation of PI3K/Akt signaling mediates drug resistance and reduces radio-sensitivity of prostate tumor cells. Anti-tumor compounds suppress PI3K/Akt signaling in impairing prostate tumor progression. Furthermore, upstream regulators such as miRNAs, lncRNAs and circRNAs regulate PI3K/Akt signaling and it has clinical implications for prostate cancer patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Aria Hassanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Aboutalebi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Gholamrezaie
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- League of European Research Universities, European University Association, University of Milan, Milan, Italy
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
17
|
Al-Rashidi RR, Noraldeen SAM, Kareem AK, Mahmoud AK, Kadhum WR, Ramírez-Coronel AA, Iswanto AH, Obaid RF, Jalil AT, Mustafa YF, Nabavi N, Wang Y, Wang L. Malignant function of nuclear factor-kappaB axis in prostate cancer: Molecular interactions and regulation by non-coding RNAs. Pharmacol Res 2023; 194:106775. [PMID: 37075872 DOI: 10.1016/j.phrs.2023.106775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/09/2023] [Accepted: 04/16/2023] [Indexed: 04/21/2023]
Abstract
Prostate carcinoma is a malignant situation that arises from genomic alterations in the prostate, leading to changes in tumorigenesis. The NF-κB pathway modulates various biological mechanisms, including inflammation and immune responses. Dysregulation of NF-κB promotes carcinogenesis, including increased proliferation, invasion, and therapy resistance. As an incurable disease globally, prostate cancer is a significant health concern, and research into genetic mutations and NF-κB function has the efficacy to facilitate the introduction of novel therapies. NF-κB upregulation is observed during prostate cancer progression, resulting in increased cell cycle progression and proliferation rates. Additionally, NF-κB endorses resistance to cell death and enhances the capacity for metastasis, particularly bone metastasis. Overexpression of NF-κB triggers chemoresistance and radio-resistance, and inhibition of NF-κB by anti-tumor compounds can reduce cancer progression. Interestingly, non-coding RNA transcripts can regulate NF-κB level and its nuclear transfer, offering a potential avenue for modulating prostate cancer progression.
Collapse
Affiliation(s)
| | | | - Ali Kamil Kareem
- Biomedical Engineering Department, Al-Mustaqbal University College, 51001, Hillah, Iraq
| | | | - Wesam R Kadhum
- Department of Pharmacy, Kut University College, Kut 52001, Wasit, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; University of Palermo, Buenos Aires, Argentina; Epidemiology and Biostatistics Research Group, CES University, Colombia
| | - Acim Heri Iswanto
- Department of Public Health, Faculty of Health Science, University of Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
| | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada; Department of Experimental Therapeutics, BC Cancer Research Institute, V5Z1L3 Vancouver, BC, Canada.
| | - Lin Wang
- Department of Geriatrics, Xijing Hospital, The Air Force Military Medical University, Xi'an 710032, China.
| |
Collapse
|
18
|
Jeong SH, Kim HH, Park MY, Bhosale PB, Abusaliya A, Won CK, Park KI, Kim E, Heo JD, Kim HW, Ahn M, Seong JK, Kim GS. Flavones: The Apoptosis in Prostate Cancer of Three Flavones Selected as Therapeutic Candidate Models. Int J Mol Sci 2023; 24:ijms24119240. [PMID: 37298192 DOI: 10.3390/ijms24119240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/01/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Cancer is a widespread but dangerous disease that can strike anyone and is the second 1leading cause of death worldwide. Prostate cancer, in particular, is a prevalent cancer that occurs in men, and much research is being done on its treatment. Although chemical drugs are effective, they have various side effects, and accordingly, anticancer drugs using natural products are emerging. To date, many natural candidates have been discovered, and new drugs are being developed as drugs to treat prostate cancer. Representative candidate compounds that have been studied to be effective in prostate cancer include apigenin, acacetin and tangeretin of the flavone family among flavonoids. In this review, we look at the effects of these three flavones on prostate cancer cells via apoptosis in vitro and in vivo. Furthermore, in addition to the existing drugs, we suggest the three flavones and their effectiveness as natural anticancer agents, a treatment model for prostate cancer.
Collapse
Affiliation(s)
- Se Hyo Jeong
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Hun Hwan Kim
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Min Young Park
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Pritam Bhagwan Bhosale
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Abuyaseer Abusaliya
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Chung Kil Won
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Kwang Il Park
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Eunhye Kim
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| | - Jeong Doo Heo
- Biological Resources Research Group, Gyeongnam Department of Environment Toxicology and Chemistry, Korea Institute of Toxicology, 17 Jegok-gil, Jinju 52834, Republic of Korea
| | - Hyun Wook Kim
- Division of Animal Bioscience & Integrated Biotechnology, Jinju 52725, Republic of Korea
| | - Meejung Ahn
- Department of Animal Science, College of Life Science, Sangji University, Wonju 26339, Republic of Korea
| | - Je Kyung Seong
- Laboratory of Developmental Biology and Genomics, BK21 PLUS Program for Creative Veterinary Science Research, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul 08826, Republic of Korea
| | - Gon Sup Kim
- Department of Veterinary Medicine, Research Institute of Life Science, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Republic of Korea
| |
Collapse
|
19
|
Kim S, Shin Y, Choi Y, Lim KM, Jeong Y, Dayem AA, Lee Y, An J, Song K, Jang SB, Cho SG. Improved Wound Healing and Skin Regeneration Ability of 3,2'-Dihydroxyflavone-Treated Mesenchymal Stem Cell-Derived Extracellular Vesicles. Int J Mol Sci 2023; 24:ijms24086964. [PMID: 37108128 PMCID: PMC10138514 DOI: 10.3390/ijms24086964] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/02/2023] [Accepted: 04/04/2023] [Indexed: 04/29/2023] Open
Abstract
Flavonoids enhance the self-renewal and differentiation potential of mesenchymal stem cells (MSCs) and have therapeutic activities, including regenerative, anti-oxidative, and anti-inflammatory effects. Recent studies have revealed that MSC-derived extracellular vesicles (MSC-EVs) have therapeutic effects on tissue regeneration and inflammation. To facilitate further research on the therapeutic potential of MSC-EVs derived from flavonoid-treated MSCs, we surveyed the production of EVs and their therapeutic applications in wound regeneration. MSCs treated with flavonoids enhanced EV production twofold compared with naïve MSCs. EVs produced by MSCs treated with flavonoids (Fla-EVs) displayed significant anti-inflammatory and wound-healing effects in vitro. The wound-healing capacity of EVs was mediated by the upregulation of mitogen-activated protein kinase kinase (MEK)/extracellular signal-regulated kinase (ERK) signaling. Interestingly, the protein level of p-ERK under inhibition of MEK signals was maintained in Fla-EV-treated fibroblasts, suggesting that Fla-EVs have a higher therapeutic potential than naïve MSC-EVs (Cont-EVs) in wound healing. Moreover, the in vivo wound closure effect of the Fla-EVs showed significant improvement compared with that of the flavonoid-only treatment group and the Cont-EVs. This study provides a strategy for the efficient production of EVs with superior therapeutic potential using flavonoids.
Collapse
Affiliation(s)
- Sehee Kim
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yeokyung Shin
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- R&D Team, StemExOne Co., Ltd. 303, Life Science Bldg, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yujin Choi
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kyung-Min Lim
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- R&D Team, StemExOne Co., Ltd. 303, Life Science Bldg, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yeojin Jeong
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ahmed Abdal Dayem
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Yoonjoo Lee
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Jongyub An
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Kwonwoo Song
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- R&D Team, StemExOne Co., Ltd. 303, Life Science Bldg, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Soo Bin Jang
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| | - Ssang-Goo Cho
- Department of Stem Cell & Regenerative Biotechnology and Institute of Advanced Regenerative Science, Konkuk University, 120 Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
- R&D Team, StemExOne Co., Ltd. 303, Life Science Bldg, 120, Neungdong-ro, Gwangjin-gu, Seoul 05029, Republic of Korea
| |
Collapse
|
20
|
Anticancer Potential of Apigenin and Isovitexin with Focus on Oncogenic Metabolism in Cancer Stem Cells. Metabolites 2023; 13:metabo13030404. [PMID: 36984844 PMCID: PMC10051376 DOI: 10.3390/metabo13030404] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/23/2023] [Accepted: 03/02/2023] [Indexed: 03/11/2023] Open
Abstract
It has been demonstrated that cancer stem cells (CSCs) go through metabolic changes that differentiate them from non-CSCs. The altered metabolism of CSCs plays a vital role in tumor initiation, progression, immunosuppression, and resistance to conventional therapy. Therefore, defining the role of CSC metabolism in carcinogenesis has emerged as a main focus in cancer research. Two natural flavonoids, apigenin and isovitexin, have been shown to act synergistically with conventional chemotherapeutic drugs by sensitizing CSCs, ultimately leading to improved therapeutic efficacy. The aim of this study is to present a critical and broad evaluation of the anti-CSC capability of apigenin and isovitexin in different cancers as novel and untapped natural compounds for developing drugs. A thorough review of the included literature supports a strong association between anti-CSC activity and treatment with apigenin or isovitexin. Additionally, it has been shown that apigenin or isovitexin affected CSC metabolism and reduced CSCs through various mechanisms, including the suppression of the Wnt/β-catenin signaling pathway, the inhibition of nuclear factor-κB protein expression, and the downregulation of the cell cycle via upregulation of p21 and cyclin-dependent kinases. The findings of this study demonstrate that apigenin and isovitexin are potent candidates for treating cancer due to their antagonistic effects on CSC metabolism.
Collapse
|
21
|
Çevik D, Erdogan S, Serttas R, Kan Y, Kırmızıbekmez H. Cytotoxic and Antimigratory Activity of Retrochalcones from Glycyrrhiza echinata L. on Human Cancer Cells. Chem Biodivers 2023; 20:e202200589. [PMID: 36448364 DOI: 10.1002/cbdv.202200589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 11/28/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
Cytotoxic activity-guided fractionation studies on Glycyrrhiza echinata roots led to the isolation of eight compounds (1-8). Chemical structures of the isolates were identified by NMR and MS analysis. Among the tested molecules, retrochalcones namely echinatin (3) (IC50 =23.45-41.83 μM), licochalcone B (4) (IC50 =36.04-39.53 μM) and tetrahydroxylmethoxychalcone (5) (IC50 =7.09-80.81 μM) were the most active ones against PC3, MCF7 and HepG2 cells. Moreover, 5 exhibited selectivity on prostate cancer cells (SI: 5.19). Hoechst staining and Annexin V/PI binding assays as well as cell cycle analysis on the compounds 3 (23 μM) and 5 (5 and 7 μM) demonstrated that these retrochalcones induced apoptosis and significantly suppressed cell cycle in G1 and G2 /M phases. Furthermore, 3 and 5 showed antimigratory effects on PC3 cells by wound healing assay. The results indicated that tested retrochalcones most particularly 5 could be potential anticancer drug candidates that prevent proliferation and migration of cancer cells.
Collapse
Affiliation(s)
- Dicle Çevik
- Department of Pharmacognosy, Faculty of Pharmacy, Trakya University, 22030, Balkan Campus, Edirne, Turkey
| | - Suat Erdogan
- Department of Medical Biology, School of Medicine, Trakya University, 22030, Balkan Campus, Edirne, Turkey
| | - Riza Serttas
- Department of Medical Biology, School of Medicine, Trakya University, 22030, Balkan Campus, Edirne, Turkey
| | - Yüksel Kan
- Department of Medicinal Plants, Faculty of Agriculture, Selçuk University, 42070, Konya, Turkey
| | - Hasan Kırmızıbekmez
- Department of Pharmacognosy, Faculty of Pharmacy, Yeditepe University, 34755, Kayışdağı, İstanbul, Turkey
| |
Collapse
|
22
|
Guan C, Zhou X, Li H, Ma X, Zhuang J. NF-κB inhibitors gifted by nature: The anticancer promise of polyphenol compounds. Biomed Pharmacother 2022; 156:113951. [DOI: 10.1016/j.biopha.2022.113951] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 10/29/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022] Open
|
23
|
Crosstalk between xanthine oxidase (XO) inhibiting and cancer chemotherapeutic properties of comestible flavonoids- a comprehensive update. J Nutr Biochem 2022; 110:109147. [PMID: 36049673 DOI: 10.1016/j.jnutbio.2022.109147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 12/17/2021] [Accepted: 08/10/2022] [Indexed: 01/13/2023]
Abstract
Gout is an inflammatory disease caused by metabolic disorder or genetic inheritance. People throughout the world are strongly dependent on ethnomedicine for the treatment of gout and some receive satisfactory curative treatment. The natural remedies as well as established drugs derived from natural sources or synthetically made exert their action by mechanisms that are closely associated with anticancer treatment mechanisms regarding inhibition of xanthine oxidase, feedback inhibition of de novo purine synthesis, depolymerization and disappearance of microtubule, inhibition of NF-ĸB activation, induction of TRAIL, promotion of apoptosis, and caspase activation and proteasome inhibition. Some anti-gout and anticancer novel compounds interact with same receptors for their action, e.g., colchicine and colchicine analogues. Dietary flavonoids, i.e., chrysin, kaempferol, quercetin, fisetin, pelargonidin, apigenin, luteolin, myricetin, isorhamnetin, phloretinetc etc. have comparable IC50 values with established anti-gout drug and effective against both cancer and gout. Moreover, a noticeable number of newer anticancer compounds have already been isolated from plants that have been using by local traditional healers and herbal practitioners to treat gout. Therefore, the anti-gout plants might have greater potentiality to become selective candidates for screening of newer anticancer leads.
Collapse
|
24
|
Schmitt F, Eckert GP. Caenorhabditis elegans as a Model for the Effects of Phytochemicals on Mitochondria and Aging. Biomolecules 2022; 12:1550. [PMID: 36358900 PMCID: PMC9687847 DOI: 10.3390/biom12111550] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 09/08/2024] Open
Abstract
The study of aging is an important topic in contemporary research. Considering the demographic changes and the resulting shifts towards an older population, it is of great interest to preserve youthful physiology in old age. For this endeavor, it is necessary to choose an appropriate model. One such model is the nematode Caenorhabditis elegans (C. elegans), which has a long tradition in aging research. In this review article, we explore the advantages of using the nematode model in aging research, focusing on bioenergetics and the study of secondary plant metabolites that have interesting implications during this process. In the first section, we review the situation of aging research today. Conventional theories and hypotheses about the ongoing aging process will be presented and briefly explained. The second section focuses on the nematode C. elegans and its utility in aging and nutrition research. Two useful genome editing methods for monitoring genetic interactions (RNAi and CRISPR/Cas9) are presented. Due to the mitochondria's influence on aging, we also introduce the possibility of observing bioenergetics and respiratory phenomena in C. elegans. We then report on mitochondrial conservation between vertebrates and invertebrates. Here, we explain why the nematode is a suitable model for the study of mitochondrial aging. In the fourth section, we focus on phytochemicals and their applications in contemporary nutritional science, with an emphasis on aging research. As an emerging field of science, we conclude this review in the fifth section with several studies focusing on mitochondrial research and the effects of phytochemicals such as polyphenols. In summary, the nematode C. elegans is a suitable model for aging research that incorporates the mitochondrial theory of aging. Its living conditions in the laboratory are optimal for feeding studies, thus enabling bioenergetics to be observed during the aging process.
Collapse
Affiliation(s)
| | - Gunter P. Eckert
- Laboratory for Nutrition in Prevention and Therapy, Biomedical Research Center Seltersberg (BFS), Institute of Nutritional Science, Justus Liebig University Giessen, Schubertstrasse 81, 35392 Giessen, Germany
| |
Collapse
|
25
|
Sharma E, Attri DC, Sati P, Dhyani P, Szopa A, Sharifi-Rad J, Hano C, Calina D, Cho WC. Recent updates on anticancer mechanisms of polyphenols. Front Cell Dev Biol 2022; 10:1005910. [PMID: 36247004 PMCID: PMC9557130 DOI: 10.3389/fcell.2022.1005910] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 09/06/2022] [Indexed: 12/03/2022] Open
Abstract
In today's scenario, when cancer cases are increasing rapidly, anticancer herbal compounds become imperative. Studies on the molecular mechanisms of action of polyphenols published in specialized databases such as Web of Science, Pubmed/Medline, Google Scholar, and Science Direct were used as sources of information for this review. Natural polyphenols provide established efficacy against chemically induced tumor growth with fewer side effects. They can sensitize cells to various therapies and increase the effectiveness of biotherapy. Further pharmacological translational research and clinical trials are needed to evaluate theirs in vivo efficacy, possible side effects and toxicity. Polyphenols can be used to design a potential treatment in conjunction with existing cancer drug regimens such as chemotherapy and radiotherapy.
Collapse
Affiliation(s)
- Eshita Sharma
- Department of Molecular Biology and Biochemistry, Guru Nanak Dev University, Amritsar, Punjab, India
| | - Dharam Chand Attri
- High Altitude Plant Physiology Research Centre (HAPPRC), HNB Garhwal University, Srinagar, Uttarakhand, India
| | - Priyanka Sati
- Graphic Era University, Dehradun, Uttarakhand, India
| | - Praveen Dhyani
- Department of Biotechnology, Kumaun University, Nainital, Uttarakhand, India
| | - Agnieszka Szopa
- Chair and Department of Pharmaceutical Botany, Medical College, Jagiellonian University, Kraków, Poland
| | | | - Christophe Hano
- Department of Biological Chemistry, University of Orleans, Eure et Loir Campus, Chartres, France
| | - Daniela Calina
- Department of Clinical Pharmacy, University of Medicine and Pharmacy of Craiova, Craiova, Romania
| | - William C. Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong SAR, China
| |
Collapse
|
26
|
Sufianova G, Gareev I, Beylerli O, Wu J, Shumadalova A, Sufianov A, Chen X, Zhao S. Modern aspects of the use of natural polyphenols in tumor prevention and therapy. Front Cell Dev Biol 2022; 10:1011435. [PMID: 36172282 PMCID: PMC9512088 DOI: 10.3389/fcell.2022.1011435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/26/2022] [Indexed: 11/13/2022] Open
Abstract
Polyphenols are secondary plant metabolites or organic compounds synthesized by them. In other words, these are molecules that are found in plants. Due to the wide variety of polyphenols and the plants in which they are found, these compounds are divided according to the source of origin, the function of the polyphenols, and their chemical structure; where the main ones are flavonoids. All the beneficial properties of polyphenols have not yet been studied, since this group of substances is very extensive and diverse. However, most polyphenols are known to be powerful antioxidants and have anti-inflammatory effects. Polyphenols help fight cell damage caused by free radicals and immune system components. In particular, polyphenols are credited with a preventive effect that helps protect the body from certain forms of cancer. The onset and progression of tumors may be related directly to oxidative stress, or inflammation. These processes can increase the amount of DNA damage and lead to loss of control over cell division. A number of studies have shown that oxidative stress uncontrolled by antioxidants or an uncontrolled and prolonged inflammatory process increases the risk of developing sarcoma, melanoma, and breast, lung, liver, and prostate cancer. Therefore, a more in-depth study of the effect of polyphenolic compounds on certain signaling pathways that determine the complex cascade of oncogenesis is a promising direction in the search for new methods for the prevention and treatment of tumors.
Collapse
Affiliation(s)
- Galina Sufianova
- Department of Pharmacology, Tyumen State Medical University, Tyumen, Russia
| | - Ilgiz Gareev
- Educational and Scientific Institute of Neurosurgery, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Ozal Beylerli
- Educational and Scientific Institute of Neurosurgery, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
| | - Jianing Wu
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, China
| | - Alina Shumadalova
- Department of General Chemistry, Bashkir State Medical University, Ufa, Russia
| | - Albert Sufianov
- Educational and Scientific Institute of Neurosurgery, Peoples’ Friendship University of Russia (RUDN University), Moscow, Russia
- Department of Neurosurgery, Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- *Correspondence: Albert Sufianov, ; Xin Chen, ; Shiguang Zhao,
| | - Xin Chen
- Department of Neurosurgical Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Albert Sufianov, ; Xin Chen, ; Shiguang Zhao,
| | - Shiguang Zhao
- Department of Neurosurgery, Shenzhen University General Hospital, Shenzhen, China
- Department of Neurosurgical Laboratory, The First Affiliated Hospital of Harbin Medical University, Harbin, China
- *Correspondence: Albert Sufianov, ; Xin Chen, ; Shiguang Zhao,
| |
Collapse
|
27
|
Li H, Wang B, Qi B, Jiang G, Qin M, Yu M. Connexin32 regulates expansion of liver cancer stem cells via the PI3K/Akt signaling pathway. Oncol Rep 2022; 48:166. [PMID: 35894130 PMCID: PMC9351005 DOI: 10.3892/or.2022.8381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/28/2022] [Indexed: 11/06/2022] Open
Abstract
Liver cancer stem cells (LCSCs) are responsible for liver cancer recurrence, metastasis, and drug resistance. Previous studies by the authors demonstrated that upregulated expression of connexin 32 (Cx32) reversed doxorubicin resistance and reduced invasion and metastasis of liver cancer cells. However, the role of Cx32 in expansion of LCSCs remains unclear. A total of 85 patients were enrolled in the present study and followed-up for 5 years. The expression of Cx32 in hepatocellular carcinoma (HCC) tissues and corresponding paracancerous tissues were detected by immunohistochemistry (IHC). Cx32 was silenced in HepG2 cells and overexpressed in HCCLM3 cells and the stemness of liver cells was examined by detecting the expression of LCSC markers (EpCAM, CD133, Nanog, Oct4, Sox9, c-Myc), sphere formation, and xenograft tumorigenesis. Finally, the effect of the phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) pathway on Cx32-regulated LCSC expansion was investigated. Cx32 was downregulated in LCSCs and HCC tissues, and predicted poor prognosis in patients with HCC. Overexpression of Cx32 in HCCLM3 cells significantly inhibited LCSC expansion, tumorigenesis, and phosphoinositide 3-kinase/protein kinase B (PI3K/Akt) pathway activity. By contrast, silencing of Cx32 in HepG2 cells upregulated expansion of LCSCs and PI3K/Akt pathway activity. Modulating the activity of the PI3K/Akt pathway by SC-79 and LY294002 in HepG2 and HCCLM3 cells, respectively, confirmed that Cx32 could affect the expansion of LCSCs through PI3K/Akt signaling. In conclusion, the present study demonstrated that Cx32 regulated the expansion of LCSCs, and increased expression of Cx32 significantly inhibited the expansion of LCSCs, suggesting that Cx32 may be an optimal target for intervention of HCC.
Collapse
Affiliation(s)
- Hongyu Li
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Boying Wang
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Benquan Qi
- Department of Emergency Internal Medicine, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Guojun Jiang
- Faculty of Pharmacy, Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| | - Min Qin
- Department of Pharmacy, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong 510080, P.R. China
| | - Meiling Yu
- Department of Pharmacy, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233004, P.R. China
| |
Collapse
|
28
|
Oxidative Stress in Ageing and Chronic Degenerative Pathologies: Molecular Mechanisms Involved in Counteracting Oxidative Stress and Chronic Inflammation. Int J Mol Sci 2022; 23:ijms23137273. [PMID: 35806275 PMCID: PMC9266760 DOI: 10.3390/ijms23137273] [Citation(s) in RCA: 162] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/24/2022] [Accepted: 06/24/2022] [Indexed: 12/17/2022] Open
Abstract
Ageing and chronic degenerative pathologies demonstrate the shared characteristics of high bioavailability of reactive oxygen species (ROS) and oxidative stress, chronic/persistent inflammation, glycation, and mitochondrial abnormalities. Excessive ROS production results in nucleic acid and protein destruction, thereby altering the cellular structure and functional outcome. To stabilise increased ROS production and modulate oxidative stress, the human body produces antioxidants, “free radical scavengers”, that inhibit or delay cell damage. Reinforcing the antioxidant defence system and/or counteracting the deleterious repercussions of immoderate reactive oxygen and nitrogen species (RONS) is critical and may curb the progression of ageing and chronic degenerative syndromes. Various therapeutic methods for ROS and oxidative stress reduction have been developed. However, scientific investigations are required to assess their efficacy. In this review, we summarise the interconnected mechanism of oxidative stress and chronic inflammation that contributes to ageing and chronic degenerative pathologies, including neurodegenerative diseases, such as Alzheimer’s disease (AD) and Parkinson’s disease (PD), cardiovascular diseases CVD, diabetes mellitus (DM), and chronic kidney disease (CKD). We also highlight potential counteractive measures to combat ageing and chronic degenerative diseases.
Collapse
|
29
|
The synergistic anticancer effect of salinomycin combined with cabazitaxel in CD44+ prostate cancer cells by downregulating wnt, NF-κB and AKT signaling. Mol Biol Rep 2022; 49:4873-4884. [PMID: 35705771 DOI: 10.1007/s11033-022-07343-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 03/04/2022] [Accepted: 03/08/2022] [Indexed: 10/18/2022]
Abstract
BACKGROUND Tumor-initiating or cancer stem cells (CSCs) reduce the effectiveness of conventional therapy. Thus, it is crucial to eliminate CSCs while killing bulky cancer cells using a combination of conventional chemotherapy and anti-CSC drugs. Salinomycin is a selective inhibitor against CSCs and shows promise in combination applications. The aim of the study was to examine the efficacy of co-administered cabazitaxel and salinomycin on the survival of prostate cancer cells and CSCs. METHODS AND RESULTS CD44 + stem cells were isolated from human PC3 prostate cancer cells by using magnetic activated cell sorting. The cells were concomitantly exposed to salinomycin and cabazitaxel, and the cell survival was determined by MTT test. Apoptosis was assessed by image-based cytometer, and cell migration was evaluated by wound healing assay. The expression of target mRNA and protein were assessed by RT-qPCR and Western blot, respectively. Combination index (CI) analysis showed that simultaneous administration of salinomycin and cabazitaxel was able to exert strong synergistic effect on CD44 + subpopulation (CI = 0.33), but no synergism was observed in PC3 cells. The combination of the two agents significantly increased Bax, cytochrome c, caspase-3 and - 8 mRNA expression in CD44 + CSCs, causing apoptosis. The applied therapy strategy strongly inhibited the phosphorylation of Akt, protein expression of Akt1, NF-κB and Wnt. CONCLUSIONS In conclusion, our data suggest that combining salinomycin with cabazitaxel shows promise as a prostate cancer treatment approach that can target CSCs.
Collapse
|
30
|
Apigenin Suppresses the Warburg Effect and Stem-like Properties in SOSP-9607 Cells by Inactivating the PI3K/Akt/mTOR Signaling Pathway. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3983637. [PMID: 35310040 PMCID: PMC8926538 DOI: 10.1155/2022/3983637] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Revised: 12/09/2021] [Accepted: 02/02/2022] [Indexed: 12/22/2022]
Abstract
Osteosarcoma (OS) is a prevalent primary malignant bone tumor that commonly occurs in children and adolescents. Apigenin (4′,5,7-trihydroxyflavone) is one of the most researched phenolic compounds that exhibits antitumor effects in several cancers. The aim of the current study was to investigate the effect and underlying mechanisms of apigenin on OS. To address this, OS cells (SOSP-9607) were treated with different concentrations of apigenin. The proliferation, migration, invasion, stem-like properties, and Warburg effect of apigenin-treated OS cells were evaluated. Apigenin was found to suppress the proliferation of SOSP-9607 cells and inhibit epithelial-mesenchymal transition, as indicated by decreased number of migrated and invaded cells, decreased protein expression of vimentin, and increased protein expression of E-cadherin. Additionally, apigenin suppressed tumorsphere formation and reduced the proportion of SOSP-9607 cells with positive expression of the stem cell-related markers Nanog and OCT-4. Apigenin inhibited the Warburg effect in SOSP-9607 cells, as demonstrated by decreased glucose and lactic acid levels, increased citrate and ATP levels, and downregulation of GLUT1, HK1, and LDHA, which are metabolism-related enzymes related to the Warburg effect. Moreover, apigenin inhibited the phosphorylation of PI3K, Akt, and mTOR in SOSP-9607 cells. Collectively, these results indicate that apigenin suppresses the Warburg effect and stem-like properties in SOSP-9607 cells, which may be mediated by PI3K/Akt/mTOR signaling, thus, providing a novel strategy for OS treatment.
Collapse
|
31
|
Ji X, Liu K, Li Q, Shen Q, Han F, Ye Q, Zheng C. A Mini-Review of Flavone Isomers Apigenin and Genistein in Prostate Cancer Treatment. Front Pharmacol 2022; 13:851589. [PMID: 35359832 PMCID: PMC8962830 DOI: 10.3389/fphar.2022.851589] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Accepted: 01/20/2022] [Indexed: 12/19/2022] Open
Abstract
The initial responses to standard chemotherapies among prostate cancer (PCa) patients are usually significant, while most of them will finally develop drug resistance, rendering them with limited therapies. To discover new regimens for the treatment of PCa including resistant PCa, natural products, the richest source of bioactive compounds, can serve as a library for screening and identifying promising candidates, and flavones such as apigenin and genistein have been used in lab and clinical trials for treating PCa over decades. In this mini-review, we take a look into the progress of apigenin and genistein, which are isomers, in treating PCa in the past decade. While possessing very similar structure, these two isomers can both target the same signaling pathways; they also are found to work differently in PCa cells. Given that more combinations are being developed and tested, genistein appears to be the more promising option to be approved. The anticancer efficacies of these two flavones can be confirmed by in-vitro and in-vivo studies, and their applications remain to be validated in clinical trials. Information gained in this work may provide important information for new drug development and the potential application of apigenin and genistein in treating PCa.
Collapse
Affiliation(s)
- Xiaozhen Ji
- Hainan General Hospital and Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Kai Liu
- Hainan General Hospital and Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Qingyue Li
- Hainan General Hospital and Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Qun Shen
- Hainan General Hospital and Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Fangxuan Han
- Hainan General Hospital and Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Qingmei Ye
- Hainan General Hospital and Hainan Affiliated Hospital of Hainan Medical University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- *Correspondence: Qingmei Ye, ; Caijuan Zheng,
| | - Caijuan Zheng
- Key Laboratory of Tropical Medicinal Plant Chemistry of Ministry of Education, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou, China
- *Correspondence: Qingmei Ye, ; Caijuan Zheng,
| |
Collapse
|
32
|
Fakhri S, Moradi SZ, Yarmohammadi A, Narimani F, Wallace CE, Bishayee A. Modulation of TLR/NF-κB/NLRP Signaling by Bioactive Phytocompounds: A Promising Strategy to Augment Cancer Chemotherapy and Immunotherapy. Front Oncol 2022; 12:834072. [PMID: 35299751 PMCID: PMC8921560 DOI: 10.3389/fonc.2022.834072] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 01/26/2022] [Indexed: 12/12/2022] Open
Abstract
Background Tumors often progress to a more aggressive phenotype to resist drugs. Multiple dysregulated pathways are behind this tumor behavior which is known as cancer chemoresistance. Thus, there is an emerging need to discover pivotal signaling pathways involved in the resistance to chemotherapeutic agents and cancer immunotherapy. Reports indicate the critical role of the toll-like receptor (TLR)/nuclear factor-κB (NF-κB)/Nod-like receptor pyrin domain-containing (NLRP) pathway in cancer initiation, progression, and development. Therefore, targeting TLR/NF-κB/NLRP signaling is a promising strategy to augment cancer chemotherapy and immunotherapy and to combat chemoresistance. Considering the potential of phytochemicals in the regulation of multiple dysregulated pathways during cancer initiation, promotion, and progression, such compounds could be suitable candidates against cancer chemoresistance. Objectives This is the first comprehensive and systematic review regarding the role of phytochemicals in the mitigation of chemoresistance by regulating the TLR/NF-κB/NLRP signaling pathway in chemotherapy and immunotherapy. Methods A comprehensive and systematic review was designed based on Web of Science, PubMed, Scopus, and Cochrane electronic databases. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines were followed to include papers on TLR/NF-κB/NLRP and chemotherapy/immunotherapy/chemoresistance by phytochemicals. Results Phytochemicals are promising multi-targeting candidates against the TLR/NF-κB/NLRP signaling pathway and interconnected mediators. Employing phenolic compounds, alkaloids, terpenoids, and sulfur compounds could be a promising strategy for managing cancer chemoresistance through the modulation of the TLR/NF-κB/NLRP signaling pathway. Novel delivery systems of phytochemicals in cancer chemotherapy/immunotherapy are also highlighted. Conclusion Targeting TLR/NF-κB/NLRP signaling with bioactive phytocompounds reverses chemoresistance and improves the outcome for chemotherapy and immunotherapy in both preclinical and clinical stages.
Collapse
Affiliation(s)
- Sajad Fakhri
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Seyed Zachariah Moradi
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Akram Yarmohammadi
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Fatemeh Narimani
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Carly E. Wallace
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| | - Anupam Bishayee
- College of Osteopathic Medicine, Lake Erie College of Osteopathic Medicine, Bradenton, FL, United States
| |
Collapse
|
33
|
Oyenihi OR, Oyenihi AB, Alabi TD, Tade OG, Adeyanju AA, Oguntibeju OO. Reactive oxygen species: Key players in the anticancer effects of apigenin? J Food Biochem 2022; 46:e14060. [PMID: 34997605 DOI: 10.1111/jfbc.14060] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 12/07/2021] [Accepted: 12/10/2021] [Indexed: 01/04/2023]
Abstract
Reactive oxygen species (ROS) exhibit a double-edged sword in cancer-hence their modulation has been an attractive strategy in cancer prevention and therapy. The abundance of scientific information on the pro-oxidant effects of apigenin in cancer cells suggests the crucial role of ROS in its mechanisms of action. Although apigenin is known to enhance the cellular ROS levels to cytotoxic degrees in cancer cells in vitro, it remains to be determined if these pro-oxidant effects prevail or are relevant in experimental tumor models and clinical trials. Here, we critically examine the pro-oxidant and antioxidant effects of apigenin in cancer to provide insightful perspectives on the association between its ROS-modulating action and anticancer potential. We also discussed these effects in a cell/tissue type-specific context to highlight the factors influencing the switch between antioxidant and pro-oxidant effects. Finally, we raised some questions that need addressing for the potential translation of these studies into clinical applications. Further research into this duality in oxidant actions of apigenin, especially in vivo, may enable better exploitation of its anticancer potential. PRACTICAL APPLICATION: Apigenin is a naturally occurring compound found in chamomile flowers, parsley, celery, peppermint, and citrus fruits. Many human trials of dietary interventions with apigenin-containing herbs and flavonoid mixture on oxidative stress markers, for instance, point to their antioxidant effects and health benefits in many diseases. Preclinical studies suggest that apigenin alone or its combination with chemotherapeutics has a strong anti-neoplastic effect and can induce ROS-mediated cytotoxicity at concentrations in the micromolar (μM) range, which may not be feasible with dietary interventions. Enhancing the in vivo pharmacokinetic properties of apigenin may be indispensable for its potential cancer-specific pro-oxidant therapy and may provide relevant information for clinical studies of apigenin either as a single agent or an adjuvant to chemotherapeutics.
Collapse
Affiliation(s)
- Omolola R Oyenihi
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Ayodeji B Oyenihi
- Functional Foods Research Unit, Faculty of Applied Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Toyin D Alabi
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| | - Oluwatosin G Tade
- School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Anne A Adeyanju
- Department of Biological Sciences, Faculty of Applied Sciences, KolaDaisi University, Ibadan, Oyo State, Nigeria
| | - Oluwafemi O Oguntibeju
- Phytomedicine and Phytochemistry Group, Department of Biomedical Sciences, Faculty of Health and Wellness Sciences, Cape Peninsula University of Technology, Bellville, South Africa
| |
Collapse
|
34
|
Hassn Mesrati M, Syafruddin SE, Mohtar MA, Syahir A. CD44: A Multifunctional Mediator of Cancer Progression. Biomolecules 2021; 11:1850. [PMID: 34944493 PMCID: PMC8699317 DOI: 10.3390/biom11121850] [Citation(s) in RCA: 233] [Impact Index Per Article: 58.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 10/23/2021] [Accepted: 11/02/2021] [Indexed: 12/15/2022] Open
Abstract
CD44, a non-kinase cell surface transmembrane glycoprotein, has been widely implicated as a cancer stem cell (CSC) marker in several cancers. Cells overexpressing CD44 possess several CSC traits, such as self-renewal and epithelial-mesenchymal transition (EMT) capability, as well as a resistance to chemo- and radiotherapy. The CD44 gene regularly undergoes alternative splicing, resulting in the standard (CD44s) and variant (CD44v) isoforms. The interaction of such isoforms with ligands, particularly hyaluronic acid (HA), osteopontin (OPN) and matrix metalloproteinases (MMPs), drive numerous cancer-associated signalling. However, there are contradictory results regarding whether high or low CD44 expression is associated with worsening clinicopathological features, such as a higher tumour histological grade, advanced tumour stage and poorer survival rates. Nonetheless, high CD44 expression significantly contributes to enhanced tumourigenic mechanisms, such as cell proliferation, metastasis, invasion, migration and stemness; hence, CD44 is an important clinical target. This review summarises current research regarding the different CD44 isoform structures and their roles and functions in supporting tumourigenesis and discusses CD44 expression regulation, CD44-signalling pathways and interactions involved in cancer development. The clinical significance and prognostic value of CD44 and the potential of CD44 as a therapeutic target in cancer are also addressed.
Collapse
Affiliation(s)
- Malak Hassn Mesrati
- Nanobiotechnology Research Group, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
| | - Saiful Effendi Syafruddin
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (S.E.S.); (M.A.M.)
| | - M. Aiman Mohtar
- UKM Medical Molecular Biology Institute (UMBI), Universiti Kebangsaan Malaysia, Cheras, Kuala Lumpur 56000, Malaysia; (S.E.S.); (M.A.M.)
| | - Amir Syahir
- Nanobiotechnology Research Group, Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia;
- UPM-MAKNA Cancer Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400 UPM, Selangor, Malaysia
| |
Collapse
|
35
|
Meerson A, Khatib S, Mahajna J. Natural Products Targeting Cancer Stem Cells for Augmenting Cancer Therapeutics. Int J Mol Sci 2021; 22:ijms222313044. [PMID: 34884848 PMCID: PMC8657727 DOI: 10.3390/ijms222313044] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 12/12/2022] Open
Abstract
Cancer stem cells (CSC) have been identified in several types of solid tumors. In some cases, CSC may be the source of all the tumor cells, the cause of the tumor's resistance to chemotherapeutic agents, and the source of metastatic cells. Thus, a combination therapy targeting non-CSC tumor cells as well as specifically targeting CSCs holds the potential to be highly effective. Natural products (NPs) have been a historically rich source of biologically active compounds and are known for their ability to influence multiple signaling pathways simultaneously with negligible side effects. In this review, we discuss the potential of NPs in targeting multiple signaling pathways in CSC and their potential to augment the efficacy of standard cancer therapy. Specifically, we focus on the anti-CSC activities of flavonoids, FDA-approved drugs originating from natural sources. Additionally, we emphasize the potential of NPs in targeting microRNA-mediated signaling, given the roles of microRNA in the maintenance of the CSC phenotype.
Collapse
Affiliation(s)
- Ari Meerson
- Department of Natural Products and Nutrition, MIGAL—Galilee Research Institute, Kiryat Shmona 11016, Israel; (A.M.); (S.K.)
- Faculty of Sciences, Tel Hai Academic College, Qiryat Shemona 12208, Israel
| | - Soliman Khatib
- Department of Natural Products and Nutrition, MIGAL—Galilee Research Institute, Kiryat Shmona 11016, Israel; (A.M.); (S.K.)
- Faculty of Sciences, Tel Hai Academic College, Qiryat Shemona 12208, Israel
| | - Jamal Mahajna
- Department of Natural Products and Nutrition, MIGAL—Galilee Research Institute, Kiryat Shmona 11016, Israel; (A.M.); (S.K.)
- Faculty of Sciences, Tel Hai Academic College, Qiryat Shemona 12208, Israel
- Correspondence:
| |
Collapse
|
36
|
Cháirez-Ramírez MH, de la Cruz-López KG, García-Carrancá A. Polyphenols as Antitumor Agents Targeting Key Players in Cancer-Driving Signaling Pathways. Front Pharmacol 2021; 12:710304. [PMID: 34744708 PMCID: PMC8565650 DOI: 10.3389/fphar.2021.710304] [Citation(s) in RCA: 102] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 09/15/2021] [Indexed: 12/23/2022] Open
Abstract
Polyphenols constitute an important group of natural products that are traditionally associated with a wide range of bioactivities. These are usually found in low concentrations in natural products and are now available in nutraceuticals or dietary supplements. A group of polyphenols that include apigenin, quercetin, curcumin, resveratrol, EGCG, and kaempferol have been shown to regulate signaling pathways that are central for cancer development, progression, and metastasis. Here, we describe novel mechanistic insights on the effect of this group of polyphenols on key elements of the signaling pathways impacting cancer. We describe the protein modifications induced by these polyphenols and their effect on the central elements of several signaling pathways including PI3K, Akt, mTOR, RAS, and MAPK and particularly those affecting the tumor suppressor p53 protein. Modifications of p53 induced by these polyphenols regulate p53 gene expression and protein levels and posttranslational modifications such as phosphorylation, acetylation, and ubiquitination that influence stability, subcellular location, activation of new transcriptional targets, and the role of p53 in response to DNA damage, apoptosis control, cell- cycle regulation, senescence, and cell fate. Thus, deep understanding of the effects that polyphenols have on these key players in cancer-driving signaling pathways will certainly lead to better designed targeted therapies, with less toxicity for cancer treatment. The scope of this review centers on the regulation of key elements of cancer signaling pathways by the most studied polyphenols and highlights the importance of a profound understanding of these regulations in order to improve cancer treatment and control with natural products.
Collapse
Affiliation(s)
- Manuel Humberto Cháirez-Ramírez
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| | - Karen Griselda de la Cruz-López
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico.,Programa de Doctorado en Ciencias Biomédicas, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Alejandro García-Carrancá
- Unidad de Investigación Biomédica en Cáncer, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cancerología, Secretaría de Salud, Mexico City, Mexico
| |
Collapse
|
37
|
Targeting Cancer Stem Cells by Dietary Agents: An Important Therapeutic Strategy against Human Malignancies. Int J Mol Sci 2021; 22:ijms222111669. [PMID: 34769099 PMCID: PMC8584029 DOI: 10.3390/ijms222111669] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/23/2021] [Accepted: 10/23/2021] [Indexed: 02/07/2023] Open
Abstract
As a multifactorial disease, treatment of cancer depends on understanding unique mechanisms involved in its progression. The cancer stem cells (CSCs) are responsible for tumor stemness and by enhancing colony formation, proliferation as well as metastasis, and these cells can also mediate resistance to therapy. Furthermore, the presence of CSCs leads to cancer recurrence and therefore their complete eradication can have immense therapeutic benefits. The present review focuses on targeting CSCs by natural products in cancer therapy. The growth and colony formation capacities of CSCs have been reported can be attenuated by the dietary agents. These compounds can induce apoptosis in CSCs and reduce tumor migration and invasion via EMT inhibition. A variety of molecular pathways including STAT3, Wnt/β-catenin, Sonic Hedgehog, Gli1 and NF-κB undergo down-regulation by dietary agents in suppressing CSC features. Upon exposure to natural agents, a significant decrease occurs in levels of CSC markers including CD44, CD133, ALDH1, Oct4 and Nanog to impair cancer stemness. Furthermore, CSC suppression by dietary agents can enhance sensitivity of tumors to chemotherapy and radiotherapy. In addition to in vitro studies, as well as experiments on the different preclinical models have shown capacity of natural products in suppressing cancer stemness. Furthermore, use of nanostructures for improving therapeutic impact of dietary agents is recommended to rapidly translate preclinical findings for clinical use.
Collapse
|
38
|
Yoon JS, Lee HJ, Sim DY, Im E, Park JE, Park WY, Koo JI, Shim BS, Kim SH. Moracin D induces apoptosis in prostate cancer cells via activation of PPAR gamma/PKC delta and inhibition of PKC alpha. Phytother Res 2021; 35:6944-6953. [PMID: 34709688 DOI: 10.1002/ptr.7313] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 09/02/2021] [Accepted: 10/07/2021] [Indexed: 11/11/2022]
Abstract
Herein, apoptotic mechanism of Moracin D was explored in prostate cancer cells in association with peroxisome proliferator-activated receptor gamma (PPAR-γ)-related signaling involved in lipid metabolism. Moracin D augmented cytotoxicity and sub G1 population in PC3 and DU145 prostate cancer cells, while DU145 cells were more susceptible to Moracin D than PC3 cells. Moracin D attenuated the expression of caspase-3, poly (ADP-ribose) polymerase (PARP), B-cell lymphoma 2 (Bcl-2), and B-cell lymphoma-extra-large (Bcl-xL) in DU145 cells. Consistently, Moracin D significantly augmented the number of terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL)-positive cells in DU145 cells. Interestingly, Moracin D activated PPAR-γ and phospho-protein kinase C delta (p-PKC-δ) and inhibited phospho-protein kinase C alpha (p-PKC-α) in DU145 cells. Furthermore, STRING bioinformatic analysis reveals that PPAR-γ interacts with nuclear factor-κB (NF-κB) that binds to PKC-α/PKC-δ or protein kinase B (AKT) or extracellular signal-regulated kinase (ERK). Indeed, Moracin D decreased phosphorylation of NF-κB, ERK, and AKT in DU145 cells. Conversely, PPAR-γ inhibitor GW9662 reduced the apoptotic ability of Moracin D to activate caspase 3 and PARP in DU145 cells. Taken together, these findings provide a novel insight that activation of PPAR-γ/p-PKC-δ and inhibition of p-PKC-α are critically involved in Moracin D-induced apoptosis in DU145 prostate cancer cells.
Collapse
Affiliation(s)
- Jae Seok Yoon
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Hyo-Jung Lee
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Deok Yong Sim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Eunji Im
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ji Eon Park
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Woon Yi Park
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Ja Il Koo
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Bum Sang Shim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| | - Sung-Hoon Kim
- College of Korean Medicine, Kyung Hee University, Seoul, Republic of Korea
| |
Collapse
|
39
|
Uddin MS, Kabir MT, Mamun AA, Sarwar MS, Nasrin F, Emran TB, Alanazi IS, Rauf A, Albadrani GM, Sayed AA, Mousa SA, Abdel-Daim MM. Natural Small Molecules Targeting NF-κB Signaling in Glioblastoma. Front Pharmacol 2021; 12:703761. [PMID: 34512336 PMCID: PMC8429794 DOI: 10.3389/fphar.2021.703761] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/09/2021] [Indexed: 12/13/2022] Open
Abstract
Nuclear factor-κB (NF-κB) is a transcription factor that regulates various genes that mediate various cellular activities, including propagation, differentiation, motility, and survival. Abnormal activation of NF-κB is a common incidence in several cancers. Glioblastoma multiforme (GBM) is the most aggressive brain cancer described by high cellular heterogeneity and almost unavoidable relapse following surgery and resistance to traditional therapy. In GBM, NF-κB is abnormally activated by various stimuli. Its function has been associated with different processes, including regulation of cancer cells with stem-like phenotypes, invasion of cancer cells, and radiotherapy resistance identification of mesenchymal cells. Even though multimodal therapeutic approaches such as surgery, radiation therapy, and chemotherapeutic drugs are used for treating GBM, however; the estimated mortality rate for GBM patients is around 1 year. Therefore, it is necessary to find out new therapeutic approaches for treating GBM. Many studies are focusing on therapeutics having less adverse effects owing to the failure of conventional chemotherapy and targeted agents. Several studies of compounds suggested the involvement of NF-κB signaling pathways in the growth and development of a tumor and GBM cell apoptosis. In this review, we highlight the involvement of NF-κB signaling in the molecular understanding of GBM and natural compounds targeting NF-κB signaling.
Collapse
Affiliation(s)
- Md. Sahab Uddin
- Department of Pharmacy, Southeast University, Dhaka, Bangladesh
- Pharmakon Neuroscience Research Network, Dhaka, Bangladesh
| | | | - Abdullah Al Mamun
- Teaching and Research Division, School of Chinese Medicine, Hong Kong Baptist University, Kowloon, Hong Kong
| | - Md. Shahid Sarwar
- Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Fatema Nasrin
- Institute of Health and Biomedical Innovation, Translational Research Institute, Brisbane, QLD, Australia
- School of Clinical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Talha Bin Emran
- Department of Pharmacy, BGC Trust University Bangladesh, Chittagong, Bangladesh
| | - Ibtesam S. Alanazi
- Department of Biology, Faculty of Sciences, University of Hafr Al Batin, Hafr Al Batin, Saudi Arabia
| | - Abdur Rauf
- Department of Chemistry, University of Swabi, Khyber Pakhtunkhwa, Pakistan
| | - Ghadeer M. Albadrani
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Amany A. Sayed
- Zoology Department, Faculty of Science, Cairo University, Giza, Egypt
| | - Shaker A. Mousa
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Rensselaer, NY, United States
| | - Mohamed M. Abdel-Daim
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, Jeddah, Saudi Arabia
- Pharmacology Department, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
40
|
Roudsari NM, Lashgari NA, Momtaz S, Abaft S, Jamali F, Safaiepour P, Narimisa K, Jackson G, Bishayee A, Rezaei N, Abdolghaffari AH, Bishayee A. Inhibitors of the PI3K/Akt/mTOR Pathway in Prostate Cancer Chemoprevention and Intervention. Pharmaceutics 2021; 13:1195. [PMID: 34452154 PMCID: PMC8400324 DOI: 10.3390/pharmaceutics13081195] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/29/2021] [Accepted: 07/29/2021] [Indexed: 02/07/2023] Open
Abstract
The phosphatidylinositol 3-kinase (PI3K)/serine-threonine kinase (Akt)/mammalian target of the rapamycin (mTOR)-signaling pathway has been suggested to have connections with the malignant transformation, growth, proliferation, and metastasis of various cancers and solid tumors. Relevant connections between the PI3K/Akt/mTOR pathway, cell survival, and prostate cancer (PC) provide a great therapeutic target for PC prevention or treatment. Recent studies have focused on small-molecule mTOR inhibitors or their usage in coordination with other therapeutics for PC treatment that are currently undergoing clinical testing. In this study, the function of the PI3K/Akt/mTOR pathway, the consequence of its dysregulation, and the development of mTOR inhibitors, either as an individual substance or in combination with other agents, and their clinical implications are discussed. The rationale for targeting the PI3K/Akt/mTOR pathway, and specifically the application and potential utility of natural agents involved in PC treatment is described. In addition to the small-molecule mTOR inhibitors, there are evidence that several natural agents are able to target the PI3K/Akt/mTOR pathway in prostatic neoplasms. These natural mTOR inhibitors can interfere with the PI3K/Akt/mTOR pathway through multiple mechanisms; however, inhibition of Akt and suppression of mTOR 1 activity are two major therapeutic approaches. Combination therapy improves the efficacy of these inhibitors to either suppress the PC progression or circumvent the resistance by cancer cells.
Collapse
Affiliation(s)
- Nazanin Momeni Roudsari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 1941933111, Iran; (N.M.R.); (N.-A.L.); (S.A.); (F.J.); (P.S.); (K.N.)
| | - Naser-Aldin Lashgari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 1941933111, Iran; (N.M.R.); (N.-A.L.); (S.A.); (F.J.); (P.S.); (K.N.)
| | - Saeideh Momtaz
- Medicinal Plants Research Center, Institute of Medicinal Plants, Academic Center for Education, Culture and Research, Tehran 1417614411, Iran;
- Toxicology and Disease Group, Pharmaceutical Sciences Research Center, Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran 1417614411, Iran
| | - Shaghayegh Abaft
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 1941933111, Iran; (N.M.R.); (N.-A.L.); (S.A.); (F.J.); (P.S.); (K.N.)
| | - Fatemeh Jamali
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 1941933111, Iran; (N.M.R.); (N.-A.L.); (S.A.); (F.J.); (P.S.); (K.N.)
| | - Pardis Safaiepour
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 1941933111, Iran; (N.M.R.); (N.-A.L.); (S.A.); (F.J.); (P.S.); (K.N.)
| | - Kiyana Narimisa
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 1941933111, Iran; (N.M.R.); (N.-A.L.); (S.A.); (F.J.); (P.S.); (K.N.)
| | - Gloria Jackson
- Lake Erie Collage of Osteopathic Medicine, Bradenton, FL 34211, USA;
| | | | - Nima Rezaei
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran 1417614411, Iran;
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran 1417614411, Iran
| | - Amir Hossein Abdolghaffari
- Department of Toxicology and Pharmacology, Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran 1941933111, Iran; (N.M.R.); (N.-A.L.); (S.A.); (F.J.); (P.S.); (K.N.)
- Medicinal Plants Research Center, Institute of Medicinal Plants, Academic Center for Education, Culture and Research, Tehran 1417614411, Iran;
- Toxicology and Disease Group, Pharmaceutical Sciences Research Center, Institute of Pharmaceutical Sciences, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1417614411, Iran
- Gastrointestinal Pharmacology Interest Group, Universal Scientific Education and Research Network, Tehran 1417614411, Iran
| | - Anupam Bishayee
- Lake Erie Collage of Osteopathic Medicine, Bradenton, FL 34211, USA;
| |
Collapse
|
41
|
Targeting cancer stem cells by nutraceuticals for cancer therapy. Semin Cancer Biol 2021; 85:234-245. [PMID: 34273521 DOI: 10.1016/j.semcancer.2021.07.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 02/06/2023]
Abstract
Accumulating evidence has demonstrated that cancer stem cells (CSCs) play an essential role in tumor progression and reoccurrence and drug resistance. Multiple signaling pathways have been revealed to be critically participated in CSC development and maintenance. Emerging evidence indicates that numerous chemopreventive compounds, also known as nutraceuticals, could eliminate CSCs in part via regulating several signaling pathways. Therefore, in this review, we will describe the some natural chemopreventive agents that target CSCs in a variety of human malignancies, including soy isoflavone, curcumin, resveratrol, tea polyphenols, sulforaphane, quercetin, indole-3-carbinol, 3,3'-diindolylmethane, withaferin A, apigenin, etc. Moreover, we discuss that eliminating CSCs by nutraceuticals might be a promising strategy for treating human cancer via overcoming drug resistance and reducing tumor reoccurrence.
Collapse
|
42
|
Eremina NV, Zhanataev AK, Durnev AD. Induced Cell Death as a Possible Pathway of Antimutagenic Action. Bull Exp Biol Med 2021; 171:1-14. [PMID: 34050413 DOI: 10.1007/s10517-021-05161-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Indexed: 12/24/2022]
Abstract
The existing concepts of antimutagenesis are briefly reviewed. Published reports on antimutagenic and proapoptotic properties of some polyphenols and compounds of other chemical groups obtained in representative in vitro and in vivo experiments on eukaryotic test systems are discussed. The relationships between the antimutagenic and proapoptotic properties of the analyzed compounds (naringin, apigenin, resveratrol, curcumin, N-acetylcysteine, etc.) are considered in favor of the hypothesis on induced cell death as an antimutagenic tool.
Collapse
Affiliation(s)
- N V Eremina
- V. V. Zakusov Research Institute of Pharmacology, Russian Academy of Medical Sciences, Moscow, Russia
| | - A K Zhanataev
- V. V. Zakusov Research Institute of Pharmacology, Russian Academy of Medical Sciences, Moscow, Russia
| | - A D Durnev
- V. V. Zakusov Research Institute of Pharmacology, Russian Academy of Medical Sciences, Moscow, Russia.
| |
Collapse
|
43
|
Cheng Y, Han X, Mo F, Zeng H, Zhao Y, Wang H, Zheng Y, Ma X. Apigenin inhibits the growth of colorectal cancer through down-regulation of E2F1/3 by miRNA-215-5p. PHYTOMEDICINE 2021; 89:153603. [PMID: 34175590 DOI: 10.1016/j.phymed.2021.153603] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Revised: 05/10/2021] [Accepted: 05/16/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Apigenin (API) is a naturally occurring plant-derived flavone, which is abundantly present in common fruits and vegetables, and shows little or no toxicity of daily diet. The treatment of colorectal cancer is limited by high recurrence rate and multidrug resistance. PURPOSE The purpose of this study was to explore the potential therapeutic effect and possible mechanisms of API on colorectal cancer cells. METHODS Cell proliferation and apoptosis of human colon cancer cell line HCT116 was assessed after API treatment. A comprehensive transcriptome profile of API-treated HCT116 cells was acquired by high-throughput sequencing. The regulation of miRNA215-5p and E2F1/3 were identified by bioinformatics analyses. An inhibitor of miRNA215-5p, inhibitor 215, was applied to confirm the role of this microRNA played in the anti-cancer effect of API. Luciferase reporter gene assay was performed to identify targeting relationship between miRNA215-5p and E2F1/3. RESULT API significantly promoted cell apoptosis and anti-proliferation of HCT116 cells in a dose-dependent manner. Bioinformatics analyses identified several altered miRNAs among which the expression of miRNA-215-5p showed markedly increased. Meanwhile, the expression of E2F1 and E2F3 was decreased by API, which was associated with miRNA215-5p. Luciferase reporter gene assay showed miRNA-215-5p could directly bind to 3' UTR of E2F1/3. Inhibition of miRNA-215-5p significantly inhibited apoptosis and cell cycle arrest at G0/G1 phase induced by API. CONCLUSIONS The result of this study confirmed the anti-cancer effect of API on human colorectal cancer cells and investigated the underlying mechanism by a comprehensive transcriptome profile of API-treated cells.
Collapse
Affiliation(s)
- Yuan Cheng
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuejiao Han
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Fei Mo
- Department of Medical oncology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Hao Zeng
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yunuo Zhao
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hang Wang
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yue Zheng
- Department of Biotherapy, Cancer Center, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, Sichuan, China; West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xuelei Ma
- West China School of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
44
|
Li Z, Tian J, Du L, Gao Y, Wang Y, You F, Wang L. Anlotinib exerts anti-cancer efficiency on lung cancer stem cells in vitro and in vivo through reducing NF-κB activity. J Cell Mol Med 2021; 25:5547-5559. [PMID: 33955683 PMCID: PMC8184695 DOI: 10.1111/jcmm.16564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 03/18/2021] [Accepted: 04/09/2021] [Indexed: 02/05/2023] Open
Abstract
Anlotinib is a multi-target tyrosine kinase inhibitor. Previous studies confirmed that anlotinib exerts anti-cancer efficiency. However, the functional roles of anlotinib on cancer stem cells (CSCs) are yet to be elucidated. In this study, lung CSCs were isolated and identified in vitro, and mouse xenografts were established in vivo. MTT assays, tumour sphere formation assays, TdT-mediated dUTP nick-end labelling (TUNEL) staining, Annexin V-FITC/PI staining, immunofluorescence analysis and Western blot were performed to investigate the anti-cancer effects of anlotinib on lung CSCs. The results showed that anlotinib inhibits the growth of lung CSCs in vitro and in vivo. In addition, anlotinib induced apoptosis of these cells along with down-regulated expression level of Bcl-2 whereas up-regulated Bax and cleaved caspase-3 expression. It also sensitized lung CSCs to the cytotoxicity of cisplatin and paclitaxel; the tumour sphere formation and expression levels of multiple stemness-associated markers, such as ALDH1 and CD133, were also decreased. Furthermore, the underlying mechanism indicated that anlotinib reduces the phosphorylated levels of NF-κB p65 and IκB-α in lung CSCs. Taken together, these findings suggested that anlotinib exerts potent anti-cancer effects against lung CSCs through apoptotic induction and stemness phenotypic attenuation. The mechanism could be associated with the suppression of NF-κB activity.
Collapse
Affiliation(s)
- Zhuohong Li
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Juncai Tian
- Lung Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China.,Department of Respiratory Medicine, The First People's Hospital of Ziyang, Ziyang, China
| | - Lei Du
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ying Gao
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yao Wang
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Fengming You
- Department of Oncology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Li Wang
- Lung Cancer Center, State Key Laboratory of Biotherapy, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
45
|
Cinar AK, Ozal SA, Serttas R, Erdogan S. Eupatilin attenuates TGF-β2-induced proliferation and epithelial-mesenchymal transition of retinal pigment epithelial cells. Cutan Ocul Toxicol 2021; 40:103-114. [PMID: 33719768 DOI: 10.1080/15569527.2021.1902343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE The main characteristic of proliferative vitreoretinopathy (PVR) is migration, adhesion, and epithelial-mesenchymal transition (EMT) of retinal pigment epithelial cells (RPE). Eupatilin is a naturally occurring flavone that has the potential to inhibit cell proliferation and EMT. However, its efficacy on the PVR model induced by transforming growth factor-2 (TGF-β2) is unknown. In this study, the potential effect of eupatilin on proliferation and EMT in the treatment of RPE was investigated. METHODS Serum starved human RPE cells (ARPE-19) were treated with 10 ng/ml TGF-β2 alone or co-treated with 25 μM eupatilin for 48 h. Quantitative real-time PCR and Western blot analysis were used to assess targets at the mRNA and protein expression level, respectively. Apoptosis and cell cycle progression was assessed by image-based cytometry. The effect of treatment on cell migration was evaluated by wound healing assay. RESULTS Eupatilin inhibited TGF-β2-induced RPE cell proliferation via regulating the cell cycle and inducing apoptosis. TGF-β2 upregulated mRNA expression of mesenchymal markers fibronectin and vimentin was significantly downregulated by the treatment, while the epithelial markers E-cadherin and occludin expression was upregulated. The therapy significantly suppressed TGF-β2 encouraged cell migration through downregulating the expression of transcription factors Twist, Snail, and ZEB1 induced by TGF-β2. Furthermore, eupatilin significantly inhibited the expression of MMP-1, -7, and -9, and suppressed NF-κB signalling. CONCLUSION These results suggest that eupatilin could inhibit the proliferation and transformation into fibroblast-like cells of RPE cells; thus the agent may be a potential therapeutic value in treating PVR.
Collapse
Affiliation(s)
- Ayca Kupeli Cinar
- Department of Ophthalmology, School of Medicine, Trakya University - Balkan Campus, Edirne, Turkey
| | - S Altan Ozal
- Department of Ophthalmology, School of Medicine, Trakya University - Balkan Campus, Edirne, Turkey
| | - Riza Serttas
- Department of Medical Biology, School of Medicine, Trakya University - Balkan Campus, Edirne, Turkey
| | - Suat Erdogan
- Department of Medical Biology, School of Medicine, Trakya University - Balkan Campus, Edirne, Turkey
| |
Collapse
|
46
|
Javed Z, Sadia H, Iqbal MJ, Shamas S, Malik K, Ahmed R, Raza S, Butnariu M, Cruz-Martins N, Sharifi-Rad J. Apigenin role as cell-signaling pathways modulator: implications in cancer prevention and treatment. Cancer Cell Int 2021; 21:189. [PMID: 33794890 PMCID: PMC8017783 DOI: 10.1186/s12935-021-01888-x] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 03/22/2021] [Indexed: 12/13/2022] Open
Abstract
Cancer is a complex disease orchestrated by various extrinsic and intrinsic pathways. In recent years, there has been a keen interest towards the development of natural extracts-based cancer therapeutics with minimum adverse effects. In pursuit of effective strategy, a wide variety of natural products-derived compounds have been addressed for their anticancer effects. Apigenin is a naturally-occurring flavonoid present abundantly in various fruits and vegetables. Decades of research have delineated the pharmacological and biological properties of apigenin. Specifically, the apigenin-mediated anticancer activities have been documented in various types of cancer, but the generalized scientific evidence encompassing various molecular interactions and processes, such as regulation of the apoptotic machinery, aberrant cell signaling and oncogenic protein network have not been comprehensively covered. In this sense, in this review we have attempted to focus on the apigenin-mediated regulation of oncogenic pathways in various cancers. We have also addressed the cutting-edge research which has unveiled the remarkable abilities of apigenin to interact with microRNAs to modulate key cellular processes, with special emphasis on the nano-formulations of apigenin that can help their targeted delivery and can be a therapeutic solution for the treatment of various cancers.
Collapse
Affiliation(s)
- Zeeshan Javed
- Office for Research Innovation and Commercialization, Lahore Garrison University, Sector-C, Phase VI, DHA, Lahore, 54792 Pakistan
| | - Haleema Sadia
- Department of Biotechnology, Engineering and Management Sciences, Balochistan University of Information Technology, Quetta, 87100 Pakistan
| | - Muhammad Javed Iqbal
- Department of Biotechnology, Faculty of Sciences, University of Sialkot, Sialkot, Pakistan
| | - Shazia Shamas
- Department of Zoology, University of Gujrat, Gujrat, Pakistan
| | - Kausar Malik
- Center for Excellence in Molecular Biology, University of the Punjab, Lahore, Pakistan
| | - Rais Ahmed
- Department of Microbiology, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
| | - Shahid Raza
- Office for Research Innovation and Commercialization, Lahore Garrison University, Sector-C, Phase VI, DHA, Lahore, 54792 Pakistan
| | - Monica Butnariu
- Banat’s University of Agricultural Sciences and Veterinary Medicine “King Michael I of Romania” From Timisoara, Calea Aradului 119, 300645 Timis, Romania
| | - Natalia Cruz-Martins
- Faculty of Medicine, University of Porto, Alameda Prof. Hern.Ni Monteiro, 4200-319 Porto, Portugal
- Institute for Research and Innovation in Health (i3S), University of Porto, 4200-135 Porto, Portugal
- Laboratory of Neuropsychophysiology, Faculty of Psychology and Education Sciences, University of Porto, 4200-135 Porto, Portugal
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Facultad de Medicina, Universidad del Azuay, Cuenca, Ecuador
| |
Collapse
|
47
|
Abstract
PURPOSE OF REVIEW The olive tree (Olea europaea L.) has featured as a significant part of medicinal history, used to treat a variety of ailments within folk medicine. The Mediterranean diet, which is rich in olive products, is testament to Olea europaeas positive effects on health, associated with reduced incidences of cancer and cardiovascular disease. This review aims to summarise the current literature regarding the therapeutic potential of Olea europaea products in cancer, detailing the possible compounds responsible for its chemotherapeutic effects. RECENT FINDINGS Much of the existing research has focused on the use of cell culture models of disease, demonstrating Olea europaea extracts, and specific compounds within these extracts, have efficacy in a range of in vitro and in vivo cancer models. The source of Olea europaeas cytotoxicity is yet to be fully defined; however, compounds such as oleuropein and verbascoside have independent cytotoxic effects on animal models of cancer. Initial results from animal models are promising but need to be translated to a clinical setting. Treatments utilising these compounds are likely to be well tolerated and represent a promising direction for future research.
Collapse
Affiliation(s)
- Chrystalla Antoniou
- Faculty of Health and Life Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK
| | - Jonathon Hull
- Faculty of Health and Life Sciences, University of the West of England, Coldharbour Lane, Bristol, BS16 1QY, UK.
| |
Collapse
|
48
|
Serttas R, Koroglu C, Erdogan S. Eupatilin Inhibits the Proliferation and Migration of Prostate Cancer Cells through Modulation of PTEN and NF-κB Signaling. Anticancer Agents Med Chem 2021; 21:372-382. [PMID: 32781972 DOI: 10.2174/1871520620666200811113549] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 06/29/2020] [Accepted: 07/09/2020] [Indexed: 12/24/2022]
Abstract
BACKGROUND Despite advances in the treatment of prostate cancer, side effects and the risks of developing drug resistance require new therapeutic agents. Eupatilin is a secondary metabolite of Artemisia asiatica and has shown potential anti-tumor activity in some cancers, but its potential in prostate cancer treatment has not yet been evaluated. OBJECTIVE The aim of the study was to investigate the effectiveness of eupatilin on prostate cancer cell proliferation and migration. METHODS Human prostate cancer PC3 and LNCaP cells were exposed to eupatilin and its efficacy on cell survival was determined by the MTT test. Apoptosis and cell cycle phases were evaluated by an image-based cytometer. Cell migration and invasion were evaluated by wound healing and matrigel migration assays; the expression of mRNA and protein was assessed by RT-qPCR and Western blot, respectively. RESULTS Eupatilin time- and dose-dependently reduced the viability of prostate cancer cells. Exposure of PC3 cells to 12.5μM-50μM eupatilin resulted in apoptosis by upregulating the expression of caspase 3, Bax and cytochrome c. Annexin V assessment also confirmed that eupatilin causes apoptosis. The treatment significantly upregulated the mRNA expression of p53, p21, and p27, causing cell cycle arrest in the G1 phase. Administration of eupatilin inhibited migration and invasion of the cells by downregulating the expression of Twist, Slug and MMP-2, -7. In addition, the agent increased protein expression of tumor suppressor PTEN, while transcription factor NF-κB expression was reduced. CONCLUSION Eupatilin strongly prevents the proliferation of prostate cancer cells, and suppresses migration and invasion. Due to its therapeutic potential, the clinical use of eupatilin in prostate cancer should also be supported by in vivo studies.
Collapse
Affiliation(s)
- Riza Serttas
- Department of Medical Biology, School of Medicine, Trakya University, Balkan Campus, Edirne, Turkey
| | - Cagla Koroglu
- Department of Medical Biology, School of Medicine, Trakya University, Balkan Campus, Edirne, Turkey
| | - Suat Erdogan
- Department of Medical Biology, School of Medicine, Trakya University, Balkan Campus, Edirne, Turkey
| |
Collapse
|
49
|
Xu L, Zaky MY, Yousuf W, Ullah A, Abdelbaset GR, Zhang Y, Ahmed OM, Liu S, Liu H. The Anticancer Potential of Apigenin Via Immunoregulation. Curr Pharm Des 2021; 27:479-489. [PMID: 32660399 DOI: 10.2174/1381612826666200713171137] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/09/2020] [Indexed: 11/22/2022]
Abstract
Apigenin is an edible flavonoid widely distributed in natural plants, including most vegetables and fruits. Previous studies have revealed that apigenin possesses multiple biological functions by demonstrating antiinflammatory, anti-oxidative, anti-bacterial, anti-viral, anti-tumor and cardiovascular protective effects. Furthermore, recent progressions have disclosed a novel perspective of the anti-cancer roles of apigenin through its immunoregulatory functions. With the rapid progression of the groundbreaking strategies being developed for cancer immunotherapy, its immunoregulatory roles are being recognized as intriguing features of the multifaceted apigenin. However, the current understanding of this emerging role of apigenin still remains limited. Therefore, in the present review, recent advances on the immunoregulatory properties of apigenin in various diseases with a special focus on neoplasm, are summarized. Clinical strategies of cancer immunotherapy are briefly introduced and findings on apigenin linked to immunoregulatory roles in immunotherapy-associated aspects are brought together. The bioactivity, bioavailability, toxicity and potential of apigenin, to be considered as a therapeutic agent in anti-tumor immunotherapy, is discussed. Disclosed molecular mechanisms underlying the immunoregulatory roles of apigenin in cancer immunotherapy are also summarized. Based on findings from the literature, apigenin has the potential to serve as a prospective adjuvant for anti-cancer immunotherapy and warrants further investigations.
Collapse
Affiliation(s)
- Lu Xu
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Mohamed Y Zaky
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Waleed Yousuf
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Anwar Ullah
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Gehad R Abdelbaset
- Molecular Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Egypt
| | - Yingqiu Zhang
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Osama M Ahmed
- Molecular Physiology Division, Department of Zoology, Faculty of Science, Beni-Suef University, Egypt
| | - Shuyan Liu
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| | - Han Liu
- Second Affiliated Hospital, Institute of Cancer Stem Cell, Dalian Medical University, Dalian, China
| |
Collapse
|
50
|
Hermawan A, Ikawati M, Jenie RI, Khumaira A, Putri H, Nurhayati IP, Angraini SM, Muflikhasari HA. Identification of potential therapeutic target of naringenin in breast cancer stem cells inhibition by bioinformatics and in vitro studies. Saudi Pharm J 2021; 29:12-26. [PMID: 33603536 PMCID: PMC7873751 DOI: 10.1016/j.jsps.2020.12.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 12/03/2020] [Indexed: 12/15/2022] Open
Abstract
Cancer therapy is a strategic measure in inhibiting breast cancer stem cell (BCSC) pathways. Naringenin, a citrus flavonoid, was found to increase breast cancer cells' sensitivity to chemotherapeutic agents. Bioinformatics study and 3D tumorsphere in vitro modeling in breast cancer (mammosphere) were used in this study, which aims to explore the potential therapeutic targets of naringenin (PTTNs) in inhibiting BCSCs. Bioinformatic analyses identified direct target proteins (DTPs), indirect target proteins (ITPs), naringenin-mediated proteins (NMPs), BCSC regulatory genes, and PTTNs. The PTTNs were further analyzed for gene ontology, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment, protein-protein interaction (PPI) networks, and hub protein selection. Mammospheres were cultured in serum-free media. The effects of naringenin were measured by MTT-based cytotoxicity, mammosphere forming potential (MFP), colony formation, scratch wound-healing assay, and flow cytometry-based cell cycle analyses and apoptosis assays. Gene expression analysis was performed using real-time quantitative polymerase chain reaction (q-RT PCR). Bioinformatics analysis revealed p53 and estrogen receptor alpha (ERα) as PTTNs, and KEGG pathway enrichment analysis revealed that TGF-ß and Wnt/ß-catenin pathways are regulated by PTTNs. Naringenin demonstrated cytotoxicity and inhibited mammosphere and colony formation, migration, and epithelial to mesenchymal transition in the mammosphere. The mRNA of tumor suppressors P53 and ERα were downregulated in the mammosphere, but were significantly upregulated upon naringenin treatment. By modulating the P53 and ERα mRNA, naringenin has the potential of inhibiting BCSCs. Further studies on the molecular mechanism and formulation of naringenin in BCSCs would be beneficial for its development as a BCSC-targeting drug.
Collapse
Key Words
- BCSCs, Breast cancer stem cells
- Bioinformatics
- Breast cancer stem cells
- CSC, Cancer stem cell
- DAVID, Database for Annotation, Visualization, and Integrated Discovery
- DTPs, Direct target proteins
- DXR, Doxorubicin
- EGF, Epidermal growth factor
- EMT, Epithelial to mesenchymal transition
- ERα
- FITC, fluorescein isothiocyanate
- GO, Gene ontology
- ITPs, Indirect target proteins
- KEGG, Kyoto Encyclopedia of Genes and Genomes
- MET, Metformin
- MFP, Mammosphere forming potential
- NAR, Naringenin
- NMPs, Naringenin-mediated proteins
- Naringenin
- P53
- PE, phycoerythrin
- PPI, Protein-protein interaction
- PTTN, Potential target of naringenin in inhibition of BCSCs
- ROS, Reactive oxygen species
- Targeted therapy
- q-RT PCR, Quantitative real-time polymerase chain reaction
Collapse
Affiliation(s)
- Adam Hermawan
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
| | - Muthi Ikawati
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
| | - Riris Istighfari Jenie
- Laboratory of Macromolecular Engineering, Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
| | - Annisa Khumaira
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
| | - Herwandhani Putri
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
| | - Ika Putri Nurhayati
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
| | - Sonia Meta Angraini
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
| | - Haruma Anggraini Muflikhasari
- Cancer Chemoprevention Research Center, Faculty of Pharmacy, Universitas Gadjah Mada Sekip Utara II, 55281 Yogyakarta, Indonesia
| |
Collapse
|