1
|
Zhang C, Luo H, Deng Y, Li H, Yu X, Liu J, Huang L, Yang X, Jiang Q. The clinical risk and post-COVID-19 sequelae in patients with myasthenia gravis: a retrospective observational study. Front Neurol 2025; 16:1513649. [PMID: 40264651 PMCID: PMC12012726 DOI: 10.3389/fneur.2025.1513649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 03/17/2025] [Indexed: 04/24/2025] Open
Abstract
Background There are indeed several studies addressing the severity of Coronavirus disease 2019 (COVID-19) infection in myasthenia gravis (MG) patients. However, data on post-COVID-19 sequelae in MG patients remain limited. To address this gap, we collected clinical data on the condition and prognosis of MG patients with COVID-19 infection, aiming to investigate factors influencing both the severity of the infection and the occurrence of post-COVID-19 sequelae at 1 and 12 months after recovery. Method This was a retrospective analysis of 150 MG patients with COVID-19 infection from November 1, 2022 to March 1, 2023 at the First Affiliated Hospital of Guangzhou University of Chinese Medicine, including patient demographics, clinical characteristics, and post-COVID-19 sequelae. Multivariable binary logistic and linear regression models were employed to ascertain the variables influencing the severity. The evolution of the post-COVID-19 sequelae was analyzed using McNemar's test. Result In 150 MG patients, 128 (85.3%) patients were presented with COVID-19 infection, and 23 (18%) patients were hospitalized. The severity was associated with the daily corticosteroid dose (OR = 1.08, p = 0.02) and the frequency of myasthenia crises pre-COVID-19 (b = 7.8, t = 2.14, p = 0.035). Compared to normal patients, MG patients are more likely to experience post-COVID-19 sequelae such as insomnia, myalgia, dizziness, cough, expectoration, and sore throat at 12 months after recovery. Among these, the prevalence of myalgia, dizziness, rash, and vision impairment was significantly higher. Conclusion Compared to normal patients, MG patients are prone to developing severe COVID-19 infection, which is associated with the daily corticosteroid dose and the frequency of myasthenia crises pre-COVID-19. Additionally, they are prone to experiencing post-COVID-19 sequelae, including insomnia, myalgia, dizziness, cough, expectoration, and sore throat, at 12 months after recovery.
Collapse
Affiliation(s)
- Chaoyue Zhang
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Haocheng Luo
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Yufei Deng
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Hongjin Li
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiang Yu
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Jiaxin Liu
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Linqi Huang
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Xiaojun Yang
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Qilong Jiang
- The First Affiliated Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, China
| |
Collapse
|
2
|
Aleebrahim-Dehkordi E, Soveyzi F, Deravi N, Saghazadeh A, Rezaei N. Mental Healthcare in Pediatrics During the COVID-19 Pandemic: A Call for International Public Health Action. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1458:19-34. [PMID: 39102187 DOI: 10.1007/978-3-031-61943-4_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Public health measures associated with coronavirus disease 2019 (COVID-19), such as lockdowns and quarantine of suspected cases, can negatively affect children's mental health status. Although the current crisis provides personal growth and family cohesion opportunities, pitfalls appear to outweigh the benefits. The magnitude and quality of its impact on children depend on several factors, including anxiety, lack of social contact, and a reduced opportunity for stress regulation, along with an increased risk for parental mental health issues, child maltreatment, and domestic violence. Children with special needs and social disadvantages like trauma experiences, disabilities, pre-existing mental illness, e.g., autism spectrum disorders and hyperactivity, and low socioeconomic status, may be at higher risk in this context. Here, the potentials social support can provide for pediatrics, both healthy children and children with special needs, are reviewed after an overview of quarantine's adverse effects on this special population during a pandemic. The most common psychological issues associated with the COVID-19 pandemic are sleep disorders, mood swings, depression, anxiety, decreased attention, stress, irritability, anger, and fear. Moreover, the impact of COVID-19 on children's physical health includes weight gain, reduced physical activity, immune dysregulation, and cardiometabolic disorders. All support systems, involving parents, teachers/school counselors, pediatricians, mental healthcare workers, and Health and Art (HEART) groups, need to enter the scene and make their share of children's mental health care.
Collapse
Affiliation(s)
- Elahe Aleebrahim-Dehkordi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Faezeh Soveyzi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Radiology Resident at MUMS, Radiology Department Mashhad University of Medical Sciences, Mashhad, Iran
| | - Niloofar Deravi
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Student's Research Committee, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amene Saghazadeh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, 14194, Tehran, Iran
- MetaCognition Interest Group (MCIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, 14194, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
3
|
Mansourabadi AH, Aghamajidi A, Dorfaki M, Keshavarz F, Shafeghat Z, Moazzeni A, Arab FL, Rajabian A, Roozbehani M, Falak R, Faraji F, Jafari R. B lymphocytes in COVID-19: a tale of harmony and discordance. Arch Virol 2023; 168:148. [PMID: 37119286 PMCID: PMC10147999 DOI: 10.1007/s00705-023-05773-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 03/29/2023] [Indexed: 05/01/2023]
Abstract
B lymphocytes play a vital role in the human defense against viral infections by producing specific antibodies. They are also critical for the prevention of infectious diseases by vaccination, and their activation influences the efficacy of the vaccination. Since the beginning of coronavirus disease 2019 (COVID-19), which became the main concern of the world health system, many efforts have been made to treat and prevent the disease. However, for the development of successful therapeutics and vaccines, it is necessary to understand the interplay between severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the causative agent of COVID-19, and the immune system. The innate immune system provides primary and nonspecific defense against the virus, but within several days after infection, a virus-specific immune response is provided first by antibody-producing B cells, which are converted after the resolution of disease to memory B cells, which provide long-term immunity. Although a failure in B cell activation or B cell dysfunction can cause a severe form of the disease and also lead to vaccination inefficiency, some individuals with B cell immunodeficiency have shown less production of the cytokine IL-6, resulting in a better disease outcome. In this review, we present the latest findings on the interaction between SARS-CoV-2 and B lymphocytes during COVID-19 infection.
Collapse
Affiliation(s)
- Amir Hossein Mansourabadi
- Department of Immunology, School of medicine, Tehran University of Medical Sciences, Tehran, Iran
- Immunogenetics Research Network (IgReN), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Azin Aghamajidi
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Maryam Dorfaki
- Department of Microbiology and Immunology, School of Medicine, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Fatemeh Keshavarz
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Zahra Shafeghat
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Ali Moazzeni
- Blood Transfusion Research Center, High Institute for Research and Education in Transfusion Medicine, Iranian Blood Transfusion Organization (IBTO), Tehran, Iran
| | - Fahimeh Lavi Arab
- Department of Immunology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Immunology Research Center, School of Medicine, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arezoo Rajabian
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mona Roozbehani
- Vaccine Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Reza Falak
- Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Faraji
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Antimicrobial Resistance Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences, Tehran, Iran.
- Institue of Immunology and Infectious diseases, Hazrat-e Rasool General Hospital, Floor 3, Building no. 3, Niyayesh St, Sattar Khan St, 1445613131, Tehran, Iran.
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran.
- Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Shafa St., Ershad Blvd, P.O. Box: 1138, 57147, Urmia, Iran.
| |
Collapse
|
4
|
Zare Marzouni H, Rahbar M, Seddighi N, Nabizadeh M, Meidaninikjeh S, Sabouni N. Antibody Therapy for COVID-19: Categories, Pros, and Cons. Viral Immunol 2022; 35:517-528. [PMID: 36201297 DOI: 10.1089/vim.2021.0160] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
COVID-19 is a life-threatening respiratory disease triggered by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It has been considered a pandemic viral infection since December 2019. The investigation of the effective prophylaxis or therapeutic strategies for emergency management of the current condition has become a priority for medical research centers and pharmaceutical companies. This article provides a comprehensive review of antibody therapy and its different categories with their advantages and disadvantages for COVID-19 over the last few years of the current pandemic. Antibodies can be generated by active immunization, including natural infection with a pathogen and vaccination, or by the passive immunization method such as convalescent plasma therapy (CPT) and antibody synthesis in laboratories. Each of these ways has its characteristics. Arming the immune system with antibodies is the main aim of antiviral therapeutic procedures toward SARS-CoV-2. Collecting and discussing various aspects of available data in this field can give researchers a better perspective for the production of antibody-based products or selection of the most appropriate approach of antibody therapies to improve different cases of COVID-19. Moreover, it can help them control similar viral pandemics that may happen in the future appropriately.
Collapse
Affiliation(s)
- Hadi Zare Marzouni
- Qaen School of Nursing and Midwifery, Birjand University of Medical Sciences, Birjand, Iran
| | - Marjan Rahbar
- Department of Food Science and Technology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Nazanin Seddighi
- Qaen School of Nursing and Midwifery, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohsen Nabizadeh
- Department of Biology, Faculty of Basic Sciences, Central Tehran Branch, Islamic Azad University, Tehran, Iran
| | - Sepideh Meidaninikjeh
- Department of Microbiology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.,Cancer Biomedical Center (CBC) Research Institute, Tehran, Iran
| | - Nasim Sabouni
- Department of Immunology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
5
|
The Efficacy of Methylprednisolone in Clinical Manifestations, Inflammatory Biomarkers, and Antioxidant Changes in the COVID-19 Patients. ARCHIVES OF CLINICAL INFECTIOUS DISEASES 2022. [DOI: 10.5812/archcid-129799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Background: The application of methylprednisolone in ARDS patients has led to a sustained reduction in inflammatory plasma cytokines and chemokines and has recently been used in the treatment of patients with SARS-CoV-2 infection. Objectives: In this study, the effect of methylprednisolone on clinical symptoms and antioxidant changes of patients with COVID-19 has been investigated. Methods: In the present study, patients with moderate to severe COVID-19 who required hospitalization were entered into the study phase. Then, in addition to standard treatment, patients received methylprednisolone at a dose of 250 mg intravenously over three days. Necessary evaluations include analysis of arterial blood gases, pulse oximetry, monitoring of patient clinical signs, examination of inflammatory biomarkers, and also receiving 10 cc of peripheral blood samples to check for antioxidant changes, at the beginning of the study, after 24 hours, and 72 hours after receiving methylprednisolone was on the agenda. Results: Changes in fever, superoxide dismutase (SOD, Glutathione-S-Transferase (GST, the ferric reducing ability of plasma (FRAP, malondialdehyde (MDA, Nitric oxide, Ferritin, and TNF-α before treatment and 72 hours after treatment were significantly different between the two stages (P < 0.05). Conclusions: The use of methylprednisolone improves the balance of antioxidants and immunological factors in patients with COVID-19 and thus improves some clinical indicators in these patients.
Collapse
|
6
|
Kumar S, Dutta D, Ravichandiran V, Sukla S. Monoclonal antibodies: a remedial approach to prevent SARS-CoV-2 infection. 3 Biotech 2022; 12:227. [PMID: 35982759 PMCID: PMC9383686 DOI: 10.1007/s13205-022-03281-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 07/26/2022] [Indexed: 11/07/2022] Open
Abstract
SARS-CoV-2, the newly emerged virus of the Coronaviridae family is causing havoc worldwide. The novel coronavirus 2019 was first reported in Wuhan, China marked as the third highly infectious pathogenic virus of the twenty-first century. The typical manifestations of COVID-19 include cough, sore throat, fever, fatigue, loss of sense of taste and difficulties in breathing. Large numbers of SARS-CoV-2 infected patients have mild to moderate symptoms, however severe and life-threatening cases occur in about 5-10% of infections with an approximately 2% mortality rate. For the treatment of SARS-CoV-2, the use of neutralizing monoclonal antibodies (mAbs) could be one approach. The receptor binding domain (RBD) and N-terminal domain (NTD) situated on the peak of the spike protein (S-Protein) of SARS-CoV-2 are immunogenic in nature, therefore, can be targeted by neutralizing monoclonal antibodies. Several bioinformatics approaches highlight the identification of novel SARS-CoV-2 epitopes which can be targeted for the development of COVID-19 therapeutics. Here we present a summary of neutralizing mAbs isolated from COVID-19 infected patients which are anticipated to be a better therapeutic alternative against SARS-CoV-2. However, provided the vast escalation of the disease worldwide affecting people from all strata, affording expensive mAb therapy will not be feasible. Hence other strategies are also being employed to find suitable vaccine candidates and antivirals against SARS-CoV-2 that can be made easily available to the population.
Collapse
Affiliation(s)
- Sonu Kumar
- Department of Pharmacology and Toxicology, National Institute of Pharmaceuticals Education and Research, 168, Maniktala Main Road, Kolkata, 700054 West Bengal India
| | - Debrupa Dutta
- Department of Pharmacology and Toxicology, National Institute of Pharmaceuticals Education and Research, 168, Maniktala Main Road, Kolkata, 700054 West Bengal India
| | - Velayutham Ravichandiran
- Department of Natural Products, National Institute of Pharmaceuticals Education and Research, 168, Maniktala Main Road, Kolkata, 700054 West Bengal India
| | - Soumi Sukla
- Department of Pharmacology and Toxicology, National Institute of Pharmaceuticals Education and Research, 168, Maniktala Main Road, Kolkata, 700054 West Bengal India
| |
Collapse
|
7
|
Moslehi N, Jahromy MH, Ashrafi P, Vatani K, Nemati MAH, Moghadam PA, Rostamian F, Jahromi MH. Multi-organ system involvement in coronavirus disease 2019 (COVID-19): A mega review. J Family Med Prim Care 2022; 11:5014-5023. [PMID: 36505634 PMCID: PMC9731028 DOI: 10.4103/jfmpc.jfmpc_1570_21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 12/16/2021] [Accepted: 05/17/2022] [Indexed: 12/15/2022] Open
Abstract
Since the pandemic of the coronavirus disease 2019 (COVID-19) infection, many people have been affected in different ways. The majority of infected people experience mild to moderate symptoms and recover without the need for hospitalization. However, in some affected people, it may lead to catastrophic disease. The severity of COVID-19 infection is widely influenced by co-morbidities, immune system functions, and extra-pulmonary organ injuries. Since the emergence of COVID-19, multi-organ involvement has been documented. In order to implement preventative and protective measures, full attention to potential organ injuries is required. Most existing articles and review papers are focused on a specific organ system, and their numbers are growing. In this review paper, attempts were made to collect review papers and articles published on seven organ system involvements in COVID-19 infection published till 15 July and highlight conclusions and managements of all affected organs. We tried to add to the medical knowledge on COVID-19, pointing out its multi-organ system impact. Finally, we tried to facilitate access to organized information and optimum conclusion by representing review tables for each organ system. Besides, this review article can clarify and magnify the empty research space easily for future investigations.
Collapse
Affiliation(s)
- Naghmeh Moslehi
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahsa Hadipour Jahromy
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Herbal Pharmacology Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pegah Ashrafi
- School of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kimia Vatani
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Parnian A. Moghadam
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Rostamian
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | |
Collapse
|
8
|
Omidian N, Mohammadi P, Sadeghalvad M, Mohammadi-Motlagh HR. Cerebral microvascular complications associated with SARS-CoV-2 infection: How did it occur and how should it be treated? Biomed Pharmacother 2022; 154:113534. [PMID: 35994816 PMCID: PMC9381434 DOI: 10.1016/j.biopha.2022.113534] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 08/04/2022] [Accepted: 08/08/2022] [Indexed: 01/08/2023] Open
Abstract
Cerebral microvascular disease has been reported as a central feature of the neurological disorders in patients with SARS-CoV-2 infection that may be associated with an increased risk of ischemic stroke. The main pathomechanism in the development of cerebrovascular injury due to SARS-CoV-2 infection can be a consequence of endothelial cell dysfunction as a structural part of the blood-brain barrier (BBB), which may be accompanied by increased inflammatory response and thrombocytopenia along with blood coagulation disorders. In this review, we described the properties of the BBB, the neurotropism behavior of SARS-CoV-2, and the possible mechanisms of damage to the CNS microvascular upon SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Neda Omidian
- Department of Physiology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Pantea Mohammadi
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Mona Sadeghalvad
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Hamid-Reza Mohammadi-Motlagh
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
9
|
Sadeghalvad M, Mansourabadi AH, Noori M, Nejadghaderi SA, Masoomikarimi M, Alimohammadi M, Rezaei N. Recent developments in SARS-CoV-2 vaccines: A systematic review of the current studies. Rev Med Virol 2022; 33:e2359. [PMID: 35491495 PMCID: PMC9348268 DOI: 10.1002/rmv.2359] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 01/28/2023]
Abstract
Designing and manufacturing efficient vaccines against coronavirus disease 2019 (COVID-19) is a major objective. In this systematic review, we aimed to evaluate the most important vaccines under construction worldwide, their efficiencies and clinical results in healthy individuals and in those with specific underlying diseases. We conducted a comprehensive search in PubMed, Scopus, EMBASE, and Web of Sciences by 1 December 2021 to identify published research studies. The inclusion criteria were publications that evaluated the immune responses and safety of COVID-19 vaccines in healthy individuals and in those with pre-existing diseases. We also searched the VAERS database to estimate the incidence of adverse events of special interest (AESI) post COVID-19 vaccination. Almost all investigated vaccines were well tolerated and developed good levels of both humoural and cellular responses. A protective and efficient humoural immune response develops after the second or third dose of vaccine and a longer interval (about 28 days) between the first and second injections of vaccine could induce higher antibody responses. The vaccines were less immunogenic in immunocompromised patients, particularly those with haematological malignancies. In addition, we found that venous and arterial thrombotic events, Bell's palsy, and myocarditis/pericarditis were the most common AESI. The results showed the potency of the SARS-CoV-2 vaccines to protect subjects against disease. The provision of further effective and safe vaccines is necessary in order to reach a high coverage of immunisation programs across the globe and to provide protection against infection itself.
Collapse
Affiliation(s)
- Mona Sadeghalvad
- Department of ImmunologySchool of MedicineTehran University of Medical SciencesTehranIran
| | | | - Maryam Noori
- Student Research Committee, School of MedicineIran University of Medical SciencesTehranIran,Urology Research CenterTehran University of Medical SciencesTehranIran
| | - Seyed Aria Nejadghaderi
- Systematic Review and Meta‐Analysis Expert Group (SRMEG)Universal Scientific Education and Research Network (USERN)TehranIran,School of MedicineShahid Beheshti University of Medical SciencesTehranIran
| | - Masoomeh Masoomikarimi
- Department of ImmunologySchool of MedicineTehran University of Medical SciencesTehranIran
| | - Masoumeh Alimohammadi
- Department of ImmunologySchool of MedicineTehran University of Medical SciencesTehranIran,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran,Research Center for ImmunodeficienciesChildren's Medical CenterTehran University of Medical SciencesTehranIran
| | - Nima Rezaei
- Department of ImmunologySchool of MedicineTehran University of Medical SciencesTehranIran,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran,Research Center for ImmunodeficienciesChildren's Medical CenterTehran University of Medical SciencesTehranIran
| |
Collapse
|
10
|
Abstract
The lung is the primary site of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2)-induced immunopathology whereby the virus enters the host cells by binding to angiotensin-converting enzyme 2 (ACE2). Sophisticated regeneration and repair programs exist in the lungs to replenish injured cell populations. However, known resident stem/progenitor cells have been demonstrated to express ACE2, raising a substantial concern regarding the long-term consequences of impaired lung regeneration after SARS-CoV-2 infection. Moreover, clinical treatments may also affect lung repair from antiviral drug candidates to mechanical ventilation. In this review, we highlight how SARS-CoV-2 disrupts a program that governs lung homeostasis. We also summarize the current efforts of targeted therapy and supportive treatments for COVID-19 patients. In addition, we discuss the pros and cons of cell therapy with mesenchymal stem cells or resident lung epithelial stem/progenitor cells in preventing post-acute sequelae of COVID-19. We propose that, in addition to symptomatic treatments being developed and applied in the clinic, targeting lung regeneration is also essential to restore lung homeostasis in COVID-19 patients.
Collapse
Affiliation(s)
- Fuxiaonan Zhao
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Qingwen Ma
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Qing Yue
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
| | - Huaiyong Chen
- Department of Basic Medicine, Haihe Clinical School, Tianjin Medical University, Tianjin, China
- Key Research Laboratory for Infectious Disease Prevention for State Administration of Traditional Chinese Medicine, Tianjin Institute of Respiratory Diseases, Tianjin Haihe Hospital, Tianjin, China
- Department of Basic Medicine, Haihe Hospital, Tianjin University, Tianjin, China
- Tianjin Key Laboratory of Lung Regenerative Medicine, Tianjin, China
| |
Collapse
|
11
|
Bungaro M, Passiglia F, Scagliotti GV. COVID-19 and Lung Cancer: A Comprehensive Overview from Outbreak to Recovery. Biomedicines 2022; 10:776. [PMID: 35453526 PMCID: PMC9027516 DOI: 10.3390/biomedicines10040776] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 02/05/2023] Open
Abstract
Lung cancer patients have been associated with an increased risk of COVID-19 infection, pulmonary complications, and worse survival outcomes compared to the general population. The world's leading professional organizations provided new recommendations for the diagnosis, treatment, and follow-up of lung cancer patients during the pandemic as a guide for prioritizing cancer care issues. Telemedicine was preferred for non-urgent consultations, and screening programs were temporarily suspended, leading to possible diagnostic delays along with an estimated increase in cause-specific mortality. A vaccine campaign has recently emerged as the main weapon to fight the COVID-19 pandemic, inverting this negative trend. This work aims to provide a comprehensive overview of the epidemiology and immune-pathophysiology of SARS-CoV-2 infection in cancer patients, highlighting the most relevant changes in the clinical management of lung cancer patients during the pandemic.
Collapse
Affiliation(s)
| | - Francesco Passiglia
- Department of Oncology, University of Turin, San Luigi Hospital, 10043 Orbassano, Italy; (M.B.); (G.V.S.)
| | | |
Collapse
|
12
|
Perplexing issues for convalescent immune plasma therapy in COVID-19. North Clin Istanb 2022; 8:634-643. [PMID: 35284793 PMCID: PMC8848483 DOI: 10.14744/nci.2021.73604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/22/2021] [Indexed: 11/20/2022] Open
Abstract
Convalescent immune plasma (CIP) therapy in coronavirus disease 2019 (COVID-19) is presently a trendy choice of treatment. On March 24, 2020, the United States Food and Drug Administration approved of CIP treatment for seriously ill COVID-19 patients as an emergency investigational new drug. The precise mechanisms of action for CIP in COVID-19 have not yet been undoubtedly recognized. However, earlier research demonstrated that the main mechanism of CIP such as in other viral infections is viral neutralization. Systematic reviews and meta-analyses of the CIP transfusion in severe infectious diseases have shown that CIP has some beneficial effects and it is a harmless process to cure infectious diseases early after symptom beginning. It is suggested that SARS-CoV-2 neutralizing antibody titers in CIP should be ideally higher than 1:320, but lower thresholds could also be useful. The suggested minimum dose for one individual is one unit (200 mL) of CIP. The second unit can be given 48 h succeeding the end of the transfusion of the first unit of CIP. Moreover, CIP can be applied up to a maximum of three units (600 mL). CIP could be administered in other systemic diseases, viral infections coincidentally associated with SARS-CoV-2 infection, as well as other therapeutic approaches for COVID-19. There are generally no serious adverse events described from CIP transfusion in these recipients. CIP may have a significant role as one of the therapeutic modalities for various viral infections when enough vaccines or other specific therapeutic agents are not on hand.
Collapse
|
13
|
Patel M, Shahjin F, Cohen JD, Hasan M, Machhi J, Chugh H, Singh S, Das S, Kulkarni TA, Herskovitz J, Meigs DD, Chandra R, Hettie KS, Mosley RL, Kevadiya BD, Gendelman HE. The Immunopathobiology of SARS-CoV-2 Infection. FEMS Microbiol Rev 2021; 45:fuab035. [PMID: 34160586 PMCID: PMC8632753 DOI: 10.1093/femsre/fuab035] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 07/16/2021] [Indexed: 11/13/2022] Open
Abstract
Infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can lead to coronavirus disease 2019 (COVID-19). Virus-specific immunity controls infection, transmission and disease severity. With respect to disease severity, a spectrum of clinical outcomes occur associated with age, genetics, comorbidities and immune responses in an infected person. Dysfunctions in innate and adaptive immunity commonly follow viral infection. These are heralded by altered innate mononuclear phagocyte differentiation, activation, intracellular killing and adaptive memory, effector, and regulatory T cell responses. All of such affect viral clearance and the progression of end-organ disease. Failures to produce effective controlled antiviral immunity leads to life-threatening end-organ disease that is typified by the acute respiratory distress syndrome. The most effective means to contain SARS-CoV-2 infection is by vaccination. While an arsenal of immunomodulators were developed for control of viral infection and subsequent COVID-19 disease, further research is required to enable therapeutic implementation.
Collapse
Affiliation(s)
- Milankumar Patel
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Farah Shahjin
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Jacob D Cohen
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Mahmudul Hasan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, NE 68198, USA
| | - Jatin Machhi
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Heerak Chugh
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Snigdha Singh
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
| | - Srijanee Das
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Tanmay A Kulkarni
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, NE 68198, USA
| | - Jonathan Herskovitz
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Douglas D Meigs
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Ramesh Chandra
- Drug Discovery & Development Laboratory, Department of Chemistry, University of Delhi, Delhi-110007, India
- Dr. B. R. Ambedkar Center for Biomedical Research, University of Delhi, Delhi-110007, India
| | - Kenneth S Hettie
- Molecular Imaging Program at Stanford (MIPS), Department of Radiology, Department of Otolaryngology –Head & Neck Surgery, Stanford University, Palo Alto, CA 94304, USA
| | - R Lee Mosley
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Bhavesh D Kevadiya
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| | - Howard E Gendelman
- Department of Pharmacology and Experimental Neuroscience, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, NE 68198, USA
- Department of Pathology and Microbiology, College of Medicine, University of Nebraska Medical Center, NE 68198, USA
| |
Collapse
|
14
|
Impact of the Innate Inflammatory Response on ICU Admission and Death in Hospitalized Patients with COVID-19. Biomedicines 2021; 9:biomedicines9111675. [PMID: 34829906 PMCID: PMC8615389 DOI: 10.3390/biomedicines9111675] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/29/2021] [Accepted: 11/10/2021] [Indexed: 12/24/2022] Open
Abstract
Objective: To describe the capacity of a broad spectrum of cytokines and growth factors to predict ICU admission and/or death in patients with severe COVID-19. Design: An observational, analytical, retrospective cohort study with longitudinal follow-up. Setting: Hospital Universitario Príncipe de Asturias (HUPA). Participants: 287 patients diagnosed with COVID-19 admitted to our hospital from 24 March to 8 May 2020, followed until 31 August 2020. Main outcome measures: Profiles of immune response (IR) mediators were determined using the Luminex Multiplex technique in hospitalized patients within six days of admission by examining serum levels of 62 soluble molecules classified into the three groups: adaptive IR-related cytokines (n = 19), innate inflammatory IR-related cytokines (n = 27), and growth factors (n = 16). Results: A statistically robust link with ICU admission and/or death was detected for increased serum levels of interleukin (IL)-6, IL-15, soluble (s) RAGE, IP10, MCP3, sIL1RII, IL-8, GCSF and MCSF and IL-10. The greatest prognostic value was observed for the marker combination IL-10, IL-6 and GCSF. Conclusions: When severe COVID-19 progresses to ICU admission and/or death there is a marked increase in serum levels of several cytokines and chemokines, mainly related to the patient’s inflammatory IR. Serum levels of IL-10, IL-6 and GCSF were most prognostic of the outcome measure.
Collapse
|
15
|
Kolahchi Z, Sohrabi H, Ekrami Nasab S, Jelodari Mamaghani H, Keyfari Alamdari M, Rezaei N. Potential therapeutic approach of intravenous immunoglobulin against COVID-19. ALLERGY, ASTHMA, AND CLINICAL IMMUNOLOGY : OFFICIAL JOURNAL OF THE CANADIAN SOCIETY OF ALLERGY AND CLINICAL IMMUNOLOGY 2021; 17:105. [PMID: 34627384 PMCID: PMC8501925 DOI: 10.1186/s13223-021-00609-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Accepted: 09/23/2021] [Indexed: 12/11/2022]
Abstract
Since the outbreak of the novel coronavirus disease (COVID-19), the therapeutic and management options to reduce the burden of the COVID-19 disease are under investigation. IVIG therapy is used as an effective treatment for immunodeficient patients and patients with inflammatory or autoimmune conditions. The therapeutic effect of IVIG in COVID-19 patients has been investigated. But, the results are controversial and some studies reported no benefit of IVIG therapy. More clinical trials on the effect of IVIG therapy in COVID-19 patients should be performed to establish a certain conclusion about IVIG effectiveness.
Collapse
Affiliation(s)
- Zahra Kolahchi
- Students’ International Committee of Medical Schools (SICoMS), School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hanye Sohrabi
- Students’ International Committee of Medical Schools (SICoMS), School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Sara Ekrami Nasab
- Students’ International Committee of Medical Schools (SICoMS), School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Hesan Jelodari Mamaghani
- Students’ International Committee of Medical Schools (SICoMS), School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Maryam Keyfari Alamdari
- Students’ International Committee of Medical Schools (SICoMS), School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, 14194 Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
16
|
Wang J, Shi P, Chen D, Wang S, Wang P, Feng X, Zhang L. Research Status of the Safety and Efficacy of Mesenchymal Stem Cells in the Treatment of COVID-19-Related Pneumonia: A Systematic Review and Meta-Analysis. Stem Cells Dev 2021; 30:947-969. [PMID: 34416823 DOI: 10.1089/scd.2021.0179] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Mesenchymal stem cell (MSC) therapy is considered one of the most promising treatments in the context of the coronavirus disease 2019 (COVID-19) pandemic. However, the safety and effectiveness of MSCs in the treatment of COVID-19-associated pneumonia patients need to be systematically reviewed and analyzed. Two independent researchers searched for relevant studies published between October 2019 and April 2021 in the PubMed, Embase, Cochrane Library, WAN FANG, and CNKI databases. All relevant randomized controlled trials, clinically controlled studies, retrospective studies, case reports, letters (with valid data), and case series were included in this meta-analysis. A fixed-effects model and 95% confidence interval (CI) were used to analyze the results. A total of 22 studies involving 371 patients were included in the present study. Allogeneic MSCs from umbilical cord, adipose tissue, menstrual blood, placental tissue, Wharton's jelly, or unreported sources were administered in 247 participants. Combined results revealed that MSC therapy significantly reduced the incidence of adverse events [AEs; odds ratio (OR) = 0.43, 95% CI = 0.22-0.84, P = 0.01] and mortality (OR = 0.17, 95% CI = 0.06-0.49, P < 0.01), and the difference compared with control group was statistically significant. No serious MSC treatment-related AEs were reported. Lung function, radiographic outcomes, and inflammation- and immunity-related biomarker levels all showed improving trends. Therefore, MSC therapy is an effective and safe method for the treatment of COVID-19-associated pneumonia and shows advantages in reducing AEs and mortality. However, a standard and effective MSC treatment program must be developed.
Collapse
Affiliation(s)
- Junwu Wang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Pengzhi Shi
- Graduate School of Dalian Medical University, Dalian, China
| | - Dong Chen
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Shuguang Wang
- Graduate School of Dalian Medical University, Dalian, China
| | - Pingchuan Wang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Xinmin Feng
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou, China
| | - Liang Zhang
- Department of Orthopedics, Clinical Medical College of Yangzhou University, Yangzhou, China
| |
Collapse
|
17
|
Safety and Efficacy of Convalescent Plasma in COVID-19: An Overview of Systematic Reviews. Diagnostics (Basel) 2021; 11:diagnostics11091663. [PMID: 34574004 PMCID: PMC8467957 DOI: 10.3390/diagnostics11091663] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/06/2021] [Accepted: 09/09/2021] [Indexed: 12/27/2022] Open
Abstract
Convalescent plasma (CP) from patients recovered from COVID-19 is one of the most studied anti-viral therapies against SARS-COV-2 infection. The aim of this study is to summarize the evidence from the available systematic reviews on the efficacy and safety of CP in COVID-19 through an overview of the published systematic reviews (SRs). A systematic literature search was conducted up to August 2021 in Embase, PubMed, Web of Science, Cochrane and Medrxiv databases to identify systematic reviews focusing on CP use in COVID-19. Two review authors independently evaluated reviews for inclusion, extracted data and assessed quality of evidence using AMSTAR (A Measurement Tool to Assess Reviews) and GRADE tools. The following outcomes were analyzed: mortality, viral clearance, clinical improvement, length of hospital stay, adverse reactions. In addition, where possible, subgroup analyses were performed according to study design (e.g., RCTs vs. non-RCTs), CP neutralizing antibody titer and timing of administration, and disease severity. The methodological quality of included studies was assessed using the checklist for systematic reviews AMSTAR-2 and the GRADE assessment. Overall, 29 SRs met the inclusion criteria based on 53 unique primary studies (17 RCT and 36 non-RCT). Limitations to the methodological quality of reviews most commonly related to absence of a protocol (11/29) and funding sources of primary studies (27/29). Of the 89 analyses on which GRADE judgements were made, effect estimates were judged to be of high/moderate certainty in four analyses, moderate in 38, low in 38, very low in nine. Despite the variability in the certainty of the evidence, mostly related to the risk of bias and inconsistency, the results of this umbrella review highlight a mortality reduction in CP over standard therapy when administered early and at high titer, without increased adverse reactions.
Collapse
|
18
|
Saleki K, Yaribash S, Banazadeh M, Hajihosseinlou E, Gouravani M, Saghazadeh A, Rezaei N. Interferon therapy in patients with SARS, MERS, and COVID-19: A systematic review and meta-analysis of clinical studies. Eur J Pharmacol 2021; 906:174248. [PMID: 34126092 PMCID: PMC8195694 DOI: 10.1016/j.ejphar.2021.174248] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 12/11/2022]
Abstract
Concern regarding coronavirus (CoV) outbreaks has stayed relevant to global health in the last decades. Emerging COVID-19 infection, caused by the novel SARS-CoV2, is now a pandemic, bringing a substantial burden to human health. Interferon (IFN), combined with other antivirals and various treatments, has been used to treat and prevent MERS-CoV, SARS-CoV, and SARS-CoV2 infections. We aimed to assess the clinical efficacy of IFN-based treatments and combinational therapy with antivirals, corticosteroids, traditional medicine, and other treatments. Major healthcare databases and grey literature were investigated. A three-stage screening was utilized, and included studies were checked against the protocol eligibility criteria. Risk of bias assessment and data extraction were performed, followed by narrative data synthesis. Fifty-five distinct studies of SARS-CoV2, MERS-CoV, and SARS-CoV were spotted. Our narrative synthesis showed a possible benefit in the use of IFN. A good quality cohort showed lower CRP levels in Arbidol (ARB) + IFN group vs. IFN only group. Another study reported a significantly shorter chest X-ray (CXR) resolution in IFN-Alfacon-1 + corticosteroid group compared with the corticosteroid only group in SARS-CoV patients. In a COVID-19 trial, total adverse drug events (ADEs) were much lower in the Favipiravir (FPV) + IFN-α group compared with the LPV/RTV arm (P = 0.001). Also, nausea in patients receiving FPV + IFN-α regimen was significantly lower (P = 0.03). Quantitative analysis of mortality did not show a conclusive effect for IFN/RBV treatment in six moderately heterogeneous MERS-CoV studies (log OR = -0.05, 95% CI: (-0.71,0.62), I2 = 44.71%). A meta-analysis of three COVID-19 studies did not show a conclusive nor meaningful relation between receiving IFN and COVID-19 severity (log OR = -0.44, 95% CI: (-1.13,0.25), I2 = 31.42%). A lack of high-quality cohorts and controlled trials was observed. Evidence suggests the potential efficacy of several combination IFN therapies such as lower ADEs, quicker resolution of CXR, or a decrease in inflammatory cytokines; Still, these options must possibly be further explored before being recommended in public guidelines. For all major CoVs, our results may indicate a lack of a definitive effect of IFN treatment on mortality. We recommend such therapeutics be administered with extreme caution until further investigation uncovers high-quality evidence in favor of IFN or combination therapy with IFN.
Collapse
Affiliation(s)
- Kiarash Saleki
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Student Research Committee, Babol University of Medical Sciences, Babol, Iran; USERN Office, Babol University of Medical Sciences, Babol, Iran
| | - Shakila Yaribash
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; International Campus, School of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Banazadeh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Pharmaceutical Sciences and Cosmetic Products Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Ehsan Hajihosseinlou
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahdi Gouravani
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Amene Saghazadeh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
19
|
Kreuzberger N, Hirsch C, Chai KL, Tomlinson E, Khosravi Z, Popp M, Neidhardt M, Piechotta V, Salomon S, Valk SJ, Monsef I, Schmaderer C, Wood EM, So-Osman C, Roberts DJ, McQuilten Z, Estcourt LJ, Skoetz N. SARS-CoV-2-neutralising monoclonal antibodies for treatment of COVID-19. Cochrane Database Syst Rev 2021; 9:CD013825. [PMID: 34473343 PMCID: PMC8411904 DOI: 10.1002/14651858.cd013825.pub2] [Citation(s) in RCA: 81] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Monoclonal antibodies (mAbs) are laboratory-produced molecules derived from the B cells of an infected host. They are being investigated as a potential therapy for coronavirus disease 2019 (COVID-19). OBJECTIVES To assess the effectiveness and safety of SARS-CoV-2-neutralising mAbs for treating patients with COVID-19, compared to an active comparator, placebo, or no intervention. To maintain the currency of the evidence, we will use a living systematic review approach. A secondary objective is to track newly developed SARS-CoV-2-targeting mAbs from first tests in humans onwards. SEARCH METHODS: We searched MEDLINE, Embase, the Cochrane COVID-19 Study Register, and three other databases on 17 June 2021. We also checked references, searched citations, and contacted study authors to identify additional studies. Between submission and publication, we conducted a shortened randomised controlled trial (RCT)-only search on 30 July 2021. SELECTION CRITERIA We included studies that evaluated SARS-CoV-2-neutralising mAbs, alone or combined, compared to an active comparator, placebo, or no intervention, to treat people with COVID-19. We excluded studies on prophylactic use of SARS-CoV-2-neutralising mAbs. DATA COLLECTION AND ANALYSIS Two authors independently assessed search results, extracted data, and assessed risk of bias using the Cochrane risk of bias tool (RoB2). Prioritised outcomes were all-cause mortality by days 30 and 60, clinical progression, quality of life, admission to hospital, adverse events (AEs), and serious adverse events (SAEs). We rated the certainty of evidence using GRADE. MAIN RESULTS We identified six RCTs that provided results from 17,495 participants with planned completion dates between July 2021 and December 2031. Target sample sizes varied from 1020 to 10,000 participants. Average age was 42 to 53 years across four studies of non-hospitalised participants, and 61 years in two studies of hospitalised participants. Non-hospitalised individuals with COVID-19 Four studies evaluated single agents bamlanivimab (N = 465), sotrovimab (N = 868), regdanvimab (N = 307), and combinations of bamlanivimab/etesevimab (N = 1035), and casirivimab/imdevimab (N = 799). We did not identify data for mortality at 60 days or quality of life. Our certainty of the evidence is low for all outcomes due to too few events (very serious imprecision). Bamlanivimab compared to placebo No deaths occurred in the study by day 29. There were nine people admitted to hospital by day 29 out of 156 in the placebo group compared with one out of 101 in the group treated with 0.7 g bamlanivimab (risk ratio (RR) 0.17, 95% confidence interval (CI) 0.02 to 1.33), 2 from 107 in the group treated with 2.8 g (RR 0.32, 95% CI 0.07 to 1.47) and 2 from 101 in the group treated with 7.0 g (RR 0.34, 95% CI 0.08 to 1.56). Treatment with 0.7 g, 2.8 g and 7.0 g bamlanivimab may have similar rates of AEs as placebo (RR 0.99, 95% CI 0.66 to 1.50; RR 0.90, 95% CI 0.59 to 1.38; RR 0.81, 95% CI 0.52 to 1.27). The effect on SAEs is uncertain. Clinical progression/improvement of symptoms or development of severe symptoms were not reported. Bamlanivimab/etesevimab compared to placebo There were 10 deaths in the placebo group and none in bamlanivimab/etesevimab group by day 30 (RR 0.05, 95% CI 0.00 to 0.81). Bamlanivimab/etesevimab may decrease hospital admission by day 29 (RR 0.30, 95% CI 0.16 to 0.59), may result in a slight increase in any grade AEs (RR 1.15, 95% CI 0.83 to 1.59) and may increase SAEs (RR 1.40, 95% CI 0.45 to 4.37). Clinical progression/improvement of symptoms or development of severe symptoms were not reported. Casirivimab/imdevimab compared to placebo Casirivimab/imdevimab may reduce hospital admissions or death (2.4 g: RR 0.43, 95% CI 0.08 to 2.19; 8.0 g: RR 0.21, 95% CI 0.02 to 1.79). We are uncertain of the effect on grades 3-4 AEs (2.4 g: RR 0.76, 95% CI 0.17 to 3.37; 8.0 g: RR 0.50, 95% CI 0.09 to 2.73) and SAEs (2.4 g: RR 0.68, 95% CI 0.19 to 2.37; 8.0 g: RR 0.34, 95% CI 0.07 to 1.65). Mortality by day 30 and clinical progression/improvement of symptoms or development of severe symptoms were not reported. Sotrovimab compared to placebo We are uncertain whether sotrovimab has an effect on mortality (RR 0.33, 95% CI 0.01 to 8.18) and invasive mechanical ventilation (IMV) requirement or death (RR 0.14, 95% CI 0.01 to 2.76). Treatment with sotrovimab may reduce the number of participants with oxygen requirement (RR 0.11, 95 % CI 0.02 to 0.45), hospital admission or death by day 30 (RR 0.14, 95% CI 0.04 to 0.48), grades 3-4 AEs (RR 0.26, 95% CI 0.12 to 0.60), SAEs (RR 0.27, 95% CI 0.12 to 0.63) and may have little or no effect on any grade AEs (RR 0.87, 95% CI 0.66 to 1.16). Regdanvimab compared to placebo Treatment with either dose (40 or 80 mg/kg) compared with placebo may decrease hospital admissions or death (RR 0.45, 95% CI 0.14 to 1.42; RR 0.56, 95% CI 0.19 to 1.60, 206 participants), but may increase grades 3-4 AEs (RR 2.62, 95% CI 0.52 to 13.12; RR 2.00, 95% CI 0.37 to 10.70). 80 mg/kg may reduce any grade AEs (RR 0.79, 95% CI 0.52 to 1.22) but 40 mg/kg may have little to no effect (RR 0.96, 95% CI 0.64 to 1.43). There were too few events to allow meaningful judgment for the outcomes mortality by 30 days, IMV requirement, and SAEs. Hospitalised individuals with COVID-19 Two studies evaluating bamlanivimab as a single agent (N = 314) and casirivimab/imdevimab as a combination therapy (N = 9785) were included. Bamlanivimab compared to placebo We are uncertain whether bamlanivimab has an effect on mortality by day 30 (RR 1.39, 95% CI 0.40 to 4.83) and SAEs by day 28 (RR 0.93, 95% CI 0.27 to 3.14). Bamlanivimab may have little to no effect on time to hospital discharge (HR 0.97, 95% CI 0.78 to 1.20) and mortality by day 90 (HR 1.09, 95% CI 0.49 to 2.43). The effect of bamlanivimab on the development of severe symptoms at day 5 (RR 1.17, 95% CI 0.75 to 1.85) is uncertain. Bamlanivimab may increase grades 3-4 AEs at day 28 (RR 1.27, 95% CI 0.81 to 1.98). We assessed the evidence as low certainty for all outcomes due to serious imprecision, and very low certainty for severe symptoms because of additional concerns about indirectness. Casirivimab/imdevimab with usual care compared to usual care alone Treatment with casirivimab/imdevimab compared to usual care probably has little or no effect on mortality by day 30 (RR 0.94, 95% CI 0.87 to 1.02), IMV requirement or death (RR 0.96, 95% CI 0.90 to 1.04), nor alive at hospital discharge by day 30 (RR 1.01, 95% CI 0.98 to 1.04). We assessed the evidence as moderate certainty due to study limitations (lack of blinding). AEs and SAEs were not reported. AUTHORS' CONCLUSIONS: The evidence for each comparison is based on single studies. None of these measured quality of life. Our certainty in the evidence for all non-hospitalised individuals is low, and for hospitalised individuals is very low to moderate. We consider the current evidence insufficient to draw meaningful conclusions regarding treatment with SARS-CoV-2-neutralising mAbs. Further studies and long-term data from the existing studies are needed to confirm or refute these initial findings, and to understand how the emergence of SARS-CoV-2 variants may impact the effectiveness of SARS-CoV-2-neutralising mAbs. Publication of the 36 ongoing studies may resolve uncertainties about the effectiveness and safety of SARS-CoV-2-neutralising mAbs for the treatment of COVID-19 and possible subgroup differences.
Collapse
Affiliation(s)
- Nina Kreuzberger
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Caroline Hirsch
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Khai Li Chai
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Eve Tomlinson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Zahra Khosravi
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Maria Popp
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital Wuerzburg, Wuerzburg, Germany
| | - Miriam Neidhardt
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Vanessa Piechotta
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Susanne Salomon
- Laboratory of Experimental Immunology, Institute of Virology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Sarah J Valk
- Jon J van Rood Center for Clinical Transfusion Research, Sanquin/Leiden University Medical Center, Leiden, Netherlands
| | - Ina Monsef
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Christoph Schmaderer
- Department of Nephrology, Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Munich, Germany
| | - Erica M Wood
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | | | - David J Roberts
- Systematic Review Initiative, NHS Blood and Transplant, Oxford, UK
| | - Zoe McQuilten
- Transfusion Research Unit, School of Public Health and Preventive Medicine, Monash University, Melbourne, Australia
| | - Lise J Estcourt
- Haematology/Transfusion Medicine, NHS Blood and Transplant, Oxford, UK
| | - Nicole Skoetz
- Cochrane Cancer, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| |
Collapse
|
20
|
Pezeshki PS, Rezaei N. Immune checkpoint inhibition in COVID-19: risks and benefits. Expert Opin Biol Ther 2021; 21:1173-1179. [PMID: 33543652 PMCID: PMC7898453 DOI: 10.1080/14712598.2021.1887131] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Accepted: 02/03/2021] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Immune checkpoint inhibition (ICI) is a novel cancer immunotherapy, which is administered in patients with metastatic, refractory, or relapsed solid cancer types. Since the initiation of the Coronavirus Disease 2019 (COVID-19) pandemic, many studies have reported a higher severity and mortality rate of COVID-19 among patients with cancer in general. AREAS COVERED The immunomodulatory effects of ICI can modify the patients' immune system function in severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. There is controversy over whether the severity of COVID-19 in cancer patients who previously received ICI compared to other patients with cancer has increased. There is evidence that the upregulation of immune checkpoint molecules in T cells, lymphopenia, and inflammatory cytokine secretion are associated with the severity of COVID-19 symptoms. EXPERT OPINION ICI can interrupt the T cell exhaustion and depletion by interrupting the inhibitory signaling of checkpoint molecules in T cells, and augments the immune system response in COVID-19 patients with lymphopenia. However, ICI may also increase the risk of cytokine release syndrome. ICI can be considered not only as a cancer immunotherapy but also as immunotherapy in COVID-19. More studies are needed to assess the safety of ICI in COVID-19 patients with or without cancer.
Collapse
Affiliation(s)
- Parmida Sadat Pezeshki
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
21
|
Piperno A, Sciortino MT, Giusto E, Montesi M, Panseri S, Scala A. Recent Advances and Challenges in Gene Delivery Mediated by Polyester-Based Nanoparticles. Int J Nanomedicine 2021; 16:5981-6002. [PMID: 34511901 PMCID: PMC8418317 DOI: 10.2147/ijn.s321329] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 07/07/2021] [Indexed: 12/12/2022] Open
Abstract
Gene therapy is a promising approach for the treatment of several diseases, such as chronic or viral infections, inherited disorders, and cancer. The cellular internalization of exogenous nucleic acids (NA) requires efficient delivery vehicles to overcome their inherent pharmacokinetic drawbacks, e.g. electrostatic repulsions, enzymatic degradation, limited cellular uptake, fast clearance, etc. Nanotechnological advancements have enabled the use of polymer-based nanostructured biomaterials as safe and effective gene delivery systems, in addition to viral vector delivery methods. Among the plethora of polymeric nanoparticles (NPs), this review will provide a comprehensive and in-depth summary of the polyester-based nanovehicles, including poly(lactic-co-glycolic acid) (PLGA) and polylactic acid (PLA) NPs, used to deliver a variety of foreign NA, e.g. short interfering RNA (siRNA), messenger RNA (mRNA), and plasmid DNA (pDNA). The article will review the versatility of polyester-based nanocarriers including their recent application in the delivery of the clustered, regularly-interspaced, short palindromic repeats/Cas (CRISPR/Cas) genome editing system for treating gene-related diseases. The remaining challenges and future trend of the targeted delivery of this revolutionary genome-editing system will be discussed. Special attention will be given to the pivotal role of nanotechnology in tackling emerging infections such as coronavirus disease 2019 (COVID-19): ground-breaking mRNA vaccines delivered by NPs are currently used worldwide to fight the pandemic, pushing the boundaries of gene therapy.
Collapse
Affiliation(s)
- Anna Piperno
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Maria Teresa Sciortino
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Elena Giusto
- CNR-ISTEC, Institute of Science and Technology for Ceramics, National Research Council of Italy, Faenza, RA, Italy
| | - Monica Montesi
- CNR-ISTEC, Institute of Science and Technology for Ceramics, National Research Council of Italy, Faenza, RA, Italy
| | - Silvia Panseri
- CNR-ISTEC, Institute of Science and Technology for Ceramics, National Research Council of Italy, Faenza, RA, Italy
| | - Angela Scala
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
22
|
Mirbeyk M, Saghazadeh A, Rezaei N. A systematic review of pregnant women with COVID-19 and their neonates. Arch Gynecol Obstet 2021; 304:5-38. [PMID: 33797605 PMCID: PMC8017514 DOI: 10.1007/s00404-021-06049-z] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Accepted: 03/27/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND In December 2019, a novel coronavirus disease (COVID-19) emerged in Wuhan, China, with an incredible contagion rate. However, the vertical transmission of COVID-19 is uncertain. OBJECTIVES This is a systematic review of published studies concerning pregnant women with confirmed COVID-19 and their neonates. SEARCH STRATEGY We carried out a systematic search in multiple databases, including PubMed, Web of Science, Google Scholar, Scopus, and WHO COVID-19 database using the following keywords: (Coronavirus) OR (novel coronavirus) OR (COVID-19) OR (COVID19) OR (COVID 19) OR (SARS-CoV2) OR (2019-nCoV)) and ((pregnancy) OR (pregnant) OR (vertical transmission) OR (neonate) OR (newborn) OR (placenta) OR (fetus) OR (Fetal)). The search took place in April 2020. SELECTION CRITERIA Original articles published in English were eligible if they included pregnant patients infected with COVID-19 and their newborns. DATA COLLECTION AND ANALYSES The outcomes of interest consisted of clinical manifestations of COVID-19 in pregnant patients with COVID-19 and also the effect of COVID-19 on neonatal and pregnancy outcomes. MAIN RESULTS 37 articles involving 364 pregnant women with COVID-19 and 302 neonates were included. The vast majority of pregnant patients were in their third trimester of pregnancy, and only 45 cases were in the first or second trimester (12.4%). Most mothers described mild to moderate manifestations of COVID-19. Of 364 pregnant women, 25 were asymptomatic at the time of admission. The most common symptoms were fever (62.4%) and cough (45.3%). Two maternal deaths occurred. Some pregnant patients (12.1%) had a negative SARS-CoV-2 test but displayed clinical manifestations and abnormalities in computed tomography (CT) scan related to COVID-19. Twenty-two (6.0%) pregnant patients developed severe pneumonia. Two maternal deaths occurred from severe pneumonia and multiple organ dysfunction. Studies included a total of 302 neonates from mothers with COVID-19. Of the studies that provided data on the timing of birth, there were 65 (23.6%) preterm neonates. One baby was born dead from a mother who also died from COVID-19. Of the babies born alive from mothers with COVID-19, five newborns faced critical conditions, and two later died. A total of 219 neonates underwent nasopharyngeal specimen collection for SARS-CoV-2, of which 11 tested positive (5%). Seventeen studies examined samples of the placenta, breast milk, umbilical cord, and amniotic fluid, and all tested negative except one amniotic fluid sample. CONCLUSIONS A systematic review of published studies confirm that the course of COVID-19 in pregnant women resembles that of other populations. However, there is not sufficient evidence to establish an idea that COVID-19 would not complicate pregnancy.
Collapse
Affiliation(s)
- Mona Mirbeyk
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Amene Saghazadeh
- Systematic Review and Meta-Analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
- Children's Medical Center Hospital, Dr. Qarib St, Keshavarz Blvd, 14194, Tehran, Iran.
| |
Collapse
|
23
|
Singh A, Gupta V. SARS-CoV-2 therapeutics: how far do we stand from a remedy? Pharmacol Rep 2021; 73:750-768. [PMID: 33389724 PMCID: PMC7778692 DOI: 10.1007/s43440-020-00204-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 11/20/2020] [Accepted: 11/29/2020] [Indexed: 02/07/2023]
Abstract
The SARS-CoV-2 has affected millions worldwide and has posed an immediate need for effective pharmacological interventions. Ever since the outbreak was declared, the medical fraternity across the world is facing a unique situation of offering assistance and simultaneously generating reliable data with high-quality evidence to extend the scope of finding a treatment. With no proven vaccine or other interventions available hitherto, there is a frenzied urgency of sharing preliminary data from laboratories and trials to shape a global response against the virus. Several clinical trials with investigational and approved repurposed therapeutics have shown promising results. This review aims to compile the information of the reported molecules approved for emergency use and those under clinical trials and still others with good results in the studies conducted so far. Being an RNA virus, SARS-CoV-2 is prone to mutation; thus, the possibility of gaining resistance to available drugs is high. Consequently, a cocktail therapy based on drug interaction with different stages of its replicative cycle is desirable to reduce the chances of evolving drug resistance. Since this virus encodes several proteins, including 16 nonstructural and 4 structural proteins, this review also offers an insight into potential drug targets within SARS-CoV-2.
Collapse
Affiliation(s)
- Anurag Singh
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India
| | - Vandana Gupta
- Department of Microbiology, Ram Lal Anand College, University of Delhi, Benito Juarez Road, New Delhi, 110021, India.
| |
Collapse
|
24
|
Nissen CB, Sciascia S, de Andrade D, Atsumi T, Bruce IN, Cron RQ, Hendricks O, Roccatello D, Stach K, Trunfio M, Vinet É, Schreiber K. The role of antirheumatics in patients with COVID-19. THE LANCET. RHEUMATOLOGY 2021; 3:e447-e459. [PMID: 33817665 PMCID: PMC8009617 DOI: 10.1016/s2665-9913(21)00062-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
The COVID-19 pandemic has resulted in more than 2 million deaths globally. Two interconnected stages of disease are generally recognised; an initial viral stage and a subsequent immune response phase with the clinical characteristics of hyperinflammation associated with acute respiratory distress syndrome. Therefore, many immune modulators and immunosuppressive drugs, which are widely used in rheumatological practice, have been proposed as treatments for patients with moderate or severe COVID-19. In this Review, we provide an overview of what is currently known about the efficacy and safety of antirheumatic therapies for the treatment of patients with COVID-19. Dexamethasone has been shown to reduce COVID-19 related mortality, interleukin-6 inhibitors to reduce risk of cardiovascular or respiratory organ support, and baricitinib to reduce time to recovery in hospitalised patients requiring oxygen support. Further studies are needed to identify whether there is any role for glucocorticoids in patients with less severe COVID-19. Although evidence on the use of other antirheumatic drugs has suggested some benefits, results from adequately powered clinical trials are urgently needed. The heterogeneity in dosing and the absence of uniform inclusion criteria and defined stage of disease studied in many clinical trials have affected the conclusions and comparability of trial results. However, after the success of dexamethasone in proving the anti-inflammatory hypothesis, the next 12 months will undoubtedly bring further clarity about the clinical utility and optimal dose and timing of other anti-rheumatic drugs in the management of COVID-19.
Collapse
Affiliation(s)
- Christoffer B Nissen
- Danish Hospital for Rheumatic Diseases, University of Southern Denmark, Sønderborg, Danmark
| | - Savino Sciascia
- Center of Research of Immunopathology and Rare Diseases, Coordinating Center of Piemonte and Aosta Valley Network for Rare Diseases, Nephrology and Dialysis, Department of Clinical and Biological Sciences, University of Turin, Italy
| | - Danieli de Andrade
- Department of Rheumatology, Hospital das Clínicas da Faculdade de Medicina da Universidade de São Paulo, São Paulo, Brazil
| | - Tatsuya Atsumi
- Department of Rheumatology, Endocrinology and Nephrology, Hokkaido University, Kita-ku, Sapporo, Japan
| | - Ian N Bruce
- Centre for Epidemiology Versus Arthritis, Medicine and Health, NIHR Manchester Biomedical Research Centre, Manchester University NHS Foundation Trust, Manchester Academic Health Science Centre Manchester, Manchester, UK
| | - Randy Q Cron
- Division of Rheumatology, Children's of Alabama and Department of Pediatrics, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Oliver Hendricks
- Danish Hospital for Rheumatic Diseases, University of Southern Denmark, Sønderborg, Danmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
| | - Dario Roccatello
- Center of Research of Immunopathology and Rare Diseases, Coordinating Center of Piemonte and Aosta Valley Network for Rare Diseases, Nephrology and Dialysis, Department of Clinical and Biological Sciences, University of Turin, Italy
| | - Ksenija Stach
- Fifth Department of Medicine and European Center for Angioscience, University Medical Centre Mannheim, University of Heidelberg, Mannheim, Germany
| | - Mattia Trunfio
- Department of Medical Sciences, University of Torino at Infectious Diseases Unit, Amedeo di Savoia Hospital, Torino, Italy
| | - Évelyne Vinet
- Division of Rheumatology, McGill University Health Centre, Montreal, QC, Canada
- Centre for Outcomes Research and Evaluation, Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - Karen Schreiber
- Danish Hospital for Rheumatic Diseases, University of Southern Denmark, Sønderborg, Danmark
- Department of Regional Health Research, University of Southern Denmark, Odense, Denmark
- Thrombosis and Haemostasis, Guy's and St Thomas' NHS Foundation Trust, London, UK
| |
Collapse
|
25
|
Keshavarz P, Yazdanpanah F, Azhdari S, Kavandi H, Nikeghbal P, Bazyar A, Rafiee F, Nejati SF, Sadabad FE, Rezaei N. Coronavirus disease 2019 (COVID-19): A systematic review of 133 Children that presented with Kawasaki-like multisystem inflammatory syndrome. J Med Virol 2021; 93:5458-5473. [PMID: 33969513 PMCID: PMC8242327 DOI: 10.1002/jmv.27067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 03/13/2021] [Accepted: 05/05/2021] [Indexed: 12/12/2022]
Abstract
Kawasaki-like disease (KLD) and multisystem inflammatory syndrome in children (MIS-C) are considered as challenges for pediatric patients under the age of 18 infected with coronavirus disease 2019 (COVID-19). A systematic search was performed on July 2, 2020, and updated on December 1, 2020, to identify studies on KLD/MIS-C associated with COVID-19. The databases of Scopus, PubMed, Web of Science, Embase, and Scholar were searched. The hospitalized children with a presentation of Kawasaki disease (KD), KLD, MIS-C, or inflammatory shock syndromes were included. A total number of 133 children in 45 studies were reviewed. A total of 74 (55.6%) cases had been admitted to pediatric intensive care units (PICUs). Also, 49 (36.8%) patients had required respiratory support, of whom 31 (23.3%) cases had required mechanical ventilation/intubation, 18 (13.5%) cases had required other oxygen therapies. In total, 79 (59.4%) cases had been discharged from hospitals, 3 (2.2%) had been readmitted, 9 (6.7%) had been hospitalized at the time of the study, and 9 (6.7%) patients had expired due to the severe heart failure, shock, brain infarction. Similar outcomes had not been reported in other patients. Approximately two-thirds of the children with KLD associated with COVID-19 had been admitted to PICUs, around one-fourth of them had required mechanical ventilation/intubation, and even some of them had been required readmissions. Therefore, physicians are strongly recommended to monitor children that present with the characteristics of KD during the pandemic as they can be the dominant manifestations in children with COVID-19.
Collapse
Affiliation(s)
- Pedram Keshavarz
- Department of Diagnostic and Interventional Radiology, New Hospitals LTD, Tbilisi, Georgia.,School of Science and Technology, The University of Georgia, Tbilisi, Georgia
| | - Fereshteh Yazdanpanah
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tabriz, Iran
| | - Sara Azhdari
- Department of Anatomy and Embryology, School of Medicine, Bam University of Medical Sciences, Bam, Iran
| | - Hadiseh Kavandi
- Department of Rheumatology, Connective Tissue Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Parisa Nikeghbal
- Department of Radiology, Medical ImagingResearch Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Amir Bazyar
- Department of Radiology, Medical ImagingResearch Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Faranak Rafiee
- Department of Radiology, Medical ImagingResearch Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Seyed Faraz Nejati
- Department of Radiology, Medical ImagingResearch Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Faranak Ebrahimian Sadabad
- Department of Radiology, Medical ImagingResearch Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
26
|
Cai Q, Yin F, Hao L, Jiang W. Research Progress of Mesenchymal Stem Cell Therapy for Severe COVID-19. Stem Cells Dev 2021; 30:459-472. [PMID: 33715385 DOI: 10.1089/scd.2020.0198] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Corona virus disease 2019 (COVID-19) refers to a type of pneumonia caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Sixty million confirmed cases have been reported worldwide until November 29, 2020. Unfortunately, the novel coronavirus is extremely contagious and the mortality rate of severe and critically ill patients is high. Thus, there is no definite and effective treatment in clinical practice except for antiviral therapy and supportive therapy. Mesenchymal stem cells (MSCs) are not only characterized by low immunogenicity and homing but also have anti-inflammatory and immunomodulation characteristics. Furthermore, they can inhibit the occurrence and development of a cytokine storm, inhibit lung injury, and exert antipulmonary fibrosis and antioxidative stress, therefore MSC therapy is expected to become one of the effective therapies to treat severe COVID-19. This article will review the possible mechanisms of MSCs in the treatment of severe COVID-19.
Collapse
Affiliation(s)
- Qiqi Cai
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, China
| | - Fei Yin
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, China
| | - Liming Hao
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, China
| | - Wenhua Jiang
- Department of Histology and Embryology, Basic Medical College of Jilin University, Changchun, China
| |
Collapse
|
27
|
Zong Z, Wei Y, Ren J, Zhang L, Zhou F. The intersection of COVID-19 and cancer: signaling pathways and treatment implications. Mol Cancer 2021; 20:76. [PMID: 34001144 PMCID: PMC8126512 DOI: 10.1186/s12943-021-01363-1] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 04/13/2021] [Indexed: 01/08/2023] Open
Abstract
The outbreak of the novel coronavirus disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has emerged as a serious public health concern. Patients with cancer have been disproportionately affected by this pandemic. Increasing evidence has documented that patients with malignancies are highly susceptible to severe infections and mortality from COVID-19. Recent studies have also elucidated the molecular relationship between the two diseases, which may not only help optimize cancer care during the pandemic but also expand the treatment for COVID-19. In this review, we highlight the clinical and molecular similarities between cancer and COVID-19 and summarize the four major signaling pathways at the intersection of COVID-19 and cancer, namely, cytokine, type I interferon (IFN-I), androgen receptor (AR), and immune checkpoint signaling. In addition, we discuss the advantages and disadvantages of repurposing anticancer treatment for the treatment of COVID-19.
Collapse
Affiliation(s)
- Zhi Zong
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Yujun Wei
- Anhui Anlong Gene Technology Co., Ltd, Hefei, 230041, China
| | - Jiang Ren
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518033, China
| | - Long Zhang
- MOE Key Laboratory of Biosystems Homeostasis & Protection and Innovation Center for Cell Signaling Network, Life Sciences Institute, Zhejiang University, Hangzhou, 310058, China
| | - Fangfang Zhou
- Institutes of Biology and Medical Sciences, Soochow University, Suzhou, 215123, China.
| |
Collapse
|
28
|
Clinical and Laboratory Predictors of Severity, Criticality, and Mortality in COVID-19: A Multisystem Disease. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1318:369-402. [PMID: 33973190 DOI: 10.1007/978-3-030-63761-3_22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Coronavirus disease 2019 (COVID-19) pandemic continues devastating effects on healthcare systems. Such a crisis calls for an urgent need to develop a risk stratification tool. The present chapter aimed to identify laboratory and clinical correlates of adverse outcomes in patients with COVID-19. To this end, we conducted a systematic evaluation of studies that investigated laboratory abnormalities in patients with COVID-19 and compared i. patients with a severe form of disease and patients with a non-severe form of the disease, ii. patients who were in critical condition and patients who were not in critical condition, and iii. patients who survived and patients who died. We included 54 studies in the data synthesis. Compared to patients with a non-severe form of COVID-19, patients who had a severe form of disease revealed higher values for white blood cells (WBC), polymorphonuclear leukocytes (PMN), total bilirubin, alanine aminotransferase (ALT), creatinine, troponin, procalcitonin, lactate dehydrogenase (LDH), and D-dimer. By contrast, platelet count, lymphocyte count, and albumin levels were decreased in patients with a severe form of COVID-19. Also, patients with a severe phenotype of disease were more likely to have diabetes, chronic heart disease, chronic obstructive pulmonary disease (COPD), cerebrovascular disease, hypertension, chronic kidney disease (CKD), and malignancy. Compared to patients who survived, patients who died had higher WBC, PMN, total bilirubin, ALT, procalcitonin, IL-6, creatinine, PT, lymphocyte count, platelet count, and albumin. Also, non-survivors revealed a higher prevalence of diabetes, chronic heart disease, COPD, cerebrovascular disease, and CKD. Meta-analyses identified several laboratory parameters that might help the prediction of severe, critical, and lethal phenotypes of COVID-19. These parameters correlate with the immune system function, inflammation, coagulation, and liver and kidney function.
Collapse
|
29
|
Geriatrics and COVID-19. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1318:209-222. [PMID: 33973181 DOI: 10.1007/978-3-030-63761-3_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Since December 2019, a novel coronavirus called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has begun to infect people. The virus first occurred in Wuhan, China, but the whole world is now struggling with the pandemic. Over 13 million confirmed cases and 571,000 deaths have been reported so far, and this number is growing. Older people, who constitute a notable proportion of the world population, are at an increased risk of infection because of altered immunity and chronic comorbidities. Thus, appropriate health care is necessary to control fatalities and spread of the disease in this specific population. The chapter provides an overview of diagnostic methods, laboratory and imaging findings, clinical features, and management of COVID-19 in aged people. Possible mechanisms behind the behavior of SARS-CoV-2 in the elderly include immunosenescence and related impaired antiviral immunity, mature immunity and related hyper-inflammatory responses, comorbidities and their effects on the functioning of critical organs/systems, and the altered expression of angiotensin-converting enzyme 2 (ACE2) that acts as an entry receptor for SARS-CoV-2. This evidence defines the herding behavior of COVID-19 in relation to ACE2 under the influence of immune dysregulation. Then, identifying the immunogenetic factors that affect the disease susceptibility and severity and as well as key inflammatory pathways that have the potential to serve as therapeutic targets needs to remain an active area of research.
Collapse
|
30
|
Introduction on Coronavirus Disease (COVID-19) Pandemic: The Global Challenge. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1318:1-22. [PMID: 33973169 DOI: 10.1007/978-3-030-63761-3_1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
By driving the ongoing pandemic of coronavirus disease 2019 (COVID-19), coronaviruses have become a significant change in twenty-first-century medicine, healthcare systems, education, and the global economy. This chapter rapidly reviews the origin, immunopathogenesis, epidemiology, diagnosis, clinical manifestations, and potential therapeutics of COVID-19. It would also explore the effects of the introduction of a single virus, the so-called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), on the public health preparedness planning.
Collapse
|
31
|
Eskian M, Rezaei N. Clinical Manifestations of COVID-19. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1318:179-196. [PMID: 33973179 DOI: 10.1007/978-3-030-63761-3_11] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is the third coronavirus causing an outbreak in the twenty-first century. It is related to a contagious coronavirus disease (COVID-19), which its high pace of spreading allowed it to lie to the whole world and be turned into a pandemic only a few months after the identification of the first case. Currently, the reverse transcription-polymerase chain reaction (RT-PCR) test of throat swap is the gold standard of diagnosis; however, several studies have reported false-negative results with non-ideal sensitivity. Because this pandemic constitutes a significant burden on global healthcare systems and due to the high transmission rate of the virus, an accurate diagnosis algorithm is needed to reduce the missing case number. A comprehensive clinical examination and taking a history of all systems (not just limited to the respiratory system) combined with hematologic laboratory tests and chest imaging can lead to a sensitive diagnosis, severity assessment, and RT-PCT test interpretation. This chapter focuses on clinical characteristics, hematologic laboratory, and chest imaging features in COVID-19.
Collapse
Affiliation(s)
- Mahsa Eskian
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran. .,Department of Radiology, Center for Evidence-Based Imaging, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA. .,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran. .,Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran. .,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
32
|
COVID-19 in Patients with Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1318:315-331. [PMID: 33973186 DOI: 10.1007/978-3-030-63761-3_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
With more than 5 million cases and 333,212 deaths, COVID-19 (or SARS-CoV-2) continues to spread. General symptoms of this disease are similar to that of many other viral respiratory diseases, including fever, cough, dyspnea, and fatigue, with a chance of progression to more severe complications. However, the virus does not affect all people equally, and cases with comorbidities such as malignancies, cardiovascular diseases, respiratory diseases, and kidney diseases are at higher risk of developing severe events, including requiring intensive ventilation, intensive care unit (ICU) admission, and death. Patients with cancer are more likely to be infected with COVID-19, which is possibly due to their immunological dysfunction or frequent clinic visits. Also, there is a higher chance that these patients experience severe events because of the medication they receive. In this chapter, we will review the main clinical manifestations of COVID-19 in patients with cancer. Recommendations and challenges for managing resources, organizing cancer centers, treatment of COVID-19-infected cancer patients, and performing cancer research during this pandemic will also be discussed.
Collapse
|
33
|
Prevention of COVID-19: Preventive Strategies for General Population, Healthcare Setting, and Various Professions. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1318:575-604. [PMID: 33973200 DOI: 10.1007/978-3-030-63761-3_32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The disease 2019 (COVID-19) made a public health emergency in early 2020. Despite attempts for the development of therapeutic modalities, there is no effective treatment yet. Therefore, preventive measures in various settings could help reduce the burden of disease. In this chapter, the transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) causing COVID-19, non-pharmaceutical approaches at individual and population level, chemoprevention, immunoprevention, preventive measures in different healthcare settings and other professions, special considerations in high-risk groups, and the role of organizations to hamper the psychosocial effects will be discussed.
Collapse
|
34
|
Overview of COVID-19 Disease: Virology, Epidemiology, Prevention Diagnosis, Treatment, and Vaccines. Biologics 2021. [DOI: 10.3390/biologics1010002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Coronaviruses belong to the “Coronaviridae family”, which causes various diseases, from the common cold to SARS and MERS. The coronavirus is naturally prevalent in mammals and birds. So far, six human-transmitted coronaviruses have been discovered. Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) was first reported in December 2019 in Wuhan, China. Common symptoms include fever, dry cough, and fatigue, but in acute cases, the disease can lead to severe shortness of breath, hypoxia, and death. According to the World Health Organization (WHO), the three main transmission routes, such as droplet and contact routes, airborne transmission and fecal and oral for COVID-19, have been identified. So far, no definitive curative treatment has been discovered for COVID-19, and the available treatments are only to reduce the complications of the disease. According to the World Health Organization, preventive measures at the public health level such as quarantine of the infected person, identification and monitoring of contacts, disinfection of the environment, and personal protective equipment can significantly prevent the outbreak COVID-19. Currently, based on the urgent needs of the community to control this pandemic, the BNT162b2 (Pfizer), mRNA-1273 (Moderna), CoronaVac (Sinovac), Sputnik V (Gamaleya Research Institute, Acellena Contract Drug Research, and Development), BBIBP-CorV (Sinofarm), and AZD1222 (The University of Oxford; AstraZeneca) vaccines have received emergency vaccination licenses from health organizations in vaccine-producing countries. Vasso Apostolopoulos, Majid Hassanzadeganroudsari
Collapse
|
35
|
Moallemian Isfahani M, Emam-Djomeh Z, Rao IM, Rezaei N. Nutrition and Immunity in COVID-19. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1318:485-497. [PMID: 33973196 DOI: 10.1007/978-3-030-63761-3_28] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Nutrition can strongly influence infection trajectories by either boosting or suppressing the immune system. During the recently emerged pandemic of coronavirus disease 2019 (COVID-19), individuals who possess diets high in fat, refined carbohydrates, and sugars have shown to be highly prone to the disease and associated adverse outcomes. Both micronutrients and macronutrients provide benefits at different stages of the infection. Thus, using appropriate nutritional recommendations and interventions is necessary to combat the infection in patients with COVID-19 in both outpatient and inpatient settings.
Collapse
Affiliation(s)
- Marjan Moallemian Isfahani
- Dietetics and Nutrition Experts Team (DiNET), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Emam-Djomeh
- Dietetics and Nutrition Experts Team (DiNET), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Department of Food Science and Engineering, University College of Agriculture and Natural Resources, University of Tehran, Karaj, Iran
| | - Idupulapati M Rao
- Centro Internacional de Agricultura Tropical, Santiago de Cali, Colombia
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran. .,Research Center for Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran. .,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
36
|
The Epidemiologic Aspects of COVID-19 Outbreak: Spreading Beyond Expectations. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1318:61-79. [PMID: 33973172 DOI: 10.1007/978-3-030-63761-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The coronavirus disease 2019 (COVID-19) outbreak started in late 2019 in Wuhan, Hubei Province of China, and quickly spread to the surrounding regions and neighboring countries. A novel coronavirus, the so-called severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), was found to be responsible for this outbreak potentially originating from pangolins. In China, the outbreak lasted for 1 month until it seemed to be controlled after affecting over 81,000 individuals and causing deaths in over 4200 patients. Subsequently, and after affecting over 118,000 individuals and causing over 4200 deaths, the condition was officially announced as a pandemic by the World Health Organization (WHO). In the meantime, the epidemic curve took a downtrend in China, the original epicenter of the pandemic, but started to rise in other countries with a steep slope. Among over 215 affected countries, the USA, European countries (Italy, Germany, Spain, France, the UK), Iran, and South Korea had the highest frequencies in the matters of infected patients and deaths. Importantly, different countries took different policies when encountered with an outbreak, especially in the matter of accuracy of the report and timing of the action. A part of the delays in reporting was expected, including the lag in the chain of reporting, the shortcomings of tests, missed patients, and inadequate testing facilities. However, there were also political and nontechnical reasons that caused the reporting to be inaccurate. Surveillance seems to be less of a reason for the observed in poor management, and it mostly originated from human decision-making failures and political issues. Besides, the culture of populations and their trust in their governments played an important role on how they reacted to the COVID-19 pandemic and acquired policies. Finally, the characteristics of the world today indicate the danger of probable upcoming outbreaks, and policymakers should utilize the existing opportunities, particularly the advancements in technology and media, to prevent or adequately manage them.
Collapse
|
37
|
Saghazadeh A, Rezaei N. How COVID-19 Has Globalized: Unknown Origin, Rapid Transmission, and the Immune System Nourishment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1318:119-147. [PMID: 33973176 DOI: 10.1007/978-3-030-63761-3_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The novel coronavirus disease (COVID-19) profoundly influences T-cell immunity. The counts of total T cells and T-cell subsets, especially CD4+ and CD8+ T cells, are decreased in patients with COVID-19. Also, the function of these cells becomes less effective as the expression of immune inhibitory receptors, such as Tim3 and PD-1, increases over time during the disease. Kinetic analyses show that the T-cell profile changes dynamically, so does the COVID-19 stages. As COVID-19 continues to deteriorate and progresses to severe/critical condition, the lymphocyte count steadily decreases. Therefore, the ability of COVID-19 to escape the immune system might lie in its power to profoundly diminish T-cell effective function, which is necessary for the establishment of a robust antiviral immunity. Also, COVID-19 is associated with increased numbers of monocytes and macrophages, and as the disease progresses from a mild form to a severe/critical condition, the macrophage population becomes denser. Monitoring the expression of cytokines associated with macrophage activation, mainly interleukin (IL)-6 and IL-10, indicates that the course of COVID-19 consists of two stages and the transition between disease stages occurs by the end of the first week after onset of symptoms. At the initial stage, the immune military recognizes the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) as nonself and thus fires macrophages at the lungs against the virus. The first flame can control disease progression effectively. However, a trained immunocompetent system would maintain the fire of macrophages over an extended time. It lies in its immune memory in tissue-resident macrophages, especially alveolar macrophages, making a professionally trained immune system more likely to be feared by COVID-19 than an untrained immune system. In this manner, the trained immunocompetent system commits such a failure that causes the lungs to come down rapidly. The fact that younger age groups, including neonates and children, are less susceptible to COVID-19 than older age groups reflects that the natural affinities of the immune system that has not been trained thoroughly would be standard in combatting against COVID-19 whereas the higher affinities of the trained immune system for rapid activation of immune responses might raise faults - the lungs come down.
Collapse
Affiliation(s)
- Amene Saghazadeh
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center Hospital, Tehran University of Medical Sciences, Tehran, Iran.
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
38
|
How Prevalent Is Cancer in Confirmed Cases with Coronaviruses and Severe Acute Respiratory Syndromes? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1318:293-313. [PMID: 33973185 DOI: 10.1007/978-3-030-63761-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Novel coronavirus disease 2019 (COVID-19) has posed a crucial hazard to global health. The new species share similarities with the two previously emerged entities: severe acute respiratory syndrome (SARS) and the Middle East respiratory syndrome (MERS) that have caused outbreaks in 2002 and 2012, respectively. Interestingly, all of these coronaviruses can cause potentially fatal respiratory syndromes, though behave differently in patients with cancer compared to patients without cancer. Accordingly, the present chapter aims to, through a systematic investigation, estimate the prevalence of cancer among COVID-19, SARS, and MERS confirmed cases. Our analysis based on data from 78 studies with SARS, MERS, and COVID-19 confirmed cases showed that the prevalence of cancer (4.94%) stands at fourth place after hypertension (20.8%), diabetes (11.39%), and cardiovascular diseases (7.46%). According to the findings of the present study, comorbidities are significantly more common in patients with MERS compared to patients with COVID-19 and SARS, and this was the cancer case as well. Further studies need to address whether or not patients with coronaviruses and cancer are different from patients with coronaviruses without cancer in terms of clinical manifestations, laboratory findings, outcomes, and men to women ratio.
Collapse
|
39
|
Afarid M, Sanie-Jahromi F. Mesenchymal Stem Cells and COVID-19: Cure, Prevention, and Vaccination. Stem Cells Int 2021; 2021:6666370. [PMID: 34035820 PMCID: PMC8103964 DOI: 10.1155/2021/6666370] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/26/2021] [Accepted: 04/21/2021] [Indexed: 02/07/2023] Open
Abstract
COVID-19 disease has been a global health problem since late 2019. There are many concerns about the rapid spread of this disease, and yet, there is no approved treatment for COVID-19. Several biological interventions have been under study recently to investigate efficient treatment for this viral disease. Besides, many efforts have been made to find a safe way to prevent and vaccinate people against COVID-19 disease. In severe cases, patients suffer from acute respiratory distress syndrome usually associated with an increased level of inflammatory cytokines, called a cytokine storm. It seems that reequilibrating the hyperinflammatory response of the host immune system and regeneration of damaged cells could be the main way to manage the disease. Mesenchymal stem cells (MSCs) have been recently under investigation in this regard, and the achieved clinical outcomes show promising evidence for stem cell-based therapy of COVID-19. MSCs are known for their potential for immunomodulation, defense against virus infection, and tissue regeneration. MSCs are a newly emerged platform for designing vaccines and show promising evidence in this area. In the present study, we provided a thorough research study on the most recent clinical studies based on stem cells in the treatment of COVID-19 while introducing stem cell exclusivities for use as an immune disorder or lung cell therapy and its potential application for protection and vaccination against COVID-19.
Collapse
Affiliation(s)
- Mehrdad Afarid
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Fatemeh Sanie-Jahromi
- Poostchi Ophthalmology Research Center, Department of Ophthalmology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
40
|
Pourriyahi H, Saghazadeh A, Rezaei N. Altered immunoemotional regulatory system in COVID-19: From the origins to opportunities. J Neuroimmunol 2021; 356:577578. [PMID: 33933818 PMCID: PMC8050399 DOI: 10.1016/j.jneuroim.2021.577578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2021] [Revised: 03/19/2021] [Accepted: 04/13/2021] [Indexed: 10/26/2022]
Abstract
The emergence of the novel coronavirus (SARS-CoV-2) and the worldwide spread of the coronavirus disease (COVID-19) have led to social regulations that caused substantial changes in manners of daily life. The subsequent loneliness and concerns of the pandemic during social distancing, quarantine, and lockdown are psychosocial stressors that negatively affect the immune system. These effects occur through mechanisms controlled by the sympathetic nervous system (SNS) and the hypothalamic-pituitary-adrenocortical (HPA) axis that alter immune regulation, namely the conserved transcriptional response to adversity (CTRA), which promotes inflammation and diminishes antiviral responses, leading to inadequate protection against viral disease. Unhealthy eating habits, physical inactivity, sleep disturbances, and mental health consequences of COVID-19 add on to the pathological effects of loneliness, making immunity against this ferocious virus an even tougher fight. Therefore, social isolation, with its unintended consequences, has inherently paradoxical effects on immunity in relation to viral disease. Though this paradox can present a challenge, its acknowledgment can serve as an opportunity to address the associated issues and find ways to mitigate the adverse effects. In this review, we aim to explore, in detail, the pathological effects of the new social norms on immunity and present suggested methods to improve our physical, psychological, and healthcare abilities to fight viral infection in the context of the COVID-19 pandemic.
Collapse
Affiliation(s)
- Homa Pourriyahi
- Student Research Committee, School of Medicine, Iran University of Medical Sciences, Tehran, Iran; Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Amene Saghazadeh
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; MetaCognition Interest Group (MCIG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| |
Collapse
|
41
|
Peng HT, Rhind SG, Beckett A. Convalescent Plasma for the Prevention and Treatment of COVID-19: A Systematic Review and Quantitative Analysis. JMIR Public Health Surveill 2021; 7:e25500. [PMID: 33825689 PMCID: PMC8245055 DOI: 10.2196/25500] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/19/2021] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND The COVID-19 pandemic, caused by a novel coronavirus termed SARS-CoV-2, has spread quickly worldwide. Convalescent plasma (CP) obtained from patients following recovery from COVID-19 infection and development of antibodies against the virus is an attractive option for either prophylactic or therapeutic treatment, since antibodies may have direct or indirect antiviral activities and immunotherapy has proven effective in principle and in many clinical reports. OBJECTIVE We seek to characterize the latest advances and evidence in the use of CP for COVID-19 through a systematic review and quantitative analysis, identify knowledge gaps in this setting, and offer recommendations and directives for future research. METHODS PubMed, Web of Science, and Embase were continuously searched for studies assessing the use of CP for COVID-19, including clinical studies, commentaries, reviews, guidelines or protocols, and in vitro testing of CP antibodies. The screening process and data extraction were performed according to PRISMA (Preferred Reporting Items for Systematic Reviews and Meta-Analyses) guidelines. Quality appraisal of all clinical studies was conducted using a universal tool independent of study designs. A meta-analysis of case-control and randomized controlled trials (RCTs) was conducted using a random-effects model. RESULTS Substantial literature has been published covering various aspects of CP therapy for COVID-19. Of the references included in this review, a total of 243 eligible studies including 64 clinical studies, 79 commentary articles, 46 reviews, 19 guidance and protocols, and 35 in vitro testing of CP antibodies matched the criteria. Positive results have been mostly observed so far when using CP for the treatment of COVID-19. There were remarkable heterogeneities in the CP therapy with respect to patient demographics, donor antibody titers, and time and dose of CP administration. The studies assessing the safety of CP treatment reported low incidence of adverse events. Most clinical studies, in particular case reports and case series, had poor quality. Only 1 RCT was of high quality. Randomized and nonrandomized data were found in 2 and 11 studies, respectively, and were included for meta-analysis, suggesting that CP could reduce mortality and increase viral clearance. Despite promising pilot studies, the benefits of CP treatment can only be clearly established through carefully designed RCTs. CONCLUSIONS There is developing support for CP therapy, particularly for patients who are critically ill or mechanically ventilated and resistant to antivirals and supportive care. These studies provide important lessons that should inform the planning of well-designed RCTs to generate more robust knowledge for the efficacy of CP in patients with COVID-19. Future research is necessary to fill the knowledge gap regarding prevention and treatment for patients with COVID-19 with CP while other therapeutics are being developed.
Collapse
Affiliation(s)
- Henry T Peng
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Shawn G Rhind
- Defence Research and Development Canada, Toronto Research Centre, Toronto, ON, Canada
| | - Andrew Beckett
- St. Michael's Hospital, Toronto, ON, Canada
- Royal Canadian Medical Services, Ottawa, ON, Canada
| |
Collapse
|
42
|
Mohamed Khosroshahi L, Rezaei N. Dysregulation of the immune response in coronavirus disease 2019. Cell Biol Int 2021; 45:702-707. [PMID: 33289192 PMCID: PMC7753769 DOI: 10.1002/cbin.11517] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 11/04/2020] [Accepted: 11/28/2020] [Indexed: 01/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can trigger a cytokine storm in the pulmonary tissue by releasing various types of mediators, leading to acute respiratory distress syndrome (ARDS). Increased neutrophil-to-lymphocyte ratio, as well as CD4+ T lymphopenia, is reported in cases with novel coronavirus disease (COVID-19), meanwhile, lymphopenia is a significant finding in the majority of COVID-19 cases with a severe phenotype. Moreover, excessive activation of monocyte/macrophage and cytokine storms are associated with the severity of the disease and the related complications in SARS-CoV-2 infection. Understanding the immune response dysregulation in COVID-19 is essential to develop more effective diagnostic, therapeutic, and prophylactic strategies in this pandemic.
Collapse
Affiliation(s)
| | - Nima Rezaei
- Department of Immunology, School of MedicineTehran University of Medical SciencesTehranIran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA)Universal Scientific Education and Research Network (USERN)TehranIran
- Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical SciencesTehranIran
| |
Collapse
|
43
|
Saghazadeh A, Rezaei N. Biosensing surfaces and therapeutic biomaterials for the central nervous system in COVID-19. EMERGENT MATERIALS 2021; 4:293-312. [PMID: 33718777 PMCID: PMC7944718 DOI: 10.1007/s42247-021-00192-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 02/17/2021] [Indexed: 05/02/2023]
Abstract
COVID-19 can affect the central nervous system (CNS) indirectly by inflammatory mechanisms and even directly enter the CNS. Thereby, COVID-19 can evoke a range of neurosensory conditions belonging to infectious, inflammatory, demyelinating, and degenerative classes. A broad range of non-specific options, including anti-viral agents and anti-inflammatory protocols, is available with varying therapeutic. Due to the high mortality and morbidity in COVID-19-related brain damage, some changes to these general protocols, however, are necessary for ensuring the delivery of therapeutic(s) to the specific components of the CNS to meet their specific requirements. The biomaterials approach permits crossing the blood-brain barrier (BBB) and drug delivery in a more accurate and sustained manner. Beyond the BBB, drugs can protect neural cells, stimulate endogenous stem cells, and induce plasticity more effectively. Biomaterials for cell delivery exist, providing an efficient tool to improve cell retention, survival, differentiation, and integration. This paper will review the potentials of the biomaterials approach for the damaged CNS in COVID-19. It mainly includes biomaterials for promoting synaptic plasticity and modulation of inflammation in the post-stroke brain, extracellular vesicles, exosomes, and conductive biomaterials to facilitate neural regeneration, and artificial nerve conduits for treatment of neuropathies. Also, biosensing surfaces applicable to the first sensory interface between the host and the virus that encourage the generation of accelerated anti-viral immunity theoretically offer hope in solving COVID-19.
Collapse
Affiliation(s)
- Amene Saghazadeh
- Research Center for Immunodeficiencies, Children’s Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194 Iran
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children’s Medical Center Hospital, Tehran University of Medical Sciences, Dr. Qarib St, Keshavarz Blvd, Tehran, 14194 Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
44
|
Nejadghaderi SA, Saghazadeh A, Rezaei N. Health Care Policies and COVID-19 Prevalence: Is There Any Association? INTERNATIONAL JOURNAL OF HEALTH SERVICES 2021; 52:9-22. [PMID: 33686893 DOI: 10.1177/0020731421993940] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic has affected almost all countries and territories. As of December 6, 2020, the United States of America and India have the highest prevalence. Each country has implemented different strategies to control and reduce the spread of disease. Here, the association between prevalence number and health policies is evaluated by comparing 2 groups of countries: (1) Italy, the United States of America, Germany, Spain, and India with a higher prevalence than a linear trend line; and (2) Singapore and China with a lower or equal prevalence than linear forecasts. A rapid overview revealed that many countries have similar strategies for controlling COVID-19, including the suspension of air travel, the lockdown on the cities with the most cases detected, active case findings, monitoring of close contacts, and raising public awareness. Also, they used a gradual and phased plan to reopen activities. So, the difference between countries in the burden of COVID-19 can be attributable to the strict mode and nonstrict mode of implementation of strategies. Limitations at the national levels call for systemic rather than regional strategies.
Collapse
Affiliation(s)
- Seyed A Nejadghaderi
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,School of Medicine, 556492Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amene Saghazadeh
- Systematic Review and Meta-analysis Expert Group (SRMEG), Universal Scientific Education and Research Network (USERN), Tehran, Iran.,Research Center for Immunodeficiencies, Children's Medical Center, 48439Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Immunodeficiencies, Children's Medical Center, 48439Tehran University of Medical Sciences, Tehran, Iran.,Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.,Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
| |
Collapse
|
45
|
Acharya A, Pandey K, Thurman M, Challagundala KB, Vann KR, Kutateladze TG, Morales GA, Durden DL, Byrareddy SN. Blockade of SARS-CoV-2 infection in vitro by highly potent PI3K-α/mTOR/BRD4 inhibitor. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2021. [PMID: 33688653 DOI: 10.1101/2021.03.02.433604] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Pathogenic viruses like SARS-CoV-2 and HIV hijack the host molecular machinery to establish infection and survival in infected cells. This has led the scientific community to explore the molecular mechanisms by which SARS-CoV-2 infects host cells, establishes productive infection, and causes life-threatening pathophysiology. Very few targeted therapeutics for COVID-19 currently exist, such as remdesivir. Recently, a proteomic approach explored the interactions of 26 of 29 SARS-CoV-2 proteins with cellular targets in human cells and identified 67 interactions as potential targets for drug development. Two of the critical targets, the bromodomain and extra-terminal domain proteins (BETs): BRD2/BRD4 and mTOR, are inhibited by the dual inhibitory small molecule SF2523 at nanomolar potency. SF2523 is the only known mTOR PI3K-α/(BRD2/BRD4) inhibitor with potential to block two orthogonal pathways necessary for SARS-CoV-2 pathogenesis in human cells. Our results demonstrate that SF2523 effectively blocks SARS-CoV-2 replication in lung bronchial epithelial cells in vitro , showing an IC 50 value of 1.5 µM, comparable to IC 50 value of remdesivir (1.1 µM). Further, we demonstrated that the combination of doses of SF2523 and remdesivir is highly synergistic: it allows for the reduction of doses of SF2523 and remdesivir by 25-fold and 4-fold, respectively, to achieve the same potency observed for a single inhibitor. Because SF2523 inhibits two SARS-CoV-2 driven pathogenesis mechanisms involving BRD2/BRD4 and mTOR signaling, our data suggest that SF2523 alone or in combination with remdesivir could be a novel and efficient therapeutic strategy to block SARS-CoV-2 infection and hence be beneficial in preventing severe COVID-19 disease evolution. One Sentence Summary Evidence of in silico designed chemotype (SF2523) targeting PI3K-α/mTOR/BRD4 inhibits SARS-CoV-2 infection and is highly synergistic with remdesivir.
Collapse
|
46
|
Kiely P, Hoad VC, Seed CR, Gosbell IB. Severe acute respiratory syndrome coronavirus-2: implications for blood safety and sufficiency. Vox Sang 2021; 116:155-166. [PMID: 32965726 PMCID: PMC7537511 DOI: 10.1111/vox.13009] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2020] [Revised: 08/28/2020] [Accepted: 09/01/2020] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND OBJECTIVE Severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) is a novel coronavirus, first identified in China at the end of 2019 and has now caused a worldwide pandemic. In this review, we provide an overview of the implications of SARS-CoV-2 for blood safety and sufficiency. MATERIAL AND METHOD We searched the PubMed database, the preprint sites bioRxiv and medRxiv, the websites of the World Health Organization, European Centre for Disease Prevention and Control, the US Communicable Diseases Center and monitored ProMed updates. RESULTS An estimated 15%-46% of SARS-CoV-2 infections are asymptomatic. The reported mean incubation period is 3 to 7 days with a range of 1-14 days. The blood phase of SARS-CoV-2 appears to be brief and low level, with RNAaemia detectable in only a small proportion of patients, typically associated with more severe disease and not demonstrated to be infectious virus. An asymptomatic blood phase has not been demonstrated. Given these characteristics of SARS-CoV-2 infection and the absence of reported transfusion transmission (TT), the TT risk is currently theoretical. To mitigate any potential TT risk, but more importantly to prevent respiratory transmission in donor centres, blood centres can implement donor deferral policies based on travel, disease status or potential risk of exposure. CONCLUSION The TT risk of SARS-CoV-2 appears to be low. The biggest risk to blood services in the current COVID-19 pandemic is to maintain the sufficiency of the blood supply while minimizing respiratory transmission of SARS-CoV-19 to donors and staff while donating blood.
Collapse
Affiliation(s)
- Philip Kiely
- Cinical Services and ResearchAustralian Red Cross LifebloodMelbourneVICAustralia
- Transfusion Research UnitDepartment of Epidemiology and Preventive MedicineMonash UniversityMelbourneVICAustralia
| | - Veronica C. Hoad
- Cinical Services and ResearchAustralian Red Cross LifebloodMelbourneVICAustralia
| | - Clive R. Seed
- Cinical Services and ResearchAustralian Red Cross LifebloodMelbourneVICAustralia
| | - Iain B. Gosbell
- Cinical Services and ResearchAustralian Red Cross LifebloodMelbourneVICAustralia
- Western Sydney UniversityPenrithNSWAustralia
| |
Collapse
|
47
|
Ortega MA, Fraile-Martínez O, García-Montero C, García-Gallego S, Sánchez-Trujillo L, Torres-Carranza D, Álvarez-Mon MÁ, Pekarek L, García-Honduvilla N, Bujan J, Álvarez-Mon M, Asúnsolo Á, De La Torre B. An integrative look at SARS‑CoV‑2 (Review). Int J Mol Med 2021; 47:415-434. [PMID: 33416095 PMCID: PMC7797443 DOI: 10.3892/ijmm.2020.4828] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 12/04/2020] [Indexed: 02/06/2023] Open
Abstract
SARS‑CoV‑2 is a newly discovered member of the betacoronaviruses and the etiological agent of the disease COVID‑19. SARS‑CoV‑2 is responsible for the worldwide pandemic which has been taking place in 2020, and is causing a markedly higher number of infections and deaths compared to previous coronaviruses, such as SARS‑CoV or MERS‑CoV. Based on updated scientific literature, the present review compiles the most relevant knowledge of SARS‑CoV‑2, COVID‑19 and the clinical and typical responses that patients have exhibited against this virus, discussing current and future therapies, and proposing strategies with which to combat the disease and prevent a further global threat. The aggressiveness of SARS‑CoV‑2 arises from its capacity to infect, and spread easily and rapidly through its tight interaction with the human angiotensin‑converting enzyme 2 (ACE‑2) receptor. While not all patients respond in a similar manner and may even be asymptomatic, a wide range of manifestations associated with COVID‑19 have been described, particularly in vulnerable population groups, such as the elderly or individuals with other underlying conditions. The proper function of the immune system plays a key role in an individual's favorable response to SARS‑CoV‑2 infection. A hyperactivated response, on the contrary, could account for the more severe cases of COVID‑19, and this may finally lead to respiratory insufficiency and other complications, such as thrombotic or thromboembolic events. The development of novel therapies and vaccines designed to control and regulate a proper immune system response will be key to clinical management, prevention measures and effective population screening to attenuate the transmission of this novel RNA virus.
Collapse
Affiliation(s)
- Miguel A. Ortega
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid
- Tumor Registry, Pathological Anatomy Service, Prince of Asturias University Hospital, Alcalá de Henares, 28801 Madrid
| | - Oscar Fraile-Martínez
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid
| | - Cielo García-Montero
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid
| | - Sandra García-Gallego
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid
- Department of Organic and Inorganic Chemistry, 'Andrés M. del Río' Institute of Chemistry (IQAR), University of Alcalá, CIBER-BBN, 28805 Madrid
| | - Lara Sánchez-Trujillo
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid
- Tumor Registry, Pathological Anatomy Service, Prince of Asturias University Hospital, Alcalá de Henares, 28801 Madrid
| | | | - Miguel Ángel Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid
- Department of Psychiatry and Medical Psychology, Infanta Leonor University Hospital, 28031 Madrid
| | - Leonel Pekarek
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid
| | - Natalio García-Honduvilla
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid
| | - Julia Bujan
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid
| | - Melchor Álvarez-Mon
- Department of Medicine and Medical Specialties, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid
- Internal Medicine Service, Prince of Asturias University Hospital, CIBEREHD, Alcalá de Henares, 28805 Madrid
| | - Ángel Asúnsolo
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid
- Preventive Medicine and Public Health Area, Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid, Spain
- Department of Epidemiology and Biostatistics, Graduate School of Public Health and Health Policy, New York University, New York, NY 10027, USA
| | - Basilio De La Torre
- Ramón y Cajal Health Research Institute (IRYCIS), 28034 Madrid
- Preventive Medicine and Public Health Area, Department of Surgery, Medical and Social Sciences, Faculty of Medicine and Health Sciences, University of Alcalá, Alcalá de Henares, 28801 Madrid, Spain
- Traumatology Service, Ramón y Cajal University Hospital, 28034 Madrid, Spain
| |
Collapse
|
48
|
Delavari S, Abolhassani H, Abolnezhadian F, Babaha F, Iranparast S, Ahanchian H, Moazzen N, Nabavi M, Arshi S, Fallahpour M, Bemanian MH, Shokri S, Momen T, Sadeghi-Shabestari M, Molatefi R, Shirkani A, Vosughimotlagh A, Safarirad M, Sharifzadeh M, Pashangzadeh S, Salami F, Shirmast P, Rezaei A, Moeini Shad T, Mohraz M, Rezaei N, Hammarström L, Yazdani R, Aghamohamamdi A. Impact of SARS-CoV-2 Pandemic on Patients with Primary Immunodeficiency. J Clin Immunol 2021; 41:345-355. [PMID: 33263173 PMCID: PMC7707812 DOI: 10.1007/s10875-020-00928-x] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 11/16/2020] [Indexed: 12/18/2022]
Abstract
Although it is estimated that COVID-19 life-threatening conditions may be diagnosed in less than 1:1000 infected individuals below the age of 50, but the real impact of this pandemic on pediatric patients with different types of primary immunodeficiency (PID) is not elucidated. The current prospective study on a national registry of PID patients showed that with only 1.23 folds higher incidence of infections, these patients present a 10-folds higher mortality rate compared to population mainly in patients with combined immunodeficiency and immune dysregulation. Therefore, further management modalities against COVID-19 should be considered to improve the survival rate in these two PID entities using hematopoietic stem cell transplantation and immunomodulatory agents.
Collapse
Affiliation(s)
- Samaneh Delavari
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Hassan Abolhassani
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden.
| | - Farhad Abolnezhadian
- Department of Pediatrics, Abuzar Children's Hospital, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Fateme Babaha
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Sara Iranparast
- Department of immunology, Faculty of Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Hamid Ahanchian
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nasrin Moazzen
- Allergy Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Nabavi
- Department of Allergy and Clinical Immunology, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Saba Arshi
- Department of Allergy and Clinical Immunology, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Morteza Fallahpour
- Department of Allergy and Clinical Immunology, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Mohammad Hassan Bemanian
- Department of Allergy and Clinical Immunology, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Sima Shokri
- Department of Allergy and Clinical Immunology, Rasool e Akram Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Tooba Momen
- Department of Allergy and Clinical Immunology, Child Growth and Development Research Center, Research Institute for Primordial Prevention of Noncommunicable Disease, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mahnaz Sadeghi-Shabestari
- Immunology research center of Tabriz, TB and lung research center of Tabriz, children hospital, Tabriz University of Medical Science, Tabriz, Iran
| | - Rasol Molatefi
- Department of Pediatrics, Bo-Ali Children's Hospital of Ardabil University of Medical Sciences, Ardabil, Iran
| | - Afshin Shirkani
- Allergy and Clinical Immunology Department, Bushehr University of Medical Sciences, School of Medicine, Bushehr, Iran
| | - Ahmad Vosughimotlagh
- Department of Pediatrics, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Molood Safarirad
- Department of Pediatrics, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Meisam Sharifzadeh
- Division of Pediatric Critical Care, Children Medical Center, Tehran University of Medical Science, Tehran, Iran
| | - Salar Pashangzadeh
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Fereshte Salami
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Paniz Shirmast
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Arezou Rezaei
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Tannaz Moeini Shad
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Minoo Mohraz
- Iranian Research Center for HIV/AIDS, Iranian Institute for Reduction of High-Risk Behaviors, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Lennart Hammarström
- Division of Clinical Immunology, Department of Laboratory Medicine, Karolinska Institute at Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - Reza Yazdani
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Asghar Aghamohamamdi
- Research Center for Primary Immunodeficiencies, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
49
|
Kreuzberger N, Hirsch C, Chai KL, Piechotta V, Valk SJ, Estcourt LJ, Salomon S, Tomlinson E, Monsef I, Wood EM, So-Osman C, Roberts DJ, McQuilten Z, Skoetz N. SARS-CoV-2-neutralising monoclonal antibodies for treatment of COVID-19. THE COCHRANE DATABASE OF SYSTEMATIC REVIEWS 2021. [DOI: 10.1002/14651858.cd013825] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Nina Kreuzberger
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf; Faculty of Medicine and University Hospital Cologne, University of Cologne; Cologne Germany
| | - Caroline Hirsch
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf; Faculty of Medicine and University Hospital Cologne, University of Cologne; Cologne Germany
| | - Khai Li Chai
- Transfusion Research Unit, School of Public Health and Preventive Medicine; Monash University; Melbourne Australia
| | - Vanessa Piechotta
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf; Faculty of Medicine and University Hospital Cologne, University of Cologne; Cologne Germany
| | - Sarah J Valk
- Jon J van Rood Center for Clinical Transfusion Research; Sanquin/Leiden University Medical Center; Leiden Netherlands
| | - Lise J Estcourt
- Haematology/Transfusion Medicine; NHS Blood and Transplant; Oxford UK
| | - Susanne Salomon
- Laboratory of Experimental Immunology, Institute of Virology; Faculty of Medicine and University Hospital Cologne, University of Cologne; Cologne Germany
| | - Eve Tomlinson
- Cochrane Gynaecological, Neuro-oncology and Orphan Cancers; 1st Floor Education Centre, Royal United Hospital; Bath UK
| | - Ina Monsef
- Cochrane Haematology, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf; Faculty of Medicine and University Hospital Cologne, University of Cologne; Cologne Germany
| | - Erica M Wood
- Transfusion Research Unit, School of Public Health and Preventive Medicine; Monash University; Melbourne Australia
| | | | - David J Roberts
- Systematic Review Initiative; NHS Blood and Transplant; Oxford UK
| | - Zoe McQuilten
- Transfusion Research Unit, School of Public Health and Preventive Medicine; Monash University; Melbourne Australia
| | - Nicole Skoetz
- Cochrane Cancer, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf; Faculty of Medicine and University Hospital Cologne, University of Cologne; Cologne Germany
| |
Collapse
|
50
|
Predicting Fundraising Performance in Medical Crowdfunding Campaigns Using Machine Learning. ELECTRONICS 2021. [DOI: 10.3390/electronics10020143] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The coronavirus disease (COVID-19) pandemic has flooded public health organizations around the world, highlighting the significance and responsibility of medical crowdfunding in filling a series of gaps and shortcomings in the publicly funded health system and providing a new fundraising solution for people that addresses health-related needs. However, the fact remains that medical fundraising from crowdfunding sources is relatively low and only a few studies have been conducted regarding this issue. Therefore, the performance predictions and multi-model comparisons of medical crowdfunding have important guiding significance to improve the fundraising rate and promote the sustainable development of medical crowdfunding. Based on the data of 11,771 medical crowdfunding campaigns from a leading donation-based platform called Weibo Philanthropy, machine-learning algorithms were applied. The results demonstrate the potential of ensemble-based machine-learning algorithms in the prediction of medical crowdfunding project fundraising amounts and leave some insights that can be taken into consideration by new researchers and help to produce new management practices.
Collapse
|