1
|
Tang Z, Yu F, Peng Z, Gao N, Liao Z, Zhao S, Xia Y, Fu H, Zhong S, Long W, He Z. Sinomenine ameliorates vascular calcification by inhibiting pyroptosis-related molecules and AEG-1 in chronic kidney disease. Eur J Pharmacol 2025; 996:177594. [PMID: 40187593 DOI: 10.1016/j.ejphar.2025.177594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 03/27/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025]
Abstract
BACKGROUNDS Vascular calcification (VC) is an important factor for mortality in chronic kidney disease (CKD). Sinomenine can suppress atherosclerosis. However, its role in CKD-associated-vascular calcification and mechanisms remain unclear. METHODS Sprague-Dawley rats that were fed with high-phosphorus diet and adenine suspension were used to construct the calcification model in CKD. Calcification from rats or cells were analyzed using micro-CT and alizarin red staining. Levels of NLRP-3, Caspase-1, GSDMD and AEG-1 were measured by qPCR, western blotting, and immunohistochemistry. Transfection experiment was used in function study. RESULTS CKD rats fed with high-phosphorus diet and adenine suspension increased aortic calcification over time. Micro-CT images revealed the distribution and severity of the calcification, and these lesions were significantly decreased in the Sinomenine (SIN) group. This is similar to the results obtained for the AR staining of translucent samples. Additionally, aortas from CKD rats that were treated with 30 mg/kg/d SIN showed a down-regulation of NLRP3, Caspase-1, GSDMD and AEG-1 expression compared with aortas from CKD rats. Sinomenine exhibited similar inhibitory effects on NLRP3 and Caspase-1 as VX-765 in the aortas of uremic rats and calcified VSMCs. Moreover, VSMC transfected with pc-AEG-1 accelerated the VSMC calcification while transfection with si-AEG-1 ameliorated the calcification. Importantly, sinomenine abolished the VSMC calcification induced by AEG-1 overexpression under the uremia condition. CONCLUSIONS Our findings indicated that sinomenine could ameliorate vascular calcification in CKD rats and inhibit hyperphosphatemia-induced calcifying VSMCs via inhibiting pyroptosis-related molecules and AEG-1. Sinomenine might serve as an effective therapeutic agent for CKD-associated vascular calcification.
Collapse
Affiliation(s)
- Zixu Tang
- Department of Nephrology, Yiyang Central Hospital, Yiyang, Hunan, China; Department of Gastroenterology, Yiyang Central Hospital, Yiyang, Hunan, China; Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Fengyi Yu
- Department of Nephrology, Yiyang Central Hospital, Yiyang, Hunan, China; Department of Gastroenterology, Yiyang Central Hospital, Yiyang, Hunan, China; Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Zhong Peng
- Department of Gastroenterology, Yiyang Central Hospital, Yiyang, Hunan, China
| | - Ning Gao
- Department of Nephrology, Yiyang Central Hospital, Yiyang, Hunan, China
| | - Zihao Liao
- Department of Nephrology, Yiyang Central Hospital, Yiyang, Hunan, China; Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Song Zhao
- Department of Nephrology, Yiyang Central Hospital, Yiyang, Hunan, China; Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yuan Xia
- Department of Nephrology, Yiyang Central Hospital, Yiyang, Hunan, China
| | - Haojun Fu
- Department of Nephrology, Yiyang Central Hospital, Yiyang, Hunan, China
| | - Shuzhu Zhong
- Department of Nephrology, Yiyang Central Hospital, Yiyang, Hunan, China
| | - Wei Long
- Department of Nephrology, Yiyang Central Hospital, Yiyang, Hunan, China
| | - Zhangxiu He
- Department of Nephrology, Yiyang Central Hospital, Yiyang, Hunan, China; Hengyang Medical School, University of South China, Hengyang, Hunan, China.
| |
Collapse
|
2
|
Li D, Zhong Z, Ko CN, Tian T, Yang C. From mundane to classic: Sinomenine as a multi-therapeutic agent. Br J Pharmacol 2025; 182:2159-2180. [PMID: 37846470 DOI: 10.1111/bph.16267] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/10/2023] [Accepted: 10/08/2023] [Indexed: 10/18/2023] Open
Abstract
Sinomenine is an active substance extracted from the traditional Chinese medicine Sinomenium acutum. Sinomenine has been shown to mediate a wide range of pharmacological actions and is known to possess good anti-inflammatory, immunosuppressive, antitumor, neuroprotective, antiarrhythmic and other pharmacological effects. Understanding the underlying mechanisms and the association between the targets and the pharmaceutical effects on different diseases is crucial to the discovery and design of new treatment strategies. In this review, we aim to give a systematic and comprehensive overview of the research progress of sinomenine over the past 20 years. We first describe the metabolism of sinomenine in vivo and then summarize the pharmacological actions of sinomenine on different diseases. Furthermore, the potential binding properties of sinomenine and the potential of developing new sinomenine-based drugs are also reviewed. LINKED ARTICLES: This article is part of a themed issue Natural Products and Cancer: From Drug Discovery to Prevention and Therapy. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v182.10/issuetoc.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhangfeng Zhong
- Macao Centre for Research and Development in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao SAR, China
| | - Chung-Nga Ko
- The International Eye Research Institute of The Chinese University of Hong Kong (Shenzhen), Shenzhen, China
| | - Tiantian Tian
- Center for Biological Science and Technology, Advanced Institute of Natural Sciences, Beijing Normal University at Zhuhai, Zhuhai, China
| | - Chao Yang
- National Engineering Research Center For Marine Aquaculture, Institute of Innovation & Application, Zhejiang Ocean University, Zhoushan, China
| |
Collapse
|
3
|
Deng YY, Ma XY, He PF, Luo Z, Tian N, Dong SN, Zhang S, Pan J, Miao PW, Liu XJ, Chen C, Zhu PY, Pang B, Wang J, Zheng LY, Zhang XK, Zhang MY, Zhang MZ. Integrated UPLC-ESI-MS/MS, network pharmacology, and transcriptomics to reveal the material basis and mechanism of Schisandra chinensis Fruit Mixture against diabetic nephropathy. Front Immunol 2025; 15:1526465. [PMID: 40046619 PMCID: PMC11879837 DOI: 10.3389/fimmu.2024.1526465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Accepted: 12/26/2024] [Indexed: 05/13/2025] Open
Abstract
Backgrounds It has been regarded as an essential treatment option for diabetic nephropathy (DN) in Traditional Chinese medicine. Previous studies have demonstrated the anti-DN efficacy of Schisandra chinensis Fruit Mixture (SM); however, a comprehensive chemical fingerprint is still uncertain, and its mechanism of action, especially the potential therapeutic targets of anti-DN, needs to be further elucidated. Objective Potential mechanisms of SM action on DN were explored through network pharmacology and experimental validation. Methods The chemical composition of SM was analyzed using UPLC-ESI-MS/MS technology. Active bioactive components and potential targets of SM were identified using TCMSP, SwissDrugDesign, and SymMap platforms. Differentially expressed genes were determined using microarray gene data from the GSE30528 dataset. Related genes for DN were obtained from online databases, which include GeneCards, OMIM and DisGeNET. PPI networks and compound-target-pathway networks were constructed using Cytoscape. Functional annotation was performed using R software for GO enrichment and KEGG pathway analysis. The DN model was built for experimental validation using a high-sugar and high-fat diet combined with STZ induction. Hub targets and critical signaling pathways were detected using qPCR, Western blotting and immunofluorescence. Results Utilizing the UPLC-ESI-MS/MS coupling technique, a comprehensive analysis identified 1281 chemical components of SM's ethanol extract, with 349 of these components recognized as potential bioactive compounds through network pharmacology. Through this analysis, 126 shared targets and 15 HUB targets were pinpointed. Of these, JAK2 is regarded as the most critical gene. Enrichment analysis revealed that SM primarily operates within the PI3K/AKT signaling pathway. In vivo experiments confirmed that SM improved pathological injury and renal function in rats with DN while improving mitochondrial morphology and function and modulating the expression of proteins linked to apoptosis (cleaved-caspase-3, Bax, and Bcl-2) and pro-inflammatory factors (IL-6 and TNF-α). Mechanistically, SM alleviates DN primarily by suppressing the PI3K/AKT/mTOR and JAK2/STAT3 signaling pathways to fulfill the energy needs of renal tissues. Furthermore, molecular docking analysis provided direct validation of these findings. Conclusion The findings of this study offer initial indications of the active component and robust anti-inflammatory and anti-apoptotic characteristics of SM in the mitigation of DN, along with its capacity to safeguard the integrity and functionality of mitochondria. This research unequivocally validates the favorable anti-DN effects of SM, indicating its potential as a viable pharmaceutical agent for the management of DN.
Collapse
Affiliation(s)
- Yuan-Yuan Deng
- Graduate School, Tianjin Medical University, Tianjin, China
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
- Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing, China
- Department of Nephrology, Dongfeng Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xin-Yu Ma
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Peng-Fei He
- Graduate School, Tianjin Medical University, Tianjin, China
- Department of Nephrology, Dongfeng Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Zheng Luo
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ni Tian
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| | - Shao-Ning Dong
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| | - Sai Zhang
- Graduate School, Tianjin Medical University, Tianjin, China
| | - Jian Pan
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| | - Peng-Wei Miao
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| | - Xiang-Jun Liu
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| | - Cui Chen
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| | - Peng-Yu Zhu
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| | - Bo Pang
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
- School of Clinical Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jing Wang
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
- School of Clinical Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Li-Yang Zheng
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
- School of Clinical Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xin-Kun Zhang
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| | | | - Mian-Zhi Zhang
- Graduate School, Tianjin Medical University, Tianjin, China
- Department of Nephrology, Tianjin Academy of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
4
|
Wang R, Qu J, Chen M, Han T, Liu Z, Wang H. NSUN2 knockdown inhibits macrophage infiltration in diabetic nephropathy via reducing N5-methylcytosine methylation of SOCS1. Int Urol Nephrol 2025; 57:643-653. [PMID: 39382603 DOI: 10.1007/s11255-024-04214-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 09/18/2024] [Indexed: 10/10/2024]
Abstract
OBJECTIVE N5-methylcytosine (m5C) methylation is involved in various disease progression; however, its role in diabetic nephropathy (DN) has not been studied. The aim of this study was to investigate the role of NSUN2 in DN and the underlying mechanism. METHODS Streptozotocin-induced experimental mouse model was generated to analyze the role of NSUN2 in vivo, and high glucose (HG)-treated Raw264.7 cells were used to assess the effect of NSUN2 on macrophage infiltration in vitro. The regulation of NSUN2 on SOCS1 m5C methylation was evaluated using m5C methylated RNA immunoprecipitation, luciferase reporter analysis, and RNA stability determination assay. RESULTS The results indicated that NSUN2 was highly expressed in the blood and kidney of DN mice. Knockdown of NSUN2 alleviated kidney damage, reduced blood glucose and urine albumin, and suppressed macrophage infiltration in DN mice. Moreover, NSUN2 interacted with SOCS1, and silenced NSUN2 inhibited m5C levels of SOCS1 to reduce SOCS1 mRNA stability. Additionally, interference with NSUN2 suppressed macrophage migration, invasion, and infiltration by positively regulating SOCS1 expression under HG conditions. CONCLUSION In conclusion, silencing of NSUN2 inhibits macrophage infiltration by reducing m5C modification of SOCS1, and thereby attenuates renal injury. The findings suggest a novel regulatory mechanism between NSUN2-mediated m5C modification and DN.
Collapse
Affiliation(s)
- Ru Wang
- Department of Laboratory Medcine, The 305 Hospital of PLA, No.13 Wenjin Street, Xicheng District, Beijing, 100017, China
| | - Jianchang Qu
- Department of Endocrinology, The 305 Hospital of PLA, No.13 Wenjin Street, Xicheng District, Beijing, 100017, China
| | - Meiqiong Chen
- Department of Pathology, The 305 Hospital of PLA, No.13 Wenjin Street, Xicheng District, Beijing, 100017, China
| | - Tenglong Han
- Department of Laboratory Medcine, The 305 Hospital of PLA, No.13 Wenjin Street, Xicheng District, Beijing, 100017, China
| | - Zhipeng Liu
- Medical Department, The 305 Hospital of PLA, No.13 Wenjin Street, Xicheng District, Beijing, 100017, China
| | - Huizhong Wang
- Department of Laboratory Medcine, The 305 Hospital of PLA, No.13 Wenjin Street, Xicheng District, Beijing, 100017, China.
| |
Collapse
|
5
|
Xu Y, Sha W, Lu J, Yu S, Jin X, Chen C, Ge G, Lei T. Danggui Liuhuang Decoction ameliorates endothelial dysfunction by inhibiting the JAK2/STAT3 mediated inflammation. JOURNAL OF ETHNOPHARMACOLOGY 2025; 340:119170. [PMID: 39615770 DOI: 10.1016/j.jep.2024.119170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 11/24/2024] [Accepted: 11/27/2024] [Indexed: 12/10/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Vascular endothelial dysfunction (VED) is recognized as a key triggering diabetic vascular complications. Danggui Liuhuang Decoction (DGLHD) has shown potential in mitigating these complications. However, the clinical efficacy of DGLHD in enhancing endothelial function, as well as the molecular mechanisms underlying its alleviation of Type 2 Diabetes-Related Vascular Endothelial Dysfunction (T2DM-VED), remains insufficiently understood. AIM OF THE STUDY This study aims to validate the therapeutic efficacy of DGLHD in ameliorating T2DM-VED through clinical research. Furthermore it seeks to analyze the pharmacodynamic basis and molecular mechanisms of DGLHD, elucidating the biological processes through which DGLHD alleviates VED in type 2 diabetes mellitus (T2DM). MATERIALS AND METHODS Patients diagnosed with "Yin deficiency with hyperactive fire syndrome", who are at a high risk for atherosclerotic cardiovascular disease (ASCVD) associated with T2DM, were recruited for this study. The effect of DGLHD on vascular endothelial function in T2DM was assessed by measuring the levels of pro-inflammatory factors through enzyme-linked immunosorbent assay (ELISA) and flow-mediated dilation (FMD). The primary components of DGLHD were analyzed using the UHPLC-Q-Exactive Orbitrap system. Potential therapeutic targets of DGLHD were predicted using network pharmacology and molecular docking analysis. To validate the mechanism of DGLHD on T2DM-VED, endothelial injury and inflammation cell models were established using human umbilical vein endothelial cells (HUVECs). A mouse model of diabetic endothelial injury was also developed to observe the effects of DGLHD on pro-inflammatory factors and vascular endothelial factors were observed through immunohistochemistry. Additionally, the effects on the janus kinase 2 (JAK2) / signal transducer and activator of transcription 3 (STAT3) signaling pathway were observed through Western blot experiments. RESULTS DGLHD was found to contain 201 active components. Network pharmacology analysis indicated that the treatment of T2DM-VED with DGLHD is associated with modulation of the JAK2/STAT3 signaling pathway. Molecular docking analysis demonstrated that small molecules in DGLHD interact with JAK2 and STAT3. Our clinical study demonstrated that DGLHD significantly reduces the levels of pro-inflammatory factors and improves FMD readings in diabetic patients, thereby alleviating T2DM-VED. DGLHD was shown to inhibit the phosphorylation of JAK2 and STAT3, which blocks the JAK2/STAT3 signaling pathway transmission, reducing the release of pro-inflammatory and vascular endothelial growth factors, and preventing the inflammatory response in vivo and in vitro. CONCLUSION This study demonstrates the potential efficacy of DGLHD in improving endothelial function in T2DM patients at high risk for ASCVD. By inhibiting the JAK2/STAT3 signaling pathway, DGLHD effectively reduces the release of pro-inflammatory factors and vascular endothelial growth factors, alleviating VED.
Collapse
Affiliation(s)
- Yuanying Xu
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200333, China.
| | - Wenjun Sha
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200333, China.
| | - Jun Lu
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200333, China.
| | - Shanshan Yu
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200333, China.
| | - Xinyan Jin
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200333, China.
| | - Cheng Chen
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200333, China.
| | - Guangbo Ge
- Shanghai Frontiers Science Center of TCM Chemical Biology, Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, China.
| | - Tao Lei
- Department of Endocrinology, Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, 200333, China.
| |
Collapse
|
6
|
Xu L, Liu W, Huang X, Sun T, Mei L, Liu M, Ren Z, Wang M, Zheng H, Wang Q, Li D, Wang Q, Ke X. Sinomenine hydrochloride improves DSS-induced colitis in mice through inhibition of the Notch signaling pathway. BMC Gastroenterol 2024; 24:451. [PMID: 39695403 DOI: 10.1186/s12876-024-03546-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 11/28/2024] [Indexed: 12/20/2024] Open
Abstract
OBJECTIVE To study the therapeutic effect of sinomenine hydrochloride (SH) on dextran sodium sulfate (DSS)-induced colitis in mice as an animal model and the changes of Notch signaling pathway in colon tissue of mice after treatment. METHODS Twenty-four mice were randomly divided into control group, model group, SH low-dose group (20 mg/kg) and SH high-dose group (60 mg/kg), with 6 mice in each group. Disease activity index (DAI), colonic mucosal injury index and colonic histopathological score were calculated. The expression levels of related genes, proteins in Notch signaling pathway and inflammatory factors were quantified. RESULTS SH can significantly reduce the symptoms of colitis mice, and can significantly reduce the DAI score (Model: 3.44 ± 0.27; SH-20: 2.50 ± 0.18; SH-60: 1.89 ± 0.17; P < 0.001) and histopathological injury degree (Model: 7.67 ± 0.52; SH-20: 5.17 ± 0.75, P < 0.01; SH-60: 3.33 ± 0.52, P < 0.001). SH can down-regulate the expression levels of Notch1, NICD1, Jagged1 and Hes1 proteins in colon tissue of colitis mice (Model: 1.92 ± 0.16, 1.83 ± 0.21, 2.23 ± 0.22, 1.91 ± 0.17; SH-20: 1.56 ± 0.12, 1.39 ± 0.13, 1.58 ± 0.12, 1.38 ± 0.11; SH-60: 1.24 ± 0.09, 1.23 ± 0.10, 1.23 ± 0.11, 1.22 ± 0.09; P < 0.01), and reduce the contents of serum pro-inflammatory cytokines TNF-α, IL-1β and IL-6 (Model: 718.53 ± 81.81, 51.62 ± 2.80, 444.07 ± 67.77; SH-20: 544.72 ± 90.03, 34.10 ± 2.90, 345.43 ± 43.40; SH-60: 434.11 ± 71.75, 29.44 ± 3.70, 236.11 ± 29.35; P < 0.001). CONCLUSION The therapeutic effect of SH on DSS-induced colitis in mice may be related to inhibiting the overactivation of Notch signaling pathway.
Collapse
Affiliation(s)
- Linxia Xu
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China
| | - Wei Liu
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China
| | - Xixiang Huang
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China
| | - Tong Sun
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China
| | - Letian Mei
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China
| | - Man Liu
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China
| | - Zhi Ren
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China
| | - Meng Wang
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China
| | - Hailun Zheng
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China
| | - Qiangwu Wang
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China
| | - Dapeng Li
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China
| | - Qizhi Wang
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China
| | - Xiquan Ke
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui, 233000, China.
| |
Collapse
|
7
|
Deng L, Shi C, Li R, Zhang Y, Wang X, Cai G, Hong Q, Chen X. The mechanisms underlying Chinese medicines to treat inflammation in diabetic kidney disease. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118424. [PMID: 38844252 DOI: 10.1016/j.jep.2024.118424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 05/03/2024] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
ETHNIC PHARMACOLOGICAL RELEVANCE Diabetic kidney disease (DKD) is the main cause of end-stage renal disease (ESRD), which is a public health problem with a significant economic burden. Serious adverse effects, such as hypotension, hyperkalemia, and genitourinary infections, as well as increasing adverse cardiovascular events, limit the clinical application of available drugs. Plenty of randomized controlled trials(RCTs), meta-analysis(MAs) and systematic reviews(SRs) have demonstrated that many therapies that have been used for a long time in medical practice including Chinese patent medicines(CPMs), Chinese medicine prescriptions, and extracts are effective in alleviating DKD, but the mechanisms by which they work are still unknown. Currently, targeting inflammation is a central strategy in DKD drug development. In addition, many experimental studies have identified many Chinese medicine prescriptions, medicinal herbs and extracts that have the potential to alleviate DKD. And part of the mechanisms by which they work have been uncovered. AIM OF THIS REVIEW This review aims to summarize therapies that have been proven effective by RCTs, MAs and SRs, including CPMs, Chinese medicine prescriptions, and extracts. This review also focuses on the efficiency and potential targets of Chinese medicine prescriptions, medicinal herbs and extracts discovered in experimental studies in improving immune inflammation in DKD. METHODS We searched for relevant scientific articles in the following databases: PubMed, Google Scholar, and Web of Science. We summarized effective CPMs, Chinese medicine prescriptions, and extracts from RCTs, MAs and SRs. We elaborated the signaling pathways and molecular mechanisms by which Chinese medicine prescriptions, medicinal herbs and extracts alleviate inflammation in DKD according to different experimental studies. RESULTS After overviewing plenty of RCTs with the low hierarchy of evidence and MAs and SRs with strong heterogeneity, we still found that CPMs, Chinese medicine prescriptions, and extracts exerted promising protective effects against DKD. However, there is insufficient evidence to prove the safety of Chinese medicines. As for experimental studies, Experiments in vitro and in vivo jointly demonstrated the efficacy of Chinese medicines(Chinese medicine prescriptions, medicinal herbs and extracts) in DKD treatment. Chinese medicines were able to regulate signaling pathways to improve inflammation in DKD, such as toll-like receptors, NLRP3 inflammasome, Nrf2 signaling pathway, AMPK signaling pathway, MAPK signaling pathway, JAK-STAT, and AGE/RAGE. CONCLUSION Chinese medicines (Chinese medicine prescriptions, medicinal herbs and extracts) can improve inflammation in DKD. For drugs that are effective in RCTs, the underlying bioactive components or extracts should be identified and isolated. Attention should be given to their safety and pharmacokinetics. Acute, subacute, and subchronic toxicity studies should be designed to determine the magnitude and tolerability of side effects in humans or animals. For drugs that have been proven effective in experimental studies, RCTs should be designed to provide reliable evidence for clinical translation. In a word, Chinese medicines targeting immune inflammation in DKD are a promising direction.
Collapse
Affiliation(s)
- Lingchen Deng
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Chunru Shi
- The College of Traditional Chinese Medicine, Guangdong Pharmaceutical University, Guangzhou, 510006, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Run Li
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Yifan Zhang
- Medical School of Chinese PLA, Beijing, 100853, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Xiaochen Wang
- Medical School of Chinese PLA, Beijing, 100853, China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Guangyan Cai
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China
| | - Quan Hong
- Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China.
| | - Xiangmei Chen
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, P.R. China; Department of Nephrology, First Medical Center of Chinese PLA General Hospital, National Key Laboratory of Kidney Diseases, National Clinical Research Center for Kidney Diseases, Beijing Key Laboratory of Kidney Diseases Research, Beijing, 100853, China.
| |
Collapse
|
8
|
Sai Priya T, Ramalingam V, Suresh Babu K. Natural products: A potential immunomodulators against inflammatory-related diseases. Inflammopharmacology 2024:10.1007/s10787-024-01562-4. [PMID: 39196458 DOI: 10.1007/s10787-024-01562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/29/2024]
Abstract
The incidence and prevalence of inflammatory-related diseases (IRDs) are increasing worldwide. Current approved treatments for IRDs in the clinic are combat against inhibiting the pro-inflammatory cytokines. Though significant development in the treatment in the IRDs has been achieved, the severe side effects and inefficiency of currently practicing treatments are endless challenge. Drug discovery from natural sources is efficacious over a resurgence and also natural products are leading than the synthetic molecules in both clinical trials and market. The use of natural products against IRDs is a conventional therapeutic approach since it is a reservoir of unique structural chemistry, accessibility and bioactivities with reduced side effects and low toxicity. In this review, we discuss the cause of IRDs, treatment of options for IRDs and the impact and adverse effects of currently practicing clinical drugs. As well, the significant role of natural products against various IRDs, the limitations in the clinical development of natural products and thus pave the way for development of natural products as immunomodulators against IRDs are also discussed.
Collapse
Affiliation(s)
- Telukuntla Sai Priya
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Vaikundamoorthy Ramalingam
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Katragadda Suresh Babu
- Department of Natural Products & Medicinal Chemistry, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500 007, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
9
|
Zhu X, Meng X, Du X, Zhao C, Ma X, Wen Y, Zhang S, Hou B, Cai W, Du B, Han Z, Xu F, Qiu L, Sun H. Vaccarin suppresses diabetic nephropathy through inhibiting the EGFR/ERK1/2 signaling pathway. Acta Biochim Biophys Sin (Shanghai) 2024; 56:1860-1874. [PMID: 39205643 PMCID: PMC11972988 DOI: 10.3724/abbs.2024141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 04/30/2024] [Indexed: 09/04/2024] Open
Abstract
Diabetic nephropathy (DN) is recognized as one of the primary causes of chronic kidney disease and end-stage renal disease. Vaccarin (VAC) confers favorable effects on cardiovascular and metabolic diseases, including type 2 diabetes mellitus (T2DM). Nonetheless, the potential role and mechanism of VAC in the etiology of DN have yet to be completely elucidated. In this study, a classical mouse model of T2DM is experimentally induced via a high-fat diet (HFD)/streptozocin (STZ) regimen. Renal histological changes are assessed via H&E staining. Masson staining and immunohistochemistry (IHC) are employed to assess renal fibrosis. RT-PCR is utilized to quantify the mRNA levels of renal fibrosis, oxidative stress and inflammation markers. The levels of malondialdehyde (MDA) and reactive oxygen species (ROS), as well as the content of glutathione peroxidase (GSH-Px), are measured. The protein expressions of collagen I, TGF-β1, α-SMA, E-cadherin, Nrf2, catalase, SOD3, SOD2, SOD1, p-ERK, p-EGFR (Y845), p-EGFR (Y1173), p-NFκB P65, t-ERK, t-EGFR and t-NFκB P65 are detected by western blot analysis. Our results reveal that VAC has a beneficial effect on DN mice by improving renal function and mitigating histological damage. This is achieved through its inhibition of renal fibrosis, inflammatory cytokine overproduction, and ROS generation. Moreover, VAC treatment effectively suppresses the process of epithelial-mesenchymal transition (EMT), a crucial characteristic of renal fibrosis, in high glucose (HG)-induced HK-2 cells. Network pharmacology analysis and molecular docking identify epidermal growth factor receptor (EGFR) as a potential target for VAC. Amino acid site mutations reveal that Lys-879, Ile-918, and Ala-920 of EGFR may mediate the direct binding of VAC to EGFR. In support of these findings, VAC reduces the phosphorylation levels of both EGFR and its downstream mediator, extracellular signal-regulated kinase 1/2 (ERK1/2), in diabetic kidneys and HG-treated HK-2 cells. Notably, blocking either EGFR or ERK1/2 yields renal benefits similar to those observed with VAC treatment. Therefore, this study reveals that VAC attenuates renal damage via inactivation of the EGFR/ERK1/2 signaling axis in T2DM patients.
Collapse
Affiliation(s)
- Xuexue Zhu
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Xinyu Meng
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Xinyao Du
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Chenyang Zhao
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Xinyu Ma
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Yuanyuan Wen
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Shijie Zhang
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Bao Hou
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Weiwei Cai
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Bin Du
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Zhijun Han
- Department of Clinical Research CenterJiangnan University Medical CenterWuxi214001China
| | - Fei Xu
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Liying Qiu
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxi214122China
| | - Haijian Sun
- Department of Basic MedicineWuxi School of MedicineJiangnan UniversityWuxi214122China
- State Key Laboratory of Natural MedicinesChina Pharmaceutical UniversityNanjing210009China
| |
Collapse
|
10
|
Wu J, Li K, Zhou M, Gao H, Wang W, Xiao W. Natural compounds improve diabetic nephropathy by regulating the TLR4 signaling pathway. J Pharm Anal 2024; 14:100946. [PMID: 39258172 PMCID: PMC11386058 DOI: 10.1016/j.jpha.2024.01.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 12/12/2023] [Accepted: 01/31/2024] [Indexed: 09/12/2024] Open
Abstract
Diabetic nephropathy (DN), a severe complication of diabetes, is widely recognized as a primary contributor to end-stage renal disease. Recent studies indicate that the inflammation triggered by Toll-like receptor 4 (TLR4) is of paramount importance in the onset and progression of DN. TLR4 can bind to various ligands, including exogenous ligands such as proteins and polysaccharides from bacteria or viruses, as well as endogenous ligands such as biglycan, fibrinogen, and hyaluronan. In DN, the expression or release of TLR4-related ligands is significantly elevated, resulting in excessive TLR4 activation and increased production of proinflammatory cytokines through downstream signaling pathways. This process is closely associated with the progression of DN. Natural compounds are biologically active products derived from natural sources that have advantages in the treatment of certain diseases. Various types of natural compounds, including alkaloids, flavonoids, polyphenols, terpenoids, glycosides, and polysaccharides, have demonstrated their ability to improve DN by affecting the TLR4 signaling pathway. In this review, we summarize the mechanism of action of TLR4 in DN and the natural compounds that can ameliorate DN by modulating the TLR4 signaling pathway. We specifically highlight the potential of compounds such as curcumin, paclitaxel, berberine, and ursolic acid to inhibit the TLR4 signaling pathway, which provides an important direction of research for the treatment of DN.
Collapse
Affiliation(s)
- Jiabin Wu
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Ke Li
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Muge Zhou
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Haoyang Gao
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Wenhong Wang
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| | - Weihua Xiao
- Shanghai Key Lab of Human Performance, Shanghai University of Sport, Shanghai, 200438, China
| |
Collapse
|
11
|
Zhang H, Zheng H, Wang Q, Ma Z, Liu W, Xu L, Li D, Zhu Y, Xue Y, Mei L, Huang X, Guo Z, Ke X. Sinomenine hydrochloride improves DSS-induced colitis in mice through inhibition of the TLR2/NF-κB signaling pathway. Clin Res Hepatol Gastroenterol 2024; 48:102411. [PMID: 38992426 DOI: 10.1016/j.clinre.2024.102411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 06/20/2024] [Accepted: 06/29/2024] [Indexed: 07/13/2024]
Abstract
BACKGROUND Sinomenine hydrochloride (SH) has anti-inflammatory and immunosuppressive effects, and its effectiveness in inflammatory diseases, such as rheumatoid arthritis, has been demonstrated. However, whether SH has a therapeutic effect on dextran sodium sulfate (DSS)-induced ulcerative colitis (UC) in mice and its mechanism of action have not been clarified. This study aimed to investigate the therapeutic effects and mechanism of action of SH on UC. METHODS Twenty-four mice were randomly divided into control, model, SH low-dose (SH-L, 20mg/kg), and SH high-dose (SH-H, 60mg/kg) groups with six mice in each group. Disease activity index (DAI), colonic mucosal damage index, and colonic histopathology scores were calculated. The expression levels of related proteins, genes, and downstream inflammatory factors in the Toll-like receptor 2/NF-κB (TLR2/NF-κB) signaling pathway were quantified. RESULTS SH inhibited weight loss, decreased DAI and histopathological scores, decreased the expression levels of TLR2, MyD88, P-P65, P65 proteins, and TLR2 genes, and also suppressed the expression of inflammatory factors TNF-α, IL-1 β, and IL-6 in the peripheral blood of mice. CONCLUSION The therapeutic effect of SH on DSS-induced UC in mice may be related to the inhibition of the TLR2/NF-κB signaling pathway.
Collapse
Affiliation(s)
- Huimin Zhang
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Hailun Zheng
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Qizhi Wang
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Zhenzeng Ma
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Wei Liu
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Linxia Xu
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Dapeng Li
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Yu Zhu
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Yongju Xue
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Letian Mei
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Xixiang Huang
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China
| | - Zhiguo Guo
- Department of Gastroenterology, Suzhou Hospital of Anhui Medical University, No. 616, Bianyangsan Road, Suzhou, Anhui 234000, China.
| | - Xiquan Ke
- Department of Gastroenterology, the First Affiliated Hospital of Bengbu Medical University, No. 287, Changhuai Road, Bengbu, Anhui 233000, China.
| |
Collapse
|
12
|
Zhang Y, Liu M, Wu Y, Xu Y, Hong Y, Xiang H. Insulin-like growth factor 1 knockdown attenuates high glucose-induced podocyte injury by promoting the JAK2/STAT signalling-mediated autophagy. Nephrology (Carlton) 2024; 29:394-404. [PMID: 38586891 DOI: 10.1111/nep.14286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 02/19/2024] [Accepted: 02/22/2024] [Indexed: 04/09/2024]
Abstract
PURPOSE Podocyte injury plays a crucial role in the development of diabetic nephropathy (DN). A high serum level of insulin-like growth factor 1 (IGF-1) has been observed in patients with DN. This paper is to study the role and mechanism of IGF-1 in high glucose (HG)-induced podocyte injury. METHODS Mouse podocytes MPC-5 were treated with HG to establish a DN model in vitro. db/db diabetic mice and db/m nondiabetic mice were used to evaluate the IGF-1 role in vivo. Western blotting was used for measuring protein levels of IGF-1 receptor, Janus kinase/signal transducer and activator of transcription (JAK/STAT) signalling pathway-related markers, podocyte markers podocin and nephrin, apoptosis- and autophagy-related markers in MPC-5 cells. Immunofluorescence staining was implemented for measuring the expression of nephrin and the autophagy marker LC3. Flow cytometry was used for detecting podocyte apoptosis. RESULTS IGF-1 expression was increased in HG-stimulated MPC-5 cells and the kidney of db/db diabetic mice compared with corresponding controls. Knocking down IGF-1 downregulated IGF-1R and inhibited JAK2/STAT signalling pathway in HG-treated MPC-5 cells and db/db diabetic mice. IGF-1 silencing attenuated HG-induced podocyte injury, apoptosis and reduction in autophagy. Activating the JAK2/STAT signalling pathway or inhibiting autophagy reversed the effects of IGF-1 silencing on HG-treated MPC-5 cells. CONCLUSION Knocking down IGF-1 alleviates HG-induced podocyte injury and apoptosis by inactivating the JAK2/STAT signalling pathway and enhancing autophagy.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Nephrology, The Sixth Hospital of Wuhan (Affiliated Hospital of Jianghan University), Wuhan, Hubei, China
| | - Min Liu
- The Sixth Hospital of Wuhan (Affiliated Hospital of Jianghan University), Wuhan, Hubei, China
| | - Yan Wu
- Department of Nephrology, The Sixth Hospital of Wuhan (Affiliated Hospital of Jianghan University), Wuhan, Hubei, China
| | - Yaling Xu
- Department of Nephrology, The Sixth Hospital of Wuhan (Affiliated Hospital of Jianghan University), Wuhan, Hubei, China
| | - Yuanhao Hong
- Department of Nephrology, The Sixth Hospital of Wuhan (Affiliated Hospital of Jianghan University), Wuhan, Hubei, China
| | - Haiyan Xiang
- Department of Nephrology, The Sixth Hospital of Wuhan (Affiliated Hospital of Jianghan University), Wuhan, Hubei, China
| |
Collapse
|
13
|
Hui B, Zhang X, Dong D, Shu Y, Li R, Yang Z. High-dose sinomenine attenuates ischemia/reperfusion-induced hepatic inflammation and oxidative stress in rats with diabetes mellitus. Immun Inflamm Dis 2024; 12:e1271. [PMID: 38888355 PMCID: PMC11184649 DOI: 10.1002/iid3.1271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 06/20/2024] Open
Abstract
INTRODUCTION Ischemia-reperfusion (I/R) injury, resulting from blood flow interruption and its subsequent restoration, is a prevalent complication in liver surgery. The liver, as a crucial organ for carbohydrate and lipid metabolism, exhibits decreased tolerance to hepatic I/R in patients with diabetes mellitus (DM), resulting in a significant increase in hepatic dysfunction following surgery. This may be attributed to elevated oxidative stress and inflammation. Our prior research established sinomenine's (SIN) protective role against hepatic I/R injury. Nevertheless, the impact of SIN on hepatic I/R injury in DM rats remains unexplored. OBJECTIVE AND METHODS This study aimed to investigate the therapeutic potential of SIN in hepatic I/R injury in DM rats and elucidate its mechanism. Diabetic and hepatic I/R injury models were established in rats through high-fat/sugar diet, streptozotocin injection, and hepatic blood flow occlusion. Liver function, oxidative stress, inflammatory reaction, histopathology, and Nrf-2/HO-1 signaling pathway were evaluated by using UV spectrophotometry, biochemical assays, enzyme-linked immunosorbent assay, hematoxylin-eosin staining, and Western blot analysis. RESULTS High-dose SIN (300 mg/kg) significantly attenuated hepatic I/R injury in DM rats, reducing serum activities of ALT and AST, decreasing the AST/ALT ratio, enhancing tissue contents of SOD and GSH-Px, suppressing the levels of TNF-α and IL-6, improving the liver histopathology, and activating Nrf-2/HO-1 signaling by promoting Nrf-2 trans-location from cytoplasm to nucleus. Low-dose SIN (100 mg/kg) was ineffective. CONCLUSIONS This study demonstrates that high-dose sinomenine's mitigates hepatic I/R-induced inflammation and oxidative stress in diabetes mellitus (DM) rats via Nrf-2/HO-1 activation, suggesting its potential as a preventive strategy for hepatic I/R injury in DM patients.
Collapse
Affiliation(s)
- Bo Hui
- Department of General Surgery Unit‐4The Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Xiaogang Zhang
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Dinghui Dong
- Department of Hepatobiliary SurgeryThe First Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Yantao Shu
- Department of General Surgery Unit‐4The Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Ren Li
- Department of General Surgery Unit‐4The Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| | - Zhengan Yang
- Department of General Surgery Unit‐4The Second Affiliated Hospital of Xi'an Jiaotong UniversityXi'anChina
| |
Collapse
|
14
|
Wang N, Zhang C. Oxidative Stress: A Culprit in the Progression of Diabetic Kidney Disease. Antioxidants (Basel) 2024; 13:455. [PMID: 38671903 PMCID: PMC11047699 DOI: 10.3390/antiox13040455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Diabetic kidney disease (DKD) is the principal culprit behind chronic kidney disease (CKD), ultimately developing end-stage renal disease (ESRD) and necessitating costly dialysis or kidney transplantation. The limited therapeutic efficiency among individuals with DKD is a result of our finite understanding of its pathogenesis. DKD is the result of complex interactions between various factors. Oxidative stress is a fundamental factor that can establish a link between hyperglycemia and the vascular complications frequently encountered in diabetes, particularly DKD. It is crucial to recognize the essential and integral role of oxidative stress in the development of diabetic vascular complications, particularly DKD. Hyperglycemia is the primary culprit that can trigger an upsurge in the production of reactive oxygen species (ROS), ultimately sparking oxidative stress. The main endogenous sources of ROS include mitochondrial ROS production, NADPH oxidases (Nox), uncoupled endothelial nitric oxide synthase (eNOS), xanthine oxidase (XO), cytochrome P450 (CYP450), and lipoxygenase. Under persistent high glucose levels, immune cells, the complement system, advanced glycation end products (AGEs), protein kinase C (PKC), polyol pathway, and the hexosamine pathway are activated. Consequently, the oxidant-antioxidant balance within the body is disrupted, which triggers a series of reactions in various downstream pathways, including phosphoinositide 3-kinase/protein kinase B (PI3K/Akt), transforming growth factor beta/p38-mitogen-activated protein kinase (TGF-β/p38-MAPK), nuclear factor kappa B (NF-κB), adenosine monophosphate-activated protein kinase (AMPK), and the Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling. The disease might persist even if strict glucose control is achieved, which can be attributed to epigenetic modifications. The treatment of DKD remains an unresolved issue. Therefore, reducing ROS is an intriguing therapeutic target. The clinical trials have shown that bardoxolone methyl, a nuclear factor erythroid 2-related factor 2 (Nrf2) activator, blood glucose-lowering drugs, such as sodium-glucose cotransporter 2 inhibitors, and glucagon-like peptide-1 receptor agonists can effectively slow down the progression of DKD by reducing oxidative stress. Other antioxidants, including vitamins, lipoic acid, Nox inhibitors, epigenetic regulators, and complement inhibitors, present a promising therapeutic option for the treatment of DKD. In this review, we conduct a thorough assessment of both preclinical studies and current findings from clinical studies that focus on targeted interventions aimed at manipulating these pathways. We aim to provide a comprehensive overview of the current state of research in this area and identify key areas for future exploration.
Collapse
Affiliation(s)
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
15
|
Liu Y, Chen H, Wu Y, Ai F, Li W, Peng H, Gui F, Yu B, Chen Z. Sinomenine attenuates bleomycin-induced pulmonary fibrosis, inflammation, and oxidative stress by inhibiting TLR4/NLRP3/TGFβ signaling. Inhal Toxicol 2024; 36:217-227. [PMID: 38713814 DOI: 10.1080/08958378.2024.2335193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Accepted: 03/15/2024] [Indexed: 05/09/2024]
Abstract
OBJECTIVE The present work concentrated on validating whether sinomenine alleviates bleomycin (BLM)-induced pulmonary fibrosis, inflammation, and oxidative stress. METHODS A rat model of pulmonary fibrosis was constructed through intratracheal injection with 5 mg/kg BLM, and the effects of 30 mg/kg sinomenine on pulmonary inflammation, fibrosis, apoptosis, and 4-hydroxynonenal density were evaluated by hematoxylin and eosin staining, Masson's trichrome staining, TUNEL staining, and immunohistochemistry. Hydroxyproline content and concentrations of inflammatory cytokines and oxidative stress markers were detected using corresponding kits. MRC-5 cells were treated with 10 ng/ml PDGF, and the effects of 1 mM sinomenine on cell proliferation were assessed by EdU assays. The mRNA expression of inflammatory cytokines and the protein levels of collagens, fibrosis markers, and key markers involved in the TLR4/NLRP3/TGFβ signaling were tested with RT-qPCR and immunoblotting analysis. RESULTS Sinomenine attenuated pulmonary fibrosis and inflammation while reducing hydroxyproline content and the protein expression of collagens and fibrosis markers in BLM-induced pulmonary fibrosis rats. Sinomenine reduced apoptosis in lung samples of BLM-challenged rats by increasing Bcl-2 and reducing Bax and cleaved caspase-3 protein expression. In addition, sinomenine alleviated inflammatory response and oxidative stress in rats with pulmonary fibrosis induced by BLM. Moreover, sinomenine inhibited the TLR4/NLRP3/TGFβ signaling pathway in lung tissues of BLM-stimulated rats. Furthermore, TLR4 inhibitor, TAK-242, attenuated PDGF-induced fibroblast proliferation and collagen synthesis in MRC-5 cells. CONCLUSION Sinomenine attenuates BLM-caused pulmonary fibrosis, inflammation, and oxidative stress by inhibiting the TLR4/NLRP3/TGFβ signaling, indicating that sinomenine might become a therapeutic candidate to treat pulmonary fibrosis.
Collapse
Affiliation(s)
- Yijue Liu
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Hong Chen
- School of Medicine, Jianghan University, Wuhan city, Hubei Province, P.R. China
| | - Yan Wu
- School of Medicine, Jianghan University, Wuhan city, Hubei Province, P.R. China
| | - Fen Ai
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Wei Li
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Huan Peng
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Feng Gui
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Bo Yu
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| | - Zhen Chen
- Department of Emergency, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, P.R. China
| |
Collapse
|
16
|
Patera F, Gatticchi L, Cellini B, Chiasserini D, Reboldi G. Kidney Fibrosis and Oxidative Stress: From Molecular Pathways to New Pharmacological Opportunities. Biomolecules 2024; 14:137. [PMID: 38275766 PMCID: PMC10813764 DOI: 10.3390/biom14010137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/06/2024] [Accepted: 01/15/2024] [Indexed: 01/27/2024] Open
Abstract
Kidney fibrosis, diffused into the interstitium, vessels, and glomerulus, is the main pathologic feature associated with loss of renal function and chronic kidney disease (CKD). Fibrosis may be triggered in kidney diseases by different genetic and molecular insults. However, several studies have shown that fibrosis can be linked to oxidative stress and mitochondrial dysfunction in CKD. In this review, we will focus on three pathways that link oxidative stress and kidney fibrosis, namely: (i) hyperglycemia and mitochondrial energy imbalance, (ii) the mineralocorticoid signaling pathway, and (iii) the hypoxia-inducible factor (HIF) pathway. We selected these pathways because they are targeted by available medications capable of reducing kidney fibrosis, such as sodium-glucose cotransporter-2 (SGLT2) inhibitors, non-steroidal mineralocorticoid receptor antagonists (MRAs), and HIF-1alpha-prolyl hydroxylase inhibitors. These drugs have shown a reduction in oxidative stress in the kidney and a reduced collagen deposition across different CKD subtypes. However, there is still a long and winding road to a clear understanding of the anti-fibrotic effects of these compounds in humans, due to the inherent practical and ethical difficulties in obtaining sequential kidney biopsies and the lack of specific fibrosis biomarkers measurable in easily accessible matrices like urine. In this narrative review, we will describe these three pathways, their interconnections, and their link to and activity in oxidative stress and kidney fibrosis.
Collapse
Affiliation(s)
- Francesco Patera
- Division of Nephrology, Azienda Ospedaliera di Perugia, 06132 Perugia, Italy;
| | - Leonardo Gatticchi
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.G.); (B.C.)
| | - Barbara Cellini
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.G.); (B.C.)
| | - Davide Chiasserini
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.G.); (B.C.)
| | - Gianpaolo Reboldi
- Division of Nephrology, Azienda Ospedaliera di Perugia, 06132 Perugia, Italy;
- Department of Medicine and Surgery, University of Perugia, 06132 Perugia, Italy; (L.G.); (B.C.)
| |
Collapse
|
17
|
Jabbar AA, Abdul-Aziz Ahmed K, Abdulla MA, Abdullah FO, Salehen NA, Mothana RA, Houssaini J, Hassan RR, Hawwal MF, Fantoukh OI, Hasson S. Sinomenine accelerate wound healing in rats by augmentation of antioxidant, anti-inflammatory, immunuhistochemical pathways. Heliyon 2024; 10:e23581. [PMID: 38173533 PMCID: PMC10761791 DOI: 10.1016/j.heliyon.2023.e23581] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 12/06/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Sinomenine (SN) is a well-documented unique plant alkaloid extracted from many herbal medicines. The present study evaluates the wound healing potentials of SN on dorsal neck injury in rats. A uniform cut was created on Sprague Dawley rats (24) which were arbitrarily aligned into 4 groups receiving two daily topical treatments for 14 days as follows: A, rats had gum acacia; B, rats addressed with intrasite gel; C and D, rats had 30 and 60 mg/ml of SN, respectively. The acute toxicity trial revealed the absence of any toxic signs in rats after two weeks of ingestion of 30 and 300 mg/kg of SN. SN-treated rats showed smaller wound areas and higher wound closure percentages compared to vehicle rats after 5, 10, and 15 days of skin excision. Histological evaluation of recovered wound tissues showed increased collagen deposition, fibroblast content, and decreased inflammatory cells in granulated tissues in SN-addressed rats, which were statistically different from that of gum acacia-treated rats. SN treatment caused positive augmentation of Transforming Growth Factor Beta 1 (angiogenetic factor) in wound tissues, denoting a higher conversion rate of fibroblast into myofibroblast (angiogenesis) that results in faster wound healing action. Increased antioxidant enzymes (SOD and CAT), as well as decreased MDA contents in recovered wound tissues of SN-treated rats, suggest the antioxidant potentials of SN that aid in faster wound recovery. Wound tissue homogenates showed higher hydroxyproline amino acid (collagen content) values in SN-treated rats than in vehicle rats. SN treatment suppressed the production of pro-inflammatory cytokines and increased anti-inflammatory cytokines in the serum of wounded rats. The outcomes present SN as a viable pharmaceutical agent for wound healing evidenced by its positive modulation of the antioxidant, immunohistochemically proteins, hydroxyproline, and anti-inflammatory cytokines.
Collapse
Affiliation(s)
- Ahmed A.j. Jabbar
- Department of Medical Laboratory Technology, Erbil Technical Health and Medical College, Erbil Polytechnic University, Erbil, 44001, Iraq
| | - Khaled Abdul-Aziz Ahmed
- Department of Medical Laboratory Sciences, Faculty of Allied Medical Sciences, Al-Ahliyya Amman University, Amman, Jordan
| | - Mahmood Ameen Abdulla
- Department of Medical Microbiology, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, Iraq
| | - Fuad Othman Abdullah
- Department of Chemistry, College of Science, Salahaddin University-Erbil, Kurdistan Region, Erbil, 44001, Iraq
- Department of Pharmacognosy, Faculty of Pharmacy, Tishk International University, Erbil, 44001, Iraq
| | - Nur Ain Salehen
- Department of Biomedical Sciences, Faculty of Medicine, University of Malaya, Kuala Lumpur, 50603, Malaysia
| | - Ramzi A. Mothana
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Jamal Houssaini
- Department of Laboratory and Forensic Medicine (I-PPerForM), Institute of Pathology, Universiti Teknologi MARA (UiTM), 47000, Sungai Buloh, Selangor, Malaysia
- Department of Medical Microbiology and Parasitology, Faculty of Medicine, Sungai Buloh Campus, Universiti Teknologi MARA (UiTM), 47000, Sungai Buloh, Selangor, Malaysia
| | - Rawaz Rizgar Hassan
- Department of Medical Laboratory Science, College of Science, Knowledge University, Kirkuk Road, Erbil, 44001, Iraq
| | - Mohammed F. Hawwal
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Omer I. Fantoukh
- Department of Pharmacognosy, College of Pharmacy, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Sidgi Hasson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, L3 5UG, UK
| |
Collapse
|
18
|
Zhan HQ, Zhang X, Chen XL, Cheng L, Wang X. Application of nanotechnology in the treatment of glomerulonephritis: current status and future perspectives. J Nanobiotechnology 2024; 22:9. [PMID: 38169389 PMCID: PMC10763010 DOI: 10.1186/s12951-023-02257-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/07/2023] [Indexed: 01/05/2024] Open
Abstract
Glomerulonephritis (GN) is the most common cause of end-stage renal failure worldwide; in most cases, it cannot be cured and can only delay the progression of the disease. At present, the main treatment methods include symptomatic therapy, immunosuppressive therapy, and renal replacement therapy. However, effective treatment of GN is hindered by issues such as steroid resistance, serious side effects, low bioavailability, and lack of precise targeting. With the widespread application of nanoparticles in medical treatment, novel methods have emerged for the treatment of kidney diseases. Targeted transportation of drugs, nucleic acids, and other substances to kidney tissues and even kidney cells through nanodrug delivery systems can reduce the systemic effects and adverse reactions of drugs and improve treatment effectiveness. The high specificity of nanoparticles enables them to bind to ion channels and block or enhance channel gating, thus improving inflammation. This review briefly introduces the characteristics of GN, describes the treatment status of GN, systematically summarizes the research achievements of nanoparticles in the treatment of primary GN, diabetic nephropathy and lupus nephritis, analyzes recent therapeutic developments, and outlines promising research directions, such as gas signaling molecule nanodrug delivery systems and ultrasmall nanoparticles. The current application of nanoparticles in GN is summarized to provide a reference for better treatment of GN in the future.
Collapse
Affiliation(s)
- He-Qin Zhan
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
- Department of Pathology, The Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, China
| | - Xiaoxun Zhang
- Department of Pathology, School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Xu-Lin Chen
- Department of Burns, The First Affiliated Hospital of Anhui Medical University, Hefei, 230022, People's Republic of China
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, People's Republic of China
| | - Xianwen Wang
- School of Biomedical Engineering, Research and Engineering Center of Biomedical Materials, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
19
|
Song L, Zhang W, Tang SY, Luo SM, Xiong PY, Liu JY, Hu HC, Chen YQ, Jia B, Yan QH, Tang SQ, Huang W. Natural products in traditional Chinese medicine: molecular mechanisms and therapeutic targets of renal fibrosis and state-of-the-art drug delivery systems. Biomed Pharmacother 2024; 170:116039. [PMID: 38157643 DOI: 10.1016/j.biopha.2023.116039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/04/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
Renal fibrosis (RF) is the end stage of several chronic kidney diseases. Its series of changes include excessive accumulation of extracellular matrix, epithelial-mesenchymal transition (EMT) of renal tubular cells, fibroblast activation, immune cell infiltration, and renal cell apoptosis. RF can eventually lead to renal dysfunction or even renal failure. A large body of evidence suggests that natural products in traditional Chinese medicine (TCM) have great potential for treating RF. In this article, we first describe the recent advances in RF treatment by several natural products and clarify their mechanisms of action. They can ameliorate the RF disease phenotype, which includes apoptosis, endoplasmic reticulum stress, and EMT, by affecting relevant signaling pathways and molecular targets, thereby delaying or reversing fibrosis. We also present the roles of nanodrug delivery systems, which have been explored to address the drawback of low oral bioavailability of natural products. This may provide new ideas for using natural products for RF treatment. Finally, we provide new insights into the clinical prospects of herbal natural products.
Collapse
Affiliation(s)
- Li Song
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Wei Zhang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Shi-Yun Tang
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610032, China
| | - Si-Min Luo
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China
| | - Pei-Yu Xiong
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Jun-Yu Liu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Heng-Chang Hu
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Ying-Qi Chen
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China
| | - Bo Jia
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qian-Hua Yan
- Department of Endocrinology, Jiangsu Province Hospital of Chinese Medicine, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing 210000, China.
| | - Song-Qi Tang
- College of Traditional Chinese Medicine, Hainan Medical University, Haikou 571199, China.
| | - Wei Huang
- College of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
20
|
Zhang Z, Deng S, Shi Q. Isoliquiritigenin attenuates high glucose-induced proliferation, inflammation, and extracellular matrix deposition in glomerular mesangial cells by suppressing JAK2/STAT3 pathway. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:123-131. [PMID: 37368032 DOI: 10.1007/s00210-023-02598-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 06/22/2023] [Indexed: 06/28/2023]
Abstract
To investigate the effect of isoliquiritigenin (ISL) on high glucose (HG)-induced glomerular mesangial cells (GMCs) proliferation, extracellular matrix (ECM) deposition and inflammation, and the underlying mechanisms. Mouse GMCs (SV40-MES-13) were cultured in HG medium, with or without ISL. The proliferation of GMCs was determined by MTT assay. The production of proinflammatory cytokines was detected by qRT-PCR and ELISA. The expression of connective tissue growth factor (CTGF), TGF-β1, collagen IV, and fibronectin was measured by qRT-PCR and western blot. The phosphorylation of JAK2 and STAT3 was examined by western blot. Next, JAK2 inhibitor AG490 was applied to HG-exposed GMCs. The levels of JAK2/STAT3 phosphorylation and pro-fibrotic markers were analyzed by western blot, and the secretion of TNF-α and IL-1β was evaluated by ELISA. GMCs were treated with HG, HG plus ISL or HG plus ISL, and recombinant IL-6 (rIL-6) which is a JAK2 activator. The levels of JAK2/STAT3 activation, ECM formation, and proinflammatory cytokines secretion were determined by western blot and ELISA, respectively. In mouse GMCs, ISL successfully repressed HG-induced hyperproliferation; production of TNF-α and IL-1β; expression of CTGF, TGF-β1, collagen IV, and fibronectin; and activation of JAK2/STAT3. Similar to ISL, AG490 was able to reverse the inflammation and ECM generation caused by HG. Moreover, rIL-6 impeded the amelioration of ISL on HG-induced adverse effects. Our study demonstrated that ISL displayed preventive effects on HG-exposed GMCs through inhibiting JAK2/STAT3 pathway and provided an insight into the application of ISL for diabetic nephropathy (DN) treatment.
Collapse
Affiliation(s)
- Ziyuan Zhang
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Shufen Deng
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China
| | - Qiwen Shi
- Collaborative Innovation Center of Yangtze River Delta Region Green Pharmaceuticals, Zhejiang University of Technology, Hangzhou, Zhejiang, China.
| |
Collapse
|
21
|
Zhang YJ, Shang ZJ, Zheng M, Shi R. Efficacy and safety of sinomenine for diabetic kidney diseases: A meta-analysis. Medicine (Baltimore) 2023; 102:e36779. [PMID: 38206710 PMCID: PMC10754606 DOI: 10.1097/md.0000000000036779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024] Open
Abstract
BACKGROUND In traditional Chinese medicine, Sinomenii Caulis contains Sinomenine (SIN), one of the major active ingredients. According to some studies, SIN can reduce proteinuria and provides clinical effectiveness rates in diabetic kidney disease (DKD) patients, however, the evidence is not strong and mechanisms of action are unclear. The efficacy and safety of SIN in treating DKD were evaluated by meta-analysis, and the potential mechanism of SIN therapy for DKD was initially explored by network pharmacology. METHODS PubMed, Cochrane Library, Embase, Web of Science, CNKI, Wanfang, VIP, and SinoMed databases were comprehensively searched until March 28, 2022. Randomized controlled trials on DKD treated with SIN were selected. The main results were clinical effective rate and the secondary results were the decrease in 24-hour urine total protein (24-hour UTP), serum creatinine, adverse reactions, etc. Drug combinations and disease stages were analyzed in subgroups. Sensitivity analysis was performed for 24-hour UTP. The potential target genes and pathways of SIN in treating DKD were studied using protein-protein interactions, gene ontology, and the Kyoto Genome Encyclopedia and Genomes enrichment analysis. RESULTS The meta-analysis included 7 randomized controlled trials. SIN treatment had a higher clinical effectiveness rate than conventional treatment (relative risk = 1.53, 95% confidence interval [1.30; 1.80], Z = 5.14, P < .0001); the decrease in 24-hour UTP, treatment group was higher than control group (standardized mean difference = -1.12, 95% confidence interval [-1.71; -0.52], Z = -3.69, P = .0002); In the experimental group, adverse reactions were more common than in the control group. SIN mainly affected 5 target genes, NFκB-1, TNF, interleukin 6, interleukin 1β and signal transducer and activator of transcription 3, and IL-17, AGE-RAGE signaling pathways, lipids, and atherosclerosis were all controlled to achieve therapeutic effects. CONCLUSION SIN is an effective and safe drug for treating DKD, enhancing clinical efficacy, and reducing proteinuria. The main potential mechanism is anti-inflammatory.
Collapse
Affiliation(s)
- Ying-Jie Zhang
- Institute of Traditional Chinese Medicine, Weifang Medical University, Weifang, China
- Department of Nephrology, Puyang Hospital of Traditional Chinese Medicine, Puyang, China
| | - Zong-Jie Shang
- Department of Nephrology, Puyang Hospital of Traditional Chinese Medicine, Puyang, China
| | - Mei Zheng
- Rehabilitation Medicine Department, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| | - Ran Shi
- Rehabilitation Medicine Department, The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
22
|
Guo X, Huang M, Yang D, Luo Z. Expression and Clinical Significance of Plasma miR-223 in Patients with Diabetic Nephropathy. Int J Endocrinol 2023; 2023:9663320. [PMID: 38179188 PMCID: PMC10764645 DOI: 10.1155/2023/9663320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 10/27/2023] [Accepted: 12/13/2023] [Indexed: 01/06/2024] Open
Abstract
Background MicroRNA-223 (miR-223) is associated with diabetes and kidney diseases and serves as a novel marker for diagnosing diabetic kidney disease (DKD). This study was conducted to investigate the plasma expression of miR-223 and its clinical significance in type 2 diabetes (T2DM) and diabetic nephropathy (DN) patients. Methods In this research, 20 patients with T2DM and DN, 19 patients with T2DM, and 17 healthy volunteers were finally enrolled. miR-223 expression was detected by quantitative real-time PCR (qPCR), and the diagnostic value of miR-223 in DN was further analyzed. Results miR-223 was downregulated in the DN group compared to that in the T2DM group (P=0.031) and the control group (P < 0.001). Pearson's correlation analysis showed a negative correlation of miR-223 levels with an albumin-creatinine ratio (ACR) (r = -0.481; P=0.044), urine β2-microglobulin (β2-MG) (r = -0.494; P=0.037), urine α1-microglobulin (α1-MG) (r = -0.537; P=0.022), creatinine (Cr) (r = -0.664; P < 0.01), cystatin C (Cyc-C) (r = -0.553; P=0.017), and glycosylated hemoglobin (HbA1c) (r = -0.761; P < 0.01). The findings of a binary regression analysis indicated that miR-223, ACR, Cr, and α1-MG were the risk factors for DN (OR: 2.019, 1.166, 1.031, and 1.031; all P < 0.05). Furthermore, miR-223 had a favorable diagnostic value for DN (AUC: 0.752; sensitivity: 0.722; specificity: 0.842) (2.5 was utilized as the diagnostic cutoff point). Conclusion miR-223 was lowly expressed in DN patients, and the evaluation of miR-223 may be a good approach for diagnosing DN.
Collapse
Affiliation(s)
- Xingrong Guo
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
- Department of Endocrinology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Meiying Huang
- Department of Nephrology, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Dawei Yang
- Department of Geriatric Medicine, The Affiliated Hospital of Youjiang Medical University for Nationalities, Baise, Guangxi, China
| | - Zuojie Luo
- Department of Endocrinology, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi, China
| |
Collapse
|
23
|
Ma X, Ma J, Leng T, Yuan Z, Hu T, Liu Q, Shen T. Advances in oxidative stress in pathogenesis of diabetic kidney disease and efficacy of TCM intervention. Ren Fail 2023; 45:2146512. [PMID: 36762989 PMCID: PMC9930779 DOI: 10.1080/0886022x.2022.2146512] [Citation(s) in RCA: 59] [Impact Index Per Article: 29.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023] Open
Abstract
Diabetic kidney disease (DKD) is a common complication of diabetes and has become the leading cause of end-stage kidney disease. The pathogenesis of DKD is complicated, and oxidative stress is considered as a core of DKD onset. High glucose can lead to increased production of reactive oxygen species (ROS) via the polyol, PKC, AGE/RAGE and hexosamine pathways, resulting in enhanced oxidative stress response. In this way, pathways such as PI3K/Akt, TGF-β1/p38-MAPK and NF-κB are activated, inducing endothelial cell apoptosis, inflammation, autophagy and fibrosis that cause histologic and functional abnormalities of the kidney and finally result in kidney injury. Presently, the treatment for DKD remains an unresolved issue. Traditional Chinese medicine (TCM) has unique advantages for DKD prevention and treatment attributed to its multi-target, multi-component, and multi-pathway characteristics. Numerous studies have proved that Chinese herbs (e.g., Golden Thread, Kudzuvine Root, Tripterygium glycosides, and Ginseng) and patent medicines (e.g., Shenshuaining Tablet, Compound Rhizoma Coptidis Capsule, and Zishen Tongluo Granule) are effective for DKD treatment. The present review described the role of oxidative stress in DKD pathogenesis and the effect of TCM intervention for DKD prevention and treatment, in an attempt to provide evidence for clinical practice.
Collapse
Affiliation(s)
- Xiaoju Ma
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China,School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jingru Ma
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tian Leng
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Zhongzhu Yuan
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tingting Hu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Qiuyan Liu
- School of Public Health, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Tao Shen
- School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, China,CONTACT Tao Shen School of Basic Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu611137, China
| |
Collapse
|
24
|
Wang M, Zhou Y, Hao G, Wu YE, Yin R, Zheng Y, Zhao W. Recombinant Klotho alleviates vancomycin-induced acute kidney injury by upregulating anti-oxidative capacity via JAK2/STAT3/GPx3 axis. Toxicology 2023; 499:153657. [PMID: 37884167 DOI: 10.1016/j.tox.2023.153657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/09/2023] [Accepted: 10/23/2023] [Indexed: 10/28/2023]
Abstract
Emerging studies support that Klotho protects against different kidney diseases. However, the role of Klotho in vancomycin induced acute kidney injury (Van-AKI) is largely unclear. Hence this study aimed to explore the regulatory mechanism of Klotho in Van-AKI. The mRNA expression of Klotho and the JAK2/STAT3/GPx3 in renal tissue were assessed by RNA sequence analysis after 600 mg/kg Van daily for seven days; Small interfering RNA and recombinant protein are applied to examine the mechanism action of Klotho in vitro and in vivo respectively. Flow cytometry and spectrophotometry detected the expression of reactive oxygen species and antioxidant enzymes. Transmission electron microscopy scanned the structural damage of mitochondria. Western blotting, qPCR, and immunofluorescence were employed to explore the JAK2/STAT3/GPx3 expression. RNA sequence analysis found that Van challenging reduced Klotho and GPx3 expression but increased JAK2/STAT3 in renal tissue. In HK-2 cells, Klotho were decreased by Van in a dose-dependent manner. Klotho siRNA enhanced the production of reactive oxygen species and the cell apoptosis ratio by regulating the JAK2/STAT3, and JAK2/STAT3 inhibitors prevented the decrease of GPx3. Meanwhile, 1 μg/ml recombinant human Klotho showed the opposite function to 120 pmol Klotho siRNA. In Van-AKI BALB/c mice, 20 μg/kg recombinant mouse Klotho once every two days improved the anti-oxidative enzyme expression, mitochondria structure, renal dysfunction, and histological damage. In conclusion, Klotho enhances antioxidant capacity through the JAK2/STAT3/GPx3 axis, which in turn improves Van-AKI.
Collapse
Affiliation(s)
- MengMeng Wang
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue Zhou
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - GuoXiang Hao
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yue E Wu
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Rui Yin
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Yi Zheng
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China.
| | - Wei Zhao
- Department of Clinical Pharmacy, Institute of Clinical Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Clinical Research and Evaluation of Innovative Drug, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, China; Department of Clinical Pharmacy, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Engineering and Technology Research Center for Pediatric Drug Development, Shandong Medicine and Health Key Laboratory of Clinical Pharmacy, Jinan, China.
| |
Collapse
|
25
|
Gu H, Li J, Ni Y. Sinomenine improves renal fibrosis by regulating mesenchymal stem cell-derived exosomes and affecting autophagy levels. ENVIRONMENTAL TOXICOLOGY 2023; 38:2524-2537. [PMID: 37436133 DOI: 10.1002/tox.23890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 06/12/2023] [Accepted: 06/29/2023] [Indexed: 07/13/2023]
Abstract
BACKGROUND This study attempts to investigate the therapeutic effect of sinomenine on renal fibrosis and its mechanism. METHODS The 8-week-old C57BL/6 male mice were randomly divided into sham group, UUO model group, UUO sinomenine group (UUO + Sino 50), UUO + sinomenine group (UUO + Sino 100), UUO + exosome group (exo), and UUO + exo-inhibitor. The pathological changes of kidney were observed by H&E staining, the degree of renal interstitial fibrosis was detected by MASSON and Sirius red staining, and the expressions of fibrosis and autophagy markers were detected by real-time fluorescence quantitative PCR and WB. NTA and electron microscopy were used to analyze exo secretion after sinomenine treatment. RESULTS Sinomenine could improve the progression of renal fibrosis without causing tissue damage including heart, lungs and liver. Sinomenine could promote autophagosome formation. It could promote the secretion of exosomes from bone marrow mesenchymal stem cells (BMSCs). Sinomine regulates the PI3K-AKT pathway through BMSC-exo carrying miR-204-5p, affecting autophagy level and alleviating the process of renal fibrosis. CONCLUSION Our study suggests that sinomine could improve the progression of renal fibrosis by influencing the expression of miR-204-5p in BMSC-exo and regulating the PI3K-AKT pathway.
Collapse
Affiliation(s)
- Hongping Gu
- Department of Internal Medicine, Yuyao Traditional Chinese Medicine Hospital, Yuyao, Zhejiang, China
| | - Jinrong Li
- Department of Encephalopathy, Chongqing Traditional Chinese Medicine Hospital, Chongqing, China
| | - Yuehan Ni
- Department of Internal Medicine, Yuyao Traditional Chinese Medicine Hospital, Yuyao, Zhejiang, China
| |
Collapse
|
26
|
Sant Ana M, Amantino CF, Silva RA, Gil CD, Greco KV, Primo FL, Girol AP, Oliani SM. Annexin A1 2-26 hydrogel improves healing properties in an experimental skin lesion after induction of type 1 diabetes. Biomed Pharmacother 2023; 165:115230. [PMID: 37531784 DOI: 10.1016/j.biopha.2023.115230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 07/22/2023] [Accepted: 07/24/2023] [Indexed: 08/04/2023] Open
Abstract
Diabetes mellitus (DM) is characterized by metabolic alterations that involve defects in the secretion and/or action of insulin, being responsible for several complications, such as impaired healing. Studies from our research group have shown that annexin A1 protein (AnxA1) is involved in the regulation of inflammation and cell proliferation. In light of these findings, we have developed a new technology and evaluated its effect on a wound healing in vivo model using type 1 diabetes (T1DM)-induced mice. We formulated a hydrogel containing AnxA12-26 using defined parameters such as organoleptic characteristics, pH, UV-vis spectroscopy and cytotoxicity assay. UV-vis spectroscopy confirmed the presence of the associated AnxA12-26 peptide in the three-dimensional hydrogel matrix, while the in vitro cytotoxicity assay showed excellent biocompatibility. Mice showed increased blood glucose levels, confirming the efficacy of streptozotocin (STZ) to induce T1DM. Treatment with AnxA12-26 hydrogel showed to improve diabetic wound healing, defined as complete re-epithelialization and tissue remodeling, with reduction of inflammatory infiltrate in diabetic animals. We envisage that the AnxA12-26 hydrogel, with its innovative composition and formulation be efficient on improving diabetic healing and contributing on the expansion of the therapeutic arsenal to treat diabetic wounds, at a viable cost.
Collapse
Affiliation(s)
- Monielle Sant Ana
- Post-Graduation in Structural and Functional Biology, Federal University of São Paulo/ UNIFESP, São Paulo, Brazil
| | - Camila F Amantino
- Department of Engineering of Bioprocess and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - Rafael A Silva
- Departament of Biology, School of Biosciences, Humanities and Exact Sciences, São Paulo State University/ UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Cristiane D Gil
- Post-Graduation in Structural and Functional Biology, Federal University of São Paulo/ UNIFESP, São Paulo, Brazil; Departament of Biology, School of Biosciences, Humanities and Exact Sciences, São Paulo State University/ UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Karin V Greco
- Division of Surgery and Interventional Science, University College London (UCL), London, United Kingdom
| | - Fernando L Primo
- Department of Engineering of Bioprocess and Biotechnology, School of Pharmaceutical Sciences, São Paulo State University - UNESP, Araraquara, SP, Brazil
| | - Ana P Girol
- Post-Graduation in Structural and Functional Biology, Federal University of São Paulo/ UNIFESP, São Paulo, Brazil; University Center Padre Albino, Catanduva, SP, Brazil; Departament of Biology, School of Biosciences, Humanities and Exact Sciences, São Paulo State University/ UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Sonia M Oliani
- Post-Graduation in Structural and Functional Biology, Federal University of São Paulo/ UNIFESP, São Paulo, Brazil; Departament of Biology, School of Biosciences, Humanities and Exact Sciences, São Paulo State University/ UNESP, São José do Rio Preto, São Paulo, Brazil; Advanced Research Center in Medicine (CEPAM), União das Faculdades dos Grandes Lagos (Unilago), São José do Rio Preto, São Paulo, Brazil.
| |
Collapse
|
27
|
Yu JT, Fan S, Li XY, Hou R, Hu XW, Wang JN, Shan RR, Dong ZH, Xie MM, Dong YH, Shen XY, Jin J, Wen JG, Liu MM, Wang W, Meng XM. Novel insights into STAT3 in renal diseases. Biomed Pharmacother 2023; 165:115166. [PMID: 37473682 DOI: 10.1016/j.biopha.2023.115166] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 07/07/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
Signal transducer and activator of transcription 3 (STAT3) is a cell-signal transcription factor that has attracted considerable attention in recent years. The stimulation of cytokines and growth factors can result in the transcription of a wide range of genes that are crucial for several cellular biological processes involved in pro- and anti-inflammatory responses. STAT3 has attracted considerable interest as a result of a recent upsurge in study because of their role in directing the innate immune response and sustaining inflammatory pathways, which is a key feature in the pathogenesis of many diseases, including renal disorders. Several pathological conditions which may involve STAT3 include diabetic nephropathy, acute kidney injury, lupus nephritis, polycystic kidney disease, and renal cell carcinoma. STAT3 is expressed in various renal tissues under these pathological conditions. To better understand the role of STAT3 in the kidney and provide a theoretical foundation for STAT3-targeted therapy for renal disorders, this review covers the current work on the activities of STAT3 and its mechanisms in the pathophysiological processes of various types of renal diseases.
Collapse
Affiliation(s)
- Ju-Tao Yu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Shuai Fan
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230032 China; Department of Urology, Institute of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032 China
| | - Xiang-Yu Li
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Rui Hou
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiao-Wei Hu
- Department of Clinical Pharmacy, Anhui Provincial Children's Hospital, Hefei 230051, China
| | - Jia-Nan Wang
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Run-Run Shan
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Ze-Hui Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Man-Man Xie
- School of Life Sciences, Anhui Medical University, Hefei 230032, China
| | - Yu-Hang Dong
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Xiao-Yu Shen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Juan Jin
- Department of Pharmacology, School of Basic Medical Sciences, Key Laboratory of Anti-inflammatory and Immunopharmacology, Ministry of Education, Anhui Medical University, Hefei 230032, China
| | - Jia-Gen Wen
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Ming-Ming Liu
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wei Wang
- Anhui Province Key Laboratory of Genitourinary Diseases, Anhui Medical University, Hefei 230032 China; Department of Urology, Institute of Urology, The First Affiliated Hospital of Anhui Medical University, Anhui Medical University, Hefei 230032 China.
| | - Xiao-Ming Meng
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, the Key Laboratory of Anti-inflammatory of Immune Medicines, Ministry of Education, Anhui Institute of Innovative Drugs, School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
28
|
Li Y, Wang L, Zhang J, Xu B, Zhan H. Integrated multi-omics and bioinformatic methods to reveal the mechanisms of sinomenine against diabetic nephropathy. BMC Complement Med Ther 2023; 23:287. [PMID: 37580684 PMCID: PMC10424381 DOI: 10.1186/s12906-023-04119-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 08/05/2023] [Indexed: 08/16/2023] Open
Abstract
OBJECTIVES Diabetic Nephropathy (DN) is a serious complication of diabetes, the diagnosis and treatment of DN is still limited. Sinomenine (SIN) is an active extract of herbal medicine and has been applied into the therapy of DN. METHODS In the part of bioinformatic analyses, network pharmacology and molecular docking analyses were conducted to predict the important pathway of SIN treatment for DN. In-vivo study, DN rats were randomized to be treated with vehicle or SIN (20 mg/kg or 40 mg/kg) daily by gavage for 8 weeks. Then, the pharmacological effect of SIN on DN and the potential mechanisms were also evaluated by 24 h albuminuria, histopathological examination, transcriptomics, and metabolomics. RESULTS Firstly, network pharmacology and molecular docking were performed to show that SIN might improve DN via AGEs/RAGE, IL-17, JAK, TNF pathways. Urine biochemical parameters showed that SIN treatment could significantly reduce 24 h albuminuria of DN rats. Transcriptomics analysis found SIN could affect DN progression via inflammation and EMT pathways. Metabolic pathway analysis found SIN would mainly involve in arginine biosynthesis, linoleic acid metabolism, arachidonic acid metabolism, and glycerophospholipid metabolism to affect DN development. CONCLUSIONS We confirmed that SIN could inhibit the progression of DN via affecting multiple genes and metabolites related pathways.
Collapse
Affiliation(s)
- Yan Li
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 117892, Fujian, China
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, 361000, XM, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen University, Xiamen, 12466, Fujian, China
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China
| | - Lei Wang
- Key Laboratory of Chinese Internal Medicine of Ministry of Education and Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, 100700, China
| | - Jimin Zhang
- Department of Rheumatology and Clinical Immunology, The First Affiliated Hospital of Xiamen University, Xiamen, 117892, Fujian, China
- Xiamen Municipal Clinical Research Center for Immune Diseases, Xiamen, 361000, XM, China
- Xiamen Key Laboratory of Rheumatology and Clinical Immunology, Xiamen University, Xiamen, 12466, Fujian, China
| | - Bojun Xu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China.
| | - Huakui Zhan
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, Sichuan, China.
| |
Collapse
|
29
|
Liu Y, Wang W, Zhang J, Gao S, Xu T, Yin Y. JAK/STAT signaling in diabetic kidney disease. Front Cell Dev Biol 2023; 11:1233259. [PMID: 37635867 PMCID: PMC10450957 DOI: 10.3389/fcell.2023.1233259] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 07/28/2023] [Indexed: 08/29/2023] Open
Abstract
Diabetic kidney disease (DKD) is the most important microvascular complication of diabetes and the leading cause of end-stage renal disease (ESRD) worldwide. The Janus kinase/signal transducer and activator of the transcription (JAK/STAT) signaling pathway, which is out of balance in the context of DKD, acts through a range of metabolism-related cytokines and hormones. JAK/STAT is the primary signaling node in the progression of DKD. The latest research on JAK/STAT signaling helps determine the role of this pathway in the factors associated with DKD progression. These factors include the renin-angiotensin system (RAS), fibrosis, immunity, inflammation, aging, autophagy, and EMT. This review epitomizes the progress in understanding the complicated explanation of the etiologies of DKD and the role of the JAK/STAT pathway in the progression of DKD and discusses whether it can be a potential target for treating DKD. It further summarizes the JAK/STAT inhibitors, natural products, and other drugs that are promising for treating DKD and discusses how these inhibitors can alleviate DKD to explore possible potential drugs that will contribute to formulating effective treatment strategies for DKD in the near future.
Collapse
Affiliation(s)
- Yingjun Liu
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Wenkuan Wang
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jintao Zhang
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Shuo Gao
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Tingting Xu
- Clinical Medicine Department, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Yonghui Yin
- Department of Endocrinology, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
30
|
Zhu Y, Tan JK, Goon JA. Cuproptosis- and m6A-Related lncRNAs for Prognosis of Hepatocellular Carcinoma. BIOLOGY 2023; 12:1101. [PMID: 37626987 PMCID: PMC10451969 DOI: 10.3390/biology12081101] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 08/01/2023] [Accepted: 08/04/2023] [Indexed: 08/27/2023]
Abstract
Cuproptosis and N6-methyladenosine (m6A) have potential as prognostic predictors in cancer patients, but their roles in hepatocellular carcinoma (HCC) are unclear. This study aimed to screen a total of 375 HCC samples were retrieved from the TCGA database, and lncRNAs related to cuproptosis and m6A were obtained through correlation analysis. To construct a risk assessment model, univariate Cox regression analysis and LASSO Cox regression were employed. Analyze the regulatory effect of relevant risk assessment models on tumor mutation load (TMB) and immune microenvironment. A total of five lncRNAs (AC007405.3, AL031985.3, TMCC1-AS1, MIR210HG, TMEM220-AS1) with independent overall survival-related risk models were obtained by LASSO survival regression. TP53 and CTNNB1 were the three genes found to have the most mutations in high-risk group patients. The high-risk group with low TMB had the worst survival, whereas the low-risk group with high TMB had the best survival. KEGG pathway analysis revealed that the high-risk group was enriched with cell cycle, oocyte meiosis, cell senescence, and glycolysis/glucose production pathways. We constructed a reliable cuproptosis- and m6A-related lncRNA model for the prognosis of HCC. The model may provide new insights into managing HCC patients, but further research is needed to validate it.
Collapse
Affiliation(s)
| | | | - Jo Aan Goon
- Department of Biochemistry, Faculty of Medicine, Universiti Kebangsaan Malaysia, Kuala Lumpur 56000, Malaysia
| |
Collapse
|
31
|
Sun L, Chen Z, Ni Y, He Z. Network pharmacology-based approach to explore the underlying mechanism of sinomenine on sepsis-induced myocardial injury in rats. Front Pharmacol 2023; 14:1138858. [PMID: 37388447 PMCID: PMC10303801 DOI: 10.3389/fphar.2023.1138858] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 06/05/2023] [Indexed: 07/01/2023] Open
Abstract
Background: Sepsis, a systemic disease, usually induces myocardial injury (MI), and sepsis-induced MI has become a significant contributor to sepsis-related deaths in the intensive care unit. The objective of this study is to investigate the role of sinomenine (SIN) on sepsis-induced MI and clarify the underlying mechanism based on the techniques of network pharmacology. Methods: Cecum ligation and puncture (CLP) was adopted to induce sepsis in male Sprague-Dawley (SD) rats. Serum indicators, echocardiographic cardiac parameters, and hematoxylin and eosin (H&E) staining were conducted to gauge the severity of cardiac damage. The candidate targets and potential mechanism of SIN against sepsis-induced MI were analyzed via network pharmacology. Enzyme-linked immunosorbent assay was performed for detecting the serum concentration of inflammatory cytokines. Western blot was applied for evaluating the levels of protein expression. Terminal deoxynucleotidyl transferase-mediated dUTP biotin nick end labeling assay was applied to assess cardiomyocyte apoptosis. Results: SIN significantly improved the cardiac functions, and attenuated myocardial structural damage of rats as compared with the CLP group. In total, 178 targets of SIN and 945 sepsis-related genes were identified, and 33 overlapped targets were considered as candidate targets of SIN against sepsis. Enrichment analysis results demonstrated that these putative targets were significantly associated with the Interleukin 17 (IL-17) signal pathway, inflammatory response, cytokines-mediated signal pathway, and Janus Kinase-Signal Transducers and Activators of Transcription (JAK-STAT) pathway. Molecular docking suggested that SIN had favorable binding affinities with Mitogen-Activated Protein Kinase 8 (MAPK8), Janus Kinase 1 (JAK1), Janus Kinase 2 (JAK2), Signal Transducer and Activator of Transcription 3 (STAT3), and nuclear factor kappa-B (NF-κB). SIN significantly reduced the serum concentration of Tumor Necrosis Factor-α (TNF-α), Interleukin 1 Beta (IL-1β), Interleukin 6 (IL-6), Interferon gamma (IFN-γ), and C-X-C Motif Chemokine Ligand 8 (CXCL8), lowered the protein expression of phosphorylated c-Jun N-terminal kinase 1 (JNK1), JAK1, JAK2, STAT3, NF-κB, and decreased the proportion of cleaved-caspase3/caspase3. In addition, SIN also significantly inhibited the apoptosis of cardiomyocytes as compared with the CLP group. Conclusion: Based on network pharmacology analysis and corresponding experiments, it was concluded that SIN could mediate related targets and pathways to protect against sepsis-induced MI.
Collapse
|
32
|
Qu L, Jiao B. The Interplay between Immune and Metabolic Pathways in Kidney Disease. Cells 2023; 12:1584. [PMID: 37371054 PMCID: PMC10296595 DOI: 10.3390/cells12121584] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/31/2023] [Accepted: 06/06/2023] [Indexed: 06/29/2023] Open
Abstract
Kidney disease is a significant health problem worldwide, affecting an estimated 10% of the global population. Kidney disease encompasses a diverse group of disorders that vary in their underlying pathophysiology, clinical presentation, and outcomes. These disorders include acute kidney injury (AKI), chronic kidney disease (CKD), glomerulonephritis, nephrotic syndrome, polycystic kidney disease, diabetic kidney disease, and many others. Despite their distinct etiologies, these disorders share a common feature of immune system dysregulation and metabolic disturbances. The immune system and metabolic pathways are intimately connected and interact to modulate the pathogenesis of kidney diseases. The dysregulation of immune responses in kidney diseases includes a complex interplay between various immune cell types, including resident and infiltrating immune cells, cytokines, chemokines, and complement factors. These immune factors can trigger and perpetuate kidney inflammation, causing renal tissue injury and progressive fibrosis. In addition, metabolic pathways play critical roles in the pathogenesis of kidney diseases, including glucose and lipid metabolism, oxidative stress, mitochondrial dysfunction, and altered nutrient sensing. Dysregulation of these metabolic pathways contributes to the progression of kidney disease by inducing renal tubular injury, apoptosis, and fibrosis. Recent studies have provided insights into the intricate interplay between immune and metabolic pathways in kidney diseases, revealing novel therapeutic targets for the prevention and treatment of kidney diseases. Potential therapeutic strategies include modulating immune responses through targeting key immune factors or inhibiting pro-inflammatory signaling pathways, improving mitochondrial function, and targeting nutrient-sensing pathways, such as mTOR, AMPK, and SIRT1. This review highlights the importance of the interplay between immune and metabolic pathways in kidney diseases and the potential therapeutic implications of targeting these pathways.
Collapse
Affiliation(s)
- Lili Qu
- Division of Nephrology, Department of Medicine, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030-1405, USA
| | - Baihai Jiao
- Department of Immunology, School of Medicine, University of Connecticut Health Center, Farmington, CT 06030-1405, USA
| |
Collapse
|
33
|
Su W, Zheng X, Zhou H, Yang S, Zhu X. Fibroblast growth factor 10 delays the progression of osteoarthritis by attenuating synovial fibrosis via inhibition of IL-6/JAK2/STAT3 signaling in vivo and in vitro. Mol Immunol 2023; 159:46-57. [PMID: 37271009 DOI: 10.1016/j.molimm.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 03/26/2023] [Accepted: 04/02/2023] [Indexed: 06/06/2023]
Abstract
Synovial fibrosis is a driver in the progression of osteoarthritis (OA). Fibroblast growth factor 10 (FGF10) has prominent anti-fibrotic effects in many diseases. Thus, we explored the anti-fibrosis effects of FGF10 in OA synovial tissue. In vitro, fibroblast-like synoviocytes (FLSs) were isolated from OA synovial tissue and stimulated with TGF-β to establish a cell model of fibrosis. After treatment with FGF10, we assessed the effects on FLS proliferation and migration using CCK-8, EdU, and scratch assays, and collagen production was observed using Sirius Red Stain. The JAK2/STAT3 pathway and expression of fibrotic markers were evaluated through western blotting (WB) and immunofluorescence (IF). In vivo, we treated mice with OA induced by surgical destabilization of the medial meniscus (DMM) with FGF10 and assessed the anti-OA effect using histological and immunohistochemical (IHC) staining of MMP13, and fibrosis was evaluated using HE and Masson's trichrome staining. The expression of IL-6/JAK2/STAT3 pathway components was determined using ELISA, WB, IHC, and IF. In vitro, FGF10 inhibited TGF-β-induced FLS proliferation and migration, decreased collagen deposition, and improved synovial fibrosis. Moreover, FGF10 mitigated synovial fibrosis and improved the symptoms of OA in DMM-induced OA mice. Overall, FGF10 had promising anti-fibrotic effects on FLSs and improved OA symptoms in mice. The IL-6/STAT3/JAK2 pathway plays key roles in the anti-fibrosis effect of FGF10. This study is the first to demonstrate that FGF10 inhibited synovial fibrosis and attenuated the progression of OA by inhibiting the IL-6/JAK2/STAT3 pathway.
Collapse
Affiliation(s)
- Wei Su
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China; Ningbo First Hospital, Ningbo, China
| | | | | | - Shengwu Yang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| | - Xiongbai Zhu
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
34
|
Tang P, Xu Y, Zhang J, Nan J, Zhong R, Luo J, Xu D, Shi S, Zhang L. miR-223-3p mediates the diabetic kidney disease progression by targeting IL6ST/STAT3 pathway. Biochem Biophys Res Commun 2023; 648:50-58. [PMID: 36731227 DOI: 10.1016/j.bbrc.2023.01.045] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/06/2023] [Accepted: 01/14/2023] [Indexed: 01/22/2023]
Abstract
Diabetic kidney disease (DKD), the most pervasive complication in diabetic patients, has become a major health threat to the aging population. Our previous miRNA profiling identified hsa-miR-223-3p as a dysregulated miRNA in the DKD samples, which may serve as a biomarker for DKD diagnosis. However, the specific mechanism of miR-223-3p in the pathogenesis of DKD remains to be elucidated. In this study, we first verified that miR-223-3p level was significantly decreased in the in vitro cell model and in vivo db/db DKD model, accompanied with endothelial cell damage. Importantly, inhibiting the expression of miR-223-3p exacerbated high-glucose induced damages in Human Umbilical Vein Endothelial Cells (HUVECs) and Human Renal Glomerular Endothelial Cells (HRGECs), while miR-223-3p overexpression showed the opposite effect. We further demonstrated that miR-223-3p associated with IL6T mRNA and attenuated the progression of DKD by suppressing the downstream STAT3 activation, indicative of the implication of miR-223-3p/IL6T/STAT3 axis in the pathogenesis of DKD.
Collapse
Affiliation(s)
- Ping Tang
- Department of Geriatric Endocrinology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650031, China
| | - Yushan Xu
- Department of Endocrinology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650031, China
| | - Jingrong Zhang
- Department of Geriatric Endocrinology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650031, China
| | - Juanli Nan
- Department of Geriatric Endocrinology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650031, China
| | - Ruxian Zhong
- Department of Geriatric Endocrinology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650031, China
| | - Jingmei Luo
- Department of Geriatric Endocrinology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650031, China
| | - Dazhi Xu
- Department of Geriatric Endocrinology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650031, China
| | - Shaoqing Shi
- Scientific Research Laboratory Center, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650031, China.
| | - Lihua Zhang
- Department of Geriatric Endocrinology, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650031, China.
| |
Collapse
|
35
|
Glutathione system enhancement for cardiac protection: pharmacological options against oxidative stress and ferroptosis. Cell Death Dis 2023; 14:131. [PMID: 36792890 PMCID: PMC9932120 DOI: 10.1038/s41419-023-05645-y] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/17/2023]
Abstract
The glutathione (GSH) system is considered to be one of the most powerful endogenous antioxidant systems in the cardiovascular system due to its key contribution to detoxifying xenobiotics and scavenging overreactive oxygen species (ROS). Numerous investigations have suggested that disruption of the GSH system is a critical element in the pathogenesis of myocardial injury. Meanwhile, a newly proposed type of cell death, ferroptosis, has been demonstrated to be closely related to the GSH system, which affects the process and outcome of myocardial injury. Moreover, in facing various pathological challenges, the mammalian heart, which possesses high levels of mitochondria and weak antioxidant capacity, is susceptible to oxidant production and oxidative damage. Therefore, targeted enhancement of the GSH system along with prevention of ferroptosis in the myocardium is a promising therapeutic strategy. In this review, we first systematically describe the physiological functions and anabolism of the GSH system, as well as its effects on cardiac injury. Then, we discuss the relationship between the GSH system and ferroptosis in myocardial injury. Moreover, a comprehensive summary of the activation strategies of the GSH system is presented, where we mainly identify several promising herbal monomers, which may provide valuable guidelines for the exploration of new therapeutic approaches.
Collapse
|
36
|
Liu X, Chen H, Chen X, Wu P, Zhang J. Identification of Potential Targets and Mechanisms of Sinomenine in Allergic Rhinitis Treatment Based on Network Pharmacology and Molecular Docking. Crit Rev Immunol 2023; 43:1-10. [PMID: 37830189 DOI: 10.1615/critrevimmunol.2023049479] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
This study aimed to investigate the potential targets and molecular mechanism of sinomenine in treating allergic rhinitis (AR) using network pharmacology and molecular docking. Relevant targets of sinomenine and AR were obtained from public databases, and differentially expressed genes (DEGs) for AR were identified in the Gene Expression Omnibus database. Using VennDiagram, we identified 22 potential targets of sinomenine against AR by crossing disease targets, drug targets, and DEGs. Functional analysis revealed that sinomenine may act via its anti-inflammatory and immunosuppressive effects, and its action pathways may include the MAPK, HIF-1, and JAK-STAT pathways. Furthermore, hub targets were identified using EPC, MCC, and MNC algorithms, and six hub targets (STAT3, EGFR, NFKB1, HIF1A, PTGS2, and JAK1) were selected by integrating the top 10 hub genes and 22 potential targets. Molecular docking analysis indicated that STAT3, EGFR, PTGS2, and JAK1 may be key targets of sinomenine against AR. Overall, our results suggest that sinomenine has potential therapeutic effects against AR, and its mechanism of action may involve the regulation of key targets and pathways related to inflammation and immunity.
Collapse
Affiliation(s)
- Xuemei Liu
- Department of Otorhinolaryngology Head and Neck Surgery, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Hong Chen
- Department of Rehabilitation, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Xiaobo Chen
- Department of Rehabilitation, The First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000, China
| | - Peng Wu
- Department of Internal Medicine, Ganzhou Hospital of TCM, Ganzhou, 341000, China
| | - Jianhua Zhang
- Academic Affairs Office, The First Affiliated Hospital of Gannan Medical University, No. 23 Qingnian Road, Ganzhou, 341000, China
| |
Collapse
|
37
|
Liu J, Zhang Y, Liu M, Shi F, Cheng B. AG1024, an IGF-1 receptor inhibitor, ameliorates renal injury in rats with diabetic nephropathy via the SOCS/JAK2/STAT pathway. Open Med (Wars) 2023; 18:20230683. [PMID: 37034500 PMCID: PMC10080708 DOI: 10.1515/med-2023-0683] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/22/2023] [Accepted: 03/02/2023] [Indexed: 04/11/2023] Open
Abstract
Insulin-like-growth factor-1 (IGF-1) is the ligand for insulin-like growth factor-1 receptor (IGF-1R), and the roles of IGF-1/IGF-1R in diabetic nephropathy (DN) are well-characterized previously. However, the biological functions of AG1024 (an IGF-1R inhibitor) in DN remain unknown. This study investigates the roles and related mechanisms of AG-1024 in DN. The experimental DN was established via intraperitoneal injection of streptozotocin, and STZ-induced diabetic rats were treated with AG1024 (20 mg/kg/day) for 8 weeks. The 24 h proteinuria, blood glucose level, serum creatinine, and blood urea nitrogen were measured for biochemical analyses. The increase in 24 h proteinuria, blood glucose level, serum creatinine, and blood urea of DN rats were conspicuously abated by AG1024. After biochemical analyses, the renal tissue specimens were collected, and as revealed by hematoxylin and eosin staining and Masson staining, AG-1024 mitigated typical renal damage and interstitial fibrosis in DN rats. Then, the anti-inflammatory effect of AG-1024 was assessed by western blotting and ELISA. Mechanistically, AG-1024 upregulated SOCS1 and SOCS3 expression and decreased phosphorylated JAK2, STAT1, and STAT3, as shown by western blotting. Collectively, AG-1024 (an IGF-1R inhibitor) ameliorates renal injury in experimental DN by attenuating renal inflammation and fibrosis via the SOCS/JAK2/STAT pathway.
Collapse
Affiliation(s)
- Jianhua Liu
- Department of Nephrology, The Sixth Hospital of Wuhan (Affiliated Hospital of Jianghan University), Wuhan 430015, Hubei, China
| | - Yun Zhang
- Department of Nephrology, The Sixth Hospital of Wuhan (Affiliated Hospital of Jianghan University), Wuhan 430015, Hubei, China
| | - Min Liu
- Department of Nephrology, The Sixth Hospital of Wuhan (Affiliated Hospital of Jianghan University), Wuhan 430015, Hubei, China
| | - Feng Shi
- Department of Nephrology, The Sixth Hospital of Wuhan (Affiliated Hospital of Jianghan University), Wuhan 430015, Hubei, China
| | - Bo Cheng
- Department of Nephrology, The Sixth Hospital of Wuhan (Affiliated Hospital of Jianghan University), No. 168, Hong Kong Road, Jiang’an District, Wuhan 430015, Hubei, China
| |
Collapse
|
38
|
Zhai J, Li Z, Zhang H, Lu Z, Zhang Y, Li M, Kang J, Yang Z, Ma L, Ma L, Ma Z, Ma X, Zhao F, Ma X, Gao Y, Zhang Y, Li X. Coptisine mitigates diabetic nephropathy via repressing the NRLP3 inflammasome. Open Life Sci 2023; 18:20220568. [PMID: 37197172 PMCID: PMC10183720 DOI: 10.1515/biol-2022-0568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2022] [Revised: 01/03/2023] [Accepted: 01/09/2023] [Indexed: 05/19/2023] Open
Abstract
Diabetic nephropathy is a microvascular complication of diabetes mellitus, threatening the health of millions of people. Herein, we explored a blood glucose independent function of coptisine on diabetic nephropathy. A diabetic rat model was established by intraperitoneal administration of streptozotocin (65 mg/kg). Coptisine treatment (50 mg/kg/day) retarded body weight loss and reduced blood glucose. On the other hand, coptisine treatment also decreased kidney weight and the levels of urinary albumin, serum creatinine, and blood urea nitrogen, indicating an improvement of renal function. Treatment with coptisine also mitigated renal fibrosis, with alleviative collagen deposition. Likewise, in vitro study showed that coptisine treatment decreased apoptosis and fibrosis markers in HK-2 cells treated with high glucose. Furthermore, after coptisine treatment, the activation of NOD-like receptor pyrin domain containing protein 3 (NRLP3) inflammasome was repressed, with decreased levels of NLRP3, cleaved caspase-1, interleukin (IL)-1β, and IL-18, indicating that the repression of NRLP3 inflammasome contributed to the effect of coptisine on diabetic nephropathy. In conclusion, this study revealed that coptisine mitigates diabetic nephropathy via repressing the NRLP3 inflammasome. It is indicated that coptisine may have the potential to be used in the diabetic nephropathy treatment.
Collapse
Affiliation(s)
- Jiajia Zhai
- Department of General Practice, Xi’an Ninth Hospital, Xi’an, China
| | - Zeping Li
- Department of Clinical Medicine, School of Queen Mary, Nanchang University, Nanchang, China
| | - Huifeng Zhang
- Department of Neurology, Xi’an Electric Power Central Hospital, Xi’an, China
| | - Zuowei Lu
- Department of Endocrinology, Xijing Hospital, Air Force Medical University, 127 West Changle Road, Xi’an 710032, China
| | - Yi Zhang
- Department of General Practice, Xi’an Ninth Hospital, Xi’an, China
| | - Mo Li
- Department of General Practice, Xi’an Ninth Hospital, Xi’an, China
| | - Jian Kang
- Department of Microbiology and Pathogen Biology, Basic Medical School, Air Force Medical University, Xi’an, China
| | - Zelong Yang
- Department of Hepatobiliary Surgery, Xijing Hospital, Air Force Medical University, Xi’an, China
| | - Louyan Ma
- Department of General Practice, Xi’an Ninth Hospital, Xi’an, China
| | - Li Ma
- Department of General Practice, Xi’an Ninth Hospital, Xi’an, China
| | - Zhengquan Ma
- Department of General Practice, Xi’an Ninth Hospital, Xi’an, China
| | - Xiaorui Ma
- Department of General Practice, Xi’an Ninth Hospital, Xi’an, China
| | - Fanghong Zhao
- Department of General Practice, Xi’an Ninth Hospital, Xi’an, China
| | - Xiaoqing Ma
- Department of General Practice, Xi’an Ninth Hospital, Xi’an, China
| | - Yuan Gao
- Department of General Practice, Xi’an Ninth Hospital, Xi’an, China
| | - Yuanyuan Zhang
- Department of General Practice, Xi’an Ninth Hospital, Xi’an, China
| | - Xiaomiao Li
- Department of Endocrinology, Xijing Hospital, Air Force Medical University, 127 West Changle Road, Xi’an 710032, China
| |
Collapse
|
39
|
Yang X, Xia H, Li Y, Cheng Y, Wang Y, Xia Y, Yue Y, Cheng X, Chu Z. In vitro and Ex vivo Antioxidant Activity and Sustained Release Properties of Sinomenine-Loaded Liposomes-in-Hydrogel Biomaterials Simulating Cells-in-Extracellular Matrix. Nat Prod Commun 2022. [DOI: 10.1177/1934578x221130699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Sinomenine (SIN), a natural product, has been used to treat rheumatoid arthritis (RA) in China for thousands of years. SIN has been developed for the treatment of RA by way of tablets and injections, but both dosage forms have been associated with severe adverse reactions. Making SIN into liposomes-in-hydrogel biomaterials for external use has a good slow-release effect and can play an important role in avoiding the first-pass effect, gastrointestinal reaction, and increasing the local action time of drugs. SIN-loaded liposomes were formed by the thin-film dispersion method, then SIN-loaded liposomes-in-hydrogels were prepared by combining the SIN-L with hyaluronic acid (HA) hydrogels. In this paper, the basic characteristics, In vitro and Ex vivo release, and antioxidant activity of SIN-loaded liposomes-in-hydrogels were studied. The results showed that SIN-loaded liposomes-in-hydrogels have good sustained-release and antioxidant effects, and the preparation is expected to be a good biomaterial.
Collapse
Affiliation(s)
- Xinying Yang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Hongmei Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Yufan Li
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Yongfeng Cheng
- Clinical College of Anhui Medical University, Hefei, People's Republic of China
- School of life science, University of Science and Technology of China, Hefei, People's Republic of China
| | - Yu Wang
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Ying Xia
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Yan Yue
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Xiaoman Cheng
- College of Pharmacy, Anhui University of Chinese Medicine, Hefei, People's Republic of China
| | - Zhaoxing Chu
- Hefei Yigong Pharmaceutical Co., Ltd, Hefei, People's Republic of China
| |
Collapse
|
40
|
Ran S, Ren Q, Li S. JAK2/STAT3 in role of arsenic-induced cell proliferation: a systematic review and meta-analysis. REVIEWS ON ENVIRONMENTAL HEALTH 2022; 37:451-461. [PMID: 34332517 DOI: 10.1515/reveh-2021-0051] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVES Malignant cell proliferation is one of the important mechanisms of arsenic poisoning. A large number of studies have shown that STAT3 plays an important role in cell malignant proliferation, but there are still many contradictions in the effect of arsenic on JAK2/STAT3. This study aims to explore the role of JAK2/STAT3 in arsenic-induced cell proliferation. METHODS By taking normal cells as the research object and using Standard Mean Difference (SMD) as the effect size, meta-analysis was used to explore the effect of arsenic on JAK2/STAT3. Then, the dose-effect Meta was used to further clarify the dose-effect relationship of arsenic on JAK2/STAT3. RESULTS Through meta-analysis, this study found that arsenic could promote the phosphorylation of STAT3 (SMD=4.21, 95%CI [1.05, 7.37]), and increase IL-6 and p-JAK2, Vimentin, VEGF expression levels, thereby inducing malignant cell proliferation. In addition, this study also found that arsenic exposure dose (<5 μmol m-3), time(<24 h) and cell type were important sources of heterogeneity in the process of exploring the effects of arsenic on p-STAT3, IL-6 and p-JAK2. Dose-effect relationship meta-analysis results showed that arsenic exposure significantly increased the expression level of IL-6. When the arsenic exposure concentration was less than 7 μmol m-3, the expression level of p-JAK2 upregulated significantly as the arsenic exposure concentration gradually increasing. Moreover, the expression level of p-STAT3 elevated significantly with the gradual increase of the arsenic concentration under 5 μmol m-3 of arsenic exposure, but the expression level of p-STAT3 gradually decreases when the concentration is greater than 5 μmol m-3. CONCLUSIONS Exposure to low dose of arsenic could promote the expression of JAK2/STAT3 and induce the malignant proliferation of cells through upregulating IL-6, and there was dose-effect relationship among them.
Collapse
Affiliation(s)
- Shanshan Ran
- Department of Public Health, College of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Qingxin Ren
- Department of Public Health, College of Medicine, Shihezi University, Shihezi, Xinjiang, China
| | - Shugang Li
- Department of Child, Adolescent Health and Maternal Health, School of Public Health, Capital Medical University, Beijing, China
| |
Collapse
|
41
|
Molecular Mechanistic Pathways Targeted by Natural Compounds in the Prevention and Treatment of Diabetic Kidney Disease. Molecules 2022; 27:molecules27196221. [PMID: 36234757 PMCID: PMC9571643 DOI: 10.3390/molecules27196221] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/18/2022] [Accepted: 09/19/2022] [Indexed: 12/03/2022] Open
Abstract
Diabetic kidney disease (DKD) is one of the most common complications of diabetes, and its prevalence is still growing rapidly. However, the efficient therapies for this kidney disease are still limited. The pathogenesis of DKD involves glucotoxicity, lipotoxicity, inflammation, oxidative stress, and renal fibrosis. Glucotoxicity and lipotoxicity can cause oxidative stress, which can lead to inflammation and aggravate renal fibrosis. In this review, we have focused on in vitro and in vivo experiments to investigate the mechanistic pathways by which natural compounds exert their effects against the progression of DKD. The accumulated and collected data revealed that some natural compounds could regulate inflammation, oxidative stress, renal fibrosis, and activate autophagy, thereby protecting the kidney. The main pathways targeted by these reviewed compounds include the Nrf2 signaling pathway, NF-κB signaling pathway, TGF-β signaling pathway, NLRP3 inflammasome, autophagy, glycolipid metabolism and ER stress. This review presented an updated overview of the potential benefits of these natural compounds for the prevention and treatment of DKD progression, aimed to provide new potential therapeutic lead compounds and references for the innovative drug development and clinical treatment of DKD.
Collapse
|
42
|
Jin Y, Nguyen TLL, Myung CS, Heo KS. Ginsenoside Rh1 protects human endothelial cells against lipopolysaccharide-induced inflammatory injury through inhibiting TLR2/4-mediated STAT3, NF-κB, and ER stress signaling pathways. Life Sci 2022; 309:120973. [PMID: 36150463 DOI: 10.1016/j.lfs.2022.120973] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/06/2022] [Accepted: 09/14/2022] [Indexed: 10/31/2022]
Abstract
AIM Endothelial cell (EC) dysfunction initiates atherosclerosis by inducing inflammatory cytokines and adhesion molecules. Herein, we investigated the role of ginsenoside Rh1 (Rh1) in lipopolysaccharide (LPS)-induced EC dysfunction. MAIN METHODS The inhibitory effect of Rh1 on LPS binding to toll-like receptor 2 (TLR2) or TLR4 was evaluated using an immunofluorescence (IF) assay. Annexin V and cleaved caspase-3-positive EC apoptosis were evaluated by flow cytometry and IF assay. Western blotting and quantitative reverse transcription-PCR were performed to clarify underlying molecular mechanisms. In vivo model, effect of Rh1 on EC dysfunction was evaluated by using en face IF assay on aortas isolated C57BL/6 mice. KEY FINDING LPS (500 ng/mL) activated inflammatory signaling pathways, including ERK1/2, STAT3, and NF-κB. Interestingly, Rh1 significantly abolished the binding of LPS to TLR2 and TLR4. Consistently, Rh1 inhibited LPS-induced NF-κB activation and its downstream molecules, including inflammatory cytokines and adhesion molecules. Furthermore, Rh1 alleviated LPS-induced downregulation of eNOS promoter activity. Notably, inactivation of eNOS by 50 μM L-NAME significantly increased NF-κB promoter activity. In addition, Rh1 abolished LPS-mediated cell cycle arrest and EC apoptosis by inhibiting endoplasmic reticulum stress via PERK/CHOP/ERO1-α signaling pathway. Consistent with in vitro experimental data, Rh1 effectively suppressed LPS-induced VCAM-1 and CHOP expression and rescuing LPS-destroyed tight junctions between ECs as indicated in ZO-1 expression on mice aorta. SIGNIFICANCE Rh1 suppresses LPS-induced EC inflammation and apoptosis by inhibiting STAT3/NF-κB and endoplasmic reticulum stress signaling pathways, mediated by blocking LPS binding-to TLR2 and TLR4. Consistently, Rh1 effectively reduced EC dysfunction in vivo model.
Collapse
Affiliation(s)
- Yujin Jin
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea
| | - Thuy Le Lam Nguyen
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea
| | - Chang-Seon Myung
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea
| | - Kyung-Sun Heo
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon 34134, South Korea.
| |
Collapse
|
43
|
Hao X, Luan J, Jiao C, Ma C, Feng Z, Zhu L, Zhang Y, Fu J, Lai E, Zhang B, Wang Y, Kopp JB, Pi J, Zhou H. LNA-anti-miR-150 alleviates renal interstitial fibrosis by reducing pro-inflammatory M1/M2 macrophage polarization. Front Immunol 2022; 13:913007. [PMID: 35990680 PMCID: PMC9389080 DOI: 10.3389/fimmu.2022.913007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/07/2022] [Indexed: 11/18/2022] Open
Abstract
Renal interstitial fibrosis (RIF) is a common pathological feature contributing to chronic injury and maladaptive repair following acute kidney injury. Currently, there is no effective therapy for RIF. We have reported that locked nuclear acid (LNA)-anti-miR-150 antagonizes pro-fibrotic pathways in human renal tubular cells by regulating the suppressor of cytokine signal 1 (SOCS1)/Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathway. In the present study, we aimed to clarify whether LNA-anti-miR-150 attenuates folic acid-induced RIF mice by regulating this pathway and by reducing pro-inflammatory M1/M2 macrophage polarization. We found that renal miR-150 was upregulated in folic acid-induced RIF mice at day 30 after injection. LNA-anti-miR-150 alleviated the degree of RIF, as shown by periodic acid–Schiff and Masson staining and by the expression of pro-fibrotic proteins, including alpha-smooth muscle actin and fibronectin. In RIF mice, SOCS1 was downregulated, and p-JAK1 and p-STAT1 were upregulated. LNA-anti-miR-150 reversed the changes in renal SOCS1, p-JAK1, and p-STAT1 expression. In addition, renal infiltration of total macrophages, pro-inflammatory M1 and M2 macrophages as well as their secreted cytokines were increased in RIF mice compared to control mice. Importantly, in folic acid-induced RIF mice, LNA-anti-miR-150 attenuated the renal infiltration of total macrophages and pro-inflammatory subsets, including M1 macrophages expressing CD11c and M2 macrophages expressing CD206. We conclude that the anti-renal fibrotic role of LNA-anti-miR-150 in folic acid-induced RIF mice may be mediated by reducing pro-inflammatory M1 and M2 macrophage polarization via the SOCS1/JAK1/STAT1 pathway.
Collapse
Affiliation(s)
- Xiangnan Hao
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Junjun Luan
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Congcong Jiao
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Cong Ma
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Zixuan Feng
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Lingzi Zhu
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yixiao Zhang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jingqi Fu
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Enyin Lai
- Department of Physiology, School of Basic Medical Sciences, Zhejiang University School of Medicine, Hangzhou, China
| | - Beiru Zhang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanqiu Wang
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Jeffrey B. Kopp
- Kidney Disease Section, NIDDK/NIH, Bethesda, MD, United States
| | - Jingbo Pi
- Program of Environmental Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Hua Zhou
- Department of Nephrology, Shengjing Hospital of China Medical University, Shenyang, China
- *Correspondence: Hua Zhou,
| |
Collapse
|
44
|
Zhang L, Wang J. Sinomenine alleviates glomerular endothelial permeability by activating the C/EBP-α/claudin-5 signaling pathway. Hum Cell 2022; 35:1453-1463. [PMID: 35854195 DOI: 10.1007/s13577-022-00750-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 07/09/2022] [Indexed: 11/29/2022]
Abstract
Diabetic nephropathy (DN) is one of the main complications of diabetes. It is closely associated with the dysfunction of glomerular endothelial cells (GECs) under hyperglycemia. Severe inflammation is an important inducer for the development of GECs dysfunction, and it contributes to the disruption of tight junctions in GECs and the increased endothelial permeability. Sinomenine, an alkaloid monomer extracted from the rhizome of Sinomenium acutum, is recognized for its multiple pharmacological functions, including an anti-DN property. The present study aimed to explore the potential functional mechanism of Sinomenine against DN. Animals were randomly divided into Sham, DN, DN + Sinomenine (20 mg/kg), and DN + Sinomenine (40 mg/kg) groups. The Sinomenine or vehicle was administered every day for 6 weeks, followed by collecting renal tissues for further detection. Increased body weights, elevated blood glucose levels and UAE values, aggravated renal tissue pathology, higher concentrations of IL-18 and IL-1β in renal tissues, and reduced claudin-5 expression were observed in DN rats. However, the administration of Sinomenine significantly alleviated all these DN-related changes. Furthermore, human renal glomerular endothelial cells (HrGECs) were treated with high glucose (HG, 30 mM) with or without Sinomenine (50, 100 μM) for 24 h. We found that Sinomenine treatment ameliorated the elevated production of IL-18 and IL-1β, increased fluorescence intensity of FITC-dextran, declined trans-endothelial electrical resistance (TEER) value, and reduction of claudin-5 and C/EBP-α in HG-treated HrGECs. Moreover, the regulatory effect of Sinomenine on endothelial monolayer permeability in HG-treated HrGECs was abolished by the knockdown of C/EBP-α, indicating C/EBP-α is required for the effect of Sinomenine. We concluded that Sinomenine alleviated diabetic nephropathy-induced renal glomerular endothelial dysfunction via activating the C/EBP-α/claudin-5 axis.
Collapse
Affiliation(s)
- Li Zhang
- Department of Nephrology, The First Affiliated Hospital of Henan University of Science and Technology, No. 24 Jinghua Road, Jianxi Distract, Luoyang, 471003, Henan, China
| | - Junxia Wang
- Department of Nephrology, The First Affiliated Hospital of Henan University of Science and Technology, No. 24 Jinghua Road, Jianxi Distract, Luoyang, 471003, Henan, China.
| |
Collapse
|
45
|
Chen X, Li D, Duan Y, Huang Y. Characterization of co-amorphous sinomenine-tranilast systems with strong intermolecular interactions and sustained release profiles. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.103296] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
46
|
Zhu Y, Luo M, Bai X, Lou Y, Nie P, Jiang S, Li J, Li B, Luo P. Administration of mesenchymal stem cells in diabetic kidney disease: mechanisms, signaling pathways, and preclinical evidence. Mol Cell Biochem 2022; 477:2073-2092. [PMID: 35469057 DOI: 10.1007/s11010-022-04421-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Accepted: 03/22/2022] [Indexed: 02/07/2023]
Abstract
Diabetic kidney disease (DKD) is a serious microvascular complication of diabetes. Currently, the prevalence and mortality of DKD are increasing annually. However, with no effective drugs to prevent its occurrence and development, the primary therapeutic option is to control blood sugar and blood pressure. Therefore, new and effective drugs/methods are imperative to prevent the development of DKD in patients with diabetes. Mesenchymal stem cells (MSCs) with multi-differentiation potential and paracrine function have received extensive attention as a new treatment option for DKD. However, their role and mechanism in the treatment of DKD remain unclear, and clinical applications are still being explored. Given this, we here provide an unbiased review of recent advances in MSCs for the treatment of DKD in the last decade from the perspectives of the pathogenesis of DKD, biological characteristics of MSCs, and different molecular and signaling pathways. Furthermore, we summarize information on combination therapy strategies using MSCs. Finally, we discuss the challenges and prospects for clinical application.
Collapse
Affiliation(s)
- Yuexin Zhu
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Manyu Luo
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Xue Bai
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Yan Lou
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Ping Nie
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Shan Jiang
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Jicui Li
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China
| | - Bing Li
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China.
| | - Ping Luo
- Department of Nephrology, The Second Hospital of Jilin University, 218 ZiQiang Street, Changchun, 130041, Jilin, People's Republic of China.
| |
Collapse
|
47
|
Saurin S, Meineck M, Erkel G, Opatz T, Weinmann-Menke J, Pautz A. Drug Candidates for Autoimmune Diseases. Pharmaceuticals (Basel) 2022; 15:503. [PMID: 35631330 PMCID: PMC9143092 DOI: 10.3390/ph15050503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 04/12/2022] [Accepted: 04/14/2022] [Indexed: 12/10/2022] Open
Abstract
Most of the immunosuppressive drugs used in the clinic to prevent organ rejection or to treat autoimmune disorders were originally isolated from fungi or bacteria. Therefore, in addition to plants, these are valuable sources for identification of new potent drugs. Many side effects of established drugs limit their usage and make the identification of new immunosuppressants necessary. In this review, we present a comprehensive overview of natural products with potent anti-inflammatory activities that have been tested successfully in different models of chronic inflammatory autoimmune diseases. Some of these candidates already have passed first clinical trials. The anti-inflammatory potency of these natural products was often comparable to those of established drugs, and they could be used at least in addition to standard therapy to reduce their dose to minimize unwanted side effects. A frequent mode of action is the inhibition of classical inflammatory signaling pathways, such as NF-κB, in combination with downregulation of oxidative stress. A drawback for the therapeutic use of those natural products is their moderate bioavailability, which can be optimized by chemical modifications and, in addition, further safety studies are necessary. Altogether, very interesting candidate compounds exist which have the potential to serve as starting points for the development of new immunosuppressive drugs.
Collapse
Affiliation(s)
- Sabrina Saurin
- 1st Department of Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (S.S.); (M.M.)
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Myriam Meineck
- 1st Department of Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (S.S.); (M.M.)
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Gerhard Erkel
- Department of Molecular Biotechnology and Systems Biology, Technical University, 67663 Kaiserslautern, Germany;
| | - Till Opatz
- Department of Chemistry, Johannes Gutenberg University, 55099 Mainz, Germany;
| | - Julia Weinmann-Menke
- 1st Department of Medicine, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany; (S.S.); (M.M.)
- Research Center for Immunotherapy (FZI), University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| | - Andrea Pautz
- Department of Pharmacology, University Medical Center of the Johannes Gutenberg University, 55131 Mainz, Germany
| |
Collapse
|
48
|
Song L, Feng S, Yu H, Shi S. Dexmedetomidine Protects Against Kidney Fibrosis in Diabetic Mice by Targeting miR-101-3p-Mediated EndMT. Dose Response 2022; 20:15593258221083486. [PMID: 35370507 PMCID: PMC8973067 DOI: 10.1177/15593258221083486] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 02/08/2022] [Indexed: 11/25/2022]
Abstract
Objective: Our main purpose is to explore the effect and mechanism of Dexmedetomidine (DEX) in diabetic nephropathy fibrosis. Methods: Diabetic model was established by intraperitoneal injection of streptozotocin (STZ) treated CD-1 mice and high glucose cultured human dermal microvascular endothelial cells (HMVECs). Immunofluorescence was used to detect renal endothelial-mesenchymal transition (EndMT); Hematoxylin and Eosin (HE) staining and Masson’s Trichrome Staining (MTS) was used to analyze renal fibrosis; CCK-8 was used to evaluate cell viability; Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to assess the expression of miR-101-3p; Western blots were utilized to judge the protein expression levels of EndMT, extracellular matrix and TGF-β1/Smad3 signal pathway. Results: In this study, we first found that the protective effect of DEX on DN was related to EndMT. DEX alleviated kidney fibrosis by inhibiting EndMT in diabetic CD-1 mice. DEX could also inhibit high glucose-induced HMVECs EndMT. Then, we confirmed that miR-101-3p was the regulatory target of DEX. The expression of miR-101-3p was decreased in diabetic CD-1 mice and high glucose-induced HMVECs. After DEX treatment, the miR-101-3p increased, and the inhibition of miR-101-3p could counteract the protective effect of DEX and aggravate the EndMT. Finally, we found that the TGF- β1/Smad3 signal pathway was involved in the protective effect of DEX on DN. DEX inhibited the activation of TGF-β1/Smad3 signal pathway. On the contrary, inhibiting miR-101-3p promoted the expression of TGF-β1/Smad3. Conclusion: DEX protects kidney fibrosis in diabetic mice by targeting miR-101-3p-mediated EndMT.
Collapse
Affiliation(s)
- Li Song
- Department of Anesthesiology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Songlin Feng
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Hao Yu
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Sen Shi
- Department of Vascular Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Collaborative Innovation Center of Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Luzhou, China
- Cardiovascular and Metabolic Diseases Key Laboratory of Luzhou, Luzhou, China
| |
Collapse
|
49
|
Xu H, Wu T, Huang L. Therapeutic and delivery strategies of phytoconstituents for renal fibrosis. Adv Drug Deliv Rev 2021; 177:113911. [PMID: 34358538 DOI: 10.1016/j.addr.2021.113911] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 07/07/2021] [Accepted: 07/29/2021] [Indexed: 12/11/2022]
Abstract
Chronic kidney disease (CKD) is one of the most common diseases endangering human health and life. By 2030, 14 per 100,000 people may die from CKD. Renal fibrosis (RF) is an important intermediate link and the final pathological change during CKD progression to the terminal stage. Therefore, identifying safe and effective treatment methods for RF has become an important goal. In 2018, the World Health Organization introduced traditional Chinese medicine into its effective global medical program. Various phytoconstituents that affect the RF process have been extracted from different plants. Here, we review the potential therapeutic capabilities of active phytoconstituents in RF treatment and discuss how phytoconstituents can be structurally modified or combined with other ingredients to enhance efficiency and reduce toxicity. We also summarize phytoconstituent delivery strategies to overcome renal barriers and improve bioavailability and targeting.
Collapse
Affiliation(s)
- Huan Xu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China.
| | - Tianyi Wu
- Department of Pharmacy, School of Chemistry and Chemical Engineering, Liaoning Normal University, Dalian 116029, People's Republic of China
| | - Leaf Huang
- Division of Pharmacoengineering and Molecular Pharmaceutics, Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, United States
| |
Collapse
|
50
|
Wang J, Xiang H, Lu Y, Wu T, Ji G. New progress in drugs treatment of diabetic kidney disease. Biomed Pharmacother 2021; 141:111918. [PMID: 34328095 DOI: 10.1016/j.biopha.2021.111918] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 02/08/2023] Open
Abstract
Diabetic kidney disease (DKD) is not only one of the main complications of diabetes, but also the leading cause of the end-stage renal disease (ESRD). The occurrence and development of DKD have always been a serious clinical problem that leads to the increase of morbidity and mortality and the severe damage to the quality of life of human beings. Controlling blood glucose, blood pressure, blood lipids, and improving lifestyle can help slow the progress of DKD. In recent years, with the extensive research on the pathological mechanism and molecular mechanism of DKD, there are more and more new drugs based on this, such as new hypoglycemic drugs sodium-glucose cotransporter 2 (SGLT2) inhibitors, glucagon-like peptide-1 (GLP-1) inhibitors, and dipeptidyl peptidase-4 (DPP-4) inhibitors with good efficacy in clinical treatment. Besides, there are some newly developed drugs, including protein kinase C (PKC) inhibitors, advanced glycation end product (AGE) inhibitors, aldosterone receptor inhibitors, endothelin receptor (ETR) inhibitors, transforming growth factor-β (TGF-β) inhibitors, Rho kinase (ROCK) inhibitors and so on, which show positive effects in animal or clinical trials and bring hope for the treatment of DKD. In this review, we sort out the progress in the treatment of DKD in recent years, the research status of some emerging drugs, and the potential drugs for the treatment of DKD in the future, hoping to provide some directions for clinical treatment of DKD.
Collapse
Affiliation(s)
- Junmin Wang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hongjiao Xiang
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Yifei Lu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Tao Wu
- Institute of Interdisciplinary Integrative Medicine Research, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Guang Ji
- Institute of Digestive Disease, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China.
| |
Collapse
|