1
|
Yu X, Zhang Q, Wang L, Zhang Y, Zhu L. Engineered nanoparticles for imaging and targeted drug delivery in hepatocellular carcinoma. Exp Hematol Oncol 2025; 14:62. [PMID: 40307921 PMCID: PMC12044934 DOI: 10.1186/s40164-025-00658-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Accepted: 04/18/2025] [Indexed: 05/02/2025] Open
Abstract
Liver cancer, notably hepatocellular carcinoma (HCC), poses a significant global health burden due to its high fatality rates. Conventional antitumor medications face challenges, including poor targeting, high toxicity, and drug resistance, leading to suboptimal clinical outcomes. This review focused on nanoparticle use in diagnosing and delivering medication for HCC, aiming to advance the development of nanomedicines for improved treatment outcomes. As an emerging frontier science and technology, nanotechnology has shown great potential, especially in precision medicine and personalized treatment. The success of nanosystems is attributable to their smaller size, biocompatibility, selective tumor accumulation, and lower toxicity. Nanoparticles, as a central part of nanotechnology innovation, have emerged in the field of medical diagnostics and therapeutics to overcome the various limitations of conventional chemotherapy, thus offering promising applications for improved selectivity, earlier and more precise diagnosis of cancers, personalized treatment, and overcoming drug resistance. Nanoparticles play a crucial role in drug delivery and imaging of HCC, with the body acting as a delivery system to target and deliver drugs or diagnostic reagents to specific organs or tissues, helping to accurately diagnose and target therapies while minimizing damage to healthy tissues. They protect drugs from early degradation and increase their biological half-life.
Collapse
Affiliation(s)
- Xianzhe Yu
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
- Department of Gastrointestinal Surgery, Chengdu Second People's Hospital, No. 10 Qinyun Nan Street, Chengdu, 610041, Sichuan, People's Republic of China
| | - Qin Zhang
- Department of Postgraduate Students, West China School of Medicine/West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China
| | - Leibo Wang
- Department of Surgery, Beijing Jishuitan Hospital Guizhou Hospital Guiyang, Guiyang, 550000, Guizhou, The People's Republic of China
| | - Yan Zhang
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| | - Lingling Zhu
- Department of Medical Oncology, Cancer Center & Lung Cancer Center/Lung Cancer Institute, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, People's Republic of China.
| |
Collapse
|
2
|
Kenchegowda M, Angolkar M, Hani U, Al Fatease A, Fatima F, Talath S, Dera AA, Paramshetti S, Gangadharappa HV, Osmani RAM, Kazi HS. Polymeric microneedle advancements in macromolecule drug delivery: current trends, challenges, and future perspectives. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04117-8. [PMID: 40244451 DOI: 10.1007/s00210-025-04117-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 03/27/2025] [Indexed: 04/18/2025]
Abstract
Microneedles (MNs) offer a transformative solution for delivering macromolecules, including proteins, RNA, and peptides. These are critical in treating complex diseases but face significant challenges such as immunogenicity, poor stability, high molecular weight, and delivery efficiency. Unlike conventional methods, MNs efficiently bypass biological barriers like the stratum corneum, enabling precise and minimally invasive transdermal drug delivery. This review explores various MN types such as solid, coated, hollow, hydrogel-forming, and dissolving and their therapeutic applications in cancer immunotherapy, diabetes management, and osteoporosis treatment. For instance, dissolving MNs have been employed for transdermal insulin delivery, enhancing patient compliance and therapeutic outcomes. Similarly, hydrogel MNs have shown promise in sustained drug release for immunotherapy applications. By addressing cost and scalability issues, polymeric MNs demonstrate significant potential for clinical translation, paving the way for innovations in macromolecule delivery, diagnostics, and personalised medicine. This review underscores the pivotal role of MNs in redefining drug delivery systems, offering improved efficacy, patient comfort, and accessibility.
Collapse
Affiliation(s)
- Madhuchandra Kenchegowda
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, 570015, India
| | - Mohit Angolkar
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, 570015, India
| | - Umme Hani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha, 62529, Saudi Arabia
| | - Adel Al Fatease
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Guraiger, Abha, 62529, Saudi Arabia
| | - Farhat Fatima
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Al-kharj, 11942, Saudi Arabia
| | - Sirajunisa Talath
- Department of Pharmaceutical Chemistry, RAK College of Pharmacy, RAK Medical and Health Sciences University, Ras Al Khaimah, 11172, United Arab Emirates
| | - Ayed A Dera
- Department of Clinical Laboratory Sciences, Central Research Laboratory, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia
| | - Sharanya Paramshetti
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, 570015, India
| | | | - Riyaz Ali M Osmani
- Department of Pharmaceutics, College of Pharmacy, King Khalid University, Al-Faraa, Abha, 62223, Saudi Arabia.
| | - Heena Shijauddin Kazi
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research (JSS AHER), Mysuru, Karnataka, 570015, India
| |
Collapse
|
3
|
Shahani A, Slika H, Elbeltagy A, Lee A, Peters C, Dotson T, Raj D, Tyler B. The epigenetic mechanisms involved in the treatment resistance of glioblastoma. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2025; 8:12. [PMID: 40201311 PMCID: PMC11977385 DOI: 10.20517/cdr.2024.157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/21/2024] [Accepted: 12/03/2024] [Indexed: 04/10/2025]
Abstract
Glioblastoma (GBM) is an aggressive malignant brain tumor with almost inevitable recurrence despite multimodal management with surgical resection and radio-chemotherapy. While several genetic, proteomic, cellular, and anatomic factors interplay to drive recurrence and promote treatment resistance, the epigenetic component remains among the most versatile and heterogeneous of these factors. Herein, the epigenetic landscape of GBM refers to a myriad of modifications and processes that can alter gene expression without altering the genetic code of cancer cells. These processes encompass DNA methylation, histone modification, chromatin remodeling, and non-coding RNA molecules, all of which have been found to be implicated in augmenting the tumor's aggressive behavior and driving its resistance to therapeutics. This review aims to delve into the underlying interactions that mediate this role for each of these epigenetic components. Further, it discusses the two-way relationship between epigenetic modifications and tumor heterogeneity and plasticity, which are crucial to effectively treat GBM. Finally, we build on the previous characterization of epigenetic modifications and interactions to explore specific targets that have been investigated for the development of promising therapeutic agents.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Betty Tyler
- Hunterian Neurosurgical Laboratory, Department of Neurosurgery, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
4
|
Mohiuddin AKM, Ferdous N, Reza MN, Al Amin M, Khanam R, Hossain MU, Ahammad I, Mahmud S. Designing siRNA for silencing the human ERBB2 gene in cancer treatment: Evaluating intracellular delivery strategies. Comput Biol Med 2025; 186:109663. [PMID: 39809083 DOI: 10.1016/j.compbiomed.2025.109663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 12/18/2024] [Accepted: 01/06/2025] [Indexed: 01/16/2025]
Abstract
The ERBB2 is one of the most studied genes in oncology for its significant role in human malignancies. The metastasis-associated properties that facilitate cancer metastasis can be enhanced by activating the ERBB2 receptor signaling pathways. Additionally, therapeutic resistance is conferred by ERBB2 overexpression via receptor-mediated antiapoptotic signals. Several ERBB2-blocking techniques have the effect of overexpressed ERBB2, and several of them have passed clinical trials for use as therapies. Small interfering RNAs (siRNA), which have the potential to silence genes, are attractive for treating such fatal malignancies. In this study, we rationally designed a siRNA molecule targeting the human ERBB2 gene. The selection process involved identifying a shared region among all ERBB2 transcripts for siRNA design. The ultimate siRNA candidate was chosen through rigorous evaluation using contemporary algorithms, considering off-target similarities, examination of thermodynamic properties, and analysis using molecular dynamics (MD) simulations. Further, we opted for cell-penetrating peptides (CPP) and RNA aptamer as carriers for the siRNA. Employing both steered MD simulations and traditional MD simulations, we investigated how these carriers facilitate siRNA delivery. Experimental confirmation revealed the stability of the selected carriers and siRNA on the lipid bilayer. The designed siRNA molecule and the simulations present a potential alternative therapeutic strategy against human ERBB2. This contributes to advances in developing and utilizing innovative carriers for the delivery of siRNA, enhancing the potential for therapeutic applications.
Collapse
Affiliation(s)
- A K M Mohiuddin
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh.
| | - Nadim Ferdous
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Mahjerin Nasrin Reza
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Md Al Amin
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Roksana Khanam
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| | - Mohammad Uzzal Hossain
- Bioinformatics Division, National Institute of Biotechnology, Ashulia, Savar, Dhaka-1349, Bangladesh
| | - Ishtiaque Ahammad
- Bioinformatics Division, National Institute of Biotechnology, Ashulia, Savar, Dhaka-1349, Bangladesh
| | - Shahin Mahmud
- Department of Biotechnology and Genetic Engineering, Mawlana Bhashani Science and Technology University, Santosh, Tangail, 1902, Bangladesh
| |
Collapse
|
5
|
Rahman MA, Jalouli M, Yadab MK, Al-Zharani M. Progress in Drug Delivery Systems Based on Nanoparticles for Improved Glioblastoma Therapy: Addressing Challenges and Investigating Opportunities. Cancers (Basel) 2025; 17:701. [PMID: 40002294 PMCID: PMC11852615 DOI: 10.3390/cancers17040701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/13/2025] [Accepted: 02/17/2025] [Indexed: 02/27/2025] Open
Abstract
Glioblastoma multiforme (GBM) is a highly malignant brain tumor that has a bleak outlook despite existing treatments such as surgery, radiation, and chemotherapy. The utilization of nanoparticles for drug delivery presents a promising method by which to improve the effectiveness of treatment while reducing the harmful effects on the entire body. This review examines the application of nanoparticles in the treatment of GBM, focusing on different types of nanoparticles, including lipid-based, polymeric, metallic, and those under development. Every variety is analyzed for its distinct characteristics and therapeutic capacity. Lipid-based nanoparticles, such as liposomes and solid lipid nanoparticles, enhance the transport of medicines that are not soluble in water and have shown considerable potential in preclinical investigations. Polymeric nanoparticles have benefits in terms of controlled release and targeted distribution, whereas metallic nanoparticles have potential in both therapy and imaging. In the current review we would like to emphasize the ways in which nanoparticles improve medicine delivery, specifically by enhancing penetration of the blood-brain barrier (BBB), targeting tumors, and enabling controlled release. Additionally, we also discuss current preclinical and clinical discoveries, highlighting both achievements and obstacles in the process of converting these technologies into effective treatments for GBM. This study offers a thorough examination of the present status and prospects of nanoparticles in the treatment of GBM.
Collapse
Affiliation(s)
- Md Ataur Rahman
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA;
| | - Maroua Jalouli
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (M.J.); (M.A.-Z.)
| | - Mahesh Kumar Yadab
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, Detroit, MI 48201, USA;
| | - Mohammed Al-Zharani
- Department of Biology, College of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh 11623, Saudi Arabia; (M.J.); (M.A.-Z.)
| |
Collapse
|
6
|
Ben Mrid R, El Guendouzi S, Mineo M, El Fatimy R. The emerging roles of aberrant alternative splicing in glioma. Cell Death Discov 2025; 11:50. [PMID: 39915450 PMCID: PMC11802826 DOI: 10.1038/s41420-025-02323-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 01/14/2025] [Accepted: 01/23/2025] [Indexed: 02/09/2025] Open
Abstract
Gliomas represent a heterogeneous group of uniformly fatal brain tumors. Low and high-grade gliomas have diverse molecular signatures. Despite successful advances in understanding glioma, several genetic, epigenetic, and post-transcriptional alterations leave various targeted therapies ineffective, leading to a poor prognosis for high-grade glioma. Recent advances have revealed the implication of dysregulated alternative splicing (AS) events in glioma development. AS is a process that produces, from a single genomic sequence, several mature messenger RNAs. Splicing of pre-messenger RNAs concerns at least 95% of transcripts and constitutes an important mechanism in gene expression regulation. Dysregulation of this process, through variations in spliceosome components, aberrant splicing factors and RNA-binding protein activity, disproportionate regulation of non-coding RNAs, and abnormal mRNA methylation, can contribute to the disruption of AS. Such disruptions are usually associated with the development of several cancers, including glioma. Consequently, AS constitutes a key regulatory mechanism that could serve as a target for future therapies. In this review, we explore how AS events, spliceosome components, and their regulatory mechanisms play a critical role in glioma development, highlighting their potential as targets for innovative therapeutic strategies against this challenging cancer.
Collapse
Affiliation(s)
- Reda Ben Mrid
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences, Mohammed VI Polytechnic University (FMS-UM6P), Ben-Guerir, Morocco.
| | - Sara El Guendouzi
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences, Mohammed VI Polytechnic University (FMS-UM6P), Ben-Guerir, Morocco
| | - Marco Mineo
- Harvey W. Cushing Neuro-oncology Laboratories, Department of Neurosurgery, Harvard Medical School and Brigham and Women's Hospital, Boston, MA, 02115, USA
| | - Rachid El Fatimy
- Institute of Biological Sciences (ISSB), Faculty of Medical Sciences, Mohammed VI Polytechnic University (FMS-UM6P), Ben-Guerir, Morocco.
| |
Collapse
|
7
|
Bian X, Yu X, Lu S, Jia L, Li P, Yin J, Tan S. Chitosan-based nanoarchitectures for siRNA delivery in cancer therapy: A review of pre-clinical and clinical importance. Int J Biol Macromol 2025; 284:137708. [PMID: 39571854 DOI: 10.1016/j.ijbiomac.2024.137708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 11/01/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024]
Abstract
The gene therapy has been developed into a new cancer treatment option. Now that we know which molecular components contribute to carcinogenesis, we may use gene therapy to target particular signalling pathways in cancer treatment. Problems with gene therapy include genetic tool degradation in blood, off-targeting features, and inadequate tumor site accumulation; new delivery mechanisms are needed to address these issues. A polysaccharide made from chitin, chitosan has found extensive use in the creation of nanoparticles. The delivery of genes in the treatment of illnesses, particularly cancer, has made use of nanostructures modified with chitosan. Topics covered in this review center on cancer treatment using chitosan-based polymers for siRNA delivery. This study aims to assess the potential of chitosan nanoparticles for the simultaneous administration of siRNA and anti-cancer medications. In cancer treatment, these nanoparticles can transport phytochemicals or chemotherapeutics together with siRNA. In addition, chitosan nanoparticles loaded with siRNA can inhibit the growth and spread of human malignancies by delivering siRNA that targets particular genes. Chitosan nanoparticles loaded with siRNA can heighten the responsiveness of cancer cells. Future therapeutic applications of chitosan nanoparticles may open the path for cancer treatment, thanks to their biocompatibility and biosafety.
Collapse
Affiliation(s)
- Xiaobo Bian
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Xiaopeng Yu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Shiyang Lu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Linan Jia
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China
| | - Ping Li
- Center of Reproductive Medicine, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Jianqiao Yin
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, China.
| | - Shutao Tan
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
8
|
Khiabani NA, Doustvandi MA, Story D, Nobari SA, Hajizadeh M, Petersen R, Dunbar G, Rossignol J. Glioblastoma therapy: State of the field and future prospects. Life Sci 2024; 359:123227. [PMID: 39537100 DOI: 10.1016/j.lfs.2024.123227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 09/03/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024]
Abstract
Glioblastoma (GB) is a cancerous brain tumor that originates from glial cells and leads to thousands of deaths each year and a five-year survival of only 6.8 %. Treatments for GB include surgery, chemotherapy, radiation, and immunotherapy. GB is an incurable fatal disease, necessitating the development of innovative strategies to find a developing effective therapy. Genetic therapies may be crucial in treating GB by identifying the mutations and amplifications of multiple genes, which drive its proliferation and spread. Use of small interfering RNAs (siRNAs) provides a novel technology used to suppress the genes associated with disease, which forms a basis for targeted therapy in GB and its stem cell population, which are recognized for their ability to develop resistance to chemotherapy and tumorigenic capabilities. This review examines the use of siRNAs in GB, emphasizing their effectiveness in suppressing key oncogenes and signaling pathways associated with tumor development, invasion, stemness, and resistance to standard treatments. siRNA-based gene silencing is a promising approach for developing targeted therapeutics against GB and associated stem cell populations, potentially enhancing patient outcomes and survival rates in this devastating disease.
Collapse
Affiliation(s)
- Nadia Allahyarzadeh Khiabani
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA; Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA; College of Medicine, Central Michigan University, Mount Pleasant, MI, USA
| | | | - Darren Story
- Department of Psychology, Saginaw Valley State University, University Center, MI 48710, USA
| | | | | | - Robert Petersen
- College of Medicine, Central Michigan University, Mount Pleasant, MI, USA
| | - Gary Dunbar
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA; Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA; Department of Psychology, Central Michigan University, Mount Pleasant, MI, USA
| | - Julien Rossignol
- Field Neurosciences Institute Laboratory for Restorative Neurology, Central Michigan University, Mount Pleasant, MI, USA; Program in Neuroscience, Central Michigan University, Mount Pleasant, MI, USA; College of Medicine, Central Michigan University, Mount Pleasant, MI, USA.
| |
Collapse
|
9
|
Ivanov SM, Lagunin AA, Tarasova OA. Analysis of transcription profiles for the identification of master regulators as the key players in glioblastoma. Comput Struct Biotechnol J 2024; 23:3559-3574. [PMID: 39963421 PMCID: PMC11832006 DOI: 10.1016/j.csbj.2024.09.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 09/23/2024] [Accepted: 09/26/2024] [Indexed: 02/20/2025] Open
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor with poor overall survival. Current treatment management for GBM has low efficacy, mainly due to high inter-patient heterogeneity. The transcription profiles in GBM define cell properties essential for tumor progression. We have developed an approach for the identification of master regulators (MRs) that are responsible for the gene expression changes in GBM. The approach is based on transcription factor enrichment analysis with subsequent "upstream" analysis in the signaling network. The main feature of the approach is that all calculations are performed for transcription profiles from individual samples, which allows taking into account GBM transcription heterogeneity. We identified 451 MRs that were up-regulated or down-regulated and, thus, were important parts of positive feedback loops. The number of MRs in the samples correlated with the degree of tumor immune infiltration, while the differences in MR profiles were generally consistent with the known GBM subtypes: mesenchymal, classical, and proneural. MRs densely interact with each other in the signaling network that may be associated with the robustness to pharmacological intervention. We identified 102 receptors among MRs, which is coherent with the importance of cell-cell interactions for GBM progression. The role of some of them in GBM is not currently investigated: lysophosphatidic acid receptors 5 and 6, sphingosine-1-phosphate receptor 4, lysophosphatidylserine receptors GPR34 and GPR174, and G protein-coupled receptors 84 and 132 for fatty acids. Information on the revealed MRs can be used to search for novel therapeutic strategies to treat GBM.
Collapse
Affiliation(s)
- Sergey M. Ivanov
- Department of Bioinformatics, Institute of Biomedical Chemistry, Pogodinskaya Street, 10 bldg. 8, Moscow 119121, Russia
- Department of Bioinformatics, Pirogov Russian National Research Medical University, Ostrovityanova Street, 1, Moscow 117997, Russia
| | - Alexey A. Lagunin
- Department of Bioinformatics, Institute of Biomedical Chemistry, Pogodinskaya Street, 10 bldg. 8, Moscow 119121, Russia
- Department of Bioinformatics, Pirogov Russian National Research Medical University, Ostrovityanova Street, 1, Moscow 117997, Russia
| | - Olga A. Tarasova
- Department of Bioinformatics, Institute of Biomedical Chemistry, Pogodinskaya Street, 10 bldg. 8, Moscow 119121, Russia
| |
Collapse
|
10
|
Khaleel AQ, Alshahrani MY, Rizaev JA, Malathi H, Devi S, Pramanik A, Mustafa YF, Hjazi A, Muazzamxon I, Husseen B. siRNA-based strategies to combat drug resistance in gastric cancer. Med Oncol 2024; 41:293. [PMID: 39428440 DOI: 10.1007/s12032-024-02528-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2024] [Accepted: 09/27/2024] [Indexed: 10/22/2024]
Abstract
Chemotherapy is a key treatment option for gastric cancer, but over 50% of patients develop either inherent or acquired resistance to these drugs, resulting in a 5-year survival rate of only about 20%. The primary treatment for advanced gastric cancer typically involves chemotherapy based on platinum or fluorouracil. Several factors can contribute to platinum resistance, including decreased drug uptake, increased drug efflux or metabolism, enhanced DNA repair, activation of pro-survival pathways, and inhibition of pro-apoptotic pathways. In recent years, there has been significant progress in biology aimed at finding innovative and more effective methods to overcome chemotherapy resistance. Small interfering RNAs (siRNAs) have emerged as a significant advancement in gene expression regulation, showing promise in enhancing the sensitivity of gastric cancer cells to chemotherapy drugs. However, siRNA therapies still face major challenges, particularly in terms of stability and efficient delivery in vivo. This article discusses the advances in siRNA therapy and its potential role in overcoming resistance to chemotherapeutic drugs such as cisplatin, 5-FU, doxorubicin, and paclitaxel in the treatment of gastric cancer.
Collapse
Affiliation(s)
- Abdulrahman Qais Khaleel
- Department of Medical Instruments Engineering, College of Engineering, University of Al Maarif, Ramadi, Al Anbar, 31001, Iraq.
| | - Mohammad Y Alshahrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Science, King Khalid University, Abha, Saudi Arabia
| | - Jasur Alimdjanovich Rizaev
- Department of Public Health and Healthcare Management, Rector, Samarkand State Medical University, 18 Amir Temur Street, Samarkand, Uzbekistan.
| | - H Malathi
- Department of Biotechnology and Genetics, School of Sciences Jain (Deemed to be University), Bangalore, Karnataka, India
| | - Seema Devi
- Chandigarh Pharmacy College, Chandigarh Group of Colleges, Jhanjheri, Mohali, 140307, Punjab, India
| | - Atreyi Pramanik
- School of Applied and Life Sciences, Division of Research and Innovation, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul, 41001, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, 11942, Al-Kharj, Saudi Arabia
| | - Ismoilova Muazzamxon
- Department of Propaedeutics of Internal Diseases, Fergana Medical Institute of Public Health, Fergana, Uzbekistan
- Western Caspian University, Scientific Researcher, Baku, Azerbaijan
| | - Beneen Husseen
- Medical Laboratory Technique College, the Islamic University, Najaf, Iraq
- Medical Laboratory Technique College, the Islamic University of Al Diwaniyah, Al Diwaniyah, Iraq
- Medical Laboratory Technique College, the Islamic University of Babylon, Babylon, Iraq
| |
Collapse
|
11
|
Ozma MA, Moaddab SR, Hosseini H, Khodadadi E, Ghotaslou R, Asgharzadeh M, Abbasi A, Kamounah FS, Aghebati Maleki L, Ganbarov K, Samadi Kafil H. A critical review of novel antibiotic resistance prevention approaches with a focus on postbiotics. Crit Rev Food Sci Nutr 2024; 64:9637-9655. [PMID: 37203933 DOI: 10.1080/10408398.2023.2214818] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Antibiotic resistance is a significant public health issue, causing illnesses that were once easily treatable with antibiotics to develop into dangerous infections, leading to substantial disability and even death. To help fight this growing threat, scientists are developing new methods and techniques that play a crucial role in treating infections and preventing the inappropriate use of antibiotics. These effective therapeutic methods include phage therapies, quorum-sensing inhibitors, immunotherapeutics, predatory bacteria, antimicrobial adjuvants, haemofiltration, nanoantibiotics, microbiota transplantation, plant-derived antimicrobials, RNA therapy, vaccine development, and probiotics. As a result of the activity of probiotics in the intestine, compounds derived from the structure and metabolism of these bacteria are obtained, called postbiotics, which include multiple agents with various therapeutic applications, especially antimicrobial effects, by using different mechanisms. These compounds have been chosen in particular because they don't promote the spread of antibiotic resistance and don't include substances that can increase antibiotic resistance. This manuscript provides an overview of the novel approaches to preventing antibiotic resistance with emphasis on the various postbiotic metabolites derived from the gut beneficial microbes, their activities, recent related progressions in the food and medical fields, as well as concisely giving an insight into the new concept of postbiotics as "hyperpostbiotic".
Collapse
Affiliation(s)
- Mahdi Asghari Ozma
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Seyyed Reza Moaddab
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ehsaneh Khodadadi
- Material Science and Engineering, Department of Chemistry and Biochemistry, University of Arkansas-Fayetteville, Fayetteville, AR, USA
| | - Reza Ghotaslou
- Infectious and Tropical Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fadhil S Kamounah
- Department of Chemistry, University of Copenhagen, Copenhagen, Denmark
| | | | - Khudaverdi Ganbarov
- Research Laboratory of Microbiology and Virology, Baku State University, Baku, Republic of Azerbaijan
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
12
|
Beraza-Millor M, Rodríguez-Castejón J, Del Pozo-Rodríguez A, Rodríguez-Gascón A, Solinís MÁ. Systematic Review of Genetic Substrate Reduction Therapy in Lysosomal Storage Diseases: Opportunities, Challenges and Delivery Systems. BioDrugs 2024; 38:657-680. [PMID: 39177875 PMCID: PMC11358353 DOI: 10.1007/s40259-024-00674-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/25/2024] [Indexed: 08/24/2024]
Abstract
BACKGROUND Genetic substrate reduction therapy (gSRT), which involves the use of nucleic acids to downregulate the genes involved in the biosynthesis of storage substances, has been investigated in the treatment of lysosomal storage diseases (LSDs). OBJECTIVE To analyze the application of gSRT to the treatment of LSDs, identifying the silencing tools and delivery systems used, and the main challenges for its development and clinical translation, highlighting the contribution of nanotechnology to overcome them. METHODS A systematic review following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) reporting guidelines was performed. PubMed, Scopus, and Web of Science databases were used for searching terms related to LSDs and gene-silencing strategies and tools. RESULTS Fabry, Gaucher, and Pompe diseases and mucopolysaccharidoses I and III are the only LSDs for which gSRT has been studied, siRNA and lipid nanoparticles being the silencing strategy and the delivery system most frequently employed, respectively. Only in one recently published study was CRISPR/Cas9 applied to treat Fabry disease. Specific tissue targeting, availability of relevant cell and animal LSD models, and the rare disease condition are the main challenges with gSRT for the treatment of these diseases. Out of the 11 studies identified, only two gSRT studies were evaluated in animal models. CONCLUSIONS Nucleic acid therapies are expanding the clinical tools and therapies currently available for LSDs. Recent advances in CRISPR/Cas9 technology and the growing impact of nanotechnology are expected to boost the clinical translation of gSRT in the near future, and not only for LSDs.
Collapse
Affiliation(s)
- Marina Beraza-Millor
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - Julen Rodríguez-Castejón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - Ana Del Pozo-Rodríguez
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - Alicia Rodríguez-Gascón
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain
| | - María Ángeles Solinís
- Pharmacokinetic, Nanotechnology and Gene Therapy Group (PharmaNanoGene), Faculty of Pharmacy, Centro de Investigación Lascaray Ikergunea, University of the Basque Country, UPV/EHU, Paseo de la Universidad 7, 01006, Vitoria-Gasteiz, Spain.
- Bioaraba, Microbiology, Infectious Disease, Antimicrobial Agents and Gene Therapy, 01006, Vitoria-Gasteiz, Spain.
| |
Collapse
|
13
|
Qiao M, Zeng C, Liu C, Lei Z, Liu B, Xie H. The advancement of siRNA-based nanomedicine for tumor therapy. Nanomedicine (Lond) 2024; 19:1841-1862. [PMID: 39145477 PMCID: PMC11418284 DOI: 10.1080/17435889.2024.2377062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 07/03/2024] [Indexed: 08/16/2024] Open
Abstract
Small interfering RNA (siRNA) has been proved to be able to effectively down-regulate gene expression through the RNAi mechanism. Thus, siRNA-based drugs have become one of the hottest research directions due to their high efficiency and specificity. However, challenges such as instability, off-target effects and immune activation hinder their clinical application. This review explores the mechanisms of siRNA and the challenges in siRNA-based tumor therapy. It highlights the use of various nanomaterials - including lipid nanoparticles, polymeric nanoparticles and inorganic nanoparticles - as carriers for siRNA delivery in different therapeutic modalities. The application strategies of siRNA-based nanomedicine in chemotherapy, phototherapy and immunotherapy are discussed in detail, along with recent clinical advancements. Aiming to provide insights for future research and therapeutic approaches.
Collapse
Affiliation(s)
- Muchuan Qiao
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| | - Chenlu Zeng
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| | - Changqing Liu
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| | - Ziwei Lei
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| | - Bin Liu
- College of Biology, Hunan University, Changsha, Hunan, 410082, China
| | - Hailong Xie
- Hunan Province Key Laboratory of Tumor Cellular & Molecular Pathology, Institute of Cancer Research, School of Medicine, University of South China, Hengyang, Hunan, 421001, China
| |
Collapse
|
14
|
Terlikowska KM, Dobrzycka B, Terlikowski SJ. Modifications of Nanobubble Therapy for Cancer Treatment. Int J Mol Sci 2024; 25:7292. [PMID: 39000401 PMCID: PMC11242568 DOI: 10.3390/ijms25137292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 06/17/2024] [Accepted: 06/26/2024] [Indexed: 07/16/2024] Open
Abstract
Cancer development is related to genetic mutations in primary cells, where 5-10% of all cancers are derived from acquired genetic defects, most of which are a consequence of the environment and lifestyle. As it turns out, over half of cancer deaths are due to the generation of drug resistance. The local delivery of chemotherapeutic drugs may reduce their toxicity by increasing their therapeutic dose at targeted sites and by decreasing the plasma levels of circulating drugs. Nanobubbles have attracted much attention as an effective drug distribution system due to their non-invasiveness and targetability. This review aims to present the characteristics of nanobubble systems and their efficacy within the biomedical field with special emphasis on cancer treatment. In vivo and in vitro studies on cancer confirm nanobubbles' ability and good blood capillary perfusion; however, there is a need to define their safety and side effects in clinical trials.
Collapse
Affiliation(s)
- Katarzyna M Terlikowska
- Department of Food Biotechnology, Medical University of Bialystok, Szpitalna 37 Street, 15-295 Bialystok, Poland
| | - Bozena Dobrzycka
- Department of Gynaecology and Practical Obstetrics, Medical University of Bialystok, M. Sklodowskiej-Curie 24A Street, 15-089 Bialystok, Poland
| | - Slawomir J Terlikowski
- Department of Obstetrics, Gynaecology and Maternity Care, Medical University of Bialystok, Szpitalna 37 Street, 15-295 Bialystok, Poland
| |
Collapse
|
15
|
Forgham H, Zhu J, Huang X, Zhang C, Biggs H, Liu L, Wang YC, Fletcher N, Humphries J, Cowin G, Mardon K, Kavallaris M, Thurecht K, Davis TP, Qiao R. Multifunctional Fluoropolymer-Engineered Magnetic Nanoparticles to Facilitate Blood-Brain Barrier Penetration and Effective Gene Silencing in Medulloblastoma. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401340. [PMID: 38647396 PMCID: PMC11220643 DOI: 10.1002/advs.202401340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 04/01/2024] [Indexed: 04/25/2024]
Abstract
Patients with brain cancers including medulloblastoma lack treatments that are effective long-term and without side effects. In this study, a multifunctional fluoropolymer-engineered iron oxide nanoparticle gene-therapeutic platform is presented to overcome these challenges. The fluoropolymers are designed and synthesized to incorporate various properties including robust anchoring moieties for efficient surface coating, cationic components to facilitate short interference RNA (siRNA) binding, and a fluorinated tail to ensure stability in serum. The blood-brain barrier (BBB) tailored system demonstrates enhanced BBB penetration, facilitates delivery of functionally active siRNA to medulloblastoma cells, and delivers a significant, almost complete block in protein expression within an in vitro extracellular acidic environment (pH 6.7) - as favored by most cancer cells. In vivo, it effectively crosses an intact BBB, provides contrast for magnetic resonance imaging (MRI), and delivers siRNA capable of slowing tumor growth without causing signs of toxicity - meaning it possesses a safe theranostic function. The pioneering methodology applied shows significant promise in the advancement of brain and tumor microenvironment-focused MRI-siRNA theranostics for the better treatment and diagnosis of medulloblastoma.
Collapse
Affiliation(s)
- Helen Forgham
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Jiayuan Zhu
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Xumin Huang
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Cheng Zhang
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
- National Imaging FacilityCentre for Advanced ImagingThe University of QueenslandSt LuciaQueensland4072Australia
| | - Heather Biggs
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Liwei Liu
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Yi Cheng Wang
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Nicholas Fletcher
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
- National Imaging FacilityCentre for Advanced ImagingThe University of QueenslandSt LuciaQueensland4072Australia
- ARC Training Centre for Innovation in Biomedical Imaging TechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - James Humphries
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
- National Imaging FacilityCentre for Advanced ImagingThe University of QueenslandSt LuciaQueensland4072Australia
- ARC Training Centre for Innovation in Biomedical Imaging TechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Gary Cowin
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
- National Imaging FacilityCentre for Advanced ImagingThe University of QueenslandSt LuciaQueensland4072Australia
| | - Karine Mardon
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
- National Imaging FacilityCentre for Advanced ImagingThe University of QueenslandSt LuciaQueensland4072Australia
| | - Maria Kavallaris
- Children's Cancer InstituteLowy Cancer Research CentreUNSW SydneyKensingtonNew South Wales2052Australia
- School of Clinical MedicineFaculty of Medicine & HealthUNSW SydneyKensingtonNew South Wales2052Australia
- UNSW Australian Centre for NanomedicineFaculty of EngineeringUNSW SydneyKensingtonNew South Wales2052Australia
- UNSW RNA InstituteFaculty of ScienceUNSW SydneyKensingtonNew South Wales2052Australia
| | - Kristofer Thurecht
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
- National Imaging FacilityCentre for Advanced ImagingThe University of QueenslandSt LuciaQueensland4072Australia
- ARC Training Centre for Innovation in Biomedical Imaging TechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Thomas P. Davis
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| | - Ruirui Qiao
- Australian Institute of Bioengineering & NanotechnologyThe University of QueenslandSt LuciaQueensland4072Australia
| |
Collapse
|
16
|
Abbasfard Z, Behzad-Behbahani A, Rastegari B, Naeimi S, Moghanibashi M, Safari F. Overcoming Breast Cancer Drug Resistance: A Novel Approach Using siRNA-Mediated P-glycoprotein Downregulation to Enhance Vinorelbine Efficacy. Adv Pharm Bull 2024; 14:445-452. [PMID: 39206391 PMCID: PMC11347736 DOI: 10.34172/apb.2024.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/29/2024] [Accepted: 03/03/2024] [Indexed: 09/04/2024] Open
Abstract
Purpose Cancer, the second leading cause of mortality worldwide, represents a global health challenge, primarily due to drug resistance. Vinorelbine is a chemotherapeutic agent that disrupts cancer cell growth by targeting microtubules and inducing apoptosis. However, drug resistance remains a formidable obstacle. This resistance is caused by various factors including genetic mutations, drug efflux mechanisms, and DNA repair systems. Resolution of this challenge requires an innovative approach. This study investigated the potential of small interfering RNA (siRNA) to target and downregulate a vinorelbine-resistant MCF-7/ADR breast cancer cell line. Methods Cells were cultured in Dulbecco's modified Eagle's medium (DMEM) 10% fetal bovine serum/penicillin/streptomycin. An siRNA targeting ABCB1 was designed and synthesized, and the cells were transfected with siRNA at final concentrations of 10, 20, and 30 nM. The3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay was used to assess cell viability. ABCB1 mRNA expression levels were determined by real-time polymerase chain reaction (PCR). Results MCF-7 cells exhibited a higher sensitivity to vinorelbine than MCF-7/ADR cells. MCF-7/ADR cells exhibited resistance to vinorelbine at concentrations, 12.50 and 25.00 μM. Treatment with siRNA significantly reduced ABCB1 expression by 2.93-fold (P=0.0001). Similarly, co-treatment with siRNA and vinorelbine produced a substantial 2.89-fold decrease in ABCB1 gene expression in MCF-7 cells compared to that in MCF-7/ADR cells (P=0.0001). Conclusion The results of the present study indicate that the concurrent use of siRNA and vinorelbine holds substantial promise as a therapeutic approach to overcome ABCB1-mediated multidrug resistance (MDR) in breast cancer. It is necessary to conduct comprehensive clinical trials to determine the true effectiveness of this combination therapy.
Collapse
Affiliation(s)
- Zahra Abbasfard
- Department of Genetics, College of Science, Islamic Azad University, Kazerun Branch, Kazerun, Iran
| | - Abbas Behzad-Behbahani
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Banafshe Rastegari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Sirous Naeimi
- Department of Genetics, College of Science, Islamic Azad University, Kazerun Branch, Kazerun, Iran
| | - Mehdi Moghanibashi
- Department of Genetics, College of Science, Islamic Azad University, Kazerun Branch, Kazerun, Iran
| | - Fatemeh Safari
- Diagnostic Laboratory Sciences and Technology Research Center, School of Paramedical Sciences, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
17
|
Zhu H, Wang YF, Wang ZG, Pang DW, Liu SL. Regulation of Protein Conformation Enables Cell-Selective Targeting of Virus-Mimicking Nanoparticles for siRNA Therapy of Glioblastoma. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401640. [PMID: 38710154 DOI: 10.1002/adma.202401640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 04/28/2024] [Indexed: 05/08/2024]
Abstract
Orthotopic glioblastoma (GBM) has an aggressive growth pattern and complex pathogenesis, becoming one of the most common and deadly tumors of the central nervous system (CNS). The emergence of RNA therapies offers promise for the treatment of GBM. However, the efficient and precise delivery of RNA drugs to specific tumor cells in the brain with high cellular heterogeneity remains ongoing. Here, a strategy is proposed to regulate protein conformation through lipid nanoenvironments to custom-design virus-mimicking nanoparticles (VMNs) with excellent selective cell targeting capabilities, leading to efficient and precise delivery of small interfering RNA for effective treatment of GBM. The optimized VMNs not only retain the ability to cross the blood-brain barrier and release the RNA by lysosomal escape like natural viruses but also ensure precise enrichment in the GBM area. This study lays the conceptual foundation for the custom design of VMNs with superior cell-selective targeting capabilities and opens up the possibility of RNA therapies for the efficient treatment of GBM and CNS tumors.
Collapse
Affiliation(s)
- Han Zhu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, P. R. China
| | - Yi-Fan Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, P. R. China
| | - Zhi-Gang Wang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, P. R. China
| | - Dai-Wen Pang
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, P. R. China
| | - Shu-Lin Liu
- State Key Laboratory of Medicinal Chemical Biology, Frontiers Science Centre for New Organic Matter, Tianjin Key Laboratory of Biosensing and Molecular Recognition, Research Centre for Analytical Sciences, College of Chemistry, School of Medicine and Frontiers Science Center for Cell Responses, Nankai University, Tianjin, 300071, P. R. China
| |
Collapse
|
18
|
Thapa R, Afzal M, Goyal A, Gupta G, Bhat AA, Almalki WH, Kazmi I, Alzarea SI, Shahwan M, Kukreti N, Ali H, Dureja H, Kumar P, Singh TG, Kuppusamy G, Singh SK, Dua K. Exploring ncRNA-mediated regulation of EGFR signalling in glioblastoma: From mechanisms to therapeutics. Life Sci 2024; 345:122613. [PMID: 38582393 DOI: 10.1016/j.lfs.2024.122613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/03/2024] [Accepted: 04/03/2024] [Indexed: 04/08/2024]
Abstract
Glioblastoma (GBM) is the most prevalent and deadly primary brain tumor type, with a discouragingly low survival rate and few effective treatments. An important function of the EGFR signalling pathway in the development of GBM is to affect tumor proliferation, persistence, and treatment resistance. Advances in molecular biology in the last several years have shown how important ncRNAs are for controlling a wide range of biological activities, including cancer progression and development. NcRNAs have become important post-transcriptional regulators of gene expression, and they may affect the EGFR pathway by either directly targeting EGFR or by modifying important transcription factors and downstream signalling molecules. The EGFR pathway is aberrantly activated in response to the dysregulation of certain ncRNAs, which has been linked to GBM carcinogenesis, treatment resistance, and unfavourable patient outcomes. We review the literature on miRNAs, circRNAs and lncRNAs that are implicated in the regulation of EGFR signalling in GBM, discussing their mechanisms of action, interactions with the signalling pathway, and implications for GBM therapy. Furthermore, we explore the potential of ncRNA-based strategies to overcome resistance to EGFR-targeted therapies, including the use of ncRNA mimics or inhibitors to modulate the activity of key regulators within the pathway.
Collapse
Affiliation(s)
- Riya Thapa
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Muhammad Afzal
- Department of Pharmaceutical Sciences, Pharmacy Program, Batterjee Medical College, P.O. Box 6231, Jeddah 21442, Saudi Arabia
| | - Ahsas Goyal
- Institute of Pharmaceutical Research, GLA University, Mathura, U.P., India
| | - Gaurav Gupta
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India; Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates.
| | - Asif Ahmad Bhat
- School of Pharmacy, Suresh Gyan Vihar University, Jagatpura 302017, Mahal Road, Jaipur, India
| | - Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Imran Kazmi
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Sami I Alzarea
- Department of Pharmacology, College of Pharmacy, Jouf University, Sakaka, Aljouf 72341, Saudi Arabia
| | - Moyad Shahwan
- Centre of Medical and Bio-allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates; Department of Clinical Sciences, College of Pharmacy and Health Sciences, Ajman University, Ajman, 346, 7, United Arab Emirates
| | - Neelima Kukreti
- School of Pharmacy, Graphic Era Hill University, Dehradun 248007, India
| | - Haider Ali
- Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, India; Department of Pharmacology, Kyrgyz State Medical College, Bishkek, Kyrgyzstan
| | - Harish Dureja
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak 124001, Haryana, India
| | - Puneet Kumar
- Department of Pharmacology, Central University of Punjab, Ghudda, Punjab, India
| | - Thakur Gurjeet Singh
- Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab 140401, India
| | - Gowthamarajan Kuppusamy
- Department of Pharmaceutics, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Nilgiris, India
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab 144411, India; Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Kamal Dua
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW 2007, Australia; Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, NSW 2007, Australia
| |
Collapse
|
19
|
Ahirwar K, Kumar A, Srivastava N, Saraf SA, Shukla R. Harnessing the potential of nanoengineered siRNAs carriers for target responsive glioma therapy: Recent progress and future opportunities. Int J Biol Macromol 2024; 266:131048. [PMID: 38522697 DOI: 10.1016/j.ijbiomac.2024.131048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Revised: 01/19/2024] [Accepted: 03/11/2024] [Indexed: 03/26/2024]
Abstract
Past scientific testimonials in the field of glioma research, the deadliest tumor among all brain cancer types with the life span of 10-15 months after diagnosis is considered as glioblastoma multiforme (GBM). Even though the availability of treatment options such as chemotherapy, radiotherapy, and surgery, are unable to completely cure GBM due to tumor microenvironment complexity, intrinsic cellular signalling, and genetic mutations which are involved in chemoresistance. The blood-brain barrier is accountable for restricting drugs entry at the tumor location and related biological challenges like endocytic degradation, short systemic circulation, and insufficient cellular penetration lead to tumor aggression and progression. The above stated challenges can be better mitigated by small interfering RNAs (siRNA) by knockdown genes responsible for tumor progression and resistance. However, siRNA encounters with challenges like inefficient cellular transfection, short circulation time, endogenous degradation, and off-target effects. The novel functionalized nanocarrier approach in conjunction with biological and chemical modification offers an intriguing potential to address challenges associated with the naked siRNA and efficiently silence STAT3, coffilin-1, EGFR, VEGF, SMO, MGMT, HAO-1, GPX-4, TfR, LDLR and galectin-1 genes in GBM tumor. This review highlights the nanoengineered siRNA carriers, their recent advancements, future perspectives, and strategies to overcome the systemic siRNA delivery challenges for glioma treatment.
Collapse
Affiliation(s)
- Kailash Ahirwar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. 226002, India
| | - Ankit Kumar
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. 226002, India
| | - Nidhi Srivastava
- Department of Biotechnology, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. 226002, India
| | - Shubhini A Saraf
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. 226002, India
| | - Rahul Shukla
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research-Raebareli, Lucknow, U.P. 226002, India.
| |
Collapse
|
20
|
Rinaldi A, Dumas F, Duskey JT, Imbriano C, Belluti S, Roy C, Ottonelli I, Vandelli MA, Ruozi B, Garcion E, Tosi G, Boury F. Polymer-lipid hybrid nanomedicines to deliver siRNA in and against glioblastoma cells. Int J Pharm 2024; 654:123994. [PMID: 38484859 DOI: 10.1016/j.ijpharm.2024.123994] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/27/2024] [Accepted: 03/11/2024] [Indexed: 03/18/2024]
Abstract
Small interfering RNA (siRNA) holds great potential to treat many difficult-to-treat diseases, but its delivery remains the central challenge. This study aimed at investigating the suitability of polymer-lipid hybrid nanomedicines (HNMeds) as novel siRNA delivery platforms for locoregional therapy of glioblastoma. Two HNMed formulations were developed from poly(lactic-co-glycolic acid) polymer and a cationic lipid: 1,2-dioleoyl-3-trimethylammonium-propane (DOTAP) or 3ß-[N-(N',N'-dimethylaminoethane)-carbamoyl]cholesterol (DC-Chol). After characterization of the HNMeds, a model siRNA was complexed onto their surface to form HNMed/siRNA complexes. The physicochemical properties and siRNA binding ability of complexes were assessed over a range of nitrogen-to-phosphate (N/P) ratios to optimize the formulations. At the optimal N/P ratio of 10, complexes effectively bound siRNA and improved its protection from enzymatic degradation. Using the NIH3T3 mouse fibroblast cell line, DOTAP-based HNMeds were shown to possess higher cytocompatibility in vitro over the DC-Chol-based ones. As proof-of-concept, uptake and bioefficacy of formulations were also assessed in vitro on U87MG human glioblastoma cell line expressing luciferase gene. Complexes were able to deliver anti-luciferase siRNA and induce a remarkable suppression of gene expression. Noteworthy, the effect of DOTAP-based formulation was not only about three-times higher than DC-Chol-based one, but also comparable to lipofectamine model transfection reagent. These findings set the basis to exploit this nanosystem for silencing relevant GB-related genes in further in vitro and in vivo studies.
Collapse
Affiliation(s)
- Arianna Rinaldi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy; Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d'Angers, 49000 Angers, France
| | - Florence Dumas
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d'Angers, 49000 Angers, France
| | - Jason Thomas Duskey
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Carol Imbriano
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, 41125 Modena, Italy
| | - Silvia Belluti
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, 41125 Modena, Italy
| | - Charlotte Roy
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d'Angers, 49000 Angers, France
| | - Ilaria Ottonelli
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Maria Angela Vandelli
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Barbara Ruozi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Emmanuel Garcion
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d'Angers, 49000 Angers, France
| | - Giovanni Tosi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Frank Boury
- Inserm UMR 1307, CNRS UMR 6075, Université de Nantes, CRCI2NA, Université d'Angers, 49000 Angers, France.
| |
Collapse
|
21
|
Zhao Z, Cui T, Wei F, Zhou Z, Sun Y, Gao C, Xu X, Zhang H. Wnt/β-Catenin signaling pathway in hepatocellular carcinoma: pathogenic role and therapeutic target. Front Oncol 2024; 14:1367364. [PMID: 38634048 PMCID: PMC11022604 DOI: 10.3389/fonc.2024.1367364] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 03/19/2024] [Indexed: 04/19/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary malignant liver tumor and one of the leading causes of cancer-related deaths worldwide. The Wnt/β-Catenin signaling pathway is a highly conserved pathway involved in several biological processes, including the improper regulation that leads to the tumorigenesis and progression of cancer. New studies have found that abnormal activation of the Wnt/β-Catenin signaling pathway is a major cause of HCC tumorigenesis, progression, and resistance to therapy. New perspectives and approaches to treating HCC will arise from understanding this pathway. This article offers a thorough analysis of the Wnt/β-Catenin signaling pathway's function and its therapeutic implications in HCC.
Collapse
Affiliation(s)
- Zekun Zhao
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Tenglu Cui
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Radiotherapy Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Fengxian Wei
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Zhiming Zhou
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Yuan Sun
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Chaofeng Gao
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Xiaodong Xu
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| | - Huihan Zhang
- The Second Hospital of Lanzhou University, Lanzhou, China
- The Second General Surgery Department, The Second Hospital of Lanzhou University, Lanzhou, China
| |
Collapse
|
22
|
Ke Z, Hu X, Liu Y, Shen D, Khan MI, Xiao J. Updated review on analysis of long non-coding RNAs as emerging diagnostic and therapeutic targets in prostate cancers. Crit Rev Oncol Hematol 2024; 196:104275. [PMID: 38302050 DOI: 10.1016/j.critrevonc.2024.104275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 01/22/2024] [Accepted: 01/26/2024] [Indexed: 02/03/2024] Open
Abstract
Despite advancements, prostate cancers (PCa) pose a significant global health challenge due to delayed diagnosis and therapeutic resistance. This review delves into the complex landscape of prostate cancer, with a focus on long-noncoding RNAs (lncRNAs). Also explores the influence of aberrant lncRNAs expression in progressive PCa stages, impacting traits like proliferation, invasion, metastasis and therapeutic resistance. The study elucidates how lncRNAs modulate crucial molecular effectors, including transcription factors and microRNAs, affecting signaling pathways such as androgen receptor signaling. Besides, this manuscript sheds light on novel concepts and mechanisms driving PCa progression through lncRNAs, providing a critical analysis of their impact on the disease's diverse characteristics. Besides, it discusses the potential of lncRNAs as diagnostics and therapeutic targets in PCa. Collectively, this work highlights state of art mechanistic comprehension and rigorous scientific approaches to advance our understanding of PCa and depict innovations in this evolving field of research.
Collapse
Affiliation(s)
- Zongpan Ke
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei 230001, China; Wannan Medical College, No. 22 Wenchangxi Road, Yijiang District, Wuhu 241000, China
| | - Xuechun Hu
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei 230001, China
| | - Yixun Liu
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei 230001, China
| | - Deyun Shen
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei 230001, China.
| | - Muhammad Imran Khan
- School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, 230026 China.
| | - Jun Xiao
- Department of Urology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, No. 17 Lujiang Road, Luyang District, Hefei 230001, China.
| |
Collapse
|
23
|
Li B, Ashrafizadeh M, Jiao T. Biomedical application of metal-organic frameworks (MOFs) in cancer therapy: Stimuli-responsive and biomimetic nanocomposites in targeted delivery, phototherapy and diagnosis. Int J Biol Macromol 2024; 260:129391. [PMID: 38242413 DOI: 10.1016/j.ijbiomac.2024.129391] [Citation(s) in RCA: 29] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 12/12/2023] [Accepted: 01/08/2024] [Indexed: 01/21/2024]
Abstract
The nanotechnology is an interdisciplinary field that has become a hot topic in cancer therapy. Metal-organic frameworks (MOFs) are porous materials and hybrid composites consisted of organic linkers and metal cations. Despite the wide application of MOFs in other fields, the potential of MOFs for purpose of cancer therapy has been revealed by the recent studies. High surface area and porosity, significant drug loading and encapsulation efficiency are among the benefits of using MOFs in drug delivery. MOFs can deliver genes/drugs with selective targeting of tumor cells that can be achieved through functionalization with ligands. The photosensitizers and photo-responsive nanostructures including carbon dots and gold nanoparticles can be loaded in/on MOFs to cause phototherapy-mediated tumor ablation. The immunogenic cell death induction and increased infiltration of cytotoxic CD8+ and CD4+ T cells can be accelerated by MOF platforms in providing immunotherapy of tumor cells. The stimuli-responsive MOF platforms responsive to pH, redox, enzyme and ion can accelerate release of therapeutics in tumor site. Moreover, MOF nanocomposites can be modified ligands and green polymers to improve their selectivity and biocompatibility for cancer therapy. The application of MOFs for the detection of cancer-related biomarkers can participate in the early diagnosis of patients.
Collapse
Affiliation(s)
- Beixu Li
- School of Policing Studies, Shanghai University of Political Science and Law, Shanghai 201701, China; Shanghai Fenglin Forensic Center, Shanghai 200231, China; State Key Laboratory of Medical Neurobiology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; Department of Pathology, University of Maryland, Baltimore, MD 21201, USA
| | - Milad Ashrafizadeh
- Department of General Surgery, Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; International Association for Diagnosis and Treatment of Cancer, Shenzhen, Guangdong 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China; Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China.
| | - Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, 155 North Nanjing St, Shenyang 110001, China.
| |
Collapse
|
24
|
Zhu Y, Arkin G, Zeng W, Huang Y, Su L, Guo F, Ye J, Wen G, Xu J, Liu Y. Ultrasound image-guided cancer gene therapy using iRGD dual-targeted magnetic cationic microbubbles. Biomed Pharmacother 2024; 172:116221. [PMID: 38306843 DOI: 10.1016/j.biopha.2024.116221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 01/25/2024] [Accepted: 01/25/2024] [Indexed: 02/04/2024] Open
Abstract
The gene therapy attracted more and more attention for the tumor therapy. To obtain a safe gene therapy system, the new gene vectors beyond the virus were developed for a high gene therapy efficiency. The ultrasound mediated gene therapy was safer and the plasmid DNA could be delivered by the microbubbles and combined with the ultrasound to increase the gene transfection efficiency. In this work, the cationic microbubbles decorated with Cyclo(Cys-Arg-Gly-Asp-Lys-Gly-Pro-AspCys) (iRGD peptides) and magnetic Fe3O4 nanoparticles (MBiM) was designed for targeted ultrasound contrast imaging guided gene therapy of tumors. The ultrasound image intensity was dramatically enhanced at the tumor site that received MBiM with the magnet applied, compared to those administrated the non-targeted microbubbles (MBb) or the microbubbles with only one target material on the surface (MBM and MBbi). The pGPU6/GFP/Neo-shAKT2 was used as a sample gene, which down regulate the AKT2 protein expression for the cancer therapy. It illustrated that MBiM/AKT2 had the highest gene transfection efficiency in the studied microbubbles mediated by the ultrasound, leading to the AKT2 protein expression downregulation and the strongest tumor killing effect in vitro and in vivo. In summary, a novel and biocompatible gene delivery platform via MBiM with both the endogenous and external targeting effects for breast cancer theranostics was developed.
Collapse
Affiliation(s)
- Yao Zhu
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China
| | - Gulzira Arkin
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China
| | - Wei Zeng
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China
| | - Yalan Huang
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China
| | - Lili Su
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China
| | - Fengjuan Guo
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China
| | - Jiayu Ye
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China
| | - Guanxi Wen
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China
| | - Jinfeng Xu
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China.
| | - Yingying Liu
- Shenzhen Medical Ultrasound Engineering Center, Department of Ultrasonography, Shenzhen People's Hospital, Second Clinical Medical College of Jinan University, First Clinical Medical College of Southern University of Science and Technology, Shenzhen 518020, China.
| |
Collapse
|
25
|
Hashemi M, Aparviz R, Beickzade M, Paskeh MDA, Kheirabad SK, Koohpar ZK, Moravej A, Dehghani H, Saebfar H, Zandieh MA, Salimimoghadam S, Rashidi M, Taheriazam A, Entezari M, Samarghandian S. Advances in RNAi therapies for gastric cancer: Targeting drug resistance and nanoscale delivery. Biomed Pharmacother 2023; 169:115927. [PMID: 38006616 DOI: 10.1016/j.biopha.2023.115927] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/13/2023] [Accepted: 11/20/2023] [Indexed: 11/27/2023] Open
Abstract
Gastric cancer poses a significant health challenge, and exploring innovative therapeutic strategies is imperative. RNA interference (RNAi) has employed as an important therapeutic strategy for diseases by selectively targeting key pathways involved in diseases pathogenesis. Small interfering RNA (siRNA), a potent RNAi tool, possesses the capability to silence genes and downregulate their expression. This review provides a comprehensive examination of the potential applications of small interfering RNA (siRNA) and short hairpin RNA (shRNA), supplemented by an in-depth analysis of nanoscale delivery systems, in the context of gastric cancer treatment. The potential of siRNA to markedly diminish the proliferation and invasion of gastric cancer cells through the modulation of critical molecular pathways, including PI3K, Akt, and EMT, is highlighted. Besides, siRNA demonstrates its efficacy in inducing chemosensitivity in gastric tumor cells, thus impeding tumor progression. However, the translational potential of unmodified siRNA faces challenges, particularly in vivo and during clinical trials. To address this, we underscore the pivotal role of nanostructures in facilitating the delivery of siRNA to gastric cancer cells, effectively suppressing their progression and enhancing gene silencing efficiency. These siRNA-loaded nanoparticles exhibit robust internalization into gastric cancer cells, showcasing their potential to significantly reduce tumor progression. The translation of these findings into clinical trials holds promise for advancing the treatment of gastric cancer patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Rezvaneh Aparviz
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Marzie Beickzade
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Simin Khorsand Kheirabad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Zeinab Khazaei Koohpar
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Cell and Molecular Biology, Faculty of Biological Sciences, Tonekabon Branch, Islamic Azad University, Tonekabon, Iran
| | - Amir Moravej
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Dehghani
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Medical Laboratory Sciences, Islamic Azad University, Tehran Medical Sciences, Tehran, Iran
| | - Hamidreza Saebfar
- European University Association, League of European Research Universities, University of Milan, Italy
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
26
|
Sanati M, Afshari AR, Ahmadi SS, Jamialahmadi T, Sahebkar A. Application of RNA-based therapeutics in glioma: A review. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 204:133-161. [PMID: 38458736 DOI: 10.1016/bs.pmbts.2023.12.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2024]
Abstract
Despite the extensive advancements made in the field of cancer therapy, the outlook of individuals suffering from glioblastoma multiforme remains highly detrimental. The absence of specific treatments for cancerous cells significantly hinders the effectiveness of conventional anticancer techniques. Multiple research studies have demonstrated that the suppression of specific genes or the augmentation of therapeutic proteins through RNA-based therapeutics may represent a valuable approach when combined with chemotherapy or immunotherapy. In recent years, there has been a significant increase in the application of RNA therapeutics in conjunction with chemotherapy and immunotherapy. This emerging field has become a prominent area of research for advancing various types of cancer treatments. The present investigation provides an in-depth overview of the classification and application of RNA therapy, focusing on the mechanisms of RNA antitumor treatment and the current status of clinical studies on RNA drugs.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran; Experimental and Animal Study Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Amir R Afshari
- Natural Products and Medicinal Plants Research Center, North Khorasan University of Medical Sciences, Bojnurd, Iran; Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Seyed Sajad Ahmadi
- Department of Ophthalmology, Khatam-Ol-Anbia Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
27
|
Lee Y, Ha J, Kim M, Kang S, Kang M, Lee M. Antisense-oligonucleotide co-micelles with tumor targeting peptides elicit therapeutic effects by inhibiting microRNA-21 in the glioblastoma animal models. J Adv Res 2023; 53:249-260. [PMID: 36632887 PMCID: PMC10658310 DOI: 10.1016/j.jare.2023.01.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/14/2022] [Accepted: 01/07/2023] [Indexed: 01/11/2023] Open
Abstract
INTRODUCTION miRNA-21 (miR-21) is highly expressed in glioblastoma, facilitating tumor growth by blocking the expression of apoptosis-related genes. Therefore, an antisense microRNA oligonucleotide (AMO) against miR-21 was suggested as a therapeutic nucleic acid for glioblastoma. OBJECTIVES AMO21 co-micelles were developed with tumor-targeting T7 peptides as an AMO21 delivery system by intranasal administration. METHODS Cholesterol-conjugated AMO21 (AMO21c) was mixed with cholesterol-conjugated T7 peptides (T7c) to produce tumor-targeted co-micelles. Physical characterization was performed by dynamic light scattering, gel retardation assay, scanning electron microscope and heparin competition assay. In vitro transfection efficiency to C6 glioblastoma cells was measured by flow cytometry. The AMO21c/T7c co-micelles were administered by intranasal instillation into the brain of intracranial glioblastoma rat models. Scrambled T7 (scrT7) and scrambled AMO21c (scrAMO21c) were used as a negative control. The therapeutic effects of the AMO21c/T7c co-micelles were evaluated by real time RT-PCR, immunohistochemistry, TUNEL assay, and Nissl staining. RESULTS The formation of the AMO21c/T7c co-micelles was confirmed in gel retardation and heparin competition assays. The highest delivery efficiency in vitro was achieved at a 1:10 wt ratio of AMO21c/T7c. The AMO21c/T7c co-micelles had higher delivery efficiency into C6 glioblastoma cells than naked AMO21c or AMO21c/lipofectamine complexes. After intranasal administration into the intracranial glioblastoma models, the delivery efficiency of the co-micelles into the brain was also higher than those of naked AMO21c and AMO21c/scrambled T7c. Thanks to their enhanced delivery efficiency, the AMO21c/T7c co-micelles downregulated miR-21, inducing the production of the pro-apoptotic phosphatase and tensin homolog (PTEN) and programmed cell death 4 (PDCD4) proteins in the tumor tissues. The tumor size was reduced by the AMO21c/T7c co-micelles more effectively than naked AMO21c, AMO21c/lipofectamine, or scrAMO21c/T7c treatment. CONCLUSION The results suggest that the co-micelles of AMO21c and T7c may be an efficient delivery system into a brain tumor through intranasal administration.
Collapse
Affiliation(s)
- Youngki Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, South Korea
| | - Junkyu Ha
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, South Korea
| | - Minkyung Kim
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, South Korea
| | - Subin Kang
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, South Korea
| | - Minji Kang
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, South Korea
| | - Minhyung Lee
- Department of Bioengineering, College of Engineering, Hanyang University, Seoul 04763, South Korea.
| |
Collapse
|
28
|
Mavi AK, Kumar M, Singh A, Prajapati MK, Khabiya R, Maru S, Kumar D. Progress in Non‐Viral Delivery of Nucleic Acid. INTEGRATION OF BIOMATERIALS FOR GENE THERAPY 2023:281-322. [DOI: 10.1002/9781394175635.ch10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
29
|
Varaprasad GL, Gupta VK, Prasad K, Kim E, Tej MB, Mohanty P, Verma HK, Raju GSR, Bhaskar L, Huh YS. Recent advances and future perspectives in the therapeutics of prostate cancer. Exp Hematol Oncol 2023; 12:80. [PMID: 37740236 PMCID: PMC10517568 DOI: 10.1186/s40164-023-00444-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/10/2023] [Indexed: 09/24/2023] Open
Abstract
Prostate cancer (PC) is one of the most common cancers in males and the fifth leading reason of death. Age, ethnicity, family history, and genetic defects are major factors that determine the aggressiveness and lethality of PC. The African population is at the highest risk of developing high-grade PC. It can be challenging to distinguish between low-risk and high-risk patients due to the slow progression of PC. Prostate-specific antigen (PSA) is a revolutionary discovery for the identification of PC. However, it has led to an increase in over diagnosis and over treatment of PC in the past few decades. Even if modifications are made to the standard PSA testing, the specificity has not been found to be significant. Our understanding of PC genetics and proteomics has improved due to advances in different fields. New serum, urine, and tissue biomarkers, such as PC antigen 3 (PCA3), have led to various new diagnostic tests, such as the prostate health index, 4K score, and PCA3. These tests significantly reduce the number of unnecessary and repeat biopsies performed. Chemotherapy, radiotherapy, and prostatectomy are standard treatment options. However, newer novel hormone therapy drugs with a better response have been identified. Androgen deprivation and hormonal therapy are evolving as new and better options for managing hormone-sensitive and castration-resistant PC. This review aimed to highlight and discuss epidemiology, various risk factors, and developments in PC diagnosis and treatment regimens.
Collapse
Affiliation(s)
- Ganji Lakshmi Varaprasad
- Department of Biological Sciences and Bioengineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea
| | - Vivek Kumar Gupta
- Department of Biological Sciences and Bioengineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea
| | - Kiran Prasad
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Eunsu Kim
- Department of Biological Sciences and Bioengineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea
| | - Mandava Bhuvan Tej
- Department of Health Care Informatics, Sacred Heart University, 5151 Park Avenue, Fair Fields, CT, 06825, USA
| | - Pratik Mohanty
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of Lungs Health and Immunity, Helmholtz Zentrum, 85764, Neuherberg, Munich, Germany
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| | - Lvks Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India.
| | - Yun Suk Huh
- Department of Biological Sciences and Bioengineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
30
|
Saadh MJ, Baher H, Li Y, Chaitanya M, Arias-Gonzáles JL, Allela OQB, Mahdi MH, Carlos Cotrina-Aliaga J, Lakshmaiya N, Ahjel S, Amin AH, Gilmer Rosales Rojas G, Ameen F, Ahsan M, Akhavan-Sigari R. The bioengineered and multifunctional nanoparticles in pancreatic cancer therapy: Bioresponisive nanostructures, phototherapy and targeted drug delivery. ENVIRONMENTAL RESEARCH 2023; 233:116490. [PMID: 37354932 DOI: 10.1016/j.envres.2023.116490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 06/18/2023] [Accepted: 06/21/2023] [Indexed: 06/26/2023]
Abstract
The multidisciplinary approaches in treatment of cancer appear to be essential in term of bringing benefits of several disciplines and their coordination in tumor elimination. Because of the biological and malignant features of cancer cells, they have ability of developing resistance to conventional therapies such as chemo- and radio-therapy. Pancreatic cancer (PC) is a malignant disease of gastrointestinal tract in which chemotherapy and radiotherapy are main tools in its treatment, and recently, nanocarriers have been emerged as promising structures in its therapy. The bioresponsive nanocarriers are able to respond to pH and redox, among others, in targeted delivery of cargo for specific treatment of PC. The loading drugs on the nanoparticles that can be synthetic or natural compounds, can help in more reduction in progression of PC through enhancing their intracellular accumulation in cancer cells. The encapsulation of genes in the nanoparticles can protect against degradation and promotes intracellular accumulation in tumor suppression. A new kind of therapy for cancer is phototherapy in which nanoparticles can stimulate both photothermal therapy and photodynamic therapy through hyperthermia and ROS overgeneration to trigger cell death in PC. Therefore, synergistic therapy of phototherapy with chemotherapy is performed in accelerating tumor suppression. One of the important functions of nanotechnology is selective targeting of PC cells in reducing side effects on normal cells. The nanostructures are capable of being surface functionalized with aptamers, proteins and antibodies to specifically target PC cells in suppressing their progression. Therefore, a specific therapy for PC is provided and future implications for diagnosis of PC is suggested.
Collapse
Affiliation(s)
- Mohamed J Saadh
- Faculty of Pharmacy, Middle East University, Amman, 11831, Jordan; Applied Science Research Center. Applied Science Private University, Amman, Jordan
| | - Hala Baher
- Department of Radiology and Ultrasonography Techniques, College of Medical Techniques, Al-Farahidi University, Baghdad, Iraq
| | - Yuanji Li
- Institute of Electrical Engineering, Yanshan University, Qinhuangdao, 066004, China
| | - Mvnl Chaitanya
- Department of Pharmacognosy, School of Pharmacy, Lovely Professional University, Phagwara, Punjab, 144001, India
| | - José Luis Arias-Gonzáles
- Department of Social Sciences, Faculty of Social Studies, University of British Columbia, Vancouver, Canada
| | | | | | | | - Natrayan Lakshmaiya
- Department of Mechanical Engineering, Saveetha School of Engineering, SIMATS, Chennai, Tamil Nadu, India
| | - Salam Ahjel
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | - Ali H Amin
- Zoology Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | | | - Fuad Ameen
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Muhammad Ahsan
- Department of Measurememts and Control Systems, Silesian University of Technology, Gliwice, 44-100, Poland.
| | - Reza Akhavan-Sigari
- Department of Neurosurgery, University Medical Center Tuebingen, Germany; Department of Health Care Management and Clinical Research, Collegium Humanum Warsaw Management University, Warsaw, Poland
| |
Collapse
|
31
|
Qin Y, Ashrafizadeh M, Mongiardini V, Grimaldi B, Crea F, Rietdorf K, Győrffy B, Klionsky DJ, Ren J, Zhang W, Zhang X. Autophagy and cancer drug resistance in dialogue: Pre-clinical and clinical evidence. Cancer Lett 2023; 570:216307. [PMID: 37451426 DOI: 10.1016/j.canlet.2023.216307] [Citation(s) in RCA: 132] [Impact Index Per Article: 66.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
The emergence of drug resistance is a major challenge for oncologists. Resistance can be categorized as acquired or intrinsic; the alteration of several biological mechanisms contributes to both intrinsic and acquired resistance. Macroautophagy/autophagy is the primary process in eukaryotes for the degradation of macromolecules and organelles. This process is critical in maintaining cellular homeostasis. Given its function as either a pro-survival or a pro-death phenomenon, autophagy has a complex physio-pathological role. In some circumstances, autophagy can confer chemoresistance and promote cell survival, whereas in others it can promote chemosensitivity and contribute to cell death. The role of autophagy in the modulation of cancer drug resistance reflects its impact on apoptosis and metastasis. The regulation of autophagy in cancer is mediated by various factors including AMP-activated protein kinase (AMPK), MAPK, phosphoinositide 3-kinase (PI3K)-AKT, BECN1 and ATG proteins. Non-coding RNAs are among the main regulators of autophagy, e.g., via the modulation of chemoresistance pathways. Due to the significant contribution of autophagy in cancer drug resistance, small molecule modulators and natural compounds targeting autophagy have been introduced to alter the response of cancer cells to chemotherapy. Furthermore, nanotherapeutic approaches based on autophagy regulation have been introduced in pre-clinical cancer therapy. In this review we consider the potential for using autophagy regulators for the clinical treatment of malignancies.
Collapse
Affiliation(s)
- Yi Qin
- Department of Lab, Chifeng Cancer Hospital (The 2nd Affliated Hospital of Chifeng University), Chifeng University, Chifeng City, Inner Mongolia Autonomous Region, 024000, China.
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Vera Mongiardini
- Molecular Medicine Research Line, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa, 16163, Italy
| | - Benedetto Grimaldi
- Molecular Medicine Research Line, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa, 16163, Italy
| | - Francesco Crea
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Katja Rietdorf
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Tüzoltó u. 7-9, 1094, Budapest, Hungary; Department of Pediatrics, Semmelweis University, Tüzoltó u. 7-9, 1094, Budapest, Hungary; Cancer Biomarker Research Group, Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Magyar tudosok korutja 2, 1117, Budapest, Hungary
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
32
|
Ashrafizadeh M, Zhang W, Zou R, Sethi G, Klionsky DJ, Zhang X. A bioinformatics analysis, pre-clinical and clinical conception of autophagy in pancreatic cancer: Complexity and simplicity in crosstalk. Pharmacol Res 2023; 194:106822. [PMID: 37336429 DOI: 10.1016/j.phrs.2023.106822] [Citation(s) in RCA: 60] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/16/2023] [Accepted: 06/16/2023] [Indexed: 06/21/2023]
Abstract
Pancreatic cancer (PC) is a serious gastrointestinal tract disease for which the 5-year survival rate is less than 10%, even in developed countries such as the USA. The genomic profile alterations and dysregulated biological mechanisms commonly occur in PC. Macroautophagy/autophagy is a cell death process that is maintained at a basal level in physiological conditions, whereas its level often changes during tumorigenesis. The function of autophagy in human cancers is dual and can be oncogenic and onco-suppressor. Autophagy is a potent controller of tumorigenesis in PC. The supportive autophagy in PC escalates the growth rate of PC cells and its suppression can mediate cell death. Autophagy also determines the metastasis of PC cells, and it can control the EMT in affecting migration. Moreover, starvation and hypoxia can stimulate glycolysis, and glycolysis induction can be mediated by autophagy in enhancing tumorigenesis in PC. Furthermore, protective autophagy stimulates drug resistance and gemcitabine resistance in PC cells, and its inhibition can enhance radiosensitivity. Autophagy can degrade MHC-I to mediate immune evasion and also regulates polarization of macrophages in the tumor microenvironment. Modulation of autophagy activity is provided by silibinin, ursolic acid, chrysin and huaier in the treatment of PC. Non-coding RNAs are also controllers of autophagy in PC and its inhibition can improve therapy response in patients. Moreover, mitophagy shows dysregulation in PC, which can enhance the proliferation of PC cells. Therefore, a bioinformatics analysis demonstrates the dysregulation of autophagy-related proteins and genes in PC as biomarkers.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Wei Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China
| | - Rongjun Zou
- Department of Cardiovascular Surgery, Guangdong Provincial Hospital of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou 510120, Guangdong, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong 518055, China.
| |
Collapse
|
33
|
He P, Dai Q, Wu X. New insight in urological cancer therapy: From epithelial-mesenchymal transition (EMT) to application of nano-biomaterials. ENVIRONMENTAL RESEARCH 2023; 229:115672. [PMID: 36906272 DOI: 10.1016/j.envres.2023.115672] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 05/21/2023]
Abstract
A high number of cancer-related deaths (up to 90) are due to metastasis and simple definition of metastasis is new colony formation of tumor cells in a secondary site. In tumor cells, epithelial-mesenchymal transition (EMT) stimulates metastasis and invasion, and it is a common characteristic of malignant tumors. Prostate cancer, bladder cancer and renal cancer are three main types of urological tumors that their malignant and aggressive behaviors are due to abnormal proliferation and metastasis. EMT has been well-documented as a mechanism for promoting invasion of tumor cells and in the current review, a special attention is directed towards understanding role of EMT in malignancy, metastasis and therapy response of urological cancers. The invasion and metastatic characteristics of urological tumors enhance due to EMT induction and this is essential for ensuring survival and ability in developing new colonies in neighboring and distant tissues and organs. When EMT induction occurs, malignant behavior of tumor cells enhances and their tend in developing therapy resistance especially chemoresistance promotes that is one of the underlying reasons for therapy failure and patient death. The lncRNAs, microRNAs, eIF5A2, Notch-4 and hypoxia are among common modulators of EMT mechanism in urological tumors. Moreover, anti-tumor compounds such as metformin can be utilized in suppressing malignancy of urological tumors. Besides, genes and epigenetic factors modulating EMT mechanism can be therapeutically targeted for interfering malignancy of urological tumors. Nanomaterials are new emerging agents in urological cancer therapy that they can improve potential of current therapeutics by their targeted delivery to tumor site. The important hallmarks of urological cancers including growth, invasion and angiogenesis can be suppressed by cargo-loaded nanomaterials. Moreover, nanomaterials can improve chemotherapy potential in urological cancer elimination and by providing phototherapy, they mediate synergistic tumor suppression. The clinical application depends on development of biocompatible nanomaterials.
Collapse
Affiliation(s)
- Peng He
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Qiang Dai
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China
| | - Xiaojun Wu
- Department of Urology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing, 400038, China.
| |
Collapse
|
34
|
Alqurashi YE, Al-Hetty HRAK, Ramaiah P, Fazaa AH, Jalil AT, Alsaikhan F, Gupta J, Ramírez-Coronel AA, Tayyib NA, Peng H. Harnessing function of EMT in hepatocellular carcinoma: From biological view to nanotechnological standpoint. ENVIRONMENTAL RESEARCH 2023; 227:115683. [PMID: 36933639 DOI: 10.1016/j.envres.2023.115683] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 05/08/2023]
Abstract
Management of cancer metastasis has been associated with remarkable reduction in progression of cancer cells and improving survival rate of patients. Since 90% of mortality are due to cancer metastasis, its suppression can improve ability in cancer fighting. The EMT has been an underlying cause in increasing cancer migration and it is followed by mesenchymal transformation of epithelial cells. HCC is the predominant kind of liver tumor threatening life of many people around the world with poor prognosis. Increasing patient prognosis can be obtained via inhibiting tumor metastasis. HCC metastasis modulation by EMT and HCC therapy by nanoparticles are discussed here. First of all, EMT happens during progression and advanced stages of HCC and therefore, its inhibition can reduce tumor malignancy. Moreover, anti-cancer compounds including all-trans retinoic acid and plumbaging, among others, have been considered as inhibitors of EMT. The EMT association with chemoresistance has been evaluated. Moreover, ZEB1/2, TGF-β, Snail and Twist are EMT modulators in HCC and enhancing cancer invasion. Therefore, EMT mechanism and related molecular mechanisms in HCC are evaluated. The treatment of HCC has not been only emphasized on targeting molecular pathways with pharmacological compounds and since drugs have low bioavailability, their targeted delivery by nanoparticles promotes HCC elimination. Moreover, nanoparticle-mediated phototherapy impairs tumorigenesis in HCC by triggering cell death. Metastasis of HCC and even EMT mechanism can be suppressed by cargo-loaded nanoparticles.
Collapse
Affiliation(s)
- Yaser E Alqurashi
- Department of Biology, College of Science Al-zulfi, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| | | | | | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U. P., India
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | - Nahla A Tayyib
- Faculty of Nursing, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Hu Peng
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
35
|
Pan Y, Guan J, Gao Y, Zhu Y, Li H, Guo H, He Q, Guan Z, Yang Z. Modified ASO conjugates encapsulated with cytidinyl/cationic lipids exhibit more potent and longer-lasting anti-HCC effects. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 32:807-821. [PMID: 37251692 PMCID: PMC10220282 DOI: 10.1016/j.omtn.2023.04.028] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 04/28/2023] [Indexed: 05/31/2023]
Abstract
Antisense oligonucleotides (ASOs) are a class of therapeutics targeting mRNAs or genes that have attracted much attention. However, effective delivery and optimal accumulation in target tissues in vivo are still challenging issues. CT102 is an ASO that targets IGF1R mRNA and induces cell apoptosis. Herein, a detailed exploration of the tissue distribution of ASOs delivered by liposomes was carried out. A formulation that resulted in increased hepatic accumulation was identified based on multiple intermolecular interactions between DCP (cytidinyl/cationic lipid DNCA/CLD and DSPE-PEG) and oligonucleotides, including hydrogen bonding, π-π stacking, and electrostatic interactions. The structurally optimized CT102s present a novel strategy for the treatment of hepatocellular carcinoma. The gapmer CT102MOE5 and conjugate Glu-CT102MOE5 showed superior antiproliferation and IGF1R mRNA suppression effects at 100 nM in vitro and achieved greater efficacy at a lower dose and administration frequency in vivo. Combined transcriptome and proteome analyses revealed that additional associated targets and functional regulations might simultaneously exist in ASO therapy. These results showed that a combination of lipid encapsulation and structural optimization in the delivery of oligonucleotide drugs has favorable prospects for clinical application.
Collapse
Affiliation(s)
- Yufei Pan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Jing Guan
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), College of Life Sciences/Institute of Agro-bioengineering, Guizhou University, Guiyang 550025, China
| | - Yujing Gao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yuejie Zhu
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Huantong Li
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Hua Guo
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qianyi He
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhu Guan
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Zhenjun Yang
- State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| |
Collapse
|
36
|
Lee Y, Kim M, Ha J, Lee M. Brain-targeted exosome-mimetic cell membrane nanovesicles with therapeutic oligonucleotides elicit anti-tumor effects in glioblastoma animal models. Bioeng Transl Med 2023; 8:e10426. [PMID: 36925699 PMCID: PMC10013800 DOI: 10.1002/btm2.10426] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 09/19/2022] [Accepted: 10/03/2022] [Indexed: 11/11/2022] Open
Abstract
The brain-targeted delivery of therapeutic oligonucleotides has been investigated as a new treatment modality for various brain diseases, such as brain tumors. However, delivery efficiency into the brain has been limited due to the blood-brain barrier. In this research, brain-targeted exosome-mimetic cell membrane nanovesicles (CMNVs) were designed to enhance the delivery of therapeutic oligonucleotides into the brain. First, CMNVs were produced by extrusion with isolated C6 cell membrane fragments. Then, CMNVs were decorated with cholesterol-linked T7 peptides as a targeting ligand by hydrophobic interaction, producing T7-CMNV. T7-CMNV was in aqueous solution maintained its nanoparticle size for over 21 days. The targeting and delivery effects of T7-CMNVs were evaluated in an orthotopic glioblastoma animal model. 2'-O-metyl and cholesterol-TEG modified anti-microRNA-21 oligonucleotides (AMO21c) were loaded into T7-CMNVs, and biodistribution experiments indicated that T7-CMNVs delivered AMO21c more efficiently into the brain than CMNVs, scrambled T7-CMNVs, lipofectamine, and naked AMO21c after systemic administration. In addition, AMO21c down-regulated miRNA-21 (miR-21) levels in glioblastoma tissue most efficiently in the T7-CMNVs group. This enhanced suppression of miR-21 resulted in the up-regulation of PDCD4 and PTEN. Eventually, brain tumor size was reduced in the T7-CMNVs group more efficiently than in the other control groups. With stability, low toxicity, and targeting efficiency, T7-CMNVs may be useful to the development of oligonucleotide therapy for brain tumors.
Collapse
Affiliation(s)
- Youngki Lee
- Department of BioengineeringCollege of Engineering, Hanyang UniversitySeoulKorea
| | - Minkyung Kim
- Department of BioengineeringCollege of Engineering, Hanyang UniversitySeoulKorea
| | - Junkyu Ha
- Department of BioengineeringCollege of Engineering, Hanyang UniversitySeoulKorea
| | - Minhyung Lee
- Department of BioengineeringCollege of Engineering, Hanyang UniversitySeoulKorea
| |
Collapse
|
37
|
Vinh Nguyen P, Hervé-Aubert K, Lajoie L, Misericordia Y, Chourpa I, David S, Allard-Vannier E. WITHDRAWN: In vitro synergistic activity of cisplatin and EGFR-targeted nanomedicine of anti-Bcl-xL siRNA in a non-small lung cancer cell line model. Int J Pharm 2023; 632:122335. [PMID: 36283640 DOI: 10.1016/j.ijpharm.2022.122335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 10/13/2022] [Accepted: 10/18/2022] [Indexed: 11/29/2022]
Abstract
This article was withdrawn from International Journal of Pharmaceutics in order to be published in International Journal of Pharmaceutics: X. The Publisher apologizes for any inconvenience this may cause.
Collapse
Affiliation(s)
- Phuoc Vinh Nguyen
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France; School of Medicine, Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Katel Hervé-Aubert
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | - Laurie Lajoie
- ISP UMR1282, INRAE, équipe BioMAP, Université de Tours, Tours, France
| | - Yoann Misericordia
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | - Igor Chourpa
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | - Stéphanie David
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | | |
Collapse
|
38
|
Abballe L, Spinello Z, Antonacci C, Coppola L, Miele E, Catanzaro G, Miele E. Nanoparticles for Drug and Gene Delivery in Pediatric Brain Tumors' Cancer Stem Cells: Current Knowledge and Future Perspectives. Pharmaceutics 2023; 15:pharmaceutics15020505. [PMID: 36839827 PMCID: PMC9962005 DOI: 10.3390/pharmaceutics15020505] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 01/24/2023] [Accepted: 01/31/2023] [Indexed: 02/05/2023] Open
Abstract
Primary malignant brain tumors are the most common solid neoplasm in childhood. Despite recent advances, many children affected by aggressive or metastatic brain tumors still present poor prognosis, therefore the development of more effective therapies is urgent. Cancer stem cells (CSCs) have been discovered and isolated in both pediatric and adult patients with brain tumors (e.g., medulloblastoma, gliomas and ependymoma). CSCs are a small clonal population of cancer cells responsible for brain tumor initiation, maintenance and progression, displaying resistance to conventional anticancer therapies. CSCs are characterized by a specific repertoire of surface markers and intracellular specific pathways. These unique features of CSCs biology offer the opportunity to build therapeutic approaches to specifically target these cells in the complex tumor bulk. Treatment of pediatric brain tumors with classical chemotherapeutic regimen poses challenges both for tumor location and for the presence of the blood-brain barrier (BBB). Lastly, the application of chemotherapy to a developing brain is followed by long-term sequelae, especially on cognitive abilities. Novel avenues are emerging in the therapeutic panorama taking advantage of nanomedicine. In this review we will summarize nanoparticle-based approaches and the efficacy that NPs have intrinsically demonstrated and how they are also decorated by biomolecules. Furthermore, we propose novel cargoes together with recent advances in nanoparticle design/synthesis with the final aim to specifically target the insidious CSCs population in the tumor bulk.
Collapse
Affiliation(s)
- Luana Abballe
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Zaira Spinello
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Celeste Antonacci
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Lucia Coppola
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Ermanno Miele
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge CB3 0H3, UK
| | - Giuseppina Catanzaro
- Department of Experimental Medicine, Sapienza University of Rome, 00161 Rome, Italy
- Correspondence: (G.C.); (E.M.)
| | - Evelina Miele
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
- Correspondence: (G.C.); (E.M.)
| |
Collapse
|
39
|
Taheriazam A, Abad GGY, Hajimazdarany S, Imani MH, Ziaolhagh S, Zandieh MA, Bayanzadeh SD, Mirzaei S, Hamblin MR, Entezari M, Aref AR, Zarrabi A, Ertas YN, Ren J, Rajabi R, Paskeh MDA, Hashemi M, Hushmandi K. Graphene oxide nanoarchitectures in cancer biology: Nano-modulators of autophagy and apoptosis. J Control Release 2023; 354:503-522. [PMID: 36641122 DOI: 10.1016/j.jconrel.2023.01.028] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 01/08/2023] [Accepted: 01/09/2023] [Indexed: 01/16/2023]
Abstract
Nanotechnology is a growing field, with many potential biomedical applications of nanomedicine for the treatment of different diseases, particularly cancer, on the horizon. Graphene oxide (GO) nanoparticles can act as carbon-based nanocarriers with advantages such as a large surface area, good mechanical strength, and the capacity for surface modification. These nanostructures have been extensively used in cancer therapy for drug and gene delivery, photothermal therapy, overcoming chemotherapy resistance, and for imaging procedures. In the current review, we focus on the biological functions of GO nanoparticles as regulators of apoptosis and autophagy, the two major forms of programmed cell death. GO nanoparticles can either induce or inhibit autophagy in cancer cells, depending on the conditions. By stimulating autophagy, GO nanocarriers can promote the sensitivity of cancer cells to chemotherapy. However, by impairing autophagy flux, GO nanoparticles can reduce cell survival and enhance inflammation. Similarly, GO nanomaterials can increase ROS production and induce DNA damage, thereby sensitizing cancer cells to apoptosis. In vitro and in vivo experiments have investigated whether GO nanomaterials show any toxicity in major body organs, such as the brain, liver, spleen, and heart. Molecular pathways, such as ATG, MAPK, JNK, and Akt, can be regulated by GO nanomaterials, leading to effects on autophagy and apoptosis. These topics are discussed in this review to shed some lights towards the biomedical potential of GO nanoparticles and their biocompatibility, paving the way for their future application in clinical trials.
Collapse
Affiliation(s)
- Afshin Taheriazam
- Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Ghazaleh Gholamiyan Yousef Abad
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shima Hajimazdarany
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Cellular and Molecular Biology, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Hassan Imani
- Department of Clinical Science, Faculty of Veterinary Medicine, Islamic Azad University, Shahr-e kord Branch, Chaharmahal and Bakhtiari, Iran
| | - Setayesh Ziaolhagh
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mohammad Arad Zandieh
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | | | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa; Radiation Biology Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Vice President at Translational Sciences, Xsphera Biosciences Inc., 6 Tide Street, Boston, MA, 02210, USA
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Turkey
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Mahshid Deldar Abad Paskeh
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
40
|
Allami P, Heidari A, Rezaei N. The role of cell membrane-coated nanoparticles as a novel treatment approach in glioblastoma. Front Mol Biosci 2023; 9:1083645. [PMID: 36660431 PMCID: PMC9846545 DOI: 10.3389/fmolb.2022.1083645] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 12/14/2022] [Indexed: 01/06/2023] Open
Abstract
Glioblastoma multiform (GBM) is the most prevalent and deadliest primary brain malignancy in adults, whose median survival rate does not exceed 15 months after diagnosis. The conventional treatment of GBM, including maximal safe surgery followed by chemotherapy and radiotherapy, usually cannot lead to notable improvements in the disease prognosis and the tumor always recurs. Many GBM characteristics make its treatment challenging. The most important ones are the impermeability of the blood-brain barrier (BBB), preventing chemotherapeutic drugs from reaching in adequate amounts to the tumor site, intratumoral heterogeneity, and roles of glioblastoma stem cells (GSCs). To overcome these barriers, the recently-developed drug-carrying approach using nanoparticles (NPs) may play a significant role. NPs are tiny particles, usually less than 100 nm showing various diagnostic and therapeutic medical applications. In this regard, cell membrane (CM)-coated NPs demonstrated several promising effects in GBM in pre-clinical studies. They benefit from fewer adverse effects due to their specific targeting of tumor cells, biocompatibility because of their CM surfaces, prolonged half-life, easy penetrating of the BBB, and escaping from the immune reaction, making them an attractive option for GBM treatment. To date, CM-coated NPs have been applied to enhance the effectiveness of major therapeutic approaches in GBM treatment, including chemotherapy, immunotherapy, gene therapy, and photo-based therapies. Despite the promising results in pre-clinical studies regarding the effectiveness of CM-coated NPs in GBM, significant barriers like high expenses, complex preparation processes, and unknown long-term effects still hinder its mass production for the clinic. In this regard, the current study aims to provide an overview of different characteristics of CM-coated NPs and comprehensively investigate their application as a novel treatment approach in GBM.
Collapse
Affiliation(s)
- Pantea Allami
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Arash Heidari
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Students’ Scientific Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education and Research Network (USERN), Tehran, Iran
- Research Center for Immunodeficiencies, Children’s Medical Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Ashrafizadeh M, Hushmandi K, Mirzaei S, Bokaie S, Bigham A, Makvandi P, Rabiee N, Thakur VK, Kumar AP, Sharifi E, Varma RS, Aref AR, Wojnilowicz M, Zarrabi A, Karimi‐Maleh H, Voelcker NH, Mostafavi E, Orive G. Chitosan-based nanoscale systems for doxorubicin delivery: Exploring biomedical application in cancer therapy. Bioeng Transl Med 2023; 8:e10325. [PMID: 36684100 PMCID: PMC9842052 DOI: 10.1002/btm2.10325] [Citation(s) in RCA: 40] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/12/2022] [Accepted: 03/17/2022] [Indexed: 02/06/2023] Open
Abstract
Green chemistry has been a growing multidisciplinary field in recent years showing great promise in biomedical applications, especially for cancer therapy. Chitosan (CS) is an abundant biopolymer derived from chitin and is present in insects and fungi. This polysaccharide has favorable characteristics, including biocompatibility, biodegradability, and ease of modification by enzymes and chemicals. CS-based nanoparticles (CS-NPs) have shown potential in the treatment of cancer and other diseases, affording targeted delivery and overcoming drug resistance. The current review emphasizes on the application of CS-NPs for the delivery of a chemotherapeutic agent, doxorubicin (DOX), in cancer therapy as they promote internalization of DOX in cancer cells and prevent the activity of P-glycoprotein (P-gp) to reverse drug resistance. These nanoarchitectures can provide co-delivery of DOX with antitumor agents such as curcumin and cisplatin to induce synergistic cancer therapy. Furthermore, co-loading of DOX with siRNA, shRNA, and miRNA can suppress tumor progression and provide chemosensitivity. Various nanostructures, including lipid-, carbon-, polymeric- and metal-based nanoparticles, are modifiable with CS for DOX delivery, while functionalization of CS-NPs with ligands such as hyaluronic acid promotes selectivity toward tumor cells and prevents DOX resistance. The CS-NPs demonstrate high encapsulation efficiency and due to protonation of amine groups of CS, pH-sensitive release of DOX can occur. Furthermore, redox- and light-responsive CS-NPs have been prepared for DOX delivery in cancer treatment. Leveraging these characteristics and in view of the biocompatibility of CS-NPs, we expect to soon see significant progress towards clinical translation.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural SciencesSabanci University, Üniversite CaddesiTuzla, IstanbulTurkey
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of ScienceIslamic Azad University, Science and Research BranchTehranIran
| | - Saied Bokaie
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Ashkan Bigham
- Institute of Polymers, Composites and Biomaterials ‐ National Research Council (IPCB‐CNR)NaplesItaly
| | - Pooyan Makvandi
- Istituto Italiano di Tecnologia, Center for Materials InterfacesPontedera, PisaItaly
| | - Navid Rabiee
- School of Engineering, Macquarie UniversitySydneyNew South WalesAustralia
| | - Vijay Kumar Thakur
- School of EngineeringUniversity of Petroleum & Energy Studies (UPES)DehradunUttarakhandIndia
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC)EdinburghUK
| | - Alan Prem Kumar
- NUS Centre for Cancer Research (N2CR)Yong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeKent RidgeSingapore
| | - Esmaeel Sharifi
- Department of Tissue Engineering and BiomaterialsSchool of Advanced Medical Sciences and Technologies, Hamadan University of Medical SciencesHamadanIran
| | - Rajender S. Varma
- Regional Center of Advanced Technologies and MaterialsCzech Advanced Technology and Research Institute, Palacky UniversityOlomoucCzech Republic
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana‐Farber Cancer Institute, Harvard Medical SchoolBostonMassachusettsUSA
- Xsphera Biosciences Inc.BostonMassachusettsUSA
| | - Marcin Wojnilowicz
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) ManufacturingClaytonVictoriaAustralia
- Monash Institute of Pharmaceutical SciencesParkvilleVictoriaAustralia
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural SciencesIstinye UniversityIstanbulTurkey
| | - Hassan Karimi‐Maleh
- School of Resources and Environment, University of Electronic Science and Technology of ChinaChengduPR China
- Department of Chemical EngineeringQuchan University of TechnologyQuchanIran
- Department of Chemical Sciences, University of Johannesburg, Doornfontein CampusJohannesburgSouth Africa
| | - Nicolas H. Voelcker
- Commonwealth Scientific and Industrial Research Organisation (CSIRO) ManufacturingClaytonVictoriaAustralia
- Monash Institute of Pharmaceutical SciencesParkvilleVictoriaAustralia
- Melbourne Centre for NanofabricationVictorian Node of the Australian National Fabrication FacilityClaytonVictoriaAustralia
| | - Ebrahim Mostafavi
- Stanford Cardiovascular Institute, Stanford University School of MedicineStanfordCaliforniaUSA
- Department of MedicineStanford University School of MedicineStanfordCaliforniaUSA
| | - Gorka Orive
- NanoBioCel Research Group, School of PharmacyUniversity of the Basque Country (UPV/EHU)Vitoria‐GasteizSpain
- University Institute for Regenerative Medicine and Oral Implantology–UIRMI(UPV/EHU‐Fundación Eduardo Anitua)Vitoria‐GasteizSpain
- Bioaraba, NanoBioCel Research GroupVitoria‐GasteizSpain
- Singapore Eye Research InstituteSingapore
| |
Collapse
|
42
|
Fu W, Hou X, Dong L, Hou W. Roles of STAT3 in the pathogenesis and treatment of glioblastoma. Front Cell Dev Biol 2023; 11:1098482. [PMID: 36923251 PMCID: PMC10009693 DOI: 10.3389/fcell.2023.1098482] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 02/15/2023] [Indexed: 03/02/2023] Open
Abstract
Glioblastoma (GBM) is the most malignant of astrocytomas mainly involving the cerebral hemispheres and the cerebral cortex. It is one of the fatal and refractory solid tumors, with a 5-year survival rate of merely 5% among the adults. IL6/JAK/STAT3 is an important signaling pathway involved in the pathogenesis and progression of GBM. The expression of STAT3 in GBM tissues is substantially higher than that of normal brain cells. The abnormal activation of STAT3 renders the tumor microenvironment of GBM immunosuppression. Besides, blocking the STAT3 pathway can effectively inhibit the growth and metastasis of GBM. On this basis, inhibition of STAT3 may be a new therapeutic approach for GBM, and the combination of STAT3 targeted therapy and conventional therapies may improve the current status of GBM treatment. This review summarized the roles of STAT3 in the pathogenesis of GBM and the feasibility of STAT3 for GBM target therapy.
Collapse
Affiliation(s)
- Weijia Fu
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Xue Hou
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Lihua Dong
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Wei Hou
- Department of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, China.,NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| |
Collapse
|
43
|
Ashrafizadeh M, Zarrabi A, Karimi‐Maleh H, Taheriazam A, Mirzaei S, Hashemi M, Hushmandi K, Makvandi P, Nazarzadeh Zare E, Sharifi E, Goel A, Wang L, Ren J, Nuri Ertas Y, Kumar AP, Wang Y, Rabiee N, Sethi G, Ma Z. (Nano)platforms in bladder cancer therapy: Challenges and opportunities. Bioeng Transl Med 2023; 8:e10353. [PMID: 36684065 PMCID: PMC9842064 DOI: 10.1002/btm2.10353] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/16/2022] [Accepted: 05/18/2022] [Indexed: 01/25/2023] Open
Abstract
Urological cancers are among the most common malignancies around the world. In particular, bladder cancer severely threatens human health due to its aggressive and heterogeneous nature. Various therapeutic modalities have been considered for the treatment of bladder cancer although its prognosis remains unfavorable. It is perceived that treatment of bladder cancer depends on an interdisciplinary approach combining biology and engineering. The nanotechnological approaches have been introduced in the treatment of various cancers, especially bladder cancer. The current review aims to emphasize and highlight possible applications of nanomedicine in eradication of bladder tumor. Nanoparticles can improve efficacy of drugs in bladder cancer therapy through elevating their bioavailability. The potential of genetic tools such as siRNA and miRNA in gene expression regulation can be boosted using nanostructures by facilitating their internalization and accumulation at tumor sites and cells. Nanoparticles can provide photodynamic and photothermal therapy for ROS overgeneration and hyperthermia, respectively, in the suppression of bladder cancer. Furthermore, remodeling of tumor microenvironment and infiltration of immune cells for the purpose of immunotherapy are achieved through cargo-loaded nanocarriers. Nanocarriers are mainly internalized in bladder tumor cells by endocytosis, and proper design of smart nanoparticles such as pH-, redox-, and light-responsive nanocarriers is of importance for targeted tumor therapy. Bladder cancer biomarkers can be detected using nanoparticles for timely diagnosis of patients. Based on their accumulation at the tumor site, they can be employed for tumor imaging. The clinical translation and challenges are also covered in current review.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural SciencesSabanci University, Orta MahalleIstanbulTurkey
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural SciencesIstinye UniversityIstanbulTurkey
| | - Hassan Karimi‐Maleh
- School of Resources and EnvironmentUniversity of Electronic Science and Technology of ChinaChengduPeople's Republic of China
- Department of Chemical EngineeringQuchan University of TechnologyQuchanIran
- Department of Chemical SciencesUniversity of JohannesburgJohannesburgSouth Africa
| | - Afshin Taheriazam
- Department of Orthopedics, Faculty of medicineTehran Medical Sciences, Islamic Azad UniversityTehranIran
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical Sciences, Islamic Azad UniversityTehranIran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of ScienceIslamic Azad University, Science and Research BranchTehranIran
| | - Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research CenterFarhikhtegan Hospital Tehran Medical Sciences, Islamic Azad UniversityTehranIran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology, Faculty of Veterinary MedicineUniversity of TehranTehranIran
| | - Pooyan Makvandi
- Istituto Italiano di TecnologiaCentre for Materials InterfacePontederaPisa56025Italy
| | | | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and TechnologiesHamadan University of Medical SciencesHamadanIran
| | - Arul Goel
- La Canada High SchoolLa Cañada FlintridgeCaliforniaUSA
| | - Lingzhi Wang
- Cancer Science Institute of SingaporeNational University of SingaporeSingaporeSingapore
| | - Jun Ren
- Department of Laboratory Medicine and PathologyUniversity of WashingtonSeattleWashingtonUSA
- Shanghai Institute of Cardiovascular Diseases, Department of CardiologyZhongshan Hospital, Fudan UniversityShanghaiChina
| | - Yavuz Nuri Ertas
- Department of Biomedical EngineeringErciyes UniversityKayseriTurkey
- ERNAM—Nanotechnology Research and Application CenterErciyes UniversityKayseriTurkey
| | - Alan Prem Kumar
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate CentreUniversity of British ColumbiaVancouverBritish ColumbiaCanada
| | - Navid Rabiee
- School of EngineeringMacquarie UniversitySydneyNew South Wales2109Australia
- Department of Materials Science and EngineeringPohang University of Science and Technology (POSTECH)PohangGyeongbuk37673South Korea
| | - Gautam Sethi
- Department of PharmacologyYong Loo Lin School of Medicine, National University of SingaporeSingaporeSingapore
| | - Zhaowu Ma
- Health Science CenterYangtze UniversityJingzhouHubeiChina
| |
Collapse
|
44
|
siRNA and targeted delivery systems in breast cancer therapy. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2022; 25:1167-1188. [PMID: 36562927 DOI: 10.1007/s12094-022-03043-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 12/05/2022] [Indexed: 12/24/2022]
Abstract
Recently, nucleic acid drugs have been considered as promising candidates in treatment of various diseases, especially cancer. Because of developing resistance to conventional chemotherapy, use of genetic tools in cancer therapy appears inevitable. siRNA is a RNAi tool with capacity of suppressing target gene. Owing to overexpression of oncogenic factors in cancer, siRNA can be used for suppressing those pathways. This review emphasizes the function of siRNA in treatment of breast tumor. The anti-apoptotic-related genes including Bcl-2, Bcl-xL and survivin can be down-regulated by siRNA in triggering cell death in breast cancer. STAT3, STAT8, Notch1, E2F3 and NF-κB are among the factors with overexpression in breast cancer that their silencing by siRNA paves the way for impairing tumor proliferation and invasion. The oncogenic mechanisms in drug resistance development in breast tumor such as lncRNAs can be suppressed by siRNA. Furthermore, siRNA reducing P-gp activity can increase drug internalization in tumor cells. Because of siRNA degradation at bloodstream and low accumulation at tumor site, nanoplatforms have been employed for siRNA delivery to suppress breast tumor progression via improving siRNA efficacy in gene silencing. Development of biocompatible and efficient nanostructures for siRNA delivery can make milestone progress in alleviation of breast cancer patients.
Collapse
|
45
|
Nguyen PV, Hervé-Aubert K, Lajoie L, Misericordia Y, Chourpa I, David S, Allard-Vannier E. In vitro synergistic activity of cisplatin and EGFR-targeted nanomedicine of anti-Bcl-xL siRNA in a non-small lung cancer cell line model. Int J Pharm X 2022; 4:100139. [PMID: 36420371 PMCID: PMC9676141 DOI: 10.1016/j.ijpx.2022.100139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Apoptosis is an important process that directly affects the response of cancer cells to anticancer drugs. Among different factors involved in this process, the BcL-xL protein plays a critical role in inhibiting apoptosis induced by chemotherapy agents. Henceforth, its downregulation may have a synergistic activity that lowers the necessary dose of anticancer agents. In this study, anti-Bcl-xL siRNA were formulated within an EGFR-targeted nanomedicine with scFv ligands (NM-scFv) and its activity was tested in the non-small cell lung cancer (NSCLC) cell line H460. The obtained NMs-scFv anti-Bcl-xL were suitable for intravenous injection with sizes around 100 nm, a high monodispersity level and good siRNA complexation capacity. The nanocomplex's functionalization with anti-EGFR scFv ligands was shown to allow an active gene delivery into H460 cells and led to approximately 63% of gene silencing at both mRNA and protein levels. The NM-scFv anti-Bcl-xL improved the apoptotic activity of cisplatin and reduced the cisplatin IC50 value in H460 cells by a factor of around three from 0.68 ± 0.12 μM to 2.21 ± 0.18 μM (p < 0.01), respectively, in comparison to that of NM-scFv formulated with control siRNA (p > 0.05).
Collapse
Affiliation(s)
- Phuoc Vinh Nguyen
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
- School of Medicine, Vietnam National University Ho Chi Minh city, Ho Chi Minh city, Viet Nam
| | - Katel Hervé-Aubert
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | - Laurie Lajoie
- ISP UMR1282, INRAE, équipe BioMAP, Université de Tours, Tours, France
| | - Yoann Misericordia
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | - Igor Chourpa
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | - Stéphanie David
- EA6295 Nanomédicaments et Nanosondes, Université de Tours, Tours, France
| | | |
Collapse
|
46
|
Hashemi M, Ghadyani F, Hasani S, Olyaee Y, Raei B, Khodadadi M, Ziyarani MF, Basti FA, Tavakolpournegari A, Matinahmadi A, Salimimoghadam S, Aref AR, Taheriazam A, Entezari M, Ertas YN. Nanoliposomes for doxorubicin delivery: Reversing drug resistance, stimuli-responsive carriers and clinical translation. J Drug Deliv Sci Technol 2022. [DOI: 10.1016/j.jddst.2022.104112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
47
|
Verdugo E, Puerto I, Medina MÁ. An update on the molecular biology of glioblastoma, with clinical implications and progress in its treatment. CANCER COMMUNICATIONS (LONDON, ENGLAND) 2022; 42:1083-1111. [PMID: 36129048 DOI: 10.1002/cac2.12361] [Citation(s) in RCA: 102] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/07/2022] [Accepted: 09/05/2022] [Indexed: 11/08/2022]
Abstract
Glioblastoma multiforme (GBM) is the most aggressive and common malignant primary brain tumor. Patients with GBM often have poor prognoses, with a median survival of ∼15 months. Enhanced understanding of the molecular biology of central nervous system tumors has led to modifications in their classifications, the most recent of which classified these tumors into new categories and made some changes in their nomenclature and grading system. This review aims to give a panoramic view of the last 3 years' findings in glioblastoma characterization, its heterogeneity, and current advances in its treatment. Several molecular parameters have been used to achieve an accurate and personalized characterization of glioblastoma in patients, including epigenetic, genetic, transcriptomic and metabolic features, as well as age- and sex-related patterns and the involvement of several noncoding RNAs in glioblastoma progression. Astrocyte-like neural stem cells and outer radial glial-like cells from the subventricular zone have been proposed as agents involved in GBM of IDH-wildtype origin, but this remains controversial. Glioblastoma metabolism is characterized by upregulation of the PI3K/Akt/mTOR signaling pathway, promotion of the glycolytic flux, maintenance of lipid storage, and other features. This metabolism also contributes to glioblastoma's resistance to conventional therapies. Tumor heterogeneity, a hallmark of GBM, has been shown to affect the genetic expression, modulation of metabolic pathways, and immune system evasion. GBM's aggressive invasion potential is modulated by cell-to-cell crosstalk within the tumor microenvironment and altered expressions of specific genes, such as ANXA2, GBP2, FN1, PHIP, and GLUT3. Nevertheless, the rising number of active clinical trials illustrates the efforts to identify new targets and drugs to treat this malignancy. Immunotherapy is still relevant for research purposes, given the amount of ongoing clinical trials based on this strategy to treat GBM, and neoantigen and nucleic acid-based vaccines are gaining importance due to their antitumoral activity by inducing the immune response. Furthermore, there are clinical trials focused on the PI3K/Akt/mTOR axis, angiogenesis, and tumor heterogeneity for developing molecular-targeted therapies against GBM. Other strategies, such as nanodelivery and computational models, may improve the drug pharmacokinetics and the prognosis of patients with GBM.
Collapse
Affiliation(s)
- Elena Verdugo
- Department of Molecular Biology and Biochemistry, University of Málaga, Málaga, Málaga, E-29071, Spain
| | - Iker Puerto
- Department of Molecular Biology and Biochemistry, University of Málaga, Málaga, Málaga, E-29071, Spain
| | - Miguel Ángel Medina
- Department of Molecular Biology and Biochemistry, University of Málaga, Málaga, Málaga, E-29071, Spain.,Biomedical Research Institute of Málaga (IBIMA-Plataforma Bionand), Málaga, Málaga, E-29071, Spain.,Spanish Biomedical Research Network Center for Rare Diseases (CIBERER), Spanish Health Institute Carlos III (ISCIII), Málaga, Málaga, E-29071, Spain
| |
Collapse
|
48
|
Zhao J, Zhang C, Wang W, Li C, Mu X, Hu K. Current progress of nanomedicine for prostate cancer diagnosis and treatment. Biomed Pharmacother 2022; 155:113714. [PMID: 36150309 DOI: 10.1016/j.biopha.2022.113714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 11/02/2022] Open
Abstract
Prostate cancer (PCa) is the most common new cancer case and the second most fatal malignancy in men. Surgery, endocrine therapy, radiotherapy and chemotherapy are the main clinical treatment options for PCa. However, most prostate cancers can develop into castration-resistant prostate cancer (CRPC), and due to the invasiveness of prostate cancer cells, they become resistant to different treatments and activate tumor-promoting signaling pathways, thereby inducing chemoresistance, radioresistance, ADT resistance, and immune resistance. Nanotechnology, which can combine treatment with diagnostic imaging tools, is emerging as a promising treatment modality in prostate cancer therapy. Nanoparticles can not only promote their accumulation at the pathological site through passive targeting techniques for enhanced permeability and retention (EPR), but also provide additional advantages for active targeting using different ligands. This property results in a reduced drug dose to achieve the desired effect, a longer duration of action within the tumor and fewer side effects on healthy tissues. In addition, nanotechnology can create good synergy with radiotherapy, chemotherapy, thermotherapy, photodynamic therapy and gene therapy to enhance their therapeutic effects with greater scope, and reduce the resistance of prostate cancer. In this article, we intend to review and discuss the latest technologies regarding the use of nanomaterials as therapeutic and diagnostic tools for prostate cancer.
Collapse
Affiliation(s)
- Jiang Zhao
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Chi Zhang
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China
| | - Weihao Wang
- Department of Plastic and Reconstructive Surgery, The First Hospital of Jilin University, Changchun 130021, China
| | - Chen Li
- Department of Endocrinology and Metabolism, The First Hospital of Jilin University, Changchun 130021, China
| | - Xupeng Mu
- Scientific Research Center, China-Japan Union Hospital, Jilin University, Changchun 130033, China.
| | - Kebang Hu
- Department of Urology, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
49
|
Duskey JT, Rinaldi A, Ottonelli I, Caraffi R, De Benedictis CA, Sauer AK, Tosi G, Vandelli MA, Ruozi B, Grabrucker AM. Glioblastoma Multiforme Selective Nanomedicines for Improved Anti-Cancer Treatments. Pharmaceutics 2022; 14:1450. [PMID: 35890345 PMCID: PMC9325049 DOI: 10.3390/pharmaceutics14071450] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 07/04/2022] [Accepted: 07/08/2022] [Indexed: 02/01/2023] Open
Abstract
Glioblastoma Multiforme (GBM) is a devastating disease with a low survival rate and few efficacious treatment options. The fast growth, late diagnostics, and off-target toxicity of currently used drugs represent major barriers that need to be overcome to provide a viable cure. Nanomedicines (NMeds) offer a way to overcome these pitfalls by protecting and loading drugs, increasing blood half-life, and being targetable with specific ligands on their surface. In this study, the FDA-approved polymer poly (lactic-co-glycolic) acid was used to optimise NMeds that were surface modified with a series of potential GBM-specific ligands. The NMeds were fully characterised for their physical and chemical properties, and then in vitro testing was performed to evaluate cell uptake and GBM cell specificity. While all targeted NMeds showed improved uptake, only those decorated with the-cell surface vimentin antibody M08 showed specificity for GBM over healthy cells. Finally, the most promising targeted NMed candidate was loaded with the well-known chemotherapeutic, paclitaxel, to confirm targeting and therapeutic effects in C6 GBM cells. These results demonstrate the importance of using well-optimised NMeds targeted with novel ligands to advance delivery and pharmaceutical effects against diseased cells while minimising the risk for nearby healthy cells.
Collapse
Affiliation(s)
- Jason Thomas Duskey
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (J.T.D.); (A.R.); (I.O.); (R.C.); (G.T.); (M.A.V.)
| | - Arianna Rinaldi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (J.T.D.); (A.R.); (I.O.); (R.C.); (G.T.); (M.A.V.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Ilaria Ottonelli
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (J.T.D.); (A.R.); (I.O.); (R.C.); (G.T.); (M.A.V.)
- Clinical and Experimental Medicine PhD Program, University of Modena and Reggio Emilia, 41125 Modena, Italy
| | - Riccardo Caraffi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (J.T.D.); (A.R.); (I.O.); (R.C.); (G.T.); (M.A.V.)
| | | | - Ann Katrin Sauer
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (C.A.D.B.); (A.K.S.)
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
| | - Giovanni Tosi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (J.T.D.); (A.R.); (I.O.); (R.C.); (G.T.); (M.A.V.)
| | - Maria Angela Vandelli
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (J.T.D.); (A.R.); (I.O.); (R.C.); (G.T.); (M.A.V.)
| | - Barbara Ruozi
- Nanotech Lab, Te.Far.T.I., Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (J.T.D.); (A.R.); (I.O.); (R.C.); (G.T.); (M.A.V.)
| | - Andreas Martin Grabrucker
- Department of Biological Sciences, University of Limerick, V94 T9PX Limerick, Ireland; (C.A.D.B.); (A.K.S.)
- Bernal Institute, University of Limerick, V94 T9PX Limerick, Ireland
- Health Research Institute (HRI), University of Limerick, V94 T9PX Limerick, Ireland
| |
Collapse
|
50
|
Mirzaei S, Paskeh MDA, Okina E, Gholami MH, Hushmandi K, Hashemi M, Kalu A, Zarrabi A, Nabavi N, Rabiee N, Sharifi E, Karimi-Maleh H, Ashrafizadeh M, Kumar AP, Wang Y. Molecular Landscape of LncRNAs in Prostate Cancer: A focus on pathways and therapeutic targets for intervention. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:214. [PMID: 35773731 PMCID: PMC9248128 DOI: 10.1186/s13046-022-02406-1] [Citation(s) in RCA: 108] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/27/2022] [Indexed: 02/08/2023]
Abstract
Background One of the most malignant tumors in men is prostate cancer that is still incurable due to its heterogenous and progressive natures. Genetic and epigenetic changes play significant roles in its development. The RNA molecules with more than 200 nucleotides in length are known as lncRNAs and these epigenetic factors do not encode protein. They regulate gene expression at transcriptional, post-transcriptional and epigenetic levels. LncRNAs play vital biological functions in cells and in pathological events, hence their expression undergoes dysregulation. Aim of review The role of epigenetic alterations in prostate cancer development are emphasized here. Therefore, lncRNAs were chosen for this purpose and their expression level and interaction with other signaling networks in prostate cancer progression were examined. Key scientific concepts of review The aberrant expression of lncRNAs in prostate cancer has been well-documented and progression rate of tumor cells are regulated via affecting STAT3, NF-κB, Wnt, PI3K/Akt and PTEN, among other molecular pathways. Furthermore, lncRNAs regulate radio-resistance and chemo-resistance features of prostate tumor cells. Overexpression of tumor-promoting lncRNAs such as HOXD-AS1 and CCAT1 can result in drug resistance. Besides, lncRNAs can induce immune evasion of prostate cancer via upregulating PD-1. Pharmacological compounds such as quercetin and curcumin have been applied for targeting lncRNAs. Furthermore, siRNA tool can reduce expression of lncRNAs thereby suppressing prostate cancer progression. Prognosis and diagnosis of prostate tumor at clinical course can be evaluated by lncRNAs. The expression level of exosomal lncRNAs such as lncRNA-p21 can be investigated in serum of prostate cancer patients as a reliable biomarker.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 180554, Singapore, Singapore
| | | | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.,Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Azuma Kalu
- School of Life, Health & Chemical Sciences, The Open University, Milton Keynes, United Kingdom.,Pathology, Sheffield Teaching Hospital, Sheffield, United Kingdom
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, 34396, Istanbul, Turkey
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada
| | - Navid Rabiee
- Department of Materials Science and Engineering, Pohang University of Science and Technology (POSTECH), 77 Cheongam-ro, Nam-gu, Pohang, Gyeongbuk, 37673, Korea.,School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Esmaeel Sharifi
- Department of Tissue Engineering and Biomaterials, School of Advanced Medical Sciences and Technologies, Hamadan University of Medical Sciences, Hamadan, 6517838736, Iran
| | - Hassan Karimi-Maleh
- School of Resources and Environment, University of Electronic Science and Technology of China, P.O. Box 611731, Xiyuan Ave, Chengdu, PR China.,Department of Chemical Engineering, Quchan University of Technology, Quchan, Iran.,Department of Chemical Sciences, University of Johannesburg, Doornfontein Campus, Johannesburg, 2028, South Africa
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore. .,NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, 180554, Singapore, Singapore.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6, Vancouver, BC, Canada.
| |
Collapse
|