1
|
Zhao M, Qiao K, Zhang L, Liang L, Chen S, Chen L, Zhang Y. Research Progress on Anti-Hyperlipidemia Peptides Derived from Foods. Nutrients 2025; 17:1181. [PMID: 40218939 PMCID: PMC11990363 DOI: 10.3390/nu17071181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 03/20/2025] [Accepted: 03/27/2025] [Indexed: 04/14/2025] Open
Abstract
Hyperlipidemia is a metabolic disorder in which cholesterol (TC) and triglycerides (TGs) in the blood exceed the normal physiological levels. The incidence of the condition has continued to rise in recent years, posing a serious threat to public health. Its clinical treatment mainly relies on drug interventions, such as statins, fibrate, and niacin. Although these drugs have shown some efficacy in the treatment of hyperlipidemia, their adverse effects cannot be ignored. In contrast, naturally derived peptides have gradually become potential candidates for the prevention and treatment of hyperlipidemia due to their strong anti-hyperlipidemic activity and safety; examples of such peptides include those from dairy products, grains, legumes, and seafood. This review systematically summarizes peptides with anti-hyperlipidemic activity and analyzes their mechanisms of action, providing a theoretical basis for further research. In addition, we also outline some challenges facing the application of peptides, hoping to prevent hyperlipidemia and reduce its incidence by encouraging the consumption of foods rich in anti-hyperlipidemia peptides.
Collapse
Affiliation(s)
- Mingxia Zhao
- Food Laboratory of Zhongyuan·Beijing Technology and Business University, Luohe 462300, China
- Food Laboratory of Zhongyuan, Luohe Food Engineering Vocational University, Luohe 462000, China
| | - Kaina Qiao
- Food Laboratory of Zhongyuan·Beijing Technology and Business University, Luohe 462300, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Lili Zhang
- Food Laboratory of Zhongyuan·Beijing Technology and Business University, Luohe 462300, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Li Liang
- Food Laboratory of Zhongyuan·Beijing Technology and Business University, Luohe 462300, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| | - Shuxing Chen
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Lishui Chen
- Food Laboratory of Zhongyuan, Luohe 462300, China
| | - Yuyu Zhang
- Food Laboratory of Zhongyuan·Beijing Technology and Business University, Luohe 462300, China
- Key Laboratory of Geriatric Nutrition and Health, Ministry of Education, Beijing Technology and Business University, Beijing 100048, China
- Key Laboratory of Flavor Science of China General Chamber of Commerce, Beijing Technology and Business University, Beijing 100048, China
| |
Collapse
|
2
|
Jiang X, Ren J, Yu G, Wu W, Chen M, Zhao Y, He C. Targeting Bile-Acid Metabolism: Nutritional and Microbial Approaches to Alleviate Ulcerative Colitis. Nutrients 2025; 17:1174. [PMID: 40218932 PMCID: PMC11990178 DOI: 10.3390/nu17071174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2025] [Revised: 03/19/2025] [Accepted: 03/26/2025] [Indexed: 04/14/2025] Open
Abstract
Ulcerative colitis (UC) is a chronic inflammatory disease affecting the colorectum, posing a significant global health burden. Recent studies highlight the critical role of gut microbiota and its metabolites, particularly bile acids (BAs), in UC's pathogenesis. The relationship between BAs and gut microbiota is bidirectional: microbiota influence BA composition, while BAs regulate microbiota diversity and activity through receptors like Farnesoid X receptor (FXR) and Takeda G protein-coupled receptor 5 (TGR5). Targeting bile-acid metabolism to reshape gut microbiota presents a promising therapeutic strategy for UC. This review examines the classification and synthesis of BAs, their interactions with gut microbiota, and the potential of nutritional and microbial interventions. By focusing on these therapies, we aim to offer innovative approaches for effective UC management.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Canxia He
- School of Public Health, Health Science Center, Ningbo University, Ningbo 315211, China
| |
Collapse
|
3
|
Ramakrishna BS. Inhibition of bile acid reabsorption as a treatment for constipation. Indian J Gastroenterol 2025:10.1007/s12664-025-01736-0. [PMID: 40009342 DOI: 10.1007/s12664-025-01736-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Affiliation(s)
- B S Ramakrishna
- Institute of Gastroenterology, SRM Institutes for Medical Science, Chennai, 600 026, India.
| |
Collapse
|
4
|
Bintee B, Banerjee R, Hegde M, Vishwa R, Alqahtani MS, Abbas M, Alqahtani A, Rangan L, Sethi G, Kunnumakkara AB. Exploring bile acid transporters as key players in cancer development and treatment: Evidence from preclinical and clinical studies. Cancer Lett 2025; 609:217324. [PMID: 39571783 DOI: 10.1016/j.canlet.2024.217324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 12/01/2024]
Abstract
Bile acid transporters (BATs) are integral membrane proteins belonging to various families, such as solute carriers, organic anion transporters, and ATP-binding cassette families. These transporters play a crucial role in bile acid transportation within the portal and systemic circulations, with expression observed in tissues, including the liver, kidney, and small intestine. Bile acids serve as signaling molecules facilitating the absorption and reabsorption of fats and lipids. Dysregulation of bile acid concentration has been implicated in tumorigenesis, yet the role of BATs in this process remains underexplored. Emerging evidence suggests that BATs may modulate various stages of cancer progression, including initiation, development, proliferation, metastasis, and tumor microenvironment regulation. Targeting BATs using siRNAs, miRNAs, and small compound inhibitors in preclinical models and their polymorphisms are well-studied for transporters like BSEP, MDR1, MRP2, OATP1A2, etc., and have shed light on their involvement in tumorigenesis, particularly in cancers such as those affecting the liver and gastrointestinal tract. While BATs' role in diseases like Alagille syndrome, biliary atresia, and cirrhosis have been extensively studied, their implications in cancer warrant further investigation. This review highlights the expression and function of BATs in cancer development and emphasizes the potential of targeting these transporters as a novel therapeutic strategy for various malignancies.
Collapse
Affiliation(s)
- Bintee Bintee
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ruchira Banerjee
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India; Applied Biodiversity Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Athba Alqahtani
- Research Centre, King Fahad Medical City, P.O. Box: 59046, Riyadh, 11525, Saudi Arabia
| | - Latha Rangan
- Applied Biodiversity Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
5
|
Kirsch A, Gindlhuber J, Zabini D, Osto E. Bile acids and incretins as modulators of obesity-associated atherosclerosis. Front Cardiovasc Med 2025; 11:1510148. [PMID: 39834741 PMCID: PMC11743266 DOI: 10.3389/fcvm.2024.1510148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 12/17/2024] [Indexed: 01/22/2025] Open
Abstract
Obesity is one of the major global health concerns of the 21st century, associated with many comorbidities such as type 2 diabetes mellitus (T2DM), metabolic dysfunction-associated steatotic liver disease, and early and aggressive atherosclerotic cardiovascular disease, which is the leading cause of death worldwide. Bile acids (BAs) and incretins are gut hormones involved in digestion and absorption of fatty acids, and insulin secretion, respectively. In recent years BAs and incretins are increasingly recognized as key signaling molecules, which target multiple tissues and organs, beyond the gastro-intestinal system. Moreover, incretin-based therapy has revolutionized the treatment of T2DM and obesity. This mini review highlights the current knowledge about dysregulations in BA homeostasis in obesity with a special focus on atherosclerosis as well as athero-modulating roles of incretins and currently available incretin-based therapies.
Collapse
Affiliation(s)
- Andrijana Kirsch
- Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Juergen Gindlhuber
- Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Diana Zabini
- Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
| | - Elena Osto
- Division of Physiology and Pathophysiology, Otto Loewi Research Center for Vascular Biology, Immunology and Inflammation, Medical University of Graz, Graz, Austria
- Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
| |
Collapse
|
6
|
Rowe JC, Summers SC, Quimby JM, Winston JA. Fecal bile acid dysmetabolism and reduced ursodeoxycholic acid correlate with novel microbial signatures in feline chronic kidney disease. Front Microbiol 2024; 15:1458090. [PMID: 39498133 PMCID: PMC11532117 DOI: 10.3389/fmicb.2024.1458090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/16/2024] [Indexed: 11/07/2024] Open
Abstract
Background Microbial-derived secondary bile acids (SBAs) are reabsorbed and sensed via host receptors modulating cellular inflammation and fibrosis. Feline chronic kidney disease (CKD) occurs with progressive renal inflammation and fibrosis, mirroring the disease pathophysiology of human CKD patients. Methods Prospective cross-sectional study compared healthy cats (n = 6) with CKD (IRIS Stage 2 n = 17, Stage 3 or 4 n = 11). Single timepoint fecal samples from all cats underwent targeted bile acid metabolomics. 16S rRNA gene amplicon sequencing using DADA2 with SILVA taxonomy characterized the fecal microbiota. Results CKD cats had significantly reduced fecal concentrations (median 12.8 ng/mg, Mann-Whitney p = 0.0127) of the SBA ursodeoxycholic acid (UDCA) compared to healthy cats (median 39.4 ng/mg). Bile acid dysmetabolism characterized by <50% SBAs was present in 8/28 CKD and 0/6 healthy cats. Beta diversity significantly differed between cats with <50% SBAs and > 50% SBAs (PERMANOVA p < 0.0001). Twenty-six amplicon sequence variants (ASVs) with >97% nucleotide identity to Peptacetobacter hiranonis were identified. P. hiranonis combined relative abundance was significantly reduced (median 2.1%) in CKD cats with <50% SBAs compared to CKD cats with >50% SBAs (median 13.9%, adjusted p = 0.0002) and healthy cats with >50% SBAs (median 15.5%, adjusted p = 0.0112). P. hiranonis combined relative abundance was significantly positively correlated with the SBAs deoxycholic acid (Spearman r = 0.5218, adjusted p = 0.0407) and lithocholic acid (Spearman r = 0.5615, adjusted p = 0.0156). Three Oscillospirales ASVs and a Roseburia ASV were also identified as significantly correlated with fecal SBAs. Clinical and translational importance The gut-kidney axis mediated through microbial-derived SBAs appears relevant to the spontaneous animal CKD model of domestic cats. This includes reduced fecal concentrations of the microbial-derived SBA UDCA, known to regulate inflammation and fibrosis and be reno-protective. Microbes correlated with fecal SBAs include bai operon containing P. hiranonis, as well as members of Oscillospirales, which also harbor a functional bai operon. Ultimately, CKD cats represent a translational opportunity to study the role of SBAs in the gut-kidney axis, including the potential to identify novel microbial-directed therapeutics to mitigate CKD pathogenesis in veterinary patients and humans alike.
Collapse
Affiliation(s)
- John C. Rowe
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH, United States
- Comparative Hepatobiliary Intestinal Research Program (CHIRP), The Ohio State University College of Veterinary Medicine, Columbus, OH, United States
| | - Stacie C. Summers
- Department of Clinical Sciences, Oregon State University Carlson College of Veterinary Medicine, Corvallis, OR, United States
| | - Jessica M. Quimby
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH, United States
- Comparative Hepatobiliary Intestinal Research Program (CHIRP), The Ohio State University College of Veterinary Medicine, Columbus, OH, United States
| | - Jenessa A. Winston
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH, United States
- Comparative Hepatobiliary Intestinal Research Program (CHIRP), The Ohio State University College of Veterinary Medicine, Columbus, OH, United States
| |
Collapse
|
7
|
Cao Z, Wang W, Yang Z, Liu Y, Sun L, Zhang L, Li Z. Discovery of the FXR/CES2 dual modulator LE-77 for the treatment of irinotecan-induced delayed diarrhea. Bioorg Chem 2024; 153:107852. [PMID: 39362081 DOI: 10.1016/j.bioorg.2024.107852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 09/11/2024] [Accepted: 09/27/2024] [Indexed: 10/05/2024]
Abstract
Irinotecan (CPT-11) is a widely utilized topoisomerase I inhibitor in the treatment of colorectal cancer and other malignant tumors. However, severe and even life-threatening dose-limiting toxicity-delayed diarrhea affects the clinical application of CPT-11. The standard treatment for CPT-11-induced delayed diarrhea is prompt use of loperamide (LPA), however LPA can also cause constipation, diarrhea and even intestinal obstruction and has a high failure rate. Carboxylesterase 2 (CES2) is the main enzyme in the intestinal transformation of CPT-11, which can convert CPT-11 into toxic metabolite SN-38 and produce intestinal toxicity. Inhibiting CES2 activity can block the hydrolysis process of CPT-11 in the intestine and reduce SN-38 accumulation. Additionally, Farnesoid X receptor (FXR) agonists have anti-inflammatory, anti-secretory, and protective functions on intestinal barrier integrity that could potentially alleviate diarrhea. In this study, we investigated for the first time the anti-delayed diarrhea effect of FXR agonists, and the first time identified LE-77 as a potent dual modulator that activates FXR and inhibits CES2 through high-throughput screening. In the CPT-11-induced delayed diarrhea model, LE-77 demonstrated a dual modulator mechanism by activating FXR and inhibiting CES2, thereby reducing the accumulation of SN-38 in the intestine, alleviating intestinal inflammation, preserving intestinal mucosal integrity, and ultimately alleviating delayed diarrhea.
Collapse
Affiliation(s)
- Zhijun Cao
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Wenxin Wang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Zhongcheng Yang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Yuxia Liu
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China
| | - Lidan Sun
- Department of Pharmaceutics, Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing, Zhejiang, PR China.
| | - Luyong Zhang
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Center for Drug Research and Development, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China.
| | - Zheng Li
- School of Pharmacy, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Key Laboratory of New Drug Discovery and Evaluation of the Guangdong Provincial Education Department, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangzhou Key Laboratory of Construction and Application of New Drug Screening Model Systems, Guangdong Pharmaceutical University, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Guangzhou, 510006, PR China.
| |
Collapse
|
8
|
Dicks L, Schuh-von Graevenitz K, Prehn C, Sadri H, Murani E, Hosseini Ghaffari M, Häussler S. Bile acid profiles and mRNA abundance of bile acid-related genes in adipose tissue of dairy cows with high versus normal body condition. J Dairy Sci 2024; 107:6288-6307. [PMID: 38490538 DOI: 10.3168/jds.2024-24346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 02/14/2024] [Indexed: 03/17/2024]
Abstract
Besides their lipid-digestive role, bile acids (BA) influence overall energy homeostasis, such as glucose and lipid metabolism. We hypothesized that BA along with their receptors, regulatory enzymes, and transporters are present in subcutaneous adipose tissue (scAT). In addition, we hypothesized that their mRNA abundance varies with the body condition of dairy cows around calving. Therefore, we analyzed BA in serum and scAT as well as the mRNA abundance of BA-related enzymes, transporters, and receptors in scAT during the transition period in cows with different body conditions around calving. In a previously established animal model, 38 German Holstein cows were divided into either a high (HBCS; n = 19) or normal BCS (NBCS; n = 19) group based on their BCS and back-fat thickness (BFT). Cows were fed different diets to achieve the targeted differences in BCS and BFT (NBCS: BCS <3.5, BFT <1.2 cm; HBCS: BCS >3.75, BFT >1.4 cm) until dry-off at 7 wk antepartum. During the dry period and subsequent lactation, both groups were fed the same diets according to their energy demands. Using a targeted metabolomics approach via liquid chromatography-electrospray ionization-MS /MS, BA were analyzed in serum and scAT at wk -7, 1, 3, and 12 relative to parturition. In serum, 15 BA were observed: cholic acid (CA), chenodeoxycholic acid (CDCA), glycocholic acid (GCA), taurocholic acid (TCA), glycochenodeoxycholic acid (GCDCA), taurochenodeoxycholic acid, deoxycholic acid (DCA), lithocholic acid, glycodeoxycholic acid (GDCA), glycolithocholic acid, taurodeoxycholic acid, taurolithocholic acid, β-muricholic acid, tauromuricholic acid (sum of α and β), and glycoursodeoxycholic acid, whereas in scAT 7 BA were detected: CA, GCA, TCA, GCDCA, taurochenodeoxycholic acid, GDCA, and taurodeoxycholic acid. In serum and scAT samples, the primary BA CA and its conjugate GCA were predominantly detected. Increasing serum concentrations of CA, CDCA, TCA, GCA, GCDCA, DCA, and β-muricholic acid with the onset of lactation might be related to the increasing DMI after parturition. Furthermore, serum concentrations of CA, CDCA, GCA, DCA, GCDCA, TCA, lithocholic acid, and GDCA were lower in HBCS cows compared with NBCS cows, concomitant with increased lipolysis in HBCS cows. The correlation between CA in serum and scAT may point to the transport of CA across cell membranes. Overall, the findings of the present study suggest a potential role of BA in lipid metabolism depending on the body condition of periparturient dairy cows.
Collapse
Affiliation(s)
- Lena Dicks
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany
| | - Katharina Schuh-von Graevenitz
- Department of Life Sciences and Engineering, Animal Nutrition and Hygiene Unit, University of Applied Sciences Bingen, 55411 Bingen am Rhein, Germany
| | - Cornelia Prehn
- Helmholtz Zentrum München, German Research Center for Environmental Health, Metabolomics and Proteomics Core, 85764 Neuherberg, Germany
| | - Hassan Sadri
- Department of Clinical Science, Faculty of Veterinary Medicine, University of Tabriz, 516616471 Tabriz, Iran
| | - Eduard Murani
- Research Institute for Farm Animal Biology (FBN), Institute for Genome Biology, Wilhelm-Stahl-Allee 2, 18196 Dummerstorf, Germany
| | | | - Susanne Häussler
- Institute of Animal Science, Physiology Unit, University of Bonn, 53115 Bonn, Germany.
| |
Collapse
|
9
|
Zhu Q, Chen B, Zhang F, Zhang B, Guo Y, Pang M, Huang L, Wang T. Toxic and essential metals: metabolic interactions with the gut microbiota and health implications. Front Nutr 2024; 11:1448388. [PMID: 39135557 PMCID: PMC11317476 DOI: 10.3389/fnut.2024.1448388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 07/15/2024] [Indexed: 08/15/2024] Open
Abstract
Human exposure to heavy metals, which encompasses both essential and toxic varieties, is widespread. The intestine functions as a critical organ for absorption and metabolism of heavy metals. Gut microbiota plays a crucial role in heavy metal absorption, metabolism, and related processes. Toxic heavy metals (THMs), such as arsenic (As), mercury (Hg), lead (Pb), and cadmium (Cd), can cause damage to multiple organs even at low levels of exposure, and it is crucial to emphasize their potential high toxicity. Nevertheless, certain essential trace elements, including iron (Fe), copper (Cu), and manganese (Mn), play vital roles in the biochemical and physiological functions of organisms at low concentrations but can exert toxic effects on the gut microbiota at higher levels. Some potentially essential micronutrients, such as chromium (Cr), silicon (Si), and nickel (Ni), which were considered to be intermediate in terms of their essentiality and toxicity, had different effects on the gut microbiota and their metabolites. Bidirectional relationships between heavy metals and gut microbiota have been found. Heavy metal exposure disrupts gut microbiota and influences its metabolism and physiological functions, potentially contributing to metabolic and other disorders. Furthermore, gut microbiota influences the absorption and metabolism of heavy metals by serving as a physical barrier against heavy metal absorption and modulating the pH, oxidative balance, and concentrations of detoxification enzymes or proteins involved in heavy metal metabolism. The interactions between heavy metals and gut microbiota might be positive or negative according to different valence states, concentrations, and forms of the same heavy metal. This paper reviews the metabolic interactions of 10 common heavy metals with the gut microbiota and their health implications. This collated information could provide novel insights into the disruption of the intestinal microbiota caused by heavy metals as a potential contributing factor to human diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Tianjiao Wang
- Department of Personnel Management, Zhejiang Center for Disease Control and Prevention, Hangzhou, China
| |
Collapse
|
10
|
Nicze M, Dec A, Borówka M, Krzyżak D, Bołdys A, Bułdak Ł, Okopień B. Molecular Mechanisms behind Obesity and Their Potential Exploitation in Current and Future Therapy. Int J Mol Sci 2024; 25:8202. [PMID: 39125772 PMCID: PMC11311839 DOI: 10.3390/ijms25158202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 07/22/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Obesity is a chronic disease caused primarily by the imbalance between the amount of calories supplied to the body and energy expenditure. Not only does it deteriorate the quality of life, but most importantly it increases the risk of cardiovascular diseases and the development of type 2 diabetes mellitus, leading to reduced life expectancy. In this review, we would like to present the molecular pathomechanisms underlying obesity, which constitute the target points for the action of anti-obesity medications. These include the central nervous system, brain-gut-microbiome axis, gastrointestinal motility, and energy expenditure. A significant part of this article is dedicated to incretin-based drugs such as GLP-1 receptor agonists (e.g., liraglutide and semaglutide), as well as the brand new dual GLP-1 and GIP receptor agonist tirzepatide, all of which have become "block-buster" drugs due to their effectiveness in reducing body weight and beneficial effects on the patient's metabolic profile. Finally, this review article highlights newly designed molecules with the potential for future obesity management that are the subject of ongoing clinical trials.
Collapse
Affiliation(s)
- Michał Nicze
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Medyków 18, 40-752 Katowice, Poland (A.B.); (B.O.)
| | | | | | | | | | - Łukasz Bułdak
- Department of Internal Medicine and Clinical Pharmacology, Faculty of Medical Sciences, Medical University of Silesia in Katowice, Medyków 18, 40-752 Katowice, Poland (A.B.); (B.O.)
| | | |
Collapse
|
11
|
Sutton H, Sokol RJ, Kamath BM. IBAT inhibitors in pediatric cholestatic liver diseases: Transformation on the horizon? Hepatology 2024:01515467-990000000-00979. [PMID: 39052914 DOI: 10.1097/hep.0000000000001032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 07/08/2024] [Indexed: 07/27/2024]
Abstract
Historically, the therapeutic options available to hepatologists managing cholestasis have been limited. Apart from bile acid--binding resins and the choleretic ursodeoxycholic acid, the medical management of cholestasis in children has been predominately focused on managing the complications of cholestasis, namely pruritus, malnutrition, fat-soluble vitamin deficiencies, and portal hypertension. As such, invasive surgical procedures such as biliary diversion and liver transplantation may become the only options for progressive and unremitting cases of cholestasis. Particularly in the pediatric population, where debilitating pruritus is a common indication for a liver transplant, effective anti-cholestatic medications have the potential to prolong native liver survival without the need for biliary diversion. Ileal bile acid transporter (IBAT) inhibitors are a relatively new class of drugs which that target the ileal re-uptake of bile acids, thus interrupting the enterohepatic circulation and reducing the total bile acid pool size and exposure of the liver. Oral, minimally absorbed IBAT inhibitors have been demonstrated to reduce serum bile acid levels and pruritus with a minimal side effect profile in clinical trials in Alagille Ssyndrome and progressive familial intrahepatic cholestasis, leading to FDA and EMA approval. The indications for IBAT inhibitors will likely expand in the coming years as clinical trials in other adult and pediatric cholestatic conditions are ongoing. This review will summarize the published clinical and pre-clinical data on IBAT inhibitors and offer providers guidance on their practical use.
Collapse
Affiliation(s)
- Harry Sutton
- Division of Gastroenterology, Hepatology and Nutrition, The Hospital for Sick Children and the University of Toronto, Toronto, Ontario, Canada
| | - Ronald J Sokol
- Department of Pediatrics, Section of Pediatric Gastroenterology, Hepatology and Nutrition, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, Colorado, USA
| | - Binita M Kamath
- Division of Gastroenterology, Hepatology and Nutrition, Department of Pediatrics, Children's Hospital of Philadelphia, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| |
Collapse
|
12
|
Tenge V, Ayyar BV, Ettayebi K, Crawford SE, Hayes NM, Shen YT, Neill FH, Atmar RL, Estes MK. Bile acid-sensitive human norovirus strains are susceptible to sphingosine-1-phosphate receptor 2 inhibition. J Virol 2024; 98:e0202023. [PMID: 38884472 PMCID: PMC11265423 DOI: 10.1128/jvi.02020-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 05/15/2024] [Indexed: 06/18/2024] Open
Abstract
Human noroviruses (HuNoVs) are a diverse group of RNA viruses that cause endemic and pandemic acute viral gastroenteritis. Previously, we reported that many HuNoV strains require bile or bile acid (BA) to infect human jejunal intestinal enteroid cultures. BA was not essential for the replication of a pandemic-causing GII.4 HuNoV strain. We found the hydrophobic BA glycochenodeoxycholic acid (GCDCA) promotes the replication of the BA-dependent strain GII.3 in jejunal enteroids. Furthermore, we found that inhibition of the G-protein-coupled BA receptor, sphingosine-1-phosphate receptor 2 (S1PR2), by JTE-013, reduced GII.3 infection dose-dependently and inhibited GII.3 cellular uptake in enteroids. Herein, we sought to determine whether S1PR2 is required for other BA-dependent HuNoV strains, the BA-independent GII.4, and whether S1PR2 is required for BA-dependent HuNoV infection in HIEs from other small intestinal segments. We found a second S1PR2 inhibitor, GLPG2938, reduces GII.3 infection dose-dependently, and an S1PR2 agonist (CYM-5520) enhances GII.3 replication in the absence of GCDCA. GII.3 replication also is abrogated in the presence of JTE-013 and CYM-5520. JTE-013 inhibition of S1PR2 in jejunal HIEs reduces GI.1, GII.3, and GII.17 (BA-dependent) but not GII.4 Sydney (BA-independent) infection, providing additional evidence of strain-specific differences in HuNoV infection. Finally, GII.3 infection of duodenal, jejunal, and ileal lines derived from the same individual is reduced with S1PR2 inhibition, indicating a common mechanism of BA-dependent infection among multiple segments of the small intestine. Our results support a model where BA-dependent HuNoVs exploit BA effects on S1PR2 to infect the entire small intestine.IMPORTANCEHuman noroviruses (HuNoVs) are important viral human pathogens that cause both outbreaks and sporadic gastroenteritis. These viruses are diverse, and many strains are capable of infecting humans. Our previous studies have identified strain-specific requirements for hydrophobic bile acids (BAs) to infect intestinal epithelial cells. Moreover, we identified a BA receptor, sphingosine-1-phosphate receptor 2 (S1PR2), required for infection by a BA-dependent strain. To better understand how various HuNoV strains enter and infect the small intestine and the role of S1PR2 in HuNoV infection, we evaluated infection by additional HuNoV strains using an expanded repertoire of intestinal enteroid cell lines. We found that multiple BA-dependent strains, but not a BA-independent strain, all require S1PR2 for infection. In addition, BA-dependent infection requires S1PR2 in multiple segments of the small intestine. Together, these results indicate that S1PR2 has value as a potential therapeutic target for BA-dependent HuNoV infection.
Collapse
Affiliation(s)
- Victoria Tenge
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - B. Vijayalakshmi Ayyar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Khalil Ettayebi
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Sue E. Crawford
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Nicole M. Hayes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Yi-Ting Shen
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Frederick H. Neill
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
| | - Robert L. Atmar
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| | - Mary K. Estes
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, USA
- Department of Medicine, Baylor College of Medicine, Houston, Texas, USA
| |
Collapse
|
13
|
Martínez-Martínez AB, Lamban-Per BM, Lezaun M, Rezusta A, Arbones-Mainar JM. Exploring Functional Products and Early-Life Dynamics of Gut Microbiota. Nutrients 2024; 16:1823. [PMID: 38931178 PMCID: PMC11206896 DOI: 10.3390/nu16121823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Research on the microbiome has progressed from identifying specific microbial communities to exploring how these organisms produce and modify metabolites that impact a wide range of health conditions, including gastrointestinal, metabolic, autoimmune, and neurodegenerative diseases. This review provides an overview of the bacteria commonly found in the intestinal tract, focusing on their main functional outputs. We explore biomarkers that not only indicate a well-balanced microbiota but also potential dysbiosis, which could foreshadow susceptibility to future health conditions. Additionally, it discusses the establishment of the microbiota during the early years of life, examining factors such as gestational age at birth, type of delivery, antibiotic intake, and genetic and environmental influences. Through a comprehensive analysis of current research, this article aims to enhance our understanding of the microbiota's foundational development and its long-term implications for health and disease management.
Collapse
Affiliation(s)
- Ana B. Martínez-Martínez
- Facultad de Ciencias de la Salud, Universidad de Zaragoza, 50009 Zaragoza, Spain;
- Instituto de Investigación Sanitaria Aragón, 50009 Zaragoza, Spain;
| | - Belen M. Lamban-Per
- Department of Clinical Microbiology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (B.M.L.-P.); (M.L.)
| | - Maria Lezaun
- Department of Clinical Microbiology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (B.M.L.-P.); (M.L.)
| | - Antonio Rezusta
- Instituto de Investigación Sanitaria Aragón, 50009 Zaragoza, Spain;
- Department of Clinical Microbiology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (B.M.L.-P.); (M.L.)
| | - Jose M. Arbones-Mainar
- Department of Clinical Microbiology, Miguel Servet University Hospital, 50009 Zaragoza, Spain; (B.M.L.-P.); (M.L.)
- Adipocyte and Fat Biology Laboratory (AdipoFat), Instituto Aragonés de Ciencias de la Salud (IACS), 50009 Zaragoza, Spain
- CIBER Fisiopatología Obesidad y Nutrición (CIBERObn), Instituto Salud Carlos III, 28029 Madrid, Spain
| |
Collapse
|
14
|
Alonso N, Almer G, Semeraro MD, Rodriguez-Blanco G, Fauler G, Anders I, Ritter G, vom Scheidt A, Hammer N, Gruber HJ, Herrmann M. Impact of High-Fat Diet and Exercise on Bone and Bile Acid Metabolism in Rats. Nutrients 2024; 16:1744. [PMID: 38892677 PMCID: PMC11174439 DOI: 10.3390/nu16111744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 05/27/2024] [Accepted: 05/30/2024] [Indexed: 06/21/2024] Open
Abstract
Bile acids help facilitate intestinal lipid absorption and have endocrine activity in glucose, lipid and bone metabolism. Obesity and exercise influence bile acid metabolism and have opposite effects in bone. This study investigates if regular exercise helps mitigate the adverse effects of obesity on bone, potentially by reversing alterations in bile acid metabolism. Four-month-old female Sprague Dawley rats either received a high-fat diet (HFD) or a chow-based standard diet (lean controls). During the 10-month study period, half of the animals performed 30 min of running at moderate speed on five consecutive days followed by two days of rest. The other half was kept inactive (inactive controls). At the study's end, bone quality was assessed by microcomputed tomography and biomechanical testing. Bile acids were measured in serum and stool. HFD feeding was related to reduced trabecular (-33%, p = 1.14 × 10-7) and cortical (-21%, p = 2.9 × 10-8) bone mass and lowered femoral stiffness (12-41%, p = 0.005). Furthermore, the HFD decreased total bile acids in serum (-37%, p = 1.0 × 10-6) but increased bile acids in stool (+2-fold, p = 7.3 × 10-9). These quantitative effects were accompanied by changes in the relative abundance of individual bile acids. The concentration of serum bile acids correlated positively with all cortical bone parameters (r = 0.593-0.708), whilst stool levels showed inverse correlations at the cortical (r = -0.651--0.805) and trabecular level (r = -0.656--0.750). Exercise improved some trabecular and cortical bone quality parameters (+11-31%, p = 0.043 to 0.001) in lean controls but failed to revert the bone loss related to the HFD. Similarly, changes in bile acid metabolism were not mitigated by exercise. Prolonged HFD consumption induced quantitative and qualitative alterations in bile acid metabolism, accompanied by bone loss. Tight correlations between bile acids and structural indices of bone quality support further functional analyses on the potential role of bile acids in bone metabolism. Regular moderate exercise improved trabecular and cortical bone quality in lean controls but failed in mitigating the effects related to the HFD in bone and bile acid metabolism.
Collapse
Affiliation(s)
- Nerea Alonso
- Clinical Institute for Medical and Chemical Laboratory Diagnostics (CIMCL), Medical University of Graz, 8036 Graz, Austria
| | - Gunter Almer
- Clinical Institute for Medical and Chemical Laboratory Diagnostics (CIMCL), Medical University of Graz, 8036 Graz, Austria
| | - Maria Donatella Semeraro
- Clinical Institute for Medical and Chemical Laboratory Diagnostics (CIMCL), Medical University of Graz, 8036 Graz, Austria
| | - Giovanny Rodriguez-Blanco
- Clinical Institute for Medical and Chemical Laboratory Diagnostics (CIMCL), Medical University of Graz, 8036 Graz, Austria
- LKH-Universitätsklinikum Graz, 8036 Graz, Austria
| | - Günter Fauler
- Clinical Institute for Medical and Chemical Laboratory Diagnostics (CIMCL), Medical University of Graz, 8036 Graz, Austria
| | - Ines Anders
- Division of Biomedical Research, Medical University of Graz, 8036 Graz, Austria (G.R.)
| | - Gerald Ritter
- Division of Biomedical Research, Medical University of Graz, 8036 Graz, Austria (G.R.)
| | | | - Niels Hammer
- Department of Anatomy, Medical University of Graz, 8036 Graz, Austria
- Department of Orthopaedic and Trauma Surgery, University of Leipzig, 04103 Leipzig, Germany
- Division of Biomechatronics, Fraunhofer Institute for Machine Tools and Forming Technology, 01187 Dresden, Germany
| | - Hans-Jürgen Gruber
- Clinical Institute for Medical and Chemical Laboratory Diagnostics (CIMCL), Medical University of Graz, 8036 Graz, Austria
| | - Markus Herrmann
- Clinical Institute for Medical and Chemical Laboratory Diagnostics (CIMCL), Medical University of Graz, 8036 Graz, Austria
| |
Collapse
|
15
|
He Y, Wang X, Liu Q, Liu H, Yang S. Exploring the mechanism of clomiphene citrate to improve ovulation disorder in PCOS rats based on follicular fluid metabolomics. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:2281-2296. [PMID: 37815607 DOI: 10.1007/s00210-023-02750-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 09/26/2023] [Indexed: 10/11/2023]
Abstract
To examine the effects of clomiphene citrate (CC) on follicular fluid metabolites and related metabolic pathways in rats with polycystic ovary syndrome (PCOS) using non-targeted metabolomics and determine how CC treats ovulation disorder in PCOS. The Sprague Dawley rats were randomly divided into control, model, and CC groups. A PCOS model was established with letrozole. Body weight, ovarian weight, estrus cycles, serum hormone levels, and ovary histopathology of the rats were collected for further evaluation. Moreover, through ultra-performance liquid chromatography-mass spectrometry, the study of follicular fluid metabolites revealed the mechanism of action of CC. CC reduced ovarian weight and regulated estrous cycles and serum hormone levels in PCOS rats but did not affect their body weight. Moreover, the metabolomic results showed that CC adjusted 153 metabolites, among which 16 cross metabolites like testosterone, androstenedione, 17α-hydroxyprogesterone, and cholic acid were considered as potential biomarkers for CC to improve ovulation disorders in PCOS rats. Kyoto Encyclopedia of Genes and Genomes pathway enrichment also showed that the CC group mainly engaged in tryptophan metabolism and steroid hormone biosynthesis. CC can improve ovulation disorders in rats, and its mechanism is related to the regulation of the secretion of serum hormone and follicular fluid metabolites and the amelioration of multi-metabolic pathways.
Collapse
Affiliation(s)
- Yiqing He
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Xi Wang
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Quan Liu
- College of Integrated Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Huiping Liu
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China
| | - Shuo Yang
- Hunan University of Chinese Medicine, Changsha, 410208, Hunan, China.
| |
Collapse
|
16
|
Rowe JC, Winston JA. Collaborative Metabolism: Gut Microbes Play a Key Role in Canine and Feline Bile Acid Metabolism. Vet Sci 2024; 11:94. [PMID: 38393112 PMCID: PMC10892723 DOI: 10.3390/vetsci11020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/25/2024] Open
Abstract
Bile acids, produced by the liver and secreted into the gastrointestinal tract, are dynamic molecules capable of impacting the overall health of dogs and cats in many contexts. Importantly, the gut microbiota metabolizes host primary bile acids into chemically distinct secondary bile acids. This review explores the emergence of new literature connecting microbial-derived bile acid metabolism to canine and feline health and disease. Moreover, this review highlights multi-omic methodologies for translational research as an area for continued growth in veterinary medicine aimed at accelerating microbiome science and medicine as it pertains to bile acid metabolism in dogs and cats.
Collapse
Affiliation(s)
- John C. Rowe
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA;
- Comparative Hepatobiliary Intestinal Research Program (CHIRP), The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA
| | - Jenessa A. Winston
- Department of Veterinary Clinical Sciences, The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA;
- Comparative Hepatobiliary Intestinal Research Program (CHIRP), The Ohio State University College of Veterinary Medicine, Columbus, OH 43210, USA
| |
Collapse
|
17
|
Gong L, Liu F, Liu J, Wang J. Dietary fiber (oligosaccharide and non-starch polysaccharide) in preventing and treating functional gastrointestinal disorders - Challenges and controversies: A review. Int J Biol Macromol 2024; 258:128835. [PMID: 38128805 DOI: 10.1016/j.ijbiomac.2023.128835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 12/13/2023] [Accepted: 12/14/2023] [Indexed: 12/23/2023]
Abstract
Functional gastrointestinal disorders (FGIDs) are a group of chronic or recurrent gastrointestinal functional diseases, including functional dyspepsia, irritable bowel syndrome, and functional constipation. A lack of safe and reliable treatments for abdominal pain-related FGIDs has prompted interest in new therapies. Evidence has shown that supplementation with dietary fiber may help treat FGIDs. Dietary fibers (DFs) have been demonstrated to have regulatory effects on the gut microbiota, microbiota metabolites, and gastrointestinal movement and have important implications for preventing and treating FGIDs. However, the adverse effects of some DFs, such as fermentable oligosaccharides, on FGIDs are unclear. This review provides an overview of the DFs physiological properties and functional characteristics that influence their use in management of FGIDs, with emphasis on structural modification technology to improve their therapeutic activities. The review highlights that the use of appropriate or novel fibers is a potential therapeutic approach for FGIDs.
Collapse
Affiliation(s)
- Lingxiao Gong
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Feiyue Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jie Liu
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China
| | - Jing Wang
- Key Laboratory of Geriatric Nutrition and Health (Beijing Technology and Business University), Ministry of Education, Key Laboratory of Special Food Supervision Technology for State Market Regulation, School of Food and Health, Beijing Technology & Business University (BTBU), Beijing 100048, China.
| |
Collapse
|
18
|
Lin H, Zhang M, Hu M, Zhang Y, Jiang W, Tang W, Ouyang Y, Jiang L, Mi Y, Chen Z, He P, Zhao G, Ouyang X. Emerging applications of single-cell profiling in precision medicine of atherosclerosis. J Transl Med 2024; 22:97. [PMID: 38263066 PMCID: PMC10804726 DOI: 10.1186/s12967-023-04629-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 10/14/2023] [Indexed: 01/25/2024] Open
Abstract
Atherosclerosis is a chronic, progressive, inflammatory disease that occurs in the arterial wall. Despite recent advancements in treatment aimed at improving efficacy and prolonging survival, atherosclerosis remains largely incurable. In this review, we discuss emerging single-cell sequencing techniques and their novel insights into atherosclerosis. We provide examples of single-cell profiling studies that reveal phenotypic characteristics of atherosclerosis plaques, blood, liver, and the intestinal tract. Additionally, we highlight the potential clinical applications of single-cell analysis and propose that combining this approach with other techniques can facilitate early diagnosis and treatment, leading to more accurate medical interventions.
Collapse
Affiliation(s)
- Huiling Lin
- Department of Physiology, Medical College, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, 421001, Hunan, China
- Department of Physiology, School of Medicine, Hunan Normal University, Changsha, 410081, Hunan, China
| | - Ming Zhang
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, 511518, Guangdong, China
| | - Mi Hu
- Department of Physiology, Medical College, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, 421001, Hunan, China
| | - Yangkai Zhang
- Department of Physiology, Medical College, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, 421001, Hunan, China
| | - WeiWei Jiang
- Department of Organ Transplantation, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Wanying Tang
- Department of Physiology, Medical College, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, 421001, Hunan, China
| | - Yuxin Ouyang
- Department of Physiology, Medical College, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, 421001, Hunan, China
| | - Liping Jiang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yali Mi
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, 511518, Guangdong, China
| | - Zhi Chen
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen, China
| | - Pingping He
- Department of Nursing, School of Medicine, Hunan Normal University, Changsha, 410081, Hunan, China.
| | - Guojun Zhao
- Affiliated Qingyuan Hospital, Guangzhou Medical University (Qingyuan People's Hospital), Qingyuan, 511518, Guangdong, China.
| | - Xinping Ouyang
- Department of Physiology, Medical College, Institute of Neuroscience Research, Hengyang Key Laboratory of Neurodegeneration and Cognitive Impairment, University of South China, Hengyang, 421001, Hunan, China.
- Department of Physiology, School of Medicine, Hunan Normal University, Changsha, 410081, Hunan, China.
- The Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, School of Medicine, Hunan Normal University, 410081, Hunan, Changsha, China.
- The Engineering Research Center of Reproduction and Translational Medicine of Hunan Province, School of Medicine, Hunan Normal University, 410081, Hunan, Changsha, China.
| |
Collapse
|
19
|
Tenge V, Vijayalakshmi Ayyar B, Ettayebi K, Crawford SE, Shen YT, Neill FH, Atmar RL, Estes MK. Bile acid-sensitive human norovirus strains are susceptible to sphingosine-1-phosphate receptor 2 inhibition. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.02.573926. [PMID: 38260626 PMCID: PMC10802320 DOI: 10.1101/2024.01.02.573926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
Human noroviruses (HuNoVs) are a diverse group of RNA viruses that cause both endemic and pandemic acute viral gastroenteritis. Previously we reported that many strains of HuNoV require bile or bile acid (BA) to infect human jejunal intestinal enteroid cultures. Of note, BA was not essential for replication of a pandemic-causing GII.4 HuNoV strain. Using the BA-requiring strain GII.3, we found that the hydrophobic BA GCDCA induces multiple cellular responses that promote replication in jejunal enteroids. Further, we found that chemical inhibition of the G-protein coupled receptor, sphingosine-1- phosphate receptor 2 (S1PR2), by JTE-013 reduced both GII.3 infection in a dose- dependent manner and cellular uptake in enteroids. Herein, we sought to determine if S1PR2 is required by other BA-dependent HuNoV strains and BA-independent GII.4, and if S1PR2 is required for BA-dependent HuNoV infection in other segments of the small intestine. We found JTE-013 inhibition of S1PR2 in jejunal HIEs reduces GI.1, GII.3, and GII.17 (BA-dependent) but not the GII.4 Sydney variant (BA-independent) infection, providing additional evidence of strain-specific differences in HuNoV infection. GII.3 infection of duodenal, jejunal and ileal lines derived from the same individual was also reduced with S1PR2 inhibition, indicating a common mechanism of BA-dependent infection among multiple segments of the small intestine. Our results support a model where BA-dependent HuNoV exploit the activation of S1PR2 by BA to infect the entire small intestine. Importance Human noroviruses (HuNoVs) are important viral human pathogens that cause both outbreaks and sporadic gastroenteritis. These viruses are diverse, and many strains are capable of infecting humans. Our previous studies have identified strain-specific requirements for hydrophobic bile acids (BAs) to infect intestinal epithelial cells. Moreover, we identified a BA receptor, sphingosine-1-phosphate receptor 2 (S1PR2), required for infection by a BA-dependent strain. To better understand how various HuNoV strains enter and infect the small intestine and the role of S1PR2 in HuNoV infection, we evaluated infection by additional HuNoV strains using an expanded repertoire of intestinal enteroid cell lines. We found that multiple BA-dependent strains, but not a BA- independent strain, all required S1PR2 for infection. Additionally, BA-dependent infection required S1PR2 in multiple segments of the small intestine. Together these results indicate S1PR2 has value as a potential therapeutic target for BA-dependent HuNoV infection.
Collapse
|
20
|
Wu G, Wei X, Li D, Xiao G, Jia C, Zeng Z, Chen Z. Selection and evaluation of quality markers for the regulation of PXR-CYP3A4/FXR-LXRα by Exocarpium Citri Grandis for the treatment of hyperlipidaemia with dispelling blood stasis and removing phlegm. Biomed Pharmacother 2024; 170:116089. [PMID: 38157640 DOI: 10.1016/j.biopha.2023.116089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/03/2024] Open
Abstract
Hyperlipidaemia is described as "excessive phlegm" and "blood stasis" in the classic theory of traditional Chinese medicine. Exocarpium Citri Grandis has the effect of dispelling blood stasis and removing phlegm, which can better meet the treatment needs of this disease. However, there is still a lack of focus and depth in the study of the chemical composition of this medicine, and the correlation between the study of relevant medicinal substances and the efficacy of dispelling stasis and removing phlegm is insufficient. To address this issue, this study was carried out to validate the overall efficacy and identify and determine the chemical composition of Exocarpium Citri Grandis. The regulatory mechanism of the PXR-CYP3A4/FXR-LXRα pathway and its active ingredients were screened, and a pharmacokinetic study of active ingredients was performed. The obtained multidimensional data were statistically analysed and comprehensively evaluated. The quality marker of Exocarpium Citri Grandis in the treatment of hyperlipidaemia based on the PXR-CYP3A4/FXR-LXRα mechanism to exert the efficacy of dispelling blood stasis and removing phlegm was finally determined. Based on the above experiments, we identified 27 compounds from the ethanol extract of Exocarpium Citri Grandis. Among them, naringenin, meranzin hydrate, apigenin, caffeic acid phenethyl ester, anacardiin, hesperidin and naringin can significantly regulate all or part of the targets in the PXR-CYP3A4/FXR-LXRα pathway. It also has suitable content and pharmacokinetic characteristics in vivo. In conclusion, this study established quality markers to characterize the efficacy of Exocarpium Citri Grandis in dispelling blood stasis and removing phlegm, which provides a scientific basis for the targeted evaluation of the hypolipidaemic activity of this medicinal plant.
Collapse
Affiliation(s)
- Guangying Wu
- The Fifth College of Clinic Medicine, Guangzhou University of Chinese Medicine, 60 Hengfu rd, Guangzhou 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu rd, Guangzhou 510095, China
| | - Xingqin Wei
- The Fifth College of Clinic Medicine, Guangzhou University of Chinese Medicine, 60 Hengfu rd, Guangzhou 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu rd, Guangzhou 510095, China
| | - Dongmei Li
- The Fifth College of Clinic Medicine, Guangzhou University of Chinese Medicine, 60 Hengfu rd, Guangzhou 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu rd, Guangzhou 510095, China
| | - Guanlin Xiao
- The Fifth College of Clinic Medicine, Guangzhou University of Chinese Medicine, 60 Hengfu rd, Guangzhou 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu rd, Guangzhou 510095, China
| | - Canchao Jia
- The Fifth College of Clinic Medicine, Guangzhou University of Chinese Medicine, 60 Hengfu rd, Guangzhou 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu rd, Guangzhou 510095, China
| | - Zhihao Zeng
- The Fifth College of Clinic Medicine, Guangzhou University of Chinese Medicine, 60 Hengfu rd, Guangzhou 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu rd, Guangzhou 510095, China
| | - Zhao Chen
- The Fifth College of Clinic Medicine, Guangzhou University of Chinese Medicine, 60 Hengfu rd, Guangzhou 510095, China; Guangdong Provincial Key Laboratory of Research and Development in Traditional Chinese Medicine, 60 Hengfu rd, Guangzhou 510095, China.
| |
Collapse
|
21
|
Loman BR, Alzoubi Z, Lynch AJ, Jaggers RM, Jordan K, Grant CV, Rogers LK, Pyter LM, Bailey MT. Paclitaxel chemotherapy disrupts microbiota-enterohepatic bile acid metabolism in mice. Gut Microbes 2024; 16:2410475. [PMID: 39353099 PMCID: PMC11445932 DOI: 10.1080/19490976.2024.2410475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/23/2024] [Accepted: 09/24/2024] [Indexed: 10/04/2024] Open
Abstract
Balanced interactions between the enteric microbiota and enterohepatic organs are essential to bile acid homeostasis, and thus normal gastrointestinal function. Disruption of these interactions by cancer treatment instigates bile acid malabsorption, leading to treatment delays, malnutrition, and decreased quality of life. However, the nature of chemotherapy-induced bile acid malabsorption remains poorly characterized with limited treatment options. Therefore, this study sought to characterize changes in hepatic, enteric, and microbial bile acid metabolism in a mouse model of chemotherapy-induced toxicity. Consistent with clinical bile acid malabsorption, chemotherapy increased fecal excretion of primary bile acids and water, while diminishing microbiome diversity, secondary bile acid formation, and small intestinal bile acid signaling. We identified new contributors to pathology of bile acid malabsorption in the forms of lipopolysaccharide-induced cholestasis and colonic crypt hyperplasia from reduced secondary bile acid signaling. Chemotherapy reduced markers of hepatic bile flow and bile acid synthesis, elevated markers of fibrosis and endotoxemia, and altered transcription of genes at all stages of bile acid metabolism. Primary hepatocytes exposed to lipopolysaccharide (but not chemotherapy) replicated chemotherapy-induced transcriptional differences, while gut microbial transplant into germ-free mice replicated very few differences. In the colon, chemotherapy-altered bile acid profiles (particularly higher tauromuricholic acid and lower hyodeoxycholic acid) coincided with crypt hyperplasia. Exposing primary colonoids to hyodeoxycholic acid reduced proliferation, while gut microbiota transplant enhanced proliferation. Together, these investigations reveal complex involvement of the entire microbiota-enterohepatic axis in chemotherapy-induced bile acid malabsorption. Interventions to reduce hepatic lipopolysaccharide exposure and enhance microbial bile acid metabolism represent promising co-therapies to cancer treatment.
Collapse
Affiliation(s)
- Brett R Loman
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Zainab Alzoubi
- Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Alexis J Lynch
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Robert M Jaggers
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
| | - Kelley Jordan
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Corena V Grant
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
| | - Lynette K Rogers
- Center for Perinatal Research, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| | - Leah M Pyter
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
- Department of Psychiatry and Behavioral Health, The Ohio State University, Columbus, OH, USA
- Department of Neuroscience, The Ohio State University, Columbus, OH, USA
| | - Michael T Bailey
- Center for Microbial Pathogenesis, Abigail Wexner Research Institute at Nationwide Children's Hospital, Columbus, OH, USA
- Institute for Behavioral Medicine Research, The Ohio State University, Columbus, OH, USA
- Department of Pediatrics, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
22
|
Chen S, Shao Q, Chen J, Lv X, Ji J, Liu Y, Song Y. Bile acid signalling and its role in anxiety disorders. Front Endocrinol (Lausanne) 2023; 14:1268865. [PMID: 38075046 PMCID: PMC10710157 DOI: 10.3389/fendo.2023.1268865] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/06/2023] [Indexed: 12/18/2023] Open
Abstract
Anxiety disorder is a prevalent neuropsychiatric disorder that afflicts 7.3%~28.0% of the world's population. Bile acids are synthesized by hepatocytes and modulate metabolism via farnesoid X receptor (FXR), G protein-coupled receptor (TGR5), etc. These effects are not limited to the gastrointestinal tract but also extend to tissues and organs such as the brain, where they regulate emotional centers and nerves. A rise in serum bile acid levels can promote the interaction between central FXR and TGR5 across the blood-brain barrier or activate intestinal FXR and TGR5 to release fibroblast growth factor 19 (FGF19) and glucagon-like peptide-1 (GLP-1), respectively, which in turn, transmit signals to the brain via these indirect pathways. This review aimed to summarize advancements in the metabolism of bile acids and the physiological functions of their receptors in various tissues, with a specific focus on their regulatory roles in brain function. The contribution of bile acids to anxiety via sending signals to the brain via direct or indirect pathways was also discussed. Different bile acid ligands trigger distinct bile acid signaling cascades, producing diverse downstream effects, and these pathways may be involved in anxiety regulation. Future investigations from the perspective of bile acids are anticipated to lead to novel mechanistic insights and potential therapeutic targets for anxiety disorders.
Collapse
Affiliation(s)
| | | | | | | | | | - Yan Liu
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yuehan Song
- College of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
23
|
Sun X, Zhang Y, Cheng G, Zhu T, Zhang Z, Xiong L, Hu H, Liu H. Berberine improves DSS-induced colitis in mice by modulating the fecal-bacteria-related bile acid metabolism. Biomed Pharmacother 2023; 167:115430. [PMID: 37683590 DOI: 10.1016/j.biopha.2023.115430] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/19/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
Ulcerative colitis (UC) has been confirmed as a disease with a high incidence and low cure rate worldwide. In severe cases, UC can develop into colon cancer. Modern research has confirmed that berberine (BBR) can treat UC by inhibiting the expressions of inflammatory factors. However, the contribution of gut microbiota and flora metabolites in treating UC with BBR remains unclear. In this study, the ameliorative effects of BBR on gut microbiota dysbiosis and flora metabolites were investigated in a dextran sodium sulfate (DSS)-induced UC rodent model. We found that BBR significantly improved the pathological phenotype, attenuated intestinal barrier disruption, and mitigated colonic inflammation in DSS mice. By 16 S rDNA sequencing, BBR alleviated gut microbiota dysbiosis in UC mice. Moreover, the gut microbiota depletion experiment confirmed that the therapeutic effect of BBR was inextricably correlated with the gut microbiota. Besides, the flora metabolites (e.g., short-chain fatty acids, bile acids, and 5-hydroxytryptamine) were studied using HPLC-MS. The results suggested that BBR ameliorated the bile acid imbalance induced by DSS in the liver and gut. Furthermore, BBR treatment repaired gut barrier damage. The above results revealed that BBR alleviated DSS-induced UC in mice by restoring the disturbed gut microbiota, elevating unconjugated and secondary bile acids in the gastrointestinal tract, and activating the FXR and TGR5 signal pathway. This study provides novel insights into the mechanism of BBR in treating UC.
Collapse
Affiliation(s)
- Xiongjie Sun
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China; School of Pharmacy, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Yu Zhang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China; School of Pharmacy, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Gang Cheng
- Hubei Provincial Hospital of Traditional Chinese Medicine, Hubei University of Chinese Medicine, Wuhan 430061, PR China
| | - Tianxiang Zhu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Zhigang Zhang
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Lei Xiong
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China
| | - Haiming Hu
- School of Laboratory Medicine, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China.
| | - Hongtao Liu
- College of Basic Medical Sciences, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China; School of Pharmacy, Hubei University of Chinese Medicine, Huangjiahu West Road 16, Wuhan 430065, PR China.
| |
Collapse
|
24
|
Gao M, Li J, Zhang R, Li N, Li W, Zhang S, Wang P, Wang H, Fang Z, Yu Z, Hu G, Leng J, Yang X. Serum mannan-binding lectin-associated serine proteases in early pregnancy for gestational diabetes in Chinese pregnant women. Front Endocrinol (Lausanne) 2023; 14:1230244. [PMID: 37941903 PMCID: PMC10628726 DOI: 10.3389/fendo.2023.1230244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 09/27/2023] [Indexed: 11/10/2023] Open
Abstract
Aims This study aimed to explore associations of mannan-binding lectin-associated serine protease (MASP) levels in early pregnancy with gestational diabetes mellitus (GDM). We also examined interactions of MASPs and deoxycholic acid (DCA)/glycoursodeoxycholic acid (GUDCA) for the GDM risk and whether the interactive effects if any on the GDM risk were mediated via lysophosphatidylcholine (LPC) 18:0. Materials and methods A 1:1 case-control study (n = 414) nested in a prospective cohort of pregnant women was conducted in Tianjin, China. Binary conditional logistic regressions were performed to examine associations of MASPs with the GDM risk. Additive interaction measures were used to examine interactions between MASPs and DCA/GUDCA for the GDM risk. Mediation analyses and Sobel tests were used to examine mediation effects of LPC18:0 between the copresence of MASPs and DCA/GUDCA on the GDM risk. Results High MASP-2 was independently associated with GDM [odds ratio (OR): 2.62, 95% confidence interval (CI): 1.44-4.77], while the effect of high MASP-1 on GDM was attributable to high MASP-2 (P for Sobel test: 0.003). Low DCA markedly increased the OR of high MASP-2 alone from 2.53 (1.10-5.85) up to 10.6 (4.22-26.4), with a significant additive interaction. In addition, high LPC18:0 played a significant mediating role in the links from low DCA to GDM and from the copresence of high MASP-2 and low DCA to GDM (P for Sobel test <0.001) but not in the link from high MASP-2 to GDM. Conclusions High MASP-1 and MASP-2 in early pregnancy were associated with GDM in Chinese pregnant women. MASP-2 amplifies the risk of low DCA for GDM, which is mediated via LPC18:0.
Collapse
Affiliation(s)
- Ming Gao
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Jing Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University School of Public Health, Tianjin, China
- Tianjin Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University School of Public Health, Tianjin, China
| | - Rui Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Ninghua Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Weiqin Li
- Project Office, Tianjin Women and Children’s Health Center, Tianjin, China
| | - Shuang Zhang
- Project Office, Tianjin Women and Children’s Health Center, Tianjin, China
| | - Peng Wang
- Project Office, Tianjin Women and Children’s Health Center, Tianjin, China
| | - Hui Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhongze Fang
- Department of Toxicology and Sanitary Chemistry, School of Public Health, Tianjin Medical University, Tianjin, China
| | - Zhijie Yu
- Population Cancer Research Program and Department of Pediatrics, Dalhousie University, Halifax, NS, Canada
| | - Gang Hu
- Chronic Disease Epidemiology Laboratory, Pennington Biomedical Research Center, Baton Rouge, LA, United States
| | - Junhong Leng
- Project Office, Tianjin Women and Children’s Health Center, Tianjin, China
| | - Xilin Yang
- Department of Epidemiology and Biostatistics, School of Public Health, Tianjin Medical University, Tianjin, China
- Tianjin Key Laboratory of Environment, Nutrition and Public Health, Tianjin Medical University School of Public Health, Tianjin, China
- Tianjin Center for International Collaborative Research on Environment, Nutrition and Public Health, Tianjin Medical University School of Public Health, Tianjin, China
| |
Collapse
|
25
|
Cheng H, Zhang D, Wu J, Liu J, Zhou Y, Tan Y, Feng W, Peng C. Interactions between gut microbiota and polyphenols: A mechanistic and metabolomic review. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 119:154979. [PMID: 37552899 DOI: 10.1016/j.phymed.2023.154979] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 06/30/2023] [Accepted: 07/15/2023] [Indexed: 08/10/2023]
Abstract
BACKGROUND Polyphenols are a class of naturally sourced compounds with widespread distribution and an extensive array of bioactivities. However, due to their complex constituents and weak absorption, a convincing explanation for their remarkable bioactivity remains elusive for a long time. In recent years, interaction with gut microbiota is hypothesized to be a reasonable explanation of the potential mechanisms for natural compounds especially polyphenols. OBJECTIVES This review aims to present a persuasive explanation for the contradiction between the limited bioavailability and the remarkable bioactivities of polyphenols by examining their interactions with gut microbiota. METHODS We assessed literatures published before April 10, 2023, from several databases, including Scopus, PubMed, Google Scholar, and Web of Science. The keywords used include "polyphenols", "gut microbiota", "short-chain fatty acids", "bile acids", "trimethylamine N-oxide", "lipopolysaccharides" "tryptophan", "dopamine", "intestinal barrier", "central nervous system", "lung", "anthocyanin", "proanthocyanidin", "baicalein", "caffeic acid", "curcumin", "epigallocatechin-3-gallate", "ferulic acid", "genistein", "kaempferol", "luteolin", "myricetin", "naringenin", "procyanidins", "protocatechuic acid", "pterostilbene", "quercetin", "resveratrol", etc. RESULTS: The review first demonstrates that polyphenols significantly alter gut microbiota diversity (α- and β-diversity) and the abundance of specific microorganisms. Polyphenols either promote or inhibit microorganisms, with various factors influencing their effects, such as dosage, treatment duration, and chemical structure of polyphenols. Furthermore, the review reveals that polyphenols regulate several gut microbiota metabolites, including short-chain fatty acids, dopamine, trimethylamine N-oxide, bile acids, and lipopolysaccharides. Polyphenols affect these metabolites by altering gut microbiota composition, modifying microbial enzyme activity, and other potential mechanisms. The changed microbial metabolites induced by polyphenols subsequently trigger host responses in various ways, such as acting as intestinal acid-base homeostasis regulators and activating on specific target receptors. Additionally, polyphenols are transformed into microbial derivatives by gut microbiota and these polyphenols' microbial derivatives have many potential advantages (e.g., increased bioactivity, improved absorption). Lastly, the review shows polyphenols maintain intestinal barrier, central nervous system, and lung function homeostasis by regulating gut microbiota. CONCLUSION The interaction between polyphenols and gut microbiota provides a credible explanation for the exceptional bioactivities of polyphenols. This review aids our understanding of the underlying mechanisms behind the bioactivity of polyphenols.
Collapse
Affiliation(s)
- Hao Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Dandan Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Jing Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Juan Liu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, PR China
| | - Yaochuan Zhou
- School of Basic Medical Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, PR China
| | - Yuzhu Tan
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China
| | - Wuwen Feng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China; The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| | - Cheng Peng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China; The Ministry of Education Key Laboratory of Standardization of Chinese Herbal Medicine, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, PR China.
| |
Collapse
|
26
|
Abstract
Microscopic colitis (MC) is a chronic inflammatory disease that affects the older population. Its clinical presentation includes a variety of gastrointestinal manifestations. The main symptom is chronic watery, nonbloody diarrhea. The disease has a female predominance. The diagnosis might be challenging since the symptoms are similar to other differential diagnoses, such as celiac disease, irritable bowel syndrome, Crohn's disease, bacterial overgrowth, and infectious colitis. The golden diagnostic tool for diagnosis is performing colonoscopy to obtain the colonic biopsy, which demonstrates the characteristic histological evidence needed for diagnosis. The treatment starts with an accurate diagnosis and trial of any possible offending medications. Alternatively, there are many medications, such as bismuth or budesonide, which are very effective in treating this disease. The primary objective of this detailed review is to enhance knowledge and understanding of this condition among healthcare providers to guide them with detailed information regarding epidemiology, clinical presentation, diagnosis, and appropriate management. In the assessment of individuals presenting with persistent chronic diarrhea, it is essential for healthcare providers to consider MC as a probable differential diagnosis.
Collapse
Affiliation(s)
- Khalid I AlHussaini
- Department of Internal Medicine, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, SAU
| |
Collapse
|
27
|
Yadav H, Jaldhi, Bhardwaj R, Anamika, Bakshi A, Gupta S, Maurya SK. Unveiling the role of gut-brain axis in regulating neurodegenerative diseases: A comprehensive review. Life Sci 2023; 330:122022. [PMID: 37579835 DOI: 10.1016/j.lfs.2023.122022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/06/2023] [Accepted: 08/10/2023] [Indexed: 08/16/2023]
Abstract
Emerging evidence have shown the importance of gut microbiota in regulating brain functions. The diverse molecular mechanisms involved in cross-talk between gut and brain provide insight into importance of this communication in maintenance of brain homeostasis. It has also been observed that disturbed gut microbiota contributes to neurological diseases such as Alzheimer's disease, Parkinson's disease, multiple sclerosis, amyotrophic lateral sclerosis and aging. Recently, gut microbiome-derived exosomes have also been reported to play an essential role in the development and progression of neurodegenerative diseases and could thereby act as a therapeutic target. Further, pharmacological interventions including antibiotics, prebiotics and probiotics can influence gut microbiome-mediated management of neurological diseases. However, extensive research is warranted to better comprehend this interconnection in maintenance of brain homeostasis and its implication in neurological diseases. Thus, the present review is aimed to provide a detailed understanding of gut-brain axis followed by possibilities to target the gut microbiome for improving neurological health.
Collapse
Affiliation(s)
- Himanshi Yadav
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Jaldhi
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India
| | - Rati Bhardwaj
- Department of Biotechnology, Delhi Technical University, Delhi, India
| | - Anamika
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Amrita Bakshi
- Department of Zoology, Ramjas College, University of Delhi, Delhi, India
| | - Suchi Gupta
- Tech Cell Innovations Private Limited, Centre for Medical Innovation and Entrepreneurship (CMIE), All India Institute of Medical Sciences, New Delhi, India
| | - Shashank Kumar Maurya
- Biochemistry and Molecular Biology Laboratory, Department of Zoology, Faculty of Science, University of Delhi, Delhi, India.
| |
Collapse
|
28
|
Ontsouka E, Schroeder M, Albrecht C. Revisited role of the placenta in bile acid homeostasis. Front Physiol 2023; 14:1213757. [PMID: 37546542 PMCID: PMC10402276 DOI: 10.3389/fphys.2023.1213757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023] Open
Abstract
To date, the discussion concerning bile acids (BAs) during gestation is almost exclusively linked to pregnancy complications such as intrahepatic cholestasis of pregnancy (ICP) when maternal serum BA levels reach very high concentrations (>100 μM). Generally, the placenta is believed to serve as a protective barrier avoiding exposure of the growing fetus to excessive amounts of maternal BAs that might cause detrimental effects (e.g., intrauterine growth restriction and/or increased vulnerability to metabolic diseases). However, little is known about the precise role of the placenta in BA biosynthesis, transport, and metabolism in healthy pregnancies when serum BAs are at physiological levels (i.e., low maternal and high fetal BA concentrations). It is well known that primary BAs are synthesized from cholesterol in the liver and are later modified to secondary BA species by colonic bacteria. Besides the liver, BA synthesis in extrahepatic sites such as the brain elicits neuroprotective actions through inhibition of apoptosis as well as oxidative and endoplasmic reticulum stress. Even though historically BAs were thought to be only "detergent molecules" required for intestinal absorption of dietary fats, they are nowadays acknowledged as full signaling molecules. They modulate a myriad of signaling pathways with functional consequences on essential processes such as gluconeogenesis -one of the principal energy sources of the fetus- and cellular proliferation. The current manuscript discusses the potential multipotent roles of physiologically circulating BAs on developmental processes during gestation and provides a novel perspective in terms of the importance of the placenta as a previously unknown source of BAs. Since the principle "not too much, not too little" applicable to other signaling molecules may be also true for BAs, the risks associated with fetal exposure to excessive levels of BAs are discussed.
Collapse
|
29
|
Yang Y, Chi L, Liu CW, Hsiao YC, Lu K. Chronic Arsenic Exposure Perturbs Gut Microbiota and Bile Acid Homeostasis in Mice. Chem Res Toxicol 2023; 36:1037-1043. [PMID: 37295807 PMCID: PMC10773974 DOI: 10.1021/acs.chemrestox.2c00410] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Arsenic exposure can perturb gut microbiota and their metabolic functions. We exposed C57BL/6 mice to 1 ppm arsenic in drinking water and investigated whether arsenic exposure affects the homeostasis of bile acids, a group of key microbiome-regulated signaling molecules of microbiome-host interactions. We found that arsenic exposure differentially changed major unconjugated primary bile acids and consistently decreased secondary bile acids in the serum and liver. The relative abundance of Bacteroidetes and Firmicutes was associated with the bile acid level in serum. This study demonstrates that arsenic-induced gut microbiota dysbiosis may play a role in arsenic-perturbed bile acid homeostasis.
Collapse
Affiliation(s)
- Yifei Yang
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Liang Chi
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Chih-wei Liu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Yun-Chung Hsiao
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC 27599, United States
| | - Kun Lu
- Department of Environmental Sciences and Engineering, University of North Carolina at Chapel Hill, NC 27599, United States
| |
Collapse
|
30
|
Lane JM, Brosschot TP, Gatti DM, Gauthier CM, Lawrence KM, Pluzhnikova V, Reynolds LA. Chronic small intestinal helminth infection perturbs bile acid homeostasis and disrupts bile acid signaling in the murine small intestine. FRONTIERS IN PARASITOLOGY 2023; 2:1214136. [PMID: 39816838 PMCID: PMC11731828 DOI: 10.3389/fpara.2023.1214136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/13/2023] [Indexed: 01/18/2025]
Abstract
Intestinal helminths have evolved an abundance of immunomodulatory mechanisms to ensure long-lived infections in mammalian hosts. To manipulate mammalian immune responses helminths can directly produce immunomodulatory molecules, but helminth infection can also elicit functional changes in the intestinal microbiome which can impact immune functioning. Here we examined how bile acids (BA)s, a group of host-produced, microbiota-modified immunomodulatory metabolites, were altered in abundance and composition during a murine small intestinal helminth infection. We found that murine helminth infection resulted in consistently reduced concentrations of specific taurine-conjugated primary BAs (T-α-MCA and T-CDCA) in the small intestinal luminal contents of mice. BA transporters facilitate the uptake of BAs from the small intestinal lumen, allowing BAs to engage with nuclear BA receptors, and helminth infected mice showed reduced expression of genes encoding basal BA transporters in the small intestine. Finally, we report that there is reduced signaling through the nuclear BA receptor FXR in both the proximal small intestine and ileum of mice during small intestinal helminth infection. Together, our data reveal disruptions to BA homeostasis and signaling in the small intestine during helminth infection. As BAs are known to impact many aspects of mucosal physiology and immunity, examining the functional consequences of BA disruptions during helminth infection will be an important avenue for future research.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Lisa A. Reynolds
- Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
31
|
Songtanin B, Chen JN, Nugent K. Microscopic Colitis: Pathogenesis and Diagnosis. J Clin Med 2023; 12:4442. [PMID: 37445477 DOI: 10.3390/jcm12134442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/26/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
Microscopic colitis is a type of inflammatory bowel disease and is classified as either collagenous colitis or lymphocytic colitis. The typical presentation is chronic watery diarrhea. The disease occurs more frequently in women aged 60-65 years and is increasing in incidence. The pathophysiology of microscopic colitis remains poorly understood and has not been well-described with possible several pathogeneses. To date, the diagnosis of microscopic colitis depends on histological tissue obtained during colonoscopy. Other non-invasive biomarkers, such as inflammatory markers and fecal biomarkers, have been studied in microscopic colitis, but the results remains inconclusive. The approach to chronic diarrhea is important and being able to differentiate chronic diarrhea in patients with microscopic colitis from other diseases, such as inflammatory bowel disease, functional diarrhea, and malignancy, by using non-invasive biomarkers would facilitate patient management. The management of microscopic colitis should be based on each individual's underlying pathogenesis and involves budesonide, bile acid sequestrants, or immunosuppressive drugs in refractory cases. Cigarette smoking and certain medications, especially proton pump inhibitors, should be eliminated, when possible, after the diagnosis is made.
Collapse
Affiliation(s)
- Busara Songtanin
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jason N Chen
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Kenneth Nugent
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
32
|
Effects of microbial-derived biotics (meta/pharma/post-biotics) on the modulation of gut microbiome and metabolome; general aspects and emerging trends. Food Chem 2023; 411:135478. [PMID: 36696721 DOI: 10.1016/j.foodchem.2023.135478] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 11/20/2022] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Potential effects of metabiotics (probiotics effector molecules or signaling factors), pharmabiotics (pro-functional metabolites produced by gut microbiota (GMB)) and postbiotics (multifunctional metabolites and structural compounds of food-grade microorganisms) on GMB have been rarely reviewed. These multifunctional components have several promising capabilities for prevention, alleviation and treatment of some diseases or disorders. Correlations between these essential biotics and GMB are also very interesting and important in human health and nutrition. Furthermore, these natural bioactives are involved in modulation of the immune function, control of metabolic dysbiosis and regulation of the signaling pathways. This review discusses the potential of meta/pharma/post-biotics as new classes of pharmaceutical agents and their effective mechanisms associated with GMB-host cell to cell communications with therapeutic benefits which are important in balance and the integrity of the host microbiome. In addition, cutting-edge findings about bioinformatics /metabolomics analyses related to GMB and these essential biotics are reviewed.
Collapse
|
33
|
Zhou N, Wang Y, Zhang Z, Liu T, Zhang J, Cao Y, Zhang B, Feng W, Zheng X, Li K. Exploring the efficacy mechanism and material basis of three processed Coptidis Rhizoma via metabolomics strategy. J Pharm Biomed Anal 2023; 232:115450. [PMID: 37196375 DOI: 10.1016/j.jpba.2023.115450] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 05/19/2023]
Abstract
Wine/zingiberis rhizoma recens/euodiae fructus processed Coptidis Rhizoma (wCR/zCR/eCR) are the major processed products of CR in clinic, and the role of CR is highlighted in different aspects after being processed with different excipients. To explore the mechanism and material basis for the highlighted efficacy of wCR/zCR/eCR, the metabolomics strategy was introduced to the comparative study between wCR/zCR/eCR and CR. Firstly, the metabolomics approach was applied to compare the chemical profiling and differential components between wCR/zCR/eCR and CR extract. Secondly, the rats were treated with CR/wCR/zCR/eCR extracts and a serum metabolomics approach was adopted to compare the metabolic profiling and significantly changed metabolites in CR/wCR/zCR/eCR groups, base on which the metabolic pathways were enriched, the metabolic network was constructed and the highlighted efficacy wCR/zCR/eCR was investigated. Lastly, the pathological and biochemical assessments (VIP, COX, HSL and HMGR) were implemented to validate the results inferred from metabolomics study. In chemical research, 23 differential components between wCR/zCR/eCR and CR extracts were identified. Thereinto, the content of alkaloids and organic acids decreased in wCR extract, the content of partial alkaloids and most organic acids increased in zCR extract, the content of alkaloids decreased, and partial organic acids increased in eCR extract. In serum metabolomics study, wCR had no outstanding effect, zCR played a more prominent role in resisting inflammation of gastrointestinal tissue by interfering with arachidonic acid metabolism, eCR exhibited the hottest drug property and the strongest effect on smoothing the liver and harmonizing the stomach by interfering with of bile acids biosynthesis. Based on the changes in chemical composition and efficacy before and after processing, as well as biochemical validation, it can be concluded that the above activity of zCR might be related to the increased alkaloids and organic acids in zCR extract, and the prominent role of eCR may be related to the increased organic acids in eCR extract. In brief, hot processing excipients could alleviate the cold property of CR, and different excipients have different effects on the chemical composition and efficacy mechanism. The present study fully reflects the advantage of metabolomics and provides guidance for the rational use of CR.
Collapse
Affiliation(s)
- Ning Zhou
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou 450046, PR China
| | - Yongxiang Wang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Zhenkai Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Tong Liu
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Jinying Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Yumin Cao
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Bingxian Zhang
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China
| | - Weisheng Feng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; The Engineering and Technology Center for Chinese Medicine Development of Henan Province, Zhengzhou 450046, PR China.
| | - Xiaoke Zheng
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; Co-construction Collaborative Innovation Center for Chinese Medicine and Respiratory Diseases by Henan & Education Ministry of P.R. China, Zhengzhou 450046, PR China.
| | - Kai Li
- College of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, PR China; Henan Research Center for Special Processing Technology of Chinese Medicine, Zhengzhou 450046, PR China.
| |
Collapse
|
34
|
Wang S, Xu C, Liu H, Wei W, Zhou X, Qian H, Zhou L, Zhang H, Wu L, Zhu C, Yang Y, He L, Li K. Connecting the Gut Microbiota and Neurodegenerative Diseases: the Role of Bile Acids. Mol Neurobiol 2023:10.1007/s12035-023-03340-9. [PMID: 37121952 DOI: 10.1007/s12035-023-03340-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/04/2023] [Indexed: 05/02/2023]
Abstract
With the acceleration of global population aging, neurodegenerative diseases (NDs) will become the second leading cause of death in the world, which seriously threatens human life and health. Alzheimer's disease and Parkinson's disease are the most common and typical NDs. The exact mechanisms of the NDs occurrence and development remain unclear, which may be related to immune, oxidative stress, and abnormal aggregation of pathogenic proteins. Studies have suggested that gut microbiota (GM) influences brain function and plays an important role in regulating emotional and cognitive function. Recently, bile acids (BAs) have become the "star molecule" in the microbiota-gut-brain (MGB) axis research. BAs have been reported to exert anti-inflammatory, antioxidant, and neuroprotective activities in NDs. However, the role of BAs in the connection between GM and the central nervous system (CNS) is still unclear. In this review, we will review the possible mechanisms of BAs between GM and NDs and explore the function of BAs to provide ideas for the prevention and treatment of NDs in the future.
Collapse
Affiliation(s)
- Shixu Wang
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Chongchong Xu
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Hongyan Liu
- The Mental Hospital of Yunnan Province, Mental Health Center affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Wei Wei
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Xuemei Zhou
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China
| | - Haipeng Qian
- Department of Nursing, AnHui College of Traditional Chinese Medicine, Wuhu, Anhui Province, China
| | - Li Zhou
- The Mental Hospital of Yunnan Province, Mental Health Center affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Haiqing Zhang
- The Mental Hospital of Yunnan Province, Mental Health Center affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Li Wu
- The Mental Hospital of Yunnan Province, Mental Health Center affiliated to Kunming Medical University, Kunming, Yunnan Province, China
| | - Chen Zhu
- Department of Physical Education, Kunming Medical University, Kunming, Yunnan Province, China
| | - Yuting Yang
- Computer Science and Technology of Department of Science and Engineering, Shiyuan College of Nanninng Normal University, Nanning, Guangxi Province, China
| | - Lin He
- The Mental Hospital of Yunnan Province, Mental Health Center affiliated to Kunming Medical University, Kunming, Yunnan Province, China.
| | - Kuan Li
- School of Forensic Medicine, Kunming Medical University, Kunming, Yunnan Province, China.
- School of Forensic Medicine, Southern Medical University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
35
|
de Geus A, Koppen IJN, Flint RB, Benninga MA, Tabbers MM. An Update of Pharmacological Management in Children with Functional Constipation. Paediatr Drugs 2023; 25:343-358. [PMID: 36941393 PMCID: PMC10097737 DOI: 10.1007/s40272-023-00563-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2023] [Indexed: 03/23/2023]
Abstract
Functional constipation is a common problem in childhood worldwide and has a great impact on social, physical, and emotional functioning of affected children and their caregivers. It is a clinical diagnosis based on the Rome IV criteria. Non-pharmacological treatment involves education, demystification, lifestyle advice, and toilet training. Pharmacological treatment consists of disimpaction, maintenance treatment, and eventually weaning if possible. Polyethylene glycol is considered as the first choice of laxative for both disimpaction and maintenance treatment. Different osmotic laxatives, stimulant laxatives, lubricants, and enemas are available as alternative pharmacological treatment options. Novel drugs are emerging but evidence to support the widespread application of these drugs in the pediatric population is often lacking and more high-quality research is needed in this field. If children remain symptomatic despite optimal pharmacological treatment, botulinum toxin injections in the anal sphincter can be considered as an alternative, more invasive treatment option. This review provides an update on currently available literature concerning the pharmacologic treatment of functional constipation in children.
Collapse
Affiliation(s)
- Anna de Geus
- Department of Pediatric Gastroenterology and Nutrition, Emma Children's Hospital/Academic Medical Center, Meibergdreef 9, 1105, Amsterdam, AZ, The Netherlands
| | - Ilan J N Koppen
- Department of Pediatric Gastroenterology and Nutrition, Emma Children's Hospital/Academic Medical Center, Meibergdreef 9, 1105, Amsterdam, AZ, The Netherlands
| | - Robert B Flint
- Department of Clinical Pharmacy, Erasmus MC University Medical Center, Rotterdam, The Netherlands
- Division of Neonatology, Department of Paediatrics, Erasmus University Medical Center-Sophia Children's Hospital, Rotterdam, The Netherlands
| | - Marc A Benninga
- Department of Pediatric Gastroenterology and Nutrition, Emma Children's Hospital/Academic Medical Center, Meibergdreef 9, 1105, Amsterdam, AZ, The Netherlands
| | - Merit M Tabbers
- Department of Pediatric Gastroenterology and Nutrition, Emma Children's Hospital/Academic Medical Center, Meibergdreef 9, 1105, Amsterdam, AZ, The Netherlands.
| |
Collapse
|
36
|
Mundula T, Baldi S, Gerace E, Amedei A. Role of the Intestinal Microbiota in the Genesis of Major Depression and the Response to Antidepressant Drug Therapy: A Narrative Review. Biomedicines 2023; 11:550. [PMID: 36831086 PMCID: PMC9953611 DOI: 10.3390/biomedicines11020550] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/16/2023] Open
Abstract
A major depressive disorder is a serious mental illness characterized by a pervasive low mood that negatively concerns personal life, work life, or education, affecting millions of people worldwide. To date, due to the complexity of the disease, the most common and effective treatments consist of a multi-therapy approach, including psychological, social, and pharmacological support with antidepressant drugs. In general, antidepressants are effective in correcting chemical imbalances of neurotransmitters in the brain, but recent evidence has underlined the pivotal role of gut microbiota (GM) also in the regulation of their pharmacokinetics/pharmacodynamics, through indirect or direct mechanisms. The study of these complex interactions between GM and drugs is currently under the spotlight, and it has been recently named "pharmacomicrobiomics". Hence, the purpose of this review is to summarize the contribution of GM and its metabolites in depression, as well as their role in the metabolism and activity of antidepressant drugs, in order to pave the way for the personalized administration of antidepressant therapies.
Collapse
Affiliation(s)
- Tiziana Mundula
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Simone Baldi
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
| | - Elisabetta Gerace
- Department of Health Sciences, Clinical Pharmacology and Oncology Unit, University of Florence, 50139 Florence, Italy
| | - Amedeo Amedei
- Department of Experimental and Clinical Medicine, University of Florence, 50134 Florence, Italy
- Interdisciplinary Internal Medicine Unit, Careggi University Hospital, 50134 Florence, Italy
| |
Collapse
|
37
|
Albaugh VL, He Y, Münzberg H, Morrison CD, Yu S, Berthoud HR. Regulation of body weight: Lessons learned from bariatric surgery. Mol Metab 2023; 68:101517. [PMID: 35644477 PMCID: PMC9938317 DOI: 10.1016/j.molmet.2022.101517] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Revised: 05/04/2022] [Accepted: 05/21/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Bariatric or weight loss surgery is currently the most effective treatment for obesity and metabolic disease. Unlike dieting and pharmacology, its beneficial effects are sustained over decades in most patients, and mortality is among the lowest for major surgery. Because there are not nearly enough surgeons to implement bariatric surgery on a global scale, intensive research efforts have begun to identify its mechanisms of action on a molecular level in order to replace surgery with targeted behavioral or pharmacological treatments. To date, however, there is no consensus as to the critical mechanisms involved. SCOPE OF REVIEW The purpose of this non-systematic review is to evaluate the existing evidence for specific molecular and inter-organ signaling pathways that play major roles in bariatric surgery-induced weight loss and metabolic benefits, with a focus on Roux-en-Y gastric bypass (RYGB) and vertical sleeve gastrectomy (VSG), in both humans and rodents. MAJOR CONCLUSIONS Gut-brain communication and its brain targets of food intake control and energy balance regulation are complex and redundant. Although the relatively young science of bariatric surgery has generated a number of hypotheses, no clear and unique mechanism has yet emerged. It seems increasingly likely that the broad physiological and behavioral effects produced by bariatric surgery do not involve a single mechanism, but rather multiple signaling pathways. Besides a need to improve and better validate surgeries in animals, advanced techniques, including inducible, tissue-specific knockout models, and the use of humanized physiological traits will be necessary. State-of-the-art genetically-guided neural identification techniques should be used to more selectively manipulate function-specific pathways.
Collapse
Affiliation(s)
- Vance L Albaugh
- Translational and Integrative Gastrointestinal and Endocrine Research Laboratory, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Yanlin He
- Brain Glycemic and Metabolism Control Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Heike Münzberg
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Christopher D Morrison
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Sangho Yu
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Hans-Rudolf Berthoud
- Neurobiology of Nutrition & Metabolism Department, Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA.
| |
Collapse
|
38
|
Altered serum bile acid profile in fibromyalgia is associated with specific gut microbiome changes and symptom severity. Pain 2023; 164:e66-e76. [PMID: 35587528 DOI: 10.1097/j.pain.0000000000002694] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 05/12/2022] [Indexed: 02/06/2023]
Abstract
ABSTRACT Alterations in the composition and function of the gut microbiome in women with fibromyalgia have recently been demonstrated, including changes in the relative abundance of certain bile acid-metabolizing bacteria. Bile acids can affect multiple physiological processes, including visceral pain, but have yet to be explored for association to the fibromyalgia gut microbiome. In this study, 16S rRNA sequencing and targeted metabolomic approaches were used to characterize the gut microbiome and circulating bile acids in a cohort of 42 women with fibromyalgia and 42 healthy controls. Alterations in the relative abundance of several bacterial species known to metabolize bile acids were observed in women with fibromyalgia, accompanied by significant alterations in the serum concentration of secondary bile acids, including a marked depletion of α-muricholic acid. Statistical learning algorithms could accurately detect individuals with fibromyalgia using the concentration of these serum bile acids. Serum α-muricholic acid was highly correlated with symptom severity, including pain intensity and fatigue. Taken together, these findings suggest serum bile acid alterations are implicated in nociplastic pain. The changes observed in the composition of the gut microbiota and the concentration of circulating secondary bile acids seem congruent with the phenotype of increased nociception and are quantitatively correlated with symptom severity. This is a first demonstration of circulating bile acid alteration in individuals with fibromyalgia, potentially secondary to upstream gut microbiome alterations. If corroborated in independent studies, these observations may allow for the development of molecular diagnostic aids for fibromyalgia as well as mechanistic insights into the syndrome.
Collapse
|
39
|
Shen JC, Qi Q, Han D, Lu Y, Huang R, Zhu Y, Zhang LS, Qin XD, Zhang F, Wu HG, Liu HR. Moxibustion improves experimental colitis in rats with Crohn's disease by regulating bile acid enterohepatic circulation and intestinal farnesoid X receptor. JOURNAL OF INTEGRATIVE MEDICINE 2023; 21:194-204. [PMID: 36740466 DOI: 10.1016/j.joim.2023.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 12/13/2022] [Indexed: 01/15/2023]
Abstract
OBJECTIVE This study was conducted to explore the mechanism of intestinal inflammation and barrier repair in Crohn's disease (CD) regulated by moxibustion through bile acid (BA) enterohepatic circulation and intestinal farnesoid X receptor (FXR). METHODS Sprague-Dawley rats were randomly divided into control group, CD model group, mild moxibustion group and herb-partitioned moxibustion group. CD model rats induced by 2,4,6-trinitrobenzene sulfonic acid were treated with mild moxibustion or herb-partitioned moxibustion at Tianshu (ST25) and Qihai (CV6). The changes in CD symptoms were rated according to the disease activity index score, the serum and colon tissues of rats were collected, and the pathological changes in colon tissues were observed via histopathology. Western blot, immunohistochemistry (IHC) and immunofluorescence were used to evaluate the improvement of moxibustion on intestinal inflammation and mucosal barrier in CD by the BA-FXR pathway. RESULTS Mild moxibustion and herb-partitioned moxibustion improved the symptoms of CD, inhibited inflammation and repaired mucosal damage to the colon in CD rats. Meanwhile, moxibustion could improve the abnormal expression of BA in the colon, liver and serum, downregulate the expression of interferon-γ and upregulate the expression of FXR mRNA, and inhibit Toll-like receptor 4 (TLR4) and myeloid differentiation factor 88 (MyD88) mRNA. The IHC results showed that moxibustion could upregulate the expression of FXR and mucin2 and inhibit TLR4 expression. Western blot showed that moxibustion inhibited the protein expression of TLR4 and MyD88 and upregulated the expression of FXR. Immunofluorescence image analysis showed that moxibustion increased the colocalization sites and intensity of FXR with TLR4 or nuclear factor-κB p65. In particular, herb-partitioned moxibustion has more advantages in improving BA and upregulating FXR and TLR4 in the colon. CONCLUSION Mild moxibustion and herb-partitioned moxibustion can improve CD by regulating the enterohepatic circulation stability of BA, activating colonic FXR, regulating the TLR4/MyD88 pathway, inhibiting intestinal inflammation and repairing the intestinal mucosal barrier. Herb-partitioned moxibustion seems to have more advantages in regulating BA enterohepatic circulation and FXR activation. Please cite this article as: Shen JC, Qi Q, Han D, Lu Y, Huang R, Zhu Y, Zhang LS, Qin XD, Zhang F, Wu HG, Liu HR. Moxibustion improves experimental colitis in rats with Crohn's disease by regulating bile acid enterohepatic circulation and intestinal farnesoid X receptor. J Integr Med. 2023.
Collapse
Affiliation(s)
- Jia-Cheng Shen
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China; Shanghai Research Institute of Acupuncture and Meridian, Shanghai 200030, China
| | - Qin Qi
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai 200030, China
| | - Dong Han
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China; Shanghai Research Institute of Acupuncture and Meridian, Shanghai 200030, China
| | - Yuan Lu
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai 200030, China
| | - Rong Huang
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai 200030, China
| | - Yi Zhu
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai 200030, China
| | - Lin-Shan Zhang
- Key Laboratory of Acupuncture and Immunological Effects, Shanghai University of Traditional Chinese Medicine, Shanghai 200030, China
| | - Xiu-di Qin
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai 200030, China
| | - Fang Zhang
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai 200030, China
| | - Huan-Gan Wu
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai 200030, China.
| | - Hui-Rong Liu
- Shanghai Research Institute of Acupuncture and Meridian, Shanghai 200030, China.
| |
Collapse
|
40
|
Roager HM, Stanton C, Hall LJ. Microbial metabolites as modulators of the infant gut microbiome and host-microbial interactions in early life. Gut Microbes 2023; 15:2192151. [PMID: 36942883 PMCID: PMC10038037 DOI: 10.1080/19490976.2023.2192151] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 03/06/2023] [Indexed: 03/23/2023] Open
Abstract
The development of infant gut microbiome is a pivotal process affecting the ecology and function of the microbiome, as well as host health. While the establishment of the infant microbiome has been of interest for decades, the focus on gut microbial metabolism and the resulting small molecules (metabolites) has been rather limited. However, technological and computational advances are now enabling researchers to profile the plethora of metabolites in the infant gut, allowing for improved understanding of how gut microbial-derived metabolites drive microbiome community structuring and host-microbial interactions. Here, we review the current knowledge on development of the infant gut microbiota and metabolism within the first year of life, and discuss how these microbial metabolites are key for enhancing our basic understanding of interactions during the early life developmental window.
Collapse
Affiliation(s)
- Henrik M. Roager
- Department of Nutrition, Exercise and Sports, University of Copenhagen, Frederiksberg, Denmark
| | - Catherine Stanton
- APC Microbiome Ireland, Teagasc Moorepark Food Research Centre, Fermoy, Co. Cork, Ireland
| | - Lindsay J. Hall
- Gut Microbes & Health, Quadram Institute Biosciences, Norwich, UK
- Intestinal Microbiome, School of Life Sciences, ZIEL – Institute for Food & Health, Technical University of Munich, Freising, Germany
- Norwich Medical School, University of East Anglia, Norwich, UK
| |
Collapse
|
41
|
Wang D, Zhang X, Du H. Inflammatory bowel disease: A potential pathogenic factor of Alzheimer's disease. Prog Neuropsychopharmacol Biol Psychiatry 2022; 119:110610. [PMID: 35908596 DOI: 10.1016/j.pnpbp.2022.110610] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Revised: 07/19/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022]
Abstract
Alzheimer's disease (AD) is a central nervous system disease characterised by degenerative cognitive dysfunction and memory loss. In a society where the global population is gradually ageing, the health threats and financial burdens caused by AD are becoming increasingly severe since AD often occurs in old age. With the in-depth study of AD, many new pathogenic mechanisms have been proposed, among which bidirectional communication between intestinal microbes and the brain has attracted widespread attention. The aetiology of inflammatory bowel disease (IBD) is related to the imbalance of the gut microbiota. Epidemiological investigations have shown that patients with IBD are more likely to suffer from AD. Targeting IBD as a potential AD treatment target has attracted considerable interest. Here, we reviewed the link between chronic intestinal inflammation and central nervous system inflammation and found that IBD patients had a higher risk of AD than non-IBD patients. Preclinical models based on AD also showed that IBD aggravated the condition of AD. We discussed possible biological links between AD and IBD, including the gut-brain axis, autoimmunity, and the gut microbiota. In addition, IBD-induced changes in intestinal microbial metabolites, such as short-chain fatty acids, bile acids, and tryptophan, which aggravate the development of AD, were also discussed.
Collapse
Affiliation(s)
- Donghui Wang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Xiaoshuang Zhang
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China
| | - Hongwu Du
- School of Chemistry and Biological Engineering, University of Science and Technology Beijing, Beijing, China.
| |
Collapse
|
42
|
Malpeli G, Barbi S, Innamorati G, Alloggio M, Filippini F, Decimo I, Castelli C, Perris R, Bencivenga M. Landscape of Druggable Molecular Pathways Downstream of Genomic CDH1/Cadherin-1 Alterations in Gastric Cancer. J Pers Med 2022; 12:jpm12122006. [PMID: 36556227 PMCID: PMC9784514 DOI: 10.3390/jpm12122006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/03/2022] [Accepted: 11/24/2022] [Indexed: 12/09/2022] Open
Abstract
Loss of CDH1/Cadherin-1 is a common step towards the acquisition of an abnormal epithelial phenotype. In gastric cancer (GC), mutation and/or downregulation of CDH1/Cadherin-1 is recurrent in sporadic and hereditary diffuse GC type. To approach the molecular events downstream of CDH1/Cadherin-1 alterations and their relevance in gastric carcinogenesis, we queried public databases for genetic and DNA methylation data in search of molecular signatures with a still-uncertain role in the pathological mechanism of GC. In all GC subtypes, modulated genes correlating with CDH1/Cadherin-1 aberrations are associated with stem cell and epithelial-to-mesenchymal transition pathways. A higher level of genes upregulated in CDH1-mutated GC cases is associated with reduced overall survival. In the diffuse GC (DGC) subtype, genes downregulated in CDH1-mutated compared to cases with wild type CDH1/Cadherin-1 resulted in being strongly intertwined with the DREAM complex. The inverse correlation between hypermethylated CpGs and CDH1/Cadherin-1 transcription in diverse subtypes implies a common epigenetic program. We identified nonredundant protein-encoding isoforms of 22 genes among those differentially expressed in GC compared to normal stomach. These unique proteins represent potential agents involved in cell transformation and candidate therapeutic targets. Meanwhile, drug-induced and CDH1/Cadherin-1 mutation-related gene expression comparison predicts FIT, GR-127935 hydrochloride, amiodarone hydrochloride in GC and BRD-K55722623, BRD-K13169950, and AY 9944 in DGC as the most effective treatments, providing cues for the design of combined pharmacological treatments. By integrating genetic and epigenetic aspects with their expected functional outcome, we unveiled promising targets for combinatorial pharmacological treatments of GC.
Collapse
Affiliation(s)
- Giorgio Malpeli
- Department of Surgical, Odontostomatologic, Maternal and Child Sciences, University of Verona, 37134 Verona, Italy
- Correspondence:
| | - Stefano Barbi
- Department of Diagnostics and Public Health, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Giulio Innamorati
- Department of Surgical, Odontostomatologic, Maternal and Child Sciences, University of Verona, 37134 Verona, Italy
| | - Mariella Alloggio
- General and Upper GI Surgery Division, Department and of Surgical, Odontostomatologic, Maternal and Child Sciences, University of Verona, 37134 Verona, Italy
| | - Federica Filippini
- General and Upper GI Surgery Division, Department and of Surgical, Odontostomatologic, Maternal and Child Sciences, University of Verona, 37134 Verona, Italy
| | - Ilaria Decimo
- Section of Pharmacology, Department of Diagnostic and Public Health, University of Verona, 37134 Verona, Italy
| | - Claudia Castelli
- Pathology Unit, Department of Diagnostics and Public Health, University and Hospital Trust of Verona, 37134 Verona, Italy
| | - Roberto Perris
- Department of Biosciences, COMT-Centre for Molecular and Translational Oncology, University of Parma, 43124 Parma, Italy
| | - Maria Bencivenga
- General and Upper GI Surgery Division, Department and of Surgical, Odontostomatologic, Maternal and Child Sciences, University of Verona, 37134 Verona, Italy
| |
Collapse
|
43
|
Torres-Maravilla E, Holowacz S, Delannoy J, Lenoir L, Jacouton E, Gervason S, Meynier M, Boucard AS, Carvalho FA, Barbut F, Bermúdez-Humarán LG, Langella P, Waligora-Dupriet AJ. Serpin-positive Bifidobacterium breve CNCM I-5644 improves intestinal permeability in two models of irritable bowel syndrome. Sci Rep 2022; 12:19776. [PMID: 36396717 PMCID: PMC9672316 DOI: 10.1038/s41598-022-21746-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/30/2022] [Indexed: 11/19/2022] Open
Abstract
Probiotic supplementation can help to mitigate the pathogenesis of irritable bowel syndrome (IBS) by reinforcing the intestinal barrier, and reducing both inflammation and proteolytic activity. Here, a combination of in vitro tests was performed on 33 Bifidobacterium strains as probiotic candidates for IBS. In addition to the classical tests performed, the detection of the serine protease inhibitor (serpin) enzyme capable of decreasing the high proteolytic activity found in IBS patients was included. Three serpin-positive strains were selected: Bifidobacterium breve CNCM I-5644, Bifidobacterium longum subsp. infantis CNCM I-5645 and B. longum CNCM I-5646 for their immunomodulation properties and protection of intestinal epithelial integrity in vitro. Furthermore, we found that B. breve CNCM I-5644 strain prevented intestinal hyperpermeability by upregulating Cingulin and Tight Junction Protein 1 mRNA levels and reducing pro-inflammatory markers. The ability of CNCM I-5644 strain to restore intestinal hyperpermeability (FITC-dextran) was shown in the murine model of low-grade inflammation induced by dinitrobenzene sulfonic acid (DNBS). This effect of this strain was corroborated in a second model of IBS, the neonatal maternal separation model in mice. Altogether, these data suggest that serpin-positive B. breve CNCM I-5644 may partially prevent disorders associated with increased barrier permeability such as IBS.
Collapse
Affiliation(s)
- Edgar Torres-Maravilla
- grid.460789.40000 0004 4910 6535INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France ,grid.7429.80000000121866389Université Paris Cité, INSERM, 3PHM, F-75006 Paris, France
| | - Sophie Holowacz
- PiLeJe Laboratoire, 37 Quai de Grenelle, 75015 Paris Cedex 15, France
| | - Johanne Delannoy
- grid.7429.80000000121866389Université Paris Cité, INSERM, 3PHM, F-75006 Paris, France
| | - Loïc Lenoir
- PiLeJe Laboratoire, 37 Quai de Grenelle, 75015 Paris Cedex 15, France
| | - Elsa Jacouton
- PiLeJe Laboratoire, 37 Quai de Grenelle, 75015 Paris Cedex 15, France
| | - Sandie Gervason
- grid.494717.80000000115480420INSERM UMR 1107 NeuroDol, University of Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - Maëva Meynier
- grid.494717.80000000115480420INSERM UMR 1107 NeuroDol, University of Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - Anne-Sophie Boucard
- grid.460789.40000 0004 4910 6535INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Frédéric A. Carvalho
- grid.494717.80000000115480420INSERM UMR 1107 NeuroDol, University of Clermont Auvergne, 63001 Clermont-Ferrand, France
| | - Frédéric Barbut
- grid.7429.80000000121866389Université Paris Cité, INSERM, 3PHM, F-75006 Paris, France ,grid.50550.350000 0001 2175 4109National Reference Laboratory for C. Difficile, Hôpital Saint-Antoine, Assistance Publique-Hôpitaux de Paris, 75012 Paris, France
| | - Luis G. Bermúdez-Humarán
- grid.460789.40000 0004 4910 6535INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Philippe Langella
- grid.460789.40000 0004 4910 6535INRAE, AgroParisTech, Micalis Institute, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | | |
Collapse
|
44
|
Shansky Y, Bespyatykh J. Bile Acids: Physiological Activity and Perspectives of Using in Clinical and Laboratory Diagnostics. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27227830. [PMID: 36431930 PMCID: PMC9692537 DOI: 10.3390/molecules27227830] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Bile acids play a significant role in the digestion of nutrients. In addition, bile acids perform a signaling function through their blood-circulating fraction. They regulate the activity of nuclear and membrane receptors, located in many tissues. The gut microbiota is an important factor influencing the effects of bile acids via enzymatic modification. Depending on the rate of healthy and pathogenic microbiota, a number of bile acids may support lipid and glucose homeostasis as well as shift to more toxic compounds participating in many pathological conditions. Thus, bile acids can be possible biomarkers of human pathology. However, the chemical structure of bile acids is similar and their analysis requires sensitive and specific methods of analysis. In this review, we provide information on the chemical structure and the biosynthesis of bile acids, their regulation, and their physiological role. In addition, the review describes the involvement of bile acids in various diseases of the digestive system, the approaches and challenges in the analysis of bile acids, and the prospects of their use in omics technologies.
Collapse
Affiliation(s)
- Yaroslav Shansky
- Department of Molecular Medicine, Center of Molecular Medicine and Diagnostics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya Str., 1a, 119435 Moscow, Russia
- Correspondence:
| | - Julia Bespyatykh
- Department of Molecular Medicine, Center of Molecular Medicine and Diagnostics, Federal Research and Clinical Center of Physical-Chemical Medicine of Federal Medical Biological Agency, Malaya Pirogovskaya Str., 1a, 119435 Moscow, Russia
- Department of Expertise in Doping and Drug Control, Mendeleev University of Chemical Technology of Russia, Miusskaya Square, 9, 125047 Moscow, Russia
- Department of Public Health and Health Care, Federal Scientific State Budgetary Institution «N.A. Semashko National Research Institute of Public Health», Vorontsovo Pole Str., 12-1, 105064 Moscow, Russia
| |
Collapse
|
45
|
Lerch F, Vötterl JC, Schwartz-Zimmermann HE, Sassu EL, Schwarz L, Renzhammer R, Bünger M, Sharma S, Koger S, Sener-Aydemir A, Quijada NM, Selberherr E, Kummer S, Berthiller F, U. Metzler-Zebeli B. Exposure to plant-oriented microbiome altered jejunal and colonic innate immune response and barrier function more strongly in suckling than in weaned piglets. J Anim Sci 2022; 100:skac310. [PMID: 36165740 PMCID: PMC9677959 DOI: 10.1093/jas/skac310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/26/2022] [Indexed: 11/12/2022] Open
Abstract
Weaning often leaves the piglet vulnerable to gut dysfunction. Little is known about the acute response of a gut mucosa primed by a milk-oriented microbiome before weaning to a plant-oriented microbiome (POM) after weaning. We evaluated the epithelial structure, secretory response and permeability in the small and large intestines of piglets receiving a milk-based (i.e., preweaning) or plant-based diet (i.e., postweaning) to POM inocula using intestinal loop perfusion assays (ILPA). The POM were prepared from jejunal and colonic digesta of four 7 week-old weaned (day 28 of life) piglets, having gut-site specific microbial and metabolite composition. Two consecutive ILPA were performed in 16 piglets pre- (days 24 to 27) and 16 piglets postweaning (days 38 to 41) in two replicate batches. Two jejunal and colonic loops per piglet were perfused with Krebs-Henseleit buffer (control) or the respective POM. The outflow fluid was analyzed for antimicrobial secretions. Jejunal and colonic loop tissue were collected after each ILPA for histomorphology and electrophysiology using Ussing chambers. ANOVA was performed using the MIXED procedure in SAS. The POM stimulated the secretory response by increasing mucin in the jejunal and colonic outflow by 99.7% and 54.1%, respectively, and jejunal IgA by 19.2%, whereas colonic lysozyme decreased 25.6% compared to the control (P < 0.05). Fittingly, the POM raised the number of goblet cells by 96.7% in jejunal and 56.9% in colonic loops compared to control loops (P < 0.05). The POM further flattened jejunal villi by 18.3% and reduced crypt depth in jejunal and colonic loops by 53.8% and 9.0% compared to the control (P < 0.05); observations typically made postweaning and indicative for mucosal recognition of 'foreign' compounds. The POM altered the jejunal and colonic net ion flux as indicated by 22.7% and 59.2% greater short-circuit current compared to control loops, respectively; the effect being stronger postweaning (P < 0.05). Colonic barrier function improved with age (P < 0.05), whereas POM perfusion compromised the mucosal barrier as suggested by 17.7% and 54.1% greater GT and mucosal-to-serosal flux of fluorescein-isothiocyanate dextran, respectively, compared to the control (P < 0.05). In conclusion, results demonstrated that the preweaning gut epithelium acutely responds to novel compounds in postweaning digesta by upregulating the first line of defense (i.e., mucin and lysozyme secretion) and impairment of the structural integrity.
Collapse
Affiliation(s)
- Frederike Lerch
- Unit Nutritional Physiology, Department of Biomedical Sciences, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Julia C Vötterl
- Unit Nutritional Physiology, Department of Biomedical Sciences, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Heidi E Schwartz-Zimmermann
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Straße 20, 3430 Tulln an der Donau, Austria
| | - Elena L Sassu
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Lukas Schwarz
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Rene Renzhammer
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Moritz Bünger
- University Clinic for Swine, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Suchitra Sharma
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Simone Koger
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Arife Sener-Aydemir
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Narciso M Quijada
- Unit of Food Microbiology, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- Austrian Competence Centre for Feed and Food Quality, Safety and Innovation, FFoQSI GmbH, Technopark 1, 3430 Tulln an der Donau, Austria
| | - Evelyne Selberherr
- Unit of Food Microbiology, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Stefan Kummer
- VetCore Facility for Research, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| | - Franz Berthiller
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- Institute of Bioanalytics and Agro-Metabolomics, Department of Agrobiotechnology (IFA-Tulln), University of Natural Resources and Life Sciences Vienna (BOKU), Konrad-Lorenz-Straße 20, 3430 Tulln an der Donau, Austria
| | - Barbara U. Metzler-Zebeli
- Unit Nutritional Physiology, Department of Biomedical Sciences, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
- Christian Doppler Laboratory for Innovative Gut Health Concepts of Livestock, Institute of Animal Nutrition and Functional Plant Compounds, Department for Farm Animals and Veterinary Public Health, University of Veterinary Medicine, Veterinaerplatz 1, 1210 Vienna, Austria
| |
Collapse
|
46
|
Zhang J, Li J, Yan P, He L, Zhang X, Wang X, Shi Y, Deng L, Zhang Z, Zhao B. In-depth analysis of the relationship between bovine intestinal organoids and enteroids based on morphology and transcriptome. J Tissue Eng Regen Med 2022; 16:1032-1046. [PMID: 36128613 DOI: 10.1002/term.3351] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 08/24/2022] [Accepted: 08/31/2022] [Indexed: 01/13/2023]
Abstract
Intestinal organoids and enteroids as excellent models are miniaturized and simplified for studying intestinal physiological and pathological functions, drug screening, and regenerative medicine. Recently, the application demands for organoids and enteroids in organ development and nutrition metabolism, immune and cancer research increased. But there are few comparative studies on both of them, especially in immunity and metabolism, which is also conducive to further clarifying the role of crypt stem cells and stromal cells. In our study, "natural" organoids were obtained by tissue culture from fetal bovine jejunum and enteroids were successfully isolated and cultured from organoids without supplementing exogenous factors and Matrigel. These mini-guts displayed similar features to the intestine through immunohistochemistry and transmission electron microscopy. Organoid and enteroid were systematically compared based on the transcriptome. And some of the results were verified by qRT-PCR. Our results showed KDGs (Key driver genes) (e.g., SLC13A1, HOXA7, HOXA6, HOXA5, and HOXD4) of organoids enriched in signaling pathways related to organ development and morphology and metabolism. KDGs (e.g., IL-6, PTGS2, CDH1, JUN, and EGFR) of enteroid were involved in cancer, MAPK, and immune-related signaling pathways. To the Wnt signaling pathway, highly expressed genes in organoids, including RSPO2, NOTUM, WNT6, and RSPO3, supported the homeostasis of crypt stem cells. Enteroids highly expressed CTNNB1 and WNTs. In addition, we found that organoids and enteroids carried out different functions in immunity and metabolism due to different cell compositions. Therefore, it suggested organoid is more compatible and comprehensive, and enteroid is qualified for the research of immunity and cancer.
Collapse
Affiliation(s)
- Juntao Zhang
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, China.,College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Juanjuan Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Penghui Yan
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Laizeng He
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Xuemei Zhang
- Henan Yinfeng Biological Engineering Technology Co., LTD, Zhengzhou, Henan, China
| | - Xiaolong Wang
- Henan Yinfeng Biological Engineering Technology Co., LTD, Zhengzhou, Henan, China
| | - Yake Shi
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Lixin Deng
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - ZhiPing Zhang
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou, Henan, China
| | - Baoyu Zhao
- College of Veterinary Medicine, Northwest A & F University, Yangling, Shaanxi, China
| |
Collapse
|
47
|
Luo W, Guo S, Zhou Y, Zhu J, Zhao J, Wang M, Sang L, Wang B, Chang B. Hepatocellular carcinoma: Novel understandings and therapeutic strategies based on bile acids (Review). Int J Oncol 2022; 61:117. [PMID: 35929515 PMCID: PMC9450808 DOI: 10.3892/ijo.2022.5407] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/26/2022] [Indexed: 11/06/2022] Open
Abstract
Bile acids (BAs) are the major components of bile and products of cholesterol metabolism. Cholesterol is catalyzed by a variety of enzymes in the liver to form primary BAs, which are excreted into the intestine with bile, and secondary BAs are formed under the modification of the gut microbiota. Most of the BAs return to the liver via the portal vein, completing the process of enterohepatic circulation. BAs have an important role in the development of hepatocellular carcinoma (HCC), which may participate in the progression of HCC by recognizing receptors such as farnesoid X receptor (FXR) and mediating multiple downstream pathways. Certain BAs, such as ursodeoxycholic acid and obeticholic acid, were indicated to be able to delay liver injury and HCC progression. In the present review, the structure and function of BAs were introduced and the metabolism of BAs and the process of enterohepatic circulation were outlined. Furthermore, the mechanisms by which BAs participate in the development of HCC were summarized and possible strategies for targeting BAs and key sites of their metabolic processes to treat HCC were suggested.
Collapse
Affiliation(s)
- Wenyu Luo
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Shiqi Guo
- 104K class 87, The Second Clinical College, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Yang Zhou
- 104K class 87, The Second Clinical College, China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Junfeng Zhu
- Department of Clinical Laboratory, Affiliated Hospital of Guilin Medical University, Guilin, Guangxi 541001, P.R. China
| | - Jingwen Zhao
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Mengyao Wang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Lixuan Sang
- Department of Gastroenterology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, P.R. China
| | - Bingyuan Wang
- Department of Geriatric Medicine, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110122, P.R. China
| | - Bing Chang
- Department of Gastroenterology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110122, P.R. China
| |
Collapse
|
48
|
Metabolomic-based investigation of Yinlan alleviating hyperlipidemia by inhibiting blood stasis and phlegm turbidity through the PXR-CYP3A4-ABCB1-FXR pathway. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
49
|
Viswanath K, Hayes M, Avni D. Inflammatory bowel disease - A peek into the bacterial community shift and algae-based ‘biotic’ approach to combat the disease. Trends Food Sci Technol 2022. [DOI: 10.1016/j.tifs.2022.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
50
|
Caliceti C, Punzo A, Silla A, Simoni P, Roda G, Hrelia S. New Insights into Bile Acids Related Signaling Pathways in the Onset of Colorectal Cancer. Nutrients 2022; 14:nu14142964. [PMID: 35889921 PMCID: PMC9317521 DOI: 10.3390/nu14142964] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 02/01/2023] Open
Abstract
Colorectal cancer (CRC) ranks as the second among the causes of tumor death worldwide, with an estimation of 1.9 million new cases in 2020 and more than 900,000 deaths. This rate might increase by 60% over the next 10 years. These data are unacceptable considering that CRC could be successfully treated if diagnosed in the early stages. A high-fat diet promotes the hepatic synthesis of bile acids (BAs) increasing their delivery to the colonic lumen and numerous scientific reports correlate BAs, especially secondary BAs, with CRC incidence. We reviewed the physicochemical and biological characteristics of BAs, focusing on the major pathways involved in CRC risk and progression. We specifically pointed out the role of BAs as signaling molecules and the tangled relationships among their nuclear and membrane receptors with the big bang of molecular and cellular events that trigger CRC occurrence.
Collapse
Affiliation(s)
- Cristiana Caliceti
- Department of Biomedical and Neuromotor Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
- Interdepartmental Centre for Renewable Sources, Environment, Sea and Energy (CIRI FRAME), Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy
- Biostructures and Biosystems National Institute (INBB), 00136 Rome, Italy;
- Correspondence:
| | - Angela Punzo
- Department of Chemistry “Giacomo Ciamician” Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy;
| | - Alessia Silla
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (A.S.); (S.H.)
| | - Patrizia Simoni
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40138 Bologna, Italy;
| | - Giulia Roda
- Biostructures and Biosystems National Institute (INBB), 00136 Rome, Italy;
| | - Silvana Hrelia
- Department for Life Quality Studies, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (A.S.); (S.H.)
| |
Collapse
|