1
|
Yan F, Zhang Q, Mutembei BM, Wang C, Alhajeri ZA, Pandit K, Zhang F, Zhang K, Yu Z, Fung KM, Elgenaid SN, Parrack P, Ali W, Hostetler CA, Milam AN, Nave B, Squires R, Martins PN, Battula NR, Potter S, Pan C, Chen Y, Tang Q. Comprehensive Evaluation of Human Donor Liver Viability with Polarization-Sensitive Optical Coherence Tomography. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2025:2025.03.31.25321497. [PMID: 40236439 PMCID: PMC11998830 DOI: 10.1101/2025.03.31.25321497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Human liver transplantation is severely constrained by a critical shortage of donor livers, with approximately one quarter of patients on the waiting list dying due to the scarcity of viable organs. Current liver viability assessments, which rely on invasive pathological methods, are hampered by limited sampling from biopsies, particularly in marginal livers from extended criteria donors (ECD) intended to expand the donor pool. Consequently, there is a pressing need for more comprehensive and non-invasive evaluation techniques to meet the escalating demand for liver transplants. In this study, we propose the use of polarization-sensitive optical coherence tomography (PS-OCT) to perform a thorough viability evaluation across the entire surface of donor livers. PS-OCT imaging was conducted on multiple regions, achieving near-complete coverage of the liver surface, and the findings were cross-validated with histopathological evaluations. The analysis of hepatic parameters derived from pathology highlighted tissue heterogeneity. Leveraging machine learning and texture analysis, we quantified hepatic steatosis, fibrosis, inflammation, and necrosis, and established strong correlations (≥ 80%) between PS-OCT quantifications and pathological assessments. PS-OCT offers a non-invasive assessment of liver viability by quantifying hepatic parenchymal parameters across the entire donor liver, significantly complementing current pathological analysis. These results suggest that PS-OCT provides a robust, non-invasive approach to assessing donor liver viability, which could potentially decrease the discard rate of higher risk livers, thereby expanding the donor pool and reducing the inadvertent use of those livers unsuitable for transplantation.
Collapse
|
2
|
Sun W, Zhang Q, Wang X, Jin Z, Cheng Y, Wang G. Clinical Practice of Photodynamic Therapy for Non-Small Cell Lung Cancer in Different Scenarios: Who Is the Better Candidate? Respiration 2024; 103:193-204. [PMID: 38354707 PMCID: PMC10997268 DOI: 10.1159/000535270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/05/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Photodynamic therapy (PDT) is a relatively safe and highly selectivity antitumor treatment, which might be increasingly used as a supplement to conventional therapies. A clinical overview and detailed comparison of how to select patients and lesions for PDT in different scenarios are urgently needed to provide a basis for clinical treatment. SUMMARY This review demonstrates the highlights and obstacles of applying PDT for lung cancer and underlines points worth considering when planning to initiate PDT. The aim was to make out the appropriate selection and help PDT develop efficacy and precision through a better understanding of its clinical use. KEY MESSAGES Increasing evidence supports the feasibility and safety of PDT in the treatment of non-small cell lung cancer. It is important to recognize the factors that influence the efficacy of PDT to develop individualized management strategies and implement well-designed procedures. These important issues should be worth considering in the present and further research.
Collapse
Affiliation(s)
- Wen Sun
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China,
| | - Qi Zhang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Xi Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Zhou Jin
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Yuan Cheng
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Guangfa Wang
- Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| |
Collapse
|
3
|
Vaselli M, Kalverda-Mooij K, Thunnissen E, Tanck MWT, Mets OM, van den Berk IAH, Annema JT, Bonta PI, de Boer JF. In vivo polarisation sensitive optical coherence tomography for fibrosis assessment in interstitial lung disease: a prospective, exploratory, observational study. BMJ Open Respir Res 2023; 10:e001628. [PMID: 37553184 PMCID: PMC10414088 DOI: 10.1136/bmjresp-2023-001628] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 07/20/2023] [Indexed: 08/10/2023] Open
Abstract
INTRODUCTION Endobronchial polarisation sensitive optical coherence tomography (EB-PS-OCT) is a bronchoscopic imaging technique exceeding resolution of high-resolution CT (HRCT) by 50-fold. It detects collagen birefringence, enabling identification and quantification of fibrosis. STUDY AIM To assess pulmonary fibrosis in interstitial lung diseases (ILD) patients with in vivo EB-PS-OCT using histology as reference standard. PRIMARY OBJECTIVE Visualisation and quantification of pulmonary fibrosis by EB-PS-OCT. SECONDARY OBJECTIVES Comparison of EB-PS-OCT and HRCT detected fibrosis with histology, identification of ILD histological features in EB-PS-OCT images and comparison of ex vivo PS-OCT results with histology. METHODS Observational prospective exploratory study. Patients with ILD scheduled for transbronchial cryobiopsy or surgical lung biopsy underwent in vivo EB-PS-OCT imaging prior to tissue acquisition. Asthma patients were included as non-fibrotic controls. Per imaged lung segment, fibrosis was automatically quantified assessing the birefringent area in EB-PS-OCT images. Fibrotic extent in corresponding HRCT areas and biopsies were compared with EB-PS-OCT detected fibrosis. Microscopic ILD features were identified on EB-PS-OCT images and matched with biopsies from the same segment. RESULTS 19 patients were included (16 ILD; 3 asthma). In 49 in vivo imaged airway segments the parenchymal birefringent area was successfully quantified and ranged from 2.54% (no to minimal fibrosis) to 21.01% (extensive fibrosis). Increased EB-PS-OCT detected birefringent area corresponded to increased histologically confirmed fibrosis, with better predictive value than HRCT. Microscopic ILD features were identified on both in vivo and ex vivo PS-OCT images. CONCLUSIONS EB-PS-OCT enables pulmonary fibrosis quantification, thereby has potential to serve as an add-on bronchoscopic imaging technique to diagnose and detect (early) fibrosis in ILD.
Collapse
Affiliation(s)
- Margherita Vaselli
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | | | - Erik Thunnissen
- Department of Pathology, Amsterdam University Medical Centra, Amsterdam, The Netherlands
| | - Michael W T Tanck
- Department of Epidemiology and Data Science, University of Amsterdam, Amsterdam, The Netherlands
| | - Onno M Mets
- Department of Radiology and Nuclear Medicine, University of Amsterdam, Amsterdam, The Netherlands
| | - Inge A H van den Berk
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location AMC, Amsterdam, The Netherlands
| | - Jouke T Annema
- Respiratory Medicine, Amsterdam UMC - Locatie AMC, Amsterdam, The Netherlands
| | - Peter I Bonta
- Amsterdam UMC - Locatie AMC, Amsterdam, The Netherlands
| | - Johannes F de Boer
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
4
|
Liu HC, Lin MH, Ting CH, Wang YM, Sun CW. Intraoperative application of optical coherence tomography for lung tumor. JOURNAL OF BIOPHOTONICS 2023; 16:e202200344. [PMID: 36755475 DOI: 10.1002/jbio.202200344] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 01/06/2023] [Accepted: 01/18/2023] [Indexed: 06/07/2023]
Abstract
On-site instant determination of benign or malignant tumors for deciding the types of resection is crucial during pulmonary surgery. We designed a portable spectral-domain optical coherence tomography (SD-OCT) system to do real-time scanning intraoperatively for the distinction of fresh tumor specimens in the lung. A total of 12 ex vivo lung specimens from six patients were enrolled. Three patients were diagnosed with invasive adenocarcinoma (IA), while the others were benign. After OCT-imaged reconstruction, we compared the qualitative morphology of OCT and histology among malignant, benign, and normal tissues. In addition, through analysis of the quantitative data, a discrete difference in optical attenuation coefficients around the junctional surface was shown by our data processing. This study demonstrated a feasible OCT-assisted resection guide by a rapid on-site tumor diagnosis. The results indicate that future deep learning of OCT-captured image systems able to improve diagnostic and therapeutic efficiency is warranted.
Collapse
Affiliation(s)
- Hung-Chang Liu
- Department of Thoracic Surgery, Mackay Memorial Hospital, Taipei City, Taiwan
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Department of Nursing, Mackay Junior College of Medicine, Nursing, and Management, Taipei City, Taiwan
| | - Miao-Hui Lin
- Biomedical Optical Imaging Lab, Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Ching-Heng Ting
- Department of Medicine, Mackay Medical College, New Taipei City, Taiwan
- Department of Nursing, Mackay Junior College of Medicine, Nursing, and Management, Taipei City, Taiwan
- Department of Pathology, Mackay Memorial Hospital, New Taipei City, Taiwan
| | - Yi-Min Wang
- Biomedical Optical Imaging Lab, Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
| | - Chia-Wei Sun
- Biomedical Optical Imaging Lab, Department of Photonics, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu City, Taiwan
- Institute of Biomedical Engineering, College of Electrical and Computer Engineering, National Yang Ming Chiao Tung University, Hsinchu, Taiwan
- Medical Device Innovation and Translation Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
5
|
Long H, Ji J, Chen L, Feng J, Liao J, Yang Y. EB-OCT: a potential strategy on early diagnosis and treatment for lung cancer. Front Oncol 2023; 13:1156218. [PMID: 37182131 PMCID: PMC10168178 DOI: 10.3389/fonc.2023.1156218] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 04/12/2023] [Indexed: 05/16/2023] Open
Abstract
Lung cancer is the leading cause of cancer-related death in China and the world, mainly attributed to delayed diagnosis, given that currently available early screening strategies exhibit limited value. Endobronchial optical coherence tomography (EB-OCT) has the characteristics of non-invasiveness, accuracy, and repeatability. Importantly, the combination of EB-OCT with existing technologies represents a potential approach for early screening and diagnosis. In this review, we introduce the structure and strengths of EB-OCT. Furthermore, we provide a comprehensive overview of the application of EB-OCT on early screening and diagnosis of lung cancer from in vivo experiments to clinical studies, including differential diagnosis of airway lesions, early screening for lung cancer, lung nodules, lymph node biopsy and localization and palliative treatment of lung cancer. Moreover, the bottlenecks and difficulties in developing and popularizing EB-OCT for diagnosis and treatment during clinical practice are analyzed. The characteristics of OCT images of normal and cancerous lung tissues were in good agreement with the results of pathology, which could be used to judge the nature of lung lesions in real time. In addition, EB-OCT can be used as an assistant to biopsy of pulmonary nodules and improve the success rate of biopsy. EB-OCT also plays an auxiliary role in the treatment of lung cancer. In conclusion, EB-OCT is non-invasive, safe and accurate in real-time. It is of great significance in the diagnosis of lung cancer and suitable for clinical application and is expected to become an important diagnostic method for lung cancer in the future.
Collapse
Affiliation(s)
- Hang Long
- Department of Respiratory and Critical Medicine, Sichuan Provincial People’s Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Jiaqi Ji
- Department of Respiratory and Critical Medicine, Sichuan Provincial People’s Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Lijuan Chen
- Department of Respiratory and Critical Medicine, Sichuan Provincial People’s Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Jiayue Feng
- Department of Cardiology, Sichuan Provincial People’s Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Jie Liao
- Department of Cardiology, Sichuan Provincial People’s Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
| | - Yang Yang
- Department of Respiratory and Critical Medicine, Sichuan Provincial People’s Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
| |
Collapse
|
6
|
Advances in bronchoscopic optical coherence tomography and confocal laser endomicroscopy in pulmonary diseases. Curr Opin Pulm Med 2023; 29:11-20. [PMID: 36474462 PMCID: PMC9780043 DOI: 10.1097/mcp.0000000000000929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW Imaging techniques play a crucial role in the diagnostic work-up of pulmonary diseases but generally lack detailed information on a microscopic level. Optical coherence tomography (OCT) and confocal laser endomicroscopy (CLE) are imaging techniques which provide microscopic images in vivo during bronchoscopy. The purpose of this review is to describe recent advancements in the use of bronchoscopic OCT- and CLE-imaging in pulmonary medicine. RECENT FINDINGS In recent years, OCT- and CLE-imaging have been evaluated in a wide variety of pulmonary diseases and demonstrated to be complementary to bronchoscopy for real-time, near-histological imaging. Several pulmonary compartments were visualized and characteristic patterns for disease were identified. In thoracic malignancy, OCT- and CLE-imaging can provide characterization of malignant tissue with the ability to identify the optimal sampling area. In interstitial lung disease (ILD), fibrotic patterns were detected by both (PS-) OCT and CLE, complementary to current HRCT-imaging. For obstructive lung diseases, (PS-) OCT enables to detect airway wall structures and remodelling, including changes in the airway smooth muscle and extracellular matrix. SUMMARY Bronchoscopic OCT- and CLE-imaging allow high resolution imaging of airways, lung parenchyma, pleura, lung tumours and mediastinal lymph nodes. Although investigational at the moment, promising clinical applications are on the horizon.
Collapse
|
7
|
Zhu Q, Yu H, Liang Z, Zhao W, Zhu M, Xu Y, Guo M, Jia Y, Zou C, Yang Z, Chen L. Novel image features of optical coherence tomography for pathological classification of lung cancer: Results from a prospective clinical trial. Front Oncol 2022; 12:870556. [PMID: 36338729 PMCID: PMC9634220 DOI: 10.3389/fonc.2022.870556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 09/27/2022] [Indexed: 12/24/2022] Open
Abstract
Background This study aimed to explore the characteristics of optical coherence tomography (OCT) imaging for differentiating between benign and malignant lesions and different pathological types of lung cancer in bronchial lesions and to preliminarily evaluate the clinical value of OCT. Methods Patients who underwent bronchoscopy biopsy and OCT between February 2019 and December 2019 at the Chinese PLA General Hospital were enrolled in this study. White-light bronchoscopy (WLB), auto-fluorescence bronchoscopy (AFB), and OCT were performed at the lesion location. The main characteristics of OCT imaging for the differentiation between benign and malignant lesions and the prediction of the pathological classification of lung cancer in bronchial lesions were identified, and their clinical value was evaluated. Results A total of 135 patients were included in this study. The accuracy of OCT imaging for differentiating between benign and malignant bronchial lesions was 94.1%, which was significantly higher than that of AFB (67.4%). For the OCT imaging of SCC, adenocarcinoma, and small-cell lung cancer, the accuracies were 95.6, 94.3, and 92%, respectively. The accuracy, sensitivity, and specificity of OCT were higher than those of WLB. In addition, these main OCT image characteristics are independent influencing factors for predicting the corresponding diseases through logistic regression analysis between the main OCT image characteristics in the study and the general clinical features of patients (p<0.05). Conclusion As a non-biopsy technique, OCT can be used to improve the diagnosis rate of lung cancer and promote the development of non-invasive histological biopsy.
Collapse
Affiliation(s)
- Qiang Zhu
- Department of Respiratory Medicine, The First Medical Center of Chinese People Liberation Army (PLA) General Hospital, Beijing, China
| | - Hang Yu
- Department of Respiratory Medicine, The First Medical Center of Chinese People Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhixin Liang
- Department of Respiratory Medicine, The First Medical Center of Chinese People Liberation Army (PLA) General Hospital, Beijing, China
| | - Wei Zhao
- Department of Respiratory Medicine, The First Medical Center of Chinese People Liberation Army (PLA) General Hospital, Beijing, China
| | - Minghui Zhu
- Department of Pulmonary and Critical Care Medicine, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yi Xu
- Department of Respiratory Medicine, The First Medical Center of Chinese People Liberation Army (PLA) General Hospital, Beijing, China
| | - Mingxue Guo
- Department of Respiratory Medicine, The First Medical Center of Chinese People Liberation Army (PLA) General Hospital, Beijing, China
| | - Yanhong Jia
- Department of Respiratory Medicine, The First Medical Center of Chinese People Liberation Army (PLA) General Hospital, Beijing, China
| | - Chenxi Zou
- Department of Respiratory Medicine, The First Medical Center of Chinese People Liberation Army (PLA) General Hospital, Beijing, China
| | - Zhen Yang
- Department of Respiratory Medicine, The First Medical Center of Chinese People Liberation Army (PLA) General Hospital, Beijing, China
- *Correspondence: Zhen Yang, ; Liangan Chen,
| | - Liangan Chen
- Department of Respiratory Medicine, The First Medical Center of Chinese People Liberation Army (PLA) General Hospital, Beijing, China
- *Correspondence: Zhen Yang, ; Liangan Chen,
| |
Collapse
|
8
|
Lee HN, Kim S, Park S, Jung W, Kang JS. Quantification and visualization of metastatic lung tumors in mice. Toxicol Res 2022; 38:503-510. [PMID: 36277365 PMCID: PMC9532496 DOI: 10.1007/s43188-022-00134-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 11/25/2022] Open
Abstract
Histopathological examination is important for the diagnosis of various diseases. Conventional histopathology provides a two-dimensional view of the tissues, and requires the tissue to be extracted, fixed, and processed using histotechnology techniques. However, there is an increasing need for three-dimensional (3D) images of structures in biomedical research. The objective of this study was to develop reliable, objective tools for visualizing and quantifying metastatic tumors in mouse lung using micro-computed tomography (micro-CT), optical coherence tomography (OCT), and field emission-scanning electron microscopy (FE-SEM). Melanoma cells were intravenously injected into the tail vein of 8-week-old C57BL/6 mice. The mice were euthanized at 2 or 4 weeks after injection. Lungs were fixed and examined by micro-CT, OCT, FE-SEM, and histopathological observation. Micro-CT clearly distinguished between tumor and normal cells in surface and deep lesions, thereby allowing 3D quantification of the tumor volume. OCT showed a clear difference between the tumor and surrounding normal tissues. FE-SEM clearly showed round tumor cells, mainly located in the alveolar wall and growing inside the alveoli. Therefore, whole-tumor 3D imaging successfully visualized the metastatic tumor and quantified its volume. This promising approach will allow for fast and label-free 3D phenotyping of diverse tissue structures.
Collapse
Affiliation(s)
- Ha Neul Lee
- Department of Biomedical Laboratory Science, Namseoul University, 91 Daehak-ro, Seonghwan-eup, Seobuk-gu, Cheonan-si, 31020 South Korea
| | - Seyl Kim
- Ferramed Inc., National Nanofab Center, KAIST, 291 Deahak-ro, Yuseong-gu, Deajeon, 34141 South Korea
| | - Sooah Park
- In Vivo Research Center, UNIST Central Research Facilities, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulju-gun, Ulsan, 44919 South Korea
| | - Woonggyu Jung
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, 50 UNIST-gil, Ulju-gun, Ulsan, 44919 South Korea
| | - Jin Seok Kang
- Department of Biomedical Laboratory Science, Namseoul University, 91 Daehak-ro, Seonghwan-eup, Seobuk-gu, Cheonan-si, 31020 South Korea
| |
Collapse
|
9
|
Schwartz D, Sawyer TW, Thurston N, Barton J, Ditzler G. Ovarian cancer detection using optical coherence tomography and convolutional neural networks. Neural Comput Appl 2022; 34:8977-8987. [PMID: 35095211 PMCID: PMC8785933 DOI: 10.1007/s00521-022-06920-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2021] [Accepted: 01/04/2022] [Indexed: 11/18/2022]
Abstract
Ovarian cancer has the sixth-largest fatality rate in the United States among all cancers. A non-surgical assay capable of detecting ovarian cancer with acceptable sensitivity and specificity has yet to be developed. However, such a discovery would profoundly impact the pace of the treatment and improvement to patients' quality of life. Achieving such a solution requires high-quality imaging, image processing, and machine learning to support an acceptably robust automated diagnosis. In this work, we propose an automated framework that learns to identify ovarian cancer in transgenic mice from optical coherence tomography (OCT) recordings. Classification is accomplished using a neural network that perceives spatially ordered sequences of tomograms. We present three neural network-based approaches, namely a VGG-supported feed-forward network, a 3D convolutional neural network, and a convolutional LSTM (Long Short-Term Memory) network. Our experimental results show that our models achieve a favorable performance with no manual tuning or feature crafting, despite the challenging noise inherent in OCT images. Specifically, our best performing model, the convolutional LSTM-based neural network, achieves a mean AUC (± standard error) of 0.81 ± 0.037. To the best of the authors' knowledge, no application of machine learning to analyze depth-resolved OCT images of whole ovaries has been documented in the literature. A significant broader impact of this research is the potential transferability of the proposed diagnostic system from transgenic mice to human organs, which would enable medical intervention from early detection of an extremely deadly affliction.
Collapse
Affiliation(s)
- David Schwartz
- University of Arizona, 1230 E Speedway Blvd, Tucson, AZ 85721 USA
| | - Travis W. Sawyer
- University of Arizona, 1230 E Speedway Blvd, Tucson, AZ 85721 USA
| | - Noah Thurston
- University of Arizona, 1230 E Speedway Blvd, Tucson, AZ 85721 USA
| | - Jennifer Barton
- University of Arizona, 1230 E Speedway Blvd, Tucson, AZ 85721 USA
| | - Gregory Ditzler
- University of Arizona, 1230 E Speedway Blvd, Tucson, AZ 85721 USA
| |
Collapse
|
10
|
Bouma B, de Boer J, Huang D, Jang I, Yonetsu T, Leggett C, Leitgeb R, Sampson D, Suter M, Vakoc B, Villiger M, Wojtkowski M. Optical coherence tomography. NATURE REVIEWS. METHODS PRIMERS 2022; 2:79. [PMID: 36751306 PMCID: PMC9901537 DOI: 10.1038/s43586-022-00162-2] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Optical coherence tomography (OCT) is a non-contact method for imaging the topological and internal microstructure of samples in three dimensions. OCT can be configured as a conventional microscope, as an ophthalmic scanner, or using endoscopes and small diameter catheters for accessing internal biological organs. In this Primer, we describe the principles underpinning the different instrument configurations that are tailored to distinct imaging applications and explain the origin of signal, based on light scattering and propagation. Although OCT has been used for imaging inanimate objects, we focus our discussion on biological and medical imaging. We examine the signal processing methods and algorithms that make OCT exquisitely sensitive to reflections as weak as just a few photons and that reveal functional information in addition to structure. Image processing, display and interpretation, which are all critical for effective biomedical imaging, are discussed in the context of specific applications. Finally, we consider image artifacts and limitations that commonly arise and reflect on future advances and opportunities.
Collapse
Affiliation(s)
- B.E. Bouma
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA,Institute for Medical Engineering and Physics, Massachusetts Institute of Technology, Cambridge, MA, USA,Harvard Medical School, Boston, MA, USA,Corresponding author:
| | - J.F. de Boer
- Department of Physics and Astronomy, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - D. Huang
- Casey Eye Institute, Oregon Health and Science University, Portland, OR, USA
| | - I.K. Jang
- Harvard Medical School, Boston, MA, USA,Cardiology Division, Massachusetts General Hospital, Boston, MA, USA
| | - T. Yonetsu
- Department of Cardiovascular Medicine, Tokyo Medical and Dental University
| | - C.L. Leggett
- Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN, USA
| | - R. Leitgeb
- Institute of Medical Physics, University of Vienna, Wien, Austria
| | - D.D. Sampson
- School of Physics and School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - M. Suter
- Harvard Medical School, Boston, MA, USA,Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - B. Vakoc
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - M. Villiger
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA,Harvard Medical School, Boston, MA, USA
| | - M. Wojtkowski
- Institute of Physical Chemistry and International Center for Translational Eye Research, Institute of Physical Chemistry, Polish Academy of Sciences, Warsaw, Poland,Faculty of Physics, Astronomy and Informatics, Nicolaus Copernicus University, Torun, Poland
| |
Collapse
|
11
|
Ding M, Pan SY, Huang J, Yuan C, Zhang Q, Zhu XL, Cai Y. Optical coherence tomography for identification of malignant pulmonary nodules based on random forest machine learning algorithm. PLoS One 2021; 16:e0260600. [PMID: 34971557 PMCID: PMC8719667 DOI: 10.1371/journal.pone.0260600] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 11/14/2021] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVE To explore the feasibility of using random forest (RF) machine learning algorithm in assessing normal and malignant peripheral pulmonary nodules based on in vivo endobronchial optical coherence tomography (EB-OCT). METHODS A total of 31 patients with pulmonary nodules were admitted to Department of Respiratory Medicine, Zhongda Hospital, Southeast University, and underwent chest CT, EB-OCT and biopsy. Attenuation coefficient and up to 56 different image features were extracted from A-line and B-scan of 1703 EB-OCT images. Attenuation coefficient and 29 image features with significant p-values were used to analyze the differences between normal and malignant samples. A RF classifier was trained using 70% images as training set, while 30% images were included in the testing set. The accuracy of the automated classification was validated by clinically proven pathological results. RESULTS Attenuation coefficient and 29 image features were found to present different properties with significant p-values between normal and malignant EB-OCT images. The RF algorithm successfully classified the malignant pulmonary nodules with sensitivity, specificity, and accuracy of 90.41%, 77.87% and 83.51% respectively. CONCLUSION It is clinically practical to distinguish the nature of pulmonary nodules by integrating EB-OCT imaging with automated machine learning algorithm. Diagnosis of malignant pulmonary nodules by analyzing quantitative features from EB-OCT images could be a potentially powerful way for early detection of lung cancer.
Collapse
Affiliation(s)
- Ming Ding
- Department of Respiratory Medicine, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
| | - Shi-yu Pan
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| | - Jing Huang
- Department of Respiratory Medicine, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
| | - Cheng Yuan
- Department of Respiratory Medicine, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
| | - Qiang Zhang
- Department of Respiratory Medicine, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
| | - Xiao-li Zhu
- Department of Respiratory Medicine, Southeast University Zhongda Hospital, Nanjing, Jiangsu, China
| | - Yan Cai
- School of Biological Sciences and Medical Engineering, Southeast University, Nanjing, Jiangsu, China
| |
Collapse
|
12
|
Tung ET, Yim KHC, Li CL, Cheung CY, Chan YC. Optical coherence tomography in peripheral arterial disease: A systematic review. Int J Clin Pract 2021; 75:e14628. [PMID: 34258814 DOI: 10.1111/ijcp.14628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Accepted: 07/01/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Optical coherence tomography (OCT) is a novel adjunct in the field of medicine. The objective of this systematic review was to evaluate the role of OCT in the field of contemporary endovascular surgery in terms of its utility in diagnostics and interventions in peripheral arterial disease (PAD). METHOD A systematic search of literature published from 1st January 2009 to 1st August 2019 was identified from PubMed, Ovid and Cochrane library database with reference to the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. The pre-defined selection inclusion criteria were clinical applications of OCT in vascular surgery in relation to diagnostics and interventions. Keywords used included OCT, PAD, endovascular procedures and atherectomy. RESULTS From an initial search of 310 articles, 27 articles were included in this systematic review: 15 articles were related to diagnostics: peripheral arterial disease was the most studied condition (n = 8), other conditions included in-stent restenosis (n = 4), fibromuscular dysplasia (n = 2) and acute limb ischaemia (n = 1); 12 articles were related to intervention: an OCT-guided crossing catheter was the most used assisting device (n = 10), with an OCT-guided atherectomy device used in four of these studies. CONCLUSION Although there is currently no level 1 evidence to suggest routine use of OCT in the diagnosis and treatment of PAD, current literature suggests that the use of OCT is safe and effective. The OCT real-time vessel wall structural images clearly distinguish normal anatomy from plaque pathology, and are of great advantage both in the accurate diagnosis and treatment of target lesion, especially in reducing the amount of radiation in the endovascular procedure.
Collapse
Affiliation(s)
- Ernest T Tung
- Division of Vascular & Endovascular Surgery, Department of Surgery, University of Hong Kong Medical Centre, Queen Mary Hospital, Hong Kong, China
| | - Kristy H C Yim
- Division of Vascular & Endovascular Surgery, Department of Surgery, University of Hong Kong Medical Centre, Queen Mary Hospital, Hong Kong, China
| | - Calston L Li
- Division of Vascular & Endovascular Surgery, Department of Surgery, University of Hong Kong Medical Centre, Queen Mary Hospital, Hong Kong, China
| | - Chun Yiu Cheung
- Division of Vascular & Endovascular Surgery, Department of Surgery, University of Hong Kong Medical Centre, Queen Mary Hospital, Hong Kong, China
| | - Yiu Che Chan
- Division of Vascular & Endovascular Surgery, Department of Surgery, University of Hong Kong Medical Centre, Queen Mary Hospital, Hong Kong, China
| |
Collapse
|
13
|
Jelly ET, Kwun J, Schmitz R, Farris AB, Steelman ZA, Sudan DL, Knechtle SJ, Wax A. Optical coherence tomography of small intestine allograft biopsies using a handheld surgical probe. JOURNAL OF BIOMEDICAL OPTICS 2021; 26:JBO-210108R. [PMID: 34561973 PMCID: PMC8461564 DOI: 10.1117/1.jbo.26.9.096008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
SIGNIFICANCE The current gold standard for monitoring small intestinal transplant (IT) rejection is endoscopic visual assessment and biopsy of suspicious lesions; however, these lesions are only superficially visualized by endoscopy. Invasive biopsies provide a coarse sampling of tissue health without depicting the true presence and extent of any pathology. Optical coherence tomography (OCT) presents a potential alternative approach with significant advantages over traditional white-light endoscopy. AIM The aim of our investigation was to evaluate OCT performance in distinguishing clinically relevant morphological features associated with IT graft failure. APPROACH OCT was applied to evaluate the small bowel tissues of two rhesus macaques that had undergone IT of the ileum. The traditional assessment from routine histological observation was compared with OCT captured using a handheld surgical probe during the days post-transplant and subsequently was compared with histophaology. RESULTS The reported OCT system was capable of identifying major biological landmarks in healthy intestinal tissue. Following IT, one nonhuman primate (NHP) model suffered a severe graft ischemia, and the second NHP graft failed due to acute cellular rejection. OCT images show visual evidence of correspondence with histological signs of IT rejection. CONCLUSIONS Results suggest that OCT imaging has significant potential to reveal morphological changes associated with IT rejection and to improve patient outcomes overall.
Collapse
Affiliation(s)
- Evan T. Jelly
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Jean Kwun
- Duke University Medical Center, Duke Transplant Center, Department of Surgery, Durham, United States
| | - Robin Schmitz
- Duke University Medical Center, Duke Transplant Center, Department of Surgery, Durham, United States
| | - Alton B. Farris
- Emory University, Department of Pathology, Atlanta, Georgia, United States
| | - Zachary A. Steelman
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| | - Debra L. Sudan
- Duke University Medical Center, Duke Transplant Center, Department of Surgery, Durham, United States
| | - Stuart J. Knechtle
- Duke University Medical Center, Duke Transplant Center, Department of Surgery, Durham, United States
| | - Adam Wax
- Duke University, Department of Biomedical Engineering, Durham, North Carolina, United States
| |
Collapse
|
14
|
Blessing K, Schirmer J, Sharma G, Singh K. Novel input polarisation independent endoscopic cross-polarised optical coherence tomography probe. JOURNAL OF BIOPHOTONICS 2020; 13:e202000134. [PMID: 32738024 DOI: 10.1002/jbio.202000134] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 07/15/2020] [Accepted: 07/22/2020] [Indexed: 06/11/2023]
Abstract
Lead by the original idea to perform noninvasive optical biopsies of various tissues, optical coherence tomography found numerous medical applications within the last two decades. The interference based imaging technique opens the possibility to visualise subcellular morphology up to an imaging depth of 3 mm and up to micron level axial and lateral resolution. The birefringence properties of the tissue are visualised with enhanced contrast using polarisation sensitive or cross-polarised optical coherence tomography (OCT) techniques. Although, it requires strict control over the polarisation states, resulting in several polarisation controlling elements. In this work, we propose a novel input-polarisation independent endoscopic system based on cross-polarised OCT. We tested the feasibility of our approach by measuring the polarisation change from a quarter-wave plate for different rotational angles. Further performance tests reveal a lateral resolution of 30 μm and a sensitivity of 103 dB. Images of the human nail bed and cow muscle tissue demonstrate the potential of the system to measure structural and birefringence properties of the tissue endoscopically.
Collapse
Affiliation(s)
- Katharina Blessing
- Research Group Singh, Max Planck Institute for the Science of Light, Erlangen, Germany
- Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Judith Schirmer
- Research Group Singh, Max Planck Institute for the Science of Light, Erlangen, Germany
- Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| | - Gargi Sharma
- Guck Division, Max Planck Institute for the Science of Light, Erlangen, Germany
| | - Kanwarpal Singh
- Research Group Singh, Max Planck Institute for the Science of Light, Erlangen, Germany
- Department of Physics, Friedrich-Alexander Universität Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
15
|
Wittig L, Betz C, Eggert D. Optical coherence tomography for tissue classification of the larynx in an outpatient setting‐a translational challenge on the verge of a resolution? TRANSLATIONAL BIOPHOTONICS 2020. [DOI: 10.1002/tbio.202000013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Lukas Wittig
- Universitätsklinikum Hamburg‐Eppendorf, Otorhinolaryngology, Head and Neck Surgery Hamburg Germany
| | - Christian Betz
- Universitätsklinikum Hamburg‐Eppendorf, Otorhinolaryngology, Head and Neck Surgery Hamburg Germany
| | - Dennis Eggert
- Universitätsklinikum Hamburg‐Eppendorf, Otorhinolaryngology, Head and Neck Surgery Hamburg Germany
| |
Collapse
|
16
|
Hohert G, Meyers R, Lam S, Vertikov A, Lee A, Lam S, Lane P. Feasibility of combined optical coherence tomography and autofluorescence imaging for visualization of needle biopsy placement. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:JBO-200078RR. [PMID: 33084256 PMCID: PMC7573340 DOI: 10.1117/1.jbo.25.10.106003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 10/06/2020] [Indexed: 06/11/2023]
Abstract
SIGNIFICANCE Diagnosis of suspicious lung nodules requires precise collection of relevant biopsies for histopathological analysis. Using optical coherence tomography and autofluorescence imaging (OCT-AFI) to improve diagnostic yield in parts of the lung inaccessible to larger imaging methods may allow for reducing complications related to the alternative of computed tomography-guided biopsy. AIM Feasibility of OCT-AFI combined with a commercially available lung biopsy needle was demonstrated for visualization of needle puncture sites in airways with diameters as small as 1.9 mm. APPROACH A miniaturized OCT-AFI imaging stylet was developed to be inserted through an 18G biopsy needle. We present design considerations and procedure development for image-guided biopsy. Ex vivo and in vivo porcine studies were performed to demonstrate the feasibility of the procedure and the device. RESULTS OCT-AFI scans were obtained ex vivo and in vivo. Discrimination of pullback site is clear. CONCLUSIONS Use of the device is shown to be feasible in vivo. Images obtained show the stylet is effective at providing structural information at the puncture site that can be used to assess the diagnostic potential of the sample prior to collection.
Collapse
Affiliation(s)
- Geoffrey Hohert
- BC Cancer Research Centre, Integrative Oncology, Vancouver, British Columbia, Canada
| | - Renelle Meyers
- University of British Columbia, Department of Medicine, Vancouver, British Columbia, Canada
| | - Sylvia Lam
- BC Cancer Research Centre, Integrative Oncology, Vancouver, British Columbia, Canada
| | - Andrei Vertikov
- LX Medical Corporation, Westwood, Massachusetts, United States
| | - Anthony Lee
- BC Cancer Research Centre, Integrative Oncology, Vancouver, British Columbia, Canada
| | - Stephen Lam
- BC Cancer Research Centre, Integrative Oncology, Vancouver, British Columbia, Canada
- University of British Columbia, Department of Medicine, Vancouver, British Columbia, Canada
| | - Pierre Lane
- BC Cancer Research Centre, Integrative Oncology, Vancouver, British Columbia, Canada
- Simon Fraser University, School of Engineering Science, Burnaby, British Columbia, Canada
| |
Collapse
|
17
|
Criner GJ, Eberhardt R, Fernandez-Bussy S, Gompelmann D, Maldonado F, Patel N, Shah PL, Slebos DJ, Valipour A, Wahidi MM, Weir M, Herth FJ. Interventional Bronchoscopy. Am J Respir Crit Care Med 2020; 202:29-50. [PMID: 32023078 DOI: 10.1164/rccm.201907-1292so] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
For over 150 years, bronchoscopy, especially flexible bronchoscopy, has been a mainstay for airway inspection, the diagnosis of airway lesions, therapeutic aspiration of airway secretions, and transbronchial biopsy to diagnose parenchymal lung disorders. Its utility for the diagnosis of peripheral pulmonary nodules and therapeutic treatments besides aspiration of airway secretions, however, has been limited. Challenges to the wider use of flexible bronchoscopy have included difficulty in navigating to the lung periphery, the avoidance of vasculature structures when performing diagnostic biopsies, and the ability to biopsy a lesion under direct visualization. The last 10-15 years have seen major advances in thoracic imaging, navigational platforms to direct the bronchoscopist to lung lesions, and the ability to visualize lesions during biopsy. Moreover, multiple new techniques have either become recently available or are currently being investigated to treat a broad range of airway and lung parenchymal diseases, such as asthma, emphysema, and chronic bronchitis, or to alleviate recurrent exacerbations. New bronchoscopic therapies are also being investigated to not only diagnose, but possibly treat, malignant peripheral lung nodules. As a result, flexible bronchoscopy is now able to provide a new and expanding armamentarium of diagnostic and therapeutic tools to treat patients with a variety of lung diseases. This State-of-the-Art review succinctly reviews these techniques and provides clinicians an organized approach to their role in the diagnosis and treatment of a range of lung diseases.
Collapse
Affiliation(s)
- Gerard J Criner
- Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Ralf Eberhardt
- Pneumology and Critical Care Medicine, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
| | | | - Daniela Gompelmann
- Pneumology and Critical Care Medicine, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
| | - Fabien Maldonado
- Department of Medicine and Department of Thoracic Surgery, Vanderbilt University, Nashville, Tennessee
| | - Neal Patel
- Division of Pulmonary Medicine, Mayo Clinic, Jacksonville, Florida
| | - Pallav L Shah
- Respiratory Medicine at the Royal Brompton Hospital and National Heart & Lung Institute, Imperial College, London, United Kingdom
| | - Dirk-Jan Slebos
- Department of Pulmonary Diseases, University Medical Center Groningen, University of Groningen, Groningen, the Netherlands
| | - Arschang Valipour
- Department of Respiratory and Critical Care Medicine, Krankenhaus Nord, Vienna, Austria; and
| | - Momen M Wahidi
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Duke University School of Medicine, Durham, North Carolina
| | - Mark Weir
- Lewis Katz School of Medicine at Temple University, Philadelphia, Pennsylvania
| | - Felix J Herth
- Pneumology and Critical Care Medicine, Thoraxklinik, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
18
|
Chandrika S, Yarmus L. Recent developments in advanced diagnostic bronchoscopy. Eur Respir Rev 2020; 29:29/157/190184. [PMID: 32878972 DOI: 10.1183/16000617.0184-2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 03/24/2020] [Indexed: 12/25/2022] Open
Abstract
The field of bronchoscopy is advancing rapidly. Minimally invasive diagnostic approaches are replacing more aggressive surgical ones for the diagnosis and staging of lung cancer. Evolving diagnostic modalities allow early detection and serve as an adjunct to early treatment, ideally influencing patient outcomes. In this review, we will elaborate on recent bronchoscopic developments as well as some promising investigational tools and approaches in development. We aim to offer a concise overview of the significant advances in the field of advanced bronchoscopy and to put them into clinical context. We will also address potential complications and current diagnostic challenges associated with sampling central and peripheral lung lesions.
Collapse
Affiliation(s)
- Sharad Chandrika
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Lonny Yarmus
- Division of Pulmonary and Critical Care Medicine, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
19
|
Zhou ZQ, Su ZQ, Sun W, Zhong ML, Chen Y, Zhong CH, Chen HJ, Li SY. Postintubation Tracheal Stenosis Evaluated by Endobronchial Optical Coherence Tomography: A Canine Model Study. Respiration 2020; 99:500-507. [DOI: 10.1159/000506882] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 02/27/2020] [Indexed: 11/19/2022] Open
|
20
|
Bec J, Li C, Marcu L. Broadband, freeform focusing micro-optics for a side-viewing imaging catheter. OPTICS LETTERS 2019; 44:4961-4964. [PMID: 31613239 PMCID: PMC9010228 DOI: 10.1364/ol.44.004961] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/30/2019] [Indexed: 05/28/2023]
Abstract
Successful implementation of a catheter-based imaging system relies on the integration of high-performance miniaturized distal end optics. Typically, compensation of chromatic dispersion, as well as astigmatism introduced by the device's sheath, can be addressed only by combining multiple optical elements, adversely impacting size and manufacturability. Here, we present a 300×300×800 μm3 monolithic optic that provides high optical performances over an extended wavelength range (near UV-visible-IR) with minimal chromatic aberrations. The design of the optic, fully optimized using standard optical simulation tools, provides the ability to freely determine aperture and working distance. Manufacturing is cost effective and suited for prototyping and production alike. The experimental characterization of the optic demonstrates a good match with simulation results and performances well suited to both optical coherence tomography and fluorescence imaging, thus paving the way for high-performance multimodal endoscopy systems.
Collapse
Affiliation(s)
- Julien Bec
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
- Institute of Physical Chemistry and Abbe Center of Photonics (IPC), Friedrich-Schiller-University, D-07743 Jena, Germany
- Leibniz Institute of Photonic Technology, D-07745 Jena, Germany
| | - Cai Li
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| | - Laura Marcu
- Department of Biomedical Engineering, University of California, Davis, California 95616, USA
| |
Collapse
|
21
|
Goorsenberg A, Kalverda KA, Annema J, Bonta P. Advances in Optical Coherence Tomography and Confocal Laser Endomicroscopy in Pulmonary Diseases. Respiration 2019; 99:190-205. [PMID: 31593955 DOI: 10.1159/000503261] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 09/05/2019] [Indexed: 12/13/2022] Open
Abstract
Diagnosing and monitoring pulmonary diseases is highly dependent on imaging, physiological function tests and tissue sampling. Optical coherence tomography (OCT) and confocal laser endomicroscopy (CLE) are novel imaging techniques with near-microscopic resolution that can be easily and safely combined with conventional bronchoscopy. Disease-related pulmonary anatomical compartments can be visualized, real time, using these techniques. In obstructive lung diseases, airway wall layers and related structural remodelling can be identified and quantified. In malignant lung disease, normal and malignant areas of the central airways, lung parenchyma, lymph nodes and pleura can be discriminated. A growing number of interstitial lung diseases (ILDs) have been visualized using OCT or CLE. Several ILD-associated structural changes can be imaged: fibrosis, cellular infiltration, bronchi(ol)ectasis, cysts and microscopic honeycombing. Although not yet implemented in clinical practice, OCT and CLE have the potential to improve detection and monitoring pulmonary diseases and can contribute in unravelling the pathophysiology of disease and mechanism of action of novel treatments. Indeed, assessment of the airway wall layers with OCT might be helpful when evaluating treatments targeting airway remodelling. By visualizing individual malignant cells, CLE has the potential as a real-time lung cancer detection tool. In the future, both techniques could be combined with laser-enhanced fluorescent-labelled tracer detection. This review discusses the value of OCT and CLE in pulmonary medicine by summarizing the current evidence and elaborating on future perspectives.
Collapse
Affiliation(s)
- Annika Goorsenberg
- Department of Pulmonology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands,
| | - Kirsten A Kalverda
- Department of Pulmonology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Jouke Annema
- Department of Pulmonology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| | - Peter Bonta
- Department of Pulmonology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
22
|
Hariri LP, Adams DC, Applegate MB, Miller AJ, Roop BW, Villiger M, Bouma BE, Suter MJ. Distinguishing Tumor from Associated Fibrosis to Increase Diagnostic Biopsy Yield with Polarization-Sensitive Optical Coherence Tomography. Clin Cancer Res 2019; 25:5242-5249. [PMID: 31175092 DOI: 10.1158/1078-0432.ccr-19-0566] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Revised: 04/09/2019] [Accepted: 06/03/2019] [Indexed: 12/20/2022]
Abstract
PURPOSE With recent advancements in personalized medicine, biopsies must contain sufficient tumor for histologic diagnosis and molecular testing. However, inadvertent biopsy of tumor-associated fibrosis compromises tumor yield, resulting in delayed diagnoses and/or repeat procedures when additional tumor is needed. The ability to differentiate tumor from fibrosis intraprocedurally during biopsy could significantly increase tumor yield. Polarization-sensitive optical coherence tomography (PS-OCT) is an imaging modality that is endoscope- and/or needle-compatible, and provides large volumetric views of tissue microstructure with high resolution (∼10 μm) while simultaneously measuring birefringence of organized tissues such as collagen. We aim to determine whether PS-OCT can accurately detect and distinguish tumor-associated fibrosis from tumor. EXPERIMENTAL DESIGN PS-OCT was obtained ex vivo in 64 lung nodule samples. PS-OCT birefringence was measured and correlated to collagen content in precisely matched histology, quantified on picrosirius red (PSR) staining. RESULTS There was a strong positive correlation between PS-OCT measurement of birefringent fibrosis and total collagen content by PSR (r = 0.793; P < 0.001). In addition, PS-OCT was able to accurately classify tumor regions with >20% fibrosis from those with low fibrosis (≤20%) that would likely yield higher tumor content (P < 0.0001). CONCLUSIONS PS-OCT enables accurate fibrosis detection and can distinguish tumor regions with low fibrosis. PS-OCT has significant potential for clinical impact, as the ability to differentiate tumor from fibrosis could be used to guide intraprocedural tissue sampling in vivo, or for rapid biopsy adequacy assessment ex vivo, to increase diagnostic tumor yield essential for patient care and research.
Collapse
Affiliation(s)
- Lida P Hariri
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts. .,Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - David C Adams
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Matthew B Applegate
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Alyssa J Miller
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Benjamin W Roop
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts.,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Martin Villiger
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Brett E Bouma
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Melissa J Suter
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital, Boston, Massachusetts. .,Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
23
|
Feroldi F, Willemse J, Davidoiu V, Gräfe MGO, van Iperen DJ, Goorsenberg AWM, Annema JT, Daniels JMA, Bonta PI, de Boer JF. In vivo multifunctional optical coherence tomography at the periphery of the lungs. BIOMEDICAL OPTICS EXPRESS 2019; 10:3070-3091. [PMID: 31259075 PMCID: PMC6583343 DOI: 10.1364/boe.10.003070] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/13/2019] [Accepted: 05/14/2019] [Indexed: 05/04/2023]
Abstract
Remodeling of tissue, such as airway smooth muscle (ASM) and extracellular matrix, is considered a key feature of airways disease. No clinically accepted diagnostic method is currently available to assess airway remodeling or the effect of treatment modalities such as bronchial thermoplasty in asthma, other than invasive airway biopsies. Optical coherence tomography (OCT) generates cross-sectional, near-histological images of airway segments and enables identification and quantification of airway wall layers based on light scattering properties only. In this study, we used a custom motorized OCT probe that combines standard and polarization sensitive OCT (PS-OCT) to visualize birefringent tissue in vivo in the airway wall of a patient with severe asthma in a minimally invasive manner. We used optic axis uniformity (OAxU) to highlight the presence of uniformly arranged fiber-like tissue, helping visualizing the abundance of ASM and connective tissue structures. Attenuation coefficient images of the airways are presented for the first time, showing superior architectural contrast compared to standard OCT images. A novel segmentation algorithm was developed to detect the surface of the endoscope sheath and the surface of the tissue. PS-OCT is an innovative imaging technique that holds promise to assess airway remodeling including ASM and connective tissue in a minimally invasive, real-time manner.
Collapse
Affiliation(s)
- Fabio Feroldi
- LaserLaB Amsterdam and Department of Physics and Astronomy, VU University Amsterdam, de Boelelaan 1081, 1081HV, Amsterdam, the Netherlands
| | - Joy Willemse
- LaserLaB Amsterdam and Department of Physics and Astronomy, VU University Amsterdam, de Boelelaan 1081, 1081HV, Amsterdam, the Netherlands
- These authors contributed equally
| | - Valentina Davidoiu
- LaserLaB Amsterdam and Department of Physics and Astronomy, VU University Amsterdam, de Boelelaan 1081, 1081HV, Amsterdam, the Netherlands
- These authors contributed equally
| | - Maximilian G. O. Gräfe
- LaserLaB Amsterdam and Department of Physics and Astronomy, VU University Amsterdam, de Boelelaan 1081, 1081HV, Amsterdam, the Netherlands
| | - Dirck J. van Iperen
- LaserLaB Amsterdam and Department of Physics and Astronomy, VU University Amsterdam, de Boelelaan 1081, 1081HV, Amsterdam, the Netherlands
| | - Annika W. M. Goorsenberg
- Amsterdam University Medical Center, Department of Pulmonology, University of Amsterdam, Amsterdam, the Netherlands
| | - Jouke T. Annema
- Amsterdam University Medical Center, Department of Pulmonology, University of Amsterdam, Amsterdam, the Netherlands
| | - Johannes M. A. Daniels
- Amsterdam University Medical Center, Department of Pulmonology, VUmc Location, Amsterdam, the Netherlands
| | - Peter I. Bonta
- Amsterdam University Medical Center, Department of Pulmonology, University of Amsterdam, Amsterdam, the Netherlands
| | - Johannes F. de Boer
- LaserLaB Amsterdam and Department of Physics and Astronomy, VU University Amsterdam, de Boelelaan 1081, 1081HV, Amsterdam, the Netherlands
| |
Collapse
|
24
|
Sawyer TW, Rice PFS, Sawyer DM, Koevary JW, Barton JK. Evaluation of segmentation algorithms for optical coherence tomography images of ovarian tissue. J Med Imaging (Bellingham) 2019; 6:014002. [PMID: 30746391 PMCID: PMC6350616 DOI: 10.1117/1.jmi.6.1.014002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Accepted: 12/27/2018] [Indexed: 12/31/2022] Open
Abstract
Ovarian cancer has the lowest survival rate among all gynecologic cancers predominantly due to late diagnosis. Early detection of ovarian cancer can increase 5-year survival rates from 40% up to 92%, yet no reliable early detection techniques exist. Optical coherence tomography (OCT) is an emerging technique that provides depth-resolved, high-resolution images of biological tissue in real-time and demonstrates great potential for imaging of ovarian tissue. Mouse models are crucial to quantitatively assess the diagnostic potential of OCT for ovarian cancer imaging; however, due to small organ size, the ovaries must first be separated from the image background using the process of segmentation. Manual segmentation is time-intensive, as OCT yields three-dimensional data. Furthermore, speckle noise complicates OCT images, frustrating many processing techniques. While much work has investigated noise-reduction and automated segmentation for retinal OCT imaging, little has considered the application to the ovaries, which exhibit higher variance and inhomogeneity than the retina. To address these challenges, we evaluate a set of algorithms to segment OCT images of mouse ovaries. We examine five preprocessing techniques and seven segmentation algorithms. While all preprocessing methods improve segmentation, Gaussian filtering is most effective, showing an improvement of 32 % ± 1.2 % . Of the segmentation algorithms, active contours performs best, segmenting with an accuracy of 94.8 % ± 1.2 % compared with manual segmentation. Even so, further optimization could lead to maximizing the performance for segmenting OCT images of the ovaries.
Collapse
Affiliation(s)
- Travis W. Sawyer
- University of Arizona, College of Optical Sciences, Tucson, Arizona, United States
| | - Photini F. S. Rice
- University of Arizona, Department of Biomedical Engineering, Tucson, Arizona, United States
| | | | - Jennifer W. Koevary
- University of Arizona, Department of Biomedical Engineering, Tucson, Arizona, United States
| | - Jennifer K. Barton
- University of Arizona, College of Optical Sciences, Tucson, Arizona, United States
- University of Arizona, Department of Biomedical Engineering, Tucson, Arizona, United States
| |
Collapse
|
25
|
Wells WA, Thrall M, Sorokina A, Fine J, Krishnamurthy S, Haroon A, Rao B, Shevchuk MM, Wolfsen HC, Tearney GJ, Hariri LP. In Vivo and Ex Vivo Microscopy: Moving Toward the Integration of Optical Imaging Technologies Into Pathology Practice. Arch Pathol Lab Med 2018; 143:288-298. [PMID: 30525931 DOI: 10.5858/arpa.2018-0298-ra] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The traditional surgical pathology assessment requires tissue to be removed from the patient, then processed, sectioned, stained, and interpreted by a pathologist using a light microscope. Today, an array of alternate optical imaging technologies allow tissue to be viewed at high resolution, in real time, without the need for processing, fixation, freezing, or staining. Optical imaging can be done in living patients without tissue removal, termed in vivo microscopy, or also in freshly excised tissue, termed ex vivo microscopy. Both in vivo and ex vivo microscopy have tremendous potential for clinical impact in a wide variety of applications. However, in order for these technologies to enter mainstream clinical care, an expert will be required to assess and interpret the imaging data. The optical images generated from these imaging techniques are often similar to the light microscopic images that pathologists already have expertise in interpreting. Other clinical specialists do not have this same expertise in microscopy, therefore, pathologists are a logical choice to step into the developing role of microscopic imaging expert. Here, we review the emerging technologies of in vivo and ex vivo microscopy in terms of the technical aspects and potential clinical applications. We also discuss why pathologists are essential to the successful clinical adoption of such technologies and the educational resources available to help them step into this emerging role.
Collapse
Affiliation(s)
- Wendy A Wells
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Michael Thrall
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Anastasia Sorokina
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Jeffrey Fine
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Savitri Krishnamurthy
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Attiya Haroon
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Babar Rao
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Maria M Shevchuk
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Herbert C Wolfsen
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Guillermo J Tearney
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| | - Lida P Hariri
- From the Department of Pathology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire (Dr Wells); the Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, Texas (Dr Thrall); the Department of Pathology, University of Illinois at Chicago, Chicago (Dr Sorokina); the Department of Pathology, University of Pittsburgh Medical Center, Pittsburgh, Pennsylvania (Dr Fine); the Department of Pathology, The University of Texas MD Anderson Cancer Center, Houston (Dr Krishnamurthy); the Department of Dermatology, Rutgers-Robert Wood Johnson Medical School, Somerset, New Jersey (Drs Haroon and Rao); the Department of Pathology, Weill Cornell Medical College, New York, New York (Dr Shevchuk); the Division of Gastroenterology & Hepatology, Mayo Clinic, Jacksonville, Florida (Dr Wolfsen); and the Wellman Center for Photomedicine (Dr Tearney) and the Department of Pathology (Drs Tearney and Hariri), Massachusetts General Hospital, Harvard Medical School, Boston
| |
Collapse
|
26
|
Sawyer TW, Chandra S, Rice PFS, Koevary JW, Barton JK. Three-dimensional texture analysis of optical coherence tomography images of ovarian tissue. Phys Med Biol 2018; 63:235020. [PMID: 30511664 PMCID: PMC6934175 DOI: 10.1088/1361-6560/aaefd2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Ovarian cancer has the lowest survival rate among all gynecologic cancers due to predominantly late diagnosis. Optical coherence tomography (OCT) has been applied successfully to experimentally image the ovaries in vivo; however, a robust method for analysis is still required to provide quantitative diagnostic information. Recently, texture analysis has proved to be a useful tool for tissue characterization; unfortunately, existing work in the scope of OCT ovarian imaging is limited to only analyzing 2D sub-regions of the image data, discarding information encoded in the full image area, as well as in the depth dimension. Here we address these challenges by testing three implementations of texture analysis for the ability to classify tissue type. First, we test the traditional case of extracted 2D regions of interest; then we extend this to include the entire image area by segmenting the organ from the background. Finally, we conduct a full volumetric analysis of the image volume using 3D segmented data. For each case, we compute features based on the Grey-Level Co-occurence Matrix and also by introducing a new approach that evaluates the frequency distribution in the image by computing the energy density. We test these methods on a mouse model of ovarian cancer to differentiate between age, genotype, and treatment. The results show that the 3D application of texture analysis is most effective for differentiating tissue types, yielding an average classification accuracy of 78.6%. This is followed by the analysis in 2D with the segmented image volume, yielding an average accuracy of 71.5%. Both of these improve on the traditional approach of extracting square regions of interest, which yield an average classification accuracy of 67.7%. Thus, applying texture analysis in 3D with a fully segmented image volume is the most robust approach to quantitatively characterizing ovarian tissue.
Collapse
Affiliation(s)
- Travis W Sawyer
- College of Optical Sciences, The University of Arizona, Tucson 85721, AZ, United States of America
| | | | | | | | | |
Collapse
|
27
|
Needle-based Optical Coherence Tomography to Guide Transbronchial Lymph Node Biopsy. J Bronchology Interv Pulmonol 2018; 25:189-197. [PMID: 29659420 DOI: 10.1097/lbr.0000000000000491] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Transbronchial needle aspiration (TBNA), often used to sample lymph nodes for lung cancer staging, is subject to sampling error even when performed with endobronchial ultrasound. Optical coherence tomography (OCT) is a high-resolution imaging modality that rapidly generates helical cross-sectional images. We aim to determine if needle-based OCT can provide microstructural information in lymph nodes that may be used to guide TBNA, and improve sampling error. METHODS We performed ex vivo needle-based OCT on thoracic lymph nodes from patients with and without known lung cancer. OCT imaging features were compared against matched histology. RESULTS OCT imaging was performed in 26 thoracic lymph nodes, including 6 lymph nodes containing metastatic carcinoma. OCT visualized lymphoid follicles, adipose tissue, pigment-laden histiocytes, and blood vessels. OCT features of metastatic carcinoma were distinct from benign lymph nodes, with microarchitectural features that reflected the morphology of the carcinoma subtype. OCT was also able to distinguish lymph node from adjacent airway wall. CONCLUSIONS Our results demonstrate that OCT provides critical microstructural information that may be useful to guide TBNA lymph node sampling, as a complement to endobronchial ultrasound. In vivo studies are needed to further evaluate the clinical utility of OCT in thoracic lymph node assessment.
Collapse
|
28
|
|
29
|
Abstract
INTRODUCTION The field of interventional pulmonology (IP) is a rapidly maturing subspecialty of pulmonary medicine, which emphasizes advanced diagnostic and therapeutic bronchoscopy for the evaluation and management of central airway obstruction, mediastinal/hilar adenopathy and lung nodules/masses, as well as minimally invasive diagnostic and therapeutic pleural procedures. Areas covered: This review describes advances in diagnostic and therapeutic bronchoscopic techniques. Expert commentary: In the past decade, there has been a remarkable growth in available technology and equipment, as well as clinical and translational research efforts focused on patient-centered outcomes. Furthermore, the recent establishment of a uniform accreditation standard for all IP fellowship programs in the United States was an important step in the continued evolution of this subspecialty of pulmonary medicine.
Collapse
Affiliation(s)
- Diana H Yu
- a School of Medicine, Division of Pulmonary/Critical Care Medicine, Section of Interventional Pulmonology , Johns Hopkins University , Baltimore , USA
| | - David Feller-Kopman
- a School of Medicine, Division of Pulmonary/Critical Care Medicine, Section of Interventional Pulmonology , Johns Hopkins University , Baltimore , USA
| |
Collapse
|
30
|
Wang J, Xu Y, Boppart SA. Review of optical coherence tomography in oncology. JOURNAL OF BIOMEDICAL OPTICS 2017; 22:1-23. [PMID: 29274145 PMCID: PMC5741100 DOI: 10.1117/1.jbo.22.12.121711] [Citation(s) in RCA: 100] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 12/04/2017] [Indexed: 05/06/2023]
Abstract
The application of optical coherence tomography (OCT) in the field of oncology has been prospering over the past decade. OCT imaging has been used to image a broad spectrum of malignancies, including those arising in the breast, brain, bladder, the gastrointestinal, respiratory, and reproductive tracts, the skin, and oral cavity, among others. OCT imaging has initially been applied for guiding biopsies, for intraoperatively evaluating tumor margins and lymph nodes, and for the early detection of small lesions that would often not be visible on gross examination, tasks that align well with the clinical emphasis on early detection and intervention. Recently, OCT imaging has been explored for imaging tumor cells and their dynamics, and for the monitoring of tumor responses to treatments. This paper reviews the evolution of OCT technologies for the clinical application of OCT in surgical and noninvasive interventional oncology procedures and concludes with a discussion of the future directions for OCT technologies, with particular emphasis on their applications in oncology.
Collapse
Affiliation(s)
- Jianfeng Wang
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
| | - Yang Xu
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
| | - Stephen A. Boppart
- University of Illinois at Urbana-Champaign, Beckman Institute for Advanced Science and Technology, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Electrical and Computer Engineering, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Department of Bioengineering, Urbana, Illinois, United States
- University of Illinois at Urbana–Champaign, Carle–Illinois College of Medicine, Urbana, Illinois, United States
- Address all correspondence to: Stephen A. Boppart, E-mail:
| |
Collapse
|
31
|
Optical coherence tomography for identification and quantification of human airway wall layers. PLoS One 2017; 12:e0184145. [PMID: 28981500 PMCID: PMC5628810 DOI: 10.1371/journal.pone.0184145] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 08/18/2017] [Indexed: 11/19/2022] Open
Abstract
Background High-resolution computed tomography has limitations in the assessment of airway wall layers and related remodeling in obstructive lung diseases. Near infrared-based optical coherence tomography (OCT) is a novel imaging technique that combined with bronchoscopy generates highly detailed images of the airway wall. The aim of this study is to identify and quantify human airway wall layers both ex-vivo and in-vivo by OCT and correlate these to histology. Methods Patients with lung cancer, prior to lobectomy, underwent bronchoscopy including in-vivo OCT imaging. Ex-vivo OCT imaging was performed in the resected lung lobe after needle insertion for matching with histology. Airway wall layer perimeters and their corresponding areas were assessed by two independent observers. Airway wall layer areas (total wall area, mucosal layer area and submucosal muscular layer area) were calculated. Results 13 airways of 5 patients were imaged by OCT. Histology was matched with 51 ex-vivo OCT images and 39 in-vivo OCT images. A significant correlation was found between ex-vivo OCT imaging and histology, in-vivo OCT imaging and histology and ex-vivo OCT imaging and in-vivo OCT imaging for all measurements (p < 0.0001 all comparisons). A minimal bias was seen in Bland-Altman analysis. High inter-observer reproducibility with intra-class correlation coefficients all above 0.90 were detected. Conclusions OCT is an accurate and reproducible imaging technique for identification and quantification of airway wall layers and can be considered as a promising minimal-invasive imaging technique to identify and quantify airway remodeling in obstructive lung diseases.
Collapse
|
32
|
Preinvasive disease of the airway. Cancer Treat Rev 2017; 58:77-90. [DOI: 10.1016/j.ctrv.2017.05.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 05/23/2017] [Accepted: 05/27/2017] [Indexed: 01/20/2023]
|
33
|
Gora MJ, Suter MJ, Tearney GJ, Li X. Endoscopic optical coherence tomography: technologies and clinical applications [Invited]. BIOMEDICAL OPTICS EXPRESS 2017; 8:2405-2444. [PMID: 28663882 PMCID: PMC5480489 DOI: 10.1364/boe.8.002405] [Citation(s) in RCA: 168] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 05/07/2023]
Abstract
In this paper, we review the current state of technology development and clinical applications of endoscopic optical coherence tomography (OCT). Key design and engineering considerations are discussed for most OCT endoscopes, including side-viewing and forward-viewing probes, along with different scanning mechanisms (proximal-scanning versus distal-scanning). Multi-modal endoscopes that integrate OCT with other imaging modalities are also discussed. The review of clinical applications of endoscopic OCT focuses heavily on diagnosis of diseases and guidance of interventions. Representative applications in several organ systems are presented, such as in the cardiovascular, digestive, respiratory, and reproductive systems. A brief outlook of the field of endoscopic OCT is also discussed.
Collapse
Affiliation(s)
- Michalina J Gora
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- ICube Laboratory, CNRS, Strasbourg University, 1 Place de l'Hopital, Strasbourg 67091, France
| | - Melissa J Suter
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- Department of Medicine, Division of Pulmonary and Critical Care, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
| | - Guillermo J Tearney
- Wellman Center for Photomedicine, Massachusetts General Hospital and Harvard Medical School, 55 Fruit Street, Boston, MA 02114, USA
- Harvard Medical School, 25 Shattuck Street, Boston, MA 02115, USA
- Department of Pathology, Massachusetts General Hospital, 55 Fruit Street, Boston, MA 02114, USA
| | - Xingde Li
- Department of Biomedical Engineering, Department of Electrical and Computer Engineering, and Department of Oncology, Johns Hopkins University, 720 Rutland Avenue, Traylor 710, Baltimore, MD 21205, USA
| |
Collapse
|
34
|
Optical coherence tomography and confocal laser endomicroscopy in pulmonary diseases. Curr Opin Pulm Med 2017; 23:275-283. [DOI: 10.1097/mcp.0000000000000375] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
35
|
Crossley D, Turner A, Subramanian D. Phenotyping emphysema and airways disease: Clinical value of quantitative radiological techniques. World J Respirol 2017; 7:1-16. [DOI: 10.5320/wjr.v7.i1.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 11/23/2016] [Accepted: 01/14/2017] [Indexed: 02/06/2023] Open
Abstract
The pathophysiology of chronic obstructive pulmonary disease (COPD) and Alpha one antitrypsin deficiency is increasingly recognised as complex such that lung function alone is insufficient for early detection, clinical categorisation and dictating management. Quantitative imaging techniques can detect disease earlier and more accurately, and provide an objective tool to help phenotype patients into predominant airways disease or emphysema. Computed tomography provides detailed information relating to structural and anatomical changes seen in COPD, and magnetic resonance imaging/nuclear imaging gives functional and regional information with regards to ventilation and perfusion. It is likely imaging will become part of routine clinical practice, and an understanding of the implications of the data is essential. This review discusses technical and clinical aspects of quantitative imaging in obstructive airways disease.
Collapse
|
36
|
Guay-Lord R, Attendu X, Lurie KL, Majeau L, Godbout N, Bowden AKE, Strupler M, Boudoux C. Combined optical coherence tomography and hyperspectral imaging using a double-clad fiber coupler. JOURNAL OF BIOMEDICAL OPTICS 2016; 21:116008. [PMID: 27829103 DOI: 10.1117/1.jbo.21.11.116008] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/07/2016] [Indexed: 05/05/2023]
Abstract
This work demonstrates the combination of optical coherence tomography (OCT) and hyperspectral imaging (HSI) using a double-clad optical fiber coupler. The single-mode core of the fiber is used for OCT imaging, while the inner cladding of the double-clad fiber provides an efficient way to capture the reflectance spectrum of the sample. The combination of both methods enables three-dimensional acquisition of the sample morphology with OCT, enhanced with complementary molecular information contained in the hyperspectral image. The HSI data can be used to highlight the presence of specific molecules with characteristic absorption peaks or to produce true color images overlaid on the OCT volume for improved tissue identification by the clinician. Such a system could be implemented in a number of clinical endoscopic applications and could improve the current practice in tissue characterization, diagnosis, and surgical guidance.
Collapse
Affiliation(s)
- Robin Guay-Lord
- École Polytechnique Montreal, Department of Engineering Physics, C.P. 6079 Succ. Centre-ville, Montréal, Canada
| | - Xavier Attendu
- École Polytechnique Montreal, Department of Engineering Physics, C.P. 6079 Succ. Centre-ville, Montréal, Canada
| | - Kristen L Lurie
- Stanford University, E.L. Ginzton Laboratory, 350 Serra Mall, Packa Road, Room 361, Stanford, California 94305, United States
| | - Lucas Majeau
- École Polytechnique Montreal, Department of Engineering Physics, C.P. 6079 Succ. Centre-ville, Montréal, Canada
| | - Nicolas Godbout
- École Polytechnique Montreal, Department of Engineering Physics, C.P. 6079 Succ. Centre-ville, Montréal, CanadacCastor Optics, 5155 Avenue Decelles 1251, Pavillon J-Armand Bombardier, Montréal, Québec H3T 2B1, Canada
| | - Audrey K Ellerbee Bowden
- Stanford University, E.L. Ginzton Laboratory, 350 Serra Mall, Packa Road, Room 361, Stanford, California 94305, United States
| | - Mathias Strupler
- École Polytechnique Montreal, Department of Engineering Physics, C.P. 6079 Succ. Centre-ville, Montréal, Canada
| | - Caroline Boudoux
- École Polytechnique Montreal, Department of Engineering Physics, C.P. 6079 Succ. Centre-ville, Montréal, CanadacCastor Optics, 5155 Avenue Decelles 1251, Pavillon J-Armand Bombardier, Montréal, Québec H3T 2B1, Canada
| |
Collapse
|
37
|
Andolfi M, Potenza R, Capozzi R, Liparulo V, Puma F, Yasufuku K. The role of bronchoscopy in the diagnosis of early lung cancer: a review. J Thorac Dis 2016; 8:3329-3337. [PMID: 28066614 PMCID: PMC5179455 DOI: 10.21037/jtd.2016.11.81] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Accepted: 10/20/2016] [Indexed: 12/25/2022]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide with an overall 5-year survival rate of 17% after diagnoses. Indeed many patients tend to have a very poor prognosis, due to being diagnosed at an advanced stage. Conversely patients who are diagnosed at an early stage have a 5-year survival >70%, indicating that early detection of lung cancer is crucial to improve survival. Although flexible bronchoscopy is a relatively non-invasive procedure for patients suspected of having lung cancer, only 29% of carcinoma in situ (CIS) and 69% of microinvasive tumors were detectable using white light bronchoscopy (WLB) alone. As a result, in the past two decades, new bronchoscopic techniques have been developed to increase the yield and diagnostic accuracy, such as autofluorescence bronchoscopy (AFB), narrow band imaging (NBI) and high magnification bronchovideoscopy (HMB). However, due to the low specificity and the limitation to detect only proximal bronchial tree, new probe-based technologies have been introduced: radial endobronchial ultrasound (R-EBUS), optical coherence tomography (OCT), confocal laser endomicroscopy (CLE) and laser Raman spectroscopy (LRS). To date, although tissue biopsy remains the gold standard for diagnosing malignant/premalignant airway disease and some techniques are still investigational, bronchoscopic technologies can be considered the safest and most accurate tools to evaluate both central and distal airway mucosa.
Collapse
Affiliation(s)
- Marco Andolfi
- Division of Thoracic Surgery, S. Maria della Misericordia Hospital, University of Perugia Medical School, Perugia, Italy
| | - Rossella Potenza
- Division of Thoracic Surgery, S. Maria della Misericordia Hospital, University of Perugia Medical School, Perugia, Italy
| | - Rosanna Capozzi
- Division of Thoracic Surgery, S. Maria della Misericordia Hospital, University of Perugia Medical School, Perugia, Italy
| | - Valeria Liparulo
- Division of Thoracic Surgery, S. Maria della Misericordia Hospital, University of Perugia Medical School, Perugia, Italy
| | - Francesco Puma
- Division of Thoracic Surgery, S. Maria della Misericordia Hospital, University of Perugia Medical School, Perugia, Italy
| | - Kazuhiro Yasufuku
- Division of Thoracic Surgery, Toronto General Hospital, University Health Network, Toronto, ON, Canada
| |
Collapse
|
38
|
Kirby M, Lane P, Coxson HO. Measurement of pulmonary structure and function. IMAGING 2016. [DOI: 10.1183/2312508x.10003415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
39
|
Bu R, Price H, Mitran S, Zdanski C, Oldenburg AL. Swept-Source Anatomic Optical Coherence Elastography of Porcine Trachea. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2016; 9689:968923. [PMID: 27746580 PMCID: PMC5061295 DOI: 10.1117/12.2213186] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Quantitative endoscopic imaging is at the vanguard of novel techniques in the assessment upper airway obstruction. Anatomic optical coherence tomography (aOCT) has the potential to provide the geometry of the airway lumen with high-resolution and in 4 dimensions. By coupling aOCT with measurements of pressure, optical coherence elastography (OCE) can be performed to characterize airway wall stiffness. This can aid in identifying regions of dynamic collapse as well as informing computational fluid dynamics modeling to aid in surgical decision-making. Toward this end, here we report on an anatomic optical coherence tomography (aOCT) system powered by a wavelength-swept laser source. The system employs a fiber-optic catheter with outer diameter of 0.82 mm deployed via the bore of a commercial, flexible bronchoscope. Helical scans are performed to measure the airway geometry and to quantify the cross-sectional-area (CSA) of the airway. We report on a preliminary validation of aOCT for elastography, in which aOCT-derived CSA was obtained as a function of pressure to estimate airway wall compliance. Experiments performed on a Latex rubber tube resulted in a compliance measurement of 0.68±0.02 mm2/cmH2O, with R2=0.98 over the pressure range from 10 to 40 cmH2O. Next, ex vivo porcine trachea was studied, resulting in a measured compliance from 1.06±0.12 to 3.34±0.44 mm2/cmH2O, (R2>0.81). The linearity of the data confirms the elastic nature of the airway. The compliance values are within the same order-of-magnitude as previous measurements of human upper airways, suggesting that this system is capable of assessing airway wall compliance in future human studies.
Collapse
Affiliation(s)
- Ruofei Bu
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina, USA, 27599
| | - Hillel Price
- Department of Physics and Astronomy, University of North Carolina at Chapel Hill, North Carolina, USA, 27599
| | - Sorin Mitran
- Department of Mathematics, University of North Carolina at Chapel Hill, North Carolina, USA, 27599
| | - Carlton Zdanski
- Department of Otolaryngology/Head and Neck Surgery, University of North Carolina at Chapel Hill, North Carolina, USA, 27599
| | - Amy L Oldenburg
- Department of Biomedical Engineering, University of North Carolina at Chapel Hill, North Carolina, USA, 27599; Department of Physics and Astronomy, University of North Carolina at Chapel Hill, North Carolina, USA, 27599; Biomedical Research Imaging Center; University of North Carolina at Chapel Hill, North Carolina, USA, 27599
| |
Collapse
|
40
|
Abstract
RATIONALE Lung carcinoma diagnosis on tissue biopsy can be challenging because of insufficient tumor and lack of architectural information. Optical coherence tomography (OCT) is a high-resolution imaging modality that visualizes tissue microarchitecture in volumes orders of magnitude larger than biopsy. It has been proposed that OCT could potentially replace tissue biopsy. OBJECTIVES We aim to determine whether OCT could replace histology in diagnosing lung carcinomas. We develop and validate OCT interpretation criteria for common primary lung carcinomas: adenocarcinoma, squamous cell carcinoma (SCC), and poorly differentiated carcinoma. METHODS A total of 82 ex vivo tumor samples were included in a blinded assessment with 3 independent readers. Readers were trained on the OCT criteria, and applied these criteria to diagnose adenocarcinoma, SCC, or poorly differentiated carcinoma in an OCT validation dataset. After a 7-month period, the readers repeated the training and validation dataset interpretation. An independent pathologist reviewed corresponding histology. MEASUREMENTS AND MAIN RESULTS The average accuracy achieved by the readers was 82.6% (range, 73.7-94.7%). The sensitivity and specificity for adenocarcinoma were 80.3% (65.7-91.4%) and 88.6% (80.5-97.6%), respectively. The sensitivity and specificity for SCC were 83.3% (70.0-100.0%) and 87.0% (75.0-96.5%), respectively. The sensitivity and specificity for poorly differentiated carcinoma were 85.7% (81.0-95.2%) and 97.6% (92.9-100.0%), respectively. CONCLUSIONS Although these results are encouraging, they indicate that OCT cannot replace histology in the diagnosis of lung carcinomas. However, OCT has potential to aid in diagnosing lung carcinomas as a complement to tissue biopsy, particularly when insufficient tissue is available for pathology assessment.
Collapse
|
41
|
Kirby M, Ohtani K, Nickens T, Lisbona RML, Lee AMD, Shaipanich T, Lane P, MacAulay C, Lam S, Coxson HO. Reproducibility of optical coherence tomography airway imaging. BIOMEDICAL OPTICS EXPRESS 2015; 6:4365-77. [PMID: 26601002 PMCID: PMC4646546 DOI: 10.1364/boe.6.004365] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 09/23/2015] [Accepted: 09/30/2015] [Indexed: 05/23/2023]
Abstract
Optical coherence tomography (OCT) is a promising imaging technique to evaluate small airway remodeling. However, the short-term insertion-reinsertion reproducibility of OCT for evaluating the same bronchial pathway has yet to be established. We evaluated 74 OCT data sets from 38 current or former smokers twice within a single imaging session. Although the overall insertion-reinsertion airway wall thickness (WT) measurement coefficient of variation (CV) was moderate at 12%, much of the variability between repeat imaging was attributed to the observer; CV for repeated measurements of the same airway (intra-observer CV) was 9%. Therefore, reproducibility may be improved by introduction of automated analysis approaches suggesting that OCT has potential to be an in-vivo method for evaluating airway remodeling in future longitudinal and intervention studies.
Collapse
Affiliation(s)
- Miranda Kirby
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, British Columbia, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Keishi Ohtani
- Department of Surgery, Tokyo Medical University, Tokyo, Japan
| | - Taylor Nickens
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, British Columbia, Canada
| | - Rosa Maria Lopez Lisbona
- Department of Respirology, Bellvitge University Hospital, l’Hospitalet de Llobregat, Barcelona, Spain
| | - Anthony M. D. Lee
- Imaging Unit, Integrative Oncology Department, British Columbia Cancer Agency Research Centre, Vancouver, British Columbia, Canada
| | - Tawimas Shaipanich
- Imaging Unit, Integrative Oncology Department, British Columbia Cancer Agency Research Centre, Vancouver, British Columbia, Canada
| | - Pierre Lane
- Imaging Unit, Integrative Oncology Department, British Columbia Cancer Agency Research Centre, Vancouver, British Columbia, Canada
| | - Calum MacAulay
- Imaging Unit, Integrative Oncology Department, British Columbia Cancer Agency Research Centre, Vancouver, British Columbia, Canada
| | - Stephen Lam
- Imaging Unit, Integrative Oncology Department, British Columbia Cancer Agency Research Centre, Vancouver, British Columbia, Canada
- Department of Medicine, University of British Columbia, Vancouver, British Columbia, Canada
| | - Harvey O. Coxson
- Centre for Heart Lung Innovation, St. Paul’s Hospital, Vancouver, British Columbia, Canada
- Department of Radiology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
42
|
Oak C, Ahn YC, Nam SJ, Jung MH, Hwang SS, Chae YG, Lee HS, Lee KD, Jung MJ, Chun BK, Lee HY, Park EK, Kim SW. Multimodal imaging using optical coherence tomography and endolaryngeal ultrasonography in a new rabbit VX2 laryngeal cancer model. Lasers Surg Med 2015; 47:704-10. [PMID: 26349900 DOI: 10.1002/lsm.22409] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/25/2015] [Indexed: 11/08/2022]
Abstract
BACKGROUND AND OBJECTIVE Optical coherence tomography (OCT) provides ultrahigh-resolution imaging of tissues within a depth of a few millimeters, whereas ultrasonography provides good imaging further below the surface. We aimed to develop a minimally invasive rabbit model of VX2 laryngeal cancer, suitable for these two imaging modalities through a transoral approach. We also sought to study the utility of combined OCT and endolaryngeal ultrasonography (EUS) for evaluation of early and advanced laryngeal cancer, using this model. MATERIALS AND METHODS VX2 tumor suspension was inoculated into the vocal folds of ten rabbits by injection through the trans-thyrohyoid membrane. The tumor model was characterized by rigid laryngoscopy and the tumor generation rate was 80% (8/10). Correlation between frequency-domain OCT and high-frequency EUS were used to visualize laryngeal tumors in the area of protruding mass formation in four rabbits, one week after injection (group A) and the remaining four rabbits two weeks after injection (group B). RESULTS A small submucosal tumor was observed with rigid laryngoscopy in group A, and pathologic evaluation showed that the tumor was close to the basement membrane of the vocal fold mucosa, but had not invaded. OCT confirmed that the lining of the mucosa and basement membrane of the vocal fold was not broken, but the mucosa had thinned at the most elevated ridge. However, these lesions were not detected by EUS, and the overall shape of the tumor could not be clearly identified by EUS. A large tumor filling the laryngeal lumen was observed with rigid laryngoscopy in group B, and nearly the entire vocal fold, including the paraglottic space, was found to be involved on pathologic analysis. Distinguishing between normal structures and tumor was difficult using OCT; however, EUS confirmed the overall shape, size, and extent of the tumor, and the paraglottic space and thyroid cartilage were shown to be intact. CONCLUSIONS This study is the first experimental trial, assessing the value of multimodal imaging using OCT and EUS in a rabbit VX2 laryngeal tumor model. Combining OCT and EUS helped to identify changes in laryngeal mucous membranes, and could potentially be used to identify laryngeal tumors and predict how tumors progress. This combined modality could help in determining tumor extent, assisting in diagnosis, and establishing a treatment plan for laryngeal cancer.
Collapse
Affiliation(s)
- Chulho Oak
- Innovative Biomedical Technology Research Center, Busan, 602-030, South Korea.,Department of Internal Medicine, Kosin University College of Medicine, 34 Amnam-dong, Seo-Gu, Busan, 602-030, South Korea
| | - Yeh-Chan Ahn
- Innovative Biomedical Technology Research Center, Busan, 602-030, South Korea.,Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 608-737, South Korea
| | - Sung-Jin Nam
- Innovative Biomedical Technology Research Center, Busan, 602-030, South Korea.,Department of Internal Medicine, Kosin University College of Medicine, 34 Amnam-dong, Seo-Gu, Busan, 602-030, South Korea
| | - Maan Hong Jung
- Innovative Biomedical Technology Research Center, Busan, 602-030, South Korea.,Department of Internal Medicine, Kosin University College of Medicine, 34 Amnam-dong, Seo-Gu, Busan, 602-030, South Korea
| | - Sang Seok Hwang
- Innovative Biomedical Technology Research Center, Busan, 602-030, South Korea.,Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 608-737, South Korea
| | - Yu-Gyeong Chae
- Innovative Biomedical Technology Research Center, Busan, 602-030, South Korea.,Department of Biomedical Engineering and Center for Marine-Integrated Biomedical Technology, Pukyong National University, 45 Yongso-ro, Nam-gu, Busan, 608-737, South Korea
| | - Hyoung Shin Lee
- Innovative Biomedical Technology Research Center, Busan, 602-030, South Korea.,Department of Otolaryngology-Head and Neck Surgery, Kosin University College of Medicine, 34 Amnam-dong, Seo-Gu, Busan, 602-030, South Korea
| | - Kang Dae Lee
- Innovative Biomedical Technology Research Center, Busan, 602-030, South Korea.,Department of Otolaryngology-Head and Neck Surgery, Kosin University College of Medicine, 34 Amnam-dong, Seo-Gu, Busan, 602-030, South Korea
| | - Min Jung Jung
- Innovative Biomedical Technology Research Center, Busan, 602-030, South Korea.,Department of Pathology, Kosin University College of Medicine, 34 Amnam-dong, Seo-Gu, Busan, 602-030, South Korea
| | - Bong Kwon Chun
- Innovative Biomedical Technology Research Center, Busan, 602-030, South Korea.,Department of Pathology, Kosin University College of Medicine, 34 Amnam-dong, Seo-Gu, Busan, 602-030, South Korea
| | - Hae Young Lee
- Innovative Biomedical Technology Research Center, Busan, 602-030, South Korea.,Department of Thoracic and Cardiovascular Surgery, Kosin University College of Medicine, 34 Amnam-dong, Seo-Gu, Busan, 602-030, South Korea
| | - Eun-Kee Park
- Innovative Biomedical Technology Research Center, Busan, 602-030, South Korea.,Department of Medical Humanities and Social Medicine, Kosin University College of Medicine, 34 Amnam-dong, Seo-Gu, Busan, 602-030, South Korea
| | - Sung Won Kim
- Innovative Biomedical Technology Research Center, Busan, 602-030, South Korea.,Department of Otolaryngology-Head and Neck Surgery, Kosin University College of Medicine, 34 Amnam-dong, Seo-Gu, Busan, 602-030, South Korea
| |
Collapse
|
43
|
Kirby M, Ohtani K, Lopez Lisbona RM, Lee AMD, Zhang W, Lane P, Varfolomeva N, Hui L, Ionescu D, Coxson HO, MacAulay C, FitzGerald JM, Lam S. Bronchial thermoplasty in asthma: 2-year follow-up using optical coherence tomography. Eur Respir J 2015; 46:859-62. [PMID: 26022958 DOI: 10.1183/09031936.00016815] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Accepted: 04/10/2015] [Indexed: 11/05/2022]
Affiliation(s)
- Miranda Kirby
- Centre for Heart Lung Innovation, University of British Columbia and St. Paul's Hospital, Vancouver, BC, Canada
| | - Keishi Ohtani
- Department of Surgery, Tokyo Medical University, Tokyo, Japan Imaging Unit, Integrative Oncology Department, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Rosa Maria Lopez Lisbona
- Imaging Unit, Integrative Oncology Department, British Columbia Cancer Research Centre, Vancouver, BC, Canada Department of Respirology, Bellvitge University Hospital, Hospitalet de Llobregat, Barcelona, Spain
| | - Anthony M D Lee
- Imaging Unit, Integrative Oncology Department, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Wei Zhang
- Imaging Unit, Integrative Oncology Department, British Columbia Cancer Research Centre, Vancouver, BC, Canada Department of Respiratory and Critical Care Medicine, Peking University First Hospital, Beijing, China
| | - Pierre Lane
- Imaging Unit, Integrative Oncology Department, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Nina Varfolomeva
- Institute for Heart and Lung Health, University of British Columbia and Vancouver General Hospital, Vancouver, BC, Canada
| | - Linda Hui
- Institute for Heart and Lung Health, University of British Columbia and Vancouver General Hospital, Vancouver, BC, Canada
| | - Diana Ionescu
- Department of Pathology, British Columbia Cancer Agency and the University of British Columbia, Vancouver, BC, Canada
| | - Harvey O Coxson
- Centre for Heart Lung Innovation, University of British Columbia and St. Paul's Hospital, Vancouver, BC, Canada
| | - Calum MacAulay
- Imaging Unit, Integrative Oncology Department, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - J Mark FitzGerald
- Institute for Heart and Lung Health, University of British Columbia and Vancouver General Hospital, Vancouver, BC, Canada
| | - Stephen Lam
- Imaging Unit, Integrative Oncology Department, British Columbia Cancer Research Centre, Vancouver, BC, Canada Institute for Heart and Lung Health, University of British Columbia and Vancouver General Hospital, Vancouver, BC, Canada
| |
Collapse
|
44
|
McLaughlin RA, Noble PB, Sampson DD. Optical coherence tomography in respiratory science and medicine: from airways to alveoli. Physiology (Bethesda) 2015; 29:369-80. [PMID: 25180266 DOI: 10.1152/physiol.00002.2014] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Optical coherence tomography is a rapidly maturing optical imaging technology, enabling study of the in vivo structure of lung tissue at a scale of tens of micrometers. It has been used to assess the layered structure of airway walls, quantify both airway lumen caliber and compliance, and image individual alveoli. This article provides an overview of the technology and reviews its capability to provide new insights into respiratory disease.
Collapse
Affiliation(s)
- Robert A McLaughlin
- Optical & Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, Perth, Australia;
| | - Peter B Noble
- School of Anatomy, Physiology & Human Biology, and Centre for Neonatal Research & Education, School of Paediatrics and Child Health, The University of Western Australia, Crawley, Australia; and
| | - David D Sampson
- Optical & Biomedical Engineering Laboratory, School of Electrical, Electronic & Computer Engineering, The University of Western Australia, Perth, Australia; Centre for Microscopy, Characterisation & Analysis, The University of Western Australia, Perth, Australia
| |
Collapse
|
45
|
Pahlevaninezhad H, Lee AMD, Rosin M, Sun I, Zhang L, Hakimi M, MacAulay C, Lane PM. Optical coherence tomography and autofluorescence imaging of human tonsil. PLoS One 2014; 9:e115889. [PMID: 25542010 PMCID: PMC4277424 DOI: 10.1371/journal.pone.0115889] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2014] [Accepted: 11/27/2014] [Indexed: 01/17/2023] Open
Abstract
For the first time, we present co-registered autofluorescence imaging and optical coherence tomography (AF/OCT) of excised human palatine tonsils to evaluate the capabilities of OCT to visualize tonsil tissue components. Despite limited penetration depth, OCT can provide detailed structural information about tonsil tissue with much higher resolution than that of computed tomography, magnetic resonance imaging, and Ultrasound. Different tonsil tissue components such as epithelium, dense connective tissue, lymphoid nodules, and crypts can be visualized by OCT. The co-registered AF imaging can provide matching biochemical information. AF/OCT scans may provide a non-invasive tool for detecting tonsillar cancers and for studying the natural history of their development.
Collapse
Affiliation(s)
- Hamid Pahlevaninezhad
- Department of Integrative Oncology, British Columbia Cancer Research Center, Vancouver, British Columbia, Canada
| | - Anthony M. D. Lee
- Department of Integrative Oncology, British Columbia Cancer Research Center, Vancouver, British Columbia, Canada
| | - Miriam Rosin
- Department of Integrative Oncology, British Columbia Cancer Research Center, Vancouver, British Columbia, Canada
| | - Ivan Sun
- Department of Integrative Oncology, British Columbia Cancer Research Center, Vancouver, British Columbia, Canada
| | - Lewei Zhang
- Department of Dentistry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mehrnoush Hakimi
- Department of Integrative Oncology, British Columbia Cancer Research Center, Vancouver, British Columbia, Canada
| | - Calum MacAulay
- Department of Integrative Oncology, British Columbia Cancer Research Center, Vancouver, British Columbia, Canada
| | - Pierre M. Lane
- Department of Integrative Oncology, British Columbia Cancer Research Center, Vancouver, British Columbia, Canada
| |
Collapse
|
46
|
Milne S, King GG. Advanced imaging in COPD: insights into pulmonary pathophysiology. J Thorac Dis 2014; 6:1570-85. [PMID: 25478198 DOI: 10.3978/j.issn.2072-1439.2014.11.30] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Accepted: 11/10/2014] [Indexed: 12/31/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) involves a complex interaction of structural and functional abnormalities. The two have long been studied in isolation. However, advanced imaging techniques allow us to simultaneously assess pathological processes and their physiological consequences. This review gives a comprehensive account of the various advanced imaging modalities used to study COPD, including computed tomography (CT), magnetic resonance imaging (MRI), and the nuclear medicine techniques positron emission tomography (PET) and single-photon emission computed tomography (SPECT). Some more recent developments in imaging technology, including micro-CT, synchrotron imaging, optical coherence tomography (OCT) and electrical impedance tomography (EIT), are also described. The authors identify the pathophysiological insights gained from these techniques, and speculate on the future role of advanced imaging in both clinical and research settings.
Collapse
Affiliation(s)
- Stephen Milne
- 1 The Woolcock Institute of Medical Research, Glebe, Sydney NSW 2037, Australia ; 2 Northern Clinical School, University of Sydney, NSW 2006, Australia ; 3 Northern and Central Clinical Schools, University of Sydney, NSW 2006, Australia ; 4 Department of Respiratory Medicine, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| | - Gregory G King
- 1 The Woolcock Institute of Medical Research, Glebe, Sydney NSW 2037, Australia ; 2 Northern Clinical School, University of Sydney, NSW 2006, Australia ; 3 Northern and Central Clinical Schools, University of Sydney, NSW 2006, Australia ; 4 Department of Respiratory Medicine, Royal North Shore Hospital, St Leonards, NSW 2065, Australia
| |
Collapse
|
47
|
Pahlevaninezhad H, Lee AMD, Shaipanich T, Raizada R, Cahill L, Hohert G, Yang VXD, Lam S, MacAulay C, Lane P. A high-efficiency fiber-based imaging system for co-registered autofluorescence and optical coherence tomography. BIOMEDICAL OPTICS EXPRESS 2014; 5:2978-87. [PMID: 25401011 PMCID: PMC4230860 DOI: 10.1364/boe.5.002978] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 07/31/2014] [Accepted: 08/01/2014] [Indexed: 05/06/2023]
Abstract
We present a power-efficient fiber-based imaging system capable of co-registered autofluorescence imaging and optical coherence tomography (AF/OCT). The system employs a custom fiber optic rotary joint (FORJ) with an embedded dichroic mirror to efficiently combine the OCT and AF pathways. This three-port wavelength multiplexing FORJ setup has a throughput of more than 83% for collected AF emission, significantly more efficient compared to previously reported fiber-based methods. A custom 900 µm diameter catheter ‒ consisting of a rotating lens assembly, double-clad fiber (DCF), and torque cable in a stationary plastic tube ‒ was fabricated to allow AF/OCT imaging of small airways in vivo. We demonstrate the performance of this system ex vivo in resected porcine airway specimens and in vivo in human on fingers, in the oral cavity, and in peripheral airways.
Collapse
Affiliation(s)
- Hamid Pahlevaninezhad
- Integrative Oncology Department―Imaging Unit, BC Cancer Research Center, 675 West 10th Avenue, Vancouver, Canada
| | - Anthony M. D. Lee
- Integrative Oncology Department―Imaging Unit, BC Cancer Research Center, 675 West 10th Avenue, Vancouver, Canada
| | - Tawimas Shaipanich
- Integrative Oncology Department―Imaging Unit, BC Cancer Research Center, 675 West 10th Avenue, Vancouver, Canada
| | - Rashika Raizada
- Integrative Oncology Department―Imaging Unit, BC Cancer Research Center, 675 West 10th Avenue, Vancouver, Canada
| | - Lucas Cahill
- Integrative Oncology Department―Imaging Unit, BC Cancer Research Center, 675 West 10th Avenue, Vancouver, Canada
| | - Geoffrey Hohert
- Integrative Oncology Department―Imaging Unit, BC Cancer Research Center, 675 West 10th Avenue, Vancouver, Canada
| | - Victor X. D. Yang
- Biophotonics and Bioengineering Laboratory, Electrical and Computer Engineering, Ryerson University, Toronto, ON, Canada
| | - Stephen Lam
- Integrative Oncology Department―Imaging Unit, BC Cancer Research Center, 675 West 10th Avenue, Vancouver, Canada
| | - Calum MacAulay
- Integrative Oncology Department―Imaging Unit, BC Cancer Research Center, 675 West 10th Avenue, Vancouver, Canada
| | - Pierre Lane
- Integrative Oncology Department―Imaging Unit, BC Cancer Research Center, 675 West 10th Avenue, Vancouver, Canada
| |
Collapse
|
48
|
Leong S, Shaipanich T, Lam S, Yasufuku K. Diagnostic bronchoscopy--current and future perspectives. J Thorac Dis 2014; 5 Suppl 5:S498-510. [PMID: 24163743 DOI: 10.3978/j.issn.2072-1439.2013.09.08] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2013] [Accepted: 09/11/2013] [Indexed: 12/25/2022]
Abstract
Lung cancer is the leading cause of cancer-related mortality worldwide. Standard bronchoscopy has limited ability to accurately localise and biopsy pulmonary lesions that cannot be directly visualised. The field of advanced diagnostic bronchoscopy is rapidly evolving due to advances in electronics and miniaturisation. Bronchoscopes with smaller outer working diameters, coupled with miniature radial and convex ultrasound probes, allow accurate central and peripheral pulmonary lesion localisation and biopsy while at the same time avoiding vascular structures. Increases in computational processing power allow three-dimensional reconstruction of computed tomographic raw data to enable virtual bronchoscopy (VB), providing the bronchoscopist with a preview of the bronchoscopy prior to the procedure. Navigational bronchoscopy enables targeting of peripheral pulmonary lesions (PPLs) via a "roadmap", similar to in-car global positioning systems. Analysis of lesions on a cellular level is now possible with techniques such as optical coherence tomography (OCT) and confocal microscopy (CM). All these tools will hopefully allow earlier and safer lung cancer diagnosis and in turn better patient outcomes. This article describes these new bronchoscopic techniques and reviews the relevant literature.
Collapse
Affiliation(s)
- Steven Leong
- Department of Thoracic Medicine, University of Queensland Thoracic Research Centre, The Prince Charles Hospital, Queensland, Australia 4032
| | | | | | | |
Collapse
|
49
|
Lee AMD, Kirby M, Ohtani K, Candido T, Shalansky R, MacAulay C, English J, Finley R, Lam S, Coxson HO, Lane P. Validation of airway wall measurements by optical coherence tomography in porcine airways. PLoS One 2014; 9:e100145. [PMID: 24949633 PMCID: PMC4064993 DOI: 10.1371/journal.pone.0100145] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Accepted: 05/22/2014] [Indexed: 11/19/2022] Open
Abstract
Examining and quantifying changes in airway morphology is critical for studying longitudinal pathogenesis and interventions in diseases such as chronic obstructive pulmonary disease and asthma. Here we present fiber-optic optical coherence tomography (OCT) as a nondestructive technique to precisely and accurately measure the 2-dimensional cross-sectional areas of airway wall substructure divided into the mucosa (WAmuc), submucosa (WAsub), cartilage (WAcart), and the airway total wall area (WAt). Porcine lung airway specimens were dissected from freshly resected lung lobes (N = 10). Three-dimensional OCT imaging using a fiber-optic rotary-pullback probe was performed immediately on airways greater than 0.9 mm in diameter on the fresh airway specimens and subsequently on the same specimens post-formalin-fixation. The fixed specimens were serially sectioned and stained with H&E. OCT images carefully matched to selected sections stained with Movat's pentachrome demonstrated that OCT effectively identifies airway epithelium, lamina propria, and cartilage. Selected H&E sections were digitally scanned and airway total wall areas were measured. Traced measurements of WAmuc, WAsub, WAcart, and WAt from OCT images of fresh specimens by two independent observers found there were no significant differences (p>0.05) between the observer's measurements. The same wall area measurements from OCT images of formalin-fixed specimens found no significant differences for WAsub, WAcart and WAt, and a small but significant difference for WAmuc. Bland-Altman analysis indicated there were negligible biases between the observers for OCT wall area measurements in both fresh and formalin-fixed specimens. Bland-Altman analysis also indicated there was negligible bias between histology and OCT wall area measurements for both fresh and formalin-fixed specimens. We believe this study sets the groundwork for quantitatively monitoring pathogenesis and interventions in the airways using OCT.
Collapse
Affiliation(s)
- Anthony M. D. Lee
- Department of Integrative Oncology - Imaging Unit, British Columbia Cancer Agency Research Centre, Vancouver, British Columbia, Canada
- * E-mail:
| | - Miranda Kirby
- Department of Radiology, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Keishi Ohtani
- Department of Integrative Oncology - Imaging Unit, British Columbia Cancer Agency Research Centre, Vancouver, British Columbia, Canada
| | - Tara Candido
- Department of Radiology, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Rebecca Shalansky
- Department of Radiology, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Calum MacAulay
- Department of Integrative Oncology - Imaging Unit, British Columbia Cancer Agency Research Centre, Vancouver, British Columbia, Canada
| | - John English
- Department of Pathology, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Richard Finley
- Department of Surgery, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Stephen Lam
- Department of Integrative Oncology - Imaging Unit, British Columbia Cancer Agency Research Centre, Vancouver, British Columbia, Canada
| | - Harvey O. Coxson
- Department of Radiology, Vancouver General Hospital, Vancouver, British Columbia, Canada
| | - Pierre Lane
- Department of Integrative Oncology - Imaging Unit, British Columbia Cancer Agency Research Centre, Vancouver, British Columbia, Canada
| |
Collapse
|
50
|
|