1
|
Fortmann SD, Frey BF, Rosencrans RF, Adu-Rutledge Y, Ready V E, Kilchrist KV, Welner RS, Boulton ME, Saban DR, Grant MB. Prenatally derived macrophages support choroidal health and decline in age-related macular degeneration. J Exp Med 2025; 222:e20242007. [PMID: 40261298 PMCID: PMC12013653 DOI: 10.1084/jem.20242007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 02/02/2025] [Accepted: 03/24/2025] [Indexed: 04/24/2025] Open
Abstract
Hallmark findings in age-related macular degeneration (AMD) include the accumulation of extracellular lipid and vasodegeneration of the choriocapillaris. Choroidal inflammation has long been associated with AMD, but little is known about the immune landscape of the human choroid. Using 3D multiplex immunofluorescence, single-cell RNA sequencing, and flow cytometry, we unravel the cellular composition and spatial organization of the human choroid and the immune cells within it. We identify two populations of choroidal macrophages with distinct FOLR2 expression that account for the majority of myeloid cells. FOLR2+ macrophages predominate in the nondiseased eye, express lipid-handling machinery, uptake lipoprotein particles, and contain high amounts of lipid. In AMD, FOLR2+ macrophages are decreased in number and exhibit dysfunctional lipoprotein metabolism. In mice, FOLR2+ macrophages are negative for the postnatal fate-reporter Ms4a3, and their depletion causes an accelerated AMD-like phenotype. Our results show that prenatally derived resident macrophages decline in AMD and are implicated in multiple hallmark functions known to be compromised in the disease.
Collapse
Affiliation(s)
- Seth D. Fortmann
- Medical Scientist Training Program (MSTP), University of Alabama at Birmingham (UAB), Birmingham, AL, USA
- Department of Ophthalmology, UAB, Birmingham, AL, USA
| | - Blake F. Frey
- Medical Scientist Training Program (MSTP), University of Alabama at Birmingham (UAB), Birmingham, AL, USA
- Department of Pathology, UAB, Birmingham, AL, USA
| | - Robert F. Rosencrans
- Medical Scientist Training Program (MSTP), University of Alabama at Birmingham (UAB), Birmingham, AL, USA
- Department of Ophthalmology, UAB, Birmingham, AL, USA
| | | | - Edgar Ready V
- Department of Ophthalmology, UAB, Birmingham, AL, USA
| | | | - Robert S. Welner
- Division of Hematology/Oncology, Department of Medicine, UAB, Birmingham, AL, USA
| | | | - Daniel R. Saban
- Department of Ophthalmology, Duke University, Durham, NC, USA
| | | |
Collapse
|
2
|
Günter A, Jarboui MA, Mühlfriedel R, Seeliger MW. Exploration of the visual streak of the Mongolian gerbil as a model for the human central retina. Front Med (Lausanne) 2025; 12:1562437. [PMID: 40391124 PMCID: PMC12086270 DOI: 10.3389/fmed.2025.1562437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 04/01/2025] [Indexed: 06/01/2025] Open
Abstract
Introduction The Mongolian gerbil (MG), a day-active rodent, features a particular retinal region of high visual acuity, the visual streak (VS). Optimized for vision in desert-like environments, the VS allows for a perfect view of the horizon between the projection areas of the sky and the ground. Here, we assess the structural basis of this specialized region and compare the findings to the conditions at the human retinal center. Methods The VSs of MG retinas (n = 5) were evaluated morphologically with immunohistochemistry for cone, rod, and RPE cell-specific markers in dorsoventral cross-sections, and the results were compared to data from the near (adjacent) and far periphery. Mass spectrometry of the VS and peripheral retina/RPE was used to analyze the proteomic differential expression between these regions. Results In the VS of the MG, we found an increased density of cones, elongated photoreceptor outer segments (OSs), and a rod-to-cone ratio lying within the zone of descent between the border of the macula and the fovea (macular shoulder). Similarly, the base area of retinal pigment epithelium (RPE) cells in the VS was significantly reduced, while cells were taller than those in the periphery. Accordingly, proteomic data provided evidence for an enhanced abundance of key proteins relevant to photoreceptor and RPE function and pathophysiology of macular diseases in the VS. Conclusion The high degree of conformance between the VS data of the MG and the human central retina renders the MG a promising rodent, non-primate model of the central human retina.
Collapse
Affiliation(s)
- Alexander Günter
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Mohamed Ali Jarboui
- Core Facility for Medical Bioanalytics (CFMB), University of Tübingen, Tübingen, Germany
| | - Regine Mühlfriedel
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| | - Mathias W. Seeliger
- Division of Ocular Neurodegeneration, Institute for Ophthalmic Research, Centre for Ophthalmology, University of Tübingen, Tübingen, Germany
| |
Collapse
|
3
|
Moshtaghion SMM, Locri F, Reyes AP, Plastino F, Kvanta A, Morillo-Sanchez MJ, Rodríguez-de-la-Rúa E, Gutierrez-Sanchez E, Montero-Sánchez A, Lucena-Padros H, André H, Díaz-Corrales FJ. VEGF in Tears as a Biomarker for Exudative Age-Related Macular Degeneration: Molecular Dynamics in a Mouse Model and Human Samples. Int J Mol Sci 2025; 26:3855. [PMID: 40332529 PMCID: PMC12027898 DOI: 10.3390/ijms26083855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/09/2025] [Accepted: 04/10/2025] [Indexed: 05/08/2025] Open
Abstract
Vascular endothelial growth factor (VEGF) is a key mediator of exudative age-related macular degeneration (eAMD), yet non-invasive biomarkers for disease monitoring remain limited. This study evaluates VEGF levels in human tear fluid as a potential biomarker for eAMD and investigates the molecular dynamics of VEGF in a laser-induced choroidal neovascularization (lCNV) mouse model. Tear VEGF levels were quantified using proximity qPCR immunoassays in eAMD patients (n = 29) and healthy controls (n = 21) and correlated with optical coherence tomography (OCT) findings. Molecular analyses, including immunohistochemistry, gene expression profiling, and phosphorylation assays, were conducted on choroid-retinal pigment epithelium (RPE) and lacrimal gland (LG) tissues from lCNV mice (n = 25). Tear VEGF levels were significantly elevated in eAMD patients, correlating with disease severity. Females exhibited higher VEGF levels, a pattern not replicated in the mouse model. In lCNV mice, VEGF overexpression originated from the choroid-RPE, driven by hypoxic and inflammatory signaling, with no significant LG contribution. Increased VEGF, IL-6, and vimentin expression, along with NF-κB and STAT3 activation, were observed. These findings suggest that tear VEGF is a promising non-invasive biomarker for eAMD, warranting further validation for clinical application in disease monitoring and treatment optimization.
Collapse
Affiliation(s)
- Seyed Mohamad Mehdi Moshtaghion
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, University of Seville, University Pablo de Olavide, 41092 Seville, Spain; (A.P.R.); (A.M.-S.)
| | - Filippo Locri
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 17177 Stockholm, Sweden; (F.L.); (F.P.); (A.K.); (H.A.)
| | - Alvaro Plaza Reyes
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, University of Seville, University Pablo de Olavide, 41092 Seville, Spain; (A.P.R.); (A.M.-S.)
| | - Flavia Plastino
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 17177 Stockholm, Sweden; (F.L.); (F.P.); (A.K.); (H.A.)
| | - Anders Kvanta
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 17177 Stockholm, Sweden; (F.L.); (F.P.); (A.K.); (H.A.)
| | - Maria Jose Morillo-Sanchez
- Department of Ophthalmology, Virgen Macarena University Hospital, 41009 Seville, Spain; (M.J.M.-S.); (E.R.-d.-l.-R.); (E.G.-S.)
| | - Enrique Rodríguez-de-la-Rúa
- Department of Ophthalmology, Virgen Macarena University Hospital, 41009 Seville, Spain; (M.J.M.-S.); (E.R.-d.-l.-R.); (E.G.-S.)
- Department of Surgery, Ophthalmology Area, University of Seville, 41009 Seville, Spain
| | - Estanislao Gutierrez-Sanchez
- Department of Ophthalmology, Virgen Macarena University Hospital, 41009 Seville, Spain; (M.J.M.-S.); (E.R.-d.-l.-R.); (E.G.-S.)
- Department of Surgery, Ophthalmology Area, University of Seville, 41009 Seville, Spain
| | - Adoración Montero-Sánchez
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, University of Seville, University Pablo de Olavide, 41092 Seville, Spain; (A.P.R.); (A.M.-S.)
| | - Helena Lucena-Padros
- Department of Maternofetal Medicine, Genetics and Reproduction, Institute of Biomedicine of Seville, CSIC, Virgen del Rocio University Hospital, University of Seville, 41013 Seville, Spain;
| | - Helder André
- Department of Clinical Neuroscience, Division of Eye and Vision, St. Erik Eye Hospital, Karolinska Institutet, 17177 Stockholm, Sweden; (F.L.); (F.P.); (A.K.); (H.A.)
| | - Francisco J. Díaz-Corrales
- Department of Integrative Pathophysiology and Therapies, Andalusian Molecular Biology and Regenerative Medicine Centre (CABIMER), Junta de Andalucía, CSIC, University of Seville, University Pablo de Olavide, 41092 Seville, Spain; (A.P.R.); (A.M.-S.)
| |
Collapse
|
4
|
Shaw EM, Anderson DM, Periasamy R, Schey KL, Curcio CA, Lipinski DM. Porcine Sub-Retinal Pigment Epithelium Deposits: A Model for Dry Age-Related Macular Degeneration With Comparison to Human Drusen. Invest Ophthalmol Vis Sci 2025; 66:18. [PMID: 40048184 PMCID: PMC11895847 DOI: 10.1167/iovs.66.3.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 01/07/2025] [Indexed: 03/14/2025] Open
Abstract
Purpose Due to the slowly progressing nature of age-related macular degeneration (AMD) and critical differences in ocular anatomy between humans and animals, it has been difficult to model disease progression, hampering the development of novel therapeutics aimed at impacting drusen biogenesis. To determine whether "drusen-in-a-dish" model systems are of utility in screening potential therapeutics aimed at early-intermediate dry AMD, we developed a detailed characterization of the protein, glycoprotein, and lipid composition of sub-retinal pigment epithelium (RPE) deposits grown by monolayers of ex vivo porcine RPE with human drusen in AMD globes. Methods Immunohistochemistry and imaging mass spectrometry (IMS) were performed on 20-week aged monolayers of porcine RPE and human donor globes recovered from an 81-year-old non-transplant donor with confirmed diagnosis of bilateral dry AMD. The presence of major protein, glycoprotein, and lipid species was compared between porcine sub-RPE deposits and human drusen with reference to macular/peripheral eccentricity. Results The protein and glycoprotein composition of porcine sub-RPE deposits closely mimics human drusen identified in donor globes with dry AMD, including the presence of major complement components (C9, CFH, CHI), apolipoproteins (ApoE, ApoJ), extracellular matrix proteins (vitronectin, collagen VI), and calcification (hydroxyapatite). Sub-RPE deposits were additionally rich in long-chain ceramide species (Cer, CerPE, PI), which have only recently been described in human drusen. Conclusions Due to their compositional similarity to human drusen, ex vivo "drusen-in-a-dish" systems represent a potentially robust and cost-effective model for both studying the pathobiology of drusen biogenesis and screening novel therapeutics aimed at limiting drusen formation.
Collapse
Affiliation(s)
- Erika M. Shaw
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - David M. Anderson
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States
| | - Ramesh Periasamy
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| | - Kevin L. Schey
- Department of Biochemistry, Vanderbilt University, Nashville, Tennessee, United States
| | - Christine A. Curcio
- Department of Ophthalmology and Visual Sciences, University of Alabama at Birmingham Heersink School of Medicine, Birmingham, Alabama, United States
| | - Daniel M. Lipinski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, Wisconsin, United States
| |
Collapse
|
5
|
Pandala NG, Han IC, Renze LJ, Steffen HJ, Meyering EE, Stone EM, Mulfaul K, Mullins RF, Tucker BA. Development of self-healing hydrogels to support choroidal endothelial cell transplantation for the treatment of early age related macular degeneration. Acta Biomater 2025; 194:98-108. [PMID: 39710218 PMCID: PMC11867867 DOI: 10.1016/j.actbio.2024.12.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 12/13/2024] [Accepted: 12/19/2024] [Indexed: 12/24/2024]
Abstract
In retinal diseases such as age-related macular degeneration (AMD) and choroideremia, a key pathophysiologic step is loss of endothelial cells of the choriocapillaris. Repopulation of choroidal vasculature early in the disease process may halt disease progression. Prior studies have shown that injection of donor cells in suspension results in significant cellular efflux and poor cell survival. As such, the goal of this study was to develop a hydrogel system designed to support choroidal endothelial cell transplantation. A library of hydrogels was synthesized using laminin (i.e., LN111, LN121, and LN421), carboxy methyl chitosan, and oxidized dextran via reversible Schiff base chemistry. Each of the developed self-healing hydrogels was readily injectable into the suprachoroidal space, with ideal gelation, mechanical, and degradation properties. While all hydrogels were found to be compatible with choroidal endothelial cell survival in vitro, only LN111 and LN121 gels were well-tolerated in vivo. To determine if hydrogel mediated cell delivery enhances donor cell retention and survival in vivo, iPSC-derived choroidal endothelial cell laden hydrogels were injected into the suprachoroidal space of an immunocompromised choroidal cell injury rat model. Significantly more donor cells were retained and survived in eyes that received cell laden hydrogels versus contralateral hydrogel free controls. Furthermore, donor cells positive for human nuclear antigen were identified in the choroid of hydrogel eyes only. These findings pave the way for future cell replacement studies in large animal models of choroidal cell dropout focused on evaluating functional integration of donor cells within decellularized vascular tubes. STATEMENT OF SIGNIFICANCE: Age related macular degeneration (AMD) is a leading cause of untreatable blindness in the industrial world. A key pathologic step in AMD is loss of the choriocapillaris endothelial cells, which provide vascular support to the overlying retina. Choroidal cell replacement early in disease may prevent retinal cell death and subsequent vision loss. In this study, we present a strategy for repopulating the choriocapillaris using choroidal endothelial cell laden hydrogels. Specifically, we demonstrate the synthesis and characterization of 3 different laminin-based hydrogel systems. LN111 and LN121 hydrogels were found to have excellent biocompatibility both in vitro and in vivo. Hydrogel mediated delivery of iPSC-derived choroidal endothelial cells enhanced donor cell retention and survival, paving the way for functional large animal studies.
Collapse
Affiliation(s)
- Narendra G Pandala
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Ian C Han
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Lauryn J Renze
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Hailey J Steffen
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Emily E Meyering
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Edwin M Stone
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Kelly Mulfaul
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Robert F Mullins
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine University of Iowa, Iowa City, IA, USA
| | - Budd A Tucker
- Institute for Vision Research, Carver College of Medicine, University of Iowa, Iowa City, IA, USA; Department of Ophthalmology and Visual Sciences, Carver College of Medicine University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
6
|
Gensheimer T, Veerman D, van Oosten EM, Segerink L, Garanto A, van der Meer AD. Retina-on-chip: engineering functional in vitro models of the human retina using organ-on-chip technology. LAB ON A CHIP 2025; 25:996-1014. [PMID: 39882574 DOI: 10.1039/d4lc00823e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2025]
Abstract
The retina is a complex and highly metabolic tissue in the back of the eye essential for human vision. Retinal diseases can lead to loss of vision in early and late stages of life, significantly affecting patients' quality of life. Due to its accessibility for surgical interventions and its isolated nature, the retina is an attractive target for novel genetic therapies and stem cell-based regenerative medicine. Understanding disease mechanisms and evaluating new treatments require relevant and robust experimental models. Retina-on-chip models are microfluidic organ-on-chip systems based on human tissue that capture multi-cellular interactions and tissue-level functions in vitro. Various retina-on-chip models have been described in literature. Some of them capture basic retinal barrier functions while others replicate key events underlying vision. In addition, some of these cellular systems have also been used in studies to explore their added value in retinal disease modeling. Most existing retina-on-chip models capture limited aspects of the phenotypic complexity of human diseases. This limitation arises primarily from the challenges related to controlled recapitulation of retinal function, including the relevant multi-cellular interactions and functional read-outs. In this review, we provide an update on recent advancements in the field of retina-on-chip, and we discuss the biotechnical strategies to further enhance the physiological relevance of the models. We emphasize that developers and researchers should prioritize the incorporation of the full spectrum of retinal complexity to effectuate a direct impact of retina-on-chip models in disease modeling and development of therapeutic strategies.
Collapse
Affiliation(s)
- Tarek Gensheimer
- Applied Stem Cell Technologies Group, Department of Bioengineering Technologies, University of Twente, Enschede, The Netherlands.
| | - Devin Veerman
- Applied Stem Cell Technologies Group, Department of Bioengineering Technologies, University of Twente, Enschede, The Netherlands.
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Edwin M van Oosten
- Department of Pediatrics, Amalia Children's hospital, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Loes Segerink
- BIOS Lab on a Chip group, MESA+ Institute for Nanotechnology, University of Twente, Enschede, The Netherlands
| | - Alejandro Garanto
- Department of Pediatrics, Amalia Children's hospital, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Human Genetics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Andries D van der Meer
- Applied Stem Cell Technologies Group, Department of Bioengineering Technologies, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
7
|
Heiden R, Hannig L, Bernhard JS, Vallon M, Schlecht A, Hofmann N, Ergün S, Hoschek F, Wagner M, Neueder A, Förster CY, Braunger BM. Tissue origin of endothelial cells determines immune system modulation and regulation of HIF-1α-, TGF-β-, and VEGF signaling. iScience 2025; 28:111740. [PMID: 39925414 PMCID: PMC11804623 DOI: 10.1016/j.isci.2024.111740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/09/2024] [Accepted: 12/31/2024] [Indexed: 02/11/2025] Open
Abstract
Tight junctions of vascular endothelial cells in the central nervous system form the blood-brain and inner blood-retinal barriers, the integrity of which are further influenced by neighboring cells such as pericytes, astrocytes/Müller glial processes, and immune cells. In addition, the retina is shielded from the fenestrated endothelium of the choriocapillaris by the epithelial barrier of the retinal pigment epithelium. Dysfunction of the blood retinal barriers and/or proliferation of retinal and choroidal endothelial cells are caused by late stages of diabetic retinopathy (DR) and neovascular age-related macular degeneration (nAMD), the main causes of blindness in western countries. To elucidate endothelial-derived pathomechanisms in DR and nAMD, we established immortalized mouse cell lines of retinal and choroidal endothelial cells and immortalized brain endothelial cells as CNS-derived controls. We then used immunofluorescence staining, state-of-the-art long-range RNA sequencing and monolayer permeability assays to compare the functional state of these cells depending on their tissue origin. We furthermore demonstrate that activation of the wingless-type MMTV integration site (Wnt)/β-catenin signaling pathway restored blood brain/retinal barrier properties in brain and retinal endothelial cells, but unexpectedly increased permeability of choroidal endothelial cells. Transcriptome profiling showed that depending on the tissue origin of endothelial cells, regulation of the immune system was altered and pathways such as hypoxia-inducible factor (HIF)-1/2α, transforming growth factor (TGF)-β, and vascular endothelial growth factor (VEGF) were differentially regulated, strongly indicating their contribution in the molecular pathogenesis of DR and nAMD. These findings significantly increase the understanding of the vascular biology of endothelial cells, highlighting the fact that depending on their tissue origin, their contribution to vascular pathologies varies.
Collapse
Affiliation(s)
- Robin Heiden
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
| | - Laura Hannig
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Jakob S. Bernhard
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
| | - Mario Vallon
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
| | - Anja Schlecht
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Nico Hofmann
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
| | - Süleyman Ergün
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
| | - Franziska Hoschek
- Department of Neurology, Ulm University Hospital, 89081 Ulm, Germany
| | - Maximilian Wagner
- Department of Neurology, Ulm University Hospital, 89081 Ulm, Germany
| | - Andreas Neueder
- Department of Neurology, Ulm University Hospital, 89081 Ulm, Germany
- Center for Molecular Neurobiology Hamburg, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Carola Y. Förster
- Department of Anaesthesiology, Intensive Care, Emergency and Pain Medicine, University Hospital of Würzburg, 97080 Würzburg, Germany
| | - Barbara M. Braunger
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
- Institute of Neuroanatomy, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
8
|
Liu X, Zhao Z, Li W, Ren M, Zhang H, Cao D, Wang Y, Yang H, Li Y, Zhu M, Xie L, Yin L. Rationally Engineering Pro-Proteins and Membrane-Penetrating α‑Helical Polypeptides for Genome Editing Toward Choroidal Neovascularization Treatment. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2412366. [PMID: 39718218 DOI: 10.1002/adma.202412366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/29/2024] [Indexed: 12/25/2024]
Abstract
Ribonucleoprotein (RNP)-based CRISPR/Cas9 genome editing holds great potential for the treatment of choroidal neovascularization (CNV), which however, is challenged by the lack of efficient cytosolic protein delivery tools. Herein, reversibly-phosphorylated pro-proteins (P-proteins) with conjugated adenosine triphosphate (ATP) tags are engineered and coupled with a membrane-penetrating, guanidine-enriched, α-helical polypeptide (LGP) to mediate robust and universal cytosolic delivery. LGP forms salt-stable nanocomplexes (NCs) with P-proteins via electrostatic interaction and salt bridging, and the helix-assisted, strong membrane activities of LGP enabled efficient cellular internalization and endolysosomal escape of NCs. Therefore, this approach allows efficient cytosolic delivery of a wide range of protein cargoes and maintains their bioactivities due to endolysosomal acidity-triggered traceless restoration of P-proteins. Notably, intravitreally delivered LGP/P-RNP NCs targeting hypoxia-inducible factor-1α (HIF-1α) induce pronounced gene disruption to downregulate pro-angiogenic factors and alleviate subretinal fibrosis, ultimately provoking robust therapeutic efficacy in CNV mice. Such a facile and versatile platform provides a powerful tool for cytosolic protein delivery and genome editing, and it holds promising potential for the treatment of CNV-associated diseases, such as age-related macular degeneration.
Collapse
Affiliation(s)
- Xun Liu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Ziyin Zhao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Wei Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Mengyao Ren
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Haoyu Zhang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Desheng Cao
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Yehan Wang
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - He Yang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Yajie Li
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| | - Manhui Zhu
- Department of Ophthalmology, Lixiang Eye Hospital of Soochow University, Suzhou, 215123, China
| | - Laiqing Xie
- Department of Ophthalmology, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
| | - Lichen Yin
- Department of Thoracic Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, 215004, China
- Institute of Functional Nano and Soft Materials (FUNSOM), Jiangsu Key Laboratory of Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, 215123, China
| |
Collapse
|
9
|
Chowdhury JM, Chacin Ruiz EA, Ohr MP, Swindle-Reilly KE, Ford Versypt AN. Computer modeling of bevacizumab drug distribution after intravitreal injection in rabbit and human eyes. J Pharm Sci 2025; 114:1164-1174. [PMID: 39694270 PMCID: PMC11932321 DOI: 10.1016/j.xphs.2024.12.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2024] [Revised: 12/06/2024] [Accepted: 12/08/2024] [Indexed: 12/20/2024]
Abstract
Age-related macular degeneration (AMD) is a progressive eye disease that causes loss of central vision and has no cure. Wet AMD is the late neovascular form treated with vascular endothelial growth factor (VEGF) inhibitors. VEGF is the critical driver of wet AMD. One common off-label anti-VEGF drug used in AMD treatment is bevacizumab. Experimental efforts have been made to investigate the pharmacokinetic (PK) behavior of bevacizumab in vitreous and aqueous humor. Still, the quantitative effect of elimination routes and drug concentration in the macula are not well understood. In this work, we developed two spatial models representing rabbit and human vitreous to better understand the PK behavior of bevacizumab. This study explores different cases of drug elimination and the effects of injection location on drug concentration profiles. The models are validated by comparing them with experimental data. Our results suggest that anterior elimination is dominant for bevacizumab clearance from rabbit vitreous, whereas both anterior and posterior elimination have similar importance in drug clearance from the human vitreous. Furthermore, results indicate that drug injections closer to the posterior segment of the vitreous help maintain relevant drug concentrations for longer, improving bevacizumab duration of action in the vitreous. The rabbit and human models predict bevacizumab concentration in the vitreous and fovea, enhancing knowledge and understanding of wet AMD treatment.
Collapse
Affiliation(s)
- Jabia M Chowdhury
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA; Department of Electrical Engineering, Texas A&M University-Texarkana, Texarkana, TX, 75503, USA
| | - Eduardo A Chacin Ruiz
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA
| | - Matthew P Ohr
- Department of Ophthalmology and Visual Sciences, The Ohio State University, Columbus, OH, 43212, USA
| | - Katelyn E Swindle-Reilly
- Department of Ophthalmology and Visual Sciences, The Ohio State University, Columbus, OH, 43212, USA; Department of Biomedical Engineering, The Ohio State University, Columbus, OH, 43210, USA; William G. Lowrie Department of Chemical and Biomolecular Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Ashlee N Ford Versypt
- Department of Chemical and Biological Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA; Department of Biomedical Engineering, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA; Institute for Artificial Intelligence and Data Science, University at Buffalo, The State University of New York, Buffalo, NY, 14260, USA; Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14215, USA.
| |
Collapse
|
10
|
Fernandes AG, Poirier AC, Veilleux CC, Melin AD. Contributions and future potential of animal models for geroscience research on sensory systems. GeroScience 2025; 47:61-83. [PMID: 39312151 PMCID: PMC11872837 DOI: 10.1007/s11357-024-01327-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 08/23/2024] [Indexed: 03/04/2025] Open
Abstract
Sensory systems mediate our social interactions, food intake, livelihoods, and other essential daily functions. Age-related decline and disease in sensory systems pose a significant challenge to healthy aging. Research on sensory decline in humans is informative but can often be difficult, subject to sampling bias, and influenced by environmental variation. Study of animal models, including mice, rats, rabbits, pigs, cats, dogs, and non-human primates, plays a complementary role in biomedical research, offering advantages such as controlled conditions and shorter lifespans for longitudinal study. Various species offer different advantages and limitations but have provided key insights in geroscience research. Here we review research on age-related decline and disease in vision, hearing, olfaction, taste, and touch. For each sense, we provide an epidemiological overview of impairment in humans, describing the physiological processes and diseases for each sense. We then discuss contributions made by research on animal models and ideas for future research. We additionally highlight the need for integrative, multimodal research across the senses as well as across disciplines. Long-term studies spanning multiple generations, including on species with longer life spans, are also highly valuable. Overall, integrative studies of appropriate animal models have high translational potential for clinical applications, the development of novel diagnostics, therapies, and medical interventions and future research will continue to close gaps in these areas. Research on animal models to improve understanding of the biology of the aging senses and improve the healthspan and additional research on sensory systems hold special promise for new breakthroughs.
Collapse
Affiliation(s)
- Arthur G Fernandes
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 4N1, Canada.
| | - Alice C Poirier
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 4N1, Canada
| | - Carrie C Veilleux
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 4N1, Canada
- Department of Anatomy, Midwestern University, Glendale, AZ, USA
| | - Amanda D Melin
- Department of Anthropology and Archaeology, University of Calgary, 2500 University Dr NW, Calgary, AB, T2N 4N1, Canada.
- Department of Medical Genetics, University of Calgary, Calgary, AB, Canada.
- Alberta Children's Hospital Research Institute, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
11
|
Lin JB, Apte RS. The Landscape of Vascular Endothelial Growth Factor Inhibition in Retinal Diseases. Invest Ophthalmol Vis Sci 2025; 66:47. [PMID: 39836404 PMCID: PMC11756608 DOI: 10.1167/iovs.66.1.47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2024] [Accepted: 12/28/2024] [Indexed: 01/22/2025] Open
Abstract
Ever since the US Food and Drug Administration (FDA) approved the first vascular endothelial growth factor (VEGF) antagonist 2 decades ago, inhibitors of VEGF have revolutionized the treatment of a variety of ocular disorders involving pathologic neovascularization and retinal exudation. In this perspective, we evaluate the current status of anti-VEGF therapies and the real-world challenges encountered with maintaining therapeutic outcomes. Finally, we describe novel VEGF-based and combinatorial approaches that are in clinical development.
Collapse
Affiliation(s)
- Joseph B. Lin
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States
| | - Rajendra S. Apte
- John F. Hardesty, MD, Department of Ophthalmology and Visual Sciences, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States
- Department of Medicine, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States
- Department of Developmental Biology, Washington University School of Medicine in St. Louis, St. Louis, Missouri, United States
| |
Collapse
|
12
|
Ortolan D, Reichert D, Li H, Walmsley D, Sharma R, Bharti K. Classifying Mouse RPE Morphometric Heterogeneity Using REShAPE: An AI-Based Image Analysis Tool. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:395-399. [PMID: 39930228 DOI: 10.1007/978-3-031-76550-6_65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Retinal degenerative diseases caused by retinal pigment epithelium (RPE) dysfunction affect specific areas of the retina. Regions of molecular and phenotypic RPE heterogeneity have been described in the human eye and are thought to underlie geographic differential RPE sensitivity to degeneration. The mouse is one of the most widely used models to study retinal degeneration. A deeper understanding of mouse RPE heterogeneity can facilitate the interpretation of the observed phenotypes in models of retinal degeneration. In this study, we used an AI-based image analysis algorithm (REShAPE) to generate morphometric maps of RPE flatmounts in young adult mice (2 months old). Using cell area, we distinguished three concentric subpopulations of phenotypic heterogeneity. Treatment with sodium iodate, a widely used oxidative agent to model retinal degenerations, induced RPE atrophy of the two centermost subpopulations. RPE morphometric analysis could prove useful when analyzing animal models of retinal degeneration.
Collapse
Affiliation(s)
- Davide Ortolan
- Ocular and Stem Cell Translational Research Section, National Eye Institute, Bethesda, MD, USA.
| | - Dominik Reichert
- Ocular and Stem Cell Translational Research Section, National Eye Institute, Bethesda, MD, USA
| | - Huirong Li
- Ocular and Stem Cell Translational Research Section, National Eye Institute, Bethesda, MD, USA
| | - Dylan Walmsley
- Ocular and Stem Cell Translational Research Section, National Eye Institute, Bethesda, MD, USA
| | - Ruchi Sharma
- Ocular and Stem Cell Translational Research Section, National Eye Institute, Bethesda, MD, USA
| | - Kapil Bharti
- Ocular and Stem Cell Translational Research Section, National Eye Institute, Bethesda, MD, USA.
| |
Collapse
|
13
|
Toto R, Soltau CP, Rayner CL, Bottle SE, Barnett NL. Steroid-Nitroxide Hybrid Compound Protects the Retina in a Model of CNV. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2025; 1468:497-501. [PMID: 39930244 DOI: 10.1007/978-3-031-76550-6_81] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Nitroxide-based drugs have proven effective in modulating radical-induced oxidative stress by modulating antioxidant enzymes and genes that control distinct immune and anti-inflammatory responses. Due to their reasonable chemical stability and ability to shuttle between oxidized and reduced forms at physiologically relevant redox potentials, nitroxide-based radicals have also proven effective as biological probes of redox status. Herein, we investigated the potential of a unique nitroxide-based antioxidant and anti-inflammatory agent to protect the retina from experimentally induced degeneration. An established rat model of retinal degeneration was used viz. laser-induced choroidal neovascularization (CNV) to study the effects of the hybrid steroidal anti-inflammatory-antioxidant prednisolone 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO) nitroxide compound. Vascular endothelial cell distribution at the CNV lesion site was investigated using isolectin B4 fluorescence histology, and the inflammatory response of microglia was investigated using IBA-1 immunohistochemistry. The prednisolone-TEMPO (Pred-TEMPO) hybrid reduced the laser-induced CNV lesion area compared to untreated control rats. These findings demonstrate that nitroxide-based compounds are potential therapeutics for retinal degenerative diseases involving inflammatory and oxidative stress-mediated components, including age-related macular degeneration.
Collapse
Affiliation(s)
- Rimaz Toto
- Clem Jones Centre for Regenerative Medicine, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, Australia
| | - Carl P Soltau
- School of Physical and Chemical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Cassie L Rayner
- Clem Jones Centre for Regenerative Medicine, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, Australia
| | - Steven E Bottle
- School of Physical and Chemical Sciences, Queensland University of Technology, Brisbane, QLD, Australia
| | - Nigel L Barnett
- Clem Jones Centre for Regenerative Medicine, Faculty of Health Sciences and Medicine, Bond University, Gold Coast, QLD, Australia.
| |
Collapse
|
14
|
Hansman DS, Du J, Casson RJ, Peet DJ. Eye on the horizon: The metabolic landscape of the RPE in aging and disease. Prog Retin Eye Res 2025; 104:101306. [PMID: 39433211 PMCID: PMC11833275 DOI: 10.1016/j.preteyeres.2024.101306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/10/2024] [Accepted: 10/10/2024] [Indexed: 10/23/2024]
Abstract
To meet the prodigious bioenergetic demands of the photoreceptors, glucose and other nutrients must traverse the retinal pigment epithelium (RPE), a polarised monolayer of cells that lie at the interface between the outer retina and the choroid, the principal vascular layer of the eye. Recent investigations have revealed a metabolic ecosystem in the outer retina where the photoreceptors and RPE engage in a complex exchange of sugars, amino acids, and other metabolites. Perturbation of this delicate metabolic balance has been identified in the aging retina, as well as in age-related macular degeneration (AMD), the leading cause of blindness in the Western world. Also common in the aging and diseased retina are elevated levels of cytokines, oxidative stress, advanced glycation end-products, increased growth factor signalling, and biomechanical stress - all of which have been associated with metabolic dysregulation in non-retinal cell types and tissues. Herein, we outline the role of these factors in retinal homeostasis, aging, and disease. We discuss their effects on glucose, mitochondrial, lipid, and amino acid metabolism in tissues and cell types outside the retina, highlighting the signalling pathways through which they induce these changes. Lastly, we discuss promising avenues for future research investigating the roles of these pathological conditions on retinal metabolism, potentially offering novel therapeutic approaches to combat age-related retinal disease.
Collapse
Affiliation(s)
- David S Hansman
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia.
| | - Jianhai Du
- Department of Ophthalmology and Visual Sciences, Department of Biochemistry and Molecular Medicine, West Virginia University, Morgantown, WV 26506, USA
| | - Robert J Casson
- Discipline of Ophthalmology and Visual Science, Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Daniel J Peet
- School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
15
|
Shaw EM, Tate AJ, Periasamy R, Lipinski DM. Characterization of drusen formation in a primary porcine tissue culture model of dry AMD. Mol Ther Methods Clin Dev 2024; 32:101331. [PMID: 39434920 PMCID: PMC11492580 DOI: 10.1016/j.omtm.2024.101331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 08/28/2024] [Indexed: 10/23/2024]
Abstract
Age-related macular degeneration (AMD) affects millions of individuals worldwide and is a leading cause of blindness in the elderly. In dry AMD, lipoproteinaceous deposits called drusen accumulate between the retinal pigment epithelium (RPE) and Bruch's membrane, leading to impairment of oxygen and nutrient trafficking to the neural retina, and degeneration of the overlying photoreceptor cells. Owing to key differences in human and animal ocular anatomy and the slowly progressing nature of the disease, AMD is not easily modeled in vivo. In this study, we further characterize a "drusen-in-a-dish" primary porcine RPE model system by employing vital lipid staining to monitor sub-RPE deposition over time in monolayers of cells cultured on porous transwell membranes. We demonstrate for the first time using a semi-automated image analysis pipeline that the number and size of sub-RPE deposits increases gradually but significantly over time and confirm that sub-RPE deposits grown in culture immunostain positive for multiple known components found in human drusen. As a result, we propose that drusen-in-a-dish cell culture models represent a high-throughput and cost-scalable alternative to animal models in which to study the pathobiology of drusen accumulation and may serve as useful tools for screening novel therapeutics aimed at treating dry AMD.
Collapse
Affiliation(s)
- Erika M. Shaw
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Alexander J. Tate
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Ramesh Periasamy
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| | - Daniel M. Lipinski
- Department of Cell Biology, Neurobiology and Anatomy, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Ophthalmology and Visual Sciences, Medical College of Wisconsin, Milwaukee, WI, USA
| |
Collapse
|
16
|
Marchesi N, Capierri M, Pascale A, Barbieri A. Different Therapeutic Approaches for Dry and Wet AMD. Int J Mol Sci 2024; 25:13053. [PMID: 39684764 DOI: 10.3390/ijms252313053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 12/02/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024] Open
Abstract
Age-related macular degeneration (AMD) is the most common cause of irreversible loss of central vision in elderly subjects, affecting men and women equally. It is a degenerative pathology that causes progressive damage to the macula, the central and most vital part of the retina. There are two forms of AMD depending on how the macula is damaged, dry AMD and wet or neovascular AMD. Dry AMD is the most common form; waste materials accumulate under the retina as old cells die, not being replaced. Wet AMD is less common, but can lead to vision loss much more quickly. Wet AMD is characterized by new abnormal blood vessels developing under the macula, where they do not normally grow. This frequently occurs in patients who already have dry AMD, as new blood vessels are developed to try to solve the problem. It is not known what causes AMD to develop; however, certain risk factors (i.e., age, smoking, genetic factors) can increase the risk of developing AMD. There are currently no treatments for dry AMD. There is evidence that not smoking, exercising regularly, eating nutritious food, and taking certain supplements can reduce the risk of acquiring AMD or slow its development. The main treatment for wet AMD is inhibitors of VEGF (vascular endothelial growth factor), a protein that stimulates the growth of new blood vessels. VEGF inhibitors can stop the growth of new blood vessels, preventing further damage to the macula and vision loss. In most patients, VEGF inhibitors can improve vision if macular degeneration is diagnosed early and treated accordingly. However, VEGF inhibitors cannot repair damage that has already occurred. Current AMD research is trying to find treatments for dry AMD and other options for wet AMD. This review provides a summary of the current evidence regarding the different treatments aimed at both forms of AMD with particular and greater attention to the dry form.
Collapse
Affiliation(s)
- Nicoletta Marchesi
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| | - Martina Capierri
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| | - Alessia Pascale
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| | - Annalisa Barbieri
- Department of Drug Sciences, Section of Pharmacology, University of Pavia, 27100 Pavia, Italy
| |
Collapse
|
17
|
Calton MA, Croze RH, Burns C, Beliakoff G, Vazin T, Szymanski P, Schmitt C, Klein A, Leong M, Quezada M, Holt J, Bolender G, Barglow K, Khoday D, Mason T, Delaria K, Hassanipour M, Kotterman M, Khanani AM, Schaffer D, Francis P, Kirn D. Design and Characterization of a Novel Intravitreal Dual-Transgene Genetic Medicine for Neovascular Retinopathies. Invest Ophthalmol Vis Sci 2024; 65:1. [PMID: 39620832 PMCID: PMC11614000 DOI: 10.1167/iovs.65.14.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 10/28/2024] [Indexed: 12/06/2024] Open
Abstract
Purpose Intravitreal delivery of therapeutic transgenes to the retina via engineered viral vectors can provide sustained local concentrations of therapeutic proteins and thus potentially reduce the treatment burden and improve long-term vision outcomes for patients with neovascular (wet) age-related macular degeneration (AMD), diabetic macular edema (DME), and diabetic retinopathy. Methods We performed directed evolution in nonhuman primates (NHP) to invent an adeno-associated viral (AAV) variant (R100) with the capacity to cross vitreoretinal barriers and transduce all regions and layers of the retina following intravitreal injection. We then engineered 4D-150, an R100-based genetic medicine carrying 2 therapeutic transgenes: a codon-optimized sequence encoding aflibercept, a recombinant protein that inhibits VEGF-A, VEGF-B, and PlGF, and a microRNA sequence that inhibits expression of VEGF-C. Transduction, transgene expression, and biological activity were characterized in human retinal cells in vitro and in NHPs. Results R100 demonstrated superior retinal cell transduction in vitro and in vivo compared to AAV2, a commonly used wild-type AAV serotype in retinal gene therapies. Transduction of human retinal pigment epithelial cells in vitro by 4D-150 resulted in dose-dependent transgene expression and corresponding reductions in VEGF-A and VEGF-C. Intravitreal administration of 4D-150 to NHPs was well tolerated and led to robust retinal expression of both transgenes. In a primate model of laser-induced choroidal neovascularization, 4D-150 completely prevented clinically relevant angiogenic lesions at all tested doses. Conclusions These findings support further development of 4D-150. Clinical trials are underway to establish the safety and efficacy of 4D-150 in individuals with wet AMD and DME.
Collapse
Affiliation(s)
| | - Roxanne H. Croze
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - Christian Burns
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - Ghezal Beliakoff
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - Tandis Vazin
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - Paul Szymanski
- 4D Molecular Therapeutics, Emeryville, California, United States
| | | | - Austin Klein
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - Meredith Leong
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - Melissa Quezada
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - Jenny Holt
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - Gabe Bolender
- 4D Molecular Therapeutics, Emeryville, California, United States
| | | | - Devi Khoday
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - Thomas Mason
- 4D Molecular Therapeutics, Emeryville, California, United States
| | | | | | | | - Arshad M. Khanani
- Sierra Eye Associates, Reno, Nevada, United States
- University of Nevada, Reno School of Medicine, Reno, Nevada, United States
| | - David Schaffer
- University of California, Berkeley, California, United States
| | - Peter Francis
- 4D Molecular Therapeutics, Emeryville, California, United States
| | - David Kirn
- 4D Molecular Therapeutics, Emeryville, California, United States
- University of California, Berkeley, California, United States
| |
Collapse
|
18
|
Cimino C, Vidal LB, Conti F, López ES, Bucolo C, García ML, Musumeci T, Pignatello R, Carbone C. From Preformulative Design to in Vivo Tests: A Complex Path of Requisites and Studies for Nanoparticle Ocular Application. Part 2: In Vitro, Ex Vivo, and In Vivo Studies. Mol Pharm 2024; 21:6062-6099. [PMID: 39514183 DOI: 10.1021/acs.molpharmaceut.4c00725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
The incidence of ocular pathologies is constantly increasing, as is the interest of the researchers in developing new strategies to ameliorate the treatment of these conditions. Nowadays, drug delivery systems are considered among the most relevant approaches due to their applicability in the treatment of a great variety of inner and outer eye pathologies through painless topical administrations. The design of such nanocarriers requires a deep study of many aspects related to the administration route but also a consideration of the authorities and pharmacopeial requirements, in order to achieve a clinical outcome. On such bases, the scope of this review is to describe the path of the analyses that could be performed on nanoparticles, along with the assessment of their applicability for ophthalmic treatments. Preformulation studies, physicochemical and technological characterization, and preliminary noncellular in vitro studies have been described in part 1 of this review. Herein, first the in vitro cellular assays are described; subsequently, nonocular organotypic tests and ex vivo studies are reported, as to present the various analyses to which the formulations can be subjected before in vivo studies, described in the last part. In each step, the models that could be used are presented and compared, highlighting the pros and cons. Moreover, their reliability and eventual acceptance by regulatory agencies are discussed. Hence, this review provides an overview of the most relevant assays applicable for nanocarriers intended for ophthalmic administration to guide researchers in the experimental decision process.
Collapse
Affiliation(s)
- Cinzia Cimino
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Lorena Bonilla Vidal
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Federica Conti
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95124 Catania, Italy
| | - Elena Sánchez López
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
- Unit of Synthesis and Biomedical Applications of Peptides, IQAC-CSIC, 08034 Barcelona, Spain
| | - Claudio Bucolo
- Department of Biomedical and Biotechnological Sciences, School of Medicine, University of Catania, 95124 Catania, Italy
- Center for Research in Ocular Pharmacology-CERFO, University of Catania, 95124 Catania, Italy
| | - Maria Luisa García
- Department of Pharmacy, Pharmaceutical Technology and Physical Chemistry, Faculty of Pharmacy and Food Sciences, University of Barcelona, 08028 Barcelona, Spain
- Institute of Nanoscience and Nanotechnology (IN2UB), University of Barcelona, 08028 Barcelona, Spain
| | - Teresa Musumeci
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Rosario Pignatello
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| | - Claudia Carbone
- Laboratory of Drug Delivery Technology, Department of Drug and Health Sciences, University of Catania, Viale A. Doria 6, 95124 Catania, Italy
- NANOMED, Research Centre for Nanomedicine and Pharmaceutical Nanotechnology, University of Catania, 95124 Catania, Italy
| |
Collapse
|
19
|
Carleton M, Oesch NW. Bridging the gap of vision restoration. Front Cell Neurosci 2024; 18:1502473. [PMID: 39640234 PMCID: PMC11617155 DOI: 10.3389/fncel.2024.1502473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Accepted: 11/06/2024] [Indexed: 12/07/2024] Open
Abstract
Retinitis pigmentosa (RP) and Age-Related Macular Degeneration (AMD) are similar in that both result in photoreceptor degeneration leading to permanent progressive vision loss. This affords the possibility of implementing vision restoration techniques, where light signaling is restored to spared retinal circuitry to recreate vision. There are far more AMD patients (Wong et al., 2014), yet more resources have been put towards researching and developing vision restoration strategies for RP despite it rarity, because of the tractability of RP disease models. The hope is that these therapies will extend to the AMD population, however, many questions remain about how the implementation of prosthetic or optogenetic vision restoration technologies will translate between RP and AMD patients. In this review, we discuss the difference and similarities of RP and AMD with a focus on aspects expected to impact vision restoration strategies, and we identify key gaps in knowledge needed to further improve vision restoration technologies for a broad patient population.
Collapse
Affiliation(s)
- Maya Carleton
- Department of Psychology, University of California San Diego, La Jolla, CA, United States
| | - Nicholas W. Oesch
- Department of Psychology, University of California San Diego, La Jolla, CA, United States
- Department of Ophthalmology, University of California San Diego, La Jolla, CA, United States
- Neuroscience Graduate Program, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
20
|
Almalki WH, Almujri SS. The impact of NF-κB on inflammatory and angiogenic processes in age-related macular degeneration. Exp Eye Res 2024; 248:110111. [PMID: 39326776 DOI: 10.1016/j.exer.2024.110111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 09/09/2024] [Accepted: 09/23/2024] [Indexed: 09/28/2024]
Abstract
Age-related macular degeneration (AMD) is a prominent cause of vision loss, characterized by two different types, dry (atrophic) and wet (neovascular). Dry AMD is distinguished by the progressive deterioration of retinal cells, which ultimately causes a decline in vision. In contrast, wet AMD is defined by the abnormal development of blood vessels underneath the retina, leading to a sudden and severe vision impairment. The course of AMD is primarily driven by chronic inflammation and pathological angiogenesis, in which the NF-κB signaling pathway plays a crucial role. The activation of NF-κB results in the generation of pro-inflammatory cytokines, chemokines, and angiogenic factors like VEGF, which contribute to inflammation and the formation of new blood vessels in AMD. This review analyzes the intricate relationship between NF-κB signaling, inflammation, and angiogenesis in AMD and assesses the possibility of using NF-κB as a target for therapy. The evaluation involves a comprehensive examination of preclinical and clinical evidence that substantiates the effectiveness of NF-κB inhibitors in treating AMD by diminishing inflammation and pathological angiogenesis.
Collapse
Affiliation(s)
- Waleed Hassan Almalki
- Department of Pharmacology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Abha 61421, Aseer, Saudi Arabia
| |
Collapse
|
21
|
Hyttinen JMT, Koskela A, Blasiak J, Kaarniranta K. Autophagy in drusen biogenesis secondary to age-related macular degeneration. Acta Ophthalmol 2024; 102:759-772. [PMID: 39087629 DOI: 10.1111/aos.16744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Accepted: 07/11/2024] [Indexed: 08/02/2024]
Abstract
Age-related macular degeneration (AMD) is an emerging cause of blindness in aged people worldwide. One of the key signs of AMD is the degeneration of the retinal pigment epithelium (RPE), which is indispensable for the maintenance of the adjacent photoreceptors. Because of impaired energy metabolism resulting from constant light exposure, hypoxia, and oxidative stress, accumulation of drusen in AMD-affected eyes is observed. Drusen contain damaged cellular proteins, lipoprotein particles, lipids and carbohydrates and they are related to impaired protein clearance, inflammation, and extracellular matrix modification. When autophagy, a major cellular proteostasis pathway, is impaired, the accumulations of intracellular lipofuscin and extracellular drusen are detected. As these aggregates grow over time, they finally cause the disorganisation and destruction of the RPE and photoreceptors leading to visual loss. In this review, the role of autophagy in drusen biogenesis is discussed since impairment in removing cellular waste in RPE cells plays a key role in AMD progression. In the future, means which improve intracellular clearance might be of use in AMD therapy to slow the progression of drusen formation.
Collapse
Affiliation(s)
- Juha M T Hyttinen
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Ali Koskela
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
| | - Janusz Blasiak
- Faculty of Medicine, Collegium Medicum, Mazovian Academy in Plock, Plock, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, Kuopio, Finland
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
- Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
22
|
Huang C, Kaur A, Ji L, Tian H, Webster KA, Li W. Suppression of matrigel-induced choroidal neovascularization by AAV delivery of a novel anti-Scg3 antibody. Gene Ther 2024; 31:587-593. [PMID: 39333408 PMCID: PMC11720169 DOI: 10.1038/s41434-024-00491-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 09/29/2024]
Abstract
Efforts to develop gene therapy for long-term treatment of neovascular disease are hampered by ongoing concerns that biologics against vascular endothelial growth factor (VEGF) inhibit both physiological and pathological angiogenesis and are therefore at elevated risk of adverse side effects. A potential solution is to develop disease-targeted gene therapy. Secretogranin III (Scg3), a unique disease-restricted angiogenic factor described by our group, contributes significantly to ocular neovascular disease. We have shown that Scg3 blockade with a monoclonal antibody Fab fragment (Fab) stringently inhibits pathological angiogenesis without affecting healthy vessels. Here we tested the therapeutic efficacy of adeno-associated virus (AAV)-anti-Scg3Fab to block choroidal neovascularization (CNV) induced by subretinal injection of Matrigel in a mouse model. Intravitreal AAV-anti-Scg3Fab significantly reduced CNV and suppressed CNV-associated leukocyte infiltration and macrophage activation. The efficacy and anti-inflammatory effects were equivalent to those achieved by positive control AAV-aflibercept against VEGF. Efficacies of AAV-anti-Scg3Fab and AAV-aflibercept were sustained over 4 months post AAV delivery. The findings support development of AAV-anti-Scg3 as an alternative to AAV-anti-VEGF with equivalent efficacy and potentially safer mechanism of action.
Collapse
Affiliation(s)
- Chengchi Huang
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Avinash Kaur
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Liyang Ji
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA
| | - Hong Tian
- Everglades Biopharma, LLC, Houston, TX, 77098, USA
| | - Keith A Webster
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA
- Everglades Biopharma, LLC, Houston, TX, 77098, USA
- Department of Pharmacology, Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Wei Li
- Cullen Eye Institute, Department of Ophthalmology, Baylor College of Medicine, Houston, TX, 77030, USA.
| |
Collapse
|
23
|
Xiao JF, Luo W, Mani A, Barba H, Solanki A, Droho S, Lavine JA, Skondra D. Intravitreal Metformin Protects Against Choroidal Neovascularization and Light-Induced Retinal Degeneration. Int J Mol Sci 2024; 25:11357. [PMID: 39518910 PMCID: PMC11545389 DOI: 10.3390/ijms252111357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 10/12/2024] [Accepted: 10/16/2024] [Indexed: 11/16/2024] Open
Abstract
Neovascular age-related macular degeneration (nAMD), a leading cause of blindness in older adults, presents a challenging pathophysiology involving choroidal neovascularization (CNV) and retinal degeneration. Current treatments relying on intravitreal (IVT) administration of anti-angiogenic agents are costly and of moderate effectiveness. Metformin, the common anti-diabetic drug, has been associated with decreased odds of developing AMD. Studies have shown that metformin can mitigate cellular aging, neoangiogenesis, and inflammation across multiple diseases. This preclinical study assessed metformin's impact on vessel growth using choroidal explants before exploring IVT metformin's effects on laser-induced CNV and light-induced retinal degeneration in C57BL/6J and BALB/cJ mice, respectively. Metformin reduced new vessel growth in choroidal explants in a dose-dependent relationship. Following laser induction, IVT metformin suppressed CNV and decreased peripheral infiltration of IBA1+ macrophages/microglia. Furthermore, IVT metformin protected against retinal thinning in response to light-induced degeneration. IVT metformin downregulated genes in the choroid and retinal pigment epithelium which are associated with angiogenesis and inflammation, two key processes that drive nAMD progression. These findings underscore metformin's capacity as an anti-angiogenic and neuroprotective agent, demonstrating this drug's potential as an accessible option to help manage nAMD.
Collapse
Affiliation(s)
- Jason F. Xiao
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (J.F.X.); (W.L.); (A.M.)
| | - Wendy Luo
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (J.F.X.); (W.L.); (A.M.)
| | - Amir Mani
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (J.F.X.); (W.L.); (A.M.)
| | - Hugo Barba
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (J.F.X.); (W.L.); (A.M.)
| | | | - Steven Droho
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (S.D.); (J.A.L.)
| | - Jeremy A. Lavine
- Department of Ophthalmology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA; (S.D.); (J.A.L.)
| | - Dimitra Skondra
- Department of Ophthalmology and Visual Science, University of Chicago, Chicago, IL 60637, USA; (J.F.X.); (W.L.); (A.M.)
| |
Collapse
|
24
|
Guo Y, Xu N, Yan H, Li J, Huang L, Zhu L, Du W, Liu Z, Zhao M. Splice Variant of Retinal G-Protein-Coupled Receptor Deletion-Mediated Dysregulation of Autophagy Increases the Susceptibility to Age-Related Macular Degeneration-Like Defects. Ophthalmic Res 2024; 67:611-624. [PMID: 39406195 DOI: 10.1159/000541991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/30/2024] [Indexed: 11/14/2024]
Abstract
INTRODUCTION The splice variant of retinal G-protein-coupled receptor deletion (RGR-d) is a persistent component of drusen and may be involved in the pathogenesis of dry age-related macular degeneration (AMD). Increasing evidence has demonstrated the critical role of autophagy in AMD. In this study, we investigated whether RGR-d disrupts autophagy in early dry AMD in vivo and in vitro. METHODS Fundus imaging and fluoroscopy were performed on RGR-d mice created by multiplex gene editing. The retina microstructure was evaluated by performing hematoxylin and eosin (H&E) staining as well as transmission electron microscopy (TEM). Retinal function was assessed by full-field electroretinography (ERG). After lentivirus transfection and stimulation, the permeability, phagocytosis, and tight junctions of ARPE-19 cells were evaluated. Western blotting of ATG5, Beclin-1, LC3II/I, and P62 was performed to detect the changes in autophagy pathways. RESULTS Atrophy and patchy penetrating hyperfluorescent foci, consistent with early AMD-like defects, were observed in the fundus of 12-month-old RGR-d mice. H&E staining of retinal tissues indicated thinning of each layer of the retinal structure. H&E staining of retinal tissues indicated thinning of each layer of the retinal structure. TEM analysis showed some diffuse granular deposits. And the morphology of choroidal microvascular endothelial cells was degraded and distorted. The morphology of the photoreceptor outer segments showed structural damage, and Bruch's membrane was thickened. ERG indicated that the photoreceptor of RGR-d mice were dysfunctional. Changes in autophagy-related protein expression were observed in the retinal pigment epithelium and retinal neurepithelium, and autophagy regulation was decreased. Palmitic acid (PA) stimulation caused permeability, phagocytosis, and tight junction dysfunction in cells overexpressing RGR-d. Beclin-1 and LC3II/I expression levels were significantly decreased and that of P62 was elevated in RGR-d cells after PA stimulation. CONCLUSION RGR-d disrupts the autophagy pathway, causing the development of an early AMD-like pathophysiology.
Collapse
Affiliation(s)
- Yue Guo
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China,
- Eye Diseases and Optometry Institute, Beijing, China,
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China,
- College of Optometry, Peking University Health Science Center, Beijing, China,
| | - Ningda Xu
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Huichao Yan
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Jiarui Li
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Lvzhen Huang
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Li Zhu
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Wei Du
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Zhiming Liu
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| | - Mingwei Zhao
- Department of Ophthalmology, Peking University People's Hospital, Beijing, China
- Eye Diseases and Optometry Institute, Beijing, China
- Beijing Key Laboratory of Diagnosis and Therapy of Retinal and Choroid Diseases, Beijing, China
- College of Optometry, Peking University Health Science Center, Beijing, China
| |
Collapse
|
25
|
Fradot V, Augustin S, Fontaine V, Marazova K, Guillonneau X, Sahel JA, Picaud S. Rodent Models of Retinal Degeneration: From Purified Cells in Culture to Living Animals. Cold Spring Harb Perspect Med 2024; 14:a041311. [PMID: 37848250 PMCID: PMC11444255 DOI: 10.1101/cshperspect.a041311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
Rodent models of retinal degeneration are essential for the development of therapeutic strategies. In addition to living animal models, we here also discuss models based on rodent cell cultures, such as purified retinal ganglion cells and retinal explants. These ex vivo models extend the possibilities for investigating pathological mechanisms and assessing the neuroprotective effect of pharmacological agents by eliminating questions on drug pharmacokinetics and bioavailability. The number of living rodent models has greatly increased with the possibilities to achieve transgenic modifications in animals for knocking in and out genes and mutations. The Cre-lox system has further enabled investigators to target specific genes or mutations in specific cells at specific stages. However, chemically or physically induced models can provide alternatives to such targeted gene modifications. The increased diversity of rodent models has widened our possibility to address most ocular pathologies for providing initial proof of concept of innovative therapeutic strategies.
Collapse
Affiliation(s)
- Valérie Fradot
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Sébastien Augustin
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Valérie Fontaine
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Katia Marazova
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - Xavier Guillonneau
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| | - José A Sahel
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
- Department of Ophthalmology, The University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15213, USA
| | - Serge Picaud
- Sorbonne Université, INSERM, CNRS, Institut de la Vision, Paris F-75012, France
| |
Collapse
|
26
|
Schwartz L, Schwartz J, Henry M, Bakkar A. Metabolic Shift and Hyperosmolarity Underlie Age-Related Macular Degeneration. Life (Basel) 2024; 14:1189. [PMID: 39337971 PMCID: PMC11432886 DOI: 10.3390/life14091189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/30/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Age-related macular degeneration (AMD) is both a poorly understood and devastating disease. Here, we analyze the physico-chemical forces at stake, including osmolarity, redox shift, and pressure due to inflammation. Hyperosmolarity plays a key role in diseases of the anterior segment of the eye such as glaucoma, cataracts or dry eyes, and corneal ulceration. However, its role in macular degeneration has been largely overlooked. Hyperosmolarity is responsible for metabolic shifts such as aerobic glycolysis which increases lactate secretion by Muller cells. Increased osmolarity will also cause neoangiogenesis and cell death. Because of its unique energetic demands, the macula is very sensitive to metabolic shifts. As a proof of concept, subretinal injection of drugs increasing hyperosmolarity such as polyethylene glycol causes neoangiogenesis and drusen-like structures in rodents. The link between AMD and hyperosmolarity is reinforced by the fact that treatments aiming to restore mitochondrial activity, such as lipoic acid and/or methylene blue, have been experimentally shown to be effective. We suggest that metabolic shift, inflammation, and hyperosmolarity are hallmarks in the pathogenesis and treatment of AMD.
Collapse
Affiliation(s)
| | - Jules Schwartz
- Assistance Publique des Hôpitaux de Paris, 75610 Paris, France;
| | - Marc Henry
- Institut Le Bel, Université Louis Pasteur, 67070 Strasbourg, France;
| | - Ashraf Bakkar
- Faculty of Biotechnology, October University for Modern Sciences and Arts, Giza 12451, Egypt;
| |
Collapse
|
27
|
Seol A, Kim JE, Jin YJ, Song HJ, Roh YJ, Kim TR, Park ES, Park KH, Park SH, Uddin MS, Lee SW, Choi YW, Hwang DY. Novel Therapeutic Effects of Euphorbia heterophylla L. Methanol Extracts in Macular Degeneration Caused by Blue Light in A2E-Laden ARPE-19 Cells and Retina of BALB/c Mice. Pharmaceuticals (Basel) 2024; 17:1193. [PMID: 39338355 PMCID: PMC11435363 DOI: 10.3390/ph17091193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 09/05/2024] [Accepted: 09/06/2024] [Indexed: 09/30/2024] Open
Abstract
Natural products with high antioxidant activity are considered as innovative prevention strategies to effectively prevent age-related macular degeneration (AMD) in the early stage because the generation of reactive oxygen species (ROS) leading to the development of drusen is reported as an important cause of this disease. To investigate the prevention effects of the methanol extracts of Euphorbia heterophylla L. (MEE) on AMD, its effects on the antioxidant activity, inflammatory response, apoptosis pathway, neovascularization, and retinal tissue degeneration were analyzed in N-retinylidene-N-retinylethanolamine (A2E)-landed spontaneously arising retinal pigment epithelia (ARPE)-19 cells and BALB/c mice after exposure to blue light (BL). The MEE contained 10 active components and showed high free radical scavenging activity against 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azino-bis (3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), and nitric oxide (NO) radicals. The pretreatments of high-dose MEE remarkably suppressed the production of intracellular ROS (88.2%) and NO (25.2%) and enhanced (SOD) activity (84%) and the phosphorylation of nuclear factor erythroid 2-related factor 2 (Nrf2) in A2E + BL-treated ARPE-19 cells compared to Vehicle-treated group. The activation of the inducible nitric oxide synthase (iNOS)-induced cyclooxygenase-2 (COX-2) mediated pathway, inflammasome activation, and expression of inflammatory cytokines was significantly inhibited in A2E + BL-treated ARPE-19 cells after the MEE pretreatment. The activation of the apoptosis pathway and increased expression of neovascular proteins (36% for matrix metalloproteinase (MMP)-9) were inhibited in the MEE pretreated groups compared to the Vehicle-treated group. Furthermore, the thickness of the whole retina (31%), outer nuclear layer (ONL), inner nuclear layer (INL), and photoreceptor layer (PL) were significantly increased by the MEE pretreatment of BALB/c mice with BL-induced retinal degeneration. Therefore, these results suggest that the MEE, with its high antioxidative activity, protects against BL-induced retinal degeneration through the regulation of the antioxidative system, inflammatory response, apoptosis, and neovascularization in the AMD mouse model.
Collapse
Affiliation(s)
- Ayun Seol
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Ji-Eun Kim
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - You-Jeong Jin
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Hee-Jin Song
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Yu-Jeong Roh
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Tae-Ryeol Kim
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Eun-Seo Park
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Ki-Ho Park
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - So-Hae Park
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | | | - Sang-Woo Lee
- International Biological Material Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon 34141, Republic of Korea
| | - Young-Woo Choi
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
| | - Dae-Youn Hwang
- Department of Biomaterials Science (BK21 FOUR Program), Life and Industry Convergence Research Institute, College of Natural Resources and Life Science, Pusan National University, Miryang 50463, Republic of Korea
- Longevity & Wellbeing Research Center, Laboratory Animals Resources Center, Pusan National University, Miryang 50463, Republic of Korea
| |
Collapse
|
28
|
Seyed-Razavi Y, Lee SR, Fan J, Shen W, Cornish EE, Gillies MC. JR5558 mice are a reliable model to investigate subretinal fibrosis. Sci Rep 2024; 14:18752. [PMID: 39138242 PMCID: PMC11322289 DOI: 10.1038/s41598-024-66068-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 06/26/2024] [Indexed: 08/15/2024] Open
Abstract
Subretinal fibrosis is a major untreatable cause of poor outcomes in neovascular age-related macular degeneration. Mouse models of subretinal fibrosis all possess a degree of invasiveness and tissue damage not typical of fibrosis progression. This project characterises JR5558 mice as a model to study subretinal fibrosis. Fundus and optical coherence tomography (OCT) imaging was used to non-invasively track lesions. Lesion number and area were quantified with ImageJ. Retinal sections, wholemounts and Western blots were used to characterise alterations. Subretinal lesions expand between 4 and 8 weeks and become established in size and location around 12 weeks. Subretinal lesions were confirmed to be fibrotic, including various cell populations involved in fibrosis development. Müller cell processes extended from superficial retina into subretinal lesions at 8 weeks. Western blotting revealed increases in fibronectin (4 wk and 8 wk, p < 0.001), CTGF (20 wks, p < 0.001), MMP2 (12 wks and 20 wks p < 0.05), αSMA (12 wks and 20 wks p < 0.05) and GFAP (8 wk and 12 wk, p ≤ 0.01), consistent with our immunofluorescence results. Intravitreal injection of Aflibercept reduced subretinal lesion growth. Our study provides evidence JR5558 mice have subretinal fibrotic lesions that grow between 4 and 8 weeks and confirms this line to be a good model to study subretinal fibrosis development and assess treatment options.
Collapse
Affiliation(s)
- Yashar Seyed-Razavi
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, Sydney, NSW, 2000, Australia.
- Centre for Vision Research, Westmead Institute for Medical Research, Faculty of Medicine and Health, Sydney University, Sydney, Westmead, NSW, 2145, Australia.
| | - So-Ra Lee
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, Sydney, NSW, 2000, Australia
| | - Jiawen Fan
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, Sydney, NSW, 2000, Australia
| | - Weiyong Shen
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, Sydney, NSW, 2000, Australia
| | - Elisa E Cornish
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, Sydney, NSW, 2000, Australia
| | - Mark C Gillies
- Save Sight Institute, Discipline of Ophthalmology, Sydney Medical School, The University of Sydney, Sydney, NSW, 2000, Australia.
| |
Collapse
|
29
|
Salzman MM, Takimoto T, Foster ML, Mowat FM. Differential gene expression between central and peripheral retinal regions in dogs and comparison with humans. Exp Eye Res 2024; 245:109980. [PMID: 38914302 PMCID: PMC11250724 DOI: 10.1016/j.exer.2024.109980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 06/09/2024] [Accepted: 06/20/2024] [Indexed: 06/26/2024]
Abstract
The dog retina contains a central macula-like region, and there are reports of central retinal disorders in dogs with shared genetic etiologies with humans. Defining central/peripheral gene expression profiles may provide insight into the suitability of dogs as models for human disorders. We determined central/peripheral posterior eye gene expression profiles in dogs and interrogated inherited retinal and macular disease-associated genes for differential expression between central and peripheral regions. Bulk tissue RNA sequencing was performed on 8 mm samples of the dog central and superior peripheral regions, sampling retina and retinal pigmented epithelium/choroid separately. Reads were mapped to CanFam3.1, read counts were analyzed to determine significantly differentially expressed genes (DEGs). A similar analytic pipeline was used with a published bulk-tissue RNA sequencing human dataset. Pathways and processes involved in significantly DEGs were identified (Database for Annotation, Visualization and Integrated Discovery). Dogs and humans shared the extent and direction of central retinal differential gene expression, with multiple shared biological pathways implicated in differential expression. Many genes implicated in heritable retinal disorders in dogs and humans were differentially expressed between central and periphery. Approximately half of genes associated with human age-related macular degeneration were differentially expressed in human and dog tissues. We have identified similarities and differences in central/peripheral gene expression profiles between dogs and humans which can be applied to further define the relevance of dogs as models for human retinal disorders.
Collapse
Affiliation(s)
- Michele M Salzman
- Dept. Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, USA
| | - Tetsuya Takimoto
- Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, USA; Division of Gene Regulation, Division of Data Science, Research Promotion Headquarters, Fujita Health University, Toyoake, Japan
| | - Melanie L Foster
- Dept. Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA
| | - Freya M Mowat
- Dept. Surgical Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, USA; Dept. Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, NC, USA; Dept. Ophthalmology and Visual Sciences, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
30
|
Linder M, Bennink L, Foxton RH, Kirkness M, Westenskow PD. In vivo monitoring of active subretinal fibrosis in mice using collagen hybridizing peptides. Lab Anim (NY) 2024; 53:196-204. [PMID: 39060633 PMCID: PMC11291276 DOI: 10.1038/s41684-024-01408-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 06/19/2024] [Indexed: 07/28/2024]
Abstract
Subretinal fibrosis is associated with worse visual outcomes in patients with neovascular age-related macular degeneration. As there is a lack of optimal biomarkers and no method that directly detects collagen in the back of the eye, novel tools that monitor fibrosis-related changes in neovascular age-related macular degeneration are needed. Here, using two mouse models (the laser-induced choroidal neovascularization model, and the JR5558 mouse presenting with spontaneous subretinal neovascularization with fibrosis), we imaged active fibrotic lesions using fluorescently labeled collagen hybridizing peptides (CHPs), short peptides that bind to single α-chain collagen structures during collagen remodeling. JR5558 retinal pigment epithelium/choroid flat mounts showed CHP co-staining with fibrosis and epithelial mesenchymal transition-related markers; additionally, CHP histopathology staining correlated with in vivo CHP imaging. After laser-induced choroidal neovascularization, in vivo CHP binding correlated with laser intensity, histopathology CHP and fibronectin staining. Laser-induced choroidal neovascularization showed decreased CHP intensity over time in healing/regressing versus active scars in vivo, whereas increased CHP binding correlated with elevated fibrosis in JR5558 mouse eyes with age. In bispecific angiopoietin 2/vascular endothelial growth factor antibody-treated JR5558 mice, CHPs detected significantly decreased collagen remodeling versus immunoglobulin G control. These results demonstrate the first use of CHPs to directly image remodeling collagen in the eye and as a potential clinical optical biomarker of active subretinal fibrosis associated with ocular neovascularization.
Collapse
Affiliation(s)
- Markus Linder
- Roche Pharma Research and Early Development, Roche Innovation Center, F. Hoffmann-La Roche AG, Basel, Switzerland
- Novartis Institutes for BioMedical Research, Basel, Switzerland
| | | | - Richard H Foxton
- Roche Pharma Research and Early Development, Roche Innovation Center, F. Hoffmann-La Roche AG, Basel, Switzerland
| | | | - Peter D Westenskow
- Roche Pharma Research and Early Development, Roche Innovation Center, F. Hoffmann-La Roche AG, Basel, Switzerland.
| |
Collapse
|
31
|
Chucair-Elliott AJ, Ocañas SR, Pham K, Machalinski A, Plafker S, Stout MB, Elliott MH, Freeman WM. Age- and sex- divergent translatomic responses of the mouse retinal pigmented epithelium. Neurobiol Aging 2024; 140:41-59. [PMID: 38723422 PMCID: PMC11173338 DOI: 10.1016/j.neurobiolaging.2024.04.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 04/22/2024] [Accepted: 04/23/2024] [Indexed: 05/18/2024]
Abstract
Aging is the main risk factor for age-related macular degeneration (AMD), a retinal neurodegenerative disease that leads to irreversible blindness, particularly in people over 60 years old. Retinal pigmented epithelium (RPE) atrophy is an AMD hallmark. Genome-wide chromatin accessibility, DNA methylation, and gene expression studies of AMD and control RPE demonstrate epigenomic/transcriptomic changes occur during AMD onset and progression. However, mechanisms by which molecular alterations of normal aging impair RPE function and contribute to AMD pathogenesis are unclear. Here, we specifically interrogate the RPE translatome with advanced age and across sexes in a novel RPE reporter mouse model. We find differential age- and sex- associated transcript expression with overrepresentation of pathways related to inflammation in the RPE. Concordant with impaired RPE function, the phenotypic changes in the aged translatome suggest that aged RPE becomes immunologically active, in both males and females, with some sex-specific signatures, which supports the need for sex representation for in vivo studies.
Collapse
Affiliation(s)
- Ana J Chucair-Elliott
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA.
| | - Sarah R Ocañas
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Kevin Pham
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Adeline Machalinski
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Scott Plafker
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael B Stout
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael H Elliott
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA; Department of Ophthalmology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Willard M Freeman
- Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA.
| |
Collapse
|
32
|
Wei X, Hormel TT, Renner L, Neuringer M, Jia Y. Wide-field OCT angiography for non-human primate retinal imaging. BIOMEDICAL OPTICS EXPRESS 2024; 15:4642-4654. [PMID: 39346973 PMCID: PMC11427193 DOI: 10.1364/boe.525839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/03/2024] [Accepted: 07/04/2024] [Indexed: 10/01/2024]
Abstract
Optical coherence tomography (OCT) is a well-established research tool for vision research in animal models capable of providing in vivo imaging of the retina. Structural OCT can be enhanced using OCT angiography (OCTA) processing in order to provide simultaneously acquired, automatically co-registered vascular information. Currently available OCT. Currently available OCTA lack either large field of view or high resolution. In this study we developed a wide-field (60-degree), high-resolution (10.5-µm optical transverse) and high-sensitivity (104-dB) OCTA-enabled system for non-human primate imaging and with it imaged multiple disease models, including models of age-related macular degeneration (AMD), Bardet-Biedl Syndrome (BBS), and the CLN7 variant of Batten disease. We demonstrate clear visualization of features including drusen, ellipsoid zone loss, vascular retinopathy, and retinal thinning in these eyes.
Collapse
Affiliation(s)
- Xiang Wei
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, 97239, USA
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Tristan T Hormel
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| | - Laurie Renner
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Martha Neuringer
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
- Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, 97006, USA
| | - Yali Jia
- Department of Biomedical Engineering, Oregon Health & Science University, Portland, OR, 97239, USA
- Casey Eye Institute, Oregon Health & Science University, Portland, OR, 97239, USA
| |
Collapse
|
33
|
Zhang X, Zhong H, Wang S, He B, Cao L, Li M, Jiang M, Li Q. Subpixel motion artifacts correction and motion estimation for 3D-OCT. JOURNAL OF BIOPHOTONICS 2024:e202400104. [PMID: 38955360 DOI: 10.1002/jbio.202400104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/26/2024] [Accepted: 05/14/2024] [Indexed: 07/04/2024]
Abstract
A number of hardware-based and software-based strategies have been suggested to eliminate motion artifacts for improvement of 3D-optical coherence tomography (OCT) image quality. However, the hardware-based strategies have to employ additional hardware to record motion compensation information. Many software-based strategies have to need additional scanning for motion correction at the expense of longer acquisition time. To address this issue, we propose a motion artifacts correction and motion estimation method for OCT volumetric imaging of anterior segment, without requirements of additional hardware and redundant scanning. The motion correction effect with subpixel accuracy for in vivo 3D-OCT has been demonstrated in experiments. Moreover, the physiological information of imaging object, including respiratory curve and respiratory rate, has been experimentally extracted using the proposed method. The proposed method offers a powerful tool for scientific research and clinical diagnosis in ophthalmology and may be further extended for other biomedical volumetric imaging applications.
Collapse
Affiliation(s)
- Xiao Zhang
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Haozhe Zhong
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Sainan Wang
- Department of Anesthesiology, Beijing Chaoyang Hospital, Capital Medical University, Beijing, China
| | - Bin He
- State Key Laboratory of Low-dimensional Quantum Physics and Center for Atomic and Molecular Nanoscience, Department of Physics, Tsinghua University and Collaborative Innovation Center of Quantum Matter, Beijing, China
| | - Liangqi Cao
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| | - Ming Li
- China-America Institute of Neuroscience and Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Miaowen Jiang
- Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
| | - Qin Li
- School of Medical Technology, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
34
|
Borchert GA, Shamsnajafabadi H, Ng BWJ, Xue K, De Silva SR, Downes SM, MacLaren RE, Cehajic-Kapetanovic J. Age-related macular degeneration: suitability of optogenetic therapy for geographic atrophy. Front Neurosci 2024; 18:1415575. [PMID: 39010943 PMCID: PMC11246919 DOI: 10.3389/fnins.2024.1415575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
Age-related macular degeneration (AMD) is a growing public health concern given the aging population and it is the leading cause of blindness in developed countries, affecting individuals over the age of 55 years. AMD affects the retinal pigment epithelium (RPE) and Bruch's membrane in the macula, leading to secondary photoreceptor degeneration and eventual loss of central vision. Late AMD is divided into two forms: neovascular AMD and geographic atrophy (GA). GA accounts for around 60% of late AMD and has been the most challenging subtype to treat. Recent advances include approval of new intravitreally administered therapeutics, pegcetacoplan (Syfovre) and avacincaptad pegol (Iveric Bio), which target complement factors C3 and C5, respectively, which slow down the rate of enlargement of the area of atrophy. However, there is currently no treatment to reverse the central vision loss associated with GA. Optogenetics may provide a strategy for rescuing visual function in GA by imparting light-sensitivity to the surviving inner retina (i.e., retinal ganglion cells or bipolar cells). It takes advantage of residual inner retinal architecture to transmit visual stimuli along the visual pathway, while a wide range of photosensitive proteins are available for consideration. Herein, we review the anatomical changes in GA, discuss the suitability of optogenetic therapeutic sensors in different target cells in pre-clinical models, and consider the advantages and disadvantages of different routes of administration of therapeutic vectors.
Collapse
Affiliation(s)
- Grace A. Borchert
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Hoda Shamsnajafabadi
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Benjamin W. J. Ng
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Kanmin Xue
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Samantha R. De Silva
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Susan M. Downes
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Robert E. MacLaren
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Jasmina Cehajic-Kapetanovic
- Nuffield Laboratory of Ophthalmology, Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
- Oxford Eye Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| |
Collapse
|
35
|
Akula M, McNamee SM, Love Z, Nasraty N, Chan NPM, Whalen M, Avola MO, Olivares AM, Leehy BD, Jelcick AS, Singh P, Upadhyay AK, Chen DF, Haider NB. Retinoic acid related orphan receptor α is a genetic modifier that rescues retinal degeneration in a mouse model of Stargardt disease and Dry AMD. Gene Ther 2024; 31:413-421. [PMID: 38755404 PMCID: PMC11257945 DOI: 10.1038/s41434-024-00455-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 05/01/2024] [Accepted: 05/02/2024] [Indexed: 05/18/2024]
Abstract
Degeneration of the macula is associated with several overlapping diseases including age-related macular degeneration (AMD) and Stargardt Disease (STGD). Mutations in ATP Binding Cassette Subfamily A Member 4 (ABCA4) are associated with late-onset dry AMD and early-onset STGD. Additionally, both forms of macular degeneration exhibit deposition of subretinal material and photoreceptor degeneration. Retinoic acid related orphan receptor α (RORA) regulates the AMD inflammation pathway that includes ABCA4, CD59, C3 and C5. In this translational study, we examined the efficacy of RORA at attenuating retinal degeneration and improving the inflammatory response in Abca4 knockout (Abca4-/-) mice. AAV5-hRORA-treated mice showed reduced deposits, restored CD59 expression and attenuated amyloid precursor protein (APP) expression compared with untreated eyes. This molecular rescue correlated with statistically significant improvement in photoreceptor function. This is the first study evaluating the impact of RORA modifier gene therapy on rescuing retinal degeneration. Our studies demonstrate efficacy of RORA in improving STGD and dry AMD-like disease.
Collapse
Affiliation(s)
- M Akula
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - S M McNamee
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Z Love
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - N Nasraty
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - N P M Chan
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - M Whalen
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - M O Avola
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - A M Olivares
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - B D Leehy
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - A S Jelcick
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - P Singh
- Ocugen, Inc., Malvern, PA, USA
| | | | - D F Chen
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - N B Haider
- Schepens Eye Research Institute, Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
36
|
Liu J, Copland DA, Clare AJ, Gorski M, Richards BT, Scott L, Theodoropoulou S, Greferath U, Cox K, Shi G, Bell OH, Ou K, Powell JLB, Wu J, Robles LM, Li Y, Nicholson LB, Coffey PJ, Fletcher EL, Guymer R, Radeke MJ, Heid IM, Hageman GS, Chan YK, Dick AD. Replenishing IRAK-M expression in retinal pigment epithelium attenuates outer retinal degeneration. Sci Transl Med 2024; 16:eadi4125. [PMID: 38838135 DOI: 10.1126/scitranslmed.adi4125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 05/14/2024] [Indexed: 06/07/2024]
Abstract
Chronic inflammation is a constitutive component of many age-related diseases, including age-related macular degeneration (AMD). Here, we identified interleukin-1 receptor-associated kinase M (IRAK-M) as a key immunoregulator in retinal pigment epithelium (RPE) that declines during the aging process. Rare genetic variants of IRAK3, which encodes IRAK-M, were associated with an increased likelihood of developing AMD. In human samples and mouse models, IRAK-M abundance in the RPE declined with advancing age or exposure to oxidative stress and was further reduced in AMD. Irak3-knockout mice exhibited an increased incidence of outer retinal degeneration at earlier ages, which was further exacerbated by oxidative stressors. The absence of IRAK-M led to a disruption in RPE cell homeostasis, characterized by compromised mitochondrial function, cellular senescence, and aberrant cytokine production. IRAK-M overexpression protected RPE cells against oxidative or immune stressors. Subretinal delivery of adeno-associated virus (AAV)-expressing human IRAK3 rescued light-induced outer retinal degeneration in wild-type mice and attenuated age-related spontaneous retinal degeneration in Irak3-knockout mice. Our data show that replenishment of IRAK-M in the RPE may redress dysregulated pro-inflammatory processes in AMD, suggesting a potential treatment for retinal degeneration.
Collapse
Affiliation(s)
- Jian Liu
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - David A Copland
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Alison J Clare
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Mathias Gorski
- Department of Genetic Epidemiology, University of Regensburg, Regensburg 93053, Germany
| | - Burt T Richards
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Louis Scott
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Sofia Theodoropoulou
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Ursula Greferath
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Katherine Cox
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Gongyu Shi
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Oliver H Bell
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Kepeng Ou
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Jenna Le Brun Powell
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Jiahui Wu
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Luis Martinez Robles
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Yingxin Li
- Translational Health Sciences, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
| | - Lindsay B Nicholson
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
| | - Peter J Coffey
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
| | - Erica L Fletcher
- Department of Anatomy and Physiology, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Robyn Guymer
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, University of Melbourne, Melbourne, VIC 3010, Australia
| | - Monte J Radeke
- Neuroscience Research Institute, University of California, Santa Barbara, CA 93106, USA
| | - Iris M Heid
- Department of Genetic Epidemiology, University of Regensburg, Regensburg 93053, Germany
| | - Gregory S Hageman
- Sharon Eccles Steele Center for Translational Medicine, John A. Moran Eye Center, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
| | - Ying Kai Chan
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02215, USA
| | - Andrew D Dick
- Academic Unit of Ophthalmology, Bristol Medical School, University of Bristol, Bristol BS8 1TD, UK
- School of Cellular and Molecular Medicine, University of Bristol, Bristol BS8 1TD, UK
- Institute of Ophthalmology, University College London, London EC1V 9EL, UK
- National Institute for Health Research Biomedical Research Centre, Moorfields Eye Hospital, London EC1V 2PD, UK
| |
Collapse
|
37
|
Dieckmann BW, Paguaga ME, McCollum GW, Penn JS, Uddin MDI. Role of NLRP3 Inflammasomes in Monocyte and Microglial Recruitments in Choroidal Neovascularization. Immunohorizons 2024; 8:363-370. [PMID: 38775688 PMCID: PMC11150128 DOI: 10.4049/immunohorizons.2400025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 04/29/2024] [Indexed: 05/30/2024] Open
Abstract
Although the pathogenesis of choroidal neovascularization (CNV) is largely unknown in age-related macular degeneration (AMD), inflammasomes may contribute to CNV development and progression. To understand the role NLRP3 inflammasomes in CNV, we used Ccr2RFPCx3cr1GFP dual-reporter mice and immunostaining techniques to confirm localization of NLRP3 inflammasomes in the laser-induced CNV (LCNV) lesions. Confocal microscopy was used to image and quantify LCNV volumes. MCC950 was used as NLRP3 inhibitor. ELISA and quantitative RT-PCR were used to confirm the activation of NLRP3 by monitoring the expression of IL-1β protein and mRNA in choroidal tissues from LCNV mice. In addition, NLRP3 (-/-) LCNV mice were used to investigate whether NLRP3 inflammasomes contribute to the development of LCNV lesions. We observed that red fluorescent protein (RFP)-positive monocyte-derived macrophages and GFP-positive microglia-derived macrophages, in addition to other cell types, were localized in LCNV lesions at day 7 post-laser injury. In addition, NLRP3 inflammasomes are associated with LCNV lesions. Inhibition of NLRP3 inflammasomes, using MCC950, caused an increased Ccr2RFP-positive macrophages, Cx3cr1GFP-positive microglia, and other cells, resulting in an increase in total lesion size. NLRP3 (-/-) LCNV mice showed significantly increased lesion size compared with age-matched controls. Inhibition of NLRP3 resulted in decreased IL-1β mRNA and protein expression in the choroidal tissues, suggesting that increased lesion size may not be directly related to IL-1β.
Collapse
Affiliation(s)
- Blake W. Dieckmann
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN
| | - Marcell E. Paguaga
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN
| | - Gary W. McCollum
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN
| | - John S. Penn
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN
| | - MD Imam Uddin
- Department of Ophthalmology and Visual Sciences, Vanderbilt University School of Medicine, Nashville, TN
- Department of Biomedical Engineering, Vanderbilt University School of Engineering, Nashville, TN
| |
Collapse
|
38
|
Becker S, L'Ecuyer Z, Jones BW, Zouache MA, McDonnell FS, Vinberg F. Modeling complex age-related eye disease. Prog Retin Eye Res 2024; 100:101247. [PMID: 38365085 PMCID: PMC11268458 DOI: 10.1016/j.preteyeres.2024.101247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/18/2024]
Abstract
Modeling complex eye diseases like age-related macular degeneration (AMD) and glaucoma poses significant challenges, since these conditions depend highly on age-related changes that occur over several decades, with many contributing factors remaining unknown. Although both diseases exhibit a relatively high heritability of >50%, a large proportion of individuals carrying AMD- or glaucoma-associated genetic risk variants will never develop these diseases. Furthermore, several environmental and lifestyle factors contribute to and modulate the pathogenesis and progression of AMD and glaucoma. Several strategies replicate the impact of genetic risk variants, pathobiological pathways and environmental and lifestyle factors in AMD and glaucoma in mice and other species. In this review we will primarily discuss the most commonly available mouse models, which have and will likely continue to improve our understanding of the pathobiology of age-related eye diseases. Uncertainties persist whether small animal models can truly recapitulate disease progression and vision loss in patients, raising doubts regarding their usefulness when testing novel gene or drug therapies. We will elaborate on concerns that relate to shorter lifespan, body size and allometries, lack of macula and a true lamina cribrosa, as well as absence and sequence disparities of certain genes and differences in their chromosomal location in mice. Since biological, rather than chronological, age likely predisposes an organism for both glaucoma and AMD, more rapidly aging organisms like small rodents may open up possibilities that will make research of these diseases more timely and financially feasible. On the other hand, due to the above-mentioned anatomical and physiological features, as well as pharmacokinetic and -dynamic differences small animal models are not ideal to study the natural progression of vision loss or the efficacy and safety of novel therapies. In this context, we will also discuss the advantages and pitfalls of alternative models that include larger species, such as non-human primates and rabbits, patient-derived retinal organoids, and human organ donor eyes.
Collapse
Affiliation(s)
- Silke Becker
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Zia L'Ecuyer
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Bryan W Jones
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Moussa A Zouache
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA
| | - Fiona S McDonnell
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Frans Vinberg
- John A. Moran Eye Center, University of Utah, Salt Lake City, UT, USA; Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
39
|
Kurzawa-Akanbi M, Tzoumas N, Corral-Serrano JC, Guarascio R, Steel DH, Cheetham ME, Armstrong L, Lako M. Pluripotent stem cell-derived models of retinal disease: Elucidating pathogenesis, evaluating novel treatments, and estimating toxicity. Prog Retin Eye Res 2024; 100:101248. [PMID: 38369182 DOI: 10.1016/j.preteyeres.2024.101248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 02/13/2024] [Accepted: 02/14/2024] [Indexed: 02/20/2024]
Abstract
Blindness poses a growing global challenge, with approximately 26% of cases attributed to degenerative retinal diseases. While gene therapy, optogenetic tools, photosensitive switches, and retinal prostheses offer hope for vision restoration, these high-cost therapies will benefit few patients. Understanding retinal diseases is therefore key to advance effective treatments, requiring in vitro models replicating pathology and allowing quantitative assessments for drug discovery. Pluripotent stem cells (PSCs) provide a unique solution given their limitless supply and ability to differentiate into light-responsive retinal tissues encompassing all cell types. This review focuses on the history and current state of photoreceptor and retinal pigment epithelium (RPE) cell generation from PSCs. We explore the applications of this technology in disease modelling, experimental therapy testing, biomarker identification, and toxicity studies. We consider challenges in scalability, standardisation, and reproducibility, and stress the importance of incorporating vasculature and immune cells into retinal organoids. We advocate for high-throughput automation in data acquisition and analyses and underscore the value of advanced micro-physiological systems that fully capture the interactions between the neural retina, RPE, and choriocapillaris.
Collapse
|
40
|
Brito M, Sorbier C, Mignet N, Boudy V, Borchard G, Vacher G. Understanding the Impact of Polyunsaturated Fatty Acids on Age-Related Macular Degeneration: A Review. Int J Mol Sci 2024; 25:4099. [PMID: 38612907 PMCID: PMC11012607 DOI: 10.3390/ijms25074099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Age-related Macular Degeneration (AMD) is a multifactorial ocular pathology that destroys the photoreceptors of the macula. Two forms are distinguished, dry and wet AMD, with different pathophysiological mechanisms. Although treatments were shown to be effective in wet AMD, they remain a heavy burden for patients and caregivers, resulting in a lack of patient compliance. For dry AMD, no real effective treatment is available in Europe. It is, therefore, essential to look for new approaches. Recently, the use of long-chain and very long-chain polyunsaturated fatty acids was identified as an interesting new therapeutic alternative. Indeed, the levels of these fatty acids, core components of photoreceptors, are significantly decreased in AMD patients. To better understand this pathology and to evaluate the efficacy of various molecules, in vitro and in vivo models reproducing the mechanisms of both types of AMD were developed. This article reviews the anatomy and the physiological aging of the retina and summarizes the clinical aspects, pathophysiological mechanisms of AMD and potential treatment strategies. In vitro and in vivo models of AMD are also presented. Finally, this manuscript focuses on the application of omega-3 fatty acids for the prevention and treatment of both types of AMD.
Collapse
Affiliation(s)
- Maëlis Brito
- Unither Développement Bordeaux, Avenue Toussaint Catros, 33185 Le Haillan, France
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la Santé, F-75006 Paris, France
- Département de Recherche et Développement (DRDP), Agence Générale des Equipements et Produits de Santé (AGEPS), Assistance Publique Hôpitaux de Paris (AP-HP), 7 Rue du Fer-à-Moulin, 75005 Paris, France
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Capucine Sorbier
- Unither Développement Bordeaux, Avenue Toussaint Catros, 33185 Le Haillan, France
| | - Nathalie Mignet
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la Santé, F-75006 Paris, France
| | - Vincent Boudy
- Université Paris Cité, CNRS, INSERM, UTCBS, Unité de Technologies Chimiques et Biologiques pour la Santé, F-75006 Paris, France
- Département de Recherche et Développement (DRDP), Agence Générale des Equipements et Produits de Santé (AGEPS), Assistance Publique Hôpitaux de Paris (AP-HP), 7 Rue du Fer-à-Moulin, 75005 Paris, France
| | - Gerrit Borchard
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| | - Gaëlle Vacher
- Institute of Pharmaceutical Sciences of Western Switzerland (ISPSO), School of Pharmaceutical Sciences, University of Geneva, Rue Michel-Servet 1, 1206 Geneva, Switzerland
| |
Collapse
|
41
|
Gurubaran IS. Mitochondrial damage and clearance in retinal pigment epithelial cells. Acta Ophthalmol 2024; 102 Suppl 282:3-53. [PMID: 38467968 DOI: 10.1111/aos.16661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 03/13/2024]
Abstract
Age-related macular degeneration (AMD) is a devastating eye disease that causes permanent vision loss in the central part of the retina, known as the macula. Patients with such severe visual loss face a reduced quality of life and are at a 1.5 times greater risk of death compared to the general population. Currently, there is no cure for or effective treatment for dry AMD. There are several mechanisms thought to underlie the disease, for example, ageing-associated chronic oxidative stress, mitochondrial damage, harmful protein aggregation and inflammation. As a way of gaining a better understanding of the molecular mechanisms behind AMD and thus developing new therapies, we have created a peroxisome proliferator-activated receptor gamma coactivator 1-alpha and nuclear factor erythroid 2-related factor 2 (PGC1α/NFE2L2) double-knockout (dKO) mouse model that mimics many of the clinical features of dry AMD, including elevated levels of oxidative stress markers, damaged mitochondria, accumulating lysosomal lipofuscin and extracellular drusen-like structures in retinal pigment epithelial cells (RPE). In addition, a human RPE cell-based model was established to examine the impact of non-functional intracellular clearance systems on inflammasome activation. In this study, we found that there was a disturbance in the autolysosomal machinery responsible for clearing mitochondria in the RPE cells of one-year-old PGC1α/NFE2L2-deficient mice. The confocal immunohistochemical analysis revealed an increase in autophagosome marker microtubule-associated proteins 1A/1B light chain 3B (LC3B) as well as multiple mitophagy markers such as PTE-induced putative kinase 1 (PINK1) and E3 ubiquitin ligase (PARKIN), along with signs of damaged mitochondria. However, no increase in autolysosome formation was detected, nor was there a colocalization of the lysosomal marker LAMP2 or the mitochondrial marker, ATP synthase β. There was an upregulation of late autolysosomal fusion Ras-related protein (Rab7) in the perinuclear space of RPE cells, together with autofluorescent aggregates. Additionally, we observed an increase in the numbers of Toll-like receptors 3 and 9, while those of NOD-like receptor 3 were decreased in PGC1α/NFE2L2 dKO retinal specimens compared to wild-type animals. There was a trend towards increased complement component C5a and increased involvement of the serine protease enzyme, thrombin, in enhancing the terminal pathway producing C5a, independent of C3. The levels of primary acute phase C-reactive protein and receptor for advanced glycation end products were also increased in the PGC1α/NFE2L2 dKO retina. Furthermore, selective proteasome inhibition with epoxomicin promoted both nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and mitochondrial-mediated oxidative stress, leading to the release of mitochondrial DNA to the cytosol, resulting in potassium efflux-dependent activation of the absent in melanoma 2 (AIM2) inflammasome and the subsequent secretion of interleukin-1β in ARPE-19 cells. In conclusion, the data suggest that there is at least a relative decrease in mitophagy, increases in the amounts of C5 and thrombin and decreased C3 levels in this dry AMD-like model. Moreover, selective proteasome inhibition evoked mitochondrial damage and AIM2 inflammasome activation in ARPE-19 cells.
Collapse
Affiliation(s)
- Iswariyaraja Sridevi Gurubaran
- Department of Medicine, Clinical Medicine Unit, University of Eastern Finland Institute of Clinical Medicine, Kuopio, Northern Savonia, Finland
| |
Collapse
|
42
|
Fu Y, Zhang Z, Webster KA, Paulus YM. Treatment Strategies for Anti-VEGF Resistance in Neovascular Age-Related Macular Degeneration by Targeting Arteriolar Choroidal Neovascularization. Biomolecules 2024; 14:252. [PMID: 38540673 PMCID: PMC10968528 DOI: 10.3390/biom14030252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/14/2024] [Accepted: 02/16/2024] [Indexed: 05/04/2024] Open
Abstract
Despite extensive use of intravitreal anti-vascular endothelial growth factor (anti-VEGF) biologics for over a decade, neovascular age-related macular degeneration (nAMD) or choroidal neovascularization (CNV) continues to be a major cause of irreversible vision loss in developed countries. Many nAMD patients demonstrate persistent disease activity or experience declining responses over time despite anti-VEGF treatment. The underlying mechanisms of anti-VEGF resistance are poorly understood, and no effective treatment strategies are available to date. Here we review evidence from animal models and clinical studies that supports the roles of neovascular remodeling and arteriolar CNV formation in anti-VEGF resistance. Cholesterol dysregulation, inflammation, and ensuing macrophage activation are critically involved in arteriolar CNV formation and anti-VEGF resistance. Combination therapy by neutralizing VEGF and enhancing cholesterol removal from macrophages is a promising strategy to combat anti-VEGF resistance in CNV.
Collapse
Affiliation(s)
- Yingbin Fu
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA; (Z.Z.); (K.A.W.)
- Department of Neuroscience, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zhao Zhang
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA; (Z.Z.); (K.A.W.)
| | - Keith A. Webster
- Cullen Eye Institute, Baylor College of Medicine, Houston, TX 77030, USA; (Z.Z.); (K.A.W.)
- Vascular Biology Institute, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Yannis M. Paulus
- Department of Ophthalmology and Visual Sciences, University of Michigan, Ann Arbor, MI 48105, USA;
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48105, USA
| |
Collapse
|
43
|
Lin JB, Santeford A, Colasanti JJ, Lee Y, Shah AV, Wang TJ, Ruzycki PA, Apte RS. Targeting cell-type-specific, choroid-peripheral immune signaling to treat age-related macular degeneration. Cell Rep Med 2024; 5:101353. [PMID: 38232696 PMCID: PMC10829736 DOI: 10.1016/j.xcrm.2023.101353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 05/25/2023] [Accepted: 12/05/2023] [Indexed: 01/19/2024]
Abstract
Age-related macular degeneration (AMD) is a leading cause of blindness featuring pathogenic neovascularization of the choroidal vasculature (CNV). Although systemic immunity plays a role in AMD, the ocular signals that recruit and activate immune cells remain poorly defined. Using single-cell RNA sequencing, we prospectively profile peripheral blood mononuclear cells from 65 individuals including AMD and controls, which we integrate with existing choroid data. We generate a network of choroid-peripheral immune interactions dysregulated in AMD, including known AMD-relevant gene vascular endothelial growth factor (VEGF) receptor 2. Additionally, we find CYR61 is upregulated in choroidal veins and may signal to circulating monocytes. In mice, we validate that CYR61 is abundant in endothelial cells within CNV lesions neighboring monocyte-derived macrophages. Mechanistically, CYR61 activates macrophage anti-angiogenic gene expression, and ocular Cyr61 knockdown increases murine CNV size, indicating CYR61 inhibits CNV. This study highlights the potential of multi-tissue human datasets to identify disease-relevant and potentially therapeutically modifiable targets.
Collapse
Affiliation(s)
- Joseph B Lin
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Neurosciences Graduate Program, Roy and Diana Vagelos Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Andrea Santeford
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Jason J Colasanti
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Molecular Cell Biology Graduate Program, Roy and Diana Vagelos Division of Biology & Biomedical Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Yoon Lee
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Aaditya V Shah
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Tzu Jui Wang
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Philip A Ruzycki
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA.
| | - Rajendra S Apte
- John F. Hardesty, MD, Department of Ophthalmology & Visual Sciences, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Developmental Biology, Washington University School of Medicine, St. Louis, MO 63110, USA; Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
44
|
Laudenberg N, Kinuthia UM, Langmann T. Microglia depletion/repopulation does not affect light-induced retinal degeneration in mice. Front Immunol 2024; 14:1345382. [PMID: 38288111 PMCID: PMC10822957 DOI: 10.3389/fimmu.2023.1345382] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 12/28/2023] [Indexed: 01/31/2024] Open
Abstract
Reactive microglia are a hallmark of age-related retinal degenerative diseases including age-related macular degeneration (AMD). These cells are capable of secreting neurotoxic substances that may aggravate inflammation that leads to loss of photoreceptors and impaired vision. Despite their role in driving detrimental inflammation, microglia also play supporting roles in the retina as they are a crucial cellular component of the regulatory innate immune system. In this study, we used the colony stimulating factor 1 receptor (CSF1R)-antagonist PLX3397 to investigate the effects of microglia depletion and repopulation in a mouse model of acute retinal degeneration that mimics some aspects of dry AMD. Our main goal was to investigate whether microglia depletion and repopulation affects the outcome of light-induced retinal degeneration. We found that microglia depletion effectively decreased the expression of several key pro-inflammatory factors but was unable to influence the extent of retinal degeneration as determined by optical coherence tomography (OCT) and histology. Interestingly, we found prominent cell debris accumulation in the outer retina under conditions of microglia depletion, presumably due to the lack of efficient phagocytosis that could not be compensated by the retinal pigment epithelium. Moreover, our in vivo experiments showed that renewal of retinal microglia by repopulation did also not prevent rapid microglia activation or preserve photoreceptor death under conditions of light damage. We conclude that microglia ablation strongly reduces the expression of pro-inflammatory factors but cannot prevent photoreceptor loss in the light-damage paradigm of retinal degeneration.
Collapse
Affiliation(s)
- Nils Laudenberg
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
| | - Urbanus Muthai Kinuthia
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Thomas Langmann
- Laboratory for Experimental Immunology of the Eye, Department of Ophthalmology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| |
Collapse
|
45
|
Castro BFM, Steel JC, Layton CJ. AAV-Based Strategies for Treatment of Retinal and Choroidal Vascular Diseases: Advances in Age-Related Macular Degeneration and Diabetic Retinopathy Therapies. BioDrugs 2024; 38:73-93. [PMID: 37878215 PMCID: PMC10789843 DOI: 10.1007/s40259-023-00629-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/20/2023] [Indexed: 10/26/2023]
Abstract
Age-related macular degeneration (AMD) and diabetic retinopathy (DR) are vascular diseases with high prevalence, ranking among the leading causes of blindness and vision loss worldwide. Despite being effective, current treatments for AMD and DR are burdensome for patients and clinicians, resulting in suboptimal compliance and real risk of vision loss. Thus, there is an unmet need for long-lasting alternatives with improved safety and efficacy. Adeno-associated virus (AAV) is the leading vector for ocular gene delivery, given its ability to enable long-term expression while eliciting relatively mild immune responses. Progress has been made in AAV-based gene therapies for not only inherited retinal diseases but also acquired conditions with preclinical and clinical studies of AMD and DR showing promising results. These studies have explored several pathways involved in the disease pathogenesis, as well as different strategies to optimise gene delivery. These include engineered capsids with enhanced tropism to particular cell types, and expression cassettes incorporating elements for a targeted and controlled expression. Multiple-acting constructs have also been investigated, in addition to gene silencing and editing. Here, we provide an overview of strategies employing AAV-mediated gene delivery to treat AMD and DR. We discuss preclinical efficacy studies and present the latest data from clinical trials for both diseases.
Collapse
Affiliation(s)
- Brenda F M Castro
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, QLD, 4102, Australia.
- Greenslopes Clinical School, University of Queensland School of Medicine, Brisbane, QLD, Australia.
| | - Jason C Steel
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, QLD, 4102, Australia
- Greenslopes Clinical School, University of Queensland School of Medicine, Brisbane, QLD, Australia
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia
| | - Christopher J Layton
- LVF Ophthalmology Research Centre, Translational Research Institute, Brisbane, QLD, 4102, Australia.
- Greenslopes Clinical School, University of Queensland School of Medicine, Brisbane, QLD, Australia.
- School of Health, Medical and Applied Sciences, Central Queensland University, Rockhampton, QLD, Australia.
| |
Collapse
|
46
|
Bhutto IA, McLeod DS, Thomson BR, Lutty GA, Edwards MM. Visualization of choroidal vasculature in pigmented mouse eyes from experimental models of AMD. Exp Eye Res 2024; 238:109741. [PMID: 38056552 PMCID: PMC10872330 DOI: 10.1016/j.exer.2023.109741] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 11/22/2023] [Accepted: 11/26/2023] [Indexed: 12/08/2023]
Abstract
A variety of techniques exist to investigate retinal and choroidal vascular changes in experimental mouse models of human ocular diseases. While all have specific advantages, a method for evaluating the choroidal vasculature in pigmented mouse eyes has been more challenging especially for whole mount visualization and morphometric analysis. Here we report a simple, reliable technique involving bleaching pigment prior to immunostaining the vasculature in whole mounts of pigmented mouse choroids. Eyes from healthy adult pigmented C57BL/6J mice were used to establish the methodology. The retina and anterior segment were separated from the choroid. The choroid with retinal pigment epithelial cells (RPE) and sclera was soaked in 1% ethylenediaminetetraacetic acid (EDTA) to remove the RPE. Tissues were fixed in 2% paraformaldehyde (PFA) in phosphate-buffered saline (PBS). Choroids were subjected to melanin bleaching with 10% hydrogen peroxide (H2O2) at 55 °C for 90 min, washed in PBS and then immunostained with anti-podocalyxin antibody to label vascular endothelium followed by Cy3-AffiniPure donkey anti-goat IgG at 4 °C overnight. Images of immunostained bleached choroids were captured using a Zeiss 710 confocal microscope. In addition to control eyes, this method was used to analyze the choroids from subretinal sodium iodate (NaIO3) RPE atrophy and laser-induced choroidal neovascularization (CNV) mouse models. The H2O2 pretreatment effectively bleached the melanin, resulting in a transparent choroid. Immunolabeling with podocalyxin antibody following bleaching provided excellent visualization of choroidal vasculature in the flat perspective. In control choroids, the choriocapillaris (CC) displayed different anatomical patterns in peripapillary (PP), mid peripheral (MP) and far peripheral (FP) choroid. Morphometric analysis of the vascular area (VA) revealed that the CC was most dense in the PP region (87.4 ± 4.3% VA) and least dense in FP (79.9 ± 6.7% VA). CC diameters also varied depending on location from 11.4 ± 1.97 mm in PP to 15.1 ± 3.15 mm in FP. In the NaIO3-injected eyes, CC density was significantly reduced in the RPE atrophic regions (50.7 ± 5.8% VA in PP and 45.8 ± 6.17% VA in MP) compared to the far peripheral non-atrophic regions (82.8 ± 3.8% VA). CC diameters were significantly reduced in atrophic regions (6.35 ± 1.02 mm in PP and 6.5 ± 1.2 mm in MP) compared to non-atrophic regions (14.16 ± 2.12 mm). In the laser-induced CNV model, CNV area was 0.26 ± 0.09 mm2 and luminal diameters of CNV vessels were 4.7 ± 0.9 mm. Immunostaining on bleached choroids with anti-podocalyxin antibody provides a simple and reliable tool for visualizing normal and pathologic choroidal vasculature in pigmented mouse eyes for quantitative morphometric analysis. This method will be beneficial for examining and evaluating the effects of various treatment modalities on the choroidal vasculature in mouse models of ocular diseases such as age-related macular degeneration, and degenerative genetic diseases.
Collapse
Affiliation(s)
- Imran A Bhutto
- Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - D Scott McLeod
- Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Benjamin R Thomson
- Feinberg Cardiovascular and Renal Research Institute, Northwestern University Feinberg SOM, Chicago, IL, USA
| | - Gerard A Lutty
- Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Malia M Edwards
- Ophthalmology, Wilmer Eye Institute, The Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
47
|
Mousavi M, Mousavi A, Jamei B, Sameni H, Zarbakhsh S, Aboutaleb Kadkhodaeian H. Classification, location, and intensity of granules in retinal pigment epithelium following sodium iodate injection in rat animal model. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2024; 27:286-296. [PMID: 38333749 PMCID: PMC10849205 DOI: 10.22038/ijbms.2023.71194.15465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 10/23/2023] [Indexed: 02/10/2024]
Abstract
Objectives Age-related macular degeneration (AMD) is one of the eye diseases that can affect a person's central vision. Retinal pigment epithelium (RPE) cells are damaged in this medical condition and some pigments are presented in these cells. Here, we aimed to investigate melanin and lipofuscin granules of RPE cells as a precursor of AMD. Materials and Methods Hooded rats (n=18) were divided into two groups and received 100 μl of sodium iodate (SI) into the retro-orbital sinus of their eyes at 40 and 60 mg/kg doses. The total number of melanin and lipofuscin granules, different types of granules, cytoplasmic dispersion of granules as well as morphological changes in the shape and number of nuclei of RPE cells were evaluated over the course of 1-30 days. Results The total number of melanin pigments increases over time at a dose of 40 mg/kg and decreases at a dose of 60 mg/kg. Also, the total number of lipofuscin granules in 40 mg/kg increases over time and decreases in 60 mg/kg. Autofluorescent intensity (AF) is also increased at 40 mg/kg, but at 60 mg/kg, the highest intensity is on day 7. Also, the highest number of multinucleated giant cells was on day 7 at 60 mg/kg and the most changes in cell appearance due to sodium iodate injection were seen on the first day after injection. Conclusion We demonstrated that granules and autofluorescent intensity appear to decrease at high doses of sodium iodate, which is similar to the advanced stage of the AMD disease, where the number of granules and AF intensity increase in the middle and even early stages of the disease.
Collapse
Affiliation(s)
- Mahboube Mousavi
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Aliasghar Mousavi
- Visual Health Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Behnam Jamei
- Neurosciences Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Sameni
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Sam Zarbakhsh
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
| | - Hamid Aboutaleb Kadkhodaeian
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Anatomy, Faculty of Medicine, Semnan University of Medical Sciences, Semnan, Iran
- Visual Health Center, Semnan University of Medical Sciences, Semnan, Iran
| |
Collapse
|
48
|
Luo LL, Xu J, Wang BQ, Chen C, Chen X, Hu QM, Wang YQ, Zhang WY, Jiang WX, Li XT, Zhou H, Xiao X, Zhao K, Lin S. A novel capsid-XL32-derived adeno-associated virus serotype prompts retinal tropism and ameliorates choroidal neovascularization. Biomaterials 2024; 304:122403. [PMID: 38016335 DOI: 10.1016/j.biomaterials.2023.122403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Revised: 10/24/2023] [Accepted: 11/14/2023] [Indexed: 11/30/2023]
Abstract
Gene therapy has been adapted, from the laboratory to the clinic, to treat retinopathies. In contrast to subretinal route, intravitreal delivery of AAV vectors displays the advantage of bypassing surgical injuries, but the viral particles are more prone to be nullified by the host neutralizing factors. To minimize such suppression of therapeutic effect, especially in terms of AAV2 and its derivatives, we introduced three serine-to-glycine mutations, based on the phosphorylation sites identified by mass spectrum analysis, to the XL32 capsid to generate a novel serotype named AAVYC5. Via intravitreal administration, AAVYC5 was transduced more effectively into multiple retinal layers compared with AAV2 and XL32. AAVYC5 also enabled successful delivery of anti-angiogenic molecules to rescue laser-induced choroidal neovascularization and astrogliosis in mice and non-human primates. Furthermore, we detected fewer neutralizing antibodies and binding IgG in human sera against AAVYC5 than those specific for AAV2 and XL32. Our results thus implicate this capsid-optimized AAVYC5 as a promising vector suitable for a wide population, particularly those with undesirable AAV2 seroreactivity.
Collapse
Affiliation(s)
- Lin-Lin Luo
- Department of Ophthalmology, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Jie Xu
- Department of Ophthalmology, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Bing-Qiao Wang
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Chongqing, 400042, China
| | - Chen Chen
- School of Bioengineering, East China University of Science and Technology, Shanghai, 200237, China; Belief BioMed Co., Ltd, Shanghai, China
| | - Xi Chen
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China
| | - Qiu-Mei Hu
- Department of Ophthalmology, Army Medical Center of PLA, Army Medical University, Chongqing, 400042, China
| | - Yu-Qiu Wang
- School of Bioengineering, East China University of Science and Technology, Shanghai, 200237, China; Analytical Research Center for Organic and Biological Molecules, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Wan-Yun Zhang
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Chongqing, 400042, China
| | - Wan-Xiang Jiang
- Sichuan Greentech Bioscience Co,. Ltd, Bencao Avenue, New Economic Development Zone, Meishan, Sichuan, 620010, China
| | - Xin-Ting Li
- School of Bioengineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Hu Zhou
- Analytical Research Center for Organic and Biological Molecules, CAS Key Laboratory of Receptor Research, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Xiao Xiao
- School of Bioengineering, East China University of Science and Technology, Shanghai, 200237, China; Belief BioMed Co., Ltd, Shanghai, China.
| | - Kai Zhao
- School of Bioengineering, East China University of Science and Technology, Shanghai, 200237, China; Belief BioMed Co., Ltd, Shanghai, China.
| | - Sen Lin
- Department of Neurology, The Second Affiliated Hospital, Army Medical University, Chongqing, 400042, China; Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China.
| |
Collapse
|
49
|
Dujardin C, Habeler W, Monville C, Letourneur D, Simon-Yarza T. Advances in the engineering of the outer blood-retina barrier: From in-vitro modelling to cellular therapy. Bioact Mater 2024; 31:151-177. [PMID: 37637086 PMCID: PMC10448242 DOI: 10.1016/j.bioactmat.2023.08.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/13/2023] [Accepted: 08/06/2023] [Indexed: 08/29/2023] Open
Abstract
The outer blood-retina barrier (oBRB), crucial for the survival and the proper functioning of the overlying retinal layers, is disrupted in numerous diseases affecting the retina, leading to the loss of the photoreceptors and ultimately of vision. To study the oBRB and/or its degeneration, many in vitro oBRB models have been developed, notably to investigate potential therapeutic strategies against retinal diseases. Indeed, to this day, most of these pathologies are untreatable, especially once the first signs of degeneration are observed. To cure those patients, a current strategy is to cultivate in vitro a mature oBRB epithelium on a custom membrane that is further implanted to replace the damaged native tissue. After a description of the oBRB and the related diseases, this review presents an overview of the oBRB models, from the simplest to the most complex. Then, we propose a discussion over the used cell types, for their relevance to study or treat the oBRB. Models designed for in vitro applications are then examined, by paying particular attention to the design evolution in the last years, the development of pathological models and the benefits of co-culture models, including both the retinal pigment epithelium and the choroid. Lastly, this review focuses on the models developed for in vivo implantation, with special emphasis on the choice of the material, its processing and its characterization, before discussing the reported pre-clinical and clinical trials.
Collapse
Affiliation(s)
- Chloé Dujardin
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS) INSERM-U1148, 75018 Paris, France
| | - Walter Habeler
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France
- U861, I-Stem, AFM, Université Paris-Saclay, Université D’Evry, 91100, Corbeil-Essonnes, France
- CECS, Centre D’étude des Cellules Souches, 91100, Corbeil-Essonnes, France
| | - Christelle Monville
- INSERM U861, I-Stem, AFM, Institute for Stem Cell Therapy and Exploration of Monogenic Diseases, 91100, Corbeil-Essonnes, France
- U861, I-Stem, AFM, Université Paris-Saclay, Université D’Evry, 91100, Corbeil-Essonnes, France
| | - Didier Letourneur
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS) INSERM-U1148, 75018 Paris, France
| | - Teresa Simon-Yarza
- Université Paris Cité, Université Sorbonne Paris Nord, Laboratory for Vascular Translational Science (LVTS) INSERM-U1148, 75018 Paris, France
| |
Collapse
|
50
|
Duan H, Yan W. Visual fatigue a comprehensive review of mechanisms of occurrence, animal model design and nutritional intervention strategies. Crit Rev Food Sci Nutr 2023; 65:1631-1655. [PMID: 38153314 DOI: 10.1080/10408398.2023.2298789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
When the eyes work intensively, it is easy to have eye discomfort such as blurred vision, soreness, dryness, and tearing, that is, visual fatigue. Visual fatigue not only affects work and study efficiency, but long-term visual fatigue can also easily affect physical and mental health. In recent years, with the popularization of electronic products, although it has brought convenience to the office and study, it has also caused more frequent visual fatigue among people who use electronic devices. Moreover, studies have reported that the number of people with visual fatigue is showing a trend of increasing year by year. The range of people involved is also extensive, especially students, people who have been engaged in computer work and fine instruments (such as microscopes) for a long time, and older adults with aging eye function. More and more studies have proposed that supplementation with the proper nutrients can effectively relieve visual fatigue and promote eye health. This review discusses the physiological mechanisms of visual fatigue and the design ideas of animal experiments from the perspective of modern nutritional science. Functional food ingredients with the ability to alleviate visual fatigue are discussed in detail.
Collapse
Affiliation(s)
- Hao Duan
- College of Biochemical Engineering, Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, China
| | - Wenjie Yan
- College of Biochemical Engineering, Beijing Key Laboratory of Bioactive Substances and Functional Food, Beijing Union University, Beijing, China
| |
Collapse
|