1
|
Zapata-Restrepo LM, Williams ID. Mytilus edulis and Psammechinus miliaris as bioindicators of ecotoxicological risk by maritime exhaust gas scrubber water. MARINE ENVIRONMENTAL RESEARCH 2025; 209:107157. [PMID: 40300329 DOI: 10.1016/j.marenvres.2025.107157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 02/16/2025] [Accepted: 04/14/2025] [Indexed: 05/01/2025]
Abstract
Approximately 15 % of the global anthropogenic emissions of sulfur oxides (SOx) come from shipping. To meet sulfur emission regulations for marine vessels, many shipping companies have chosen to use exhaust gas cleaning systems (EGCS), commonly known as scrubbers. The resulting washwater from scrubbers contains various pollutants such as polycyclic aromatic hydrocarbons (PAHs), trace metals, and nitrates, is then directly discharged into the surrounding surface water, transferring potential atmospheric pollutants to the marine environment. The aim of this study was to investigate the impact of EGCS discharge water on blue mussels (Mytilus edulis) and sea-urchin (Psammechinus miliaris) embryos and larvae. Chronic toxicity tests were performed using a fertilization test and a larval development bioassay exposed to scrubber water dilutions (0.001, 0.01, 0.1, 1, 2, 5, 10, 20, 40 and 100 % of the original sample). Negative effects on fertilization success and larvae development in both species at very low concentrations were observed (EC10 < 1 %) indicating the severe impact of EGCS discharges on these species. EGCS effluents showed different effects depending on the species and life stages. Sea urchin embryos were more sensitive than the blue mussel embryos. However, blue mussel larvae were much more sensitive than sea urchin larvae. These results emphasize the potential toxic effects of direct exposure -not dietary- to scrubber water discharges on marine invertebrate. EGCS discharge limits are urgent to prevent further potentially irreversible damage to the marine environment.
Collapse
Affiliation(s)
- Lina M Zapata-Restrepo
- Faculty of Engineering and Physical Sciences, University of Southampton, Highfield Campus, University Road, Southampton, SO17 1BJ, United Kingdom; Institute of Biology, Faculty of Exact and Natural Sciences, University of Antioquia, Medellín, Antioquia, Colombia.
| | - Ian D Williams
- Faculty of Engineering and Physical Sciences, University of Southampton, Highfield Campus, University Road, Southampton, SO17 1BJ, United Kingdom
| |
Collapse
|
2
|
Lopes TOM, Silveira CRD, Araujo da Silva J, Guedes T, Tavella RA, Rola RC, Marques JA, Vieira CED, Bianchini A, Martins CDMG. A six-year ecotoxicological assessment of the Doce river and coastal marine areas impacted by the Fundão tailings dam failure, Brazil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2025; 371:125897. [PMID: 40010588 DOI: 10.1016/j.envpol.2025.125897] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 02/28/2025]
Abstract
Encompassing six years, 10 sampling campaigns, and more than 800 toxicity tests utilizing a range of organisms from different trophic levels as bioindicators, this study offers a comprehensive ecotoxicological assessment of the environmental impacts resulting from the Fundão dam rupture-one of Brazil's most significant environmental disasters. We employed a novel approach that integrates acute and chronic laboratory toxicity tests to establish a toxicity index classifying samples into five categories: non-toxic, slightly toxic, moderately toxic, toxic, and highly toxic, based on a toxicity value calculated by considering diverse organisms' responses. This evaluation, conducted between 2018 and 2023, spanned both dry and rainy seasons, assessing water and sediment conditions across the Doce River and the adjacent marine region near its mouth. Our findings reveal that, even years after the dam failure, the iron-enriched mine tailings continue to exert a significant impact on the water and sediment of the Doce River and its adjacent marine areas, with the most severe effects observed near the river's mouth and towards the North. Notably, sediment samples consistently exhibited higher toxicity values than water samples across sites and seasons, highlighting the role of sediments as reservoirs for contaminants. The most pronounced toxicological impacts were detected during the initial years following the disaster, with a gradual, though cautious, decrease in toxicity observed in recent campaigns. Emphasis is placed on the sensitivity of microcrustaceans, copepods, and sea urchins, which consistently demonstrated the highest sensitivity to contaminants, making them reliable bioindicators for ongoing monitoring efforts. While recent campaigns identified a gradual decrease in the toxicity index of the environmental samples, especially in the marine environment, this trend must be interpreted with caution. Continuous monitoring is essential to confirm sustained recovery, detect potential recontamination, and identify long-term sub-lethal effects that could impede the full restoration of the affected ecosystems.
Collapse
Affiliation(s)
- Taciana Onesorge Miranda Lopes
- Programa de Pós-graduação em Ciências Fisiológicas. Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, s/n, Carreiros, Rio Grande, RS, 96203-900, Brazil; Fundação Espírito-santense de Tecnologia - FEST, Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, 29075-090, Brazil
| | - Cassia Rodrigues da Silveira
- Fundação Espírito-santense de Tecnologia - FEST, Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, 29075-090, Brazil
| | - Josiane Araujo da Silva
- Programa de Pós-graduação em Biologia de Ambientes Aquáticos Continentais. Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, s/n, Carreiros, Rio Grande, RS, 96203-900, Brazil; Fundação Espírito-santense de Tecnologia - FEST, Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, 29075-090, Brazil
| | - Thays Guedes
- Programa de Pós-graduação em Ciências Fisiológicas. Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, s/n, Carreiros, Rio Grande, RS, 96203-900, Brazil; Fundação Espírito-santense de Tecnologia - FEST, Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, 29075-090, Brazil
| | - Ronan Adler Tavella
- Programa de Pós-graduação em Ciências Fisiológicas. Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, s/n, Carreiros, Rio Grande, RS, 96203-900, Brazil; Fundação Espírito-santense de Tecnologia - FEST, Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, 29075-090, Brazil
| | - Regina Coimbra Rola
- Programa de Pós-graduação em Ciências Fisiológicas. Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, s/n, Carreiros, Rio Grande, RS, 96203-900, Brazil; Fundação Espírito-santense de Tecnologia - FEST, Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, 29075-090, Brazil
| | - Joseane Aparecida Marques
- Fundação Espírito-santense de Tecnologia - FEST, Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, 29075-090, Brazil
| | - Carlos Eduardo Delfino Vieira
- Fundação Espírito-santense de Tecnologia - FEST, Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, 29075-090, Brazil
| | - Adalto Bianchini
- Programa de Pós-graduação em Ciências Fisiológicas. Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, s/n, Carreiros, Rio Grande, RS, 96203-900, Brazil; Programa de Pós-graduação em Biologia de Ambientes Aquáticos Continentais. Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, s/n, Carreiros, Rio Grande, RS, 96203-900, Brazil
| | - Camila de Martinez Gaspar Martins
- Programa de Pós-graduação em Ciências Fisiológicas. Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, s/n, Carreiros, Rio Grande, RS, 96203-900, Brazil; Programa de Pós-graduação em Biologia de Ambientes Aquáticos Continentais. Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Av. Itália, s/n, Carreiros, Rio Grande, RS, 96203-900, Brazil; Fundação Espírito-santense de Tecnologia - FEST, Av. Fernando Ferrari, 845 - Goiabeiras, Vitória, ES, 29075-090, Brazil.
| |
Collapse
|
3
|
Xie L, Macken A, Tollefsen KE. Interactive effects of elevated atmospheric CO 2 and UV-B radiation: A multi-level study on marine diatom Skeletonema pseudocostatum. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 291:117879. [PMID: 39955863 DOI: 10.1016/j.ecoenv.2025.117879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 02/06/2025] [Accepted: 02/08/2025] [Indexed: 02/18/2025]
Abstract
Climate change as a result of increases in greenhouse gas emissions, such as CO2, is causing significant alteration in global environmental conditions, including ocean acidification (OA). Although the depletion of the ozone layer has reduced, the penetration of ultraviolet-B (UVB) radiation into the oceans still remains an environmental factor that may potentially enhance the effects of OA on biota. Improved understanding of the complex interactions between multiple stressors, such as UV-B radiation and increased CO2 levels, is thus important for safeguarding ecosystems and developing effective conservation and management strategies. A 72 h experiment was carried out to investigate the combined effects of UVB irradiance (0.5 W m-2) and varying CO2 levels (350, 500, 1000 ppm) on the diatom Skeletonema pseudocostatum. The study aimed to characterize the potential combined effects at different levels of biological organization, including ROS formation, lipid peroxidation (LPO), photosynthesis, pigments, oxidative phosphorylation (OXPHOS) and growth. The findings indicate that exposure to elevated CO2 (500 ppm) alone resulted in increased total carotenoid content and growth of S. pseudocostatum, but did not significantly impact photosystem efficiency, oxidative stress, and OXPHOS. Sole UVB exposure induced oxidative stress, inhibited photosynthesis and OXPHOS processes, and suppressed growth in S. pseudocostatum. However, when co-exposed with CO2, synergistic impacts were observed for reactive oxygen species (ROS), lipid peroxidation (LPO), and growth, while carotenoids were reduced in an antagonistic manner. A putative impact pathway was proposed as an initial effort to characterize the combined effects of these stressors under proposed future marine OA scenarios involving elevated CO2.
Collapse
Affiliation(s)
- Li Xie
- Norwegian Institute for Water Research (NIVA), Økernveien 94, OSLO N-0579, Norway; Norwegian University of Life Sciences (NMBU), Centre for Environmental Radioactivity, Post box 5003, Ås N-1432, Norway.
| | - Ailbhe Macken
- Norwegian Institute for Water Research (NIVA), Økernveien 94, OSLO N-0579, Norway
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Økernveien 94, OSLO N-0579, Norway; Norwegian University of Life Sciences (NMBU), Centre for Environmental Radioactivity, Post box 5003, Ås N-1432, Norway; Norwegian University of Life Sciences (NMBU), Faculty of Environmental Sciences and Natural Resource Management, Post box 5003, Ås N-1432, Norway.
| |
Collapse
|
4
|
Chen L, Zhao Y, Sun J, Jiao X, Wu Z, Wang J, Qiu J, Mao B, Liu Q. Relationship between pregnant women's combined exposure to heavy metals and their offspring's congenital heart defects in Lanzhou, China. Front Pediatr 2025; 12:1291076. [PMID: 39867695 PMCID: PMC11758621 DOI: 10.3389/fped.2024.1291076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 12/17/2024] [Indexed: 01/28/2025] Open
Abstract
Background Previous research has demonstrated that exposure to individual heavy metals elevates the incidence rate of congenital heart defects (CHDs). However, there is a paucity of data concerning the relationship between combined exposure to multiple heavy metals and the occurrence of CHDs. This study seeks to investigate the association between combined heavy metal exposure in pregnant women and the incidence of CHDs in their offspring in Lanzhou, China. Methods We conducted a comprehensive review of the birth cohort study undertaken at our hospital from 2010 to 2012, with the objective of investigating the association between combined heavy metal exposure in pregnant women and the incidence of CHDs in their offspring. This analysis was performed utilizing a multifactorial conditional logistic regression model. Result A nested case-control study was conducted involving 97 case groups and 194 control groups. The median concentrations of nickel (Ni), barium (Ba), lead (Pb), and titanium (Ti) in the blood of pregnant women were measured at 25.58 μg/L, 84.38 μg/L, 69.67 μg/L, and 304.65 μg/L, respectively. The research identified a significant correlation between the concentrations of Ni, Pb, and Ti in the blood of pregnant women and the risk of CHDs (P < 0.05). The optimal cut-off for heavy metals in pregnant women's blood was determined using the ROC curve. Levels below this threshold indicated low exposure, while levels at or above it indicated high exposure. In comparison to low exposure levels, high exposure to nickel (≥189.29 μg/L) in pregnant women was associated with a 2.098-fold increase in the risk of CHDs in their offspring (OR = 3.098, 95% CI: 1.322-7.260). Similarly, high lead exposure (≥86.70 μg/L) resulted in a 1.192-fold increase in the risk of CHDs in offspring (OR = 2.192, 95% CI: 1.021-4.707). Furthermore, high exposure to titanium (≥404.22 μg/L) was linked to a 3.065-fold increase in the risk of CHDs in offspring (OR = 4.065, 95% CI: 1.887-8.758). When compared to low exposure levels, the combined exposure to four heavy metals in the blood of pregnant women is linked to a 4.946-fold increased risk of CHDs in their offspring (OR= 5.946, 95% CI: 2.872-12.309). A significant correlation was observed between Ti exposure levels and the combined exposure levels of four heavy metals in pregnant women, with respect to the risk of isolated CHDs and multiple CHDs (P < 0.05). Additionally, high Ni exposure levels in pregnant women are associated with an increased risk of multiple CHDs (OR 4.321, 95% CI: 1.646-11.348). Conclusion The cumulative exposure levels of Ni, Ba, Pb, and Ti in the blood of pregnant women are correlated with an elevated risk of CHDs in their offspring.
Collapse
Affiliation(s)
- Lulu Chen
- Gansu University of Chinese Medicine, Lanzhou, Gansu Province, China
- Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu Province, China
| | - Yaqin Zhao
- Gansu University of Chinese Medicine, Lanzhou, Gansu Province, China
- Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu Province, China
| | - Jianhao Sun
- Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu Province, China
- Clinical Medical College, Yangzhou University, Yangzhou, Jiangsu Province, China
| | - Xinjuan Jiao
- Gansu University of Chinese Medicine, Lanzhou, Gansu Province, China
| | - Zhenzhen Wu
- Gansu University of Chinese Medicine, Lanzhou, Gansu Province, China
- Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu Province, China
| | - Jian Wang
- Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu Province, China
| | - Jie Qiu
- Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu Province, China
| | - Baohong Mao
- Gansu University of Chinese Medicine, Lanzhou, Gansu Province, China
- Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu Province, China
| | - Qing Liu
- Gansu University of Chinese Medicine, Lanzhou, Gansu Province, China
- Gansu Provincial Maternity and Child-care Hospital, Lanzhou, Gansu Province, China
| |
Collapse
|
5
|
Peixoto-Rodrigues MC, Adesse D, Vianna M, Hauser-Davis RA. Shark-on-a-dish: Elasmobranch cell cultures as a promising tool for the conservation of threatened species. MARINE POLLUTION BULLETIN 2025; 210:117349. [PMID: 39615340 DOI: 10.1016/j.marpolbul.2024.117349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 11/23/2024] [Accepted: 11/24/2024] [Indexed: 12/09/2024]
Abstract
Anthropogenic activities have increasingly contaminated aquatic ecosystems worldwide, requiring the development of adequate methods to assess the effects of environmental pollution on aquatic biota. Currently, ecotoxicological research on fish is largely based on in vivo studies, many times using post-mortem fish samples bought in fish markets or obtained through capture-and-release programs. However, such samples provide a narrow window to the cellular and molecular processes that occur to fish upon exposure to pollutants and other toxicants or pathogens. In thi sense, in vitro cell culture systems have been increasingly proven a valuable tool in several research fields, from molecular biology studies to conservation efforts. To date, however, cell cultures obtained from bony fish have been the most studied and with the best-described protocols and models. Elasmobranchs, comprising shark and rays, play important trophic and environmental roles, employed as chemical contamination environmental sentinels, suffering the effects of such contamination due to bioaccumulation and biomagnification processes. For these reasons, the development of new experimental tools to study elasmobranch cellular and molecular responses to environmental stimuli in controlled conditions is highly desirable. However, only some research groups have attempted to develop elasmobranch cell culture protocols to be used in an ecotoxicological context. In this sense, this review discusses the current elasmobranch cell culture scenario, its importance and potential applications in ecotoxicology assessments and conservation actions.
Collapse
Affiliation(s)
- Maria Carolina Peixoto-Rodrigues
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil, 4.365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil; Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil, 4.365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil
| | - Daniel Adesse
- Laboratório de Biologia Estrutural, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil, 4.365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil; Laboratory of Ocular Immunology and Transplantation, Department of Ophthalmology, Bascom Palmer Eye Institute, Miller School of Medicine, University of Miami, United States of America.
| | - Marcelo Vianna
- Laboratório de Biologia e Tecnologia Pesqueira, Departamento de Biologia Marinha, Instituto de Biologia, UFRJ, Av. Carlos Chagas Filho, 373, CCS, Bl. A., Rio de Janeiro, Rio de Janeiro, RJ 21941-541, Brazil; IMAM - AquaRio, Rio de Janeiro Aquarium Research Center, Rio de Janeiro, Brazil; AquaRio - Aquário Marinho do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rachel Ann Hauser-Davis
- Laboratório de Avaliação e Promoção da Saúde Ambiental, Instituto Oswaldo Cruz, Fiocruz, Av. Brasil, 4.365, Manguinhos, Rio de Janeiro, RJ 21040-360, Brazil.
| |
Collapse
|
6
|
Gonçalves do Amaral C, Pinto André E, Maffud Cilli E, Gomes da Costa V, Ricardo S Sanches P. Viral diseases and the environment relationship. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 362:124845. [PMID: 39265774 DOI: 10.1016/j.envpol.2024.124845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/14/2024]
Abstract
Viral diseases have been present throughout human history, with early examples including influenza (1500 B.C.), smallpox (1000 B.C.), and measles (200 B.C.). The term "virus" was first used in the late 1800s to describe microorganisms smaller than bacteria, and significant milestones include the discovery of the polio virus and the development of its vaccine in the mid-1900s, and the identification of HIV/AIDS in the latter part of the 20th century. The 21st century has seen the emergence of new viral diseases such as West Nile Virus, Zika, SARS, MERS, and COVID-19. Human activities, including crowding, travel, poor sanitation, and environmental changes like deforestation and climate change, significantly influence the spread of these diseases. Conversely, viral diseases can impact the environment by polluting water resources, contributing to deforestation, and reducing biodiversity. These environmental impacts are exacerbated by disruptions in global supply chains and increased demands for resources. This review highlights the intricate relationship between viral diseases and environmental factors, emphasizing how human activities and viral disease progression influence each other. The findings underscore the need for integrated approaches to address the environmental determinants of viral diseases and mitigate their impacts on both health and ecosystems.
Collapse
Affiliation(s)
- Caio Gonçalves do Amaral
- School of Pharmaceutical Sciences, Laboratory of Molecular Virology, Department of Biological Science, São Paulo State University, UNESP, Brazil
| | - Eduardo Pinto André
- School of Pharmaceutical Sciences, Laboratory of Molecular Virology, Department of Biological Science, São Paulo State University, UNESP, Brazil
| | - Eduardo Maffud Cilli
- Institute of Chemistry, Laboratory of Synthesis and Studies of Biomolecules, Department of Biochemistry and Organic Chemistry, São Paulo State University, UNESP, Brazil
| | - Vivaldo Gomes da Costa
- Institute of Biosciences, Letters, and Exact Sciences, São Paulo State University, UNESP, Brazil
| | - Paulo Ricardo S Sanches
- School of Pharmaceutical Sciences, Laboratory of Molecular Virology, Department of Biological Science, São Paulo State University, UNESP, Brazil.
| |
Collapse
|
7
|
Habib SS, Maqaddas S, Fazio F, El Amouri R, Shaikh GS, Rahim A, Khan K, Ullah J, Mohany M, Parrino V, Al-Emam A. Evaluation of lead exposure effects on tissue accumulation, behavior, morphological and hemato-biochemical changes in common carp, Cyprinus carpio. J Trace Elem Med Biol 2024; 86:127523. [PMID: 39243732 DOI: 10.1016/j.jtemb.2024.127523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Revised: 08/31/2024] [Accepted: 09/03/2024] [Indexed: 09/09/2024]
Abstract
BACKGROUND Heavy metal pollution, particularly lead (Pb), poses a significant threat to aquatic ecosystems and their inhabitants, threatening their delicate balance and long-term viability. This study highlights the urgent need to mitigate heavy metal pollution in aquatic ecosystems. OBJECTIVE This study investigates Pb(NO3)2 exposure effects on tissue accumulation, behavioral abnormalities, and hemato-biochemical parameters in common carp (Cyprinus carpio), a widely distributed freshwater fish species. METHODOLOGY Fish (115 ± 5.23 g) were exposed to various Pb(NO3)2 concentrations for 10 and 20 days, representing control (0 %), 25 %, 50 %, and 75 % of the LC50 equivalent to 19.33, 38.66, and 58.0 mg/l, respectively. The standard manual procedure was used for blood sampling. The lead concentration in fish tissue was determined using an atomic absorption spectrophotometer. RESULTS Results revealed that fish gills showed significant (P < 0.05) increase in Pb(NO3)2 after 10 days, further rising after 20 days. Liver concentrations also rose significantly (P < 0.05) with prolonged exposure and increasing Pb levels. Muscle had lower concentrations. Hematological parameters (RBC, WBC, HB, HCT) decreased with higher Pb(NO3)2 levels. Behavioral and morphological changes were significantly more pronounced in the exposure groups when compared to the control group. Hepatic enzyme activities (AST, ALT), glucose, and lipid levels increased, while total protein decreased. CONCLUSIONS The study highlights Pb(NO3)2 harmful effects on common carp, impacting tissue accumulation, hematological parameters, and biochemical disruptions. It emphasizes the need to monitor and mitigate heavy metal pollution in aquatic environments to safeguard freshwater organisms and ecosystems, and to further increase our understanding of Pb toxicity in freshwater ecosystems.
Collapse
Affiliation(s)
- Syed Sikandar Habib
- Department of Zoology, University of Sargodha, Sargodha, Punjab 40100, Pakistan
| | - Sawera Maqaddas
- Department of Zoology, Government College University Faisalabad, Faisalabad, Punjab 38000, Pakistan
| | - Francesco Fazio
- Department of Veterinary Sciences, University of Messina, Via Palatucci, n. 13, Messina 98168, Italy.
| | - Rim El Amouri
- College of Fisheries and Life Sciences, Shanghai Ocean University, Shanghai, 201306, China
| | - Ghulam Serwar Shaikh
- Department of Biochemistry, Chandka Medical College, Shaheed Mohtarma Benazir Bhutho Medical University Larkana, Pakistan
| | - Abdur Rahim
- Department of Zoology, University of Malakand, Dir Lower, Chakdara, KP 18800, Pakistan
| | - Kaleem Khan
- Institute of Environmental and Occupational Health Sciences, School of Medicine, National Yang Ming Chiao Tung University, Taipei 112, Taiwan
| | - Javed Ullah
- Department of Zoology, University of Balochistan, Quetta 0971, Pakistan
| | - Mohamed Mohany
- Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia
| | - Vincenzo Parrino
- Department of Biomedical, Dental and Morphological and Functional Imaging Sciences, University of Messina, Via Consolare Valeria, Messina, Italy
| | - Ahmed Al-Emam
- Department of Forensic Medicine and Clinical Toxicology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt; Department of Pathology, College of Medicine, King Khalid University, Abha 9004, Saudi Arabia
| |
Collapse
|
8
|
Cardenas Perez AS, Challis JK, Alcaraz AJ, Ji X, Ramirez AVV, Hecker M, Brinkmann M. Developing an Approach for Integrating Chemical Analysis and Transcriptional Changes to Assess Contaminants in Water, Sediment, and Fish. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:2252-2273. [PMID: 38801401 DOI: 10.1002/etc.5886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 04/01/2024] [Accepted: 04/10/2024] [Indexed: 05/29/2024]
Abstract
Pharmaceuticals in aquatic environments pose threats to aquatic organisms because of their continuous release and potential accumulation. Monitoring methods for these contaminants are inadequate, with targeted analyses falling short in assessing water quality's impact on biota. The present study advocates for integrated strategies combining suspect and targeted chemical analyses with molecular biomarker approaches to better understand the risks posed by complex chemical mixtures to nontarget organisms. The research aimed to integrate chemical analysis and transcriptome changes in fathead minnows to prioritize contaminants, assess their effects, and apply this strategy in Wascana Creek, Canada. Analysis revealed higher pharmaceutical concentrations downstream of a wastewater-treatment plant, with clozapine being the most abundant in fathead minnows, showing notable bioavailability from water and sediment sources. Considering the importance of bioaccumulation factor and biota-sediment accumulation factor in risk assessment, these coefficients were calculated based on field data collected during spring, summer, and fall seasons in 2021. Bioaccumulation was classified as very bioaccumulative with values >5000 L kg-1, suggesting the ability of pharmaceuticals to accumulate in aquatic organisms. The study highlighted the intricate relationship between nutrient availability, water quality, and key pathways affected by pharmaceuticals, personal care products, and rubber components. Prioritization of these chemicals was done through suspect analysis, supported by identifying perturbed pathways (specifically signaling and cellular processes) using transcriptomic analysis in exposed fish. This strategy not only aids in environmental risk assessment but also serves as a practical model for other watersheds, streamlining risk-assessment processes to identify environmental hazards and work toward reducing risks from contaminants of emerging concern. Environ Toxicol Chem 2024;43:2252-2273. © 2024 SETAC.
Collapse
Affiliation(s)
- Ana Sharelys Cardenas Perez
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Jonathan K Challis
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Alper James Alcaraz
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Xiaowen Ji
- Division of Environmental Pediatrics, Department of Pediatrics, Grossman School of Medicine, New York University, New York, New York, USA
| | - Alexis Valerio Valery Ramirez
- Grupo de investigación Agrícola y Ambiental, Universidad Nacional Experimental del Táchira, San Cristóbal, Venezuela
| | - Markus Hecker
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Markus Brinkmann
- School of Environment and Sustainability, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Global Institute for Water Security, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Toxicology Centre, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
- Centre for Hydrology, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
9
|
El-Samad LM, Arafat EA, Nour OM, Kheirallah N, Gad ME, Hagar M, El-Moaty ZA, Hassan MA. Biomonitoring of Heavy Metal Toxicity in Freshwater Canals in Egypt Using Creeping Water Bugs ( Ilyocoris cimicoides): Oxidative Stress, Histopathological, and Ultrastructural Investigations. Antioxidants (Basel) 2024; 13:1039. [PMID: 39334698 PMCID: PMC11428737 DOI: 10.3390/antiox13091039] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/16/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024] Open
Abstract
The abundance of metal pollutants in freshwater habitats poses serious threats to the survival and biodiversity of aquatic organisms and human beings. This study intends for the first time to assess the pernicious influences of heavy metals in Al Marioteya canal freshwater in Egypt, compared to Al Mansoureya canal as a reference site utilizing the creeping water bug (Ilyocoris cimicoides) as an ecotoxicological model. The elemental analysis of the water showed a significantly higher incidence of heavy metals, including cadmium (Cd), cobalt (Co), chromium (Cr), nickel (Ni), and lead (Pb), in addition to the calcium (Ca) element than the World Health Organization's (WHO) permitted levels. The Ca element was measured in the water samples to determine whether exposure to heavy metals-induced oxidative stress engendered Ca deregulation in the midgut tissues of the creeping water bug. Remarkably, increased levels of these heavy metals were linked to an increase in chemical oxygen demand (COD) at the polluted site. Notably, the accumulation of these heavy metals in the midgut tissues resulted in a substantial reduction in antioxidant parameters, including superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase (GPx), and ascorbate peroxidase (APOX), along with a marked rise in malondialdehyde (MDA), cytochrome P450, and protein carbonyl levels. These results clearly indicate a noticeable disturbance in the antioxidant defense system due to uncontrollable reactive oxygen species (ROS). Notably, the results demonstrated that oxidative stress caused disturbances in Ca levels in the midgut tissue of I. cimicoides from polluted sites. Furthermore, the comet and flow cytometry analyses showed considerable proliferations of comet cells and apoptotic cells in midgut tissues, respectively, exhibiting prominent correlations, with pathophysiological deregulation. Interestingly, histopathological and ultrastructural examinations exposed noticeable anomalies in the midgut, Malpighian tubules, and ovarioles of I. cimicoides, emphasizing our findings. Overall, our findings emphasize the potential use of I. cimicoides as a bioindicator of heavy metal pollution in freshwater to improve sustainable water management in Egypt.
Collapse
Affiliation(s)
- Lamia M. El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (L.M.E.-S.); (E.A.A.); (N.K.)
| | - Esraa A. Arafat
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (L.M.E.-S.); (E.A.A.); (N.K.)
| | - Ola Mohamed Nour
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Alexandria 21526, Egypt;
| | - Nessrin Kheirallah
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (L.M.E.-S.); (E.A.A.); (N.K.)
| | - Mohammed E. Gad
- Department of Zoology and Entomology, Faculty of Science, Al-Azhar University, Nasr City, Cairo 11884, Egypt;
| | - Mohamed Hagar
- Department of Chemistry, Faculty of Science, Alexandria University, Alexandria 21321, Egypt;
| | - Zeinab A. El-Moaty
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria 21321, Egypt; (L.M.E.-S.); (E.A.A.); (N.K.)
- Department of Biological Sciences, College of Science, King Faisal University, Al-Ahsa 31982, Saudi Arabia
| | - Mohamed A. Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, Alexandria 21934, Egypt
| |
Collapse
|
10
|
Zhou J, Wang S, He X, Ren H, Zhang XX. Comparative evaluation of SPE methods for biotoxicity assessment of water and wastewater: Linkage between chemical extracting efficiency and biotoxicity outcome. J Environ Sci (China) 2024; 142:33-42. [PMID: 38527894 DOI: 10.1016/j.jes.2023.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 03/27/2024]
Abstract
Biotoxicity assessment results of environmental waters largely depend on the sample extraction protocols that enrich pollutants to meet the effect-trigger thresholds of bioassays. However, more chemical mixture does not necessarily translate to higher combined biotoxicity. Thus, there is a need to establish the link between chemical extracting efficiency and biotoxicity outcome to standardize extraction methods for biotoxicity assessment of environmental waters. This study compares the performance of five different extraction phases in solid phase extraction (SPE), namely HLB, HLB+Coconut, C18 cartridge, C18 disk and Strata-X, and evaluated their chemical extracting efficiencies and biotoxicity outcomes. We quantitatively assessed cytotoxicity, acute toxicity, genotoxicity, estrogenic activity, and neurotoxicity of the extracts using in vitro bioassays and characterized the chemical extracting efficiencies of the SPE methods through chemical recoveries of 23 model compounds with different polarities and total organic carbon. Using Pareto ranking, we identified HLB+Coconut as the optimal SPE method, which exhibited the highest level of water sample biotoxicity and recovered the most chemicals in water samples. We found that the biotoxicity outcomes of the extracted water samples significantly and positively correlated with the chemical extracting efficiencies of the SPE methods. Moreover, we observed synchronous changing patterns in biotoxicity outcome and chemical extracting efficiencies in response to increasing sample volumes per cartridge (SVPC) during SPE. Our findings underscore that higher chemical extracting efficiency of SPE corresponds to higher biotoxicity outcome of environmental water samples, providing a scientific basis for standardization of SPE methods for adequate assessment of biotoxicities of environmental waters.
Collapse
Affiliation(s)
- Jiawei Zhou
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Shihao Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xiwei He
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| | - Hongqiang Ren
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China
| | - Xu-Xiang Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
11
|
Reis LLD, de Abreu CB, Gebara RC, Rocha GS, Longo E, Mansano ADS, Melão MDGG. Effects of Cadmium and Nickel Mixtures on Multiple Endpoints of the Microalga Raphidocelis subcapitata. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2024; 43:1855-1869. [PMID: 38864594 DOI: 10.1002/etc.5927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 11/08/2023] [Accepted: 05/03/2024] [Indexed: 06/13/2024]
Abstract
It is crucial to investigate the effects of mixtures of contaminants on aquatic organisms, because they reflect what occurs in the environment. Cadmium (Cd) and nickel (Ni) are metals that co-occur in aquatic ecosystems, and information is scarce on their joint toxicity to Chlorophyceae using multiple endpoints. We evaluated the effects of isolated and combined Cd and Ni metals on multiple endpoints of the chlorophycean Raphidocelis subcapitata. The results showed that Cd inhibited cell density, increased reactive oxygen species (ROS) production (up to 308% at 0.075 mg L-1 of Cd), chlorophyll a (Chl a) fluorescence (0.050-0.100 mg L-1 of Cd), cell size (0.025-0.100 mg L-1 of Cd), and cell complexity in all concentrations evaluated. Nickel exposure decreased ROS production by up to 25% at 0.25 mg L-1 of Ni and Chl a fluorescence in all concentrations assessed. Cell density and oxygen-evolving complex (initial fluorescence/variable fluorescence [F0/Fv]) were only affected at 0.5 mg L-1 of Ni. In terms of algal growth, mixture toxicity showed antagonism at low doses and synergism at high doses, with a dose level change greater than the median inhibitory concentration. The independent action model and dose-level-dependent deviation best fit our data. Cadmium and Ni mixtures resulted in a significant increase in cell size and cell complexity, as well as changes in ROS production and Chl a fluorescence, and they did not affect the photosynthetic parameters. Environ Toxicol Chem 2024;43:1855-1869. © 2024 SETAC.
Collapse
Affiliation(s)
- Larissa Luiza Dos Reis
- Department of Hydrobiology, Federal University of São Carlos, São Carlos, São Paulo, Brazil
- Post-Graduate Program in Ecology and Natural Resources, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Cínthia Bruno de Abreu
- Center for the Development of Functional Materials, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Renan Castelhano Gebara
- Center for the Development of Functional Materials, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Giseli Swerts Rocha
- Department of Chemical Engineering, School of Chemical Engineering, University of Rovira i Virgili, Tarragona, Spain
| | - Elson Longo
- Center for the Development of Functional Materials, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Adrislaine da Silva Mansano
- Department of Hydrobiology, Federal University of São Carlos, São Carlos, São Paulo, Brazil
- Post-Graduate Program in Ecology and Natural Resources, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| | - Maria da Graça Gama Melão
- Department of Hydrobiology, Federal University of São Carlos, São Carlos, São Paulo, Brazil
- Post-Graduate Program in Ecology and Natural Resources, Federal University of São Carlos, São Carlos, São Paulo, Brazil
| |
Collapse
|
12
|
Ahkola H, Kotamäki N, Siivola E, Tiira J, Imoscopi S, Riva M, Tezel U, Juntunen J. Uncertainty in Environmental Micropollutant Modeling. ENVIRONMENTAL MANAGEMENT 2024; 74:380-398. [PMID: 38816505 PMCID: PMC11227446 DOI: 10.1007/s00267-024-01989-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 05/11/2024] [Indexed: 06/01/2024]
Abstract
Water pollution policies have been enacted across the globe to minimize the environmental risks posed by micropollutants (MPs). For regulative institutions to be able to ensure the realization of environmental objectives, they need information on the environmental fate of MPs. Furthermore, there is an urgent need to further improve environmental decision-making, which heavily relies on scientific data. Use of mathematical and computational modeling in environmental permit processes for water construction activities has increased. Uncertainty of input data considers several steps from sampling and analysis to physico-chemical characteristics of MP. Machine learning (ML) methods are an emerging technique in this field. ML techniques might become more crucial for MP modeling as the amount of data is constantly increasing and the emerging new ML approaches and applications are developed. It seems that both modeling strategies, traditional and ML, use quite similar methods to obtain uncertainties. Process based models cannot consider all known and relevant processes, making the comprehensive estimation of uncertainty challenging. Problems in a comprehensive uncertainty analysis within ML approach are even greater. For both approaches generic and common method seems to be more useful in a practice than those emerging from ab initio. The implementation of the modeling results, including uncertainty and the precautionary principle, should be researched more deeply to achieve a reliable estimation of the effect of an action on the chemical and ecological status of an environment without underestimating or overestimating the risk. The prevailing uncertainties need to be identified and acknowledged and if possible, reduced. This paper provides an overview of different aspects that concern the topic of uncertainty in MP modeling.
Collapse
Affiliation(s)
- Heidi Ahkola
- Finnish Environment Institute (Syke), Latokartanonkaari 11, 00790, Helsinki, Finland.
| | - Niina Kotamäki
- Finnish Environment Institute (Syke), Latokartanonkaari 11, 00790, Helsinki, Finland
| | - Eero Siivola
- Finnish Environment Institute (Syke), Latokartanonkaari 11, 00790, Helsinki, Finland
| | - Jussi Tiira
- Finnish Environment Institute (Syke), Latokartanonkaari 11, 00790, Helsinki, Finland
| | - Stefano Imoscopi
- IDSIA, Università della Svizzera italiana (USI), Via Buffi 13, 6900, Lugano, Switzerland
| | - Matteo Riva
- Independent Researcher. Work Carried Out While Employed at IDSIA, USI, Lugano, Switzerland
| | - Ulas Tezel
- Institute of Environmental Sciences, Boğaziçi University, Hisar Campus, Bebek, Istanbul, 34342, Turkey
| | - Janne Juntunen
- Finnish Environment Institute (Syke), Latokartanonkaari 11, 00790, Helsinki, Finland
| |
Collapse
|
13
|
Ding S, Chang J, Zhang W, Ji S, Chi Y. Environmental microbial diversity and water pollution characteristics resulted from 150 km coastline in Quanzhou Bay offshore area. Front Microbiol 2024; 15:1438133. [PMID: 39027103 PMCID: PMC11254811 DOI: 10.3389/fmicb.2024.1438133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 06/20/2024] [Indexed: 07/20/2024] Open
Abstract
As a typical transitional area between the land and sea, the offshore area is subjected to the triple synergistic pressure from the ocean, land, and atmosphere at the same time, and has obvious characteristics such as complex and diverse chemical, physical, and biological processes, coupled and changeable environmental factors, and sensitive and fragile ecological environment. With the deepening of the urbanization process, the offshore area has gradually become the final receptions of pollutants produced by industry, agriculture, and service industries, and plays a key role in the global environmental geochemical cycle of pollutants. In this study, the Quanzhou Bay offshore area was selected as the research object. Sediment and water samples were collected from 8 sampling points within about 150 km of coastline in the Quanzhou Bay offshore area. 16s rDNA high-throughput sequencing method was used to investigate the variation rule of microbial diversity in the offshore area, and multi-parameter water quality analysis was carried out at the same time. The results showed that the distribution characteristics of microbial communities and water quality in the Quanzhou Bay offshore area showed significant differences in different latitudes and longitudes. This difference is closely related to the complexity of offshore area. This study can provide scientific support for protecting and improving the ecological environment of offshore areas.
Collapse
Affiliation(s)
- Siqi Ding
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Jiamin Chang
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
| | - Wenzhou Zhang
- School of Pharmacy, Quanzhou Medical College, Quanzhou, China
| | - Shouping Ji
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, China
| | - Yulang Chi
- College of Oceanology and Food Science, Quanzhou Normal University, Quanzhou, China
- Fujian Province Key Laboratory for the Development of Bioactive Material from Marine Algae, Quanzhou Normal University, Quanzhou, China
| |
Collapse
|
14
|
Bertucci JI, Blanco Osorio A, Vidal-Liñán L, Bellas J. Developmental and biochemical markers of the impact of pollutant mixtures under the effect of Global Climate Change. CHEMOSPHERE 2024; 358:142162. [PMID: 38697568 DOI: 10.1016/j.chemosphere.2024.142162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 04/04/2024] [Accepted: 04/25/2024] [Indexed: 05/05/2024]
Abstract
This study investigates the combined impact of microplastics (MP) and Chlorpyriphos (CPF) on sea urchin larvae (Paracentrotus lividus) under the backdrop of ocean warming and acidification. While the individual toxic effects of these pollutants have been previously reported, their combined effects remain poorly understood. Two experiments were conducted using different concentrations of CPF (EC10 and EC50) based on previous studies from our group. MP were adsorbed in CPF to simulate realistic environmental conditions. Additionally, water acidification and warming protocols were implemented to mimic future ocean conditions. Sea urchin embryo toxicity tests were conducted to assess larval development under various treatment combinations of CPF, MP, ocean acidification (OA), and temperature (OW). Morphometric measurements and biochemical analyses were performed to evaluate the effects comprehensively. Results indicate that combined stressors lead to significant morphological alterations, such as increased larval width and reduced stomach volume. Furthermore, biochemical biomarkers like acetylcholinesterase (AChE), glutathione S-transferase (GST), and glutathione reductase (GRx) activities were affected, indicating oxidative stress and impaired detoxification capacity. Interestingly, while temperature increase was expected to enhance larval growth, it instead induced thermal stress, resulting in lower growth rates. This underscores the importance of considering multiple stressors in ecological assessments. Biochemical biomarkers provided early indications of stress responses, complementing traditional growth measurements. The study highlights the necessity of holistic approaches when assessing environmental impacts on marine ecosystems. Understanding interactions between pollutants and environmental stressors is crucial for effective conservation strategies. Future research should delve deeper into the impacts at lower biological levels and explore adaptive mechanisms in marine organisms facing multiple stressors. By doing so, we can better anticipate and mitigate the adverse effects of anthropogenic pollutants on marine biodiversity and ecosystem health.
Collapse
Affiliation(s)
- J I Bertucci
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía IEO-CSIC, Subida a Radio Faro, 50, Vigo, Pontevedra, Postal Code: 36390, Spain.
| | - A Blanco Osorio
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía IEO-CSIC, Subida a Radio Faro, 50, Vigo, Pontevedra, Postal Code: 36390, Spain
| | - L Vidal-Liñán
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía IEO-CSIC, Subida a Radio Faro, 50, Vigo, Pontevedra, Postal Code: 36390, Spain
| | - J Bellas
- Centro Oceanográfico de Vigo, Instituto Español de Oceanografía IEO-CSIC, Subida a Radio Faro, 50, Vigo, Pontevedra, Postal Code: 36390, Spain
| |
Collapse
|
15
|
Hernández Díaz M, Galar Martínez M, García Medina S, Cortés López A, Ruiz Lara K, Cano Viveros S, García Medina AL, Pérez-Pastén Borja R, Rosales Pérez KE, Gómez Oliván LM, Raldúa D, Bedrossiantz J. Polluted water from a storage dam (Villa Victoria, méxico) induces oxidative damage, AChE activity, embryotoxicity, and behavioral changes in Cyprinus carpio larvae. ENVIRONMENTAL RESEARCH 2024; 258:119282. [PMID: 38823611 DOI: 10.1016/j.envres.2024.119282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/23/2024] [Accepted: 05/29/2024] [Indexed: 06/03/2024]
Abstract
The Villa Victoria dam is one of the most important storage reservoirs in Mexico since it distributes water to more than 20 million inhabitants in the Metropolitan Zone of Mexico City. In this dam, the common carp (Cyprinus carpio) is an important food resource for the inhabitants, so the aim of this work was to evaluate the oxidative damage (lipoperoxidation, oxidized proteins, antioxidant enzymes activity and gene expression), AChE, embryotoxicity and behavioral changes in C. carpio embryos and larvae exposed to water from Villa Victoria dam for 24, 48, 72 and 96 h. The embryotoxicity was evaluated trough the General Morphology Score (GMS) and the teratogenic index. Behavioral changes in basal locomotor activity and thigmotaxis were evaluated in a DanioVision, Noldus ™. An increase in lipid and protein oxidation as well as modification of CAT, SOD and GPx enzymatic activity was observed during the exposure times. The GMS indicated a low development in the embryos, the teratogenic index was less than 1, however teratogenic effects as yolk edema, fin malformation, head malformation and scoliosis were observed. In parallel, an increase in AChE activity and gene expression was observed reflecting changes in distance traveled of the basal locomotor activity and thigmotaxis at the sampling points. In conclusion, pollutants in water from Villa Victoria dam caused oxidative damage, changes in SOD, CAT, GPx and AChE activity as well as embryotoxicity and modifications in the behavior of C. carpio larvae. This study demonstrates the need to implement restoration programs for this reservoir since, contamination in the Villa Victoria dam could eventually endanger aquatic life and human health.
Collapse
Affiliation(s)
- Misael Hernández Díaz
- Laboratory of Aquatic Toxicology, Department of Pharmacy, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu, Delegación Gustavo A. Madero, Ciudad de México 07738, Mexico.
| | - Marcela Galar Martínez
- Laboratory of Aquatic Toxicology, Department of Pharmacy, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu, Delegación Gustavo A. Madero, Ciudad de México 07738, Mexico.
| | - Sandra García Medina
- Laboratory of Aquatic Toxicology, Department of Pharmacy, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu, Delegación Gustavo A. Madero, Ciudad de México 07738, Mexico.
| | - Alejandra Cortés López
- Laboratory of Aquatic Toxicology, Department of Pharmacy, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu, Delegación Gustavo A. Madero, Ciudad de México 07738, Mexico.
| | - Karina Ruiz Lara
- Laboratory of Aquatic Toxicology, Department of Pharmacy, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu, Delegación Gustavo A. Madero, Ciudad de México 07738, Mexico.
| | - Selene Cano Viveros
- Laboratory of Aquatic Toxicology, Department of Pharmacy, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu, Delegación Gustavo A. Madero, Ciudad de México 07738, Mexico.
| | - Alba Lucero García Medina
- Laboratory of Aquatic Toxicology, Department of Pharmacy, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu, Delegación Gustavo A. Madero, Ciudad de México 07738, Mexico.
| | - Ricardo Pérez-Pastén Borja
- Laboratory of Molecular Toxicology, Department of Pharmacy, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Unidad Profesional Adolfo López Mateos, Av. Wilfrido Massieu, Delegación Gustavo A. Madero, Ciudad de México 07738.
| | - Karina Elisa Rosales Pérez
- Laboratory of Environmental Toxicology, Faculty of Chemistry, Universidad Autónoma Del Estado de México, Intersección de Paseo Colón y Paseo Tollocan, Colonia Residencial Colón, 50120 Toluca, Estado de México, Mexico.
| | - Leobardo Manuel Gómez Oliván
- Laboratory of Environmental Toxicology, Faculty of Chemistry, Universidad Autónoma Del Estado de México, Intersección de Paseo Colón y Paseo Tollocan, Colonia Residencial Colón, 50120 Toluca, Estado de México, Mexico.
| | - Demetrio Raldúa
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, España, Mexico.
| | - Juliette Bedrossiantz
- Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona, 18, 08034 Barcelona, España, Mexico.
| |
Collapse
|
16
|
Monteiro V, Dias da Silva D, Martins M, Guedes de Pinho P, Pinto J. Metabolomics perspectives of the ecotoxicological risks of polycyclic aromatic hydrocarbons: A scoping review. ENVIRONMENTAL RESEARCH 2024; 249:118394. [PMID: 38307181 DOI: 10.1016/j.envres.2024.118394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/04/2024]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) represent persistent environmental pollutants ubiquitously distributed in the environment. Their presence alongside various other contaminants gives rise to intricate interactions, culminating in profound deleterious consequences. The combination effects of different PAH mixtures on biota remains a relatively unexplored domain. Recent studies have harnessed the exceptional sensitivity of metabolomic techniques to unveil the significant ecotoxicological perils of PAH pollution confronting both human populations and ecosystems. This article furnishes a comprehensive overview of current literature focused on the metabolic repercussions stemming from exposure to complex mixtures of PAHs or PAH-pollution sources using metabolomics approaches. These insights are obtained through a wide range of models, including in vitro assessments, animal studies, investigations on human subjects, botanical specimens, and soil environments. The findings underscore that PAH mixtures induce cellular stress responses and systemic effects, leading to metabolic dysregulations in amino acids, carbohydrates, lipids, and other key metabolites (e.g., organic acids, purines), with specific variations observed based on the organism and PAH compounds involved. Additionally, the ecological consequences of PAH pollutants on plant and soil microbial responses are emphasized, revealing significant changes in stress-related metabolites and nutrient cycling in soil ecosystems. The complex interplay of various PAHs and their metabolic effects on several models, as elucidated through metabolomics, highlight the urgency of further research and the need for comprehensive strategies to mitigate the risks posed by these widespread environmental pollutants.
Collapse
Affiliation(s)
- Vânia Monteiro
- Associate Laboratory i4HB ‒ Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; UCIBIO ‒ Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| | - Diana Dias da Silva
- Associate Laboratory i4HB ‒ Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; UCIBIO ‒ Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal; 1H-TOXRUN - One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU CRL, Rua Central de Gandra, 4585-116 Gandra, Portugal
| | - Marta Martins
- MARE ‒ Marine and Environmental Sciences Centre & ARNET - Aquatic Research Network Associated Laboratory, Department of Sciences and Environmental Engineering, NOVA School of Science and Technology (FCT NOVA), NOVA University of Lisbon, 2829-516 Caparica, Portugal
| | - Paula Guedes de Pinho
- Associate Laboratory i4HB ‒ Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; UCIBIO ‒ Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal
| | - Joana Pinto
- Associate Laboratory i4HB ‒ Institute for Health and Bioeconomy, University of Porto, 4050-313 Porto, Portugal; UCIBIO ‒ Applied Molecular Biosciences Unit, Laboratory of Toxicology, Faculty of Pharmacy, University of Porto, 4050-313 Porto, Portugal.
| |
Collapse
|
17
|
Chauhan V, Beaton D, Tollefsen KE, Preston J, Burtt JJ, Leblanc J, Hamada N, Azzam EI, Armant O, Bouffler S, Azimzadeh O, Moertl S, Yamada Y, Tanaka IB, Kaiser JC, Applegate K, Laurier D, Garnier-Laplace J. Radiation Adverse Outcome pathways (AOPs): examining priority questions from an international horizon-style exercise. Int J Radiat Biol 2024; 100:982-995. [PMID: 38718325 DOI: 10.1080/09553002.2024.2348072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 04/14/2024] [Indexed: 05/14/2024]
Abstract
PURPOSE The Organisation for Economic Co-operation and Development (OECD) Adverse Outcome Pathway (AOP) Development Programme is being explored in the radiation field, as an overarching framework to identify and prioritize research needs that best support strengthening of radiation risk assessment and risk management strategies. To advance the use of AOPs, an international horizon-style exercise (HSE) was initiated through the Radiation/Chemical AOP Joint Topical Group (JTG) formed by the OECD Nuclear Energy Agency (NEA) High-Level Group on Low Dose Research (HLG-LDR) under the auspices of the Committee on Radiological Protection and Public Health (CRPPH). The intent of the HSE was to identify key research questions for consideration in AOP development that would help to reduce uncertainties in estimating the health risks following exposures to low dose and low dose-rate ionizing radiation. The HSE was conducted in several phases involving the solicitation of relevant questions, a collaborative review of open-ended candidate questions and an elimination exercise that led to the selection of 25 highest priority questions for the stated purpose. These questions were further ranked by over 100 respondents through an international survey. This final set of questions was judged to provide insights into how the OECD's AOP approach can be put into practice to meet the needs of hazard and risk assessors, regulators, and researchers. This paper examines the 25 priority questions in the context of hazard/risk assessment framework for ionizing radiation. CONCLUSION By addressing the 25 priority questions, it is anticipated that constructed AOPs will have a high level of specificity, making them valuable tools for simplifying and prioritizing complex biological processes for use in developing revised radiation hazard and risk assessment strategies.
Collapse
Affiliation(s)
- Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| | - Danielle Beaton
- Isotopes, Radiobiology and Environment Directorate, Canadian Nuclear Laboratories, Chalk River, Canada
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Julian Preston
- Office of Air and Radiation, Radiation Protection Division, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Julie J Burtt
- Directorate of Environmental and Radiation Protection and Assessment, Canadian Nuclear Safety Commission, Ottawa, Canada
| | - Julie Leblanc
- Directorate of Environmental and Radiation Protection and Assessment, Canadian Nuclear Safety Commission, Ottawa, Canada
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Chiba, Japan
| | - Edouard I Azzam
- Isotopes, Radiobiology and Environment Directorate, Canadian Nuclear Laboratories, Chalk River, Canada
| | - Olivier Armant
- Institut de Radioprotection Et de Sûreté Nucléaire (IRSN), PSE-ENV/SERPEN/LECO, Cadarache, France
| | | | - Omid Azimzadeh
- Federal Office of Radiation Protection, Oberschleissheim, Germany
| | - Simone Moertl
- Federal Office of Radiation Protection, Oberschleissheim, Germany
| | - Yutaka Yamada
- Department of Radiation Effects Research, Institute for Radiological Science, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Ignacia B Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, Aomori, Japan
| | | | - Kimberly Applegate
- Department of Radiology, University of Kentucky College of Medicine, Lexington, KY, USA (retired)
| | - Dominique Laurier
- Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay aux Roses, France
| | - Jacqueline Garnier-Laplace
- On secondment from IRSN to the Committee on Radiological Protection and Public Health's secretariat, Paris, France
| |
Collapse
|
18
|
Muñoz-Peñuela M, Lo Nostro FL, Gomes ADO, Tolussi CE, Lozano I, Moreira RG. A biomarker approach to study the effects of polluted Brazilian urban reservoirs in a native fish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 923:171500. [PMID: 38447713 DOI: 10.1016/j.scitotenv.2024.171500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 02/29/2024] [Accepted: 03/03/2024] [Indexed: 03/08/2024]
Abstract
Two of the largest water reservoirs in the Metropolitan Region of São Paulo, Brazil (MRSP), named Billings and Guarapiranga, are facing high levels of anthropic impact. This is evidenced by the presence of contaminants and pollutants, which are deteriorating their water quality. Therefore, this study evaluated antioxidant defense enzymes, lipoperoxidation and genotoxicity, in adult females of a native species, Astyanax altiparanae from the Guarapiranga and Billings reservoirs. The study also aimed to evaluate these biomarkers during two different periods of the year, the rainy (summer) and dry (winter) seasons. The oxidative stress was evaluated by the activity of enzymes such as glutathione peroxidase, glutathione S-transferases, superoxide dismutase, and catalase in the gills and liver, and the occurrence of lipoperoxidation was also evaluated in both organs. The genotoxicity was assessed by performing comet assay, micronucleus, and nuclear abnormality tests on blood samples. The results showed that fish from both reservoirs are subjected to oxidative stress and genotoxic damage, mainly during winter, but fish living in Billings showed greater alterations than fish from Guarapiranga. Likewise, the results of the principal component analysis suggested that caffeine, nitrogenous compounds, and some metals might be triggering these toxic effects in fish.
Collapse
Affiliation(s)
- Marcela Muñoz-Peñuela
- Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, São Paulo, Brazil.
| | - Fabiana Laura Lo Nostro
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Ecotoxicología Acuática and IBBEA, CONICET-UBA, Ciudad Universitaria, Buenos Aires, Argentina
| | - Aline Dal Olio Gomes
- Universidade Estadual Paulista, Instituto de Biociências, Departamento de Biodiversidade, Rio Claro, SP, Brazil
| | | | - Ismael Lozano
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Departamento de Biodiversidad y Biología Experimental, Laboratorio de Ecotoxicología Acuática and IBBEA, CONICET-UBA, Ciudad Universitaria, Buenos Aires, Argentina
| | - Renata Guimarães Moreira
- Universidade de São Paulo, Instituto de Biociências, Departamento de Fisiologia, São Paulo, Brazil
| |
Collapse
|
19
|
Dos Reis LL, de Abreu CB, Gebara RC, Rocha GS, Longo E, Mansano ADS, Melão MDGG. Isolated and combined effects of cobalt and nickel on the microalga Raphidocelis subcapitata. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:104-118. [PMID: 38236330 DOI: 10.1007/s10646-024-02728-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
Aquatic organisms are exposed to several compounds that occur in mixtures in the environment. Thus, it is important to investigate their impacts on organisms because these combined effects can be potentiated. Cobalt (Co) and nickel (Ni) are metals that occur in the environment and are used in human activities. To the best of our knowledge, there are no studies that investigated the combined effects of these metals on a freshwater Chlorophyceae. Therefore, this study analyzed the isolated and combined effects of Co and Ni in cell density, physiological and morphological parameters, reactive oxygen species (ROS), carbohydrates and photosynthetic parameters of the microalga Raphidocelis subcapitata. Data showed that Co affected the cell density from 0.25 mg Co L-1; the fluorescence of chlorophyll a (Chl a) (0.10 mg Co L-1); ROS production (0.50 mg Co L-1), total carbohydrates and efficiency of the oxygen evolving complex (OEC) at all tested concentrations; and the maximum quantum yield (ΦM) from 0.50 mg Co L-1. Ni exposure decreased ROS and cell density (0.35 mg Ni L-1); altered Chl a fluorescence and carbohydrates at all tested concentrations; and did not alter photosynthetic parameters. Regarding the Co-Ni mixtures, our data best fitted the concentration addition (CA) model and dose-ratio dependent (DR) deviation in which synergism was observed at low doses of Co and high doses of Ni and antagonism occurred at high doses of Co and low doses of Ni. The combined metals affected ROS production, carbohydrates, ΦM, OEC and morphological and physiological parameters.
Collapse
Affiliation(s)
- Larissa Luiza Dos Reis
- Universidade Federal de São Carlos - UFSCar, Department of Hydrobiology, Rodovia Washington Luís, Km 235, Zip Code 13565-905, São Carlos, SP, Brazil.
- Post-Graduate Program in Ecology and Natural Resources (PPGERN), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, Zip Code 13565-905, São Carlos, SP, Brazil.
| | - Cínthia Bruno de Abreu
- Center for the Development of Functional Materials (CDMF), Federal University of São Carlos (UFSCar), 13565-905, São Carlos, SP, Brazil
| | - Renan Castelhano Gebara
- Center for the Development of Functional Materials (CDMF), Federal University of São Carlos (UFSCar), 13565-905, São Carlos, SP, Brazil
| | - Giseli Swerts Rocha
- Universitat Rovira i Virgili, Escola Tècnica Superior d'Enginyeria Química, Departament d'Enginyeria Química, Avinguda Països Catalans, 26, 43007, Tarragona, Spain
| | - Elson Longo
- Center for the Development of Functional Materials (CDMF), Federal University of São Carlos (UFSCar), 13565-905, São Carlos, SP, Brazil
| | - Adrislaine da Silva Mansano
- Universidade Federal de São Carlos - UFSCar, Department of Hydrobiology, Rodovia Washington Luís, Km 235, Zip Code 13565-905, São Carlos, SP, Brazil
- Post-Graduate Program in Ecology and Natural Resources (PPGERN), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, Zip Code 13565-905, São Carlos, SP, Brazil
| | - Maria da Graça Gama Melão
- Universidade Federal de São Carlos - UFSCar, Department of Hydrobiology, Rodovia Washington Luís, Km 235, Zip Code 13565-905, São Carlos, SP, Brazil
- Post-Graduate Program in Ecology and Natural Resources (PPGERN), Universidade Federal de São Carlos (UFSCar), Rodovia Washington Luís, Km 235, Zip Code 13565-905, São Carlos, SP, Brazil
| |
Collapse
|
20
|
García-Vara M, Orlando-Véliz D, Bonansea RI, Postigo C, López de Alda M. Prioritization of organic contaminants in a reclaimed water irrigation system using wide-scope LC-HRMS screening. JOURNAL OF HAZARDOUS MATERIALS 2023; 459:132119. [PMID: 37543020 DOI: 10.1016/j.jhazmat.2023.132119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/19/2023] [Accepted: 07/20/2023] [Indexed: 08/07/2023]
Abstract
A prioritization procedure was developed and implemented at the local level to identify the most relevant organic contaminants of emerging concern (CECs) in an agricultural area irrigated with reclaimed water. A wide-scope screening methodology based on UPLC-HRMS analysis was applied to holistically characterize the CEC footprint in water and its spatial and temporal variations. One hundred and fifty-eight CECs, including pharmaceuticals, industrial chemicals, and pesticides, among others, were identified with a confidence level of 2 in the water samples investigated. After water treatment in the reclamation plant and transport within the irrigation channel network, more than a hundred compounds were still detected at the location where water is abstracted for crop irrigation. Compound ecotoxicity and occurrence (semi-quantified concentrations or peak intensity) were the parameters used to prioritize CECs in the water used for irrigation. Results pointed at venlafaxine, O-desmethyl-venlafaxine, galaxolidone, theophylline/paraxanthine, oxybenzone, and N-phenyl-1-naphtylamine, among others, as CECs of concern in the investigated area. This study provides a simple and cost-effective approach to detecting site-specific priority pollutants that could otherwise be overlooked by national or European regulations. The prioritization tool provided contributes to rationally designing monitoring and attenuation programs and efficiently managing water resources, by ensuring the safety of reclaimed water applications.
Collapse
Affiliation(s)
- Manuel García-Vara
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Dana Orlando-Véliz
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18-26, 08034 Barcelona, Spain; PhD student in the Analytical and Environmental Chemistry PhD Program at the University of Barcelona, C/ Martí i Franquès, 08028 Barcelona, Spain
| | - Rocío Inés Bonansea
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18-26, 08034 Barcelona, Spain
| | - Cristina Postigo
- Technologies for Water Management and Treatment Research Group, Department of Civil Engineering, University of Granada, Campus de Fuentenueva, Avda Severo Ocha s/n, Granada 18071, Spain; Institute for Water Research, University of Granada, C/ Ramón y Cajal 4, Granada 18071, Spain
| | - Miren López de Alda
- Water, Environmental and Food Chemistry Unit (ENFOCHEM), Department of Environmental Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), C/ Jordi Girona 18-26, 08034 Barcelona, Spain.
| |
Collapse
|
21
|
Huang Y, Wan Z, Zhang M, Hu L, Song L, Wang Y, Lv Y, Wang L. The association between urinary metals/metalloids and chronic kidney disease among general adults in Wuhan, China. Sci Rep 2023; 13:15321. [PMID: 37714886 PMCID: PMC10504376 DOI: 10.1038/s41598-023-42282-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 09/07/2023] [Indexed: 09/17/2023] Open
Abstract
The relation between exposure to single metal/metalloid and the risk of chronic kidney disease (CKD) remains unclear. We aimed to determine the single and mixed associations of 21 heavy metals/metalloids exposure and the risk of CKD. We performed a cross-sectional study that recruited 4055 participants. Multivariate logistic regression, linear regression and weighted quantile sum (WQS) regression were conducted to explore the possible effects of single and mixed metals/metalloids exposure on the risk of CKD, the risk of albuminuria and changes in the estimated glomerular filtration rate (eGFR). In single-metal models, Cu, Fe, and Zn were positively associated with increased risks of CKD (P-trend < 0.05). Compared to the lowest level, the highest quartiles of Cu (OR = 2.94; 95% CI: 1.70, 5.11; P-trend < 0.05), Fe (OR = 2.39; 95% CI: 1.42, 4.02; P-trend < 0.05), and Zn (OR = 2.35; 95% CI: 1.31, 4.24; P-trend < 0.05) were associated with an increased risk of CKD. After multi-metal adjustment, the association with the risk of CKD remained robust for Cu (P < 0.05). Weighted quantile sum regression revealed a positive association between mixed metals/metalloids and the risk of CKD, and the association was largely driven by Cu (43.7%). Specifically, the mixture of urinary metals/metalloids was positively associated with the risk of albuminuria and negatively associated with eGFR.
Collapse
Affiliation(s)
- Yuchai Huang
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhengce Wan
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingye Zhang
- State Key Laboratory of Environment Health (Incubation), Key Laboratory of Environment and Health, Ministry of Education, Key Laboratory of Environment and Health (Wuhan), Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Liu Hu
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lulu Song
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Youjie Wang
- Department of Maternal and Child Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongman Lv
- Health Management Center, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Le Wang
- Department of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No.1095 Jiefang Avenue, Wuhan, Hubei, China.
| |
Collapse
|
22
|
Lu YS, Wen X, Chen J, He XR, Yu J, Qiu J, Qian YZ, Xu YY. Multiomics reveals new biomarkers and mechanistic insights into the combined toxicity effects of 2,2',4,4',5,5'-hexachlorobiphenyl and atrazine exposures in MCF-7 cells. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:122030. [PMID: 37336346 DOI: 10.1016/j.envpol.2023.122030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 06/01/2023] [Accepted: 06/11/2023] [Indexed: 06/21/2023]
Abstract
Humans are constantly exposed to complicated chemical mixtures from the environment and food rather than being exposed to a single pollutant. The underlying mechanisms of the complicated combined toxicity of endocrine disrupting chemicals (EDCs) are still mainly unexplored. In this study, two representative EDCs, 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153) and atrazine (ATZ), were selected to explore their combined effects on MCF-7 cell proliferation at environmental exposure concentrations by an integrated analysis of metabolomics and transcriptomics. The results showed that 1 μM ATZ and PCB153 combined exposure significantly accelerated MCF-7 cell growth by 18.2%. More than 400 metabolites detected by UHPLC-QTOF/MS were used to observe metabolism differences induced by binary mixtures. Metabolomics analysis verified that ATZ and PCB153 exposure alone or in combination could have an additive effect on metabolism and induce significant disruption to glycolysis, purine metabolism and the TCA cycle, which provide energy demand and biosynthetic substrates for cell proliferation. Compared to PCB153 and ATZ exposure alone, a combined effect was observed in purine and pyrimidine metabolic pathways. Hexokinase 3 (HK3) and cytochrome P450 19 subfamily A1 (CYP19A1) were identified as differentially expressed genes based on transcriptomic analysis. By integrating metabolome and transcriptome analysis, the proliferation effects of ATZ and PCB153 were induced at low doses in MCF-7 cells through potential interference with the downstream transcription signaling of CYP19A1. Furthermore, molecular docking indicated that PCB153 and ATZ directly affected CYP19A1. Altogether, the regulation of pivotal metabolites and differentially expressed genes could provide helpful information to reveal the mechanism by which PCB153 and ATZ affect MCF-7 cell proliferation.
Collapse
Affiliation(s)
- Yu-Shun Lu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Xing Wen
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Faculty of Printing and Packaging and Digital Media, Xi' an University of Technology, Xi'an, 710048, China
| | - Ju Chen
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Faculty of Printing and Packaging and Digital Media, Xi' an University of Technology, Xi'an, 710048, China
| | - Xiao-Rong He
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China; Faculty of Printing and Packaging and Digital Media, Xi' an University of Technology, Xi'an, 710048, China
| | - Jiang Yu
- Faculty of Printing and Packaging and Digital Media, Xi' an University of Technology, Xi'an, 710048, China
| | - Jing Qiu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yong-Zhong Qian
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yan-Yang Xu
- Key Laboratory of Agro-Product Quality and Safety, Institute of Quality Standards and Testing Technology for Agro-Products, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.
| |
Collapse
|
23
|
Zhang W, Li Q, Yang Y, Yu Y, Li S, Liu J, Xiao Y, Wen Y, Wang Q, Lei N, Gu P. Joint toxicity mechanisms of perfluorooctanoic acid and sulfadiazine on submerged macrophytes and periphytic biofilms. JOURNAL OF HAZARDOUS MATERIALS 2023; 458:131910. [PMID: 37390681 DOI: 10.1016/j.jhazmat.2023.131910] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 06/19/2023] [Accepted: 06/20/2023] [Indexed: 07/02/2023]
Abstract
Hazardous chemicals, such as perfluoroalkyl substances (PFASs) and antibiotics, coexist in aquatic environments and pose a severe threat to aquatic organisms. However, research into the toxicity of these pollutants on submerged macrophytes and their periphyton is still limited. To assess their combined toxicity, Vallisneria natans (V. natans) was exposed to perfluorooctanoic acid (PFOA) and sulfadiazine (SD) at environmental concentrations. Photosynthetic parameters such as chlorophyll a, chlorophyll b, total chlorophyll, and carotenoids were lower in the SD exposure group, indicating that SD had a significant effect on the photosynthesis of aquatic plants. Single and combined exposures effectively induced antioxidant responses, with increases in superoxide dismutase, peroxidase activities, and ribulose-1,5-bisphosphate carboxylase concentrations, as well as malondialdehyde content. Accordingly, antagonistic toxicity was assessed between PFOA and SD. Furthermore, metabolomics revealed that V. natans improved stress tolerance through changes in enoic acid, palmitic acid, and palmitoleoyloxymyristic acid related to the fatty acid metabolism pathway responding to the coexisting pollutants. Additionally, PFOA and SD in combination induced more effects on the microbial community of biofilm. The alternation of α- and β-D-glucopyranose polysaccharides and the increased content of autoinducer peptides and N-acylated homoserine lactones indicated that PFOA and SD changed the structure and function of biofilm. These investigations provide a broader perspective and comprehensive analysis of the responses of aquatic plants and periphyton biofilms to PFAS and antibiotics in the environment.
Collapse
Affiliation(s)
- Weizhen Zhang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Qi Li
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China.
| | - Yixia Yang
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Yangjinzhi Yu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Shuang Li
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Jing Liu
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Yunxing Xiao
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Yuelin Wen
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | | | - Ningfei Lei
- College of Ecology and Environment, Chengdu University of Technology, Chengdu 610059, PR China
| | - Peng Gu
- School of Environmental and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| |
Collapse
|
24
|
Bedell JP, Dendievel AM, Gosset A, Mourier B. Combined Chemical and Ecotoxicological Measurements for River Sediment Management in an On-Land Deposit Scenario. ARCHIVES OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2023; 84:436-452. [PMID: 37097447 DOI: 10.1007/s00244-023-00997-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Accepted: 04/03/2023] [Indexed: 06/01/2023]
Abstract
Sediment management along engineered river systems includes dredging operations and sediment deposition in the sea (capping) or on land. Thus, determining the ecotoxicological risk gradient associated with river sediments is critical. In this study, we investigated sediment samples along the Rhône River (France) and conducted environmental risk assessment tests with the idea to evaluate them in the future for deposit on soil. Based on an on-land deposit scenario, the capacity of the sediment samples from four sites (LDB, BER, GEC, and TRS) to support vegetation was evaluated by characterising the physical and chemical parameters (pH, conductivity, total organic carbon, grain size, C/N, potassium, nitrogen, and selected pollutants), including polychlorinated biphenyls (PCBs) and metal trace elements. All tested sediments were contaminated by metallic elements and PCBs as follows: LDB > GEC > TRS > BER, but only LDB had levels higher than the French regulatory threshold S1. Sediment ecotoxicity was then assessed using acute (plant germination and earthworm avoidance) and chronic (ostracod test and earthworm reproduction) bioassays. Two of the tested plant species, Lolium perenne (ray grass) and Cucurbita pepo (zucchini), were highly sensitive to sediment phytotoxicity. Acute tests also showed significant inhibition of germination and root growth, with avoidance by Eisenia fetida at the least contaminated sites (TRS and BER). Chronic bioassays revealed that LDB and TRS sediment were significantly toxic to E. fetida and Heterocypris incongruens (Ostracoda), and GEC sediment was toxic for the latter organism. In this on-land and spatialised deposit scenario, river sediment from the LDB site (Lake Bourget marina) presented the highest potential toxicity and required the greatest attention. However, low contamination levels can also lead to potential toxicity (as demonstrated for GEC and TRS site), underlining the importance of a multiple test approach for this scenario.
Collapse
Affiliation(s)
- Jean-Philippe Bedell
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, 69518, Vaulx-en-Velin, France.
| | - André-Marie Dendievel
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, 69518, Vaulx-en-Velin, France
| | - Antoine Gosset
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, 69518, Vaulx-en-Velin, France
| | - Brice Mourier
- Univ Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, 69518, Vaulx-en-Velin, France
| |
Collapse
|
25
|
Pautasso NA, Poletta GL, Paravani EV, Sasal MC, Simoniello MF. DNA damage and oxidative stress in gill cells of Cnesterodon decemmaculatus exposed to pesticides by runoff source in an agricultural basin. ENVIRONMENTAL AND MOLECULAR MUTAGENESIS 2023; 64:187-197. [PMID: 36719131 DOI: 10.1002/em.22529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2022] [Revised: 01/11/2023] [Accepted: 01/25/2023] [Indexed: 05/03/2023]
Abstract
In our country, great concern exists about diffuse pollution cause by the great use of pesticides in rural environments. A thorough analysis is needed to generate information, know the real situation and thus, be able to make decisions with the purpose of reducing environmental pollution. In situ bioassays have been carried out using Cnesterodon decemmaculatus within limnocorrals located in a surface natural water system that receives rainfall excess flowing from an agricultural basin with a typical crop rotation, including corn, wheat and soy. Specimens were taken from the limnocorrals 72 h after a probed natural runoff event toward the water body, and the gill cells were used to evaluate the DNA damage (comet assay, CA), catalase enzyme activity (CAT), and lipid peroxidation (LPO). In addition, the physicochemical analysis of the water (pH, temperature) and the presence and concentration of pesticides were carried out. The results showed significant differences on DNA damage and oxidative stress on the gill cells of the exposed fish compared to controls, being the combination of the rain regime and the mixtures of pesticides used in corn and soy more toxic than in wheat. These results highlight the necessity to understand detrimental processes caused by pesticides used in extensive systems of primary production, in order to prevent and minimize diffuse contamination, contributing to environmental recovery and sustainability.
Collapse
Affiliation(s)
| | - Gisela Laura Poletta
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria Paraje el Pozo S/N (3000), Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Ciudad Autónoma de Buenos Aires, Argentina
| | - Enrique Valentín Paravani
- Laboratorio de Química Ambiental, Cátedra de Química General e Inorgánica, Facultad de Ingeniería-UNER, Oro Verde, Entre Ríos, Argentina
| | | | - María Fernanda Simoniello
- Cátedra de Toxicología, Farmacología y Bioquímica Legal, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Ciudad Universitaria Paraje el Pozo S/N (3000), Santa Fe, Argentina
| |
Collapse
|
26
|
Luo H, Li J, Song B, Zhang B, Li Y, Zhou Z, Chang X. The binary combined toxicity of lithium, lead, and manganese on the proliferation of murine neural stem cells using two different models. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:5047-5058. [PMID: 35976582 DOI: 10.1007/s11356-022-22433-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Accepted: 08/03/2022] [Indexed: 06/15/2023]
Abstract
As persistent environmental pollutants, more than thirty metals impose a potential global threat to the environment and humans, which has raised scientific concerns. Although the toxic effects of metals had been extensively studied, there is a paucity of information on their mixture toxicity. In this study, we examined the individual and binary combined toxicity of three common metals such as lithium (Li), lead (Pb), and manganese (Mn) on the proliferation of murine neural stem cells (mNSCs), respectively. Li, Pb, and Mn reduced cell proliferation at the concentration of 5.00 mM, 2.50 μM, and 5.00 μM, respectively (all p < 0.050), in a dose-dependent manner of each metal solely on mNSCs with the cytotoxicity rank as Pb > Mn > Li. Furthermore, the interactions of metal mixtures on mNSCs were determined by using response-additivity and dose-additivity models. Pb + Mn mixtures showed a more than additive effect (synergistic) of toxicity in both two methods. In the dose-additivity method, Pb + Li and Li + Mn mixtures exhibited synergistic effects in the compound with a high ratio of Li (25.0% Pb/75.0% Li, 75.0% Li/25.0% Mn), whereas they are antagonistic in the lower or equal ratio of Li (such as 75.0% Pb/25.0% Li, 25.0% Li/75.0% Mn). Besides, the interactions of Li + Mn mixtures showed some discrepancies between different endpoints. In conclusion, our study highlights the complexity of the mixtures' interaction patterns and the possible neuroprotective effect of Li under certain conditions. In the future, more research on different levels of metal mixtures, especially Li metal, is necessary to evaluate their underlying interactions and contribute to establishing risk assessment systems.
Collapse
Affiliation(s)
- Huan Luo
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Room 233, Building 8, 130 Dongan Rd, 200032, Shanghai, People's Republic of China
| | - Jiayi Li
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Room 233, Building 8, 130 Dongan Rd, 200032, Shanghai, People's Republic of China
| | - Bo Song
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Room 233, Building 8, 130 Dongan Rd, 200032, Shanghai, People's Republic of China
| | - Bing Zhang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Room 233, Building 8, 130 Dongan Rd, 200032, Shanghai, People's Republic of China
| | - Yixi Li
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Room 233, Building 8, 130 Dongan Rd, 200032, Shanghai, People's Republic of China
| | - Zhijun Zhou
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Room 233, Building 8, 130 Dongan Rd, 200032, Shanghai, People's Republic of China
| | - Xiuli Chang
- School of Public Health and Key Laboratory of Public Health Safety of the Ministry of Education, Fudan University, Room 233, Building 8, 130 Dongan Rd, 200032, Shanghai, People's Republic of China.
| |
Collapse
|
27
|
Leprêtre M, Geffard O, Espeyte A, Faugere J, Ayciriex S, Salvador A, Delorme N, Chaumot A, Degli-Esposti D. Multiple reaction monitoring mass spectrometry for the discovery of environmentally modulated proteins in an aquatic invertebrate sentinel species, Gammarus fossarum. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120393. [PMID: 36223854 DOI: 10.1016/j.envpol.2022.120393] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 10/03/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Multiple reaction monitoring (MRM) mass spectrometry is emerging as a relevant tool for measuring customized molecular markers in freshwater sentinel species. While this technique is typically used for the validation of protein molecular markers preselected from shotgun experiments, recent gains of MRM multiplexing capacity offer new possibilities to conduct large-scale screening of animal proteomes. By combining the strength of active biomonitoring strategies and MRM technologies, this study aims to propose a new strategy for the discovery of candidate proteins that respond to environmental variability. For this purpose, 249 peptides derived from 147 proteins were monitored by MRM in 273 male gammarids caged in 56 environmental sites, representative of the diversity of French water bodies. A methodology is here proposed to identify a set of customized housekeeping peptides (HKPs) used to correct analytical batch effects and allow proper comparison of peptide levels in gammarids. A comparative analysis performed on HKPs-normalized data resulted in the identification of peptides highly modulated in the environment and derived from proteins likely involved in the environmental stress response. Overall, this study proposes a breakthrough approach to screen and identify potential proteins responding to relevant environmental conditions in sentinel species.
Collapse
Affiliation(s)
- Maxime Leprêtre
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625, Villeurbanne, France
| | - Olivier Geffard
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625, Villeurbanne, France
| | - Anabelle Espeyte
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625, Villeurbanne, France
| | - Julien Faugere
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Sophie Ayciriex
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Arnaud Salvador
- Université de Lyon, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, CNRS UMR 5280, 5 rue de la Doua, F-69100, Villeurbanne, France
| | - Nicolas Delorme
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625, Villeurbanne, France
| | - Arnaud Chaumot
- INRAE, UR RiverLy, Laboratoire d'écotoxicologie, F-69625, Villeurbanne, France
| | | |
Collapse
|
28
|
Kanu KC. Prediction of the toxic effects of (agro) chemical mixtures on organisms using simple time-based models. MethodsX 2022; 10:101956. [PMID: 36545547 PMCID: PMC9761840 DOI: 10.1016/j.mex.2022.101956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 11/30/2022] [Indexed: 12/03/2022] Open
Abstract
The lethal effect of a chemical acting alone can be predicted using the simple hyperbolic model, which relies on the chemicals' median lethal time (LT50). However, this model cannot be used to predict mixture toxicity, considering that toxicity in natural ecosystems often results from exposure to mixtures rather than single chemicals. The lethal time addition method was developed to calculate the LT50 of a pesticide mixture from the LT50 of its components. It enables the hyperbolic model to estimate the lethal effects of a mix of pesticides at various exposure times. The hyperbolic model, complemented by the lethal-time addition model, predicted the percentage mortality of Clarias gariepinus and Oreochromis niloticus exposed to binary and quaternary mixtures of atrazine, mancozeb, chlorpyrifos, and lambda-cyhalothrin and estimated the 96 hr LC50 of the pesticide mixture.
Collapse
|
29
|
Burtt JJ, Leblanc J, Randhawa K, Ivanova A, Rudd MA, Wilkins R, Azzam EI, Hecker M, Horemans N, Vandenhove H, Adam-Guillermin C, Armant O, Klokov D, Audouze K, Kaiser JC, Moertl S, Lumniczky K, Tanaka IB, Yamada Y, Hamada N, Al-Nabulsi I, Preston J, Bouffler S, Applegate K, Cool D, Beaton D, Tollefsen KE, Garnier-Laplace J, Laurier D, Chauhan V. Radiation Adverse Outcome Pathways (AOPs) are on the Horizon: Advancing Radiation Protection through an International Horizon-Style Exercisewe. Int J Radiat Biol 2022; 98:1763-1776. [PMID: 36067511 DOI: 10.1080/09553002.2022.2121439] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Purpose: The Adverse Outcome Pathway (AOP) framework, a systematic tool that can link available mechanistic data with phenotypic outcomes of relevance to regulatory decision-making, is being explored in areas related to radiation risk assessment. To examine the challenges including the use of AOPs to support the radiation protection community, an international horizon-style exercise (HSE) was initiated through the Organisation for Economic Co-operation and Development Nuclear Energy Agency High-Level Group on Low Dose Research Radiation/Chemical AOP Joint Topical Group (JTG). The objective of the HSE was to facilitate the collection of ideas from a range of experts, to short-list a set of priority research questions that could, if answered, improve the description of the radiation dose-response relationship for low dose/dose-rate exposures, as well as reduce uncertainties in estimating the risk of developing adverse health outcomes following such exposures.Materials and methods: The HSE was guided by an international steering committee (SC) of radiation risk experts. In the first phase, research questions were solicited on areas that can be supported by the AOP framework, or challenges on the use of AOPs in radiation risk assessment. In the second phase, questions received were refined and sorted by the SC using a best-worst scaling (BWS) method. During a virtual 3-day workshop, the list of questions was further narrowed. In the third phase, an international survey of the broader radiation protection community led to an orderly ranking of the top questions.Results: Of the 271 questions solicited, 254 were accepted and categorized into 9 themes. These were further refined to the top 25 prioritized questions. Among these, the higher ranked questions will be considered as 'important' to drive future initiatives in the low dose radiation protection community. These included questions on the ability of AOPs to delineate responses across different levels of biological organization, and how AOPs could be applied to address research questions on radiation quality, doses or dose-rates, exposure time patterns and deliveries, and uncertainties in low dose/dose-rate effects. A better understanding of these concepts is required to support the use of the AOP framework in radiation risk assessment.Conclusion: Through dissemination of these results and considerations on next steps, the JTG will address select priority questions to advance the development and use of AOPs in the radiation protection community. The major themes observed will be discussed in the context of their relevance to areas of research that support the system of radiation protection.
Collapse
Affiliation(s)
- Julie J Burtt
- Directorate of Environmental and Radiation Protection and Assessment, Canadian Nuclear Safety Commission, Ottawa, Canada
| | - Julie Leblanc
- Directorate of Environmental and Radiation Protection and Assessment, Canadian Nuclear Safety Commission, Ottawa, Canada
| | - Kristi Randhawa
- Directorate of Environmental and Radiation Protection and Assessment, Canadian Nuclear Safety Commission, Ottawa, Canada
| | - Addie Ivanova
- Directorate of Environmental and Radiation Protection and Assessment, Canadian Nuclear Safety Commission, Ottawa, Canada
| | | | - Ruth Wilkins
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| | - Edouard I Azzam
- Isotopes, Radiobiology and Environment Directorate, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
| | - Markus Hecker
- School of Environment and Sustainability, University of Saskatchewan, Saskatchewan, Canada
| | - Nele Horemans
- Biosphere Impact Studies, Belgian Nuclear Research Center (SCK CEN), Boeretang 200, 2400 Mol, Belgium
| | - Hildegarde Vandenhove
- Environment, Health and Safety, Belgian Nuclear Research Centre (SCK CEN), Boeretang 200, 2400 Mol, Belgium
| | - Christelle Adam-Guillermin
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Olivier Armant
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Dmitry Klokov
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France.,Department of Biochemistry, Microbiology and Immunology, University of Ottawa, Ottawa, Ontario, Canada
| | - Karine Audouze
- Université Paris Cité, T3S, Inserm UMRS 1124, Paris, France
| | - Jan Christian Kaiser
- Helmholtz Zentrum Munchen, Deutsches Forschungszentrum fur Gesundheit und Umwelt (GMBH) Neuherberg, Germany
| | - Simone Moertl
- Federal Office for Radiation Protection, 85764 Neuherberg, Germany
| | - Katalin Lumniczky
- National Public Health Centre, Unit of Radiation Medicine, Budapest, Albert Florian u. 2-6, 1097, Hungary
| | - Ignacia B Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7, Ienomae, Obuchi, Rokkasho, Kamikita, Aomori, 039-3212, Japan
| | - Yutaka Yamada
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Tokyo, Japan
| | - Isaf Al-Nabulsi
- US Department of Energy, Office of Domestic and International Health Studies, Office of Health and Safety, Office of Environment, Health Safety and Security, Washington, DC. USA
| | - Julian Preston
- Office of Air and Radiation, Radiation Protection Division, U.S. Environmental Protection Agency, Research Triangle Park, NC, USA
| | - Simon Bouffler
- UK Health Security Agency, Chilton, Didcot, Oxfordshire, UK
| | - Kimberly Applegate
- University of Kentucky College of Medicine, Department of Radiology, Lexington, KY, USA (retired)
| | | | - Danielle Beaton
- Isotopes, Radiobiology and Environment Directorate, Canadian Nuclear Laboratories, Chalk River, Ontario, Canada
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Økernveien 94, N-0579, Oslo, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), PO box 5003, N-1432 Ås, Norway
| | - Jacqueline Garnier-Laplace
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France.,On secondment from IRSN to the Committee on Radiological Protection and Public Health's secretariat, France
| | - Dominique Laurier
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Fontenay-aux-Roses, France
| | - Vinita Chauhan
- Consumer and Clinical Radiation Protection Bureau, Health Canada, Ottawa, Canada
| |
Collapse
|
30
|
Golin N, Barreto LS, Esquivel L, Souza TLD, Nazário MG, Oliveira AP, Martins CC, Oliveira Ribeiro CAD. Organic and inorganic pollutants in Jordão and Iguaçu rivers southern Brazil impact early phases of Rhamdia quelen and represent a risk for population. CHEMOSPHERE 2022; 303:134989. [PMID: 35595115 DOI: 10.1016/j.chemosphere.2022.134989] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
The Iguaçu River basin presents high ecological importance due to its expressive endemic ichthyofauna rate, but chemical pollution may threat this biodiversity. Jordão River is one of the main tributaries of Iguaçu River and contribute to this pollution status, since it drains large agricultural areas receiving domestic and industrial effluents before flowing into the Iguaçu River. The objective of the current study was to evaluate the toxic effects of the Iguaçu, Jordão, and the combination of their waters to the embryo-larval phase of R. quelen, investigating the consequences to the population by means of mathematical modelling. R. quelen fertilized eggs were exposed for 96 h to water samples from Iguaçu River upstream (IR), Jordão River (JR), and downstream of both rivers (MR). The analysis of micropollutants in the water showed that JR presented the most complex mixture of substances and elements, followed by IR, while MR showed the lower number of micropollutants detected. Survival rate was not a sensitive endpoint, while the deformity indices were higher in individuals exposed to water from the three studied sites. Superoxide dismutase activity was increased in MR, while non-protein thiol levels were reduced in MR and JR showing the antioxidant mechanism activation. The mathematical modelling revealed that fish exposed to JR would lead to the greater population reduction (46.19%), followed by IR (40.48%) and MR (33.33%). Although the results showed toxicity in all studied sites, the JR site is the most impacted by micropollutants but decrease its toxicity after dilution with Iguaçu River.
Collapse
Affiliation(s)
- Natália Golin
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP, 81531-980, Curitiba, PR, Brazil; Programa de Pós-Graduação em Ecologia e Conservação, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP, 81531-980, Curitiba, Paraná, Brazil
| | - Luiza Santos Barreto
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP, 81531-980, Curitiba, PR, Brazil; Programa de Pós-Graduação em Ecologia e Conservação, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP, 81531-980, Curitiba, Paraná, Brazil
| | - Luíse Esquivel
- Estação de Piscicultura Panamá, Est. Geral Bom Retiro, CEP, 88490-000, Paulo Lopes, SC, Brazil
| | - Tugstênio Lima de Souza
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP, 81531-980, Curitiba, PR, Brazil; Programa de Pós-Graduação em Biologia Celular e Molecular, Setor de Ciências Biológicas, Universidade Federal do Paraná, CEP, 81531-980, Curitiba, Paraná, Brazil
| | - Mariana Gallucci Nazário
- Laboratório de Análises Ambientais, Setor Litoral, Universidade Federal do Paraná, CEP, 83.260-000, Matinhos, PR, Brazil
| | - Andrea Pinto Oliveira
- Departamento de Química, Setor de Ciências Exatas, Centro Politécnico, Universidade Federal do Paraná, CEP, 81531-980, Curitiba, Paraná, Brazil
| | - César Castro Martins
- Centro de Estudos do Mar, Campus Pontal do Paraná, Universidade Federal do Paraná, CEP, 83255-000, Pontal do Paraná, Paraná, Brazil
| | - Ciro Alberto de Oliveira Ribeiro
- Laboratório de Toxicologia Celular, Departamento de Biologia Celular, Universidade Federal do Paraná, CEP, 81531-980, Curitiba, PR, Brazil.
| |
Collapse
|
31
|
Tollefsen KE, Alonzo F, Beresford NA, Brede DA, Dufourcq-Sekatcheff E, Gilbin R, Horemans N, Hurem S, Laloi P, Maremonti E, Oughton D, Simon O, Song Y, Wood MD, Xie L, Frelon S. Adverse outcome pathways (AOPs) for radiation-induced reproductive effects in environmental species: state of science and identification of a consensus AOP network. Int J Radiat Biol 2022; 98:1816-1831. [PMID: 35976054 DOI: 10.1080/09553002.2022.2110317] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Reproductive effects of ionizing radiation in organisms have been observed under laboratory and field conditions. Such assessments often rely on associations between exposure and effects, and thus lacking a detailed mechanistic understanding of causality between effects occurring at different levels of biological organization. The Adverse Outcome Pathway (AOP), a conceptual knowledge framework to capture, organize, evaluate and visualize the scientific knowledge of relevant toxicological effects, has the potential to evaluate the causal relationships between molecular, cellular, individual, and population effects. This paper presents the first development of a set of consensus AOPs for reproductive effects of ionizing radiation in wildlife. This work was performed by a group of experts formed during a workshop organized jointly by the Multidisciplinary European Low Dose Initiative (MELODI) and the European Radioecology Alliance (ALLIANCE) associations to present the AOP approach and tools. The work presents a series of taxon-specific case studies that were used to identify relevant empirical evidence, identify common AOP components and propose a set of consensus AOPs that could be organized into an AOP network with broader taxonomic applicability. CONCLUSION Expert consultation led to the identification of key biological events and description of causal linkages between ionizing radiation, reproductive impairment and reduction in population fitness. The study characterized the knowledge domain of taxon-specific AOPs, identified knowledge gaps pertinent to reproductive-relevant AOP development and reflected on how AOPs could assist applications in radiation (radioecological) research, environmental health assessment, and radiological protection. Future advancement and consolidation of the AOPs is planned to include structured weight of evidence considerations, formalized review and critical assessment of the empirical evidence prior to formal submission and review by the OECD sponsored AOP development program.
Collapse
Affiliation(s)
- Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.,Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Ås, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Frédéric Alonzo
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Saint-Paul-Lez-Durance, France
| | - Nicholas A Beresford
- UK Centre for Ecology & Hydrology, Lancaster Environment Centre, Bailrigg, UK.,School of Science, Engineering & Environment, University of Salford, Salford, UK
| | - Dag Anders Brede
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Ås, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Elizabeth Dufourcq-Sekatcheff
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Saint-Paul-Lez-Durance, France
| | - Rodolphe Gilbin
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Saint-Paul-Lez-Durance, France
| | | | - Selma Hurem
- Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway.,Faculty of Veterinary medicine, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Patrick Laloi
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Saint-Paul-Lez-Durance, France
| | - Erica Maremonti
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Ås, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Deborah Oughton
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences (NMBU), Ås, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Olivier Simon
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Saint-Paul-Lez-Durance, France
| | - You Song
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Michael D Wood
- School of Science, Engineering & Environment, University of Salford, Salford, UK
| | - Li Xie
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Sandrine Frelon
- Health and Environment Division, Institute for Radiological Protection and Nuclear Safety (IRSN), Saint-Paul-Lez-Durance, France
| |
Collapse
|
32
|
Jaylet T, Quintens R, Benotmane MA, Luukkonen J, Tanaka IB, Ibanez C, Durand C, Sachana M, Azimzadeh O, Adam-Guillermin C, Tollefsen KE, Laurent O, Audouze K, Armant O. Development of an Adverse Outcome Pathway for radiation-induced microcephaly via expert consultation and machine learning. Int J Radiat Biol 2022; 98:1752-1762. [PMID: 35947014 DOI: 10.1080/09553002.2022.2110312] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
BACKGROUND Brain development during embryogenesis and in early postnatal life is particularly complex and involves the interplay of many cellular processes and molecular mechanisms, making it extremely vulnerable to exogenous insults, including ionizing radiation (IR). Microcephaly is one of the most frequent neurodevelopmental abnormalities that is characterized by small brain size, and is often associated with intellectual deficiency. Decades of research span from epidemiological data on in utero exposure of the A-bomb survivors, to studies on animal and cellular models that allowed deciphering the most prominent molecular mechanisms leading to microcephaly. The Adverse Outcome Pathway (AOP) framework is used to organize, evaluate and portray the scientific knowledge of toxicological effects spanning different biological levels of organizations, from the initial interaction with molecular targets to the occurrence of a disease or adversity. In the present study, the framework was used in an attempt to organize the current scientific knowledge on microcephaly progression in the context of ionizing radiation (IR) exposure. This work was performed by a group of experts formed during a recent workshop organized jointly by the Multidisciplinary European Low Dose Initiative (MELODI) and the European Radioecology Alliance (ALLIANCE) associations to present the AOP approach and tools. Here we report on the development of a putative AOP for congenital microcephaly resulting from IR exposure based on discussions of the working group and we emphasize the use of a novel machine-learning approach to assist in the screening of the available literature to develop AOPs. CONCLUSION The expert consultation led to the identification of crucial biological events for the progression of microcephaly upon exposure to IR, and highlighted current knowledge gaps. The machine learning approach was successfully used to screen the existing knowledge and helped to rapidly screen the body of evidence and in particular the epidemiological data. This systematic review approach also ensured that the analysis was sufficiently comprehensive to identify the most relevant data and facilitate rapid and consistent AOP development. We anticipate that as machine learning approaches become more user-friendly through easy-to-use web interface, this would allow AOP development to become more efficient and less time consuming.
Collapse
Affiliation(s)
- Thomas Jaylet
- Université Paris Cité, T3S, Inserm UMRS 1124, Paris, France
| | - Roel Quintens
- Radiobiology Unit, Belgian Nuclear Research Centre, SCK-CEN, Mol, Belgium
| | | | - Jukka Luukkonen
- University of Eastern Finland, Kuopio Campus, Department of Environmental and Biological Sciences, P.O. Box 1627, FI-70211 Kuopio, Finland
| | - Ignacia Braga Tanaka
- Department of Radiobiology, Institute for Environmental Sciences, 1-7 lenomae, Obuchi, Rokkasho-mura, Kamikita-gun, Aomori 039-3212, Japan
| | - Chrystelle Ibanez
- PSE-SANTE/SESANE/LRTOX Institut de Radioprotection et de Sûreté Nucléaire (IRSN), F-92262, Fontenay-aux-Roses, France
| | - Christelle Durand
- PSE-SANTE/SESANE/LRTOX Institut de Radioprotection et de Sûreté Nucléaire (IRSN), F-92262, Fontenay-aux-Roses, France
| | - Magdalini Sachana
- Organisation for Economic Co-operation and Development (OECD), Environment Health and Safety Division, 75775 CEDEX 16 Paris, France
| | - Omid Azimzadeh
- Federal Office for Radiation Protection (Bfs), Section Radiation Biology, 85764 Neuherberg, Germany
| | - Christelle Adam-Guillermin
- PSE-SANTE/SDOS/LMDN, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Cadarache, 13115 Saint-Paul-Lez-Durance, France
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Økernveien 94, N-0579, Oslo, Norway.,Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Post box 5003, N-1432 Ås, Norway
| | - Olivier Laurent
- PSE-SANTE/SESANE/LEPID, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), F-92262, Fontenay-aux-Roses, France
| | - Karine Audouze
- Université Paris Cité, T3S, Inserm UMRS 1124, Paris, France
| | - Olivier Armant
- PSE-ENV/SRTE/LECO, Institut de Radioprotection et de Sûreté Nucléaire (IRSN), Cadarache, 13115 Saint-Paul-Lez-Durance, France
| |
Collapse
|
33
|
Chauhan V, Hamada N, Wilkins R, Garnier-Laplace J, Laurier D, Beaton D, Tollefsen KE. A high-level overview of the Organisation for Economic Co-operation and Development Adverse Outcome Pathway Programme. Int J Radiat Biol 2022; 98:1704-1713. [PMID: 35938955 DOI: 10.1080/09553002.2022.2110311] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Background The Organisation for Economic Co-operation and Development (OECD), through its Chemical Safety Programme, is delegated to ensure the safety of humans and wildlife from harmful toxicants. To support these needs, initiatives to increase the efficiency of hazard identification and risk management are under way. Amongst these, the adverse outcome pathway (AOP) approach integrates information on biological knowledge and test methodologies (both established and new) to support regulatory decision making. AOPs collate biological knowledge from different sources, assess lines of evidence through considerations of causality and undergo rigorous peer-review before being subsequently endorsed by the OECD. It is envisioned that the OECD AOP Development Programme will transform the toxicity testing paradigm by leveraging the strengths of mechanistic and modelling based approaches and enhance the utility of high throughput screening assays. Since its launch, in 2012, the AOP Development Programme has matured with a greater number of AOPs endorsed since inception, and the attraction of new scientific disciplines (e.g. the radiation field). Recently, a Radiation and Chemical (Rad/Chem) AOP Joint Topical Group has been formed by the OECD Nuclear Energy Agency High-Level Group on Low-Dose Research (HLG-LDR) under the auspices of the Committee on Radiological Protection and Public Health (CRPPH). The topical group will work to evolve the development and use of the AOP framework in radiation research and regulation. As part of these efforts, the group will bring awareness and understanding on the programme, as it has matured from the chemical perspective. In this context, this paper provides the radiation community with a high-level overview of the OECD AOP Development Programme, including examples of application using knowledge gleaned from the field of chemical toxicology, and their work towards regulatory implementation. Conclusion: Although the drivers for developing AOPs in chemical sector differ from that of the radiation field, the principles and transparency of the approach can benefit both scientific disciplines. By providing perspectives and an understanding of the evolution of the OECD AOP Development Programme including case examples and work towards quantitative AOP development, it may motivate the expansion and implementation of AOPs in the radiation field.
Collapse
Affiliation(s)
- Vinita Chauhan
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Nobuyuki Hamada
- Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Komae, Tokyo, Japan
| | - Ruth Wilkins
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | | | - Dominique Laurier
- Institute for Radiological Protection and Nuclear Safety (IRSN), Health and Environment Division, Fontenay-aux-Roses, F-92262, France
| | | | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.,Norwegian University of Life Sciences (NMBU), Ås, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|
34
|
Chauhan V, Hamada N, Garnier-Laplace J, Laurier D, Beaton D, Tollefsen KE, Locke PA. Establishing a Communication and Engagement Strategy to Facilitate the Adoption of the Adverse Outcome Pathways in Radiation Research and Regulation. Int J Radiat Biol 2022; 98:1714-1721. [PMID: 35666945 DOI: 10.1080/09553002.2022.2086716] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Studies on human health and ecological effects of ionizing radiation are rapidly evolving as innovative technologies arise and the body of scientific knowledge grows. Structuring this information could effectively support the development of decision making tools and health risk models to complement current system of radiation protection. To this end, the adverse outcome pathway (AOP) approach is being explored as a means to consolidate the most relevant research to identify causation between exposure to a chemical or non-chemical stressor and disease or adverse effect progression. This tool is particularly important for low dose and low dose rate radiation exposures because of the latency and uncertainties in the biological responses at these exposure levels. To progress this aspect, it is essential to build a community of developers, facilitators, risk assessors (in the private sector and in government), policy-makers, and regulators who understand the strengths and weaknesses of, and how to appropriately utilize AOPs for consolidating our knowledge on the impact of low dose ionizing radiation. Through co-ordination with the Organisation of Economic Co-operation and Development (OECD) Nuclear Energy Agency (NEA) High-Level Group on Low-Dose Research (HLG-LDR) and OECD's AOP Programme, initiatives are under way to demonstrate this approach in radiation research and regulation. Among these, a robust communications strategy and stakeholder engagement will be essential. It will help establish best practices for AOPs in institutional project development and aid in dissemination for more efficient and timely uptake and use of AOPs. In this regard, on June 1, 2021, the Radiation and Chemical (Rad/Chem) AOP Joint Topical Group was formed as part of the initiative from the NEA's HLG-LDR. The topical group will work to develop a communication and engagement strategy to define the target audiences, establish the clear messages and identify the delivery and engagement platforms. CONCLUSION The incorporation of the best science and better decision-making should motive the radiation protection community to develop, refine and use AOPs, recognizing that their incorporation into radiation health risk assessments is critical for public health and environmental protection in the 21st century.
Collapse
Affiliation(s)
- Vinita Chauhan
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Nobuyuki Hamada
- Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Komae, Tokyo, Japan
| | | | - Dominique Laurier
- Institute for Radiological Protection and Nuclear Safety (IRSN), Health and Environment Division, Fontenay-aux-Roses, F-92262, France
| | | | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Oslo, Norway.,Norwegian University of Life Sciences (NMBU), Ås, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| | - Paul A Locke
- Johns Hopkins Bloomberg School of Public Health, Baltimore, MD USA
| |
Collapse
|
35
|
Deknock A, Pasmans F, van Leeuwenberg R, Van Praet S, De Troyer N, Goessens T, Lammens L, Bruneel S, Lens L, Martel A, Croubels S, Goethals P. Impact of heavy metal exposure on biological control of a deadly amphibian pathogen by zooplankton. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 823:153800. [PMID: 35150694 DOI: 10.1016/j.scitotenv.2022.153800] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Revised: 02/07/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Despite devastating effects on global biodiversity, efficient mitigation strategies against amphibian chytridiomycosis are lacking. Since the free-living pathogenic zoospores of Batrachochytrium dendrobatidis (Bd), the infective stage of this disease, can serve as a nutritious food source for components of zooplankton communities, these groups may act as biological control agents by eliminating zoospores from the aquatic environment. Such pathogen-predator interaction is, however, embedded in the aquatic food web structure and is therefore affected by abiotic factors interfering with these networks. Heavy metals, released from both natural and anthropogenic sources, are widespread contaminants of aquatic ecosystems and may interfere with planktonic communities and thus pathogen elimination rates. We investigated the interaction between zooplankton communities and chytridiomycosis infections in a Flemish agricultural region. Moreover, we also investigated the impact of heavy metal contamination, that was previously investigated in the region and presented in recent work, on zooplankton assemblages and chytridiomycosis infections. Finally, we tested the effect of sublethal concentrations of copper and zinc on Bd removal rates by Daphnia magna in a laboratory assay. Although zinc, copper, nickel and chromium were widely abundant pollutants, heavy metals were no driving force for zooplankton assemblages at our study locations. Moreover, our field survey did not reveal indirect effects of zooplankton assemblages on chytridiomycosis infections. However, sampling occasions testing negative for Bd showed a higher degree of copper contamination compared to positive sampling occasions, indicating a potential inhibitory effect of copper on Bd prevalence. Finally, whereas D. magna significantly reduced zoospore densities in its environment, sublethal concentrations of copper and zinc showed no interference with pathogen removal in the laboratory assay. Our results provide perspectives for further research on such a biological control strategy against chytridiomycosis by optimizing environmental conditions for pathogen predation.
Collapse
Affiliation(s)
- Arne Deknock
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Building F, B-9000 Ghent, Belgium.
| | - Frank Pasmans
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, D9, B-9820 Merelbeke, Belgium
| | - Robby van Leeuwenberg
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, D9, B-9820 Merelbeke, Belgium
| | - Sarah Van Praet
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, D9, B-9820 Merelbeke, Belgium
| | - Niels De Troyer
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Building F, B-9000 Ghent, Belgium
| | - Tess Goessens
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, D9, B-9820 Merelbeke, Belgium
| | - Leni Lammens
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, D9, B-9820 Merelbeke, Belgium
| | - Stijn Bruneel
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Building F, B-9000 Ghent, Belgium
| | - Luc Lens
- Department of Biology, Faculty of Sciences, Ghent University, K.L. Ledeganckstraat 35, B-9000 Ghent, Belgium
| | - An Martel
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, D9, B-9820 Merelbeke, Belgium
| | - Siska Croubels
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, D9, B-9820 Merelbeke, Belgium
| | - Peter Goethals
- Department of Animal Sciences and Aquatic Ecology, Faculty of Bioscience Engineering, Ghent University, Coupure Links 653, Building F, B-9000 Ghent, Belgium
| |
Collapse
|
36
|
Marinsek GP, Choueri PKG, Choueri RB, de Souza Abessa DM, Gonçalves ARN, Bortolotto LB, de Britto Mari R. Integrated analysis of fish intestine biomarkers: Complementary tools for pollution assessment. MARINE POLLUTION BULLETIN 2022; 178:113590. [PMID: 35367694 DOI: 10.1016/j.marpolbul.2022.113590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/17/2022] [Accepted: 03/19/2022] [Indexed: 06/14/2023]
Abstract
The gastrointestinal tract and its enteric nervous system are the first routes of food and xenobiotics uptake. Considering the importance of this organ, this study evaluated intestinal biomarkers of Sphoeroides testudineus integrating the data to generate tools for pollution assessment. The fish were collected in three sites of São Paulo Coast and their intestines were analyzed for biochemical, histology, and neuronal density and morphometry biomarkers. To evaluate the differences among the data, a PERMANOVA was applied, followed by a FA/PCA. The PERMANOVA indicated differences (P < 0.001) between the regions (RA, A1, and A2). Four factors were extracted from the FA/PCA (62% cumulative), showing that the animals from A2 presented severe alterations, mainly in intestinal morphometry and neuronal density. A1 alterations refer mainly to the increase of neuronal metabolism. Our results also evidence a gradient of environmental quality related to the protection level (AR > A1 > A2).
Collapse
Affiliation(s)
- Gabriela Pustiglione Marinsek
- São Paulo State University (Unesp), Coastal Campus, Department of Biological and Environmental Sciences, Animal Morphophysiology Laboratory, São Vicente, Brazil; São Paulo State University (Unesp), Institute for Advanced Studies of Ocean, São Vicente, Brazil.
| | - Paloma Kachel Gusso Choueri
- São Paulo State University (Unesp), Coastal Campus, Department of Biological and Environmental Sciences, Research Group on Pollution and Aquatic Ecotoxicology, São Vicente, Brazil; Ecotoxicology Laboratory - Unisanta, Universidade Santa Cecília, R. Oswaldo Cruz, 277 - CP 11045-907 - Boqueirão, Santos - SP, Brazil
| | - Rodrigo Brasil Choueri
- Federal University of São Paulo, Baixada Santista Campus, Department of Marine Sciences, Institute of the Sea, Brazil
| | - Denis Moledo de Souza Abessa
- São Paulo State University (Unesp), Coastal Campus, Department of Biological and Environmental Sciences, Research Group on Pollution and Aquatic Ecotoxicology, São Vicente, Brazil
| | - Alexandre Rodrigo Nascimento Gonçalves
- São Paulo State University (Unesp), Coastal Campus, Department of Biological and Environmental Sciences, Animal Morphophysiology Laboratory, São Vicente, Brazil
| | - Lorihany Bogo Bortolotto
- São Paulo State University (Unesp), Coastal Campus, Department of Biological and Environmental Sciences, Animal Morphophysiology Laboratory, São Vicente, Brazil
| | - Renata de Britto Mari
- São Paulo State University (Unesp), Coastal Campus, Department of Biological and Environmental Sciences, Animal Morphophysiology Laboratory, São Vicente, Brazil; São Paulo State University (Unesp), Institute for Advanced Studies of Ocean, São Vicente, Brazil
| |
Collapse
|
37
|
Barrick A, Champeau O, Butler J, Wiles T, Boundy M, Tremblay LA. Investigating the Ecotoxicity of Select Emerging Organic Contaminants Toward the Marine Copepod Gladioferens pectinatus. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2022; 41:792-799. [PMID: 34918376 DOI: 10.1002/etc.5275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 11/29/2021] [Accepted: 12/14/2021] [Indexed: 06/14/2023]
Abstract
Estuarine ecosystems are recipients of anthropogenic stressors released from land-based activities. The aim of the present study was to investigate the ecotoxicological hazards of organic contaminants toward the estuarine copepod Gladioferens pectinatus using acute and chronic testing. Most chemicals demonstrated acute toxicity and influenced development of the copepods. Further research should be conducted to investigate these chemicals and their mixtures using long-term, multigenerational testing to characterize mechanisms of toxicity. Environ Toxicol Chem 2022;41:792-799. © 2022 SETAC.
Collapse
Affiliation(s)
| | | | | | | | | | - Louis A Tremblay
- Cawthron Institute, Nelson, New Zealand
- School of Biological Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
38
|
You X, Li H, Pan B, You M, Sun W. Interactions between antibiotics and heavy metals determine their combined toxicity to Synechocystis sp. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127707. [PMID: 34798547 DOI: 10.1016/j.jhazmat.2021.127707] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 10/20/2021] [Accepted: 11/02/2021] [Indexed: 06/13/2023]
Abstract
Co-pollution of antibiotics and metals is prevailing in aquatic environments. However, risks of coexisted antibiotics and metals on aquatic organisms is unclear. This study investigated the combined toxicity of antibiotics and metals towards Synechocystis sp. PCC 6803, a cyanobacterium. We found that the joint toxicity of antibiotics and metals is dependent on their interplays. The complexation between chlortetracycline (CTC) and copper/cadmium (Cu(II)/Cd(II)) resulted in their antagonistic toxicity. Contrarily, an additive toxicity was found between florfenicol (FLO) and Cu(II)/Cd(II) due to lack of interactions between them. CTC facilitated the intracellular uptake of Cu(II) and Cd(II) by increasing the membrane permeability. However, FLO had no obvious effects on the internalization of metals in Synechocystis sp. Proteomic analysis revealed that the photosynthetic proteins was down-regulated by CTC and FLO, and ribosome was the primary target of FLO. These results were verified by parallel reaction monitoring (PRM). Cu(II) induced the up-regulation of iron-sulfur assembly, while Cd(II) disturbed the cyclic electron transport in Synechocystis sp. The co-exposure of CTC and metals markedly alleviated the dysregulation of proteins, while the co-exposure of FLO and metals down-regulated biological functions such as ATP synthesis, photosynthesis, and carbon fixation of Synechocystis sp., compared with their individuals. This supports their joint toxicity effects. Our findings provide better understanding of combined toxicity between multiple pollutants in aquatic environments.
Collapse
Affiliation(s)
- Xiuqi You
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; College of Environmental Sciences and Engineering, Peking University, Ministry of Education, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Ministry of Education, Beijing 100871, China
| | - Haibo Li
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; College of Environmental Sciences and Engineering, Peking University, Ministry of Education, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Ministry of Education, Beijing 100871, China
| | - Baozhu Pan
- State Key Laboratory of Eco-hydraulic in Northwest Arid Region of China, Xi'an University of Technology, Xi'an 710048, Shaanxi, China
| | - Mingtao You
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; College of Environmental Sciences and Engineering, Peking University, Ministry of Education, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Ministry of Education, Beijing 100871, China
| | - Weiling Sun
- The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China; College of Environmental Sciences and Engineering, Peking University, Ministry of Education, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
39
|
Alves AV, Ferraz MA, Moreno BB, Nobre CR, Antunes RM, Pusceddu FH, Bordon ICDCL, Favaro DIT, Cotrim MEB, Choueri RB. Microscale Toxicity Identification Evaluation (TIE) for interstitial water of estuarine sediments affected by multiple sources of pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:10122-10137. [PMID: 34510342 DOI: 10.1007/s11356-021-15389-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Estuaries in the world are affected by different contamination sources related to urbanisation and port/industrial activities. Identifying the substances responsible for the environmental toxicity in estuaries is challenging due to the multitude of stressors, both natural and anthropogenic. The Toxicity Identification and Evaluation (TIE) is a suitable way of determining causes of toxicity of sediments, but it poses difficulties since its application is labour intensive and time consuming. The aim of this study is to evaluate the diagnosis provided by a TIE based on microscale embryotoxicity tests with interstitial water (IW) to identify toxicants in estuarine sediments affected by multiple stressors. TIE showed toxicity due to different combinations of metals, apolar organic compounds, ammonia and sulphides, depending on the contamination source closest to the sampling station. The microscale TIE was able to discern different toxicants on sites subject to different contamination sources. There is good agreement between the results indicated in the TIE and the chemical analyses in whole sediment, although there are some disagreements, either due to the sensitivity of the test used, or due to the particularities of the use of interstitial water to assess the sediment toxicity. The improvement of TIE methods focused on identifying toxicants in multiple-stressed estuarine areas are crucial to discern contamination sources and subsidise management strategies.
Collapse
Affiliation(s)
- Aline Vecchio Alves
- Departamento de Ciências do Mar, Instituto do Mar, Universidade Federal de São Paulo (UNIFESP), Campus Baixada Santista, R. Dr. Carvalho de Mendonça, 144, Vila Belmiro, CEP 11070-102, Santos, São Paulo, Brazil
- Programa de Pós-Graduação em Análise Ambiental Integrada, Universidade Federal de São Paulo, Campus Diadema/Baixada Santista, São Paulo, Brazil
| | - Mariana Aliceda Ferraz
- Departamento de Ciências do Mar, Instituto do Mar, Universidade Federal de São Paulo (UNIFESP), Campus Baixada Santista, R. Dr. Carvalho de Mendonça, 144, Vila Belmiro, CEP 11070-102, Santos, São Paulo, Brazil
| | - Beatriz Barbosa Moreno
- Departamento de Ciências do Mar, Instituto do Mar, Universidade Federal de São Paulo (UNIFESP), Campus Baixada Santista, R. Dr. Carvalho de Mendonça, 144, Vila Belmiro, CEP 11070-102, Santos, São Paulo, Brazil
| | - Caio Rodrigues Nobre
- Instituto de Biociências Universidade do Estado de São Paulo (UNESP), Campus Experimental do Litoral Paulista, Praça Infante D. Henrique, s/n, Parque Bitaru, CEP 11330-900, São Vicente, São Paulo, Brazil
| | - Renata Medeiros Antunes
- Departamento de Ciências do Mar, Instituto do Mar, Universidade Federal de São Paulo (UNIFESP), Campus Baixada Santista, R. Dr. Carvalho de Mendonça, 144, Vila Belmiro, CEP 11070-102, Santos, São Paulo, Brazil
| | - Fabio Hermes Pusceddu
- Laboratório de Ecotoxicologia, Universidade Santa Cecília (UNISANTA), Rua Oswaldo Cruz, 266, Boqueirão, CEP 11045-101Santos, São Paulo, Brazil
| | - Isabella Cristina da Costa Leal Bordon
- Departamento de Biologia Celular e do Desenvolvimento, Universidade de São Paulo (USP), Instituto de Ciências Biomédicas (ICB), Avenida Professor Lineu Prestes, 1524, Cidade Universitária, CEP, São Paulo, SP, 05508-900, Brazil
| | - Deborah Inês Teixeira Favaro
- IPEN - Instituto de Pesquisas Energéticas e Nucleares, Centro do Reator de Pesquisa (CRPq), Avenida. Professor Lineu Prestes 2242, Cidade Universitária, CEP, São Paulo, SP, 05508-000, Brazil
| | - Marycel Elena Barbosa Cotrim
- Instituto de Pesquisas Energéticas e Nucleares (IPEN), Centro de Quimica e Meio Ambiente (CQMA), Avenida. Professor Lineu Prestes 2242, Cidade Universitária, CEP, São Paulo, SP, 05508-000, Brazil
| | - Rodrigo Brasil Choueri
- Departamento de Ciências do Mar, Instituto do Mar, Universidade Federal de São Paulo (UNIFESP), Campus Baixada Santista, R. Dr. Carvalho de Mendonça, 144, Vila Belmiro, CEP 11070-102, Santos, São Paulo, Brazil.
| |
Collapse
|
40
|
Tao Y, Li Z, Yang Y, Jiao Y, Qu J, Wang Y, Zhang Y. Effects of common environmental endocrine-disrupting chemicals on zebrafish behavior. WATER RESEARCH 2022; 208:117826. [PMID: 34785404 DOI: 10.1016/j.watres.2021.117826] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Revised: 10/05/2021] [Accepted: 10/27/2021] [Indexed: 06/13/2023]
Abstract
Environmental endocrine-disrupting chemicals (EDCs), a type of exogenous organic pollutants, are ubiquitous in natural aquatic environments. Therefor, this review focused on the use of the zebrafish as a model to explore the effect of different EDCs on behavior, as well as the molecular mechanisms that drive these effects. Furthermore, our study summarizes the current knowledge on the neuromodulatory effects of different EDCs in zebrafish. This study also reviews the current state of zebrafish behavior research, in addition to the potential mechanisms of single and mixed pollutant-driven behavioral dysregulation at the molecular level, as well as the applications of zebrafish behavior experiments for neuroscience research. This review broadens our understanding of the influence of EDCs on zebrafish behavior and provides guidance for future research.
Collapse
Affiliation(s)
- Yue Tao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Zixu Li
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yang Yang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yaqi Jiao
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Jianhua Qu
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Yifan Wang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China
| | - Ying Zhang
- School of Resources and Environment, Northeast Agricultural University, Harbin 150030, China.
| |
Collapse
|
41
|
López González E, Odetti L, Latorre M, Ávila O, Contini L, Siroski P, Poletta G. A comprehensive approach using multiple biomarkers to detect damage induced by pesticides in broad-snouted caiman ( Caiman latirostris) under ex-situ conditions. Heliyon 2022; 8:e08667. [PMID: 35028453 PMCID: PMC8741443 DOI: 10.1016/j.heliyon.2021.e08667] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/06/2021] [Accepted: 12/21/2021] [Indexed: 01/17/2023] Open
Abstract
Caiman latirostris is one of the two species of the order Crocodylia that inhabit Argentina and is considered a species of vital ecological and economic importance in the north-east of Argentina. In this region, pesticides are the most common contaminants in natural environments and wild caiman populations are subject to this contamination constantly. The aim of this study was to evaluate the effects the main pesticides used in the region: glyphosate (GLY), cypermethrin (CYP) and chlorpyrifos (CPF) -based formulations, as well as the mixture of them, on C. latirostris juveniles under semi-controlled condition of exposure (ex-situ) during 75 days. One hundred yearling caimans (10-month-old) were equally distributed into five experimental groups (20 animals per group): a negative control (NC -tap water), GLY 2% (Roundup® Full II formulation -RU), CYP 0.12% (Atanor® formulation), CPF 0.8% (Lorsban® formulation), and a mixture of the three pesticides (Mx3: GLY 2% + CYP 0.12% + CPF 0.8%). We applied early warning biomarkers to detect damage induced by these chemicals in peripheral blood: activity of the antioxidant enzymes catalase (CAT) and superoxide dismutase (SOD), analysis of lipid peroxidation (LPO) by the thiobarbituric acid reactive substances (TBARS), DNA damage and specific base oxidation through the standard and modified comet assay (CA), chromosome damage by micronucleus (MN) test and other nuclear abnormalities (NAs), hematological and growth parameters. Results showed a statistically significant increase in MN and NAs frequency, DNA damage, with an important contribution of base oxidation for all exposed groups compared to the NC. Total white blood cells count (TWBCC), and growth parameters showed effects mainly at the Mx3. The principal component analysis (PCA) demonstrated more sensitivity for biomarkers associated to genetic damage, including base oxidation to DNA than LPO, antioxidant enzyme modulation, immunotoxicity or growth parameters, to detect pesticides effects, applied under conditions similar to that found in natural environments.
Collapse
Affiliation(s)
- E.C. López González
- Proyecto Yacaré, Laboratorio de Zoología Aplicada: Anexo Vertebrados (FHUC-UNL/Gob. Sta. Fe/MAyCC), Av. Aristóbulo del Valle 8700 (3000) Santa Fe, Argentina
- Laboratorio de Ecología Molecular Aplicada (LEMA-Instituto de Ciencias Veterinarias del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas: ICiVet Litoral - CONICET/UNL), Av. Aristóbulo del Valle 8700 (3000) Santa Fe, Argentina
| | - L.M. Odetti
- Cátedra de Toxicología Farmacología y Bioquímica Legal, FBCB-UNL, CONICET, Ciudad Universitaria, Paraje El Pozo S/N (3000) Santa Fe, Argentina
| | - M.A. Latorre
- Proyecto Yacaré, Laboratorio de Zoología Aplicada: Anexo Vertebrados (FHUC-UNL/Gob. Sta. Fe/MAyCC), Av. Aristóbulo del Valle 8700 (3000) Santa Fe, Argentina
| | - O.B. Ávila
- Departamento de Matemática, FBCB-UNL, Ciudad Universitaria, Paraje El Pozo S/N (3000) Santa Fe, Argentina
| | - L.E. Contini
- Departamento de Matemática, FBCB-UNL, Ciudad Universitaria, Paraje El Pozo S/N (3000) Santa Fe, Argentina
| | - P.A. Siroski
- Proyecto Yacaré, Laboratorio de Zoología Aplicada: Anexo Vertebrados (FHUC-UNL/Gob. Sta. Fe/MAyCC), Av. Aristóbulo del Valle 8700 (3000) Santa Fe, Argentina
- Laboratorio de Ecología Molecular Aplicada (LEMA-Instituto de Ciencias Veterinarias del Litoral - Consejo Nacional de Investigaciones Científicas y Técnicas: ICiVet Litoral - CONICET/UNL), Av. Aristóbulo del Valle 8700 (3000) Santa Fe, Argentina
| | - G.L. Poletta
- Proyecto Yacaré, Laboratorio de Zoología Aplicada: Anexo Vertebrados (FHUC-UNL/Gob. Sta. Fe/MAyCC), Av. Aristóbulo del Valle 8700 (3000) Santa Fe, Argentina
- Cátedra de Toxicología Farmacología y Bioquímica Legal, FBCB-UNL, CONICET, Ciudad Universitaria, Paraje El Pozo S/N (3000) Santa Fe, Argentina
| |
Collapse
|
42
|
Redondo-López S, León AC, Jiménez K, Solano K, Blanco-Peña K, Mena F. Transient exposure to sublethal concentrations of a pesticide mixture (chlorpyrifos-difenoconazole) caused different responses in fish species from different trophic levels of the same community. Comp Biochem Physiol C Toxicol Pharmacol 2022; 251:109208. [PMID: 34626844 DOI: 10.1016/j.cbpc.2021.109208] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Revised: 09/08/2021] [Accepted: 09/29/2021] [Indexed: 01/16/2023]
Abstract
The assessment of early effects caused in biota by sublethal exposure to pesticide mixtures should enhance the realism in the ecological risk assessment for agricultural landscapes. This study aimed to evaluate sub-individual responses in fish, which can be linked with outcomes at higher levels of biological organization and affect their trophic relationships. A multilevel biomarker approach was applied to assess the effects of a 48 h exposure of two freshwater mesoamerican fish species (Parachromis dovii and Poecilia gillii) to a mixture of sublethal concentrations of chlorpyrifos (5 μg/L) and difenoconazole (325 μg/L). Transcriptomic induction of cyp1A and the activities of 7-ethoxy-resorufin-O-distillase (EROD) and glutathione S-transferase (GST) were measured as biotransformation-related biomarkers; cholinesterase activity (ChE) was assessed as a neurotoxicity biomarker; resting metabolic rate (RMR) was measured as a physiological biomarker; and the movement of fish in a dark-light environment as a behavior biomarker. The exposure to the mixture had evident effects on P. gillii, with significant induction of cyp1A transcription, increased EROD activity, ChE inhibition in muscle, and increased permanence in the light side of the dark-light environment. Meanwhile, P. dovii only showed significant induction of cyp1A, without evidence of neurotoxicity or changes in behavior. This study demonstrates that the severity of the effects caused by the exposure to a mixture of pesticides can differ among species from the same trophic chain. The potential impairment of predator-prey relationships is a relevant effect that pesticide pollution can cause and it should be considered for the risk assessment of such contaminants.
Collapse
Affiliation(s)
- Sergei Redondo-López
- Instituto Regional de Estudios en Sustancias Tóxicas, Central American Institute for Studies on Toxic Substances (IRET), Costa Rica.
| | - Ana C León
- Escuela de Medicina Veterinaria, School of Veterinary Medicine, Universidad Nacional, Costa Rica.
| | - Katherine Jiménez
- Instituto Regional de Estudios en Sustancias Tóxicas, Central American Institute for Studies on Toxic Substances (IRET), Costa Rica
| | - Karla Solano
- Instituto Regional de Estudios en Sustancias Tóxicas, Central American Institute for Studies on Toxic Substances (IRET), Costa Rica
| | - Kinndle Blanco-Peña
- Instituto Regional de Estudios en Sustancias Tóxicas, Central American Institute for Studies on Toxic Substances (IRET), Costa Rica
| | - Freylan Mena
- Instituto Regional de Estudios en Sustancias Tóxicas, Central American Institute for Studies on Toxic Substances (IRET), Costa Rica.
| |
Collapse
|
43
|
Chauhan V, Beaton D, Hamada N, Wilkins R, Burtt J, Leblanc J, Cool D, Garnier-Laplace J, Laurier D, Le Y, Yamada Y, Tollefsen KE. Adverse Outcome Pathway: A Path towards better Data Consolidation and Global Co-ordination of Radiation Research. Int J Radiat Biol 2021; 98:1694-1703. [PMID: 34919011 DOI: 10.1080/09553002.2021.2020363] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Background The purpose of toxicology is to protect human health and the environment. To support this, the Organisation for Economic Co-operation and Development (OECD), operating via its Extended Advisory Group for Molecular Screening and Toxicogenomics (EAGMST), has been developing the Adverse Outcome Pathway (AOP) approach to consolidate evidence for chemical toxicity spanning multiple levels of biological organization. The knowledge transcribed into AOPs provides a structured framework to transparently organize data, examine the weight of evidence of the AOP, and identify causal relationships between exposure to stressors and adverse effects of regulatory perspective. The AOP framework has undergone substantial maturation in the field of hazard characterization of chemicals over the last decade, and has also recently gained attention from the radiation community as a means to advance the mechanistic understanding of human and ecological health effects from exposure to ionizing radiation at low dose and low dose-rates. To fully exploit the value of such approaches for facilitating risk assessment and management in the field of radiation protection, solicitation of experiences and active cooperation between chemical and radiation communities are needed. As a result, the Radiation and Chemical (Rad/Chem) AOP joint topical group was formed on June 1, 2021 as part of the initiative from the High Level Group on Low Dose Research (HLG-LDR). HLG-LDR is overseen by the OECD Nuclear Energy Agency (NEA) Committee on Radiation Protection and Public Health (CRPPH). The main aims of the joint AOP topical group are to advance the use of AOPs in radiation research and foster broader implementation of AOPs into hazard and risk assessment. With global representation, it serves as a forum to discuss, identify and develop joint initiatives that support research and take on regulatory challenges. Conclusion: The Rad/Chem AOP joint topical group will specifically engage, promote, and implement the use of the AOP framework to: a) organize and evaluate mechanistic knowledge relevant to the protection of human and ecosystem health from radiation; b) identify data gaps and research needs pertinent to expanding knowledge of low dose and low dose-rate radiation effects; and c) demonstrate utility to support risk assessment by developing radiation-relevant case studies. It is envisioned that the Rad/Chem AOP joint topical group will actively liaise with the OECD EAGMST AOP developmental program to collectively advance areas of common interest and, specifically, provide recommendations for harmonization of the AOP framework to accommodate non-chemical stressors, such as radiation.
Collapse
Affiliation(s)
- Vinita Chauhan
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | | | - Nobuyuki Hamada
- Radiation Safety Unit, Biology and Environmental Chemistry Division, Sustainable System Research Laboratory, Central Research Institute of Electric Power Industry (CRIEPI), Komae, Tokyo, Japan
| | - Ruth Wilkins
- Environmental Health Science Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Julie Burtt
- Directorate of Environmental and Radiation Protection and Assessment, Canadian Nuclear Safety Commission, Ontario, Canada
| | - Julie Leblanc
- Directorate of Environmental and Radiation Protection and Assessment, Canadian Nuclear Safety Commission, Ontario, Canada
| | - Donald Cool
- Electric Power Research Institute, Charlotte, North Carolina, US
| | | | - Dominque Laurier
- Institute for Radiological Protection and Nuclear Safety (IRSN), Health and Environment Division, Fontenay-aux-Roses, F-92262, France
| | - Yevgeniya Le
- CANDU Owners Group Inc., Toronto, Ontario, Canada
| | - Yukata Yamada
- Department of Radiation Effects Research, National Institute of Radiological Sciences, National Institutes for Quantum Science and Technology, Chiba, Japan
| | - Knut Erik Tollefsen
- Norwegian Institute for Water Research (NIVA), Gaustadalléen 21, Oslo, Norway.,Norwegian University of Life Sciences (NMBU), Ås, Norway.,Centre for Environmental Radioactivity, Norwegian University of Life Sciences (NMBU), Ås, Norway
| |
Collapse
|
44
|
Rathi BS, Kumar PS, Vo DVN. Critical review on hazardous pollutants in water environment: Occurrence, monitoring, fate, removal technologies and risk assessment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 797:149134. [PMID: 34346357 DOI: 10.1016/j.scitotenv.2021.149134] [Citation(s) in RCA: 141] [Impact Index Per Article: 35.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 07/09/2021] [Accepted: 07/14/2021] [Indexed: 05/27/2023]
Abstract
Water is required for the existence of all living things. Water pollution has grown significantly, over the decades and now it has developed as a serious worldwide problem. The presence and persistence of Hazardous pollutants such as dyes, pharmaceuticals and personal care products, heavy metals, fertilizer and pesticides and their transformed products are the matter of serious environmental and health concerns. A variety of approaches have been tried to clean up water and maintain water quality. The type of pollutants present in the water determines the bulk of technological solutions. The main objective of this article was to review the occurrences and fate of hazardous contaminants (dyes, pharmaceuticals and personal care products, heavy metals, and pesticides) found in wastewater effluents. These effluents mingle with other streams of water and that are utilized for a variety of reasons such as irrigation and other domestic activities that is further complicating the issue. It also discussed traditional treatment approaches as well as current advances in hazardous pollutants removal employing graphite oxides, carbon nanotubes, metal organic structures, magnetic nano composites, and other innovative forms of useable materials. It also discussed the identification and quantification of harmful pollutants using various approaches, as well as current advancements. Finally, a risk assessment of hazardous pollutants in water is provided in terms of the human health and the environment. This data is anticipated to serve as a foundation for future improvements in hazardous pollutant risk assessment. Furthermore, future studies on hazardous pollutants must not only emphasize on the parent chemicals, as well as on their possible breakdown products in various media.
Collapse
Affiliation(s)
- B Senthil Rathi
- Department of Chemical Engineering, St. Joseph's College of Engineering, Chennai 600119, India
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Chennai 603110, India.
| | - Dai-Viet N Vo
- Institute of Environmental Sciences, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
45
|
Refocusing multiple stressor research around the targets and scales of ecological impacts. Nat Ecol Evol 2021; 5:1478-1489. [PMID: 34556829 DOI: 10.1038/s41559-021-01547-4] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Accepted: 08/01/2021] [Indexed: 02/07/2023]
Abstract
Ecological communities face a variety of environmental and anthropogenic stressors acting simultaneously. Stressor impacts can combine additively or can interact, causing synergistic or antagonistic effects. Our knowledge of when and how interactions arise is limited, as most models and experiments only consider the effect of a small number of non-interacting stressors at one or few scales of ecological organization. This is concerning because it could lead to significant underestimations or overestimations of threats to biodiversity. Furthermore, stressors have been largely classified by their source rather than by the mechanisms and ecological scales at which they act (the target). Here, we argue, first, that a more nuanced classification of stressors by target and ecological scale can generate valuable new insights and hypotheses about stressor interactions. Second, that the predictability of multiple stressor effects, and consistent patterns in their impacts, can be evaluated by examining the distribution of stressor effects across targets and ecological scales. Third, that a variety of existing mechanistic and statistical modelling tools can play an important role in our framework and advance multiple stressor research.
Collapse
|
46
|
Environmentally Relevant Mixture of Pesticides Affect Mobility and DNA Integrity of Early Life Stages of Rainbow Trout ( Oncorhynchus mykiss). TOXICS 2021; 9:toxics9080174. [PMID: 34437492 PMCID: PMC8402510 DOI: 10.3390/toxics9080174] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 07/15/2021] [Accepted: 07/20/2021] [Indexed: 11/16/2022]
Abstract
The aim of this study was to analyze the impact of three concentrations of a pesticide mixture on the first development stages of rainbow trout (Oncorhynchus mykiss). The mixture was made up of three commonly used pesticides in viticulture: glyphosate (GLY), chlorpyrifos (CPF) and copper sulfate (Cu). Eyed stage embryos were exposed for 3 weeks to three concentrations of the pesticide mixture. Lethal and sub-lethal effects were assessed through a number of phenotypic and molecular endpoints including survival, hatching delay, hatching success, biometry, swimming activity, DNA damage (Comet assay), lipid peroxidation (TBARS), protein carbonyl content and gene expression. Ten target genes involved in antioxidant defenses, DNA repair, mitochondrial metabolism and apoptosis were analyzed using real-time RT-qPCR. No significant increase of mortality, half-hatch, growth defects, TBARS and protein carbonyl contents were observed whatever the pesticide mixture concentration. In contrast, DNA damage and swimming activity were significantly more elevated at the highest pesticide mixture concentration. Gene transcription was up-regulated for genes involved in detoxification (gst and mt1), DNA repair (ogg1), mitochondrial metabolism (cox1 and 12S), and cholinergic system (ache). This study highlighted the induction of adaptive molecular and behavioral responses of rainbow trout larvae when exposed to environmentally realistic concentrations of a mixture of pesticides.
Collapse
|
47
|
Gosset A, Wiest L, Fildier A, Libert C, Giroud B, Hammada M, Hervé M, Sibeud E, Vulliet E, Polomé P, Perrodin Y. Ecotoxicological risk assessment of contaminants of emerging concern identified by "suspect screening" from urban wastewater treatment plant effluents at a territorial scale. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146275. [PMID: 33714835 DOI: 10.1016/j.scitotenv.2021.146275] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/28/2021] [Accepted: 02/28/2021] [Indexed: 06/12/2023]
Abstract
Urban wastewater treatment plants (WWTP) are a major vector of highly ecotoxic contaminants of emerging concern (CECs) for urban and sub-urban streams. Ecotoxicological risk assessments (ERAs) provide essential information to public environmental authorities. Nevertheless, ERAs are mainly performed at very local scale (one or few WWTPs) and on pre-selected list of CECs. To cope with these limits, the present study aims to develop a territorial-scale ERA on CECs previously identified by a "suspect screening" analytical approach (LC-QToF-MS) and quantified in the effluents of 10 WWTPs of a highly urbanized territory during three periods of the year. Among CECs, this work focused on pharmaceutical residue and pesticides. ERA was conducted following two complementary methods: (1) a single substance approach, based on the calculation for each CEC of risk quotients (RQs) by the ratio of Predicted Environmental Concentration (PEC) and Predicted No Effect Concentration (PNEC), and (2) mixture risk assessment ("cocktail effect") based on a concentration addition model (CA), summing individual RQs. Chemical results led to an ERA for 41 CEC (37 pharmaceuticals and 4 pesticides) detected in treated effluents. Single substance ERA identified 19 CECs implicated in at least one significant risk for streams, with significant risks for DEET, diclofenac, lidocaine, atenolol, terbutryn, atorvastatin, methocarbamol, and venlafaxine (RQs reaching 39.84, 62.10, 125.58, 179.11, 348.24, 509.27, 1509.71 and 3097.37, respectively). Mixture ERA allowed the identification of a risk (RQmix > 1) for 9 of the 10 WWTPs studied. It was also remarked that CECs leading individually to a negligible risk could imply a significant risk in a mixture. Finally, the territorial ERA showed a diversity of risk situations, with the highest concerns for 3 WWTPs: the 2 biggest of the territory discharging into a large French river, the Rhône, and for the smallest WWTP that releases into a small intermittent stream.
Collapse
Affiliation(s)
- Antoine Gosset
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518 Vaulx-en-Velin, France; Université de Lyon & Université Lyon 2, Lyon, F-69007, CNRS, UMR 5824 GATE Lyon Saint-Etienne, Ecully F-69130, France; Ecole Urbaine de Lyon, Institut Convergences, Commissariat général aux investissements d'avenir, Bât. Atrium, 43 Boulevard du 11 Novembre 1918, F-69616 Villeurbanne, France.
| | - Laure Wiest
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Aurélie Fildier
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Christine Libert
- Grand Lyon Urban Community, Water and Urban Planning Department, 69003 Lyon, 9, France
| | - Barbara Giroud
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Myriam Hammada
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518 Vaulx-en-Velin, France
| | - Matthieu Hervé
- Grand Lyon Urban Community, Water and Urban Planning Department, 69003 Lyon, 9, France
| | - Elisabeth Sibeud
- Grand Lyon Urban Community, Water and Urban Planning Department, 69003 Lyon, 9, France
| | - Emmanuelle Vulliet
- Univ Lyon, CNRS, Université Claude Bernard Lyon 1, Institut des Sciences Analytiques, UMR 5280, 5 Rue de la Doua, F-69100 Villeurbanne, France
| | - Philippe Polomé
- Université de Lyon & Université Lyon 2, Lyon, F-69007, CNRS, UMR 5824 GATE Lyon Saint-Etienne, Ecully F-69130, France
| | - Yves Perrodin
- Université de Lyon, Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR5023 LEHNA, F-69518 Vaulx-en-Velin, France
| |
Collapse
|
48
|
Evaluation of the potential environmental risk from the destination of medicines: an epidemiological and toxicological study. ACTA ACUST UNITED AC 2021; 29:61-71. [PMID: 33469801 DOI: 10.1007/s40199-020-00383-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 12/23/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND The high consumption of medicines by the population and their storage at home might cause an increase in the number of pharmaceutical substances that may be inappropriately discarded in the sanitary sewage, reaching an environmental aquatic. Thus, the effects of these emerging contaminants need more studies. OBJECTIVES To identify the profile of most medicines that are discarded by users of community pharmacy and evaluate the toxicity of the most disposed drugs. METHODS This was a translational study. A descriptive observational study was carried out for convenience of community pharmacy users using a standardized questionnaire. Subsequently, the lethal concentration 50 (LC50) for medicine that is most frequently discarded was determined. After LC50, the embryos (n = 144) were exposed to sublethal concentrations for most discarded drug at 24, 48, and 72 h. Mortality, heartbeat, and embryo deformities were used as parameters of toxicity. RESULTS Most respondents (96%) had a "home pharmacy." The primary forms of disposal were in the common household waste, kitchen sink, and/or bathroom. The medicines that were most incorrectly discarded by the interviewees were nimesulide (17.1%), dipyrone (10.7%), and paracetamol (5.2%). LC50 of nimesulide was calculated (0.92 μgmL-1). The toxicological test revealed that embryos exposed to nimesulide showed several abnormalities, such as defects in the spinal cord, tail, yolk sac, as well as pericardial edema. Furthermore, the heartbeat decreased by 30% at a concentration of 0.4 μgmL-1 as compared with control group. The yolk sac and pericardial areas increased to >100% in all treatment groups when compared with the control group. CONCLUSION Respondents disposed medicines in an inappropriate manner primarily in household waste and in the toilet. Nimesulide was the most discarded drug according to study population. Moreover, teratogenic effects such as spinal cord defects, decreasing heartbeats, and increasing pericardial and yolk sac area in embryos were observed after exposure to nimesulide. These results show that nimesulide may promote risk to aquatic organisms and to human health if it is discarded in an unsafe manner.
Collapse
|
49
|
Escalante-Rojas MC, Tolussi CE, Gomes AD, Muñoz-Peñuela M, Brambila-Souza G, Branco GS, Moreira RG. Integrated use of biomarkers to evaluate the reproductive physiology of Astyanax fasciatus and Hoplias malabaricus males (Teleostei: Characiformes) in polluted reservoirs. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 208:111502. [PMID: 33120267 DOI: 10.1016/j.ecoenv.2020.111502] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 10/09/2020] [Accepted: 10/12/2020] [Indexed: 06/11/2023]
Abstract
The reproductive physiology of fish can be changed by the presence of pollutants in the water, which act as endocrine disrupting compounds (EDC). We evaluated the impacts of water contaminants in polluted reservoirs acting as possible EDC on the reproductive physiology of Astyanax fasciatus and Hoplias malabaricus males. We used biomarkers with different levels of biological organization. Hoplias malabaricus adult males were collected in the summer and winter at five different sites in the Tietê River Basin: the Ponte Nova reservoir (PN), considered a reference site due to the low anthropogenic influence; the Billings reservoir (BIL) at two different branches; and the Guarapiranga reservoir (GUA) at two different branches. Astyanax fasciatus adult males were collected at PN and BIL. BIL and GUA are subjected to great anthropogenic action. We analyzed gonadal histomorphology, testosterone (T), 11-ketotestosterone (11-KT), estradiol (E2) plasma levels, and gene expression of hepatic vitellogenin (vtgA) and pituitary follicle stimulating hormone (fshβ). In the PN reservoir (reference), the biomarkers analyzed in both species did not differ between the periods analyzed. This is an evidence that the animals keep the same reproductive activity during both seasons. The changes in the plasma concentration of gonadal steroids in both species in polluted reservoirs suggest the presence of EDC compounds in the water and/or adjusts of the physiological setpoint to allow the reproduction in such adverse conditions. The use of vtgA as biomarker suggests the presence of estrogenic compounds, mainly in BIL, but with a more evident response of H. malabaricus. However, even considering physiological changes, both species present testes during the maturation phase that allow the reproduction in an environment with a high degree of pollution.
Collapse
Affiliation(s)
- Maria C Escalante-Rojas
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav.14, nº 321, 05508-090 São Paulo, SP, Brazil
| | - Carlos E Tolussi
- Escola de Ciências da Saúde, Universidade Anhembi Morumbi, R. Dr. Almeida Lima, 1134 - Parque da Mooca, 03164-000 São Paulo, SP, Brazil
| | - Aline D Gomes
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav.14, nº 321, 05508-090 São Paulo, SP, Brazil
| | - Marcela Muñoz-Peñuela
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav.14, nº 321, 05508-090 São Paulo, SP, Brazil
| | - Gabriela Brambila-Souza
- Universidade Estadual Paulista, Centro de Aquicultura (CAUNESP), V. Acesso Prof. Paulo Donato Castelane s/n, 14884-900 Jaboticabal, SP, Brazil
| | - Giovana S Branco
- Universidade Estadual Paulista, Centro de Aquicultura (CAUNESP), V. Acesso Prof. Paulo Donato Castelane s/n, 14884-900 Jaboticabal, SP, Brazil
| | - Renata G Moreira
- Laboratório de Metabolismo e Reprodução de Organismos Aquáticos, Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, Rua do Matão, Trav.14, nº 321, 05508-090 São Paulo, SP, Brazil.
| |
Collapse
|
50
|
Liu J, Liu R, Yang Z, Kuikka S. Quantifying and predicting ecological and human health risks for binary heavy metal pollution accidents at the watershed scale using Bayesian Networks. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 269:116125. [PMID: 33250289 DOI: 10.1016/j.envpol.2020.116125] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 11/02/2020] [Accepted: 11/17/2020] [Indexed: 05/25/2023]
Abstract
The accidental leakage of industrial wastewater containing heavy metals from enterprises poses great risks to resident health, social instability, and ecological safety. During 2005-2018, heavy metal mixed pollution accidents comprised approximately 33% of the major environmental ones in China. A Bayesian Networks-based probabilistic approach is developed to quantitatively predict ecological and human health risks for heavy metal mixed pollution accidents at the watershed scale. To estimate the probability distributions of joint ecological exposure once a heavy metal mixed pollution accident occurs, a Copula-based joint exposure calculation method, comprised of a hydro-dynamic model, emergent heavy metal pollution transport model, and the Copula functions, is embedded. This approach was applied to the risk assessment of acute Cr6+-Hg2+ mixed pollution accidents at 76 electroplating enterprises in 24 risk sub-watersheds of the Dongjiang River downstream watershed. The results indicated that nine sub-watersheds created high ecological risks, while only five created high human health risks. In addition, the ecological and human health risk levels were highest in the tributary (the Xizhijiang River), while the ecological risk was more critical in the river network, and the human health risk was more serious in the mainstream of the Dongjiang River. The quantitative risk assessment provides a substantial support to incident prevention and control, risk management, as well as regulatory decision making for electroplating enterprises.
Collapse
Affiliation(s)
- Jing Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing, 100875, China.
| | - Renzhi Liu
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing, 100875, China.
| | - Zhifeng Yang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, No. 19, Xinjiekouwai Street, Haidian District, Beijing, 100875, China.
| | - Sakari Kuikka
- University of Helsinki, Finland, Ecosystems and Environment Research Programme, Faculty of Biological and Environmental Sciences, P.O Box 65, Viikinkaari 1, FI-00014, Helsinki, Finland.
| |
Collapse
|