1
|
Li W, Meng F. Microplastics in marine systems: A review of sources and sinks, typical environmental behaviors, and biological effects. MARINE POLLUTION BULLETIN 2025; 214:117758. [PMID: 40037102 DOI: 10.1016/j.marpolbul.2025.117758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2024] [Revised: 02/21/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
Marine microplastics (MPs), whether originating from household and industrial production or stemming from the degradation of larger plastic fragments, have currently attracted significant global attention among the scientific community. The transport and deposition of MPs, characterized by their small size and large quantity, under oceanic hydrodynamics result in the contamination of a wide range of areas. Furthermore, MPs are capable of carrying metals and organic pollutants that constitute composite pollutants. The additives it carries will gradually release harmful substances during the degradation process. Once ingested by aquatic organisms and amplified by the food chain, these pollutants can adversely affect the survival and growth of marine flora and fauna, ultimately posing potential threats to humans. In this review, the major sources and sinks of MPs are described, considering the pollution of marine ecosystems. Additionally, typical environmental behaviors of MPs including their migration and accumulation in the ocean, their combined ability with heavy metals and organic pollutants, their leaching of additives, and their abiotic and biotic degradation pathways are discussed. The adverse effects on marine organisms resulting from ingestion and translocation of MPs are also reviewed herein. Even though the number of studies on MPs-associated environmental impacts is increasing rapidly, this review underscores that there is a pressing necessity to achieve an integrated assessment of MPs' impacts on marine ecology in order to address existing and future knowledge gaps.
Collapse
Affiliation(s)
- Wenlu Li
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Fanping Meng
- Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China.
| |
Collapse
|
2
|
Ng D, Chen Y, Lei YD, Chen W, Peng H, Gourlie S, Wania F. Quantifying the Effect of Dietary Microplastics on the Potential for Biological Uptake of Environmental Contaminants and Polymer Additives. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025. [PMID: 40263761 DOI: 10.1021/acs.est.5c02616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/24/2025]
Abstract
The pervasive presence of microplastic in food raises the question of how this presence influences the uptake of organic contaminants from the gastrointestinal tract. Depending on the relative contamination of diet and microplastics, the latter can act either as a vector of contaminants facilitating biological uptake or as a contaminant sink whose sorptive capacity does not diminish during digestion. A comprehensive understanding of these effects ultimately requires the quantification of the effect of microplastics on the thermodynamic driving force responsible for diffusion from the gut lumen to the tissues of an organism. Using silicone-based equilibrium sampling, we quantified the effect of polyvinyl chloride (PVC) microplastics on the fugacity of polychlorinated biphenyls (PCBs) and two polymer additives in dietary and fecal samples of a zoo-housed polar bear. Although PVC microplastics at concentrations well above current observations reduced the fugacities of spiked isotopically labeled PCBs in the polar bear diet and feces slightly, but significantly, leaching from these microplastics greatly elevated fugacities of the additives UV-328 and octabenzone in these samples. The impact of microplastics in the diet on the biological uptake of environmental hydrophobic organic contaminants is likely to be negligible. Microplastics have the potential to be effective vectors for the dietary uptake of polymer additives.
Collapse
Affiliation(s)
- Desmond Ng
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
- Department of Chemistry, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Yuhao Chen
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
- Department of Chemistry, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Ying Duan Lei
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Wanzhen Chen
- Department of Chemistry, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Hui Peng
- Department of Chemistry, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| | - Sarra Gourlie
- Nutrition Science, Toronto Zoo, 361A Old Finch Avenue, Toronto, Ontario M1B 5K7 ,Canada
| | - Frank Wania
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
- Department of Chemistry, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada
| |
Collapse
|
3
|
Ghosh S, Dey S, Mandal AH, Sadhu A, Saha NC, Barceló D, Pastorino P, Saha S. Exploring the ecotoxicological impacts of microplastics on freshwater fish: A critical review. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 269:104514. [PMID: 39938417 DOI: 10.1016/j.jconhyd.2025.104514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/28/2025] [Accepted: 02/05/2025] [Indexed: 02/14/2025]
Abstract
Microplastics (MPs) have become ubiquitous in the environment, prompting significant concern among ecotoxicologists due to their potential toxic effects. These particles originate from various sources, including the fragmentation of larger plastic debris (secondary microplastics) and consumer products such as liquid soaps, exfoliants, and cleaning agents. The widespread use of plastics, coupled with inadequate waste management, poses a growing threat to ecosystem health worldwide. MPs are plastic particles composed of high-molecular-weight polymers that exhibit biochemical stability. Plastics break down into MPs and even smaller nanoplastics through various degradation mechanisms, such as exposure to UV radiation from sunlight and other environmental factors. Due to their resemblance to certain types of zooplankton and food particles, MPs are often ingested by fish, entering their digestive systems. Once inside, they do not remain solely in the gut; rather, they infiltrate the fish's circulatory and lymphatic systems, eventually distributing throughout various tissues and organs. Microplastics have been found in fish gills, muscles, liver, heart, swim bladders, ovaries, spinal cords, and even brains. The presence of MPs in these organs has been linked to significant adverse effects, including reproductive, neurological, hormonal, and immune system disruptions. This toxicity extends beyond fish, as bioaccumulation and biomagnification of MPs affect other organisms as well, marking MPs as a major anthropogenic stressor that impacts ecosystems at multiple levels. Research indicates that nearly all aquatic environments globally are at risk of MP contamination. Laboratory and field studies highlight fish as particularly susceptible to MP ingestion, though freshwater species have been less extensively studied than marine counterparts. After exposure, fish may suffer various health issues, either directly from MPs or from their interaction with other contaminants. The broader environmental implications of these laboratory findings and the specific role of MPs in increasing fish exposure to harmful chemicals remain topics of ongoing debate. This review aims to contribute to ecotoxicological insights on fish contamination by MPs and outline areas for future investigation.
Collapse
Affiliation(s)
- Surajit Ghosh
- Ecotoxicology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Sukhendu Dey
- The University of Burdwan, Burdwan 713104, West Bengal, India
| | - Ahmadul Hoque Mandal
- Ecotoxicology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | - Auroshree Sadhu
- Ecotoxicology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India
| | | | - Damià Barceló
- Chemistry and Physics Department, University of Almeria, 04120 Almería, Spain
| | - Paolo Pastorino
- Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, 10154 Torino, Italy.
| | - Shubhajit Saha
- Ecotoxicology Research Laboratory, Department of Zoology, The University of Burdwan, Burdwan, West Bengal, India.
| |
Collapse
|
4
|
Francis R, Parthasarathy S, Aly SH, Kalyanaraman R, Boominathan V, Tharumasivam SV, El-Shazly M, Murugan BM, Gnanadesigan M. Development of Novel Piperine-Loaded Mesoporous Silica Nanoparticles: Enhanced Drug Delivery and Comprehensive In Vivo Safety Analysis. Chem Biodivers 2025:e202401901. [PMID: 39889209 DOI: 10.1002/cbdv.202401901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 01/29/2025] [Accepted: 01/31/2025] [Indexed: 02/02/2025]
Abstract
Piperine-loaded mesoporous silica nanoparticles (MSNPs) were synthesized by chemical methods from tetraethylorthosilicate (TEOS) as a precursor, N-cetyl trimethyl ammonium bromide (CTAB) as a surfactant, piperine, distilled water, and sodium hydroxide (NaOH) as a catalyst at 80°C. After stirring the mixture for 20-30 min, the synthesized combined substances were washed with ethanol and the surfactant was removed using hydrochloric acid (HCl). The morphological characterization was assessed by high-resolution-transmission electron microscope (HR-TEM), scanning electron microscopy (field emission [FE]-scanning electron microscopy [SEM]), FE-SEM-energy-dispersive x-ray (EDX), infrared Fourier transform infrared spectroscopic (FTIR), x-ray diffractometer (XRD), dynamic light scattering (DLS), and ultraviolet-visible (UV-VIS). HR-TEM final report showed the amorphous nature of the prepared nanoparticles (NPs). TEM image at 100 nm showed typical ball-like geometry with an average particle size of 13.05 nm. FE-SEM analysis proved that MSNPs loaded with piperine have a spherical shape with various nm ranges starting from 232 to 552 nm. The results of the piperine release test observed 93.70% of the drug (piperine) over 24 h. The in vivo toxicity analysis of piperine-loaded MSNPs tested using adult zebrafish showed no toxic effect. Our developed piperine-loaded MSNPs are favorable for achieving sustained release, a lower dose frequency, and better therapeutic effects.
Collapse
Affiliation(s)
- Rahul Francis
- Department of Biotechnology, Srimad Andavan Arts and Science College (Autonomous), Affiliatied to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | | | - Shaza H Aly
- Department of Pharmacognosy, Faculty of Pharmacy, Badr University in Cairo (BUC), Badr City, Cairo, Egypt
| | - Ramanathan Kalyanaraman
- Department of Biotechnology, Srimad Andavan Arts and Science College (Autonomous), Affiliatied to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Vasuki Boominathan
- Department of Biotechnology, Srimad Andavan Arts and Science College (Autonomous), Affiliatied to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Siva Vijayakumar Tharumasivam
- Department of Biotechnology, Srimad Andavan Arts and Science College (Autonomous), Affiliatied to Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
- Department of Biotechnology, School of Engineering and Technology, Dhanalakshmi Srinivasan University, Samayapuram, Trichy, Tamil Nadu, India
| | - Mohamed El-Shazly
- Department of Pharmacognosy, Faculty of Pharmacy, Ain-Shams University, Abbassia, Cairo, Egypt
| | - Brindha Matharasi Murugan
- Natural Product Research Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| | - Murugesan Gnanadesigan
- Natural Product Research Laboratory, Department of Microbial Biotechnology, Bharathiar University, Coimbatore, Tamil Nadu, India
| |
Collapse
|
5
|
Hong AR, Kim JS. Biological hazards of micro- and nanoplastic with adsorbents and additives. Front Public Health 2024; 12:1458727. [PMID: 39651483 PMCID: PMC11621061 DOI: 10.3389/fpubh.2024.1458727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 10/29/2024] [Indexed: 12/11/2024] Open
Abstract
With the increased worldwide production of plastics, interest in the biological hazards of microplastics (MP) and nanoplastics (NP), which are widely distributed as environmental pollutants, has also increased. This review aims to provide a comprehensive overview of the toxicological effects of MP and NP on in vitro and in vivo systems based on studies conducted over the past decade. We summarize key findings on how the type, size, and adsorbed substances of plastics, including chemical additives, impact organisms. Also, we address various exposure routes, such as ingestion, inhalation, and skin contact, and their biological effects on both aquatic and terrestrial organisms, as well as human health. Additionally, the review highlights the increased toxicity of MP and NP due to their smaller size and higher bioavailability, as well as the interactions between these particles and chemical additives. This review emphasizes the need for further research into the complex biological interactions and risks posed by the accumulation of MP and NP in the environment, while also proposing potential directions for future studies.
Collapse
Affiliation(s)
- Ah Reum Hong
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, Republic of Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, Republic of Korea
| | - Jin Su Kim
- Division of Applied RI, Korea Institute of Radiological and Medical Sciences (KIRAMS), Seoul, Republic of Korea
- Radiological and Medico-Oncological Sciences, University of Science and Technology (UST), Seoul, Republic of Korea
| |
Collapse
|
6
|
Li Y, Liao H, Zeng M, Gao D, Kong C, Liu W, Zheng Y, Zheng Q, Wang J. Exposure to polystyrene nanoplastics causes immune damage, oxidative stress and intestinal flora disruption in salamander (Andrias davidianus) larvae. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175169. [PMID: 39094663 DOI: 10.1016/j.scitotenv.2024.175169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/26/2024] [Accepted: 07/29/2024] [Indexed: 08/04/2024]
Abstract
The toxic effects of nanoparticles have been increasingly investigated, but there has been limited research on amphibians, especially those of conservation value. This study examined the effects of different concentrations (0, 0.04, 0.2, 1, 5 mg/L) of polystyrene nanoplastics (PS-NPs, 80 nm) on the short-term exposure (7 d) of Andrias davidianus. Results demonstrated the concentration-dependent enrichment of PS-NPs in the intestine. Histological lesions displayed increased hepatic macrophages with cellular rupture, broken intestinal villi, decreased cuprocytes and crypt depression. Antioxidant- and inflammation-related enzyme activities were analysed, and it was found that hepatic and intestinal MDA content and CAT activity were highest in the N-1 group and SOD activity was highest in the N-0.2 group (p < 0.05). AKP activity continued to decline, and iNOS activity was highest in the N-0.2 group (p < 0.05). il-10, tgf-β, bcl-w and txnl1 were significantly downregulated in the N-0.2 group, while il-6 and il-8 were markedly upregulated in the N-0.2 group (p < 0.05). Exposing to PS-NPs decreased probiotic bacteria (Cetobacterium, Akkermansia) and increased pathogenic bacteria (Lachnoclostridium). Our results suggest that NPs exposure can have deleterious effects on salamanders, which predicts that NPs contamination may lead to continued amphibian declines. Therefore, we strongly recommend that attention be paid to amphibians, especially endangered species, in the field of NPs.
Collapse
Affiliation(s)
- Ye Li
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Hongping Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Min Zeng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Dandan Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Chunmiao Kong
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Wanjing Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Yufeng Zheng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Qingzhi Zheng
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China
| | - Jun Wang
- College of Marine Sciences, South China Agricultural University, Guangzhou 510642, China; Institute of Eco-Environmental Research, Guangxi Academy of Sciences, Nanning 530007, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangzhou 510006, China.
| |
Collapse
|
7
|
Hasan AKMM, Hamed M, Hasan J, Martyniuk CJ, Niyogi S, Chivers DP. A review of the neurobehavioural, physiological, and reproductive toxicity of microplastics in fishes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 282:116712. [PMID: 39002376 DOI: 10.1016/j.ecoenv.2024.116712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/25/2024] [Accepted: 07/08/2024] [Indexed: 07/15/2024]
Abstract
Microplastics (MPs) have emerged as widespread environmental pollutants, causing significant threats to aquatic ecosystems and organisms. This review examines the toxic effects of MPs on fishes, with a focus on neurobehavioural, physiological, and reproductive impacts, as well as the underlying mechanisms of toxicity. Evidence indicates that MPs induce a range of neurobehavioural abnormalities in fishes, affecting social interactions and cognitive functions. Altered neurotransmitter levels are identified as a key mechanism driving behavioural alterations following MP exposure. Physiological abnormalities in fishes exposed to MPs are also reported, including neurotoxicity, immunotoxicity, and oxidative stress. These physiological disruptions can compromise the individual health of aquatic organisms. Furthermore, reproductive abnormalities linked to MP exposure are discussed, with a particular emphasis on disruptions in endocrine signaling pathways. These disruptions can impair reproductive success in fish species, impacting population numbers. Here we explore the critical role of endocrine disruptions in mediating reproductive effects after exposure to MPs, focusing primarily on the hypothalamic-pituitary-gonadal axis. Our review highlights the urgent need for interdisciplinary research efforts aimed at elucidating the full extent of MP toxicity and its implications for aquatic ecosystems. Lastly, we identify knowledge gaps for future research, including investigations into the transgenerational impacts, if any, of MP exposure and quantifying synergetic/antagonistic effects of MPs with other environmental pollutants. This expanded knowledge regarding the potential risks of MPs to aquatic wildlife is expected to aid policymakers in developing mitigation strategies to protect aquatic species.
Collapse
Affiliation(s)
- A K M Munzurul Hasan
- Department of Biology, University of Saskatchewan, Saskatoon SK, S7N 5E2, Canada.
| | - Mohamed Hamed
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Louisiana State University, Skip Bertman Drive, Baton Rouge, LA 70803, USA
| | - Jabed Hasan
- Department of Fisheries Management, Bangladesh Agricultural University, Mymensingh 2202, Bangladesh
| | - Christopher J Martyniuk
- Center for Environmental and Human Toxicology, Department of Physiological Sciences, College of Veterinary Medicine, University of Florida, Gainesville, FL 32611, USA
| | - Som Niyogi
- Department of Biology, University of Saskatchewan, Saskatoon SK, S7N 5E2, Canada; Toxicology Centre, University of Saskatchewan, Saskatoon, SK S7N 5B3, Canada
| | - Douglas P Chivers
- Department of Biology, University of Saskatchewan, Saskatoon SK, S7N 5E2, Canada
| |
Collapse
|
8
|
Zhang W, Teng M, Yan J. Combined effect and mechanism of microplastic with different particle sizes and levofloxacin on developing Rana nigromaculata: Insights from thyroid axis regulation and immune system. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 366:121833. [PMID: 39003906 DOI: 10.1016/j.jenvman.2024.121833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/25/2024] [Accepted: 07/09/2024] [Indexed: 07/16/2024]
Abstract
Microplastics (MPs) usually appear in the aquatic environment as complex pollutants with other environmental pollutants, such as levofloxacin (LVFX). After 45-day exposure to LVFX and MPs with different particle sizes at environmental levels, we measured the weight, snout-to-vent length (SVL), and development stages of Rana nigromaculata. Furthermore, we analyzed proteins and genes related to immune system and thyroid axis regulation, intestinal histological, and bioaccumulation of LVFX and MPs in the intestine and brain to further explore the toxic mechanism of co-exposure. We found MPs exacerbated the effect of LVFX on growth and development, and the order of inhibitory effects is as follows: LVFX-MP3>LVFX-MP1>LVFX-MP2. 0.1 and 1 μm MP could penetrate the blood-brain barrier, interact with LVFX in the brain, and affect growth and development by regulating thyroid axis. Besides, LVFX with MPs caused severer interference on thyroid axis compared with LVFX alone. However, 10 μm MP was prone to accumulating in the intestine, causing severe histopathological changes, interfering with the intestinal immune system and influencing growth and development through immune enzyme activity. Thus, we concluded that MPs could regulate the thyroid axis by interfering with the intestinal immune system.
Collapse
Affiliation(s)
- Wenjun Zhang
- Key Laboratory of Integrated Regulation and Resources Development on Shallow Lakes of Ministry of Education, College of Environment, Hohai University, Nanjing, 210098, China.
| | - Miaomiao Teng
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jin Yan
- National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| |
Collapse
|
9
|
Kazemi S, Hanachi P, Zivary S, Kasmaie A, Walker TR, Goshtasbi H. Combined effects of polyethylene terephthalate and abamectin on enzymatic activity and histopathology response in juvenile zebrafish (Danio rerio). ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:43987-43995. [PMID: 38914898 DOI: 10.1007/s11356-024-33981-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 06/09/2024] [Indexed: 06/26/2024]
Abstract
One of the most pressing global environmental issues is the widespread abundance and distribution of microplastics (MPs). MPs can act as vectors for other contaminants in the environment making these small plastic particles hazardous for ecosystems. The presence of MPs in aquatic environments may pose threats to aquatic organisms that ingest them. This study examined effects of abamectin (ABM) and polyethylene terephthalate (PET) MP fragments on histopathological and enzymatic biomarkers in zebrafish (Danio rerio). Zebrafish were exposed for 96 h to pristine PET-MPs at concentrations of 5 mg/L and 10 mg/L, ABM alone at 0.006 mg/L, and the same concentration of ABM in the presence of PET-MPs in aquaria. Histopathological analysis revealed tissue content changes in liver and kidney in the presence of ABM individually and in combination with MPs. Results of enzymatic analysis showed that MPs increased the bioavailability and toxicity of pesticides due to inhibition of catalase (CAT) and acid phosphatase (ACP) enzymes. However, MPs did not affect the toxicity of ABM for glutathione s-transferase (GST) enzyme. Despite the inhibition of acetylcholinesterase (AChE) in MPs or ABM treatments, and some neurotoxicity, no change in activity of this enzyme and neurotoxicity was observed in the combined MPs and ABM treatments, although toxicity effects of MPs and ABM on zebrafish require more detailed studies.
Collapse
Affiliation(s)
- Somayeh Kazemi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Parichehr Hanachi
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran.
| | - Sara Zivary
- Department of Biotechnology, Faculty of Biological Sciences, Alzahra University, Tehran, Iran
| | - Anahita Kasmaie
- Department of Pathobiology, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Tony R Walker
- School for Resource and Environmental Studies, Dalhousie University, Halifax, NS, Canada
| | - Hamieh Goshtasbi
- Department of Plant, Cell and Molecular Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| |
Collapse
|
10
|
Rojoni SA, Ahmed MT, Rahman M, Hossain MMM, Ali MS, Haq M. Advances of microplastics ingestion on the morphological and behavioral conditions of model zebrafish: A review. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2024; 272:106977. [PMID: 38820743 DOI: 10.1016/j.aquatox.2024.106977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/20/2024] [Accepted: 05/26/2024] [Indexed: 06/02/2024]
Abstract
Concerns have been conveyed regarding the availability and hazards of microplastics (MPs) in aquatic biota due to their widespread presence in aquatic habitats. Zebrafish (Danio rerio) are widely used as a model organism to study the adverse impacts of MPs due to their several compelling advantages, such as their small size, ease of breeding, inexpensive maintenance, short life cycle, year-round spawning, high fecundity, fewer legal restrictions, and genetic resemblances to humans. Exposure of organisms to MPs produces physical and chemical toxic effects, including abnormal behavior, oxidative stress, neurotoxicity, genotoxicity, immune toxicity, reproductive imbalance, and histopathological effects. But the severity of the effects is size and concentration-dependent. It has been demonstrated that smaller particles could reach the gut and liver, while larger particles are only confined to the gill, the digestive tract of adult zebrafish. This thorough review encapsulates the current body of literature concerning research on MPs in zebrafish and demonstrates an overview of MPs size and concentration effects on the physiological, morphological, and behavioral characteristics of zebrafish. Finding gaps in the literature paves the way for further investigation.
Collapse
Affiliation(s)
- Suraiya Alam Rojoni
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Tanvir Ahmed
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Mostafizur Rahman
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Mer Mosharraf Hossain
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Md Sadek Ali
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh
| | - Monjurul Haq
- Department of Fisheries and Marine Bioscience, Jashore University of Science and Technology, Jashore 7408, Bangladesh.
| |
Collapse
|
11
|
Dania A, Lutier M, Heimböck MP, Heuschele J, Søreide JE, Jackson MC, Dinh KV. Temporal patterns in multiple stressors shape the vulnerability of overwintering Arctic zooplankton. Ecol Evol 2024; 14:e11673. [PMID: 38952656 PMCID: PMC11215157 DOI: 10.1002/ece3.11673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/03/2024] Open
Abstract
The Arctic polar nights bring extreme environmental conditions characterised by cold and darkness, which challenge the survival of organisms in the Arctic. Additionally, multiple anthropogenic stressors can amplify the pressure on the fragile Arctic ecosystems during this period. Determining how multiple anthropogenic stressors may affect the survival of Arctic life is crucial for ecological risk assessments and management, but this topic is understudied. For the first time, our study investigates the complex interactions of multiple stressors, exploring stressor temporal dynamics and exposure duration on a key Arctic copepod Calanus glacialis during the polar nights. We conducted experiments with pulse (intermittent) and press (continuous) exposure scenarios, involving microplastics, pyrene and warming in a fully factorial design. We observed significant effects on copepod survival, with pronounced impacts during later stressor phases. We also detected two-way interactions between microplastics and pyrene, as well as pyrene and warming, further intensified with the presence of a third stressor. Continuous stressor exposure for 9 days (press-temporal scenario) led to greater reductions in copepod survival compared to the pulse-temporal scenario, characterised by two 3-day stressor exposure phases. Notably, the inclusion of recovery phases, free from stressor exposure, positively influenced copepod survival, highlighting the importance of temporal exposure dynamics. We did not find behaviour to be affected by the different treatments. Our findings underscore the intricate interactions amongst multiple stressors and their temporal patterns in shaping the vulnerability of overwintering Arctic copepods with crucial implications for managing Arctic aquatic ecosystems under the fastest rate of ongoing climate change on earth.
Collapse
Affiliation(s)
- Albini Dania
- Department of BiologyUniversity of OxfordOxfordUK
- Section for Aquatic Biology and Toxicology, Department of BiosciencesUniversity of OsloOsloNorway
| | - Mathieu Lutier
- Section for Aquatic Biology and Toxicology, Department of BiosciencesUniversity of OsloOsloNorway
| | - Martin P. Heimböck
- Section for Aquatic Biology and Toxicology, Department of BiosciencesUniversity of OsloOsloNorway
- Institute of Environmental MedicineKarolinska InstitutetStockholmSweden
| | - Jan Heuschele
- Section for Aquatic Biology and Toxicology, Department of BiosciencesUniversity of OsloOsloNorway
| | | | | | - Khuong V. Dinh
- Section for Aquatic Biology and Toxicology, Department of BiosciencesUniversity of OsloOsloNorway
| |
Collapse
|
12
|
Martínez-Álvarez I, Le Menach K, Cajaraville MP, Budzinski H, Orbea A. Effects of polystyrene nano- and microplastics and of microplastics with sorbed polycyclic aromatic hydrocarbons in adult zebrafish. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172380. [PMID: 38604358 DOI: 10.1016/j.scitotenv.2024.172380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/15/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
The presence of nanoplastics (NPs) and microplastics (MPs) in the environment is recognised as a global-scale problem. Due to their hydrophobic nature and large specific surface, NPs and MPs can adsorb other contaminants, as polycyclic aromatic hydrocarbons (PAHs), and modulate their bioavailability and hazard. Adult zebrafish were exposed for 3 and 21 days to: (1) 0.07 mg/L NPs (50 nm), (2) 0.05 mg/L MPs (4.5 μm), (3) MPs with sorbed oil compounds of the water accommodated fraction (WAF) of a naphthenic crude oil (MPs-WAF), (4) MPs with sorbed benzo(a)pyrene (MPs-B(a)P), (5) 5 % WAF and (6) 21 μg/L B(a)P. Electrodense particles resembling NPs were seen in the intestine lumen close to microvilli. MPs were abundantly found in the intestine lumen, but not internalised into the tissues. After 21 days, NPs caused a significant downregulation of cat, and upregulation of gpx1a and sod1, while MPs upregulated cyp1a and increased the prevalence of liver vacuolisation. No histopathological alteration was observed in gills. In this study, contaminated MPs did not increase PAH levels in zebrafish but results highlight the potential differential impact of plastic particles depending on their size, making it necessary to urgently address the ecotoxicological impact of real environmental NPs and MPs.
Collapse
Affiliation(s)
- Ignacio Martínez-Álvarez
- CBET Research Group, Dept. of Zoology and Animal Cell Biology; Research Centre for Experimental Marine Biology and Biotechnology PiE and Science and Technology Faculty, University of the Basque Country (UPV/EHU). Sarriena z/g, E-48940 Leioa, Basque Country, Spain; University of Bordeaux, EPOC-LPTC, UMR 5805 CNRS, F-33405 Talence Cedex, France
| | - Karyn Le Menach
- University of Bordeaux, EPOC-LPTC, UMR 5805 CNRS, F-33405 Talence Cedex, France
| | - Miren P Cajaraville
- CBET Research Group, Dept. of Zoology and Animal Cell Biology; Research Centre for Experimental Marine Biology and Biotechnology PiE and Science and Technology Faculty, University of the Basque Country (UPV/EHU). Sarriena z/g, E-48940 Leioa, Basque Country, Spain
| | - Hélène Budzinski
- University of Bordeaux, EPOC-LPTC, UMR 5805 CNRS, F-33405 Talence Cedex, France
| | - Amaia Orbea
- CBET Research Group, Dept. of Zoology and Animal Cell Biology; Research Centre for Experimental Marine Biology and Biotechnology PiE and Science and Technology Faculty, University of the Basque Country (UPV/EHU). Sarriena z/g, E-48940 Leioa, Basque Country, Spain.
| |
Collapse
|
13
|
Cao X, Xie W, Feng M, Chen J, Zhang J, Luo J, Wang Y. Nanoplastic Exposure Mediates Neurodevelopmental Toxicity by Activating the Oxidative Stress Response in Zebrafish ( Danio rerio). ACS OMEGA 2024; 9:16508-16518. [PMID: 38617687 PMCID: PMC11007712 DOI: 10.1021/acsomega.4c00231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 03/18/2024] [Accepted: 03/21/2024] [Indexed: 04/16/2024]
Abstract
The global accumulation and adverse effects of nanoplastics (NPs) are a growing concern for the environment and human health. In recent years, more and more studies have begun to focus on the toxicity of plastic particles for early animal development. Different particle sizes of plastic particles have different toxicities to biological development. Nevertheless, the potential toxicological effects of 20 nm NPs, especially on neurodevelopment, have not been well investigated. In this paper, we used fluorescence microscopy to determine neurotoxicity in zebrafish at different concentrations of NPs. Moreover, the behavioral analysis demonstrated that NPs induced abnormal behavior of zebrafish. The results revealed developmental defects in zebrafish embryos after exposure to different concentrations (0, 0.3, 3, and 9 mg/L) of NPs. The morphological deformities, including abnormal body length and the rates of heart, survival, and hatching, were induced after NP exposure in zebrafish embryos. In addition, the development of primary motor neurons was observed the inhibitory effects of NPs on the length, occurrence, and development of primary motor neurons in Tg(hb9:GFP). Quantitative polymerase chain reaction analysis suggested that exposure to NPs significantly affects the expression of the genes involved in the occurrence and differentiation of primary motor neurons in zebrafish. Furthermore, the indicators associated with oxidative stress and apoptosis were found to be modified in zebrafish embryos at 24 and 48 h following exposure to NPs. Our findings demonstrated that NPs could cause toxicity in primary motor neurons by activating the oxidative stress response and inducing apoptosis, consequently impairing motor performance.
Collapse
Affiliation(s)
- Xiaoqian Cao
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Wenjie Xie
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, People’s Republic of China
- Engineering
Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou 515041, People’s Republic of China
| | - Meilan Feng
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Juntao Chen
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Jiannan Zhang
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, People’s Republic of China
| | - Juanjuan Luo
- Engineering
Research Center of Key Technique for Biotherapy of Guangdong Province, Shantou University Medical College, Shantou 515041, People’s Republic of China
| | - Yajun Wang
- Key
Laboratory of Bio-resources and Eco-environment of Ministry of Education,
College of Life Science, Sichuan University, Chengdu 610065, People’s Republic of China
| |
Collapse
|
14
|
Mahmood M, Hussain SM, Sarker PK, Ali S, Arif MS, Nazish N, Riaz D, Ahmad N, Paray BA, Naeem A. Toxicological assessment of dietary exposure of polyethylene microplastics on growth, nutrient digestibility, carcass and gut histology of Nile Tilapia (Oreochromis niloticus) fingerlings. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:296-304. [PMID: 38498245 DOI: 10.1007/s10646-024-02749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 03/20/2024]
Abstract
This study was conducted to ascertain the negative effects of dietary low-density polyethylene microplastics (LDPE-MPs) exposure on growth, nutrient digestibility, body composition and gut histology of Nile tilapia (Oreochromis niloticus). Six sunflower meal-based diets (protein 30.95%; fat 8.04%) were prepared; one was the control (0%) and five were incorporated with LDPE-MPs at levels of 2, 4, 6, 8 and 10% in sunflower meal-based diets. A total of eighteen experimental tanks, each with 15 fingerlings, were used in triplicates. Fish were fed at the rate of 5% biomass twice a day for 60 days. Results revealed that best values of growth, nutrient digestibility, body composition and gut histology were observed by control diet, while 10% exposure to LDPE-MPs significantly (P < 0.05) reduced weight gain (WG%, 85.04%), specific growth rate (SGR%, 0.68%), and increased FCR (3.92%). The findings showed that higher level of LDPE-MPs (10%) exposure in the diet of O. niloticus negatively affects nutrient digestibility. Furthermore, the results revealed that the higher concentration of LDPE-MPs (10%) had a detrimental impact on crude protein (11.92%) and crude fat (8.04%). A high number of histological lesions were seen in gut of fingerlings exposed to LDPE-MPs. Hence, LDPE-MPs potentially harm the aquatic health.
Collapse
Affiliation(s)
- Muhammad Mahmood
- Fish Nutrition Laboratory, Department of Zoology, Government College University Faisalabad, Faisalabad, Punjab, 38000, Pakistan
| | - Syed Makhdoom Hussain
- Fish Nutrition Laboratory, Department of Zoology, Government College University Faisalabad, Faisalabad, Punjab, 38000, Pakistan.
| | - Pallab K Sarker
- Environmental Studies Department, University of California Santa Cruz, Santa Cruz, CA, 95060, USA
| | - Shafaqat Ali
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Punjab, 38000, Pakistan.
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402, Taiwan.
| | - Muhammad Saleem Arif
- Department of Environmental Sciences, Government College University Faisalabad, Faisalabad, Punjab, 38000, Pakistan
| | - Nadia Nazish
- Department of Zoology, University of Sialkot, Sialkot, Punjab, 51040, Pakistan
| | - Danish Riaz
- Department of Zoology, University of Education, Lahore, Punjab, 38000, Pakistan
| | - Nisar Ahmad
- Department of Zoology, University of Jhang, Jhang, Punjab, 35200, Pakistan
| | - Bilal Ahamad Paray
- Department of Zoology, College of Science, King Saud University, Riyadh, 11451, Saudi Arabia
| | - Adan Naeem
- Fish Nutrition Laboratory, Department of Zoology, Government College University Faisalabad, Faisalabad, Punjab, 38000, Pakistan
| |
Collapse
|
15
|
Curi LM, Barrios CE, Attademo AM, Caramello C, Peltzer PM, Lajmanovich RC, Sánchez S, Hernández DR. A realistic combined exposure scenario: effect of microplastics and atrazine on Piaractus mesopotamicus. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:29794-29810. [PMID: 38592632 DOI: 10.1007/s11356-024-33177-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 03/28/2024] [Indexed: 04/10/2024]
Abstract
Microplastics, considered emerging environmental contaminants resulting from plastic degradation, are discovered in diverse aquatic ecosystems and can be unintentionally ingested by fish. Therefore, it is essential to characterize their interaction with other contaminants, such as agrochemicals, in aquatic environments. This study aimed to assess histological, enzymatic, and genotoxic biomarkers in juvenile pacú (Piaractus mesopotamicus) exposed to polyethylene (PE) microplastic particles and the herbicide atrazine, individually or combined, for 15 days. Four treatments were used: a negative control (CON), PE in the fish diet (0.1% w/w, FPE), atrazine through water (100 μg L-1, ATZ), and the mixture (ATZ+FPE). Results confirmed histological alterations in gills (edema and lamellar fusion) and liver (necrotic areas and congestion) of fish exposed to ATZ and ATZ+FPE. The number of goblet cells increased in the posterior intestine of fish under ATZ+FPE compared to CON and FPE. Enzyme activities (CAT, GST, AChE, and BChE) significantly increased in ATZ+FPE compared to CON. However, no genotoxic effect was demonstrated. These findings provide insights into the complex impacts of simultaneous exposure to atrazine and microplastics, emphasizing the need for continued research to guide effective environmental management strategies against these contaminants that represent a risk to aquatic organisms.
Collapse
Affiliation(s)
- Lucila Marilén Curi
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina.
- Instituto de Materiales de Misiones (IMAM). Facultad de Ciencias Exactas, Químicas y Naturales (FCEQyN), Universidad Nacional de Misiones (UNAM-CONICET), Félix de Azara, 1552, Posadas, Argentina.
| | - Carlos Eduardo Barrios
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Ictiología del Nordeste (INICNE). Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral, 2139, Corrientes, Argentina
| | - Andrés Maximiliano Attademo
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB -UNL-CONICET), Ciudad Universitaria, Paraje "El Pozo", RNN 168, Km, 472, Santa Fe, Argentina
| | - Cynthia Caramello
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Materiales de Misiones (IMAM). Facultad de Ciencias Exactas, Químicas y Naturales (FCEQyN), Universidad Nacional de Misiones (UNAM-CONICET), Félix de Azara, 1552, Posadas, Argentina
| | - Paola Mariela Peltzer
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB -UNL-CONICET), Ciudad Universitaria, Paraje "El Pozo", RNN 168, Km, 472, Santa Fe, Argentina
| | - Rafael Carlos Lajmanovich
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Laboratorio de Ecotoxicología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral (FBCB -UNL-CONICET), Ciudad Universitaria, Paraje "El Pozo", RNN 168, Km, 472, Santa Fe, Argentina
| | - Sebastián Sánchez
- Consejo Nacional de Investigaciones Científicas Técnicas (CONICET), Buenos Aires, Argentina
- Instituto de Ictiología del Nordeste (INICNE). Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral, 2139, Corrientes, Argentina
| | - David Roque Hernández
- Instituto de Ictiología del Nordeste (INICNE). Facultad de Ciencias Veterinarias (FCV), Universidad Nacional del Nordeste (UNNE), Sargento Cabral, 2139, Corrientes, Argentina
| |
Collapse
|
16
|
Ali N, Khan MH, Ali M, Sidra, Ahmad S, Khan A, Nabi G, Ali F, Bououdina M, Kyzas GZ. Insight into microplastics in the aquatic ecosystem: Properties, sources, threats and mitigation strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 913:169489. [PMID: 38159747 DOI: 10.1016/j.scitotenv.2023.169489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/15/2023] [Accepted: 12/17/2023] [Indexed: 01/03/2024]
Abstract
Globally recognized as emergent contaminants, microplastics (MPs) are prevalent in aquaculture habitats and subject to intense management. Aquaculture systems are at risk of microplastic contamination due to various channels, which worsens the worldwide microplastic pollution problem. Organic contaminants in the environment can be absorbed by and interact with microplastic, increasing their toxicity and making treatment more challenging. There are two primary sources of microplastics: (1) the direct release of primary microplastics and (2) the fragmentation of plastic materials resulting in secondary microplastics. Freshwater, atmospheric and marine environments are also responsible for the successful migration of microplastics. Until now, microplastic pollution and its effects on aquaculture habitats remain insufficient. This article aims to provide a comprehensive review of the impact of microplastics on aquatic ecosystems. It highlights the sources and distribution of microplastics, their physical and chemical properties, and the potential ecological consequences they pose to marine and freshwater environments. The paper also examines the current scientific knowledge on the mechanisms by which microplastics affect aquatic organisms and ecosystems. By synthesizing existing research, this review underscores the urgent need for effective mitigation strategies and further investigation to safeguard the health and sustainability of aquatic ecosystems.
Collapse
Affiliation(s)
- Nisar Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, PR China.
| | - Muhammad Hamid Khan
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, PR China
| | - Muhammad Ali
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, PR China
| | - Sidra
- Institute of Chemical Sciences, University of Peshawar, 25120, Pakistan
| | - Shakeel Ahmad
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, PR China
| | - Adnan Khan
- Key Laboratory for Palygorskite Science and Applied Technology of Jiangsu Province, National & Local Joint Engineering Research Center for Mineral Salt Deep Utilization, Faculty of Chemical Engineering, Huaiyin Institute of Technology, Huaian 223003, PR China; Institute of Chemical Sciences, University of Peshawar, 25120, Pakistan.
| | - Ghulam Nabi
- Institute of Nature Conservation Polish Academy of Sciences Krakow, Poland
| | - Farman Ali
- Department of Chemistry, Hazara University, Khyber Pakhtunkhwa, Mansehra 21300, Pakistan
| | - Mohamed Bououdina
- Department of Mathematics and Science, Faculty of Humanities and Sciences, Prince Sultan University, Riyadh, Saudi Arabia
| | - George Z Kyzas
- Hephaestus Laboratory, Department of Chemistry, School of Science, International Hellenic University, 654 04 Kavala, Greece.
| |
Collapse
|
17
|
Di Fiore C, Ishikawa Y, Wright SL. A review on methods for extracting and quantifying microplastic in biological tissues. JOURNAL OF HAZARDOUS MATERIALS 2024; 464:132991. [PMID: 37979423 DOI: 10.1016/j.jhazmat.2023.132991] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/20/2023] [Accepted: 11/09/2023] [Indexed: 11/20/2023]
Abstract
Literature about the occurrence of microplastic in biological tissues has increased over the last few years. This review aims to synthesis the evidence on the preparation of biological tissues, chemical identification of microplastic and accumulation in tissues. Several microplastic's extraction approaches from biological tissues emerged (i.e., alkaline, acids, oxidizing and enzymatic). However, criteria used for the selection of the extraction method have yet to be clarified. Similarly, analytical methodologies for chemical identification often does not align with the size of particles. Furthermore, sizes of microplastics found in biological tissues are likely to be biologically implausible, due to the size of the biological barriers. From this review, it emerged that further assessment are required to determine whether microplastic particles were truly internalized, were in the vasculature serving these organs, or were an artefact of the methodological process. The importance of a standardisation of quality control/quality assurance emerged. Findings arose from this review could have a broad implication, and could be used as a basis for further investigations, to reduce artifact results and clearly assess the fate of microplastics in biological tissues.
Collapse
Affiliation(s)
- Cristina Di Fiore
- Department of Agricultural, Environmental and Food Sciences, University of Molise, via De Sanctis, I-86100 Campobasso, Italy.
| | - Yukari Ishikawa
- Medical Research Council (MRC) Centre for Environment and Health, Environmental Research Group, Imperial College London, London, United Kingdom
| | - Stephanie L Wright
- Medical Research Council (MRC) Centre for Environment and Health, Environmental Research Group, Imperial College London, London, United Kingdom
| |
Collapse
|
18
|
Khatoon N, Mallah MA, Yu Z, Qu Z, Ali M, Liu N. Recognition and detection technology for microplastic, its source and health effects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:11428-11452. [PMID: 38183545 DOI: 10.1007/s11356-023-31655-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 12/17/2023] [Indexed: 01/08/2024]
Abstract
Microplastic (MP) is ubiquitous in the environment which appeared as an immense intimidation to human and animal health. The plastic fragments significantly polluted the ocean, fresh water, food chain, and other food items. Inadequate maintenance, less knowledge of adverse influence along with inappropriate usage in addition throwing away of plastics items revolves present planet in to plastics planet. The present study aims to focus on the recognition and advance detection technologies for MPs and the adverse effects of micro- and nanoplastics on human health. MPs have rigorous adverse effect on human health that leads to condensed growth rates, lessened reproductive capability, ulcer, scrape, and oxidative nervous anxiety, in addition, also disturb circulatory and respiratory mechanism. The detection of MP particles has also placed emphasis on identification technologies such as scanning electron microscopy, Raman spectroscopy, optical detection, Fourier transform infrared spectroscopy, thermo-analytical techniques, flow cytometry, holography, and hyperspectral imaging. It suggests that further research should be explored to understand the source, distribution, and health impacts and evaluate numerous detection methodologies for the MPs along with purification techniques.
Collapse
Affiliation(s)
- Nafeesa Khatoon
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China
| | - Manthar Ali Mallah
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China.
| | - Zengli Yu
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China
| | - Zhi Qu
- Institute of Chronic Disease Risk Assessment, School of Nursing, Henan University, Kaifeng, 475004, People's Republic of China
| | - Mukhtiar Ali
- Department of Chemical Engineering, Quaid-E-Awam University of Engineering, Science and Technology (QUEST), Nawabshah, 67480, Sindh, Pakistan
| | - Nan Liu
- College of Public Health, Zhengzhou University, Zhengzhou, 540001, People's Republic of China
- Institute of Chronic Disease Risk Assessment, School of Nursing, Henan University, Kaifeng, 475004, People's Republic of China
- Health Science Center, South China Hospital, Shenzhen University, Shenzhen, 518116, People's Republic of China
| |
Collapse
|
19
|
Zhu W, Zhao N, Liu W, Guo R, Jin H. Occurrence of microplastics in Antarctic fishes: Abundance, size, shape, and polymer composition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166186. [PMID: 37582441 DOI: 10.1016/j.scitotenv.2023.166186] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023]
Abstract
Presence of microplastics (MPs) in Antarctic ecosystems has attracted global attention, due to the potential threat to the Antarctic marine organisms. However, data on the occurrence of MPs in Antarctic fishes remains very limited. This study investigated the abundance and characteristics of MPs in four species of Antarctic fish (n = 114). The highest mean abundance of MPs was detected in Trematomus eulepidotus (1.7 ± 0.61 items/individual), followed by that in Chionodraco rastrospinosus (1.4 ± 0.26 items/individual), Notolepis coatsi (1.1 ± 0.57 items/individual), and Electrona carlsbergi (0.72 ± 0.19 items/individual). MPs in Notolepis coatsi (mean 747 μm) had the highest mean size, followed by that in Trematomus eulepidotus (653 μm), Chionodraco rastrospinosus (629 μm), and Electrona carlsbergi (473 μm). This is possibly attributed to the feeding habits and egestion behaviors of different Antarctic fishes. Fiber was consistently the predominant shape of MPs in Trematomus eulepidotus, Chionodraco rastrospinosus, and Electrona carlsbergi, accounting for 82 %, 76 %, and 60 % of total items of MPs, respectively. Polypropylene, polyamide, and polyethylene were the predominant polymer composition of MPs in Antarctic fishes, collectively contributed 63-86 % of total items of MPs. This may be because these types of MPs have been widely used in global household materials. To our knowledge, this is the most comprehensive study examining the occurrence of MPs in Antarctic fishes. This study provides fundamental data for evaluating the risks of MP exposure for Antarctic fishes.
Collapse
Affiliation(s)
- Wenbin Zhu
- Zhejiang Marine Fisheries Research Institute, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resources of Zhejiang Province, Zhoushan, Zhejiang 316021, PR China
| | - Nan Zhao
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Wenbo Liu
- Zhejiang Marine Fisheries Research Institute, Scientific Observing and Experimental Station of Fishery Resources for Key Fishing Grounds, Ministry of Agriculture and Rural Affairs of the People's Republic of China, Key Laboratory of Sustainable Utilization of Technology Research for Fishery Resources of Zhejiang Province, Zhoushan, Zhejiang 316021, PR China
| | - Ruyue Guo
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China
| | - Hangbiao Jin
- Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310032, PR China.
| |
Collapse
|
20
|
Scaria SS, Balasubramanian B, Dandin VS, Meyyazhagan A, Pappuswamy M, Sattanathan G, Liu WC, Kadanthottu Sebastian J, Park S. Review on impacts of micro- and nano-plastic on aquatic ecosystems and mitigation strategies. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 265:106759. [PMID: 37977011 DOI: 10.1016/j.aquatox.2023.106759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/19/2023]
Abstract
The rapid proliferation of microplastics (MPs) and nanoplastics (NPs) in our environment presents a formidable hazard to both biotic and abiotic components. These pollutants originate from various sources, including commercial production and the breakdown of larger plastic particles. Widespread contamination of the human body, agroecosystems, and animals occurs through ingestion, entry into the food chain, and inhalation. Consequently, the imperative to devise innovative methods for MPs and NPs remediation has become increasingly apparent. This review explores the current landscape of strategies proposed to mitigate the escalating threats associated with plastic waste. Among the array of methods in use, microbial remediation emerges as a promising avenue for the decomposition and reclamation of MPs and NPs. In response to the growing concern, numerous nations have already implemented or are in the process of adopting regulations to curtail MPs and NPs in aquatic habitats. This paper aims to address this gap by delving into the environmental fate, behaviour, transport, ecotoxicity, and management of MPs and NPs particles within the context of nanoscience, microbial ecology, and remediation technologies. Key findings of this review encompass the intricate interdependencies between MPs and NPs and their ecosystems. The ecological impact, from fate to ecotoxicity, is scrutinized in light of the burgeoning environmental imperative. As a result, this review not only provides an encompassing understanding of the ecological ramifications of MPs and NPs but also highlights the pressing need for further research, innovation, and informed interventions.
Collapse
Affiliation(s)
- Shilpa Susan Scaria
- Department of Life Sciences, Christ University, Bangalore, Karnataka 560029, India
| | | | | | - Arun Meyyazhagan
- Department of Life Sciences, Christ University, Bangalore, Karnataka 560029, India
| | | | | | - Wen-Chao Liu
- Department of Animal Science, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang 524088, PR China
| | | | - Sungkwon Park
- Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul 05006, South Korea.
| |
Collapse
|
21
|
Saemi-Komsari M, Pashaei R, Abbasi S, Esmaeili HR, Dzingelevičienė R, Shirkavand Hadavand B, Pasalari Kalako M, Szultka-Mlynska M, Gadzała-Kopciuch R, Buszewski B, Turner A. Accumulation of polystyrene nanoplastics and triclosan by a model tooth-carp fish, Aphaniops hormuzensis (Teleostei: Aphaniidae). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 333:121997. [PMID: 37336349 DOI: 10.1016/j.envpol.2023.121997] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 05/31/2023] [Accepted: 06/08/2023] [Indexed: 06/21/2023]
Abstract
The presence and effects of nanoplastics (NPs; <1 μm) in the aquatic environment are a growing concern. In this study, a model tooth-carp fish, Aphaniops hormuzensis, has been exposed to different concentrations of fluorescent polystyrene nanoplastics (PS-NP) in its diet (up to 5 mg kg-1) over periods of 28 d and the particle accumulation in different tissues determined. Accumulation was observed in both digestive and non-digestive organs, with concentrations greater in the gut, liver and gill (up to 400 μg kg-1 dw) than in the skin and muscle (<180 μg kg-1 dw), but no dependency on exposure time or dose was evident. The presence of the organic contaminant, triclosan (TCS), in the diet and at concentrations up to 0.5 μg kg-1 did not affect PS-NP uptake by A. hormuzensis, while TCS accumulation in the whole body increased with time (up to 10 μg kg-1) and, likewise, appeared to be unaffected by the presence of PS-NPs. These observations suggest that the two contaminants do not interact with each other or that any interactions have no impact on accumulation. The results of this study add to the growing body of evidence that NPs can be translocated by aquatic organisms after ingestion, and reveal that, for the species and conditions employed, nanoplastics are accumulated more readily than a widely used organic chemical.
Collapse
Affiliation(s)
- Maryam Saemi-Komsari
- Ichthyology and Molecular Systematics Laboratory, Zoology Section, Biology Department, School of Science, Shiraz University, Shiraz, Iran
| | - Reza Pashaei
- Marine Research Institute of Klaipeda University, Klaipeda, Lithuania
| | - Sajjad Abbasi
- Department of Earth Sciences, School of Science, Shiraz University, Shiraz, 71454, Iran; Centre for Environmental Studies and Emerging Pollutants (ZISTANO), Shiraz University, Shiraz, Iran.
| | - Hamid Reza Esmaeili
- Ichthyology and Molecular Systematics Laboratory, Zoology Section, Biology Department, School of Science, Shiraz University, Shiraz, Iran
| | - Reda Dzingelevičienė
- Marine Research Institute of Klaipeda University, Klaipeda, Lithuania; Faculty of Health Sciences, Klaipeda University, H. Manto Street 84, 92294, Klaipeda, Lithuania
| | - Behzad Shirkavand Hadavand
- Department of Resin and Additives, Institute for Color Science and Technology, P.O.Box: 16765-654, Tehran, Iran
| | - Marzieh Pasalari Kalako
- Ichthyology and Molecular Systematics Laboratory, Zoology Section, Biology Department, School of Science, Shiraz University, Shiraz, Iran
| | - Malgorzata Szultka-Mlynska
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Torun, Poland
| | - Renata Gadzała-Kopciuch
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Torun, Poland
| | - Boguslaw Buszewski
- Department of Environmental Chemistry and Bioanalytics, Faculty of Chemistry, Nicolaus Copernicus University, Torun, Poland
| | - Andrew Turner
- School of Geography, Earth and Environmental Sciences, University of Plymouth, PL4 8AA, UK
| |
Collapse
|
22
|
de Mello Souza T, Choueri RB, Nobre CR, de Souza Abessa DM, Moreno BB, Carnaúba JH, Mendes GI, de Albergaria-Barbosa ACR, Simões FR, Gusso-Choueri PK. Interactive effects of microplastics and benzo[a]pyrene on two species of marine invertebrates. MARINE POLLUTION BULLETIN 2023; 193:115170. [PMID: 37329735 DOI: 10.1016/j.marpolbul.2023.115170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/19/2023]
Abstract
This study aimed to evaluate B[a]P and low-density polyethylene microplastics (MPs) toxicty, alone and in mixture (0.03 to 30 μg L-1 of B[a]P; and 5, 50 and 500 mg L-1 for MPs). Five mg L-1 of MPs is considerably higher than commonly reported environmental concentrations, although it has been reported for marine environments. Individual (sea urchin embryo-larval development and mortality of mysids) and sub-individual responses (LPO and DNA damage in mysids) were assessed. The toxicity increased as the B[a]P concentration increased, and microplastics alone did not cause toxicity. B[a]P toxicity was not modified by the lowest concentration of MPs (5 mg L-1), but at higher MPs concentrations (50 and 500 mg L-1), the effects of B[a]P on sea urchin development and in biomarkers in mysids were diminished. Microplastics interacted with B[a]P in seawater, reducing its toxicity, probably due to adsorption of B[a]P to the surface of microplastics.
Collapse
Affiliation(s)
- Tawany de Mello Souza
- Universidade Santa Cecília (Unisanta), R. Oswaldo Cruz, 277, Boqueirão, 11045-907 Santos, São Paulo, Brazil; Laboratório de Ecotoxicologia - ALS Life Sciences Brasil - Food & Agro, R. Fábia, 59, Vila Romana, 05051-030 São Paulo, SP, Brazil
| | - Rodrigo Brasil Choueri
- Departamento de Ciências do Mar, Instituto do Mar, Universidade Federal de São Paulo (Unifesp), Campus Baixada Santista. Rua Maria Máximo, 168, Ponta da Praia, 11030-100 Santos, São Paulo, Brazil.
| | - Caio Rodrigues Nobre
- Laboratório de Ecotoxicologia - ALS Life Sciences Brasil - Food & Agro, R. Fábia, 59, Vila Romana, 05051-030 São Paulo, SP, Brazil
| | - Denis Moledo de Souza Abessa
- NEPEA, Campus do Litoral Paulista, Universidade Estadual Paulista Júlio de Mesquita Filho (Unesp), Praça Infante Dom Henrique, s/n, 11330-900 São Vicente, São Paulo, Brazil
| | - Beatriz Barbosa Moreno
- Departamento de Ciências do Mar, Instituto do Mar, Universidade Federal de São Paulo (Unifesp), Campus Baixada Santista. Rua Maria Máximo, 168, Ponta da Praia, 11030-100 Santos, São Paulo, Brazil
| | - José Hérelis Carnaúba
- Programa de Pós-Graduação em Química: Ciência e Tecnologia da Sustentabilidade, Universidade Federal de São Paulo (Unifesp), Diadema, São Paulo, Brazil
| | - Gabriel Izar Mendes
- Laboratório de Geoquímica Marinha, Instituto de Geociências, Universidade Federal da Bahia (UFBA), Rua Barão de Jeremoabo, s/n, Campus Ondina, 40170-115 Salvador, Bahia, Brazil; Laboratório de Estudos do Petróleo, Instituto de Geociências, Universidade Federal da Bahia (UFBA), Rua Barão de Jeremoabo, s/n, Campus Ondina, 40170-115 Salvador, Bahia, Brazil
| | - Ana Cecilia Rizzatti de Albergaria-Barbosa
- Laboratório de Geoquímica Marinha, Instituto de Geociências, Universidade Federal da Bahia (UFBA), Rua Barão de Jeremoabo, s/n, Campus Ondina, 40170-115 Salvador, Bahia, Brazil; Laboratório de Estudos do Petróleo, Instituto de Geociências, Universidade Federal da Bahia (UFBA), Rua Barão de Jeremoabo, s/n, Campus Ondina, 40170-115 Salvador, Bahia, Brazil
| | - Fábio Ruiz Simões
- Departamento de Ciências do Mar, Instituto do Mar, Universidade Federal de São Paulo (Unifesp), Campus Baixada Santista. Rua Maria Máximo, 168, Ponta da Praia, 11030-100 Santos, São Paulo, Brazil
| | | |
Collapse
|
23
|
Kniese J, Ritschar S, Bünger L, Feldhaar H, Laforsch C, Römpp A, Schmidt H. Localisation and identification of polystyrene particles in tissue sections using Raman spectroscopic imaging. NANOIMPACT 2023; 30:100465. [PMID: 37119946 DOI: 10.1016/j.impact.2023.100465] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/24/2023] [Accepted: 04/24/2023] [Indexed: 05/08/2023]
Abstract
The uptake of microplastic particles (MPP) by organisms is frequently described and poses a potential risk for these organisms and ultimately for humans either through direct uptake or trophic transfer. Currently, the in-situ detection of MPP in organisms is typically based on histological examination of tissue sections after uptake of fluorescently-labelled MPP and is thus not feasible for environmental samples. The alternative approach is purification of MPP from whole organisms or organs by chemical digestion and subsequent spectroscopic detection (FT-IR or Raman). While this approach is feasible for un-labelled particles it goes along with loss of any spatial information related to the location in the tissue. In our study we aimed at providing a workflow for the localisation and identification of non-fluorescent and fluorescent polystyrene (PS) particles (fragments, size range 2-130 μm) in tissue sections of the model organism Eisenia fetida with Raman spectroscopic imaging (RSI). We provide methodological approaches for the preparation of the samples, technical parameters for the RSI measurements and data analysis for PS differentiation in tissue sections. The developed approaches were combined in a workflow for the in-situ analysis of MPP in tissue sections. The spectroscopic analysis requires differentiation of spectra of MPP and interfering compounds, which is challenging given the complexity of tissue. Therefore, a classification algorithm was developed to differentiate PS particles from haem, intestinal contents and surrounding tissue. It allows the differentiation of PS particles from protein in the tissue of E. fetida with an accuracy of 95%. The smallest PS particle detected in the tissue was 2 μm in diameter. We show that it is possible to localise and identify non-fluorescent and fluorescent ingested PS particles directly in tissue sections of E. fetida in the gut lumen and the adjacent tissue.
Collapse
Affiliation(s)
- Jasmin Kniese
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Sven Ritschar
- Animal Ecology I, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Lina Bünger
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany
| | - Heike Feldhaar
- Animal Ecology I, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany; Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Christian Laforsch
- Animal Ecology I, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany; Bayreuth Center for Ecology and Environmental Research (BayCEER), University of Bayreuth, Bayreuth, Germany
| | - Andreas Römpp
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany.
| | - Heinar Schmidt
- Bioanalytical Sciences and Food Analysis, University of Bayreuth, Universitätsstraße 30, 95447 Bayreuth, Germany.
| |
Collapse
|
24
|
Yang J, Monnot M, Sun Y, Asia L, Wong-Wah-Chung P, Doumenq P, Moulin P. Microplastics in different water samples (seawater, freshwater, and wastewater): Removal efficiency of membrane treatment processes. WATER RESEARCH 2023; 232:119673. [PMID: 36764106 DOI: 10.1016/j.watres.2023.119673] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
The distribution and fate of microplastics in different water sources and their treatment plants (seawater, three municipal wastewaters, a pharmaceutical factory wastewater, and three drinking waters) in France were studied. Currently, research in this field is still under exploration since almost no relevant standards or policies have been introduced for the detection, the removal, or the discharge of microplastics. This study used an improved quantitative and qualitative analytical methodology for microplastic detection by μ-FTIR carried out with siMPle analytical software. By investigation, wastewater was determined to contain the most abundant microplastics in quantity (4,203-42,000 MP·L-1), then followed by surface water/groundwater (153-19,836 MP·L-1) and seawater (around 420 MP·L-1). Polyethylene was the dominant material in almost all water types followed by polypropylene, polystyrene, and polyethylene terephthalate. Almost all treatment technologies could remove microplastics whatever the feed water types and concentration of microplastics, though some treatment processes or transport pipes could cause additional contamination from microplastics. The four WWTPs, three DWTPs, and SWTP in France provided, respectively, 87.8-99.8%, 82.3-99.9%, 69.0-96.0% removal/retention of MPs in quantity, and provided 97.3-100%, 91.9-99.9%, 92.2-98.1% removal/retention of MPs in surface area. Moreover, ultrafiltration was confirmed to be an effective technology for microplastic retention and control of dimensions of microplastics in smaller ranges both in field-scale and lab-scale experiments. The 200 kDa ultrafiltration membrane could retain 70-100% and 80-100% of microplastics in quantity and in surface area, respectively.
Collapse
Affiliation(s)
- J Yang
- Aix Marseille Univ, CNRS, Centrale Marseille, M2P2, Equipe Procédés Membranaires (EPM), Marseille, France; Present affiliation: State Key Laboratory of Urban Water Resources and Environment, School of Civil & Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - M Monnot
- Aix Marseille Univ, CNRS, Centrale Marseille, M2P2, Equipe Procédés Membranaires (EPM), Marseille, France
| | - Y Sun
- Aix Marseille Univ, CNRS, Centrale Marseille, M2P2, Equipe Procédés Membranaires (EPM), Marseille, France
| | - L Asia
- Aix Marseille Univ, CNRS, LCE, Marseille, France
| | | | - P Doumenq
- Aix Marseille Univ, CNRS, LCE, Marseille, France
| | - P Moulin
- Aix Marseille Univ, CNRS, Centrale Marseille, M2P2, Equipe Procédés Membranaires (EPM), Marseille, France.
| |
Collapse
|
25
|
Muns-Pujadas L, Dallarés S, Constenla M, Padrós F, Carreras-Colom E, Grelaud M, Carrassón M, Soler-Membrives A. Revealing the capability of the European hake to cope with micro-litter environmental exposure and its inferred potential health impact in the NW Mediterranean Sea. MARINE ENVIRONMENTAL RESEARCH 2023; 186:105921. [PMID: 36827887 DOI: 10.1016/j.marenvres.2023.105921] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 01/10/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Prevalence, abundance, concentration, size and composition of anthropogenic items (AIs) (synthetic and non-synthetic) ingested by Merluccius merluccius juvenile specimens and from near-bottom water samples from different localities off the Catalan coast (NW Mediterranean), were characterized. The potential effect of AIs on fish condition was assessed through different health indicators. Virtually all AIs found in fish and near-bottom water samples were fibres. A mean of 0.85 fibres/m3 from the surrounding water was observed. Fish ingested a mean of 1.39 (SD = 1.39) items/individual. Cellulosic fibres were predominant (77.8% of samples), except for Barcelona. No differences in ingested AIs abundance and composition off Barcelona between 2007 and 2019 were found. Small AIs from the environment matched ingested AIs composition. Hakes did not ingest large fibres despite being present in the environment, probably due to their feeding behaviour. No adverse health effects or parasites aggregations were detected to be potentially related to AIs ingestion.
Collapse
Affiliation(s)
- Laura Muns-Pujadas
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Sara Dallarés
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain.
| | - Maria Constenla
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Francesc Padrós
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Ester Carreras-Colom
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Michaël Grelaud
- Institut de Ciència i Tecnologia Ambientals (ICTA-UAB), Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Maite Carrassón
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| | - Anna Soler-Membrives
- Departament de Biologia Animal, Biologia Vegetal i Ecologia, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, 08193, Barcelona, Spain
| |
Collapse
|
26
|
Schmieg H, Krais S, Kübler K, Ruhl AS, Schmidgall IM, Zwiener C, Köhler HR, Triebskorn R. Effects of the Antidepressant Amitriptyline on Juvenile Brown Trout and Their Modulation by Microplastics. TOXICS 2022; 10:763. [PMID: 36548596 PMCID: PMC9787892 DOI: 10.3390/toxics10120763] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Revised: 11/28/2022] [Accepted: 12/04/2022] [Indexed: 06/17/2023]
Abstract
Pharmaceuticals such as antidepressants are designed to be bioactive at low concentrations. According to their mode of action, they can also influence non-target organisms due to the phylogenetic conservation of molecular targets. In addition to the pollution by environmental chemicals, the topic of microplastics (MP) in the aquatic environment came into the focus of scientific and public interest. The aim of the present study was to investigate the influence of the antidepressant amitriptyline in the presence and absence of irregularly shaped polystyrene MP as well as the effects of MP alone on juvenile brown trout (Salmo trutta f. fario). Fish were exposed to different concentrations of amitriptyline (nominal concentrations between 1 and 1000 µg/L) and two concentrations of MP (104 and 105 particles/L; <50 µm) for three weeks. Tissue cortisol concentration, oxidative stress, and the activity of two carboxylesterases and of acetylcholinesterase were assessed. Furthermore, the swimming behavior was analyzed in situations with different stress levels. Exposure to amitriptyline altered the behavior and increased the activity of acetylcholinesterase. Moreover, nominal amitriptyline concentrations above 300 µg/L caused severe acute adverse effects in fish. MP alone did not affect any of the investigated endpoints. Co-exposure caused largely similar effects such as the exposure to solely amitriptyline. However, the effect of amitriptyline on the swimming behavior during the experiment was alleviated by the higher MP concentration.
Collapse
Affiliation(s)
- Hannah Schmieg
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - Stefanie Krais
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - Kathrin Kübler
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - Aki S. Ruhl
- Water Treatment, Technische Universität Berlin, KF 4, Str. des 17. Juni 135, 10623 Berlin, Germany
- German Environment Agency (UBA), Section II 3.3 (Water Treatment), Schichauweg 58, 12307 Berlin, Germany
| | - Isabelle M. Schmidgall
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - Christian Zwiener
- Environmental Analytical Chemistry, University of Tübingen, Schnarrenbergstr. 94–96, 72076 Tübingen, Germany
| | - Heinz-R. Köhler
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
| | - Rita Triebskorn
- Animal Physiological Ecology, University of Tübingen, Auf der Morgenstelle 5, 72076 Tübingen, Germany
- Steinbeis Transfer Center for Ecotoxicology and Ecophysiology, Blumenstr. 13, 72108 Rottenburg, Germany
| |
Collapse
|
27
|
Xiang K, He Z, Fu J, Wang G, Li H, Zhang Y, Zhang S, Chen L. Microplastics exposure as an emerging threat to ancient lineage: A contaminant of concern for abnormal bending of amphioxus via neurotoxicity. JOURNAL OF HAZARDOUS MATERIALS 2022; 438:129454. [PMID: 35803186 DOI: 10.1016/j.jhazmat.2022.129454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 06/15/2023]
Abstract
Growing inputs of microplastics into marine sediment have increased significantly the needs for assessment of their potential risks to the marine benthos. A knowledge gap remains with regard to the effect of microplastics on benthos, such as cephalochordates. By employing amphioxus as a model benthic chordate, here we show that exposure to microplastics for 96 h at doses of 1 mg/L and 100 mg/L results in evident accumulation of the polyethylene microplastics. The accumulated microplastics are as much as 0.027% of body weight upon high-dose exposure, causing an abnormal body-bending phenotype that limits the locomotion capability of amphioxus. Mechanistic insight reveals that microplastics can bring about histological damages in gill, intestine and hepatic cecum; In-depth assay of relevant biomarkers including superoxide dismutase, catalase, glutathione, pyruvic acid and total cholesterol indicates the occurrence of oxidative damage and metabolic disorder; Further, microplastics exposure depresses the activity of acetylcholinesterase while allowing the level of acetylcholine to rise in muscle, suggesting the emergence of neurotoxicity. These consequences eventually contribute to the muscle dysfunction of amphioxus. This study rationalizes the abnormal response of the vulnerable notochord to microplastics, signifying the dilemma suffered by the ancient lineage under the emerging threat. Given the enrichment of microplastics through marine food chains, this study also raises significant concerns on the impact of microplastics to other marine organisms, and eventually human beings.
Collapse
Affiliation(s)
- Keyu Xiang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Zhiyu He
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Jianxin Fu
- College of Food Science and Engineering, Ocean University of China, 5 Yushan Road, Qingdao 266003, China
| | - Guoqing Wang
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China.
| | - Hongyan Li
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Yu Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China.
| | - Shicui Zhang
- Institute of Evolution & Marine Biodiversity and Department of Marine Biology, Ocean University of China, Qingdao 266003, China
| | - Lingxin Chen
- CAS Key Laboratory of Coastal Environmental Process and Ecological Remediation, Research Center for Coastal Environmental Engineering and Technology, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China
| |
Collapse
|
28
|
Tarasco M, Gavaia PJ, Bensimon-Brito A, Cordelières FP, Santos T, Martins G, de Castro DT, Silva N, Cabrita E, Bebianno MJ, Stainier DYR, Cancela ML, Laizé V. Effects of pristine or contaminated polyethylene microplastics on zebrafish development. CHEMOSPHERE 2022; 303:135198. [PMID: 35660050 DOI: 10.1016/j.chemosphere.2022.135198] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/27/2022] [Accepted: 05/31/2022] [Indexed: 06/15/2023]
Abstract
The presence of microplastics in the aquatic ecosystem represents a major issue for the environment and human health. The capacity of organic pollutants to adsorb onto microplastic particles raises additional concerns, as it creates a new route for toxic compounds to enter the food web. Current knowledge on the impact of pristine and/or contaminated microplastics on aquatic organisms remains insufficient, and we provide here new insights by evaluating their biological effects in zebrafish (Danio rerio). Zebrafish larvae were raised in ZEB316 stand-alone housing systems and chronically exposed throughout their development to polyethylene particles of 20-27 μm, pristine (MP) or spiked with benzo[α]pyrene (MP-BaP), supplemented at 1% w/w in the fish diet. While they had no effect at 30 days post-fertilization (dpf), MP and MP-BaP affected growth parameters at 90 and 360 dpf. Relative fecundity, egg morphology, and yolk area were also impaired in zebrafish fed MP-BaP. Zebrafish exposed to experimental diets exhibited an increased incidence of skeletal deformities at 30 dpf as well as an impaired development of caudal fin/scales, and a decreased bone quality at 90 dpf. An intergenerational bone formation impairment was also observed in the offspring of parents exposed to MP or MP-BaP through a reduction of the opercular bone in 6 dpf larvae. Beside a clear effect on bone development, histological analysis of the gut revealed a reduced number of goblet cells in zebrafish fed MP-BaP diet, a sign of intestinal inflammation. Finally, exposure of larvae to MP-BaP up-regulated the expression of genes associated with the BaP response pathway, while negatively impacting the expression of genes involved in oxidative stress. Altogether, these data suggest that long-term exposure to pristine/contaminated microplastics not only jeopardizes fish growth, reproduction performance, and skeletal health, but also causes intergenerational effects.
Collapse
Affiliation(s)
- Marco Tarasco
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Paulo J Gavaia
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB) and Algarve Biomedical Center (ABC), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Anabela Bensimon-Brito
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany; INSERM, ATIP-Avenir, Aix Marseille University, Marseille Medical Genetics, Marseille, France
| | - Fabrice P Cordelières
- Bordeaux Imaging Center (BIC), UMS 3420 CNRS - Université de Bordeaux - US4 INSERM, Pôle d'imagerie Photonique, Centre Broca Nouvelle-Aquitaine, Bordeaux, France
| | - Tamára Santos
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Gil Martins
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Daniela T de Castro
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Nádia Silva
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Elsa Cabrita
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Maria J Bebianno
- Centre for Marine and Environmental Research (CIMA), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Didier Y R Stainier
- Max Planck Institute for Heart and Lung Research, Department of Developmental Genetics, Bad Nauheim, Germany
| | - M Leonor Cancela
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal; Faculty of Medicine and Biomedical Sciences (FMCB) and Algarve Biomedical Center (ABC), University of Algarve, Campus de Gambelas, Faro, Portugal
| | - Vincent Laizé
- Centre of Marine Sciences (CCMAR), University of Algarve, Campus de Gambelas, Faro, Portugal; S2AQUA, Sustainable and Smart Aquaculture Collaborative Laboratory, Olhão, Portugal.
| |
Collapse
|
29
|
Cormier B, Cachot J, Blanc M, Cabar M, Clérandeau C, Dubocq F, Le Bihanic F, Morin B, Zapata S, Bégout ML, Cousin X. Environmental microplastics disrupt swimming activity in acute exposure in Danio rerio larvae and reduce growth and reproduction success in chronic exposure in D. rerio and Oryzias melastigma. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 308:119721. [PMID: 35809711 DOI: 10.1016/j.envpol.2022.119721] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 06/28/2022] [Accepted: 07/03/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs), widely present in aquatic ecosystems, can be ingested by numerous organisms, but their toxicity remains poorly understood. Toxicity of environmental MPs from 2 beaches located on the Guadeloupe archipelago, Marie Galante (MG) and Petit-Bourg (PB) located near the North Atlantic gyre, was evaluated. A first experiment consisted in exposing early life stages of zebrafish (Danio rerio) to MPs at 1 or 10 mg/L. The exposure of early life stages to particles in water induced no toxic effects except a decrease in larval swimming activity for both MPs exposures (MG or PB). Then, a second experiment was performed as a chronic feeding exposure over 4 months, using a freshwater fish species, zebrafish, and a marine fish species, marine medaka (Oryzias melastigma). Fish were fed with food supplemented with environmentally relevant concentrations (1% wet weight of MPs in food) of environmental MPs from both sites. Chronic feeding exposure led to growth alterations in both species exposed to either MG or PB MPs but were more pronounced in marine medaka. Ethoxyresorufin-O-deethylase (EROD) and acetylcholinesterase (AChE) activities were only altered for marine medaka. Reproductive outputs were modified following PB exposure with a 70 and 42% decrease for zebrafish and marine medaka, respectively. Offspring of both species (F1 generation) were reared to evaluate toxicity following parental exposure on unexposed larvae. For zebrafish offspring, it revealed premature mortality after parental MG exposure and parental PB exposure produced behavioural disruptions with hyperactivity of F1 unexposed larvae. This was not observed in marine medaka offspring. This study highlights the ecotoxicological consequences of short and long-term exposures to environmental microplastics relevant to coastal marine areas, which represent essential habitats for a wide range of aquatic organisms.
Collapse
Affiliation(s)
- Bettie Cormier
- Bordeaux University, EPOC, UMR CNRS 5805, Avenue des Facultés, 33400, Talence, France; Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82, Örebro, Sweden.
| | - Jérôme Cachot
- Bordeaux University, EPOC, UMR CNRS 5805, Avenue des Facultés, 33400, Talence, France
| | - Mélanie Blanc
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82, Örebro, Sweden; MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, INRAE, 34250, Palavas-les-flots, France
| | - Mathieu Cabar
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, INRAE, 34250, Palavas-les-flots, France
| | - Christelle Clérandeau
- Bordeaux University, EPOC, UMR CNRS 5805, Avenue des Facultés, 33400, Talence, France
| | - Florian Dubocq
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, 701 82, Örebro, Sweden
| | - Florane Le Bihanic
- Bordeaux University, EPOC, UMR CNRS 5805, Avenue des Facultés, 33400, Talence, France
| | - Bénédicte Morin
- Bordeaux University, EPOC, UMR CNRS 5805, Avenue des Facultés, 33400, Talence, France
| | - Sarah Zapata
- Bordeaux University, EPOC, UMR CNRS 5805, Avenue des Facultés, 33400, Talence, France
| | - Marie-Laure Bégout
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, INRAE, 34250, Palavas-les-flots, France
| | - Xavier Cousin
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, INRAE, 34250, Palavas-les-flots, France
| |
Collapse
|
30
|
Bhagat J, Zang L, Kaneco S, Nishimura N, Shimada Y. Combined exposure to nanoplastics and metal oxide nanoparticles inhibits efflux pumps and causes oxidative stress in zebrafish embryos. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155436. [PMID: 35461948 DOI: 10.1016/j.scitotenv.2022.155436] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/09/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
The ubiquity of microplastic/nanoplastics (MP/NPs) provides an opportunity for their interaction with other widely spread environmental contaminants. MP/NP and nanoparticles share a similar transport route from sources, production, and disposal. Metal oxide nanoparticles (nMOx) have varied industrial applications, and limited knowledge is available on their interaction with MP/NPs. The present study investigated the effect of NPs (1 mg/L) on the efflux of two nMOx, aluminium oxide nanoparticles (nAl2O3, 1 mg/L) and cerium oxide nanoparticles (nCeO2, 1 mg/L), and their combined toxicity to zebrafish embryos. The results illustrated increased accumulation of aluminium and cerium in the combined exposure group compared to the nMOx alone treatment. The presence of NPs exacerbated the oxidative stress caused by nAl2O3 and nCeO2, as evidenced by an increase in the concentration of reactive oxygen species (ROS), alteration of antioxidants, and lipid peroxidation. The integrated biomarker response (IBRv2) values showed the induction of an antioxidative response in NP + nAl2O3, whereas a decline in IBRv2 values was observed in NP + nCeO2. Our results indicate that NPs aggravated the accumulation of nMOx and their toxicity. The present work highlights that more attention should be paid to the discharge of these contaminants into the natural environment.
Collapse
Affiliation(s)
- Jacky Bhagat
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie 514-8507, Japan; Mie University Zebrafish Drug Screening Center, Tsu, Mie 514-8507, Japan
| | - Liqing Zang
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie 514-8507, Japan; Mie University Zebrafish Drug Screening Center, Tsu, Mie 514-8507, Japan
| | - Satoshi Kaneco
- Department of Chemistry for Materials, Graduate School of Engineering, Mie University, Tsu, Mie 514-8507, Japan
| | - Norihiro Nishimura
- Graduate School of Regional Innovation Studies, Mie University, Tsu, Mie 514-8507, Japan; Mie University Zebrafish Drug Screening Center, Tsu, Mie 514-8507, Japan
| | - Yasuhito Shimada
- Mie University Zebrafish Drug Screening Center, Tsu, Mie 514-8507, Japan; Department of Integrative Pharmacology, Mie University Graduate School of Medicine, Tsu, Mie 514-8507, Japan; Department of Bioinformatics, Mie University Advanced Science Research Promotion Center, Tsu, Mie 514-8507, Japan.
| |
Collapse
|
31
|
Ritschar S, Hüftlein F, Schell LM, Brehm J, Laforsch C. Taking advantage of transparency: A proof-of-principle for the analysis of the uptake of labeled microplastic particles by organisms of different functional feeding guilds using an adapted CUBIC protocol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 832:154922. [PMID: 35364168 DOI: 10.1016/j.scitotenv.2022.154922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 03/03/2022] [Accepted: 03/26/2022] [Indexed: 06/14/2023]
Abstract
The analysis of the ingestion of microplastics (MP) by biota is frequently performed through invasive procedures such as chemical digestion protocols or by histological analysis of thin sections. Different, promising approaches for the observation of ingested MP particles pose so called tissue clearing methods. They are currently applied to organs, tissue samples, or whole organisms, rendering the sample transparent and enable to look inside an otherwise opaque environment. To date, there is a lack of methods to detect labeled MP inside an opaque organism's digestive tract without interfering with the sample's integrity. Therefore, our goal was to adapt the CUBIC tissue clearing protocol (Clear, Unobstructed Brain/Body Imaging Cocktails and Computational Analysis) for aquatic and terrestrial organisms of various functional feeding groups for the analysis of the uptake of fluorescent labeled microplastic (MP) particles. We included the buff-tailed bumblebee Bombus terrestris, the compost worm Eisenia fetida, the woodlouse Porcellio scaber, the freshwater shrimp Gammarus roeselii, and the quagga mussel Dreissena bugensis in the analysis. The adapted CUBIC method has led to transparency in all normally opaque organisms. It further offers a simple way of locating fluorescent labeled MP inside the digestive system of the different organisms while leaving them intact.
Collapse
Affiliation(s)
- Sven Ritschar
- Department of Animal Ecology I, University of Bayreuth, Germany
| | | | | | - Julian Brehm
- Department of Animal Ecology I, University of Bayreuth, Germany
| | - Christian Laforsch
- Department of Animal Ecology I, University of Bayreuth, Germany; BayCEER, University of Bayreuth, Germany.
| |
Collapse
|
32
|
Hanslik L, Seiwert B, Huppertsberg S, Knepper TP, Reemtsma T, Braunbeck T. Biomarker responses in zebrafish (Danio rerio) following long-term exposure to microplastic-associated chlorpyrifos and benzo(k)fluoranthene. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2022; 245:106120. [PMID: 35183844 DOI: 10.1016/j.aquatox.2022.106120] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 01/20/2022] [Accepted: 02/12/2022] [Indexed: 06/14/2023]
Abstract
Continuously increasing plastic production causes a constant accumulation of microplastic particles (MPs) in the aquatic environment, especially in industrialized and urbanized areas with elevated wastewater discharges. This coincides with the release of persistent organic pollutants (polycyclic aromatic hydrocarbons (PAHs), pesticides) entering limnic ecosystems. Although the assessment of potential effects of environmental pollutants sorbed to MPs under chronic exposure scenarios seems vital, data on potential hazards and risk by combined exposure to pollutants and microplastics for aquatic vertebrates is still limited. Therefore, zebrafish (Danio rerio) were exposed over 21 days to the organophosphate insecticide chlorpyrifos (CPF; 10 and 100 ng/L) and the PAH benzo(k)fluoranthene (BkF; 0.78 and 50 µg/L) either dissolved directly in water or sorbed to different MPs (irregular polystyrene, spherical polymethyl methacrylate; ≤ 100 µm), where CPF was sorbed to polystyrene MPs and BkF was sorbed to polymethyl methacrylate MPs. Contaminant sorption to MPs and leaching were documented using GC-EI-MS; potential accumulation was studied in cryosections of the gastrointestinal tract. Enzymatic biomarkers and biotransformation were measured in liver and brain. Overall, exposure to non-contaminated MPs did not induce any adverse effects. Results of fluorescence tracking, CYP1A modulation by BkF as well as changes in acetylcholinesterase activity (AChE) by CPF were less pronounced when contaminants were sorbed to MPs, indicating reduced bioavailability of pollutants. Overall, following exposure to waterborne BkF, only minor amounts of parent BkF and biotransformation products were detected in zebrafish liver. Even high loads of MPs and sorbed contaminants did not induce adverse effects in zebrafish; thus, the potential threat of MPs as vectors for contaminant transfer in limnic ecosystems can be considered limited.
Collapse
Affiliation(s)
- Lisa Hanslik
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg d-69120, Germany.
| | - Bettina Seiwert
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig d-04318, Germany
| | - Sven Huppertsberg
- Hochschule Fresenius GmbH, University of Applied Sciences Fresenius, Limburger Str. 2, Idstein d-65510, Germany
| | - Thomas P Knepper
- Hochschule Fresenius GmbH, University of Applied Sciences Fresenius, Limburger Str. 2, Idstein d-65510, Germany
| | - Thorsten Reemtsma
- Department of Analytical Chemistry, Helmholtz Centre for Environmental Research - UFZ, Permoserstrasse 15, Leipzig d-04318, Germany
| | - Thomas Braunbeck
- Aquatic Ecology and Toxicology Group, Centre for Organismal Studies, University of Heidelberg, Im Neuenheimer Feld 504, Heidelberg d-69120, Germany.
| |
Collapse
|
33
|
Yu X, Huang W, Wang Y, Wang Y, Cao L, Yang Z, Dou S. Microplastic pollution in the environment and organisms of Xiangshan Bay, East China Sea: An area of intensive mariculture. WATER RESEARCH 2022; 212:118117. [PMID: 35121421 DOI: 10.1016/j.watres.2022.118117] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/19/2022] [Accepted: 01/21/2022] [Indexed: 06/14/2023]
Abstract
Microplastic (MP) pollution in oceans is an emerging environmental problem that poses ecological risks for marine ecosystems. Based on the abundance, distribution, and characteristics of microplastics (MPs) in surface water, sediment, and organisms, MP sources, pollution, trophic transfer, and ecological risk in Xiangshan Bay, an area of intensive mariculture in East China Sea, were assessed in this study. MPs were prevalent in the environment and organisms, with overall abundances at a low-medium level compared with the levels in the coastal areas. In water, MPs were more abundant in the inner bay (0.32 items m-3), which is a more significant source of MPs with intensive mariculture than the central (0.09 items m-3) and outer bays (0.07 items m-3). The narrow and land-enclosed inner bay, with weak hydrodynamics for water exchange, retained MPs, thus increasing their abundance. The ecological risk of MPs in water was at a low-moderate level. The MP abundance in sediment did not vary significantly among the three regions of the bay. The morphological characteristics and polymers of the MPs differed in sediment from those in water, which was related to their diverse environmental redistribution routes. MP abundance ingested by organisms were related to their biological features and foraging habits. Overall, fish ingested more MPs than crustaceans, bivalves, and cephalopods, while zooplankton ingested the minimal MPs. Filter feeders ingested less MPs, with a preference for smaller particles than predators. MPs did not show trophic transfer behavior in organisms. Additionally, MPs ingested by infauna showed similar morphological and chemical characteristics compared to sediment at the point of organism residence, whereas MPs ingested by pelagic species were dissimilar to those in surface water. Our findings provide information for understanding MP pollution, source tracing, trophic transfer, and ecological risk assessment in coastal ecosystems.
Collapse
Affiliation(s)
- Xiang Yu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100039, China
| | - Wei Huang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China.
| | - Youji Wang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai 201306, China; Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Yuntao Wang
- State Key Laboratory of Satellite Ocean Environment Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Liang Cao
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China
| | - Zhi Yang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Shuozeng Dou
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao 266071, China; University of Chinese Academy of Sciences, Beijing 100039, China.
| |
Collapse
|
34
|
Ma C, Chen Q, Li J, Li B, Liang W, Su L, Shi H. Distribution and translocation of micro- and nanoplastics in fish. Crit Rev Toxicol 2022; 51:740-753. [PMID: 35166176 DOI: 10.1080/10408444.2021.2024495] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Microplastics (MPs) and nanoplastics (NPs) are regarded as emerging particulate contaminants. Here, we first summarize the distribution of plastic particles in fish. Field investigations verify the presence of various kinds of fibrous, spherical, and fragmentary MPs in fish gastrointestinal tract and gills, and specifically in muscle and liver. Laboratory works demonstrate that NPs even penetrate into blood vessels of fish and pass onto next generations. Second, we systematically discuss the translocation ability of MPs and NPs in fish. MPs can enter early-developing fish through adherence, and enter adult fish internal organs by intestine absorption or epidermis infiltration. NPs can not only penetrate into fish embryo blastopores, but also reach adult fish internal organs through blood circulation. Third, the cellular basis for translocation of plastic particles, NPs in particular, into cells are critically reviewed. Endocytosis and paracellular penetration are two main pathways for them to enter cells and intercellular space, respectively. Finally, we compare the chemical and physical properties among various particular pollutants (MPs, NPs, settleable particulate matters, and manufactured nanomaterials) and their translocation processes at different biological levels. In future studies, it is urgent to break through the bottleneck techniques for NPs quantification in field environmental matrix and organisms, re-confirm the existence of MPs and NPs in field organisms, and develop more detailed translocating mechanisms of MPs and NPs by applying cutting-edge tracking techniques.
Collapse
Affiliation(s)
- Cuizhu Ma
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Jiawei Li
- Department of Geography, The University of Manchester, Manchester, United Kingdom
| | - Bowen Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Weiwenhui Liang
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Lei Su
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China.,Institute of Eco-Chongming, East China Normal University, Shanghai, China
| |
Collapse
|
35
|
Santana LMBM, Rodrigues ACM, Campos D, Kaczerewska O, Figueiredo J, Silva S, Sousa I, Maia F, Tedim J, Abessa DMS, Pousão-Ferreira P, Candeias-Mendes A, Soares F, Castanho S, Soares AMVM, Rocha RJM, Gravato C, Patrício Silva AL, Martins R. Can the toxicity of polyethylene microplastics and engineered nanoclays on flatfish (Solea senegalensis) be influenced by the presence of each other? THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 804:150188. [PMID: 34798736 DOI: 10.1016/j.scitotenv.2021.150188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 06/13/2023]
Abstract
Microplastics and nanomaterials are applied in a myriad of commercial and industrial applications. When leaked to natural environments, such small particles might threaten living organisms' health, particularly when considering their potential combination that remains poorly investigated. This study investigated the physiological and biochemical effects of polyethylene (PE; 64-125 μm in size, 0.1, 1.0, and 10.0 mg·L-1) single and combined with an engineered nanomaterial applied in antifouling coatings, the copper-aluminium layered double hydroxides (Cu-Al LDH; 0.33, 1.0, and 3.33 mg·L-1) in the flatfish Solea senegalensis larvae (8 dph) after 3 h exposure, in a full factorial design. Particles ingestion, histopathology, and biochemical biomarkers were assessed. Fish larvae presented <1 PE particles in their gut, independently of their concentration in the medium. The histological health index showed minimal pathological alterations at PE combined exposure, with a higher value observed at 1 mg LDH·L-1 × 0.1 mg PE·L-1. Gut deformity and increased antioxidant defences (catalase), neurotransmission (acetylcholinesterase), and aerobic energy production (electron transport system) were observed at PE ≥ 1.0 mg·L-1. No oxidative damage (lipid peroxidation) or alterations in the detoxification capacity (glutathione-S-transferase) was observed on single and combined exposures. PE, combined or not with Cu-Al LDH, does not seem to compromise larvae's homeostasis considering levels reported so far in the marine and aquaculture environments. However, harsh effects are expected with MP contamination rise, as projections suggest.
Collapse
Affiliation(s)
- Lígia M B M Santana
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal; Campus do Litoral Paulista, Universidade Estadual Paulista (UNESP), 11330-900 São Vicente, SP, Brazil
| | - Andreia C M Rodrigues
- CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Diana Campos
- CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Olga Kaczerewska
- CICECO-Aveiro Institute of Materials and Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Joana Figueiredo
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Sara Silva
- Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Isabel Sousa
- CICECO-Aveiro Institute of Materials and Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Frederico Maia
- Smallmatek-Small Materials and Technologies, Lda., Rua Canhas, 3810-075 Aveiro, Portugal
| | - João Tedim
- CICECO-Aveiro Institute of Materials and Department of Materials and Ceramic Engineering, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Denis M S Abessa
- Campus do Litoral Paulista, Universidade Estadual Paulista (UNESP), 11330-900 São Vicente, SP, Brazil
| | - Pedro Pousão-Ferreira
- IPMA - Portuguese Institute for the Ocean and Atmosphere, EPPO - Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Ana Candeias-Mendes
- IPMA - Portuguese Institute for the Ocean and Atmosphere, EPPO - Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Florbela Soares
- IPMA - Portuguese Institute for the Ocean and Atmosphere, EPPO - Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Sara Castanho
- IPMA - Portuguese Institute for the Ocean and Atmosphere, EPPO - Aquaculture Research Station, Av. Parque Natural da Ria Formosa s/n, 8700-194 Olhão, Portugal
| | - Amadeu M V M Soares
- CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Rui J M Rocha
- CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Carlos Gravato
- Faculty of Sciences and CESAM, University of Lisbon, Campo Grande, 1749-016 Lisbon, Portugal
| | - Ana L Patrício Silva
- CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal.
| | - Roberto Martins
- CESAM-Centre for Environmental and Marine Studies and Department of Biology, University of Aveiro, 3810-193 Aveiro, Portugal
| |
Collapse
|
36
|
Clark NJ, Khan FR, Mitrano DM, Boyle D, Thompson RC. Demonstrating the translocation of nanoplastics across the fish intestine using palladium-doped polystyrene in a salmon gut-sac. ENVIRONMENT INTERNATIONAL 2022; 159:106994. [PMID: 34922180 DOI: 10.1016/j.envint.2021.106994] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Revised: 11/15/2021] [Accepted: 11/17/2021] [Indexed: 06/14/2023]
Abstract
Fish are widely reported to ingest microplastics with low levels accumulating in the tissues, but owing to analytical constraints, much less is known about the potential accumulation of nanoplastics via the gut. Recently, the labelling of plastics with inorganic metals (e.g., palladium) has allowed measurements of nanoplastic uptake. The aim of the current study was to quantitatively assess the uptake of nanoplastics by the fish gut using palladium-doped nanoplastics (with a mean hydrodynamic radius of 202 ± 7 nm). By using an ex vivo gut sac exposure system, we show that in 4 h between 200 and 700 million nanoplastics (representing 2.5-9.4% of the administered nanoplastics dose) can enter the mucosa and muscularis layers of the intestine of salmon. Of the particles taken up, up to 700,000 (representing 0.6% of that taken into the tissue) of the nanoplastics passed across the gut epithelium of the anterior intestine and exit into the serosal saline. These data, generated in highly controlled conditions provide a proof-of-concept study, suggesting the potential for nanoplastics to distribute throughout the body, indicating the potential for systemic exposure in fish.
Collapse
Affiliation(s)
- Nathaniel J Clark
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK.
| | - Farhan R Khan
- Norwegian Research Centre (NORCE), Nygårdsporten 112, NO-5008 Bergen, Norway; Department of Science and Environment, Roskilde University, Universitetsvej 1, PO Box 260, 4000 Roskilde, Denmark
| | - Denise M Mitrano
- Department of Environmental Systems Science, ETH Zurich, 8092, Switzerland
| | - David Boyle
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK; Cobalt Institute, 18 Jeffries Passage, Guildford GU1 4AP, UK
| | - Richard C Thompson
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, UK
| |
Collapse
|
37
|
Sridhar A, Kannan D, Kapoor A, Prabhakar S. Extraction and detection methods of microplastics in food and marine systems: A critical review. CHEMOSPHERE 2022; 286:131653. [PMID: 34346338 DOI: 10.1016/j.chemosphere.2021.131653] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/27/2021] [Accepted: 07/21/2021] [Indexed: 05/25/2023]
Abstract
The ubiquitous presence of microplastics as contaminants in the ecosystem has become a matter of environmental concern gaining considerable attention in the research community as well as public arena. Lack of efficient collection and improper management of plastic have resulted in the enormous amounts of plastic wastes landing into the marine systems with oceans being the ultimate sink. Due to non-biodegradability, these plastics break down into smaller fragments over a period of time leading to consumption by aquatic species, threatening marine life. In the recent years, a wide range of food products has also been contaminated with microplastics directly affecting human health. This review focuses on the separation and identification technologies for extraction and detection of microplastics in food and marine ecosystems. Efficient technologies like floatation, membrane separation, chemical treatment, enzymatic treatment, and other miscellaneous techniques have been discussed considering their merits and demerits. Additionally, identification technologies like optical detection, scanning electron microscopy, Fourier transform infrared spectroscopy, Raman spectroscopy, thermo-analytical methods, and hyperspectral imaging have been emphasized for the detection of microplastic particles. The emerging techniques like enzymatic digestion combined with hyperspectral imaging could be a possible way for obtaining higher separation efficiency and characterization with minimal harm to food sample. This article narrows the gap for choosing a standard separation technology for microplastic detection in food matrices keeping in mind the composition, particle size, shape, data visualization techniques and cost.
Collapse
Affiliation(s)
- Adithya Sridhar
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| | - Deepa Kannan
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| | - Ashish Kapoor
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| | - Sivaraman Prabhakar
- Department of Chemical Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
38
|
Rios-Fuster B, Alomar C, Viñas L, Campillo JA, Pérez-Fernández B, Álvarez E, Compa M, Deudero S. Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) occurrence in Sparus aurata exposed to microplastic enriched diets in aquaculture facilities. MARINE POLLUTION BULLETIN 2021; 173:113030. [PMID: 34678545 DOI: 10.1016/j.marpolbul.2021.113030] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/30/2021] [Accepted: 10/02/2021] [Indexed: 06/13/2023]
Abstract
Organochlorine pesticides (OCPs) and polychlorinated biphenyls (PCBs) are highly stable and bioaccumulative, and microplastics (MPs; plastics <5 mm) are ubiquitous in the marine environment. In this study we report the levels of a selection of pollutants in liver and muscle of juvenile gilthead seabream (Sparus aurata) exposed to virgin and weathered MP enriched diets during three months and followed by one month of MP depuration. In general, a major concentration of pollutants in liver was observed. According to OCPs, total DDTs was two or three times higher in liver. Levels in muscle suffer higher variability between treatments and sampling periods. The MP index was negatively correlated to HCB and positively to p,p'DDT in liver. Levels of pollutants are correlated to biological parameters such as total size and total weight. Our results suggest that the bioaccumulation is subjected to the molecular structure of the pollutants and that MPs are correlated with the detoxification system.
Collapse
Affiliation(s)
- Beatriz Rios-Fuster
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015 Palma de Mallorca, Spain.
| | - Carme Alomar
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015 Palma de Mallorca, Spain
| | - Lucía Viñas
- Centro Oceanográfico de Vigo (IEO, CSIC), Subida a Radio Faro 50, 36390 Vigo, Spain
| | - Juan Antonio Campillo
- Centro Oceanográfico de Murcia (IEO, CSIC), c/Varadero 1, 30740 San Pedro del Pinatar, Murcia, Spain
| | | | - Elvira Álvarez
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015 Palma de Mallorca, Spain
| | - Montserrat Compa
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015 Palma de Mallorca, Spain
| | - Salud Deudero
- Centro Oceanográfico de Baleares (IEO, CSIC), Muelle de Poniente s/n, 07015 Palma de Mallorca, Spain
| |
Collapse
|
39
|
Vo HC, Pham MH. Ecotoxicological effects of microplastics on aquatic organisms: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:44716-44725. [PMID: 34226995 DOI: 10.1007/s11356-021-14982-4] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 06/14/2021] [Indexed: 06/13/2023]
Abstract
Microplastics ( <5 mm), which are classified based on primary or secondary sources, are widely distributed in the environment and exert significant effects on aquatic life forms; however, evidence regarding the ecotoxicological effects of microplastics on aquatic organisms is still limited. This research aims at filling a knowledge gap regarding generation sources, distribution, physicochemical properties, and biological behavior of microplastics (MP) in aquatic environments and their interaction with aquatic organisms. The literature indicates that concentrations of MPs observed in such environments are higher than the threshold for safe concentration (6650 buoyant particles/m3). MPs having large specific surface area, low polarity, and hydrophobic properties have been shown to absorb dichlorodiphenyltrichloroethane (DDT), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbon (PAHs), bisphenol A (BPA), polyfluoroalkyl substances (PFAS), antibiotics, and heavy metals. MPs adsorb large amounts of toxic organic chemicals (18,700 ng/g PCBs; 24,000 ng/g PAHs) and heavy metals (0.21-430 μg/g Cr; 0.0029-930 μg/g Cd; 0.35-2.89 μg/g As; 0.26-698,000 μg/g Pb). MPs originating from polystyrene (PS), polypropylene (PP), and polyvinylchloride (PVC) show greater toxicity toward aquatic organisms, with effects on the immune system, reproductive system, nervous system, and endocrine system. Thus, elucidating the cumulative toxic expression of MPs in different polluted environments is critical.
Collapse
Affiliation(s)
- Huu Cong Vo
- Department of Environmental Technology, Faculty of Natural Resources and Environment, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi, Vietnam.
| | - Minh Hen Pham
- K62KHMTA, Faculty of Natural Resources and Environment, Vietnam National University of Agriculture, Trau Quy, Gia Lam, Hanoi, Vietnam
| |
Collapse
|
40
|
Malafaia G, Nascimento ÍF, Estrela FN, Guimarães ATB, Ribeiro F, Luz TMD, Rodrigues ASDL. Green toxicology approach involving polylactic acid biomicroplastics and neotropical tadpoles: (Eco)toxicological safety or environmental hazard? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 783:146994. [PMID: 33865141 DOI: 10.1016/j.scitotenv.2021.146994] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/03/2021] [Accepted: 04/03/2021] [Indexed: 06/12/2023]
Abstract
Different and alternative renewable-source materials, commonly called bioplastics, have been proposed due to the high production and consumption of petroleum-derived plastics and to their high toxicity in the biota. However, their toxicological safety has not yet been assessed in a comprehensive way; therefore, their effects on several animal groups remain completely unknown. Thus, we aimed at testing the following hypothesis: the exposure of Physalaemus cuvieri tadpoles to polylaic acid biomicroplastic (PLA BioMP) at environmentally relevant concentrations (760 and 15,020 μg/L) induces physiological changes in them. Based on the collected data, biopolymer uptake changed tadpoles' growth and development features, reduced their lipid reserves (it was inferred by decreased triglyceride levels), as well as increased reactive oxygen and nitric oxide species production after 14-day exposure. The proportional increase in total glutathione levels, and in superoxide dismutase and catalase activity, was not enough to counterbalance the production of reactive species. In addition, the two tested concentrations caused cholinesterase effect, which was marked by increased acetylcholinesterase and butyrylcholinesterase. This finding is indicative of the neurotoxic action of PLA BioMP. To the best of our knowledge, this is the first report on the harmful consequences of exposing amphibian representatives to the herein tested biopolymers. Therefore, this finding encourages further studies and contributes to demystify the idea that bioplastics are "harmless" to the aquatic biota in freshwater environments.
Collapse
Affiliation(s)
- Guilherme Malafaia
- Biological Research Laboratory, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduate Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduate Program in Biodiversity and Biotechnology, Federal University of Goiás, Goiânia, Brazil; Post-Graduate Program in Ecology and Conservation of Natural Resources, Federal University of Uberlândia, MG, Brazil.
| | | | - Fernanda Neves Estrela
- Biological Research Laboratory, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduate Program in Biodiversity and Biotechnology, Federal University of Goiás, Goiânia, Brazil
| | - Abraão Tiago Batista Guimarães
- Biological Research Laboratory, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduate Program in Biodiversity and Biotechnology, Federal University of Goiás, Goiânia, Brazil
| | - Fabianne Ribeiro
- Department of Biology & CESAM - Center for Environmental and Marine Studies, University of Aveiro, Portugal
| | | | - Aline Sueli de Lima Rodrigues
- Post-Graduate Program in Conservation of Cerrado Natural Resources, Goiano Federal Institute, Urutaí, GO, Brazil; Post-Graduate Program in Biodiversity and Biotechnology, Federal University of Goiás, Goiânia, Brazil
| |
Collapse
|
41
|
Cormier B, Le Bihanic F, Cabar M, Crebassa JC, Blanc M, Larsson M, Dubocq F, Yeung L, Clérandeau C, Keiter SH, Cachot J, Bégout ML, Cousin X. Chronic feeding exposure to virgin and spiked microplastics disrupts essential biological functions in teleost fish. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125626. [PMID: 33740727 DOI: 10.1016/j.jhazmat.2021.125626] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 03/05/2021] [Accepted: 03/07/2021] [Indexed: 05/26/2023]
Abstract
Toxicity of polyethylene (PE) and polyvinyl chloride (PVC) microplastics (MPs), either virgin or spiked with chemicals, was evaluated in two short-lived fish using a freshwater species, zebrafish, and a marine species, marine medaka. Exposures were performed through diet using environmentally relevant concentrations of MPs over 4 months. No modification of classical biomarkers, lipid peroxidation, genotoxicity or F0 behaviour was observed. A significant decrease in growth was reported after at least two months of exposure. This decrease was similar between species, independent from the type of MPs polymer and the presence or not of spiked chemicals, but was much stronger in females. The reproduction was evaluated and it revealed a significant decrease in the reproductive output for both species and in far more serious numbers in medaka. PVC appeared more reprotoxic than PE as were MPs spiked with PFOS and benzophenone-3 compared to MPs spiked with benzo[a]pyrene. Further, PVC-benzophenone-3 produced behavioural disruption in offspring larvae. These results obtained with two species representing different aquatic environments suggest that microplastics exert toxic effects, slightly different according to polymers and the presence or not of sorbed chemicals, which may lead in all cases to serious ecological disruptions.
Collapse
Affiliation(s)
- Bettie Cormier
- University of Bordeaux, CNRS, EPOC, EPHE, UMR 5805, Pessac 33600, France; Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, Örebro 70182, Sweden
| | - Florane Le Bihanic
- University of Bordeaux, CNRS, EPOC, EPHE, UMR 5805, Pessac 33600, France
| | - Mathieu Cabar
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Palavas-les-flots 34250, France
| | | | - Mélanie Blanc
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, Örebro 70182, Sweden
| | - Maria Larsson
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, Örebro 70182, Sweden
| | - Florian Dubocq
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, Örebro 70182, Sweden
| | - Leo Yeung
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, Örebro 70182, Sweden
| | | | - Steffen H Keiter
- Man-Technology-Environment Research Centre, School of Science and Technology, Örebro University, Fakultetsgatan 1, Örebro 70182, Sweden
| | - Jérôme Cachot
- University of Bordeaux, CNRS, EPOC, EPHE, UMR 5805, Pessac 33600, France
| | - Marie-Laure Bégout
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Palavas-les-flots 34250, France
| | - Xavier Cousin
- MARBEC, Univ. Montpellier, CNRS, Ifremer, IRD, Palavas-les-flots 34250, France; Université Paris-Saclay, INRAE, AgroParisTech, GABI, Jouy-en-Josas 78350, France.
| |
Collapse
|
42
|
Prokić MD, Gavrilović BR, Radovanović TB, Gavrić JP, Petrović TG, Despotović SG, Faggio C. Studying microplastics: Lessons from evaluated literature on animal model organisms and experimental approaches. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125476. [PMID: 33647615 DOI: 10.1016/j.jhazmat.2021.125476] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 02/15/2021] [Accepted: 02/19/2021] [Indexed: 05/24/2023]
Abstract
Although we are witnesses of an increase in the number of studies examining the exposure/effects of microplastics (MPs) on different organisms, there are many unknowns. This review aims to: (i) analyze current studies devoted to investigating the exposure/effects of MPs on animals; (ii) provide some basic knowledge about different model organisms and experimental approaches used in studying MPs; and to (iii) convey directions for future studies. We have summarized data from 500 studies published from January 2011 to May 2020, about different aspects of model organisms (taxonomic group of organisms, type of ecosystem they inhabit, life-stage, sex, tissue and/or organ) and experimental design (laboratory/field, ingestion/bioaccumulation/effect). We also discuss and try to encourage investigation of some less studied organisms (terrestrial and freshwater species, among groups including Annelida, Nematoda, Echinodermata, Cnidaria, Rotifera, birds, amphibians, reptiles), and aspects of MP pollution (long-term field studies, comparative studies examining life stages, sexes, laboratory and field work). We hope that the information presented in this review will serve as a good starting point and will provide useful guidelines for researchers during the process of deciding on the model organism and study designs for investigating MPs.
Collapse
Affiliation(s)
- Marko D Prokić
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Branka R Gavrilović
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Tijana B Radovanović
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Jelena P Gavrić
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Tamara G Petrović
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Svetlana G Despotović
- Department of Physiology, Institute for Biological Research "Siniša Stanković" - National Institute of the Republic of Serbia, University of Belgrade, Bulevar despota Stefana 142, 11060 Belgrade, Serbia
| | - Caterina Faggio
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno d'Alcontres, 3198166 Santa Agata-Messina, Italy.
| |
Collapse
|
43
|
Alomar C, Sanz-Martín M, Compa M, Rios-Fuster B, Álvarez E, Ripolles V, Valencia JM, Deudero S. Microplastic ingestion in reared aquaculture fish: Biological responses to low-density polyethylene controlled diets in Sparus aurata. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 280:116960. [PMID: 33780838 DOI: 10.1016/j.envpol.2021.116960] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 03/13/2021] [Accepted: 03/13/2021] [Indexed: 06/12/2023]
Abstract
During the last years, ingestion of microplastics (MPs) has been quantified in marine species both with an ecological and commercial interest at sea and under experimental conditions, highlighting the importance to assess MP ingestion in commercially and aquaculture important species such as gilthead seabream (Sparus aurata) fish. In order to study the ingestion of MPs in a commercially valuable species, gilthead seabreams were exposed to an enriched diet with virgin and weathered low-density polyethylene (LDPE) pellets for three months followed by a detoxification period of one month of no exposure to MP enriched diets. Our results indicate that MP ingestion in these fishes increased with exposure time, and differences were found between treatments, showing the highest ingestion values after three months of exposure to MP enriched diets and in the weathered treatment. However, after one month of detoxification, no MPs were found in the gastrointestinal tracts of fish, reflecting no long-term retention of MPs in Sparus aurata digestive system. According to results from this study, exposure of fish to MP enriched diets does not affect fish size neither the Fulton's condition index as both parameters increased with time in all treatments (control, virgin and weathered). Both carbon and nitrogen isotopic signatures decreased with fish size in all treatments which could be related to an increase of nitrogen deposition efficiency in fish muscle with a high protein assimilation during the first months of Sparus aurata.
Collapse
Affiliation(s)
- Carme Alomar
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Muelle de Poniente s/n, 07015, Palma de Mallorca, Spain.
| | - Marina Sanz-Martín
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Muelle de Poniente s/n, 07015, Palma de Mallorca, Spain
| | - Montserrat Compa
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Muelle de Poniente s/n, 07015, Palma de Mallorca, Spain
| | - Beatriz Rios-Fuster
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Muelle de Poniente s/n, 07015, Palma de Mallorca, Spain
| | - Elvira Álvarez
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Muelle de Poniente s/n, 07015, Palma de Mallorca, Spain
| | - Vincent Ripolles
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Muelle de Poniente s/n, 07015, Palma de Mallorca, Spain
| | - José María Valencia
- Laboratorio de Investigaciones Marinas y Acuicultura, LIMIA-Govern de Les Illes Balears, Port d'Andratx, Balearic Islands, Spain; INAGEA (INIA-CAIB-UIB), Carr. de Valldemossa, Km 7.5, 07122, Palma, Balearic Islands, Spain
| | - Salud Deudero
- Instituto Español de Oceanografía, Centro Oceanográfico de Baleares, Muelle de Poniente s/n, 07015, Palma de Mallorca, Spain
| |
Collapse
|
44
|
Paler MKO, Migo V, Delara AV. Preliminary Assessment on the Histological Changes in Juvenile Siganus guttattus (Bloch, 1787) Exposed to Plastic Debris. BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2021; 106:916-922. [PMID: 33835204 DOI: 10.1007/s00128-021-03211-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 03/24/2021] [Indexed: 06/12/2023]
Abstract
Plastic debris is ubiquitous in the marine environment and many of this is polyethylene based plastic bags. Its potential effect on marine organisms is still understudied. Hence, this study determined the histological changes induced in the intestine and liver of the juvenile rabbit fish, Siganus guttatus. S. guttatus (N = 150) were sub chronically exposed to plastic bag debris suspensions (0, 0.01, 0.1, 1.0 and 10 mg L-1) for 10 days. In addition to histological changes, the condition factor (CF) index of the fishes were assessed. Results showed that there was no significant difference in the CF index of the fishes exposed to varying concentrations of plastic suspensions, there was however histological changes in fishes exposed to 10 mg L-1. The histological changes in the intestine were hyperemia, necrosis, goblet cells hyperplasia, and shortening of the villi. Histological changes in the liver were hyperemic blood vessels and vacuolization. Fishes exposed to 10 mg L-1 exhibited a higher proximal, distal, liver and total organ index as compared to those unexposed (p < 0.05).
Collapse
Affiliation(s)
- Maria Kristina O Paler
- School of Environmental Science and Management, University of the Philippines Los Baños, College, Los Banos, Laguna, Philippines.
- Department of Biology, University of San Carlos, Talamban, Cebu, Philippines.
| | - Veronica Migo
- Department of Chemical Engineering, College of Engineering and Agro-Industrial Technology, University of the Philippines Los Baños, College, Los Banos, Laguna, Philippines
| | - Ayolani V Delara
- Animal Biology Division, Institute of Biological Science, University of the Philippines Los Baños, College, Los Banos, Laguna, Philippines
| |
Collapse
|
45
|
Tang Y, Liu Y, Chen Y, Zhang W, Zhao J, He S, Yang C, Zhang T, Tang C, Zhang C, Yang Z. A review: Research progress on microplastic pollutants in aquatic environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 766:142572. [PMID: 33183825 DOI: 10.1016/j.scitotenv.2020.142572] [Citation(s) in RCA: 158] [Impact Index Per Article: 39.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/02/2020] [Accepted: 09/21/2020] [Indexed: 05/24/2023]
Abstract
The ubiquitous problems of microplastics in waters are receiving global attention as microplastics can harm aquatic organisms, and finally can accumulate in the human body through biological chain amplification. In addition, microplastics act as a carrier capable of carrying heavy metals, organics, which form complex pollutants. These new combinations of pollutants, once ingested by aquatic organisms, are amplified through the food chain and can have unpredictable ramifications for aquatic organisms and human beings. Therefore, human beings are not only the source of plastic pollution, but also the sink of microplastic pollution. Therefore, this study reviews the source and distribution of microplastics, and their combined ability with heavy metals, antibiotics, and persistent organic pollutants in aquatic environments. Furthermore, it describes the interaction between aquatic organisms and microplastics. Finally, some suggestions are put forward to promote the sustainable application of microplastics. This work provides theoretical guidance for combining microplastics with other pollutants in water, and the accumulation of microplastics in food chain.
Collapse
Affiliation(s)
- Yuanqiang Tang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Yunguo Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Yu Chen
- School of Architecture, Hunan University, Changsha 410082, PR China.
| | - Wei Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Jianmin Zhao
- School of Architecture, Hunan University, Changsha 410082, PR China.
| | - Shaoyao He
- School of Architecture, Hunan University, Changsha 410082, PR China.
| | - Chunping Yang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China; Guangdong Provincial Key Laboratory of Petrochemical Pollution Processes and Control, School of Environmental Science and Engineering, Guangdong University of Petrochemical Technology, Maoming, Guangdong 525000, PR China.
| | - Tao Zhang
- Qingyuan Agricultural Science and Technology Extension Service Center, Guangdong Province, Qingyuan 511500, PR China
| | - Chunfang Tang
- College of Environmental Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, PR China
| | - Chen Zhang
- Zhejiang Ocean University, Zhoushan 316000, PR China
| | - Zisong Yang
- College of Resources and Environment of Aba Teachers University, Wenchuan 623002, PR China
| |
Collapse
|
46
|
Miguel TBAR, Porto ECM, de Paiva Pinheiro SK, de Castro Miguel E, Fernandes FAN, Rodrigues S. Protective Effect of Natural and Processed Coconut Water by Non-thermal Technologies Against Oxidative Stress in Brine Shrimp (Artemia salina). FOOD BIOPROCESS TECH 2021. [DOI: 10.1007/s11947-021-02600-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
47
|
Chen CY, Lu TH, Yang YF, Liao CM. Toxicokinetic/toxicodynamic-based risk assessment of freshwater fish health posed by microplastics at environmentally relevant concentrations. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 756:144013. [PMID: 33257071 DOI: 10.1016/j.scitotenv.2020.144013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/25/2020] [Accepted: 11/15/2020] [Indexed: 06/12/2023]
Abstract
The pervasive contamination of microplastics (MPs) in freshwater ecosystems is of emerging concern. Mechanistic link between exposure and effect on assessing health risk of freshwater fish posed by environmental MPs, however, is more limited. Our study filled this gap by developing a toxicokinetic/toxicodynamic (TK/TD)-based risk assessment framework to examine health effects of zebrafish and red tilapia responses to environmental concentrations of MPs appraised with a variety of valuable published data on a global scale. We assessed organ-specific TK parameters and mean residence times for polystyrene (PS)-MPs-exposed freshwater fish in size- and concentration-dependent manners. We estimated the relatively sensitive benchmark concentrations (BMCs) of PS-MPs for oxidative stress in zebrafish and detoxification in red tilapia to be ~1.0 and ~119 μg g-1, respectively. Based on continental scale MPs trends, the high MPs concentrations were over Asia, with a mean value of 36 mg L-1. Given metabolic disturbances in zebrafish and red tilapia as bioindicators, we found that MPs pollution was highly likely to enhance fish health risks and that this factor must therefore be considered in evaluations of MPs susceptibility of freshwater fish. Our TK/TD-based risk scheme could help inform intensified efforts to mitigate environmental MPs pollution in order to benefit freshwater fish species and people who depend on healthy stocks of different fish.
Collapse
Affiliation(s)
- Chi-Yun Chen
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Tien-Hsuan Lu
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Ying-Fei Yang
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC
| | - Chung-Min Liao
- Department of Bioenvironmental Systems Engineering, National Taiwan University, Taipei 10617, Taiwan, ROC.
| |
Collapse
|
48
|
Khalid N, Aqeel M, Noman A, Hashem M, Mostafa YS, Alhaithloul HAS, Alghanem SM. Linking effects of microplastics to ecological impacts in marine environments. CHEMOSPHERE 2021; 264:128541. [PMID: 33059282 DOI: 10.1016/j.chemosphere.2020.128541] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/19/2020] [Accepted: 10/04/2020] [Indexed: 05/20/2023]
Abstract
Recently, efforts to determine the ecological impacts of microplastic pollutants have increased because of plastic's accelerated contamination of the environment. The tiny size, variable surface topography, thermal properties, bioavailability and biological toxicity of microplastics all offer opportunities for these pollutants to negatively impact the environment. Additionally, various inorganic and organic chemicals sorbed on these particles may pose a greater threat to organisms than the microplastics themselves. However, there is still a big knowledge gap in the assessment of various toxicological effects of microplastics in the environment. Ecological risk assessment of microplastics has become more challenging with the current data gaps. Thus, a current literature review and identification of the areas where research on ecology of microplastics can be extended is necessary. We have provided an overview of various aspects of microplastics by which they interact negatively or positively with marine organisms. We hypothesize that biogeochemical interactions are critical to fully understand the ecological impacts, movement, and fate of microplastics in oceans. As microplastics are now ubiquitous in marine environments and impossible to remove, we recommend that it's not too late to converge research on plastic alternatives. In addition, strict actions should be taken promptly to prevent plastics from entering the environment.
Collapse
Affiliation(s)
- Noreen Khalid
- Department of Botany, Government College Women University, Sialkot, Pakistan.
| | - Muhammad Aqeel
- State Key Laboratory of Grassland Agroecosystems, School of Life Science, Lanzhou University, Lanzhou, Gansu, PR China
| | - Ali Noman
- Department of Botany, Government College University, Faisalabad, Pakistan
| | - Mohamed Hashem
- King Khalid University, College of Science, Department of Biology, Abha 61413, Saudi Arabia; Assiut University, Faculty of Science, Botany and Microbiology Department, Assiut, 71516, Egypt
| | - Yasser S Mostafa
- King Khalid University, College of Science, Department of Biology, Abha 61413, Saudi Arabia
| | | | - Suliman M Alghanem
- Biology Department, Faculty of Science, Tabuk University, Tabuk, Saudi Arabia
| |
Collapse
|
49
|
Sher F, Hanif K, Rafey A, Khalid U, Zafar A, Ameen M, Lima EC. Removal of micropollutants from municipal wastewater using different types of activated carbons. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 278:111302. [PMID: 33152547 DOI: 10.1016/j.jenvman.2020.111302] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 08/18/2020] [Accepted: 08/22/2020] [Indexed: 06/11/2023]
Abstract
The water reservoirs are getting polluted due to increasing amounts of micropollutants such as pharmaceuticals, organic polymers and suspended solids. Powdered activated carbon (PAC) has been proved to be a promising solution for the purification of water without having harmful impacts on the environment. Parameters such as PAC dosing, wastewater hardness, the effect of coagulant and flocculant were evaluated in a batch scale study. These parameters were further applied on a pilot plant scale for the performance evaluation of PAC based removal of micropollutants concerning the contact time and PAC dosing with main focus on recirculation of PAC sludge. The obtained optimum dose was 10-20 mg/L providing 84.40-91.30% removal efficiency of suspended solid micropollutants (MPs) and this efficiency increased to 88.90-93.00% along with coagulant which further raised by the addition of polymer and recirculation process at batch scale. On pilot plant scale, the concentration in contact reactor and PAC removal effectiveness of dissolved air flotation, lamella separator and sedimentation tank were compared. Constant optimisation resulted in a concentration ranging from 2.70 to 3.40 g/L at dosing of PAC 10 mg/L, coagulant 2.00 mg/L and polymer 0.50 mg/L. PAC doses of 10-20 mg/L with 15-30 min contact time proved best for above 70-80% elimination. The recirculation system has also proved an efficient technique because the PAC's adsorption capacity was practically completely used. Small PAC dosages yielded high micropollutants elimination.
Collapse
Affiliation(s)
- Farooq Sher
- School of Mechanical, Aerospace and Automotive Engineering, Faculty of Engineering, Environmental and Computing, Coventry University, Coventry CV1 5FB, UK.
| | - Kashif Hanif
- School of Mechanical, Aerospace and Automotive Engineering, Faculty of Engineering, Environmental and Computing, Coventry University, Coventry CV1 5FB, UK
| | - Abdul Rafey
- Department of Chemical Engineering, Aligarh Muslim University, Aligarh, UP, 202002, India
| | - Ushna Khalid
- Department of Chemistry, University of Agriculture, Faisalabad, 38000, Pakistan
| | - Ayesha Zafar
- Institute of Biochemistry and Biotechnology, Faculty of Biosciences, University of Veterinary and Animal Sciences, Lahore, Pakistan
| | - Mariam Ameen
- HiCoE, Center for Biofuels and Biochemical Research (CBBR), Institute of Sustainable Buildings (ISB), Department of Chemical Engineering, Universiti Teknologi PETRONAS, Bandar Seri Iskandar, 31620, Tronoh, Perak, Malaysia
| | - Eder C Lima
- Institute of Chemistry, Federal University of Rio Grande do Sul (UFRGS), Av. Bento Goncalves 9500, P.O. Box 15003, ZIP 91501-970, Porto Alegre, RS, Brazil
| |
Collapse
|
50
|
Zhang R, Wang M, Chen X, Yang C, Wu L. Combined toxicity of microplastics and cadmium on the zebrafish embryos (Danio rerio). THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140638. [PMID: 32679492 DOI: 10.1016/j.scitotenv.2020.140638] [Citation(s) in RCA: 93] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/28/2020] [Accepted: 06/28/2020] [Indexed: 06/11/2023]
Abstract
The effects of microplastics (MPs) on organisms have drawn a worldwide attention in the recent years. In this study, zebrafish embryos were employed to assess the combined effects of MPs and cadmium (Cd) on the aquatic organisms. Lethal and sublethal effects were recorded at 8, 24, 32, 48 and 96 hpe (hour post exposure, hpe). The exposure under a series concentration of MPs and/or an environmental level Cd has the negative impacts on survival and heart rate (HR). And there was a positive correlation between MPs concentration and lethal and sublethal toxicity under combined exposure. The physiological parameters showed that the mixture of two stressors had the antagonistic toxicity under low concentration of MPs (0.05, 0.1 mg/L) while the synergistic sublethal toxicity under high levels of MPs (1, 5, 10 mg/L) on zebrafish embryos. Both the scanning electron micrographs (SEM) and fluorescence microscope photos suggested an electrostatic interaction and weak physical forces generated between MPs and chorion membrane. It is inferred that the 10 μm MPs could induce the protective effect of chorion membrane and cause complex toxicities with Cd. But when it involved with other pollutants, the toxic effects and mechanism are still waiting to be figured out.
Collapse
Affiliation(s)
- Run Zhang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Meng Wang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Xiaoping Chen
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Changming Yang
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China
| | - Lingling Wu
- Key Laboratory of Yangtze River Water Environment of the Ministry of Education, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|