1
|
Wenclawiak JT, Weinstein JE, Higgins J, Karam D, Ertel B. COVID-19 related personal protective equipment (PPE) litter in salt marsh habitats: Degradation and microplastic emission. ENVIRONMENTAL RESEARCH 2025; 277:121554. [PMID: 40194675 DOI: 10.1016/j.envres.2025.121554] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 03/06/2025] [Accepted: 04/05/2025] [Indexed: 04/09/2025]
Abstract
The use of personal protective equipment (PPE) has increased significantly since the onset of the COVID-19 pandemic in late 2019. Face masks, gloves, and sanitizing wipes are common types of PPE that have been used during the pandemic, all of which can be comprised of plastic polymers. PPE items have been shown to generate microplastic fibers and fragments, but their degradation in the natural environment is understudied. The objective of this study was to quantify the degradation and microplastic emission of common plastic PPE items in a salt marsh, which serve a vital role in maintaining the health and resilience of coastal ecosystems and have been shown to be vulnerable to pollutants. Four types of PPE items (face masks, gloves, compostable and conventional sanitizing wipes) were deployed in an intertidal salt marsh for up to 16 weeks. Changes in weight, biofilm formation, surface area, and microplastic emissions were measured at 0, 2, 4, 8, and 16 weeks. All PPE degraded in the environment and emitted particles beginning at 2 weeks, and emission increased over time. Sanitizing wipes produced the highest number of microplastics at the end of 16-weeks. Compared to previous studies in the same area, these results suggest that plastic PPE items may degrade faster than other plastics. This study is one of the first to quantify PPE degradation and microplastic emission in the natural environment and supports the notion that single-use PPE litter has the potential to be a source of microplastic pollution in coastal environments.
Collapse
Affiliation(s)
- Jessica T Wenclawiak
- Grice Marine Laboratory, College of Charleston, 205 Fort Johnson Road, Charleston, SC, 29412, USA
| | - John E Weinstein
- Department of Biology, The Citadel, Military College of South Carolina, 171 Moultrie Street, Charleston, SC, 29409, USA.
| | - Jerry Higgins
- Department of Biology, The Citadel, Military College of South Carolina, 171 Moultrie Street, Charleston, SC, 29409, USA
| | - Douglas Karam
- Department of Biology, The Citadel, Military College of South Carolina, 171 Moultrie Street, Charleston, SC, 29409, USA
| | - Bonnie Ertel
- Department of Biology, The Citadel, Military College of South Carolina, 171 Moultrie Street, Charleston, SC, 29409, USA
| |
Collapse
|
2
|
Bhattacharjee S, Ghosh PK, Basu S, Mukherjee T, Mandal B, Sinha P, Mukherjee A. Microplastic contamination in threatened wild felids of India: Understanding environmental uptake, feeding implications, and associated risks. ENVIRONMENTAL RESEARCH 2025; 273:121218. [PMID: 40015425 DOI: 10.1016/j.envres.2025.121218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 02/21/2025] [Accepted: 02/22/2025] [Indexed: 03/01/2025]
Abstract
While the presence of microplastics (MPs, <5 mm) in various aquatic organisms is well-documented, studies on the accumulation of MPs in terrestrial predators remain limited worldwide, including in India. This study aims to evaluate, for the first time, the occurrence of MPs in the scat of mid-sized felids-fishing cat and jungle cat-from their overlapping habitat in the Gangetic Estuary of India. The risk assessment of MPs and management recommendation for MP mitigation was also discussed in this context. Notably, our study is the first to report the presence of MPs and mesoplastics in fishing cat from India and jungle cat globally. The abundance of MPs was found to be higher in jungle cat (12.6 ± 1.93 MP/g d.w) compared to fishing cat (10.5 ± 2.12 MP/g d.w) in the Gangetic estuary. Furthermore, fiber-shaped (70.37%) and 1-5 mm-sized (47.73%) MPs predominated in both felid species, while fiber bundles were observed only in jungle cat. Red-colored MPs (27.62%) were predominantly found in fishing cat, whereas transparent MPs (33.33%) were more common in jungle cat. Scanning electron microscopy revealed possible environmental and digestive degradation marks on the MPs. A total of seven synthetic and one natural polymer were identified, with Ethylene Vinyl Alcohol (55.56%) being predominant in fishing cat and Polyethylene (33.33%) more common in jungle cat. Polymer risk assessment indicated that the MPs in fishing cat fall into the danger category, Group IV (PHI 100-1000), while jungle cat possess high threat under extreme danger category, Group V (PHI >1000). The observed MPs and mesoplastics in felids probably come from adjacent environmental uptake and/or accumulate through trophic transfer from prey items. The evidence of MPs in felids may pose a threat to the big cat-Royal Bengal tigers in the Sundarbans. Therefore, various landscape-based policy implementations are recommended to mitigate MP pollution.
Collapse
Affiliation(s)
- Shrayan Bhattacharjee
- Ecosystem and Ecology Laboratory, Post Graduate Department of Zoology, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, 700118, India
| | - Pradipta Kumar Ghosh
- Ecosystem and Ecology Laboratory, Post Graduate Department of Zoology, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, 700118, India
| | - Shambadeb Basu
- Department of Biology, University of Florida, Gainesville, FL, 32611, USA
| | - Tanoy Mukherjee
- Agricultural and Ecological Research Unit, Indian Statistical Institute, Kolkata, 700108, India.
| | - Banani Mandal
- Department of Zoology, Jogesh Chandra Chaudhuri College, Kolkata, 700033, India
| | - Pritam Sinha
- Department of Physical Science, Bose Institute, Kolkata, 700091, India
| | - Arunava Mukherjee
- Ecosystem and Ecology Laboratory, Post Graduate Department of Zoology, Ramakrishna Mission Vivekananda Centenary College (Autonomous), Rahara, Kolkata, 700118, India.
| |
Collapse
|
3
|
Bhattacharya S, Kolandhasamy P, Mandal A, Rajaram R, Darbha GK. Ecological risk assessment and ingestion of microplastics in edible finfish and shellfish species collected from tropical mangrove forest, Southeastern India. CHEMOSPHERE 2025; 377:144308. [PMID: 40117948 DOI: 10.1016/j.chemosphere.2025.144308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 02/26/2025] [Accepted: 03/09/2025] [Indexed: 03/23/2025]
Abstract
In the Pichavaram mangroves in Southeast India, this study examines the seasonal trends and consumption of microplastic (MPs) by several fish and shellfish species. Four different seasons viz. summer, pre-monsoon, monsoon, and post-monsoon were used to gather the fish and shellfish samples from Pichavaram Mangrove Forest. The results of the present investigation revealed that MP abundance was higher during the monsoon (45 %), suggesting seasonal runoff and increased plastic pollution during heavy rains as key contributors. We observed microplastics in Liza tade (mullet), with 13.33 MPs/individuals in the summer, 0.77 MPs/individuals in the pre-monsoon, 6.3 MPs/individuals in the monsoon, and 2.67 MPs/individuals in the post-monsoon. A significant proportion (32 %) of MPs were smaller than 1 mm. The fibres were predominated with blue (40 %) and red (13 %). The polyethylene (PE), polypropylene (PP), and polyethylene terephthalate (PET) were the primary polymers, according to μ-Raman spectroscopy. The fish species Liza tade and Etroplus suratensis showed the highest levels of contamination, while the shellfish species Portunus sanguinolentus and Scylla serrata did the same. Comparative global analyses reveal that mangrove ecosystems across different regions exhibit the presence of similar polymer types, but microplastic sources vary greatly from place to place. This work highlights the pervasive nature of MPs, their complex seasonal behavior, and their ecological implications, advocating for targeted mitigation strategies to address MP pollution and its potential risks to marine life and ecosystems.
Collapse
Affiliation(s)
- Sourav Bhattacharya
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
| | - Prabhu Kolandhasamy
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
| | - Abhishek Mandal
- Centre for Climate and Environmental Studies, Department of Earth Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur-741 246, West Bengal, India.
| | - Rajendran Rajaram
- Department of Marine Science, Bharathidasan University, Tiruchirappalli, Tamil Nadu, 620024, India.
| | - Gopala Krishna Darbha
- Centre for Climate and Environmental Studies, Department of Earth Sciences, Indian Institute of Science Education and Research, Kolkata, Mohanpur-741 246, West Bengal, India.
| |
Collapse
|
4
|
Sun C, Liu H, Teng J, Feng W, Wang D, Wang X, Zhao J, Wang Q. Impact of Microplastic Exposure on Sand Crab Scopimera globosa Behavior: Implications for Microplastic Transport and Sulfur Cycling through Bioturbation. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7039-7053. [PMID: 40167463 DOI: 10.1021/acs.est.5c01192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The accumulation of microplastics (MPs) in estuarine regions and their ecological consequences have become global environmental concerns. Estuarine sediments function as major sinks for MPs and hotspots for critical biogeochemical processes, which are significantly influenced by benthic bioturbation. However, the impacts of MPs on the behavior of highly mobile benthic organisms and the ecological effects of bioturbation activities remain poorly understood. This study utilized laboratory simulation experiments, AI-based behavioral tracking, and metagenomic sequencing to systematically examine the effects of sand crab bioturbation on MPs migration, sediment physicochemical properties and sulfur cycling processes. Results demonstrated that sand crab bioturbation substantially enhanced the vertical migration of MPs, with fluxes to surface layers and the overlying water increasing by 27-fold compared to undisturbed conditions. Exposure to PE-MPs reduced sand crabs' surface foraging intensity and induced behavioral abnormalities. The crabs actively avoided MPs, exhibiting a preference for burrowing and residing in deeper sediment layers. This behavioral shift significantly altered microbial community distributions, with an increase of Pseudomonadota abundance and a decline of sulfate-reducing bacteria Thermodesulfobacteriota abundance. Furthermore, bioturbation accelerated sulfate oxidation in deeper sediments while inhibited dissimilatory sulfate reduction. This study is the first to identify the role of bioturbation in promoting the upward migration of MPs in sediments. Altered sand crab bioturbation will impact sediment biogeochemistry, estuarine function, and coastal resilience.
Collapse
Affiliation(s)
- Chaofan Sun
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Hui Liu
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
| | - Jia Teng
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
| | - Weiwei Feng
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Dongyu Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xiaodan Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jianmin Zhao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao 266237, P. R. China
- Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
- Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, P. R. China
| |
Collapse
|
5
|
Sawan R, Doyen P, Viudes F, Veillet G, Mahfouz C, Amara R. Microplastic pollution in surface waters of urban canals in a highly urbanized city (Dunkirk, Northern France): influence of dry and wet periods on discharge to the sea. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:11879-11892. [PMID: 40240661 DOI: 10.1007/s11356-025-36420-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/11/2025] [Indexed: 04/18/2025]
Abstract
Microplastic (MP) pollution is a growing environmental concern, with urban waterways constituting critical pathways for transporting MPs into marine ecosystems. This study investigated the distribution, abundance, diversity, and flux of MPs in six urban canals influenced by urban and industrial activities in the city of Dunkirk, during dry and wet (rainy) periods. Plastic abundance was higher during the wet period (18.25 ± 22.16 particles/m3) compared to the dry period (8.14 ± 7.76 particles/m3), reflecting increased inputs from surface runoff and stormwater discharge. Spatial trends revealed distinct site-specific patterns, with the most urbanized sites (S1 and S6) exhibiting the highest abundances. Fibers were the dominant type accounting for over 75% of particles at all sites. PET was the main polymer in urban sites, while PE and PP were more prevalent in industrial zones. The estimated annual flux of MP at the outlet ranged from 19.21 × 106 ± 26.12 × 105 particles/year/m3 (dry period) to 23.97 × 107 ± 19.41 × 106 particles/year/m3 (wet period), revealing the significant contributions of urban canals to coastal pollution. These results highlight the need for improved source control and stormwater management to better assess and mitigate MP pollution in urban aquatic systems.
Collapse
Affiliation(s)
- Rosa Sawan
- Univ. Littoral Côte d'Opale, CNRS, IRD, Univ. Lille, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F- 62930, Wimereux, France
- National Center for Marine Sciences, CNRS-L, Beirut, Lebanon
| | - Périne Doyen
- Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, 62200, Boulogne-Sur-Mer, France.
| | - Florence Viudes
- Univ. Littoral Côte d'Opale, CNRS, IRD, Univ. Lille, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F- 62930, Wimereux, France
| | - Guillaume Veillet
- Univ. Littoral Côte d'Opale, CNRS, IRD, Univ. Lille, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F- 62930, Wimereux, France
| | - Céline Mahfouz
- National Center for Marine Sciences, CNRS-L, Beirut, Lebanon
| | - Rachid Amara
- Univ. Littoral Côte d'Opale, CNRS, IRD, Univ. Lille, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F- 62930, Wimereux, France
| |
Collapse
|
6
|
Cousins A, Dunn C, Aberg D, Smyth AJ, Williams M, Green JAM, Kurr M. Evaluating microplastic trapping efficiency in seagrass meadows using hydraulic flume simulations. MARINE POLLUTION BULLETIN 2025; 213:117660. [PMID: 39933203 DOI: 10.1016/j.marpolbul.2025.117660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 02/05/2025] [Accepted: 02/06/2025] [Indexed: 02/13/2025]
Abstract
Microplastic (MP) pollution poses a significant environmental threat, with projections indicating a 50-fold increase in pollution levels by 2100. Seagrass meadows, important for carbon storage and sediment stabilisation, may also serve as a Nature-based Solution for MP pollution. Despite the well-documented presence of MPs in seagrass sediments, the efficiencies of MP capture by these habitats remain largely unexplored. In this study, hydraulic flume simulations were conducted to assess how different seagrass planting configurations influence MP trapping. The results indicate that meadows with random spatial distribution are 6 % more effective at trapping MPs under high concentrations compared to grid-patterned meadows, while lower planting densities enhance trapping efficiency by 14 %. These findings offer insights into optimising seagrass restoration efforts for mitigating MP pollution, and this highlights the need for further needed to understand the broader ecological implications of MP retention in these critical ecosystems.
Collapse
Affiliation(s)
- Abigail Cousins
- School of Environmental and Natural Science, College of Science and Engineering, Bangor University, Gwynedd, Wales LL57 2UR, UK.
| | - Christian Dunn
- School of Environmental and Natural Science, College of Science and Engineering, Bangor University, Gwynedd, Wales LL57 2UR, UK
| | - Dan Aberg
- School of Environmental and Natural Science, College of Science and Engineering, Bangor University, Gwynedd, Wales LL57 2UR, UK
| | - Abigail J Smyth
- School of Ocean Sciences, College of Science and Engineering, Bangor University, Menai Bridge, Anglesey, Wales LL59 5AB, UK
| | - Max Williams
- School of Ocean Sciences, College of Science and Engineering, Bangor University, Menai Bridge, Anglesey, Wales LL59 5AB, UK
| | - J A Mattias Green
- School of Ocean Sciences, College of Science and Engineering, Bangor University, Menai Bridge, Anglesey, Wales LL59 5AB, UK
| | - Martyn Kurr
- School of Ocean Sciences, College of Science and Engineering, Bangor University, Menai Bridge, Anglesey, Wales LL59 5AB, UK
| |
Collapse
|
7
|
la Torre KBD, Vargas-Abúndez JA, Dzul-Caamal R, Maraschi AC, Capparelli MV. Warming-induced microplastic accumulation and physiological toxicity in fiddler crabs. Comp Biochem Physiol C Toxicol Pharmacol 2025; 290:110142. [PMID: 39921136 DOI: 10.1016/j.cbpc.2025.110142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/15/2025] [Accepted: 02/04/2025] [Indexed: 02/10/2025]
Abstract
Under natural conditions, organisms are exposed to multiple stressors simultaneously, such as microplastic (MP) contamination and rising global temperatures. To assess the combined effects of acute MP exposure and increasing temperatures on the fiddler crab Minuca rapax, we exposed the crabs to polyethylene microspheres (0 and 2 mg L-1, size 53-63 μm) at three different temperatures (24, 27, and 30 °C). Physiological responses were assessed by measuring oxygen consumption and evaluating the biochemical activities of superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPX) alongside lipid peroxidation (LPO) in the gills and hepatopancreas. MP bioaccumulation was quantified in the gills, digestive tract, and muscles. Our findings revealed that MP bioaccumulation was highest in the gills, followed by the digestive tract and muscles. Notably, elevated temperatures (30 °C) suppressed MP accumulation. At 30 °C, MP-exposed crabs showed increased oxygen consumption, while at 27 °C, SOD and GPx activities were elevated. In contrast, in MP-exposed crabs, catalase activity and LPO levels decreased at 30 °C. Overall, the combined effects of MP exposure and temperature-induced stress exacerbated physiological toxicity in Minuca rapax, underscoring the importance of considering multiple environmental stressors when evaluating the impacts of MP contamination.
Collapse
Affiliation(s)
- Karen Beltran-de la Torre
- Laboratorio de Ecotoxicología Acuática y Ecofisiología Animal de la Unidad Académica Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de Mexico, Ciudad del Carmen, Campeche, Mexico; Facultad de Ciencia y Tecnología, Universidad Simón Bolívar, Ciudad de México, Mexico
| | - Jorge Arturo Vargas-Abúndez
- Unidad Multidisciplinaria de Investigación, Sisal. Facultad de Ciencias, Universidad Nacional Autónoma de Mexico, Sisal, Yucatán, Mexico
| | - Ricardo Dzul-Caamal
- Instituto de Ecología, Pesquería y Oceanografía del Golfo de México (EPOMEX), Campus VI, Av. Héroe de Nacozari 480, Universidad Autónoma de Campeche, 24070 Campeche, Mexico
| | - Anieli C Maraschi
- Department of Physiological Sciences, Federal University of São Carlos, Rod Washington Luis km 235, 13565-905 São Carlos, SP, Brazil
| | - Mariana V Capparelli
- Laboratorio de Ecotoxicología Acuática y Ecofisiología Animal de la Unidad Académica Estación El Carmen, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de Mexico, Ciudad del Carmen, Campeche, Mexico.
| |
Collapse
|
8
|
Crutchett TW, Linge KL, Novak P, Partridge J, Paterson H, Hovey RK. The shifting baseline of microplastic measurement: A comparison of methodologies used in estuarine-based studies and guideline recommendations. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2025; 380:125184. [PMID: 40168824 DOI: 10.1016/j.jenvman.2025.125184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 03/21/2025] [Accepted: 03/28/2025] [Indexed: 04/03/2025]
Abstract
Microplastics are a ubiquitous contaminant of estuarine environments, threatening ecological health. However, the comparison and interpretation of data from microplastic studies is challenged by inconsistency in methods of detection and analysis. This study reviews the methods reported in historical estuarine-based microplastic studies and compares them with current guideline recommendations to identify aspects that need improvement. Our analysis was undertaken on a database of 175 studies conducted across 36 countries between 2013 and 2023. We show that the majority of database studies (71 %) use suitable identification methods; however, fewer studies report recommended analytical representation (47 %) and analytical proportions (40 %). Only 30 % of the studies in our database utilised methods that align with all current recommendations. We further examined the use of density separation methods, used to separate microplastics from sediment samples and found only a low proportion of these studies (8 %) adhered to current guideline recommendations. Our findings indicate that there has been little improvement in the methods used in historical estuarine-based studies over the last 10 years. This demonstrates the need for greater focus on considering and reporting analytical representation and proportions in future work to ensure microplastic prevalence is accurately measured.
Collapse
Affiliation(s)
- Thomas W Crutchett
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia; UWA Oceans Institute, The University of Western Australia, Crawley, Western Australia 6009, Australia.
| | - Kathryn L Linge
- ChemCentre, PO Box 1250, Bentley, Western Australia 6102, Australia
| | - Peter Novak
- Rivers and Estuaries Science, Biodiversity and Conservation Science Division, Department of Biodiversity, Conservation and Attractions, Kensington, Western Australia 6151, Australia
| | - Julian Partridge
- UWA Oceans Institute, The University of Western Australia, Crawley, Western Australia 6009, Australia
| | - Harriet Paterson
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia; UWA Oceans Institute, The University of Western Australia, Crawley, Western Australia 6009, Australia; Great Southern Marine Research Facility, Albany, Western Australia 6330, Australia
| | - Renae K Hovey
- School of Biological Sciences, The University of Western Australia, Crawley, Western Australia 6009, Australia; UWA Oceans Institute, The University of Western Australia, Crawley, Western Australia 6009, Australia
| |
Collapse
|
9
|
Xue W, Bhandari R, Tutor J, Siengpairou N, Tabucanon AS. Spatial and temporal variations of microplastics in the lower Chao Phraya River, Thailand: an investigation during the COVID-19 pandemic period. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:6970-6983. [PMID: 40021554 DOI: 10.1007/s11356-025-36161-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 02/19/2025] [Indexed: 03/03/2025]
Abstract
This study systematically investigated the abundance, characteristics, and spatial and temporal variations of microplastics (MPs) in the lower Chao Phraya River, Thailand, during the COVID-19 pandemic. The study revealed an average MP abundance of 8.3 ± 5.8 particles/m3, mainly composed of polyethylene (PE) and polypropylene (PP) with fibers and fragments being the predominant shapes. Spatially, MP concentrations exhibited a notable increase downstream, particularly in highly urbanized areas. Temporally, MP concentrations showed slight elevation during the wet season, with clear seasonal variations in MP size and shape distributions attributed to the influence of urban storm runoff. Despite expectations of heightened MP pollution due to the COVID-19 pandemic, the study suggests a potential reduction in MP abundance, likely attributed to decreased socio-economic activities. Nonetheless, the long-term effects remain uncertain, underscoring the imperative for continuous monitoring and effective environmental management strategies.
Collapse
Affiliation(s)
- Wenchao Xue
- Department of Water Resources and Environmental Engineering, School of Engineering and Technology, Asian Institute of Technology, P.O. Box 4, Klong Luang, 12120, Pathumthani, Thailand.
| | - Roshan Bhandari
- Department of Water Resources and Environmental Engineering, School of Engineering and Technology, Asian Institute of Technology, P.O. Box 4, Klong Luang, 12120, Pathumthani, Thailand
| | - Jasmin Tutor
- Department of Water Resources and Environmental Engineering, School of Engineering and Technology, Asian Institute of Technology, P.O. Box 4, Klong Luang, 12120, Pathumthani, Thailand
| | - Nitcharat Siengpairou
- Department of Water Resources and Environmental Engineering, School of Engineering and Technology, Asian Institute of Technology, P.O. Box 4, Klong Luang, 12120, Pathumthani, Thailand
| | | |
Collapse
|
10
|
Nikki R, Abdul Jaleel KU, Abdul Razaque MA, Gupta P, Rathore C, Saha M, Ramzi A, Gireesh Kumar TR. Assessment of hazardous microplastic polymers and phthalic acid esters in an invasive mollusk (Mytella strigata) from the Cochin estuary, southwest coast of India: Unraveling ecosystem risks. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 967:178798. [PMID: 39946875 DOI: 10.1016/j.scitotenv.2025.178798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 01/29/2025] [Accepted: 02/06/2025] [Indexed: 03/05/2025]
Abstract
This paper characterizes the abundance, chemical characteristics, and potential hazards of microplastics (MPs) in water, sediment, and Mytella strigata from the Cochin Estuary (CE). In parallel, concentrations of plastic additives such as PAEs were measured in M. strigata to explore a possible relationship with MP contamination levels. A 100 % prevalence of MPs was observed with abundances ranging from 900 ± 100 to 1850 ± 150 particles/m3 in water and 540 ± 90 (CBM) to 1180 ± 320 particles/kg in sediment respectively. Marked spatial variations in abundance and composition of MPs were noted within the study area in relation to the hydrodynamic conditions and geographic location. Microplastic (MP) abundance in M. strigata varied from 3.8 ± 3 to 9.3 ± 5 particles/ind. in digestive (D) and 3.1 ± 2 to 7.8 ± 4 particles/ind. in non-digestive (ND) parts; and was related to the ambient concentration and composition. The abundance of MPs also showed a positive relation with the size of the organism. Fiber was the most abundant morphotype in the water and the organisms, while fragments dominated in sediment. Transparent, red, black, and blue were the dominant colors recovered from the study. The prevalence of smaller-sized (<2 mm) MPs indicates greater bioavailability to biota. The low pollution load index (PLI) implies a lower risk level (level I) in the study area, while the high polymer risk index (PHI>100) underlines the ecological risk associated with polymers, even at minimal concentrations. The study analyzed over 70 % of MPs qualitatively and identified 38 diverse polymers such as PVC, PAM, PA 6, UP, PVAL, PC. The ∑14 PAE congeners were quantified in the tissue of M. strigata; among them, DnBP, DIBP, DEEP, DMPP, DPP, DBEP, DEHP, and DEP are the dominant PAEs. This study illustrates that a major portion of PAEs in M. strigata are derived from MPs, considerably impacting the quality and quantity of such bioresources. This study is the first of its kind from the region, and the species selected (M. strigata) is found to be an ideal species for the in-situ and ex-situ studies of MPs, owing to its cosmopolitan distribution, sedentary and suspension feeding habit, and tolerance to a wide range of environmental conditions. Furthermore, quantitative estimation of PAEs is proposed as an indicator of MP contamination in the aquatic environment.
Collapse
Affiliation(s)
- Ramachandran Nikki
- CSIR-National Institute of Oceanography, Regional Centre, Kochi, -682018, Kerala, India; Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science & Technology (CUSAT), Cochin -682016, Kerala, India
| | - K U Abdul Jaleel
- CSIR-National Institute of Oceanography, Regional Centre, Kochi, -682018, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| | - M A Abdul Razaque
- CSIR-National Institute of Oceanography, Regional Centre, Kochi, -682018, Kerala, India; Department of Marine Biology, Microbiology and Biochemistry, School of Marine Sciences, Cochin University of Science & Technology (CUSAT), Cochin -682016, Kerala, India
| | - Priyansha Gupta
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Chayanika Rathore
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Mahua Saha
- CSIR-National Institute of Oceanography, Dona Paula, Goa 403004, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - A Ramzi
- CSIR-National Institute of Oceanography, Regional Centre, Kochi, -682018, Kerala, India
| | - T R Gireesh Kumar
- CSIR-National Institute of Oceanography, Regional Centre, Kochi, -682018, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
11
|
Boshoff BJ, Hull KL, von der Heyden S. The interaction between seagrass meadow density and microplastic retention in four cool-temperate estuaries. MARINE POLLUTION BULLETIN 2025; 212:117502. [PMID: 39740518 DOI: 10.1016/j.marpolbul.2024.117502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/20/2024] [Accepted: 12/23/2024] [Indexed: 01/02/2025]
Abstract
Microplastics are widespread pollutants of estuarine ecosystems. Seagrasses have been hypothesized to filter microplastics through their dense meadows, yet the mechanisms governing their interaction with microplastics are not well understood, particularly within a South African context. Here we compared how microplastics might accumulate in the sediments associated with Zostera capensis meadows across dense and patchy meadows and unvegetated sediment. In addition, estuarine surface waters were sampled and analysed. The number of microplastics ranged between 23.5 ± 24.9 and 30.1 ± 22.1 microplastics per Kg sediment, with up to 70 % identified as fibres. In three of the four estuaries, a greater abundance of microplastics were found in areas of dense seagrass coverage compared to bare sediment, with fibres and fragments found to be the dominant microplastic. Estuarine surface waters revealed microplastic concentrations ranging from 1.7 ± 1.6 to 2.5 ± 1.4 MPs per m3, with 88 % of samples containing microplastics. This study confirms the trapping ability of Z. capensis meadows for microplastics and highlights paucity of regional knowledge into the effects that microplastics may have on seagrass health and persistence.
Collapse
Affiliation(s)
- Bianca J Boshoff
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, South Africa
| | - Kelvin L Hull
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, South Africa
| | - Sophie von der Heyden
- Department of Botany and Zoology, Stellenbosch University, Private Bag X1, Matieland, South Africa.
| |
Collapse
|
12
|
Alves RS, Dos Santos VMC, Moreira RA, de Alcantara GCL, Lima ER, Paiva BP, Teixeira CEP, Neto VS, Ayala AP, Chelazzi D, Feitosa JPM, Soares MO, Giarrizzo T, Viana MB. How does the tidal cycle influence the estuarine dynamics of microplastics? MARINE POLLUTION BULLETIN 2025; 211:117471. [PMID: 39706093 DOI: 10.1016/j.marpolbul.2024.117471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 12/14/2024] [Accepted: 12/15/2024] [Indexed: 12/23/2024]
Abstract
Estuaries are the main pathway for the microplastics (MPs) to enter into the oceans. However, factors that drive river-sea transport of MPs are not yet fully understood. Therefore, our research investigated the influence of the tidal cycle on the abundance and characteristics of MPs in an urban estuary, through high-frequency sampling (every 2-3 h) using a plankton net (120 μm mesh size) in two seasons (rainy and dry seasons). The results showed that the abundance of MPs decreased during the ebb tide and increased during the flood tide. A positive correlation was found between MP abundance and water height in both seasons. The shapes and colors of MPs varied significantly throughout the tidal cycle. The results show that tides are key agents in the transfer of MPs and cannot be neglected in models of the global contribution of plastic pollution from rivers to oceans.
Collapse
Affiliation(s)
- Ravena Santiago Alves
- Instituto de Ciências do Mar (LABOMAR), Universidade Federal do Ceará (UFC), Fortaleza, Brazil.
| | | | - Rebeca Amon Moreira
- Instituto de Ciências do Mar (LABOMAR), Universidade Federal do Ceará (UFC), Fortaleza, Brazil.
| | | | - Emanuelle Ribeiro Lima
- Instituto de Ciências do Mar (LABOMAR), Universidade Federal do Ceará (UFC), Fortaleza, Brazil.
| | - Bárbara Pereira Paiva
- Instituto de Ciências do Mar (LABOMAR), Universidade Federal do Ceará (UFC), Fortaleza, Brazil.
| | | | - Vasco Stascxak Neto
- Departamento de Física, Universidade Federal do Ceará (UFC), Fortaleza, Brazil.
| | | | - David Chelazzi
- Department of Chemistry "Ugo Schiff" and CSGI, University of Florence, Florence, Italy.
| | | | - Marcelo Oliveira Soares
- Instituto de Ciências do Mar (LABOMAR), Universidade Federal do Ceará (UFC), Fortaleza, Brazil.
| | - Tommaso Giarrizzo
- Instituto de Ciências do Mar (LABOMAR), Universidade Federal do Ceará (UFC), Fortaleza, Brazil.
| | - Michael Barbosa Viana
- Instituto de Ciências do Mar (LABOMAR), Universidade Federal do Ceará (UFC), Fortaleza, Brazil.
| |
Collapse
|
13
|
Zoveidadianpour Z, Alava JJ, Drever MC, Schuerholz G, Pierzchalski C, Douglas T, Heath WA, Juurlink B, Bendell L. Microplastic distribution and composition in mudflat sediments and varnish clams (Nuttallia obscurata) at two estuaries of British Columbia, Canada: An assessment of potential anthropogenic sources. MARINE POLLUTION BULLETIN 2025; 211:117367. [PMID: 39626500 DOI: 10.1016/j.marpolbul.2024.117367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Revised: 11/22/2024] [Accepted: 11/28/2024] [Indexed: 02/13/2025]
Abstract
Widespread microplastic contamination affects the marine-coastal ecosystems in British Columbia, Canada. To understand the characteristics and spatial distribution of of microplastics (MPs), we compared the MPs in sediments (n = 159) and Varnish clams (Nuttallia obscurata; n = 160) collected from two estuarine ecosystems (Cowichan and K'ómoks) experiencing different anthropogenic impacts; primarily resource extraction (i.e., logging) at Cowichan and urban development at K'omoks. Our objective wasto determine the MP abundance levels in sediments and clams and infer possible sources of MPs at the two estuaries. Microplastic polymer type was confirmed through FTIR spectrometry. The average abundance of MPs in sediments were 14.37 ± 11.57 particles/kg in the Cowichan Estuary and 30.96 ± 14.58 particles/kg in the K'ómoks Estuary. Varnish clam samples contained average abundance of 3.62 ± 2.58 particles/g and 2.24 ± 1.96 particles/g in Cowichan and K'ómoks estuaries, respectively. The Cowichan Estuary's marine terminal and K'ómoks Marina were found to be hotspots for MPs, likely due to a combination of industrial and local sources. Fibers were the most common type of MPs found in both sediment (53.34 %) and clam samples (53.5 %) from Cowichan, as well as in clam samples in% K'ómoks, indicating a potential link to textile sources contributing to the widespread presence of MPs in the marine environment. There was no clear signal based on the primary use of the estuary. Polyethylene was the predominant polymer type of MPs found in sediment and clam samples at Cowichan, whereas Polyester was most common at K'ómoks. Our study revealed the ubiquitous nature of these emerging pollutants in the sensitive estuarine environments of BC, with implications for plastic waste management and the reduction of plastic pollution at the regional level.
Collapse
Affiliation(s)
- Zeinab Zoveidadianpour
- Ecotoxicology Research Group, Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby, British Columbia V5A 1S6, Canada; Ocean Pollution Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, AERL 2202 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada.
| | - Juan José Alava
- Ocean Pollution Research Unit, Institute for the Oceans and Fisheries, University of British Columbia, AERL 2202 Main Mall, Vancouver, British Columbia V6T 1Z4, Canada
| | - Mark C Drever
- Environment and Climate Change Canada, Pacific Wildlife Research Centre, 5421 Robertson Rd, Delta, British Columbia V4K 3N2, Canada
| | - Goetz Schuerholz
- Cowichan Estuary Restoration and Conservation Association, 1069 Khenipsen Road, Duncan, British Columbia V9L 5L3, Canada
| | - Caitlin Pierzchalski
- Project Watershed Society, 2356A Rosewall Crescent in Tin Town, Courtenay, BC, V9N 8R9, Canada
| | - Tristan Douglas
- Cowichan Estuary Restoration and Conservation Association, 1069 Khenipsen Road, Duncan, British Columbia V9L 5L3, Canada; Faculty of Forestry, 2424 Main Mall, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - William A Heath
- Cowichan Estuary Restoration and Conservation Association, 1069 Khenipsen Road, Duncan, British Columbia V9L 5L3, Canada
| | - Bernhard Juurlink
- Cowichan Estuary Restoration and Conservation Association, 1069 Khenipsen Road, Duncan, British Columbia V9L 5L3, Canada
| | - Leah Bendell
- Ecotoxicology Research Group, Department of Biological Sciences, Simon Fraser University, 8888 University Dr., Burnaby, British Columbia V5A 1S6, Canada
| |
Collapse
|
14
|
Rezania S, Miri S, Cho J, Hur J, Kamyab H, Darajeh N, Mohammadi AA, Molani F, Taghavijeloudar M. Microplastic pollution in the marine environment: Distribution factors and mitigation strategies in different oceans. JOURNAL OF CONTAMINANT HYDROLOGY 2025; 269:104496. [PMID: 39793407 DOI: 10.1016/j.jconhyd.2025.104496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 12/12/2024] [Accepted: 01/01/2025] [Indexed: 01/13/2025]
Abstract
As the COVID-19 pandemic began in 2020, plastic usage spiked, and microplastic (MP) generation has increased dramatically. It is documented that MP can transfer from the source to the ocean environment where they accumulate as the destination. Therefore, it is essential to understand their transferring pathways and effective environmental factors to determine the distribution of MPs in the marine environment. This article reviews the environmental factors that affect MP distribution in the oceans including abiotic such as ocean currents and wind direction, physical/chemical and biological reactions of MPs, natural sinking, particle size and settling velocity, and biotic including biofouling, and incorporation in fecal material. It was found that velocity and physical shearing are the most important parameters for MP accumulation in the deep ocean. Besides, this review proposes different research-based, national-level, and global-level strategies for the mitigation of MPs after the pandemic. Based on the findings, the level of MP pollution in the oceans is directly correlated to coastal areas with high populations, particularly in African and Asian countries. Future studies should focus on establishing predictive models based on the movement and distribution of MPs to mitigate the levels of pollution.
Collapse
Affiliation(s)
- Shahabaldin Rezania
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea.
| | - Saba Miri
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, Ontario M3J 1P3, Canada
| | - Jinwoo Cho
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Jin Hur
- Department of Environment and Energy, Sejong University, Seoul 05006, South Korea
| | - Hesam Kamyab
- Department of Biomaterials, Saveetha Dental College and Hospital, Saveetha Institute of Medical and Technical Sciences, Chennai 600077, India; The KU-KIST Graduate School of Energy and Environment, Korea University, 145 Anam-ro, Seongbuk-Gu, Seoul 02841, Republic of Korea
| | - Negisa Darajeh
- Aurecon Group, 110 Carlton Gore Road, Newmarket, Auckland 1023, New Zealand
| | - Ali Akbar Mohammadi
- Department of Environmental Health Engineering, School of Public Health, Neyshabur University of Medical Sciences, Neyshabur, Iran; Workplace Health Research Center, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Farzad Molani
- Department of Chemistry, Islamic Azad University, Sanandaj Branch, Sanandaj, Iran
| | - Mohsen Taghavijeloudar
- Department of Civil and Environmental Engineering, Seoul National University, 151-744 Seoul, South Korea
| |
Collapse
|
15
|
Kong ZH, Liu T, Burdon FJ, Truchy A, Futter M, Bundschuh M, Hurley R, Bertilsson S, Mckie BG. Microplastics in freshwaters: Comparing effects of particle properties and an invertebrate consumer on microbial communities and ecosystem functions. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 289:117697. [PMID: 39805198 DOI: 10.1016/j.ecoenv.2025.117697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 11/01/2024] [Accepted: 01/05/2025] [Indexed: 01/16/2025]
Abstract
The effects of microplastic (MP) accumulation in freshwaters on organisms and ecosystem functions are poorly understood, as are the roles of MP particle properties in regulating these effects. In freshwater microcosms, we quantified variation in microbial communities and ecosystem functions and compared effects of MP concentration (0, 1000, 50000 particles/kgsediment), shape (sphere, fragment, fibre), and polymer (polyethylene, polyethylene terephthalate, polypropylene, polystyrene) with those of a model invertebrate consumer (Chironomus riparius). We detected multiple effects of specific MP properties, especially associated with MP fragments and fibres, and the polymer polypropylene. These effects included increases in microbial abundance, consumer biomass and ecosystem respiration, as well as decreases in microbial enzyme activity and water chlorophyll-a. MP presence was also associated with increased relative abundance of microbial taxa reported to degrade plastics. However, consumer presence mostly had stronger effects (effect sizes ranging from ± 11 -313 %) than MP exposure (effect sizes ranging from ± 1-89 %) on microbial communities and ecosystem functions. Furthermore, several MP effects were only detected when chironomid consumers were absent. Overall, our findings suggest that MP effects on microbes and ecosystem functions are often relatively small and variable, depending on particle properties and consumer presence. Nevertheless, the number of MP effects detected highlights the need for further investigations of interactions between MPs and other environmental drivers, to more thoroughly assess the risks of MP pollution for freshwater ecosystems.
Collapse
Affiliation(s)
- Ze Hui Kong
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden.
| | - Tong Liu
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Francis J Burdon
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden; Te Aka Mātuatua ‑ School of Science, University of Waikato, Hamilton, New Zealand
| | - Amélie Truchy
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden; UR RiverLy, Centre Lyon‑Grenoble Auvergne‑Rhône‑Alpes, French National Institute for Agriculture, Food, and Environment (INRAE), Lyon, France
| | - Martyn Futter
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Mirco Bundschuh
- iES Landau, Institute for Environmental Sciences, University of Kaiserslautern-Landau (RPTU), Fortstrasse 7, 76829 Landau, Germany
| | - Rachel Hurley
- Norwegian Institute for Water Research (NIVA), Norway
| | - Stefan Bertilsson
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Brendan G Mckie
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Uppsala, Sweden
| |
Collapse
|
16
|
Paramasivan T, Md Amin R, Zhao S, Wang T, Roseli N, Li D, Khalil I, Mohamad Y. Microplastic abundance in the surface water of tropical estuarine fronts. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:587-602. [PMID: 39695036 DOI: 10.1007/s11356-024-35711-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 11/29/2024] [Indexed: 12/20/2024]
Abstract
Estuarine fronts are formed due to sharp density discontinuities resulting from the convergence of different water masses. This study, conducted in May and August of 2022 during the southwest monsoon season, focuses on assessing the role of estuarine fronts at Kuala Terengganu estuary in the accumulation of microplastics in surface seawater. The Terengganu River basin area covers approximately 4600 km2 and consists of two main tributaries that drain into the Kuala Terengganu estuary. Microplastic samples were collected from three areas, the plume, front, and shelf, utilizing two methods: manta net (> 350 µm) and bucket-water sampling (> 20 µm). Results indicate that the estuarine front consistently exhibited higher microplastic concentrations than the plume and shelf regions throughout the study period, with bucket-water sampling contributing significantly to the abundance. Specifically, peak concentrations occurred during the ebb tide at the frontal region in both months, reaching 5761.703 particles m-3 and 12,687.437 particles m-3, respectively. The microplastics, predominantly transparent fibers smaller than 1000 µm, mostly showed signs of oxidative and mechanical weathering through SEM-EDS analysis, providing insights into their fate in estuarine surface waters. FTIR spectroscopy revealed polypropylene, polyethylene, and polyamide as the dominant polymers. These findings establish a baseline for microplastic abundance at the estuarine front of the Kuala Terengganu estuary and may inform future strategies for mitigating and recovering microplastic contamination in aquatic environments.
Collapse
Affiliation(s)
- Thaarshini Paramasivan
- Faculty of Science and Marine Environment, University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Roswati Md Amin
- Faculty of Science and Marine Environment, University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia.
| | - Shiye Zhao
- Japan Agency for Marine-Earth Science and Technology, Yokosuka, Japan
| | - Tao Wang
- Key Laboratory of Marine Environment and Ecology, Ocean University of China, Qingdao, China
| | - Nurhidayah Roseli
- Faculty of Science and Marine Environment, University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Daoji Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, China
| | - Idham Khalil
- Faculty of Science and Marine Environment, University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Yuzwan Mohamad
- Faculty of Science and Marine Environment, University Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| |
Collapse
|
17
|
Monnanni A, Rimondi V, Morelli G, Nannoni A, Cincinelli A, Martellini T, Chelazzi D, Laurati M, Sforzi L, Ciani F, Lattanzi P, Costagliola P. Microplastics and microfibers contamination in the Arno River (Central Italy): Impact from urban areas and contribution to the Mediterranean Sea. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 955:177113. [PMID: 39490839 DOI: 10.1016/j.scitotenv.2024.177113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 10/04/2024] [Accepted: 10/19/2024] [Indexed: 11/05/2024]
Abstract
Fluvial ecosystems are among the main drivers of microparticles (MPC) in the form of both synthetic polymers (i.e. microplastics; MPs) and natural-based textile fibers (MFTEX) to the seas. A wide dimensional range of MPC (5 to 5000 μm, hereafter MPCTOT) were investigated for the first time in the Arno River waters, one of the principal rivers of Central Italy, crossing a highly anthropized landscape. Fluxes of MPCTOT discharging to the Mediterranean Sea, one the most polluted Sea worldwide, were estimated as well. A specific sampling and analytical protocol was set up to distinguish between microplastics (MPs) and natural-based textile fibers (MFTEX) contribution for MPC larger than 60 μm (MPC>60), and investigate MPC smaller than 60 μm (MPC<60) as well. Results suggest extreme MPCTOT contamination all along the river (up to 6 × 104 particles/L), strongly driven by MPC<60, which account for >99 % of total particles found and whose abundance increases inversely with particle size. The MPC>60 fraction (<0.5 % of MPCTOT) highlighted a predominance (76 % of the total) of MFTEX and synthetic polymers microfibers (e.g., PET) suggesting strong contributions from laundry effluents. Specifically, MFTEX represent around 70 % of all MPC>60. The metropolitan area of Florence was identified as an MPCTOT hotspot as a consequence of the intense urbanization and possibly of over-tourism phenomenon affecting the city. The Arno River discharges approximately 4.6 × 1015 MPCTOT annually to the Mediterranean Sea. Fluxes are highly dependent on the seasonality, with a MPCTOT delivery of 2.4 × 1013 particles/day and 1.2 × 1012 particles/day during wet and dry season, respectively. The total mass of discharged MPCTOT is estimated at about 29 tons/year (t/y); the MPC>60 fraction amounts to about 8 t/y, and MFTEX to about 1 t/y.
Collapse
Affiliation(s)
- Alessio Monnanni
- Department of Earth Sciences, University of Florence, 50121 Florence, Italy
| | - Valentina Rimondi
- Department of Earth Sciences, University of Florence, 50121 Florence, Italy.
| | - Guia Morelli
- CNR-IGG, Istituto di Geoscienze e Georisorse, 50121 Florence, Italy
| | - Alessia Nannoni
- Department of Earth Sciences, University of Florence, 50121 Florence, Italy
| | - Alessandra Cincinelli
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Florence, Italy
| | - Tania Martellini
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Florence, Italy
| | - David Chelazzi
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Florence, Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), University of Florence, 50019, Sesto Fiorentino, Florence, Italy
| | - Marco Laurati
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Florence, Italy; Consorzio Interuniversitario per lo Sviluppo dei Sistemi a Grande Interfase (CSGI), University of Florence, 50019, Sesto Fiorentino, Florence, Italy
| | - Laura Sforzi
- Department of Chemistry "Ugo Schiff", University of Florence, 50019, Sesto Fiorentino, Florence, Italy
| | - Francesco Ciani
- Department of Earth Sciences, University of Florence, 50121 Florence, Italy
| | | | | |
Collapse
|
18
|
Gao S, Zhang S, Feng Z, Lu J, Fu G, Yu W. The bio-accumulation and -magnification of microplastics under predator-prey isotopic relationships. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:135896. [PMID: 39378590 DOI: 10.1016/j.jhazmat.2024.135896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 09/09/2024] [Accepted: 09/17/2024] [Indexed: 10/10/2024]
Abstract
Recent studies on microplastics (MPs) in marine ecosystems have focused on their bioaccumulation and biomagnification within food chains, emphasizing their potential health risks to humans. However, these bio-effects of MPs in marine ecosystems remain a contentious issue. Employing the "consumer-dietary source" tracking function in stable isotope analysis can enhance our comprehension of how MPs magnify in organisms. In our research conducted in the coastal waters of Haizhou Bay, Jiangsu, China, we examined two commercially important fish species, Larimichthys polyactis and Collichthys lucidus, through stable isotope analysis to investigate the accumulation of MPs in their dietary sources. Results revealed fiber, blue, and PET as the primary shapes, colors, and polymers of MPs in the region. C. lucidus displayed a broader isotopic niche and a higher propensity for MP accumulation than L. polyactis. Biomagnification analysis indicated that dominant MP shapes, colors, and polymers were magnified in both fish species, with MPs smaller than 3 mm exhibiting substantial biomagnification. Factors such as feeding strategies and habitat preferences may influence MP ingestion by fish. We conclude that a high proportion of dietary sources in fish does not necessarily equate to a high concentration of MPs. Neglecting the proportion of dietary sources might lead to underestimating MP biomagnification. Therefore, a multidimensional approach to exploring the biomagnification of MPs is essential to accurately grasp this unique pollutant's impact.
Collapse
Affiliation(s)
- Shike Gao
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China; Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba 277-8564, Japan
| | - Shuo Zhang
- College of Marine Living Resource Sciences and Management, Shanghai Ocean University, Shanghai 201306, China; Joint Laboratory for Monitoring and Conservation of Aquatic Living Resources In the Yangtze Estuary, Shanghai 200000, China.
| | - Zhihua Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China.
| | - Jikun Lu
- Marine and Fishery Development Promotion Center In Lianyungang, Lianyungang 222002, Jiangsu, China.
| | - Guanghui Fu
- Marine and Fishery Development Promotion Center In Lianyungang, Lianyungang 222002, Jiangsu, China
| | - Wenwen Yu
- Jiangsu Research Institute of Marine Fisheries, Nantong 226007, China.
| |
Collapse
|
19
|
Anandavelu I, Karthik R, Robin RS, Hariharan G, Mugilarasan M, Ramesh R, Purvaja R. Morphometric characteristics and spatiotemporal heterogeneity of microplastics on the north-east coast of India. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136180. [PMID: 39427351 DOI: 10.1016/j.jhazmat.2024.136180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 09/27/2024] [Accepted: 10/13/2024] [Indexed: 10/22/2024]
Abstract
The study analysed microplastics (MPs) in surface waters along the north-east coast of India and focused on the spatiotemporal distribution and morphometric characteristics of 800 particles for environmental insights. The MPs were consistently present in all water masses, with an average abundance of 0.67 ± 0.66 particles/m3 during the monsoon and 0.12 ± 0.08 particles/m3 post-monsoon. Fragments and fibers were dominant in both seasons, comprising over 83 % and 12 %, respectively. In terms of colours, blue was significantly dominant during the post-monsoon (H, χ2 (5) = 15.38, p < 0.01); however, such variation was absent during the monsoon. Spatially, significant variance in abundance (F4, 34 = 8.542; p < 0.01) and across colours and forms during the monsoon was correlated with land-based inputs from the Hooghly River. FTIR analysis revealed ten polymer types, predominantly polyethylene (44 %). SEM observations indicated that 80 % of particles exhibited polymer ageing from oxidative weathering. The size distribution of MPs varied notably, with a higher proportion of < 0.3 mm (16.7 %) during the monsoon, possibly due to increased particle disintegration. The study noted MPs had low to moderate circularity, with increased irregularity during the monsoon due to heavy precipitation and river flushing. An initial risk assessment of MP pollution in surface waters on the north-east coast revealed a low-risk state. Acrylonitrile butadiene styrene (ABS) was identified as the most hazardous MP polymer. A wide range of toxic trace elements were found in MPs in these waters. The findings from the study deepen our knowledge of MPs and their fate in the pelagic zone, which supports the development of science-based policies that effectively reduce MP pollution.
Collapse
Affiliation(s)
- I Anandavelu
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India
| | - R Karthik
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India
| | - R S Robin
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India.
| | - G Hariharan
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India
| | - M Mugilarasan
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India
| | - R Ramesh
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India
| | - R Purvaja
- National Centre for Sustainable Coastal Management, Ministry of Environment, Forest and Climate Change, Chennai 600025, India
| |
Collapse
|
20
|
Adomako MO, Jin L, Li C, Liu J, Adu D, Seshie VI, Yu FH. Mechanisms underpinning microplastic effects on the natural climate solutions of wetland ecosystems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 954:176491. [PMID: 39341239 DOI: 10.1016/j.scitotenv.2024.176491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 09/04/2024] [Accepted: 09/22/2024] [Indexed: 09/30/2024]
Abstract
Wetland ecosystems are vital carbon dioxide (CO2) sinks, offering significant nature-based solutions for global climate mitigation. However, the recent influx of microplastic (MP) into wetlands substantially impacts key drivers (e.g., plants and microorganisms) underpinning these wetland functions. While MP-induced greenhouse gas (GHG) emissions and effects on soil organic carbon (SOC) mineralization potentially threaten the long-term wetland C-climate feedbacks, the exact mechanisms and linkage are unclear. This review provides a conceptual framework to elaborate on the interplay between MPs, wetland ecosystems, and the atmospheric milieu. We also summarize published studies that validate possible MP impacts on natural climate solutions of wetlands, as well as provide extensive elaboration on underlying mechanisms. We briefly highlight the relationships between MP influx, wetland degradation, and climate change and conclude by identifying key gaps for future research priorities. Globally, plastic production, MP entry into aquatic systems, and wetland degradation-related emissions are predicted to increase. This means that MP-related emissions and wetland-climate feedback should be addressed in the context of the UN Paris Climate Agreement on net-zero emissions by 2050. This overview serves as a wake-up call on the alarming impacts of MPs on wetland ecosystems and urges a global reconsideration of nature-based solutions in the context of climate mitigation.
Collapse
Affiliation(s)
- Michael Opoku Adomako
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, Zhejiang, China
| | - Ling Jin
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong; Department of Health Technology and Informatics, The Hong Kong Polytechnic University, Kowloon, Hong Kong
| | - Changchao Li
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Kowloon, Hong Kong; Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Jian Liu
- Environment Research Institute, Shandong University, Qingdao 266237, China
| | - Daniel Adu
- School of Management Science and Engineering, Jiangsu University, Zhejiang 212013, Jiangsu, China
| | - Vivian Isabella Seshie
- Department of Environmental and Safety Engineering, University of Mines and Technology, Tarkwa, Ghana
| | - Fei-Hai Yu
- Institute of Wetland Ecology & Clone Ecology/Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, Taizhou University, Taizhou, 318000, Zhejiang, China.
| |
Collapse
|
21
|
Chukwuka AV, Adegboyegun AD, Oluwale FV, Oni AA, Omogbemi ED, Adeogun AO. Microplastic dynamics and risk projections in West African coastal areas: Developing a vulnerability index, adverse ecological pathways, and mitigation framework using remote-sensed oceanographic profiles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175963. [PMID: 39226961 DOI: 10.1016/j.scitotenv.2024.175963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 08/26/2024] [Accepted: 08/30/2024] [Indexed: 09/05/2024]
Abstract
Microplastic pollution presents a serious risk to marine ecosystems worldwide, with West Africa being especially susceptible. This study sought to identify the key factors driving microplastic dynamics in the region. Using NASA's Giovanni system, we analyzed environmental data from 2019 to 2024. Results showed uniform offshore air temperatures due to turbulence (25.22-45.62 K) with significant variations nearshore. Salinity levels remained largely stable (4 PSU) but slightly decreased in southern Nigeria. Surface wind speeds rose from 4.206-5.026 m/s in Nigeria to over 5.848 m/s off Mauritania, while eastward stress hotspots were prominent in Nigeria and from Sierra Leone to Senegal. Photosynthetically available radiation (PAR) beam values peaked off Mauritania and dipped from Nigeria to Sierra Leone, with the inverse pattern observed for diffuse PAR. Hotspots of high absorption, particulate backscattering, elevated aerosol optical depth, and remote sensing reflectance all pointed to substantial particulate matter concentrations. The Microplastic Vulnerability Index (MVI) identifies the coastal stretch from Nigeria to Guinea-Bissau as highly vulnerable to microplastic accumulation due to conditions that favor buildup. In contrast, moderate vulnerability was observed from Guinea-Bissau to Senegal and in Mauritania, where conditions were less extreme, such as higher offshore temperatures that could promote widespread microplastic suspension and cooler nearshore temperatures that favor sedimentation. Increased turbulence and temperatures in coastal areas of Senegal and Mauritania may enhance microplastic transport and impact marine life. In Nigeria, stable coastal conditions-characterized by consistent temperatures, low turbulence, and uniform salinity-may lead to increased persistence and accumulation of microplastics in sensitive habitats like mangroves and coral reefs. These findings highlight the need for region-specific management strategies to address microplastic pollution and effectively protect marine ecosystems.
Collapse
Affiliation(s)
- Azubuike Victor Chukwuka
- Environmental Quality Control Department, National Environmental Standards and Regulations Enforcement Agency (NESREA), Osun State, Nigeria.
| | - Ayotunde Daniel Adegboyegun
- Environmental Quality Control Department, National Environmental Standards and Regulations Enforcement Agency (NESREA), Osun State, Nigeria
| | - Femi V Oluwale
- Zoology Department, University of Ibadan, Oyo State, Nigeria
| | - Adeola A Oni
- Zoology Department, University of Ibadan, Oyo State, Nigeria
| | | | - Aina O Adeogun
- Zoology Department, University of Ibadan, Oyo State, Nigeria.
| |
Collapse
|
22
|
Büngener L, Postila H, Ronkanen AK, Heiderscheidt E. Distribution of microplastics between ice and water in aquatic systems: The influence of particle properties, salinity and freshwater characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:176160. [PMID: 39260475 DOI: 10.1016/j.scitotenv.2024.176160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 08/23/2024] [Accepted: 09/07/2024] [Indexed: 09/13/2024]
Abstract
Microplastics (MPs) are an anthropogenic emerging pollutant, with global contamination of both marine and freshwater systems extensively documented. The interplay of MP particle properties and environmental conditions needs to be understood in order to assess the environmental fate and evaluate mitigation measures. In cold climate, ice formation has appeared to significantly affect the distribution of MPs, but so far, limited research is available comparing different aquatic systems, especially freshwater. Experiments often rely on artificial water and specific MP model particles. This study used laboratory tests to investigate the ice-water distribution of a variety of environmentally relevant MP particle types (PP, PE, PS and PVC fragments (25-1000 μm), PET fibers (average length 821 μm, diameter 15 μm)) across different water types, including artificial water of high and low salinity, as well as natural water from a lake and a treatment wetland. Overall, ice entrapment of MPs occurred in almost all tests, but the ice-water distribution of MPs differed across the different water types tested. Among the tests with artificial water, salinity clearly increased MP concentrations in the ice, but it cannot be resolved whether this is caused by increased buoyancy, changes in ice structure, or thermohaline convection during freezing. In the natural freshwater tests, the partition of MPs was shifted towards the ice compared to what was seen in the artificial freshwater. The influence of different types of dissolved and particulate substances in the different waters on MPs fate should be considered important and further explored. In this study, the higher content of suspended solids in the lake water might have enhanced MP settling to the bottom and thereby contributed to the absence of MPs in the ice of the lake test, compared to the wetland test with low suspended solids and considerably more MPs in the ice. Furthermore, the higher negative charge in the lake water possibly stabilized the negatively charged MPs in suspension, and reduced ice entrapment. Regarding particle properties, shape had a distinct effect, with fibers being less likely incorporated into ice than fragments. No fibers were found in freshwater ice. However, it became clear that ice entrapment of MPs depends on factors other than the particles' buoyancy based on density differences and particle size and shape alone.
Collapse
Affiliation(s)
- Lina Büngener
- Water, Energy and Environmental Engineering, Faculty of Technology, University of Oulu, 90014, Finland.
| | - Heini Postila
- Water, Energy and Environmental Engineering, Faculty of Technology, University of Oulu, 90014, Finland
| | - Anna-Kaisa Ronkanen
- Water, Energy and Environmental Engineering, Faculty of Technology, University of Oulu, 90014, Finland; Finnish Environment Institute, Marine and freshwater solutions, Paavo Havaksen Tie 3, P.O. Box 413, FI-90014 Oulu, Finland
| | - Elisangela Heiderscheidt
- Water, Energy and Environmental Engineering, Faculty of Technology, University of Oulu, 90014, Finland
| |
Collapse
|
23
|
Mancini M, Colomer J, Solari L, Serra T. Shear induced remobilization of buried synthetic microfibers. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124864. [PMID: 39222767 DOI: 10.1016/j.envpol.2024.124864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/04/2024]
Abstract
Microplastics are known to accumulate in sediment beds of aquatic environments where they can be buried. Once buried they can remobilize due to high energetic events, entering the water column again. Here, turbulence induced by an oscillating grid device was used to investigate the remobilization of microfibers (MF) buried into the sediment bed. Four different types of plastic fibers commonly used for several industrial applications (PET, PP, PA and LDPE) and two types of soils (cohesive and non-cohesive) were investigated. Particles were in depth characterized via 3D reconstruction to estimate important parameters like the Corey shape factor and the settling velocity. Experimental runs explored a wide range of shear stresses. Measurements were taken at different time steps (between 15 min and 240 min from the start of each run). The results have shown that the remobilization of MFs is directly proportional to the value of the shear rate and the duration of the disturbance. Also, buoyant MFs were found more prone to remobilize respect to the denser ones. Drawing from experimental observations of the key parameters affecting MF remobilization, a non-dimensional predictive model was developed. A comparison with previous studies was performed to validate the model in order to predict MF remobilization in aquatic environments.
Collapse
Affiliation(s)
- Mirco Mancini
- Department of Civil and Environmental Engineering, University of Florence, Via S. Marta 3, 50139, Florence, Italy
| | - Jordi Colomer
- Department of Physics, University of Girona, Girona, Spain
| | - Luca Solari
- Department of Civil and Environmental Engineering, University of Florence, Via S. Marta 3, 50139, Florence, Italy
| | - Teresa Serra
- Department of Physics, University of Girona, Girona, Spain.
| |
Collapse
|
24
|
Simon-Sánchez L, Vianello A, Kirstein IV, Molazadeh MS, Lorenz C, Vollertsen J. Assessment of microplastic pollution and polymer risk in the sediment compartment of the Limfjord, Denmark. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175017. [PMID: 39059658 DOI: 10.1016/j.scitotenv.2024.175017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/02/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
Estuarine sediments intercept and temporarily retain microplastics before they reach the marine seafloor, impacting various organisms, including key commercial species. This highlights the critical need for research on microplastic exposure in these transitional environments. This study provides a detailed assessment of microplastic pollution in the sediment compartment of the Limfjord, a 1500 km2 large Danish fjord, and introduces the Polymer Hazard Index (PHI) as a tool for evaluating polymer-specific risks. Thirteen sediment samples were collected, covering an anthropogenic gradient along the fjord. State-of-the-art methods were applied for extracting and identifying (FPA-μFT-IR imaging) microplastics (10-5000 μm). Our results indicate that microplastic contamination is pervasive across all sampled locations with concentrations ranging from 273 to 4288 particles kg-1, with a predominance of small microplastics (<100 μm). The estimated mass-based concentrations ranged between 2.60 × 104-1.11 × 106 ng kg-1. Overall, we estimated a microplastic stock of 3.8 × 103-1.65 × 105 kg in the surface sediments of the Limfjord, i.e., some 2.5-110 kg km-2. The application of the PHI revealed significant risks associated with specific polymers, such as polyacrylonitrile (PAN) and acrylonitrile butadiene styrene (ABS), underscoring the importance of considering polymer-specific hazards in environmental assessments.
Collapse
Affiliation(s)
| | - Alvise Vianello
- Department of the Built Environment, Aalborg University, Denmark
| | - Inga V Kirstein
- Alfred-Wegener-Institut Helmholtz-Zentrum für Polar-und Meeresforschung, Biologische Anstalt Helgoland, Helgoland 27498, Germany
| | | | - Claudia Lorenz
- Department of Science and Environment, Roskilde University, Denmark
| | - Jes Vollertsen
- Department of the Built Environment, Aalborg University, Denmark
| |
Collapse
|
25
|
Laiz I, Foletti N, Teles-Machado A, Plecha S, Peliz Á, Sánchez Leal RF, Bolado-Penagos M. Spatial distribution of microplastics in the Gulf of Cadiz as a function of their density: A Lagrangian modelling approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175212. [PMID: 39117237 DOI: 10.1016/j.scitotenv.2024.175212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/22/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Microplastics (MPs) are distributed throughout the world oceans and represent one of the greatest environmental concerns of marine pollution. In the Gulf of Cadiz (GoC), MPs are found throughout the water column, on the seafloor, and accumulated within commercial marine species, primarily due to discharges from the main estuaries. The aim of this study was to analyse the transport pathways, spatial distribution, and accumulation regions of MPs in the GoC based on their density and source. For this, a Lagrangian transport model was coupled to a high-resolution hydrodynamic model and four particle sources were considered: Cape San Vicente, Guadiana Estuary, Guadalquivir Estuary, and Bay of Cadiz/Guadalete River. To account for the diversity of plastics detected in the GoC, particles with ten different densities were used, from low-density to high-density polymers. This study indicates that a significant proportion of low-density MPs accumulate near their sources and within the top few centimetres of the water column due to local surface currents. The Guadalquivir and Guadiana estuaries are the primary contributors to the high accumulation of low-density MPs on the GoC eastern shelf, consistent with previous field studies identifying these estuaries as the main sources of MPs into the region, including polyethylene and polypropylene. In contrast, the Bay of Cadiz/Guadalete River seems to be the primary source of low-density MPs in offshore waters within the uppermost meter of the water column, influenced by local mesoscale features. The Guadalquivir Estuary seems to be the main source of high-density MPs into the continental shelves, such as polystyrene, polyamide, and polyvinyl chloride, followed by the Bay of Cadiz/Guadalete River, and to a lesser extent, the Guadiana estuary. These MPs accumulate near their sources at depths of 3.5 to 50 m due to their high sinking rates, but can also be transported offshore by deep currents, either northwards along the Portuguese offshore waters or westwards off the GoC offshore region.
Collapse
Affiliation(s)
- Irene Laiz
- Departamento de Física Aplicada, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional/Global del Mar (CEI·MAR), Universidad de Cádiz, Puerto Real 11519, Cádiz, Spain.
| | - Nadine Foletti
- Departamento de Física Aplicada, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional/Global del Mar (CEI·MAR), Universidad de Cádiz, Puerto Real 11519, Cádiz, Spain.
| | - Ana Teles-Machado
- Instituto Português do Mar e da Atmosfera (IPMA), Avenida Alfredo Magalhães Ramalho, 6, 1495-165 Algés, Portugal; Universdade de Lisboa, Faculdade de Ciências, Instituto Dom Luiz, Lisboa, Portugal.
| | - Sandra Plecha
- Universdade de Lisboa, Faculdade de Ciências, Instituto Dom Luiz, Lisboa, Portugal.
| | - Álvaro Peliz
- Universdade de Lisboa, Faculdade de Ciências, Instituto Dom Luiz, Lisboa, Portugal.
| | - Ricardo F Sánchez Leal
- Physical Oceanography Dept, Spanish Institute of Oceanography, Cádiz Oceanographic Center, Muelle de Levante s/n, Puerto Pesquero, E-11006 Cádiz, Spain.
| | - Marina Bolado-Penagos
- Departamento de Física Aplicada, Instituto Universitario de Investigación Marina (INMAR), Campus de Excelencia Internacional/Global del Mar (CEI·MAR), Universidad de Cádiz, Puerto Real 11519, Cádiz, Spain.
| |
Collapse
|
26
|
Liu B, Ye K, Lu Y, Deng H, Yang J, Li K, Liu L, Zheng H, Sun K, Jiang Y. Occurrence and risk assessment of microplastics on the Shenzhen coast, South China. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117227. [PMID: 39442256 DOI: 10.1016/j.ecoenv.2024.117227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/16/2024] [Accepted: 10/17/2024] [Indexed: 10/25/2024]
Abstract
Microplastics (MPs) have attracted increasing attention worldwide owing to their widespread presence and potential risks to terrestrial and marine ecosystems. Estimating the pollution status and risk levels of MPs in coastal ecosystems is necessary; however, these are poorly understood in coastal megacities. Here, the abundance and characteristics of MPs in seawater, marine sediment, marine organisms, and beaches in the Shenzhen coastal ecosystems and land sources (river and sewage outfall) were simultaneously investigated, and the annual MPs load of rivers and MP-induced ecological risks were evaluated. The results showed that MPs pollution was prevalent in Shenzhen coastal ecosystems, with the average abundances of 2.40 ± 2.48 items/m3, 404.21 ± 431.48 items/kg, 1.66 ± 1.96 items/individual, and 1648.99 ± 1908.19 items/kg in seawater, marine sediment, marine organisms, and beach sands, respectively. The detected MPs were predominantly fibrous/granular, transparent/white, < 1 mm in size, and polyethylene terephthalate/polyethylene/polystyrene. The spatial distribution patterns of marine MPs are influenced mainly by anthropogenic activities and freshwater inflows (rivers and sewage outfalls). Pollution hotspots of MPs were identified in the Pearl River Estuary, which has a high population, gross domestic product, and river and wastewater discharge. Furthermore, the negative correlation between the abundance of MPs in seawater and salinity indicates that freshwater inflow carrying MPs to the sea is an important source of marine MPs pollution. It has been estimated that approximately 8320 billion MPs particles, weighing 274.55 tons, flow into the Shenzhen coast annually through river input. Based on the MPs polymer types and quantities, the ecological risk of MPs pollution in the Shenzhen coastal ecosystem is moderate and deserves further attention. These findings deepen the understanding of MPs pollution, sources, and ecological risks in the southern coastal region of China, and are helpful for employing effective management strategies to control marine MPs pollution.
Collapse
Affiliation(s)
- Bingjie Liu
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China; Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Kuangmin Ye
- Guangdong Provincial Academy of Environmental Sciences, Guangzhou 510045, China
| | - Yao Lu
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Hanqiang Deng
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Jing Yang
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Kaiming Li
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Liuqingqing Liu
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Hao Zheng
- Institute of Coastal Environmental Pollution Control, College of Environmental Science and Engineering, Ministry of Education Key Laboratory of Marine Environment and Ecology, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao 266100, China
| | - Kaifeng Sun
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China
| | - Yuxia Jiang
- State Environmental Protection Key Laboratory of Water Environmental Simulation and Pollution Control, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510535, China.
| |
Collapse
|
27
|
Wenclawiak JT, Weinstein JE, Key PB, Plante CJ, Beckingham BA. Effects of Vibrio vulnificus and Microcystis aeruginosa co-exposures on microplastic accumulation and depuration in the Eastern Oyster (Crassostrea virginica). ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 359:124558. [PMID: 39029861 PMCID: PMC11371496 DOI: 10.1016/j.envpol.2024.124558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 06/20/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
Microplastics are ubiquitous in the aquatic environment, and bivalves such as the Eastern oyster (Crassostrea virginica) can accumulate these particles directly from the water column. Bivalves are concurrently exposed to pathogenic and toxin-producing bacteria, including Vibrio spp. and Microcystis spp., which have been shown to adversely impact filtration rates. Exposure to these bacteria could thus affect oysters' ability to accumulate and depurate microplastics. As climate change creates conditions that favor Vibrio spp. and Microcystis spp. growth in estuaries, it is increasingly important to understand how these co-occurring biotic stressors influence microplastic contamination in bivalves. The objective of this study was to examine how co-exposures to Vibrio vulnificus and Microcystis aeruginosa influence microplastic accumulation and depuration in Eastern oysters. Oysters were exposed to nylon microplastics (5000 particles L-1) and either V. vulnificus, M. aeruginosa, or both species (104 colony-forming units or cells mL-1, respectively) and sampled over time up to 96 h. Following exposure, remaining oysters were allowed to depurate in clean seawater and sampled over time for up to 96 h. Microplastic concentrations in oysters were quantified and compared among treatments, and rate constants for uptake (ku) and depuration (kd) were calculated using nonlinear regression and two-compartment kinetic models. Overall, microplastic concentrations in oysters exposed to V. vulnificus (X‾ = 2.885 ± 0.350 (SE) particles g-1 w.w.) and V. vulnificus with M. aeruginosa (X‾ = 3.089 ± 0.481 particles g-1 w.w.) were higher than oysters exposed to M. aeruginosa (X‾ = 1.540 ± 0.235 particles g-1 w.w.) and to microplastics alone (X‾ = 1.599 ± 0.208 particles g-1 w.w.). Characterizing microplastic accumulation and depuration in oysters co-exposed to these biotic stressors is an important first step in understanding how contaminant loads in bivalves can change. With this research, the efficacy of depuration for commonly-consumed seafood species can be estimated.
Collapse
Affiliation(s)
- Jessica T Wenclawiak
- Grice Marine Laboratory, College of Charleston, 205 Fort Johnson Road, Charleston, SC, 29412, USA.
| | - John E Weinstein
- Department of Biology, The Citadel, Military College of South Carolina, 171 Moultrie Street, Charleston, SC, 29409, USA
| | - Peter B Key
- National Centers for Coastal Ocean Science, National Ocean Service, National Oceanic and Atmospheric Administration, 331 Fort Johnson Road, Charleston, SC, 29412, USA
| | - Craig J Plante
- Grice Marine Laboratory, College of Charleston, 205 Fort Johnson Road, Charleston, SC, 29412, USA
| | - Barbara A Beckingham
- Department of Geology and Environmental Geosciences, College of Charleston, 66 George Street, Charleston, SC, 29424, USA
| |
Collapse
|
28
|
Kelly NE. Spatial distribution and risk assessment of microplastics in surface waters of the St. Lawrence Estuary. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174324. [PMID: 38960195 DOI: 10.1016/j.scitotenv.2024.174324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 05/31/2024] [Accepted: 06/25/2024] [Indexed: 07/05/2024]
Abstract
Development of effective prevention and mitigation strategies for marine plastic pollution requires a better understanding of the pathways and transport mechanisms of plastic waste. Yet the role of estuaries as a key interface between riverine inputs of plastic pollution and delivery to receiving marine environments remains poorly understood. This study quantified the concentration and distribution of microplastics (MPs) (50-3200 μm) in surface waters of the St. Lawrence Estuary (SLE) in eastern Canada. Microplastics were identified and enumerated based on particle morphology, colour, and size class. Fourier Transform Infrared (FTIR) spectroscopy was used on a subset of particles to identify polymers. Generalized linear models (Gamma distribution with log-link) examined the relationship between MP concentrations and oceanographic variables and anthropogenic sources. Finally, a risk assessment model, using MP concentrations and chemical hazards based on polymer types, estimated the MP pollution risk to ecosystem health. Mean surface MP concentration in the SLE was 120 ± 42 SD particles m-3; MP concentrations were highest in the fluvial section and lowest in the Northwest Gulf of St. Lawrence. However, MP concentrations exhibited high heterogeneity along the length and width of the SLE. Microplastics were elevated at stations located closer to wastewater treatment plant outflows and downstream sites with more agricultural land. Black, blue, and transparent fibers and fragments ≤250 μm were most commonly encountered. Predominant polymer types included polyethylene terephthalate, regenerated cellulose, polyethylene, and alkyds. While the overall risk to ecosystem health in the entire estuary was considered low, several stations, particularly near urban centres were at high or very high risk. This study provides new insights into the quantification and distribution of MPs and first estimates of the risk of MP pollution to ecosystem health in one of the world's largest estuaries.
Collapse
Affiliation(s)
- Noreen E Kelly
- Fisheries and Oceans Canada, 1 Challenger Drive, Dartmouth, NS, Canada.
| |
Collapse
|
29
|
Benner I, Passow U. Why biofouling cannot contribute to the vertical transport of small microplastic. MICROPLASTICS AND NANOPLASTICS 2024; 4:19. [PMID: 39385966 PMCID: PMC11458654 DOI: 10.1186/s43591-024-00098-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 09/27/2024] [Indexed: 10/12/2024]
Abstract
In contrast to expectations, even buoyant microplastics like polyethylene and polypropylene are found at high concentrations in deep sediment traps and deep-sea sediments. To explain the presence of such buoyant microplastic particles at great ocean depths, several vertical transport mechanisms are under discussion with biofouling as one of the most referred. Biofouling is thought to increase the density of microplastic particles to the point that they sink to the deep sea, but this has mostly been shown on large microplastic particles ≥ 1 mm. However, although microplastics are defined as particles between 1 and 5000 μm, most microplastics are < 100 μm. In the ocean plastic particles continuously fragment, converting each "large" particle into several "small" particles, and particle abundance increases drastically with decreasing size. We argue that biofouling is not a reasonable transport mechanism for small microplastic particles ≤ 100 μm, which form the majority of microplastics. Biofilm density depends on its community and composition. A biofilm matrix of extracellular polymeric substances and bacteria has a lower density than seawater, in contrast to diatoms or large organisms like mussels or barnacles. We suggest that a small microplastic particle cannot host a biofilm community consisting of the heavy organisms required to induce sinking. Furthermore, to reach the deep sea within a reasonable timespan, a microplastic particle needs to sink several meters per day. Therefore, the excess density has to not only exceed that of seawater, but also be large enough to enable rapid sinking. We thus argue that biofouling cannot be an efficient vertical transport mechanism for small microplastic. However, biofouling of small microplastic may promote the likelihood of its incorporation into sinking marine snow and increase the probability of its ingestion, allowing its transport to depth.
Collapse
Affiliation(s)
- Ina Benner
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL Canada
| | - Uta Passow
- Department of Ocean Sciences, Memorial University of Newfoundland, St. John’s, NL Canada
| |
Collapse
|
30
|
Pakhomova S, Berezina A, Zhdanov I, Mekhova O, Ilinskaya A, Golyakov A, Polivanova T, Gebruk A, Lusher AL, Yakushev E. Floating microplastics in Svalbard fjords: High spatial variability requires methodological consistency in estuarine systems. MARINE POLLUTION BULLETIN 2024; 207:116803. [PMID: 39116467 DOI: 10.1016/j.marpolbul.2024.116803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 07/27/2024] [Accepted: 07/31/2024] [Indexed: 08/10/2024]
Abstract
Microplastic pollution was studied in surface waters of Isfjorden, Svalbard in July 2021 as a part of an international regional harmonisation exercise. Surface microplastics (0.5-5 mm) were sampled with a neuston net in triplicate per study site in several branches of Isfjorden, covering populated and unpopulated fjords. High spatial variability of microplastic abundance (0-32,700 items/km2) was observed within a single fjord resulting from the hydrodynamic pattern formed through the interaction of surface currents, freshwater runoff, and wind conditions. Maximum microplastic abundance was not correlated with the distance from the local source and was instead defined by local small-scale hydrodynamics. Future recommendations for correct assessment of surface microplastics concentration in estuarine environments are presented.
Collapse
Affiliation(s)
- Svetlana Pakhomova
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway.
| | - Anfisa Berezina
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway
| | - Igor Zhdanov
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Nakhimovskii prosp. 36, Moscow, Russia
| | - Olga Mekhova
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Nakhimovskii prosp. 36, Moscow, Russia
| | - Alisa Ilinskaya
- Norwegian University of Science and Technology, Larsgårdsvegen 2, 6009 Ålesund, Norway
| | - Alexey Golyakov
- North-West Branch of RPA "Typhoon", Beringa str. 38, 199397 St Petersburg, Russia
| | - Tatiana Polivanova
- Shirshov Institute of Oceanology, Russian Academy of Sciences, Nakhimovskii prosp. 36, Moscow, Russia; Geography Faculty of Lomonosov Moscow State University, Leninskiye Gory, 119991, Moscow, Russia
| | - Anna Gebruk
- University of Edinburgh, School of GeoSciences, The King's Buildings, James Hutton Road, Edinburgh EH9 3FE, UK
| | - Amy L Lusher
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway
| | - Evgeniy Yakushev
- Norwegian Institute for Water Research (NIVA), Økernveien 94, 0579 Oslo, Norway
| |
Collapse
|
31
|
Shettigar NA, Bi Q, Toorman E. Assimilating Size Diversity: Population Balance Equations Applied to the Modeling of Microplastic Transport. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2024; 58:16112-16120. [PMID: 39190588 DOI: 10.1021/acs.est.4c02223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2024]
Abstract
Modeling of microplastic (MP) transport in the aquatic environment is complicated by the diverse properties of the plastic particles. Traditional modeling methods such as Lagrangian particle tracking and Eulerian discrete class (DC) methods have limitations as they are not best placed to account for the diverse characteristics of individual particles, namely, size, density, and shape, which are crucial for determining the transport of MPs. In this work, we address the issue of particle size diversity by using the population balance equations (PBE) method. In addition to the advection-diffusion terms, the PBE transport equation involves a deposition sink term. Seven size classes of MPs are modeled in the DC method, which is compared to the PBE method. The evolution of particle size distribution is compared between the two methods using a simplified test case of a schematized estuary with tidal forcing and river discharge. This work successfully demonstrates the applicability and appropriateness of the PBE model in modeling the transport of MPs to track the dynamic and complete size distribution at a reduced computational cost in comparison to the DC model. With the PBE method, it is possible to address other diversities of the MPs such as the shape and density.
Collapse
Affiliation(s)
- Nithin Achutha Shettigar
- Hydraulics and Geotechnics, Department of Civil Engineering, KU Leuven, Kasteelpark Arenberg 40, 3001 Leuven, Belgium
| | - Qilong Bi
- Hydraulics and Geotechnics, Department of Civil Engineering, KU Leuven, Kasteelpark Arenberg 40, 3001 Leuven, Belgium
- Ecosystem and Sediment Dynamics, Deltares, P.O. Box 177, 2600 MH Delft, The Netherlands
| | - Erik Toorman
- Hydraulics and Geotechnics, Department of Civil Engineering, KU Leuven, Kasteelpark Arenberg 40, 3001 Leuven, Belgium
| |
Collapse
|
32
|
Zeng Y, Wang H, Liang D, Yuan W, Li S, Xu H, Chen J. Navigating the difference of riverine microplastic movement footprint into the sea: Particle properties influence. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134888. [PMID: 38897117 DOI: 10.1016/j.jhazmat.2024.134888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/01/2024] [Accepted: 06/10/2024] [Indexed: 06/21/2024]
Abstract
As a critical source of marine microplastics (MPs), estuarine MPs community varied in movement due to particle diversity, while tide and runoff further complicated their transport. In this study, a particle mass gradient that represents MPs in the surface layer of the Yangtze River estuary was established. This was done by calculating the masses of 16 particle types using the particle size probability density function (PDF), with typical shapes and polymers as classifiers. Further, Aschenbrenner shape factor and polymer density were embedded into drag coefficients to categorically trace MP movement footprints. Results revealed that the MPs in North Branch moved northward and the MPs in South Branch moved southeastward in a spiral oscillation until they left the model boundary under Changjiang Diluted Water front and the northward coastal currents. Low-density fibrous MPs are more likely to move into the open ocean and oscillate more than films, with a single PE fiber trajectory that reached a maximum oscillatory width of 16.7 km. Over 95 % of the PVC fiber particles settled in nearshore waters west of 122.5°E. Elucidating the aggregation and retention of different MPs types can provide more accurate environmental baseline reference for more precise MP exposure levels and risk dose of ingestion for marine organisms.
Collapse
Affiliation(s)
- Yichuan Zeng
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Hua Wang
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China.
| | - Dongfang Liang
- Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
| | - Weihao Yuan
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment, Nanjing 210042, China
| | - Siqiong Li
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Haosen Xu
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| | - Jingwei Chen
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, China; College of Environment, Hohai University, Nanjing 210098, China
| |
Collapse
|
33
|
Hoemann C, Bauer CA, Fissore C. Assessing meso-, micro-, and nanoplastic pollution in Los Angeles County estuaries. MARINE POLLUTION BULLETIN 2024; 206:116822. [PMID: 39116758 DOI: 10.1016/j.marpolbul.2024.116822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 08/03/2024] [Accepted: 08/03/2024] [Indexed: 08/10/2024]
Abstract
Estuaries can behave as plastic pollution hotspots, although the dynamics of accumulation in these unique habitats are not understood. We quantified the current levels of meso-, micro-, and nanoplastic pollution in four Los Angeles County estuaries for the first time, as a function of distance from the water outlet and local population density. Fourier-transform infrared spectroscopy (FTIR) and microscope imaging revealed the presence of six types of plastic; polyethylene or polypropylene dominated the meso- and microplastic, and nanoplastics were identified as mainly polyolefin fibers. The distribution was heterogeneous throughout, although the sand between the river mouth and ocean generally contained more plastic than inland control samples. Population density did not appear to affect the abundance of plastic estuarine pollution. Other factors, such as waste treatment effluent, recreation, and river geography, may contribute to plastic deposition. A positive correlation between meso- and microplastic abundance provides insight into such mechanisms for accumulation.
Collapse
Affiliation(s)
- Connor Hoemann
- Department of Environmental Science, Whittier College, Whittier, CA, United States of America
| | - Christina A Bauer
- Department of Environmental Science, Whittier College, Whittier, CA, United States of America.
| | - Cinzia Fissore
- Department of Environmental Science, Whittier College, Whittier, CA, United States of America
| |
Collapse
|
34
|
Nitzberg EJ, Parmar S, Arbuckle-Keil G, Saba GK, Chant RJ, Fahrenfeld NL. Microplastic concentration, characterization, and size distribution in the Delaware Bay estuary. CHEMOSPHERE 2024; 361:142523. [PMID: 38838865 DOI: 10.1016/j.chemosphere.2024.142523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Revised: 05/29/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Microplastic (MP) pollution has been widely reported across water matrices including in estuaries, which are important for the understanding of oceanic MPs. Estuaries can greatly alter the fate, transport, size distribution, and abundance of plastic pollution. The aim of this study was to quantify and characterize MP pollution in the Delaware Bay estuary USA, including the size distribution. Samples (N = 31) were collected from the mouth of the Delaware River to the coastal ocean including multiple frontal zones across two sampling campaigns (2019 and 2022). MP were extracted from the collected particles using wet peroxide oxidation and density separation with saturated sodium chloride. Particles collected on 500 μm mesh sieves were analyzed via Fourier transform infrared (FTIR) spectroscopy. Across all samples, 324 of the 1015 particles analyzed were MP, and 11 macroplastics were observed. MP concentrations ranged from below detection to 4.12 MP/m3 (mean 0.34 ± 0.80 MP/m3). No significant differences were observed between sampling sites; nonetheless, the two highest MP concentrations were observed when sampling along frontal zones with visible debris including macroplastics. Polyethylene (53%) and polypropylene (43%) were the most abundant polymers observed. The majority of the non-plastic particles were classified as particulate natural organic matter (82% of non-plastics). Particles from samples collected during 2022 (N = 864) also had color, morphology, and two size dimensions recorded. MP particle size was significantly associated with sampling site, with the coastal ocean sampling site generally having the smallest MPs. A correlation between total post-extraction particles and total plastic particles was observed. Aspect ratios for the plastics ranged from one to 40.7, with larger ratios for fibers, with a mean (±standard deviation) of 3.39 ± 4.72 (unitless). These aspect ratios can be used to select shape factors used to estimate the total volume of MP in the studied size range. Overall, these results can help inform fate, transport, and risk assessments related to estuarine plastic pollution.
Collapse
Affiliation(s)
- Erik J Nitzberg
- Civil & Environmental Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA
| | - Swaraj Parmar
- Department of Chemistry, Rutgers, The State University of New Jersey, Camden, NJ, USA
| | - Georgia Arbuckle-Keil
- Department of Chemistry, Rutgers, The State University of New Jersey, Camden, NJ, USA
| | - Grace K Saba
- Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - Robert J Chant
- Department of Marine and Coastal Sciences, Rutgers, The State University of New Jersey, New Brunswick, NJ, USA
| | - N L Fahrenfeld
- Civil & Environmental Engineering, Rutgers, The State University of New Jersey, Piscataway, NJ, USA.
| |
Collapse
|
35
|
Wu P, Fan Y, Zhang X, Wu W, Zhang Z, Wu Y, Wang J, Xu J, Chen T, Gao B. Seasonal dynamics, tidal influences, and anthropogenic impacts on microplastic distribution in the Yangtze River estuary: A comprehensive characterization and comparative analysis. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135167. [PMID: 39029194 DOI: 10.1016/j.jhazmat.2024.135167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 07/03/2024] [Accepted: 07/08/2024] [Indexed: 07/21/2024]
Abstract
Microplastics (MPs) are emerging contaminants with significant ecological and human health implications. This study examines the abundance, characteristics, and distribution of MPs in the Yangtze River estuary, focusing on seasonal variations, tidal cycles, and anthropogenic influences. Surface samples were collected using the Manta trawl method to ensure consistency with previous marine MP research. The study found an average MP concentration of 1.01 (± 0.65) n m-3, predominantly comprising low-density polymers such as polystyrene (38 %), polypropylene (33 %), and polyethylene (29 %). MPs were mainly fragments (34.9 %) and foam (30.7 %), with a prevalence of white particles. Seasonal analysis indicated significantly higher MP concentrations during flood seasons (1.32 ± 1.09 n m-3), nearly 1.9 times higher than during non-flood seasons (0.70 ± 0.28 n m-3). Tidal cycles also impacted MP distribution, with ebb tides showing increased concentrations (2.44 ± 1.30 n m-3) compared to flood tides (1.48 ± 2.07 n m-3). Furthermore, MP abundance showed a decreasing trend with increasing distance from urban centers, with significant correlations (0.52 < R2 < 0.65, P < 0.001). These findings underscore the necessity for seasonally adjusted monitoring and robust management strategies to combat MP pollution. The study advocates for the integration of diverse sampling methods and the consideration of environmental factors in future MP assessments, laying the groundwork for understanding the MP transport mechanism in the Yangtze River estuary and similar estuarine systems worldwide.
Collapse
Affiliation(s)
- Panfeng Wu
- Jiangsu Nantong Environmental Monitoring Center, Nantong, Jiangsu 226002, China; School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Yuchuan Fan
- Soil, Water, and Ecosystem Sciences Department, University of Florida, Gainesville, FL 32611, USA; High Performance Computing Collaboratory-Geosystems Research Institute, Mississippi State University, Starkville, MS 39759, USA
| | - Xinxin Zhang
- Jiangsu Nantong Environmental Monitoring Center, Nantong, Jiangsu 226002, China
| | - Wei Wu
- Nantong Agricultural Environmental Protection Monitoring Station, Nantong, Jiangsu 226000, China
| | - Zaifeng Zhang
- Jiangsu Nantong Environmental Monitoring Center, Nantong, Jiangsu 226002, China.
| | - Yaping Wu
- Jiangsu Nantong Environmental Monitoring Center, Nantong, Jiangsu 226002, China
| | - Jingyi Wang
- Jiangsu Nantong Environmental Monitoring Center, Nantong, Jiangsu 226002, China
| | - Jing Xu
- Institute of Educational Science, Nantong University, Nantong, Jiangsu 226000, China.
| | - Tianming Chen
- School of Environmental Science and Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu 224051, China
| | - Bin Gao
- Department of Civil and Environmental Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, USA
| |
Collapse
|
36
|
Zhao P, Wang X, Jiang H, Zhang B, Chen L, Zhao J, Teng J, Wang Q. Vertical distribution of microplastics in sediment columns along the coastline of China. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174685. [PMID: 38997042 DOI: 10.1016/j.scitotenv.2024.174685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/08/2024] [Accepted: 07/08/2024] [Indexed: 07/14/2024]
Abstract
At present, there has been relatively less coverage of microplastics (MPs) pollution in sediment columns, especially across a large geographical span. This study collected sediment columns across 11 provinces along the coastline of China for MPs pollution investigation. The study found higher MPs diversity (Simpson diversity index) in sediment columns than in surface sediments, mostly comprising fiber MPs with dominant transparent and blue colors. Lower MPs pollution was noted in mangrove reserves, while estuarine and coastal areas showed higher pollution levels. Spearman correlation analysis shows that vertical of MPs abundance significantly decreased with depth at 6 of 11 sites. Large-sized MPs with diverse colors in deeper sediments (>40 cm) suggests that burial processes may render MPs more resistant to degradation. Our research highlights varied MPs distribution in coastal sediment, aiding future marine MPs pollution prediction and assessment.
Collapse
Affiliation(s)
- Peng Zhao
- School of Marine Science and Engineering, Hainan University, Haikou 570228, PR China
| | - Xiaodan Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Hongyou Jiang
- Tianjin Marine Environment Monitoring Center, SOA, Tianjin 300457, PR China
| | - Bin Zhang
- School of Architecture and Civil Engineering of Xihua University, Chengdu 610039, PR China
| | - Liang Chen
- School of Architecture and Civil Engineering of Xihua University, Chengdu 610039, PR China
| | - Jianmin Zhao
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Jia Teng
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China
| | - Qing Wang
- Research and Development Center for Efficient Utilization of Coastal Bioresources, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China; Muping Coastal Environment Research Station, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, PR China.
| |
Collapse
|
37
|
Barboza LGA, Otero XL, Guilhermino L. Microplastic contamination in marine mussels from the Atlantic coast of North Portugal and human risk of microplastic intake through mussel consumption. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 352:124133. [PMID: 38754690 DOI: 10.1016/j.envpol.2024.124133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 05/07/2024] [Accepted: 05/08/2024] [Indexed: 05/18/2024]
Abstract
Microplastic (MP) pollution has become a global concern due to its potential impacts on the environment, ecosystem services and human health. The goals of the present study were to document the MP contamination in wild specimens of Mytilus galloprovincialis sampled along the Atlantic coast of the North region of Portugal continental (NW Portuguese coast), and to estimate the human risk of MP intake (HRI) through the consumption of local mussels as seafood. Mussels were collected at four sampling sites along the NW Portuguese coast (40 mussels per site), and the whole soft body of each mussel was analysed for MP content. HRI estimates were based on the mean of MP items per wet weight of mussel analysed tissue (MP/g) and consumption habits. A total of 132 MP items were recovered from mussels. MP had diverse sizes (98-2690 μm) and colours. The most common shapes were fibres (39%) and pellets (36%). Five polymers were identified in the MP: polyethylene (50%), polystyrene (15%), poly(ethylene vinyl acetate) (14%), polyamide (12%) and polypropylene (9%). From the 160 analysed mussels, 55% had MP. The mean and standard error of the mean of mussel contamination ranged from 0.206 ± 0.067 and 0.709 ± 0.095 MP/g. Compared to estimates based on MP contamination in mussels from other areas and varied consumption habits, the HRI through the consumption of mussels from the NW Portuguese coast is relatively low.
Collapse
Affiliation(s)
- Luis Gabriel A Barboza
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal; ICBAS - Laboratório de Ecotoxicologia e Ecologia (ECOTOX), Departamento de Estudos de Populações, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| | - Xose L Otero
- CRETUS, Department of Edaphology and Agricultural Chemistry - Faculty of Biology, Universidade de Santiago de Compostela, Campus Vida, Santiago de Compostela, 15782, Spain; REBUSC. Network of biological stations of the University of Santiago de Compostela. Marine biology Station A Graña, Ferrol, Spain; RIAIDT. The Network of Infrastructures to Support Research and Technological Development of the University of Santiago de Compostela, Edificio Cactus. Campus Vida, Santiago de Compostela, 15782, Spain.
| | - Lucia Guilhermino
- CIIMAR - Interdisciplinary Centre of Marine and Environmental Research, University of Porto, Research Team of Aquatic Ecotoxicology and One Health (ECOTOX), Terminal de Cruzeiros do Porto de Leixões, Avenida General Norton de Matos, s/n, 4450-208, Matosinhos, Portugal; ICBAS - Laboratório de Ecotoxicologia e Ecologia (ECOTOX), Departamento de Estudos de Populações, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira, 228, 4050-313, Porto, Portugal.
| |
Collapse
|
38
|
Sahu N, Bhowmik M, Lakra RK, Haldar S. Tracing microplastic pollution in Mahi River estuary, Gulf of Khambhat, Gujarat, and their influence on functional traits of macrobenthos. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47882-47898. [PMID: 39012532 DOI: 10.1007/s11356-024-34342-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/06/2024] [Indexed: 07/17/2024]
Abstract
Most maritime habitats contain microplastic (MPs) contamination. The quality of the benthic ecosystem's habitat is declining as MPs accumulate in marine system. The contamination of MPs must therefore be investigated. We studied MPs pollution in the Mahi River, estuary, and macrobenthos. In the present study, the abundance of MPs fragments gradually decreased from the high tide zone to the low tide zone and muddy sediment has high MPs concentrations due to sediment characteristics and particle size. The majority of sediment and biota MPs were fibrous and black. MPs in both silt and biota have identical chemical compositions (modified cellulose), shapes, and colors. A significant source of pollutants and MPs fluxing into the ocean is well within the river system. Perinereis aibuhitensis ingested the most MPs out of 11 species, whereas Amphipods did not show any presence of MPs. Our findings showed that functional characteristics are essential for macrobenthos MPs intake. MPs in macrobenthos are high due to biological functions such as feeding, ecological groups, feeding mechanisms, body size, and bioturbation. MPs in marine sediment and organisms are tracked down to the Mahi River exceeding 50 km. The present work has investigated the idea that the macrobenthos that live in the sediment are ingesting the MPs that are building up there and this ingestion relies on the macrobenthos' functional characteristics.
Collapse
Affiliation(s)
- Nosad Sahu
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India
- Centre for Marine Living Resources and Ecology (CMLRE), Ministry of Earth Sciences, Kochi, 682508, India
| | - Moumita Bhowmik
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India
| | - Raj Kiran Lakra
- Department of Ocean Studies and Marine Biology, Pondicherry University, Port Blair, 744112, India
| | - Soumya Haldar
- Analytical and Environmental Science Division & Centralized Instrument Facility, CSIR-Central Salt & Marine Chemicals Research Institute, Bhavnagar, 364 002, Gujarat, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
39
|
Matias RS, Gomes S, Barboza LGA, Almeida CMR, Marques A, Guilhermino L, Valente LMP. Occurrence of microplastics and metals in European seabass produced in different aquaculture systems: Implications for human exposure, risk, and food safety. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 929:172535. [PMID: 38641109 DOI: 10.1016/j.scitotenv.2024.172535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/26/2024] [Accepted: 04/15/2024] [Indexed: 04/21/2024]
Abstract
Microplastics (MPs) are emerging contaminants of increasing concern as they may cause adverse effects and carry other contaminants, which may potentially compromise human health. Despite occurring in aquatic ecosystems worldwide, the knowledge about MP presence in different aquaculture systems and their potential impact on seafood products is still limited. This study aimed to determine the levels of MPs in water, feed, and European seabass (Dicentrarchus labrax) from three relevant aquaculture systems and estimate human exposure to MPs and metals through seabass consumption. The recirculating aquaculture system (RAS) had the highest MP occurrence in water and feed. MP levels in seabass followed the aquaculture system's levels in water and feed, with RAS-farmed fish presenting the highest MP load, both in the fish gastrointestinal tract (GIT) and muscle, followed by pond-, and cage-farmed fish. MPs' characteristics across aquaculture systems and fish samples remained consistent, with the predominant recovered particles falling within the MP size range. The particles were visually characterized and chemically identified by micro-Fourier Transform Infrared Spectroscopy (μFTIR). Most of these particles were fibres composed of man-made cellulose and PET. MP levels in GIT were significantly higher than in muscle for pond- and RAS-farmed fish, MPs' bioconcentration factors >1 indicated bioconcentration in farmed seabass. Metal concentrations in fish muscle were below permissible limits, posing low intake risks for consumers according to the available health-based guidance values and estimated dietary scenarios.
Collapse
Affiliation(s)
- Ricardo S Matias
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Sónia Gomes
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Luis Gabriel A Barboza
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - C Marisa R Almeida
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal
| | - António Marques
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; IPMA, Instituto Português do Mar e da Atmosfera, Divisão de Aquacultura, Valorização e Bioprospeção, Avenida Doutor Alfredo Magalhães Ramalho 6, 1495-165 Lisboa, Portugal
| | - Lúcia Guilhermino
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - Luisa M P Valente
- CIIMAR/CIMAR-LA, Centro Interdisciplinar de Investigação Marinha e Ambiental, Universidade do Porto, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos, S/N, 4450-208 Matosinhos, Portugal; ICBAS, Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal.
| |
Collapse
|
40
|
Diansyah G, Rozirwan, Rahman MA, Nugroho RY, Syakti AD. Dynamics of microplastic abundance under tidal fluctuation in Musi estuary, Indonesia. MARINE POLLUTION BULLETIN 2024; 203:116431. [PMID: 38692003 DOI: 10.1016/j.marpolbul.2024.116431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/03/2024]
Abstract
Tidal dynamics contribute to fluctuations in microplastic abundance (MPs). This is the first study to characterize MPs under the influence of tidal fluctuations in the Musi River Estuary. MPs samples were collected during flood and ebb tides at 10 research stations representing the inner, middle and outer parts of the Musi River Estuary. MPs were extracted to identify the shape, color and size. MP abundances were 467.67 ± 127.84 particles/m3 during flood tide and 723.67 ± 112.05 particles/m3 during ebb tide. The concentration of MPs in the outer zone of the estuary (ocean) was detected to be higher than in the inner zone of the estuary (river). The MPs found were dominated by black color, film shape and size 101-250 μm. A greater abundance of MPs at ebb tide than at flood tide implies that the Musi Estuary's largest source of emissions is discharge from the river.
Collapse
Affiliation(s)
- Gusti Diansyah
- Department of Marine Science, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Ogan Ilir 30662, South Sumatra, Indonesia.
| | - Rozirwan
- Department of Marine Science, Faculty of Mathematics and Natural Sciences, Universitas Sriwijaya, Ogan Ilir 30662, South Sumatra, Indonesia
| | - M Akbar Rahman
- Environmental Management Study Program, Graduate Program, Universitas Sriwijaya, Palembang 30139, South Sumatra, Indonesia
| | - Redho Yoga Nugroho
- Environmental Management Study Program, Graduate Program, Universitas Sriwijaya, Palembang 30139, South Sumatra, Indonesia
| | - Agung Dhamar Syakti
- Marine Science and Fisheries Faculty, Raja Ali Haji Maritime University, Tanjung Pinang 29100, Riau Islands, Indonesia
| |
Collapse
|
41
|
Devi SS, Gouri BR, Anjali S, Kumar AB. Microplastic contamination in Ashtamudi Lake, India: Insights from a Ramsar wetland. JOURNAL OF CONTAMINANT HYDROLOGY 2024; 264:104367. [PMID: 38772271 DOI: 10.1016/j.jconhyd.2024.104367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 05/05/2024] [Accepted: 05/13/2024] [Indexed: 05/23/2024]
Abstract
Estuaries function as temporary storage sites for plastic debris, influencing the distribution of microplastics (MPs) across ecosystems. This research delves into the presence of MPs in the water, sediment, fish, and shellfish of Ashtamudi Lake, a Ramsar wetland with brackish water located on the southwest coast of India. Given the lake's significance in supporting the livelihoods of numerous fishers and acting as a vital source of fishery resources for both local consumption and export, examining the contamination of the system by MPs becomes particularly pertinent. The highest percentage composition of MPs was found in macrofauna at 60.6% (with fish at 19.6% and shellfish at 40.9%), followed by sediment (22.8%) and water (16.7%). The primary types of MPs identified in all samples were fibers (35.6%), fragments (33.3%), and films (28%), with beads being the least represented at 3.03%. ATR-FTIR and Raman spectra analysis identified five polymers from shellfish (polypropylene, polyethylene, polystyrene, nylon, and polyvinyl chloride), five from fish guts (nylon, polypropylene, polyethylene, polyurethane, and polysiloxane), four in sediment (polypropylene, polyethylene, nylon, rayon), and four in water samples (polypropylene, polyethylene, nylon, and polystyrene). SEM-EDAX analysis of MPs obtained from the samples revealed degradation and the presence of inorganic elements such as Na, Mg, Al, Si, S, K, Cl, P, and Ca, as well as heavy metals like Pb, Mo, Rh, Pd, Ti, and Fe. The existence of these plastic polymers and heavy metals in microplastic samples poses a threat to vulnerable biota; people consume contaminated fish and shellfish, underscoring the importance of monitoring MPs in lake water. This investigation of MPs in Ashtamudi Lake highlights the system's susceptibility to plastic pollution and the bioavailability of smaller MPs to aquatic organisms. Identified sources of MPs in the lake include fishing and aquaculture activities, sewage pollution, improper solid waste management in lake watersheds, and unsustainable tourism. Upstream and downstream management interventions are recommended to address MP pollution in Ashtamudi Lake.
Collapse
Affiliation(s)
- Suvarna S Devi
- Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram 695581, Kerala, India
| | - Beena Ramachandran Gouri
- Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram 695581, Kerala, India
| | - S Anjali
- Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram 695581, Kerala, India
| | - Appukuttannair Biju Kumar
- Department of Aquatic Biology and Fisheries, University of Kerala, Thiruvananthapuram 695581, Kerala, India.
| |
Collapse
|
42
|
Maurya AC, Bhattacharya A, Vij V, Khare SK. Deciphering the seasonal dynamics of microplastic morphotypes and associated co-contaminants along the northwest coast of India. CHEMOSPHERE 2024; 354:141690. [PMID: 38484988 DOI: 10.1016/j.chemosphere.2024.141690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/23/2024] [Accepted: 03/11/2024] [Indexed: 03/22/2024]
Abstract
In the present study, the northwest coast of India, bordering the Arabian Sea, was selected to evaluate the microplastic (MP) abundance. This is the first study to emphasize the effects of different seasons on MP distribution. The collected MPs were dried, segregated, and evaluated based on their morphotype, size, color, and polymer type. A total of 1756.6, 7326.6, and 202 particles/kg of sand were estimated in the pre-monsoon, monsoon and post-monsoon seasons, respectively, with a dominance of polypropylene (PP) type of plastic in the pre-monsoon and high-density polyethylene (HDPE) in monsoon and post-monsoon seasons. HDPE and PP collected MPs during the monsoon season were further characterized for associated contaminants. Metal absorbance was detected using SEM-EDX mapping and ICP-MS. The presence of organic compounds (OCs) was analyzed using GC-MS. MPs exhibit distinct associations with metals, among which the HDPE pellet morphotype exhibits a higher range of metal adsorption. Total 61 different OCs were associated with MPs. The HDPE pellets contained the highest amounts of hydrophobic organic compounds. PP pellets were found to contain triglycerides, fatty aldehydes, and alkaloids, along with HOCs. Among morphotypes, pellet forms of MPs were found to adsorb more contaminants. These co-contaminants infiltrate the study area through sewage runoff and shoreline debris deposition, subsequently interacting with MPs. Furthermore, the MP diversity was studied by employing the MP diversity integrated index, which suggests that most of the MP diversity was observed in the pre-monsoon period. The pollution load index employed an MP risk assessment, which presented a low degree of MP contamination. In contrast, the polymer hazard index was calculated as 21650.3 in post-monsoon, placing the area under the extreme danger category. It is evident from the data that the types of MP is more important than their number. Thus, MP morphotypes have importance in the adsorption of co-contaminants.
Collapse
Affiliation(s)
- Ankita C Maurya
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi-11016, India
| | - Amrik Bhattacharya
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi-11016, India
| | - Varun Vij
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi-11016, India
| | - Sunil K Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology, Delhi, New Delhi-11016, India.
| |
Collapse
|
43
|
Luo S, Wu H, Xu J, Wang X, He X, Li T. Effects of lakeshore landcover types and environmental factors on microplastic distribution in lakes on the Inner Mongolia Plateau, China. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133115. [PMID: 38096614 DOI: 10.1016/j.jhazmat.2023.133115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/08/2023] [Accepted: 11/27/2023] [Indexed: 02/08/2024]
Abstract
Microplastic pollution in freshwater environments has received increasing attention. However, limited research on the occurrence and distribution of microplastics in plateau lakes. This study investigated the microplastic characteristics and influencing factors in lakes with different land cover types on the Inner Mongolia Plateau. Results showed that microplastic abundance ranged from 0.5 to 12.6 items/L in water and 50-325 items/kg in sediments. Microplastics in water were predominantly polypropylene (50.5%), fragments (40.5%), and 50-200 µm (66.7%). High-density (27.9%), fibrous (69.3%), and large-sized microplastics (47.7%) were retained primarily in lake sediments. The highest microplastic abundance in water was found in cropland lakes and grassland lakes, while that in sediments was in descending order of desert lakes > cropland lakes > grassland lakes > forest-grassland lakes. Differences among lake types suggest that agriculture, tourism, and atmospheric transport may be critical microplastic sources. Microplastic distribution was positively correlated with farmland and artificial surface coverage, showing that land cover types related to human activities could exacerbate microplastic pollution in lakes. Redundancy analysis showed that ammonia nitrogen and pH were the key physicochemical factors affecting microplastic distribution in lakes, indicating the potential sources of microplastics in lakes and the uniqueness of microplastic occurrence characteristics in desert saline-alkaline lakes, respectively.
Collapse
Affiliation(s)
- Shuai Luo
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Haonan Wu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Jifei Xu
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China.
| | - Xiujun Wang
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Xude He
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| | - Tong Li
- Ministry of Education Key Laboratory of Ecology and Resource Use of the Mongolian Plateau, Inner Mongolia Key Laboratory of Environmental Pollution Control and Waste Resource Recycle, School of Ecology and Environment, Inner Mongolia University, Hohhot 010021, China
| |
Collapse
|
44
|
Pasquier G, Doyen P, Chaïb I, Amara R. Do tidal fluctuations affect microplastics distribution and composition in coastal waters? MARINE POLLUTION BULLETIN 2024; 200:116166. [PMID: 38377863 DOI: 10.1016/j.marpolbul.2024.116166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/22/2024]
Abstract
The hydro-meteorological conditions in marine environments are recognized to have a major impact on the transport and dispersion of microplastics (MP), although their precise effects remain poorly understood. This study investigates the effects of tidal fluctuations on MP abundance and composition in a megatidal coastal water. Waters samples were collected every ninety minutes over the course of two complete tidal cycles - one during spring tide and another during neap tide. There were no significant disparities in term of abondance, size, and composition of MPs between the samples collected during the two tidal cycles. Nevertheless, MP abundance and characteristics (morphology, size and polymer types) can be influenced over the course of a complete tidal cycle due to the impact of tidal currents and water height. This study highlights the need to consider the fluctuations of the tidal cycle when planning in-situ surveys to better assess MP pollution in coastal environments.
Collapse
Affiliation(s)
- Gabriel Pasquier
- Univ. Littoral Côte d'Opale, CNRS, IRD, Univ. Lille, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-62930 Wimereux, France
| | - Périne Doyen
- Univ. Littoral Côte d'Opale, UMRt 1158 BioEcoAgro, USC ANSES, INRAe, Univ. Artois, Univ. Lille, Univ. Picardie Jules Verne, Univ. Liège, Junia, 62200 Boulogne-sur-Mer, France
| | - Iseline Chaïb
- Univ. Littoral Côte d'Opale, CNRS, IRD, Univ. Lille, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-62930 Wimereux, France
| | - Rachid Amara
- Univ. Littoral Côte d'Opale, CNRS, IRD, Univ. Lille, UMR 8187 - LOG - Laboratoire d'Océanologie et de Géosciences, F-62930 Wimereux, France.
| |
Collapse
|
45
|
Santucci L, Fernández-Severini MD, Rimondino GN, Colombo CV, Prieto G, Forero-López AD, Carol ES. Assessment of meso- and microplastics distribution in coastal sediments and waters at the middle estuary of the Rio De La Plata, Argentina (SW Atlantic Ocean). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:170026. [PMID: 38218486 DOI: 10.1016/j.scitotenv.2024.170026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
Estuarine coastal water and sediments collected from multiple locations within the middle Río de la Plata (RDLP) estuary were analyzed in order to identify the presence of microplastics (MPs, <5 mm) and mesoplastics (MePs, 5-25 mm) in one of the most significant estuaries in the Southwestern Atlantic. The present study represents one of the first researches to survey MPs and MePs contamination in key stations at RDLP estuary. Average concentrations of 14.17 ± 5.50 MPs/L and 10.00 MePs/L were detected in water samples, while 547.83 ± 620.06 MPs/kg (dry weight) and 74.23 ± 47.29 MePs/kg d.w. were recorded in sediments. The greatest abundances were observed in the more anthropized areas, near urban settlements. Fibers were the most conspicuous plastic items in water and sediments, followed by fragments. On the other hand, surface sediments, and 50 cm and 100 cm-depth sediments also presented MPs and MePs indicating they could serve as a stratigraphic indicator for recently formed sediments. The main polymer type identified were acrylic fibers, followed by polypropylene (PP) and polyethylene terephthalate (PET). Besides, SEM-EDX detected the presence of Si, Fe, Ti, Al and Cl onto the plastics' surface. These elements may serve as additives to enhance the plastics' properties, such as in the case of Ti, or they could originate from the environment, like biogenic Si or Fe, and Al possibly as a component of the suspended particles or sediments adhered to the micro or meso plastics. Finally, the results of the present study showed that MPs and MePs are commonly found in waters and also tend to be trapped in sediments of the RDLP estuary supporting the assertion that these areas play a substantial role in influencing the transport, dispersion, and buildup of MPs in estuarine regions.
Collapse
Affiliation(s)
- L Santucci
- Centro de Investigaciones Geológicas (CIG), CONICET/UNLP, CCT-La Plata, Buenos Aires, Argentina.
| | - M D Fernández-Severini
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Buenos Aires, Argentina
| | - G N Rimondino
- Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Departamento de Fisicoquímica, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria, Córdoba, Argentina
| | - C V Colombo
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Buenos Aires, Argentina
| | - G Prieto
- Departamento de Ingeniería, Universidad Nacional del Sur, Bahía Blanca, Argentina (IFISUR), Universidad Nacional del Sur, CONICET, Bahía Blanca, Argentina
| | - A D Forero-López
- Instituto Argentino de Oceanografía (IADO), CONICET/UNS, CCT-Bahía Blanca, Buenos Aires, Argentina
| | - E S Carol
- Centro de Investigaciones Geológicas (CIG), CONICET/UNLP, CCT-La Plata, Buenos Aires, Argentina
| |
Collapse
|
46
|
Mo L, Fu H, Lu Q, Chen S, Liu R, Xiang J, Xing Q, Wang L, Sun K, Li B, Zheng J. Characteristics and ecological risks of microplastic pollution in a tropical drinking water source reservoir in Hainan province, China. ENVIRONMENTAL SCIENCE. PROCESSES & IMPACTS 2024; 26:451-460. [PMID: 38289156 DOI: 10.1039/d3em00528c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/22/2024]
Abstract
Microplastic (<5 mm) pollution has become a pressing environmental concern in recent years. The present study investigated the occurrence characteristics and assessed the ecological risk of microplastics in the surface water and sediment of the Chitian Reservoir, a drinking water source in Hainan province (China). The results indicated that microplastics were detected in the surface water and sediment of the Chitian Reservoir and its surrounding areas. The overall abundance of microplastics in the water was 3.05 ± 1.16 items per L and in the sediment was 0.15 ± 0.06 items per g dry weight, which is relatively low compared to other reservoirs in China. The dominant components of microplastics detected in the Chitian Reservoir were polypropylene (PP), rayon, and polyester. Physical morphology analysis of microplastics showed that fibers with small particle sizes (<1 mm) and white color were the predominant characteristics in both the surface water and sediment. The domestic sewage from surrounding residents and agricultural wastewater may be the primary sources of microplastics in the reservoir. Ecological risk assessment revealed that the overall pollution load index (PLI) in the surface water (0.65) and sediment (0.51) of the Chitian Reservoir and its surrounding area is at a low level. The potential ecological hazards (RI) of microplastics (0.13 to 336.78 in water; 0.23 to 465.93 in sediment) in most sites fall within the scope of level I, but those in a few sites are at level II due to the presence of polyvinyl chloride (PVC). This study enriches the data on microplastic pollution in inland reservoir systems, providing fundamental reference information for future ecotoxicological studies and the management of microplastic pollution control.
Collapse
Affiliation(s)
- Ling Mo
- Hainan Research Academy of Environmental Sciences, Haikou 571126, PR China
| | - Hongyu Fu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
- School of Public Health, Key Laboratory of Environmental Pollution Monitoring and Disease Control, Ministry of Education, Guizhou Medical University, Guiyang 561113, China
| | - Qiyuan Lu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Sifan Chen
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
- Department of Environmental Health, School of Public Health, China Medical University, Shenyang 110122, Liaoning, China
| | - Ruijuan Liu
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Jun Xiang
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Qiao Xing
- Hainan Research Academy of Environmental Sciences, Haikou 571126, PR China
| | - Licheng Wang
- Hainan Research Academy of Environmental Sciences, Haikou 571126, PR China
| | - Kexin Sun
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China
| | - Bowen Li
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| | - Jing Zheng
- State Environmental Protection Key Laboratory of Environmental Pollution Health Risk Assessment, Research Center of Emerging Contaminants, South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou 510655, China.
| |
Collapse
|
47
|
Yang Q, Ma L, Qiu K, Feng Z, Wang Y, Zhong Z, Cheng F, Zhai T, Zeng J, Huang W. Characterization and risk assessment of microplastics in laver from the Yueqing Bay. MARINE ENVIRONMENTAL RESEARCH 2024; 193:106258. [PMID: 37989678 DOI: 10.1016/j.marenvres.2023.106258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/01/2023] [Accepted: 11/07/2023] [Indexed: 11/23/2023]
Abstract
Microplastics (MPs) pollution is regarded as a global challenge for ocean. As an important food source of human, macroalgae could suffer MP pollution and transmit MPs into human via food web. However, few studies have revealed the relationship of MP pollution between macroalgae and its habitat. In order to evaluate the trapping and accumulation of MPs in macroalgae and surface water, the present study investigated MP pollution in a typical aquaculture macroalgae species, laver (Porphyra haitanensis) in the Yueqing Bay. The results indicated MP abundance in laver (1.45 ± 0.26 items/g) was at a medium level while MP abundance in surface water (0.21 ± 0.15 item/m3) was at a relatively low level worldwide. Distribution trend and characteristics of MPs in laver and surface water showed highly similarity. Besides, heavy metal elements (Fe and Zr) were detected on the surface of MPs trapped by laver. Pollution load index (PLI) in surface water of the whole bay was low, indicating MP pollution was not serious in the Yueqing Bay. Due to the discharging of domestic sewage in recent years, fiber-shaped, textile MPs accounted for most in laver and surface water of the Yueqing Bay. These results indicated that MPs in surface water could be trapped by P. haitanensis, thus macroalgae cultivation might be a potential way to alleviate seawater MP pollution in the nearshore areas.
Collapse
Affiliation(s)
- Qikun Yang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Nearshore Engineering Environment and Ecological Security of Zhejiang Province, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Lukuo Ma
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Nearshore Engineering Environment and Ecological Security of Zhejiang Province, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Kecheng Qiu
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Zhihua Feng
- Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Youji Wang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China; Key Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resources, Hangzhou 310012, China.
| | - Zhen Zhong
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Nearshore Engineering Environment and Ecological Security of Zhejiang Province, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; International Research Center for Marine Biosciences at Shanghai Ocean University, Ministry of Science and Technology, Shanghai 201306, China
| | - Fangping Cheng
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Nearshore Engineering Environment and Ecological Security of Zhejiang Province, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China
| | - Tianqi Zhai
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Nearshore Engineering Environment and Ecological Security of Zhejiang Province, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Jiangsu Key Laboratory of Marine Bioresources and Environment, Jiangsu Ocean University, Lianyungang 222005, China
| | - Jiangning Zeng
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Nearshore Engineering Environment and Ecological Security of Zhejiang Province, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resources, Hangzhou 310012, China; Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China
| | - Wei Huang
- Key Laboratory of Marine Ecosystem Dynamics, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Nearshore Engineering Environment and Ecological Security of Zhejiang Province, Second Institute of Oceanography, Ministry of Natural Resources, Hangzhou 310012, China; Key Laboratory of Ocean Space Resource Management Technology, Ministry of Natural Resources, Hangzhou 310012, China; Ocean College, Zhejiang University, Zhoushan 316021, Zhejiang, China.
| |
Collapse
|
48
|
Chen R, Zhao X, Wu X, Wang J, Wang X, Liang W. Research progress on occurrence characteristics and source analysis of microfibers in the marine environment. MARINE POLLUTION BULLETIN 2024; 198:115834. [PMID: 38061148 DOI: 10.1016/j.marpolbul.2023.115834] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 01/05/2024]
Abstract
Synthetic microfiber pollution is a growing concern in the marine environment. However, critical issues associated with microfiber origins in marine environments have not been resolved. Herein, the potential sources of marine microfibers are systematically reviewed. The obtained results indicate that surface runoffs are primary contributors that transport land-based microfibers to oceans, and the breakdown of larger fiber plastic waste due to weathering processes is also a notable secondary source of marine microfibers. Additionally, there are three main approaches for marine microplastic source apportionment, namely, anthropogenic source classification, statistical analysis, and numerical simulations based on the Lagrangian particle tracking method. These methods establish the connections between characteristics, transport pathways and sources of microplastics, which provides new insights to further conduct microfiber source apportionment. This study helps to better understand sources analysis and transport pathways of microfibers into oceans and presents a scientific basis to further control microfiber pollution in marine environments.
Collapse
Affiliation(s)
- Rouzheng Chen
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China
| | - Xiaoli Zhao
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China.
| | - Xiaowei Wu
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China
| | - Junyu Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China
| | - Xia Wang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China
| | - Weigang Liang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 10012, China
| |
Collapse
|
49
|
You H, Cao C, Sun X, Huang B, Qian Q, Chen Q. Microplastics as an emerging vector of Cr(VI) in water: Correlation of aging properties and adsorption behavior. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166480. [PMID: 37611697 DOI: 10.1016/j.scitotenv.2023.166480] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
Microplastics (MPs) are emerging contaminants with growing concerns due to their potential adverse effects on the environment. However, understanding the aging properties and adsorption behavior of MPs is still limited. In this study, we investigated the correlation between the adsorption capacity, aging stages, and aging properties of polyethylene MPs using a correlation equation. Our results revealed that the trends of O/C ratio and contact angle of polyethylene MPs with aging time were fitted to be linear under xenon lamp accelerated aging conditions. Conversely, the trends of other properties such as particle size, crystallinity, and molecular weight with time were fitted to conform to the Boltzmann equation. Moreover, the aging curve data for carbonyl index and molecular weight (Mw) perfectly matched, confirming Mw play a crucial role in verifying the aging process. Additionally, the adsorption amount of polyethylene MPs increased sharply with the increase of aging ages, reaching up to 1.850 mg/g. The adsorption data fit well to the pseudo-second-order kinetics and Langmuir model, suggesting that the adsorption process is dominated by chemisorption. The low pH and low salt concentration is beneficial to the adsorption capacity of MPs onto Cr(VI). Further, a relationship equation was established to predict adsorption risk at different aging stages. These findings provide new insights into the impact of aging on pollutants transport and the fate of MPs, enabling the prediction of adsorption risk of MPs at different aging stages in water environments.
Collapse
Affiliation(s)
- Huimin You
- College of Environmental and Ecology, College of Coastal and Ocean Management Institute, Xiamen University, Xiamen 361000, China; College of Environmental and Resource Sciences; College of Carbon Neutral Modern Industry; Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Changlin Cao
- College of Environmental and Resource Sciences; College of Carbon Neutral Modern Industry; Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Xiaoli Sun
- College of Environmental and Resource Sciences; College of Carbon Neutral Modern Industry; Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| | - Baoquan Huang
- College of Environmental and Resource Sciences; College of Carbon Neutral Modern Industry; Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, China.
| | - Qingrong Qian
- College of Environmental and Resource Sciences; College of Carbon Neutral Modern Industry; Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, China.
| | - Qinghua Chen
- College of Environmental and Resource Sciences; College of Carbon Neutral Modern Industry; Fujian Key Laboratory of Pollution Control & Resource Reuse, Engineering Research Center of Polymer Green Recycling of Ministry of Education, Fujian Normal University, Fuzhou 350007, China
| |
Collapse
|
50
|
Yuan B, Gan W, Sun J, Lin B, Chen Z. Depth profiles of microplastics in sediments from inland water to coast and their influential factors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 903:166151. [PMID: 37562610 DOI: 10.1016/j.scitotenv.2023.166151] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/19/2023] [Accepted: 08/06/2023] [Indexed: 08/12/2023]
Abstract
Microplastics, plastic particles with a size smaller than 5 mm, are widely observed in the global environments and pose a growing threat as they accumulate and affect the environments in numerous ways. These particles can be transported from inland water to coast and disperse from surface water to deep sediments, especially the latter, while knowledge of the hidden microplastics in sediment layers is still lacking. Understanding the characteristics and behavior of microplastics in deep sediments from inland water to coast is crucial for estimating the present and future global plastic budget from land to seas. Herein, present knowledge of microplastic sedimentation from inland water to coast is reviewed, with a focus on the physical characteristics of microplastics and environmental factors that affect sedimentation. The abundance, shape, composition, and timeline of microplastics in sediment layers in rivers, floodplains, lakes, estuaries and coastal wetlands are presented. The abundance of microplastics in sediment layers varies across sites and may exhibit opposite trends along depth, and generally the proportion of relatively small microplastics increases with depth, while less is known about the vertical trends in the shape and composition of microplastics. Timeline of microplastics is generally linked to the sedimentation rate, which varies from millimeters to centimeters per year in the reviewed studies. The spatiotemporal characteristics of microplastic sedimentation depend on the settling and erosion of microplastics, which are determined by two aspects, microplastic characteristics and environmental factors. The former aspect includes size, shape and density influenced by aggregation and biofouling, and the latter includes dynamic forces, topographic features, bioturbation and human activities. The comprehensive review of these factors highlights the needs to further quantify the characteristics of microplastic sedimentation and explore the role of these factors in microplastic sedimentation on various spatiotemporal scales.
Collapse
Affiliation(s)
- Bing Yuan
- School of Civil Engineering, Sun Yat-sen University, 519082 Zhuhai, China; State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, 100084 Beijing, China
| | - Wenhui Gan
- School of Civil Engineering, Sun Yat-sen University, 519082 Zhuhai, China
| | - Jian Sun
- State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, 100084 Beijing, China.
| | - Binliang Lin
- State Key Laboratory of Hydroscience and Engineering, Department of Hydraulic Engineering, Tsinghua University, 100084 Beijing, China
| | - Zhihe Chen
- School of Civil Engineering, Sun Yat-sen University, 519082 Zhuhai, China.
| |
Collapse
|