1
|
Zhi Y, Qiu W, Tian G, Song S, Zhao W, Du X, Sun X, Chen Y, Huang H, Li J, Yu Y, Li M, Lv G. Donor and recipient hematopoietic stem and progenitor cells mobilization in liver transplantation patients. Stem Cell Res Ther 2024; 15:231. [PMID: 39075608 PMCID: PMC11288126 DOI: 10.1186/s13287-024-03855-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/17/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Hematopoietic stem and progenitor cells (HSPCs) mobilize from bone marrow to peripheral blood in response to stress. The impact of alloresponse-induced stress on HSPCs mobilization in human liver transplantation (LTx) recipients remains under-investigated. METHODS Peripheral blood mononuclear cell (PBMC) samples were longitudinally collected from pre- to post-LTx for one year from 36 recipients with acute rejection (AR), 74 recipients without rejection (NR), and 5 recipients with graft-versus-host disease (GVHD). 28 PBMC samples from age-matched healthy donors were collected as healthy control (HC). Multi-color flow cytometry (MCFC) was used to immunophenotype HSPCs and their subpopulations. Donor recipient-distinguishable major histocompatibility complex (MHC) antibodies determined cell origin. RESULTS Before LTx, patients who developed AR after transplant contained more HSPCs in PBMC samples than HC, while the NR group patients contained fewer HSPCs than HC. After LTx, the HSPC ratio in the AR group sharply decreased and became less than HC within six months, and dropped to a comparable NR level afterward. During the one-year follow-up period, myeloid progenitors (MPs) biased differentiation was observed in all LTx recipients who were under tacrolimus-based immunosuppressive treatment. During both AR and GVHD episodes, the recipient-derived and donor-derived HSPCs mobilized into the recipient's blood-circulation and migrated to the target tissue, respectively. The HSPCs percentage in blood reduced after the disease was cured. CONCLUSIONS A preoperative high HSPC ratio in blood characterizes recipients who developed AR after LTx. Recipients exhibited a decline in blood-circulating HSPCs after transplant, the cells mobilized into the blood and migrated to target tissue during alloresponse.
Collapse
Affiliation(s)
- Yao Zhi
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Wei Qiu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Guangyao Tian
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Shifei Song
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Wenchao Zhao
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xiaodong Du
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Xiaodong Sun
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Yuguo Chen
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Heyu Huang
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Jing Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Ying Yu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China
| | - Mingqian Li
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Guoyue Lv
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
2
|
Hu T, Cheng B, Matsunaga A, Zhang T, Lu X, Fang H, Mori SF, Fang X, Wang G, Xu H, Shi H, Cowell JK. Single-cell analysis defines highly specific leukemia-induced neutrophils and links MMP8 expression to recruitment of tumor associated neutrophils during FGFR1 driven leukemogenesis. Exp Hematol Oncol 2024; 13:49. [PMID: 38730491 PMCID: PMC11084112 DOI: 10.1186/s40164-024-00514-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/14/2024] [Indexed: 05/13/2024] Open
Abstract
BACKGROUND Leukemias driven by activated, chimeric FGFR1 kinases typically progress to AML which have poor prognosis. Mouse models of this syndrome allow detailed analysis of cellular and molecular changes occurring during leukemogenesis. We have used these models to determine the effects of leukemia development on the immune cell composition in the leukemia microenvironment during leukemia development and progression. METHODS Single cell RNA sequencing (scRNA-Seq) was used to characterize leukemia associated neutrophils and define gene expression changes in these cells during leukemia progression. RESULTS scRNA-Seq revealed six distinct subgroups of neutrophils based on their specific differential gene expression. In response to leukemia development, there is a dramatic increase in only two of the neutrophil subgroups. These two subgroups show specific gene expression signatures consistent with neutrophil precursors which give rise to immature polymorphonuclear myeloid-derived suppressor cells (PMN-MDSCs). Analysis of gene expression in these precursor cells identified pathways that were specifically upregulated, the most pronounced of which involved matrix metalloproteinases Mmp8 and Mmp9, during leukemia progression. Pharmacological inhibition of MMPs using Ilomastat preferentially restricted in vitro migration of neutrophils from leukemic mice and led to a significantly improved survival in vivo, accompanied by impaired PMN-MDSC recruitment. As a result, levels of T-cells were proportionally increased. In clinically annotated TCGA databases, MMP8 was shown to act as an independent indicator for poor prognosis and correlated with higher neutrophil infiltration and poor pan-cancer prognosis. CONCLUSION We have defined specific leukemia responsive neutrophil subgroups based on their unique gene expression profile, which appear to be the precursors of neutrophils specifically associated with leukemia progression. An important event during development of these neutrophils is upregulation MMP genes which facilitated mobilization of these precursors from the BM in response to cancer progression, suggesting a possible therapeutic approach to suppress the development of immune tolerance.
Collapse
Affiliation(s)
- Tianxiang Hu
- Georgia Cancer Center, 1410 Laney Walker Blvd, 30912, Augusta, GA, USA.
| | - Bo Cheng
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Atsuko Matsunaga
- Georgia Cancer Center, 1410 Laney Walker Blvd, 30912, Augusta, GA, USA
| | - Ting Zhang
- Georgia Cancer Center, 1410 Laney Walker Blvd, 30912, Augusta, GA, USA
- Department of Dermatology, Tianjin Academy of Traditional Chinese Medicine Affiliated Hospital, Tianjin, China
| | - Xiaocui Lu
- Georgia Cancer Center, 1410 Laney Walker Blvd, 30912, Augusta, GA, USA
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hui Fang
- Georgia Cancer Center, 1410 Laney Walker Blvd, 30912, Augusta, GA, USA
- Department of Stomatology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Stephanie F Mori
- Georgia Cancer Center, 1410 Laney Walker Blvd, 30912, Augusta, GA, USA
| | - Xuexiu Fang
- Georgia Cancer Center, 1410 Laney Walker Blvd, 30912, Augusta, GA, USA
| | - Gavin Wang
- Georgia Cancer Center, 1410 Laney Walker Blvd, 30912, Augusta, GA, USA
- University of Georgia, Athens, GA, USA
| | - Hongyan Xu
- Department of Biostatistics, Data Science and Epidemiology, School of Public Health, Augusta University, 30912, Augusta, GA, USA
| | - Huidong Shi
- Georgia Cancer Center, 1410 Laney Walker Blvd, 30912, Augusta, GA, USA.
| | - John K Cowell
- Georgia Cancer Center, 1410 Laney Walker Blvd, 30912, Augusta, GA, USA.
| |
Collapse
|
3
|
Liu H, Sun J, Wang Z, Han R, Zhao Y, Lou Y, Wang H. S100a10 deficiency in neutrophils aggravates ulcerative colitis in mice. Int Immunopharmacol 2024; 128:111499. [PMID: 38232535 DOI: 10.1016/j.intimp.2024.111499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 12/27/2023] [Accepted: 01/03/2024] [Indexed: 01/19/2024]
Abstract
BACKGROUND AND AIMS S100a10 is a member of the S100 family of proteins, which plays a key role in the depression and tumor metastasis. However, the role of S100a10 is unclear in ulcerative colitis. METHODS The effect of S100a10 was assessed using a murine ulcerative colitis model which was accompanied by parameters including body weight loss, disease activity index, histological score, colon weight and length. The quantity and role of immune cells was determined by flow cytometry and bone marrow chimeric mice. Neutrophils depletion, adoptive cell transfer and conditional knockout mice were used to ascertain which cells played the key role in ulcerative colitis. The function of neutrophils was evaluated by migration assay, phagocytosis assay, multiplex immunoassay and real-time PCR. RESULTS In this study, our data showed that S100a10-/- mice were prone to ulcerative colitis induced by dextran sodium sulfate. Neutrophils number increased in colon of S100a10-/- mice after dextran sodium sulfate treatment significantly. Meanwhile, adoptive transfer of neutrophils from wild type mice partially decreased the susceptibility of S100a10-/- mice to dextran sodium sulfate. There was no difference in ulcerative colitis between the groups of S100a10-/- mice without neutrophils and wild type mice. Finally, we found that S100a10-/- neutrophils had stronger function in secretion and synthesis of inflammatory factor. CONCLUSIONS In one word, these results suggest that S100a10 has a role in inhibiting the pathogenesis of ulcerative colitis through regulation of neutrophils function.
Collapse
Affiliation(s)
- Huandi Liu
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Jiaxiang Sun
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Zhihui Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Rui Han
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuxin Zhao
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China; Morphologic Center of College of Basic Medicine, Xinjiang Medical University, Urumqi, China
| | - Yunwei Lou
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China
| | - Hui Wang
- Henan Key Laboratory of Immunology and Targeted Drugs, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China; Henan Collaborative Innovation Center of Molecular Diagnosis and Laboratory Medicine, School of Medical Technology, Xinxiang Medical University, Xinxiang, Henan, China.
| |
Collapse
|
4
|
Altabas V, Marinković Radošević J, Špoljarec L, Uremović S, Bulum T. The Impact of Modern Anti-Diabetic Treatment on Endothelial Progenitor Cells. Biomedicines 2023; 11:3051. [PMID: 38002051 PMCID: PMC10669792 DOI: 10.3390/biomedicines11113051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/08/2023] [Accepted: 11/09/2023] [Indexed: 11/26/2023] Open
Abstract
Diabetes is one of the leading chronic diseases globally with a significant impact on mortality. This condition is associated with chronic microvascular and macrovascular complications caused by vascular damage. Recently, endothelial progenitor cells (EPCs) raised interest due to their regenerative properties. EPCs are mononuclear cells that are derived from different tissues. Circulating EPCs contribute to regenerating the vessel's intima and restoring vascular function. The ability of EPCs to repair vascular damage depends on their number and functionality. Diabetic patients have a decreased circulating EPC count and impaired EPC function. This may at least partially explain the increased risk of diabetic complications, including the increased cardiovascular risk in these patients. Recent studies have confirmed that many currently available drugs with proven cardiovascular benefits have beneficial effects on EPC count and function. Among these drugs are also medications used to treat different types of diabetes. This manuscript aims to critically review currently available evidence about the ways anti-diabetic treatment affects EPC biology and to provide a broader context considering cardiovascular complications. The therapies that will be discussed include lifestyle adjustments, metformin, sulphonylureas, gut glucosidase inhibitors, thiazolidinediones, dipeptidyl peptidase 4 inhibitors, glucagon-like peptide 1 receptor analogs, sodium-glucose transporter 2 inhibitors, and insulin.
Collapse
Affiliation(s)
- Velimir Altabas
- Department of Endocrinology, Diabetes and Metabolic Diseases, Sestre Milosrdnice University Clinical Hospital, 10000 Zagreb, Croatia
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia
| | - Jelena Marinković Radošević
- Department of Endocrinology, Diabetes and Metabolic Diseases, Sestre Milosrdnice University Clinical Hospital, 10000 Zagreb, Croatia
| | - Lucija Špoljarec
- Department of Endocrinology, Diabetes and Metabolic Diseases, Sestre Milosrdnice University Clinical Hospital, 10000 Zagreb, Croatia
| | | | - Tomislav Bulum
- Department of Endocrinology, Diabetes and Metabolic Diseases, Sestre Milosrdnice University Clinical Hospital, 10000 Zagreb, Croatia
- Vuk Vrhovac University Clinic for Diabetes, Endocrinology and Metabolic Diseases, Merkur University Hospital, 10000 Zagreb, Croatia
| |
Collapse
|
5
|
Transcriptomic mapping of the metzincin landscape in human trophoblasts. Gene Expr Patterns 2022; 46:119283. [PMID: 36307023 DOI: 10.1016/j.gep.2022.119283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/12/2022] [Accepted: 10/17/2022] [Indexed: 11/04/2022]
Abstract
The metzincin family of metalloproteases coordinates tissue developmental processes through regulation of growth factor availability, receptor signaling, and cell-cell/cell-matrix adhesion. While roles for select metzincins in controlling trophoblast functions in human placental development have been described, a comprehensive understanding of metzincin dynamics during trophoblast differentiation is lacking. To address this knowledge gap, single cell transcriptomic datasets derived from first trimester chorionic villi and decidua were used to decipher metzincin expression profiles and kinetics in diverse cell types within the utero-placental interface. Further, specific protease-substrate interactions within progenitor trophoblasts were examined to better define the progenitor niche. Within the uterine-placental compartment, 43 metzincin proteases were expressed across 15 cell-type clusters. Metzincin subgroups expressed in placental trophoblasts, placental mesenchymal cells, uterine stromal, and immune cells included multiple matrix metalloproteases (MMPs), a disintegrin and metalloproteases (ADAMs), a disintegrin and metalloproteases with thrombospondin repeats (ADAMTSs), pappalysins, and astacins. Within the trophoblast compartment, eight distinct trophoblasts states were identified: four cytotrophoblast (CTB), one syncytiotrophoblast precursor (SCTp), two column CTB (cCTB), and one extravillous trophoblast (EVT). Within these states 7 MMP, 8 ADAM, 4 ADAMTS, 2 pappalysin, and 3 astacin proteases were expressed. Cell trajectory modeling shows that expression of most (19/24) metzincins increase during EVT differentiation, though expression of select metalloproteases increase along the villous pathway. Eleven metzincins (ADAM10, -17, MMP14, -15, -19, -23B, ADAMTS1, -6, -19, TLL-1, -2) showed enrichment within CTB progenitors, and analysis of metzincin-substrate interactions identified ∼150 substrates and binding partners, including FBN2 as an ADAMTS6-specific substrate. Together, this work characterizes the metzincin landscape in human first trimester trophoblasts and establishes insight into the roles specific proteases perform within distinct trophoblast niches and across trophoblast differentiation. This resource serves as a guide for future investigations into the roles of metzincin proteases in human placental development.
Collapse
|
6
|
de Almeida LGN, Thode H, Eslambolchi Y, Chopra S, Young D, Gill S, Devel L, Dufour A. Matrix Metalloproteinases: From Molecular Mechanisms to Physiology, Pathophysiology, and Pharmacology. Pharmacol Rev 2022; 74:712-768. [PMID: 35738680 DOI: 10.1124/pharmrev.121.000349] [Citation(s) in RCA: 182] [Impact Index Per Article: 60.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The first matrix metalloproteinase (MMP) was discovered in 1962 from the tail of a tadpole by its ability to degrade collagen. As their name suggests, matrix metalloproteinases are proteases capable of remodeling the extracellular matrix. More recently, MMPs have been demonstrated to play numerous additional biologic roles in cell signaling, immune regulation, and transcriptional control, all of which are unrelated to the degradation of the extracellular matrix. In this review, we will present milestones and major discoveries of MMP research, including various clinical trials for the use of MMP inhibitors. We will discuss the reasons behind the failures of most MMP inhibitors for the treatment of cancer and inflammatory diseases. There are still misconceptions about the pathophysiological roles of MMPs and the best strategies to inhibit their detrimental functions. This review aims to discuss MMPs in preclinical models and human pathologies. We will discuss new biochemical tools to track their proteolytic activity in vivo and ex vivo, in addition to future pharmacological alternatives to inhibit their detrimental functions in diseases. SIGNIFICANCE STATEMENT: Matrix metalloproteinases (MMPs) have been implicated in most inflammatory, autoimmune, cancers, and pathogen-mediated diseases. Initially overlooked, MMP contributions can be both beneficial and detrimental in disease progression and resolution. Thousands of MMP substrates have been suggested, and a few hundred have been validated. After more than 60 years of MMP research, there remain intriguing enigmas to solve regarding their biological functions in diseases.
Collapse
Affiliation(s)
- Luiz G N de Almeida
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Hayley Thode
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Yekta Eslambolchi
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sameeksha Chopra
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Daniel Young
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Sean Gill
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Laurent Devel
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| | - Antoine Dufour
- Departments of Physiology and Pharmacology and Biochemistry and Molecular Biology, University of Calgary, Calgary, Canada (L.G.N.d.A., Y.E., S.C., D.Y., A.D.); Department of Physiology and Pharmacology, University of Western Ontario, London, Canada (S.G., H.T.); and Université Paris-Saclay, CEA, INRAE, Medicaments et Technologies pour la Santé, Gif-sur-Yvette, France (L.D.)
| |
Collapse
|
7
|
Ding J, Wang J, Cai X, Yin T, Zhang Y, Yang C, Yang J. Granulocyte colony-stimulating factor in reproductive-related disease: Function, regulation and therapeutic effect. Biomed Pharmacother 2022; 150:112903. [PMID: 35430390 DOI: 10.1016/j.biopha.2022.112903] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 03/14/2022] [Accepted: 03/27/2022] [Indexed: 11/16/2022] Open
Abstract
Granulocyte colony-stimulating factor (G-CSF) is one of the cytokines which plays important roles in embryo implantation and normal pregnancy. At the maternal-fetal interface, G-CSF can be synthesized by multiple cells, and participates in regulation of trophoblast development, endometrial decidualization, placental metabolism and angiogenesis. Moreover, as an important medium of intercellular communication, G-CSF has also been shown to exert key roles in crosstalk between cellular components at the maternal-fetal interface. Recently, our study demonstrated that G-CSF derived from M2 macrophage could promote trophoblasts invasion and migration through activating PI3K/AKT/Erk1/2 pathway, thereby involving in normal pregnancy program. Herein, we will summarize the role and regulation of G-CSF in normal pregnancy and reproductive-related disease, and the clinical applications of G-CSF in patients undergoing in vitro fertilization with thin endometrium, repeated implantation failure, and women suffered with recurrent spontaneous abortion.
Collapse
Affiliation(s)
- Jinli Ding
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430060, China
| | - Jing Wang
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430060, China
| | - Xiaopeng Cai
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University & Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center & The Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan 430071, China
| | - Tailang Yin
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430060, China
| | - Yan Zhang
- Department of Clinical Laboratory, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Chaogang Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University & Hubei Key Laboratory of Tumor Biological Behaviors & Hubei Cancer Clinical Study Center & The Clinical Medical Research Center of Peritoneal Cancer of Wuhan, Wuhan 430071, China.
| | - Jing Yang
- Reproductive Medical Center, Renmin Hospital of Wuhan University & Hubei Clinic Research Center for Assisted Reproductive Technology and Embryonic Development, Wuhan 430060, China.
| |
Collapse
|
8
|
Munley JA, Kelly LS, Mohr AM. Adrenergic Modulation of Erythropoiesis After Trauma. Front Physiol 2022; 13:859103. [PMID: 35514362 PMCID: PMC9063634 DOI: 10.3389/fphys.2022.859103] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/02/2022] [Indexed: 11/17/2022] Open
Abstract
Severe traumatic injury results in a cascade of systemic changes which negatively affect normal erythropoiesis. Immediately after injury, acute blood loss leads to anemia, however, patients can remain anemic for as long as 6 months after injury. Research on the underlying mechanisms of such alterations of erythropoiesis after trauma has focused on the prolonged hypercatecholaminemia seen after trauma. Supraphysiologic elevation of catecholamines leads to an inhibitive effect on erythropoiesis. There is evidence to show that alleviation of the neuroendocrine stress response following trauma reduces these inhibitory effects. Both beta blockade and alpha-2 adrenergic receptor stimulation have demonstrated increased growth of hematopoietic progenitor cells as well as increased pro-erythropoietic cytokines after trauma. This review will describe prior research on the neuroendocrine stress response after trauma and its consequences on erythropoiesis, which offer insight into underlying mechanisms of prolonged anemia postinjury. We will then discuss the beneficial effects of adrenergic modulation to improve erythropoiesis following injury and propose future directions for the field.
Collapse
Affiliation(s)
- Jennifer A Munley
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida, Gainesville, FL, United States
| | - Lauren S Kelly
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida, Gainesville, FL, United States
| | - Alicia M Mohr
- Sepsis and Critical Illness Research Center, Department of Surgery, University of Florida, Gainesville, FL, United States
| |
Collapse
|
9
|
The extracellular matrix of hematopoietic stem cell niches. Adv Drug Deliv Rev 2022; 181:114069. [PMID: 34838648 PMCID: PMC8860232 DOI: 10.1016/j.addr.2021.114069] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 11/18/2021] [Accepted: 11/21/2021] [Indexed: 12/21/2022]
Abstract
Comprehensive overview of different classes of ECM molecules in the HSC niche. Overview of current knowledge on role of biophysics of the HSC niche. Description of approaches to create artificial stem cell niches for several application. Importance of considering ECM in drug development and testing.
Hematopoietic stem cells (HSCs) are the life-long source of all types of blood cells. Their function is controlled by their direct microenvironment, the HSC niche in the bone marrow. Although the importance of the extracellular matrix (ECM) in the niche by orchestrating niche architecture and cellular function is widely acknowledged, it is still underexplored. In this review, we provide a comprehensive overview of the ECM in HSC niches. For this purpose, we first briefly outline HSC niche biology and then review the role of the different classes of ECM molecules in the niche one by one and how they are perceived by cells. Matrix remodeling and the emerging importance of biophysics in HSC niche function are discussed. Finally, the application of the current knowledge of ECM in the niche in form of artificial HSC niches for HSC expansion or targeted differentiation as well as drug testing is reviewed.
Collapse
|
10
|
Shin MJ, Park JY, Lee DH, Khang D. Stem Cell Mimicking Nanoencapsulation for Targeting Arthritis. Int J Nanomedicine 2022; 16:8485-8507. [PMID: 35002240 PMCID: PMC8725870 DOI: 10.2147/ijn.s334298] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2021] [Accepted: 12/05/2021] [Indexed: 12/12/2022] Open
Abstract
Mesenchymal stem cells (MSCs) are considered a promising regenerative therapy due to their ability to migrate toward damaged tissues. The homing ability of MSCs is unique compared with that of non-migrating cells and MSCs are considered promising therapeutic vectors for targeting major cells in many pathophysiological sites. MSCs have many advantages in the treatment of malignant diseases, particularly rheumatoid arthritis (RA). RA is a representative autoimmune disease that primarily affects joints, and secreted chemokines in the joints are well recognized by MSCs following their migration to the joints. Furthermore, MSCs can regulate the inflammatory process and repair damaged cells in the joints. However, the functionality and migration ability of MSCs injected in vivo still show insufficient. The targeting ability and migration efficiency of MSCs can be enhanced by genetic engineering or modification, eg, overexpressing chemokine receptors or migration-related genes, thus maximizing their therapeutic effect. However, there are concerns about genetic changes due to the increased probability of oncogenesis resulting from genome integration of the viral vector, and thus, clinical application is limited. Furthermore, it is suspected that administering MSCs can promote tumor growth and metastasis in xenograft and orthotopic models. For this reason, MSC mimicking nanoencapsulations are an alternative strategy that does not involve using MSCs or bioengineered MSCs. MSC mimicking nanoencapsulations consist of MSC membrane-coated nanoparticles, MSC-derived exosomes and artificial ectosomes, and MSC membrane-fused liposomes with natural or genetically engineered MSC membranes. MSC mimicking nanoencapsulations not only retain the targeting ability of MSCs but also have many advantages in terms of targeted drug delivery. Specifically, MSC mimicking nanoencapsulations are capable of encapsulating drugs with various components, including chemotherapeutic agents, nucleic acids, and proteins. Furthermore, there are fewer concerns over safety issues on MSC mimicking nanoencapsulations associated with mutagenesis even when using genetically engineered MSCs, because MSC mimicking nanoencapsulations use only the membrane fraction of MSCs. Genetic engineering is a promising route in clinical settings, where nano-encapsulated technology strategies are combined. In this review, the mechanism underlying MSC homing and the advantages of MSC mimicking nanoencapsulations are discussed. In addition, genetic engineering of MSCs and MSC mimicking nanoencapsulation is described as a promising strategy for the treatment of immune-related diseases.
Collapse
Affiliation(s)
- Min Jun Shin
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea.,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea
| | - Jun Young Park
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea.,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea
| | - Dae Ho Lee
- Department of Internal Medicine, Gachon University Gil Medical Center, Incheon, 21999, South Korea.,Department of Internal Medicine, Gachon University College of Medicine, Incheon, 21999, South Korea
| | - Dongwoo Khang
- Department of Health Sciences and Technology, GAIHST, Gachon University, Incheon, 21999, South Korea.,Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon, 21999, South Korea.,Department of Physiology, School of Medicine, Gachon University, Incheon, 21999, South Korea
| |
Collapse
|
11
|
Moeinabadi-Bidgoli K, Babajani A, Yazdanpanah G, Farhadihosseinabadi B, Jamshidi E, Bahrami S, Niknejad H. Translational insights into stem cell preconditioning: From molecular mechanisms to preclinical applications. Biomed Pharmacother 2021; 142:112026. [PMID: 34411911 DOI: 10.1016/j.biopha.2021.112026] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 02/06/2023] Open
Abstract
Cell-based therapy (CBT) is a revolutionary approach for curing a variety of degenerative diseases. Stem cell-based regenerative medicine is a novel strategy for treating tissue damages regarding stem cells unique properties such as differentiation potential, paracrine impacts, and self-renewal ability. However, the current cell-based treatments encounter considerable challenges to be translated into clinical practice, including low cell survival, migration, and differentiation rate of transplanted stem cells. The poor stem cell therapy outcomes mainly originate from the unfavorable condition of damaged tissues for transplanted stem cells. The promising method of preconditioning improves cell resistance against the host environment's stress by imposing certain conditions similar to the harsh microenvironment of the damaged tissues on the transplanted stem cells. Various pharmacological, biological, and physical inducers are able to establish preconditioning. In addition to their known pharmacological effects on tissues and cells, these preconditioning agents improve cell biological aspects such as cell survival, proliferation, differentiation, migration, immunomodulation, paracrine impacts, and angiogenesis. This review focuses on different protocols and inducers of preconditioning along with underlying molecular mechanisms of their effects on stem cell behavior. Moreover, preclinical applications of preconditioned stem cells in various damaged organs such as heart, lung, brain, bone, cartilage, liver, and kidney are discussed with prospects of their translation into the clinic.
Collapse
Affiliation(s)
- Kasra Moeinabadi-Bidgoli
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amirhesam Babajani
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghasem Yazdanpanah
- Department of Ophthalmology and Visual Sciences, Illinois Eye and Ear Infirmary, University of Illinois at Chicago, Chicago, IL, USA
| | | | - Elham Jamshidi
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheyl Bahrami
- Ludwig Boltzmann Institute for Experimental and Clinical Traumatology in AUVA Research Center, Vienna, Austria
| | - Hassan Niknejad
- Department of Pharmacology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Brackett CM, Greene KF, Aldrich AR, Trageser NH, Pal S, Molodtsov I, Kandar BM, Burdelya LG, Abrams SI, Gudkov AV. Signaling through TLR5 mitigates lethal radiation damage by neutrophil-dependent release of MMP-9. Cell Death Discov 2021; 7:266. [PMID: 34584068 PMCID: PMC8478872 DOI: 10.1038/s41420-021-00642-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/25/2022] Open
Abstract
Acute radiation syndrome (ARS) is a major cause of lethality following radiation disasters. A TLR5 agonist, entolimod, is among the most powerful experimental radiation countermeasures and shows efficacy in rodents and non-human primates as a prophylactic (radioprotection) and treatment (radiomitigation) modality. While the prophylactic activity of entolimod has been connected to the suppression of radiation-induced apoptosis, the mechanism by which entolimod functions as a radiomitigator remains poorly understood. Uncovering this mechanism has significant and broad-reaching implications for the clinical development and improvement of TLR5 agonists for use as an effective radiation countermeasure in scenarios of mass casualty resulting from accidental exposure to ionizing radiation. Here, we demonstrate that in contrast to radioprotection, neutrophils are essential for the radiomitigative activity of entolimod in a mouse model of lethal ARS. Neutrophils express functional TLR5 and rapidly exit the bone marrow (BM), accumulate in solid tissues, and release MMP-9 following TLR5 stimulation which is accompanied by an increase in the number of active hematopoietic pluripotent precursors (HPPs) in the BM. Importantly, recombinant MMP-9 by itself has radiomitigative activity and, in the absence of neutrophils, accelerates the recovery of the hematopoietic system. Unveiling this novel TLR5-neutrophil-MMP-9 axis of radiomitigation opens new opportunities for the development of efficacious radiation countermeasures to treat ARS following accidental radiation disasters.
Collapse
Affiliation(s)
- Craig M Brackett
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA.
| | - Kellee F Greene
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Alyssa R Aldrich
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Nicholas H Trageser
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Srabani Pal
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Ivan Molodtsov
- I.V. Davydovsky Clinical City Hospital, Moscow Department of Healthcare, Moscow, Russian Federation
| | - Bojidar M Kandar
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Lyudmila G Burdelya
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Scott I Abrams
- Department of Immunology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| | - Andrei V Gudkov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, 14263, USA
| |
Collapse
|
13
|
Saleh M, Khalil M, Abdellateif MS, Ebeid E, Madney Y, Kandeel EZ. Role of matrix metalloproteinase MMP-2, MMP-9 and tissue inhibitor of metalloproteinase (TIMP-1) in the clinical progression of pediatric acute lymphoblastic leukemia. ACTA ACUST UNITED AC 2021; 26:758-768. [PMID: 34555302 DOI: 10.1080/16078454.2021.1978763] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Matrix metalloproteinases (MMPs) play a crucial role in cancer progression and metastasis, however their role in pediatric Acute lymphoblastic leukemia (ALL) is still unrevealed. METHODS The diagnostic, prognostic and predictive value of tissue inhibitor of metalloproteinase (TIMP-1), MMP-2, MMP-9 and CD34+CD38- cancer stem cells (CSCs) were assessed in bone marrow (BM) samples of 76 ALL children using Flow Cytometry analysis. RESULTS There was a significant increase in TIMP-1 [1.52 (0.41-10) versus 0.91(0.6-1.12); respectively, p < 0.001], and CSCs CD34+CD38- [1 (0.03-18.6) versus 0.3 (0.01-1.1), p < 0.001] expression in ALL patients compared to controls. While there were no significant differences regarding MMP-2 and MMP-9 expression between the two groups. The sensitivity, specificity, area under curve (AUC) of MMP-2 were (80.3%, 53.3% and 0.568, p = 0.404), and of MMP-9 were (53.9%, 40% and 0.660, p = 0.053). While that of TIMP-1 were (78.9%, 100% and 0.892, p < 0.001), and that of CD34+CD38- CSCs were (78.9%, 73.3% and 0.855, p < 0.001). Increased TIMP-1 expression associated with the high-risk disease (p < 0.001). CD34+CD38- CSCs and MMP-2 overexpression associated with MRD at day-15, increased BM blast cell count at diagnosis and at day-15 (p < 0.05). TIMP-1 overexpression is associated with shorter DFS and OS rates (p = 0.009 and p = 0.048). Multivariate logistic regression analysis showed that both TIMP-1 [OR: 4.224, p = 0.046], and CD34+CD38- CSCs [OR: 6.873, p = 0.005] could be potential independent diagnostic factors for pediatric ALL. CONCLUSION TIMP-1 and CD34+CD38- CSCs could be possible useful diagnostic markers for pediatric ALL. Also, TIMP-1 is a promising prognostic marker for poor outcome of the patients.
Collapse
Affiliation(s)
- Maha Saleh
- Clinical Pathology, National Cancer Institute, Cairo University, Giza, Egypt
| | - Mohamed Khalil
- Clinical Pathology, National Cancer Institute, Cairo University, Giza, Egypt
| | - Mona S Abdellateif
- Medical Biochemistry and Molecular Biology, Cancer Biology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Emad Ebeid
- Pediatric Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Youssef Madney
- Pediatric Oncology Department, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Eman Z Kandeel
- Clinical Pathology, National Cancer Institute, Cairo University, Giza, Egypt
| |
Collapse
|
14
|
Moazzami K, Wittbrodt MT, Lima BB, Kim JH, Hammadah M, Ko YA, Obideen M, Abdelhadi N, Kaseer B, Gafeer MM, Nye JA, Shah AJ, Ward L, Raggi P, Waller EK, Bremner JD, Quyyumi AA, Vaccarino V. Circulating Progenitor Cells and Cognitive Impairment in Men and Women with Coronary Artery Disease. J Alzheimers Dis 2021; 74:659-668. [PMID: 32083582 DOI: 10.3233/jad-191063] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Circulating progenitor cells (CPC) have been associated with memory function and cognitive impairment in healthy adults. However, it is unclear whether such associations also exist in patients with coronary artery disease (CAD). OBJECTIVE To assess the association between CPCs and memory performance among individuals with CAD. METHODS We assessed cognitive function in 509 patients with CAD using the verbal and visual Memory subtests of the Wechsler memory scale-IV and the Trail Making Test parts A and B. CPCs were enumerated with flow cytometry as CD45med/CD34+ blood mononuclear cells, those co-expressing other epitopes representing populations enriched for hematopoietic and endothelial progenitors. RESULTS After adjusting for demographic and cardiovascular risk factors, lower number of endothelial progenitor cell counts were independently associated with lower visual and verbal memory scores (p for all < 0.05). There was a significant interaction in the magnitude of this association with race (p < 0.01), such that the association of verbal memory scores with endothelial progenitor subsets was present in Black but not in non-Black participants. No associations were present with the hematopoietic progenitor-enriched cells or with the Trail Making Tests. CONCLUSION Lower numbers of circulating endothelial progenitor cells are associated with cognitive impairment in patients with CAD, suggesting a protective effect of repair/regeneration processes in the maintenance of cognitive status. Impairment of verbal memory function was more strongly associated with lower CPC counts in Black compared to non-Black participants with CAD. Whether strategies designed to improve regenerative capacity will improve cognition needs further study.
Collapse
Affiliation(s)
- Kasra Moazzami
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Matthew T Wittbrodt
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Bruno B Lima
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jeong Hwan Kim
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Muhammad Hammadah
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Yi-An Ko
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Malik Obideen
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Naser Abdelhadi
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Belal Kaseer
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - M Mazen Gafeer
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Jonathon A Nye
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Amit J Shah
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA.,Atlanta VA Medical Center, Decatur, GA, USA
| | - Laura Ward
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Paolo Raggi
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Mazankowski Alberta Heart Institute, University of Alberta, Alberta, Canada
| | - Edmund K Waller
- Department of Hematology and Oncology, Winship Cancer Institute, Atlanta, GA, USA
| | - J Douglas Bremner
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA.,Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, USA.,Atlanta VA Medical Center, Decatur, GA, USA
| | - Arshed A Quyyumi
- Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| | - Viola Vaccarino
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA, USA.,Department of Medicine, Emory Clinical Cardiovascular Research Institute, Division of Cardiology, Emory University School of Medicine, Atlanta, GA, USA
| |
Collapse
|
15
|
Das S, Amin SA, Jha T. Inhibitors of gelatinases (MMP-2 and MMP-9) for the management of hematological malignancies. Eur J Med Chem 2021; 223:113623. [PMID: 34157437 DOI: 10.1016/j.ejmech.2021.113623] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/18/2021] [Accepted: 06/03/2021] [Indexed: 12/30/2022]
Abstract
Matrix metalloproteinase-2 (MMP-2) and matrix metalloproteinase-9 (MMP-9) are collectively known as gelatinases whereas MMP-2 is gelatinase-A and MMP-9 is termed as gelatinase-B. Gelatinases and other matrix metalloproteinases (MMPs) have long been associated with solid tumor invasion, metastasis and angiogenesis. However, there is paucity of data available regarding the role of gelatinases in hematological malignancies. Recent studies have shown that gelatinases activities or functions are correlated with hematological malignancies. Strategies for designing more specific gelatinase inhibitors like catalytic (CAT) domain inhibitors and hemopexin (PEX) domain inhibitors as well as signaling pathway based or gelatinase expression inhibitors had been reported against hematologic malignant cells. Several substrate based non-selective to non-substrate based relatively selective synthetic matrix metalloproteinase inhibitors (MMPIs) had been developed. Few MMPIs had reached in clinical trials during the period of 1990s-2000s. Unfortunately the anti-tumor and anti-metastatic efficacies of these MMPIs were not justified with patients having several advanced stage solid tumor cancers in any substantial number of clinical trials. Till date not a single MMPI passed phase III clinical trials designed for advanced metastatic cancers due to adverse events as well as lack of ability to show uniformity in disease prolongation. With the best of our knowledge no clinical trial study has been reported with small molecule synthetic inhibitors against hematological malignancies. This review looks at the outcome of clinical trials of MMPIs for advanced stage solid tumors. This can therefore, act as a learning experience for future development of successful gelatinase inhibitors for the management of hematological malignancies.
Collapse
Affiliation(s)
- Sanjib Das
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Sk Abdul Amin
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| | - Tarun Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, 700032, India.
| |
Collapse
|
16
|
Hearst S, Bednářová A, Draughn B, Johnson K, Mills D, Thomas C, Scales J, Keenan ET, Welcher JV, Krishnan N. Expression of Drosophila Matrix Metalloproteinases in Cultured Cell Lines Alters Neural and Glial Cell Morphology. Front Cell Dev Biol 2021; 9:610887. [PMID: 34055768 PMCID: PMC8155609 DOI: 10.3389/fcell.2021.610887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 04/23/2021] [Indexed: 11/13/2022] Open
Abstract
Matrix metalloproteinases (MMPs) are zinc- and calcium- dependent endopeptidases that play pivotal roles in many biological processes. The expression of several MMPs in the central nervous system (CNS) have been shown to change in response to injury and various neurological/neurodegenerative disorders. While extracellular MMPs degrade the extracellular matrix (ECM) and regulate cell surface receptor signaling, the intracellular functions of MMPs or their roles in CNS disorders is unclear. Around 23 different MMPs are found in the human genome with overlapping function, making analysis of the intracellular role of human MMPs a daunting task. However, the fruit fly Drosophila melanogaster genome encodes only two MMPs: dMMP1 and dMMP2. To better understand the intracellular role of MMPs in the CNS, we expressed Green Fluorescent Protein (GFP)- tagged dMMPs in SH-SY5Y neuroblastoma cells and C6 glioblastoma cell lines. Lipofection of GFP-dMMPs in SH-SY5Y cells enhanced nuclear rupture and reduced cell viability (coupled with increased apoptosis) as compared to GFP alone. In non-liposomal transfection experiments, dMMP1 localizes to both the cytoplasm and the nucleus whereas dMMP2 had predominantly cytoplasmic localization in both neural and glial cell lines. Cytoplasmic localization demonstrated co-localization of dMMPs with cytoskeleton proteins which suggests a possible role of dMMPs in cell morphology. This was further supported by transient dMMP expression experiments that showed that dMMPs significantly increased neurite formation and length in neuronal cell lines. Inhibition of endogenous MMPs decreased neurite formation, length and βIII Tubulin protein levels in differentiated SH-SY5Y cells. Further, transient expression experiments showed similar changes in glial cell morphology, wherein dMMP expression increased glial process formation and process length. Interestingly, C6 cells expressing dMMPs had a glia-like appearance, suggesting MMPs may be involved in intracellular glial differentiation. Inhibition or suppression of endogenous MMPs in C6 cells increased process formation, increased process length, modulated GFAP protein expression, and induced distinct glial-like phenotypes. Taken together, our results strongly support the intracellular role that dMMPs can play in apoptosis, cytoskeleton remodeling, and cell differentiation. Our studies further reinforce the use of Drosophila MMPs to dissect out the precise mechanisms whereby they exert their intracellular roles in CNS disorders.
Collapse
Affiliation(s)
- Scoty Hearst
- Department of Biology, Tougaloo College, Tougaloo, MS, United States.,Department of Chemistry and Biochemistry, Mississippi College, Clinton, MS, United States
| | - Andrea Bednářová
- Department of Biochemistry and Physiology, Institute of Entomology, Biology Centre, Czech Academy of Sciences, České Budějovice, Czechia.,Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Benjamin Draughn
- Department of Chemistry and Biochemistry, Mississippi College, Clinton, MS, United States
| | - Kennadi Johnson
- Department of Biology, Tougaloo College, Tougaloo, MS, United States
| | - Desiree Mills
- Department of Biology, Tougaloo College, Tougaloo, MS, United States
| | - Cendonia Thomas
- Department of Biology, Tougaloo College, Tougaloo, MS, United States
| | - Jendaya Scales
- Department of Biology, Tougaloo College, Tougaloo, MS, United States
| | - Eadie T Keenan
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Jewellian V Welcher
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| | - Natraj Krishnan
- Department of Biochemistry, Molecular Biology, Entomology and Plant Pathology, Mississippi State University, Starkville, MS, United States
| |
Collapse
|
17
|
Importance of Altered Gene Expression of Metalloproteinases 2, 9, and 16 in Acute Myeloid Leukemia: Preliminary Study. JOURNAL OF ONCOLOGY 2021; 2021:6697975. [PMID: 34035811 PMCID: PMC8121570 DOI: 10.1155/2021/6697975] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/13/2021] [Accepted: 04/29/2021] [Indexed: 12/21/2022]
Abstract
Acute myeloid leukemia is a group of hematological neoplasms characterized by a heterogeneous course and high mortality. The important factor in the neoplastic process is metalloproteinases, proteolytic enzymes capable of degrading various components of the extracellular matrix, which take an active part in modifying the functioning of the cell, including transformation to cancer cell. They interact with numerous signaling pathways responsible for the process of cell growth, proliferation, or apoptosis. In the present study, changes in the expression of MMP2, MMP9, and MMP16 genes between patients with AML and people without cancer were examined. The impact of cytogenetic changes in neoplastic cells on the expression level of MMP2, MMP9, and MMP16 was also assessed, as well as the impact of the altered expression on the effectiveness of the first cycle of remission-inducing therapy. To evaluate the expression of all studied genes MMP2, MMP9, and MMP16, SYBR Green-based real-time PCR method was used; the reference gene was GAPDH. For two investigated genes MMP2 and MMP16, the lower expression level was observed in patients with AML when compared to healthy people. The MMP9 gene expression level did not differ between patients with AML and healthy individuals which may indicate a different regulation of gene expression in acute myeloid leukemia. However, no correlation was observed between the genes' expression of all tested metalloproteinases and the result of cytoreductive treatment or the presence of cytogenetic changes. The obtained results show that the expression of MMP2 and MMP16 genes is reduced while the expression of MMP9 is unchanged in patients with acute myeloid leukemia. This may indicate a different regulation of the expression of these genes, and possible disruptions in gene transcription or posttranscriptional mechanisms in the MMP2 and MMP16 genes, however, do not affect the level of MMP9 expression. Obtained results in AML patients are in contrary to various types of solid tumors where increased expression is usually observed.
Collapse
|
18
|
Ting HK, Chen CL, Meng E, Cherng JH, Chang SJ, Kao CC, Yang MH, Leung FS, Wu ST. Inflammatory Regulation by TNF-α-Activated Adipose-Derived Stem Cells in the Human Bladder Cancer Microenvironment. Int J Mol Sci 2021; 22:ijms22083987. [PMID: 33924332 PMCID: PMC8069705 DOI: 10.3390/ijms22083987] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 04/07/2021] [Accepted: 04/09/2021] [Indexed: 12/21/2022] Open
Abstract
Mesenchymal stem cells (MSCs), such as adipose-derived stem cells (ADSCs), have the most impressive ability to reduce inflammation through paracrine growth factors and cytokines that participate in inflammation. Tumor necrosis factor (TNF)-α bioactivity is a prerequisite in several inflammatory and autoimmune disease models. This study investigated the effects of TNF-α stimulate on ADSCs in the tumor microenvironment. The RNAseq analysis and cytokines assay demonstrated that TNF-α stimulated ADSCs proliferation and pro-inflammatory genes that correlated to leukocytes differentiation were upregulated. We found that upregulation of TLR2 or PTGS2 toward to IRF7 gene-associated with immunomodulatory and antitumor pathway under TNF-α treatment. In TNF-α-treated ADSCs cultured with the bladder cancer (BC) cell medium, the results showed that apoptosis ratio and OCT-4 and TLR2 genes which maintained the self-renewal ability of stem cells were decreased. Furthermore, the cell survival regulation genes including TRAF1, NF-kB, and IRF7 were upregulated in TNF-α-treated ADSCs. Additionally, these genes have not been upregulated in BC cell medium. A parallel study showed that tumor progressing genes were downregulated in TNF-α-treated ADSCs. Hence, the study suggests that TNF-α enhances the immunomodulatory potential of ADSCs during tumorigenesis and provides insight into highly efficacious MSC-based therapeutic options for BC.
Collapse
Affiliation(s)
- Hui-Kung Ting
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (H.-K.T.); (C.-L.C.); (E.M.); (C.-C.K.); (M.-H.Y.)
| | - Chin-Li Chen
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (H.-K.T.); (C.-L.C.); (E.M.); (C.-C.K.); (M.-H.Y.)
| | - En Meng
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (H.-K.T.); (C.-L.C.); (E.M.); (C.-C.K.); (M.-H.Y.)
- Department and Graduate Institute of Biochemistry, National Defense Medical Center, Taipei 114, Taiwan
| | - Juin-Hong Cherng
- Department and Graduate Institute of Biology and Anatomy, National Defense Medical Center, Taipei 114, Taiwan;
- Department of Gerontological Health Care, National Taipei University of Nursing and Health Sciences, Taipei 112, Taiwan
| | - Shu-Jen Chang
- Laboratory of Adult Stem Cell and Tissue Regeneration, National Defense Medical Center, Taipei 114, Taiwan;
| | - Chien-Chang Kao
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (H.-K.T.); (C.-L.C.); (E.M.); (C.-C.K.); (M.-H.Y.)
| | - Ming-Hsin Yang
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (H.-K.T.); (C.-L.C.); (E.M.); (C.-C.K.); (M.-H.Y.)
| | - Fang-Shiuan Leung
- College of Biological Science, University of California-Davis, Davis, CA 95616, USA;
| | - Sheng-Tang Wu
- Division of Urology, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei 114, Taiwan; (H.-K.T.); (C.-L.C.); (E.M.); (C.-C.K.); (M.-H.Y.)
- Correspondence: ; Tel.: +886-2-87927169; Fax: +886-2-87927172
| |
Collapse
|
19
|
Hausinger R, Hackl M, Jardon Alvarez A, Kehr M, Romero Marquez S, Hettler F, Kehr C, Grziwok S, Schreck C, Peschel C, Istvánffy R, Oostendorp RAJ. Cathepsin K maintains the compartment of bone marrow T lymphocytes in vivo. IMMUNITY INFLAMMATION AND DISEASE 2021; 9:521-532. [PMID: 33592138 PMCID: PMC8127559 DOI: 10.1002/iid3.412] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 01/26/2021] [Accepted: 01/28/2021] [Indexed: 01/03/2023]
Abstract
In this study, we investigated the influence of the loss of cathepsin K (Ctsk) gene on the hematopoietic system in vitro and in vivo. We found that cultures with lineage- SCA1+ KIT+ (LSK) cells on Ctsk deficient stromal cells display reduced colony formation and proliferation, with increased differentiation, giving rise to repopulating cells with reduced ability to repopulate the donor LSKs and T cell compartments in the bone marrow (BM). Subsequent in vivo experiments showed impairment of lymphocyte numbers, but, gross effects on early hematopoiesis or myelopoiesis were not found. Most consistently in in vivo experimental settings, we found a significant reduction of (donor) T cell numbers in the BM. Lymphocyte deregulation is also found in transplantation experiments, which revealed that Ctsk is required for optimal regeneration of small populations of T cells, particularly in the BM, but also of thymic B cells. Interestingly, cell nonautonomous Ctsk regulates both B and T cell numbers, but T cell numbers in the BM require an additional autonomous Ctsk-dependent process. Thus, we show that Ctsk is required for the maintenance of hematopoietic stem cells in vitro, but in vivo, Ctsk deficiency most strongly affects lymphocyte homeostasis, particularly of T cells in the BM.
Collapse
Affiliation(s)
- Renate Hausinger
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Internal Medicine III - Hematology and Oncology, Laboratory of Stem Cell Physiology, Munich, Germany
| | - Marianne Hackl
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Internal Medicine III - Hematology and Oncology, Laboratory of Stem Cell Physiology, Munich, Germany
| | - Ana Jardon Alvarez
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Internal Medicine III - Hematology and Oncology, Laboratory of Stem Cell Physiology, Munich, Germany
| | - Miriam Kehr
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Internal Medicine III - Hematology and Oncology, Laboratory of Stem Cell Physiology, Munich, Germany
| | - Sandra Romero Marquez
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Internal Medicine III - Hematology and Oncology, Laboratory of Stem Cell Physiology, Munich, Germany
| | - Franziska Hettler
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Internal Medicine III - Hematology and Oncology, Laboratory of Stem Cell Physiology, Munich, Germany
| | - Christian Kehr
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Internal Medicine III - Hematology and Oncology, Laboratory of Stem Cell Physiology, Munich, Germany
| | - Sandra Grziwok
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Internal Medicine III - Hematology and Oncology, Laboratory of Stem Cell Physiology, Munich, Germany
| | - Christina Schreck
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Internal Medicine III - Hematology and Oncology, Laboratory of Stem Cell Physiology, Munich, Germany
| | - Christian Peschel
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Internal Medicine III - Hematology and Oncology, Laboratory of Stem Cell Physiology, Munich, Germany.,German Cancer Consortium (DKTK), Heidelberg, Germany
| | - Rouzanna Istvánffy
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Internal Medicine III - Hematology and Oncology, Laboratory of Stem Cell Physiology, Munich, Germany
| | - Robert A J Oostendorp
- Technical University of Munich, School of Medicine, Klinikum rechts der Isar, Department of Internal Medicine III - Hematology and Oncology, Laboratory of Stem Cell Physiology, Munich, Germany
| |
Collapse
|
20
|
Mediators of Prolonged Hematopoietic Progenitor Cell Mobilization After Severe Trauma. J Surg Res 2020; 260:315-324. [PMID: 33373851 DOI: 10.1016/j.jss.2020.11.084] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Revised: 11/11/2020] [Accepted: 11/15/2020] [Indexed: 11/20/2022]
Abstract
BACKGROUND This study investigated the molecular mediators of prolonged hematopoietic progenitor cell mobilization a trauma and chronic stress and the role of propranolol in modifying this response. METHODS Sprague-Dawley rats were randomized to lung contusion (LC), LC plus hemorrhagic shock (LCHS), or LCHS with daily restraint stress (LCHS/CS). Propranolol was administered daily. Bone marrow (BM) and lung expression of high mobility group box 1 (HMGB1), granulocyte colony-stimulating factor (G-CSF), neutrophil elastase, stromal cell-derived factor 1 (SDF-1)/CXR4, and vascular cell adhesion protein 1 (VCAM-1)/very late antigen-4 were measured by real-time polymerase chain reaction. RESULTS Bone marrow HMGB1, G-CSF, and neutrophil elastase expression were significantly elevated two- to four-fold after LCHS/CS, and all were decreased with the use of propranolol. SDF-1 and VCAM-1 were both significantly decreased after LCHS/CS. CONCLUSIONS The increased expression of HMGB1 and G-CSF and decreased expression of BM anchoring molecules, SDF-1 and VCAM-1, after LCHS/CS, likely mediates prolonged hematopoietic progenitor cell mobilization. Propranolol's ability to reduce HMGB1, G-CSF, and neutrophil elastase expression suggests that the mobilization of hematopoietic progenitor cells was driven by persistent hypercatecholaminemia.
Collapse
|
21
|
Wang X, Walkey CJ, Maretti-Mira AC, Wang L, Johnson DL, DeLeve LD. Susceptibility of Rat Steatotic Liver to Ischemia-Reperfusion Is Treatable With Liver-Selective Matrix Metalloproteinase Inhibition. Hepatology 2020; 72:1771-1785. [PMID: 32060938 PMCID: PMC7523533 DOI: 10.1002/hep.31179] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/23/2020] [Indexed: 12/31/2022]
Abstract
BACKGROUND AND AIMS This study examined whether enhanced susceptibility of steatotic liver to ischemia-reperfusion (I/R) injury is due to impaired recruitment of bone marrow (BM) progenitors of liver sinusoidal endothelial cells (LSECs, also called sinusoidal endothelial cell progenitor cells [sprocs]) with diminished repair of injured LSECs and whether restoring signaling to recruit BM sprocs reduces I/R injury. APPROACH AND RESULTS Hepatic vessels were clamped for 1 hour in rats fed a high-fat, high-fructose (HFHF) diet for 5, 10, or 15 weeks. Matrix metalloproteinase 9 (MMP-9) antisense oligonucleotides (ASO) or an MMP inhibitor were used to induce liver-selective MMP-9 inhibition. HFHF rats had mild, moderate, and severe steatosis, respectively, at 5, 10, and 15 weeks. I/R injury was enhanced in HFHF rats; this was accompanied by complete absence of hepatic vascular endothelial growth factor (VEGF)-stromal cell-derived factor 1 (sdf1) signaling, leading to lack of BM sproc recruitment. Liver-selective MMP-9 inhibition to protect against proteolytic cleavage of hepatic VEGF using either MMP-9 ASO or intraportal MMP inhibitor in 5-week and 10-week HFHF rats enhanced hepatic VEGF-sdf1 signaling, increased BM sproc recruitment, and reduced alanine aminotransferase (ALT) by 92% and 77% at 5 weeks and by 80% and 64% at 10 weeks of the HFHF diet, respectively. After I/R injury in 15-week HFHF rats, the MMP inhibitor reduced active MMP-9 expression by 97%, ameliorated histologic evidence of injury, and reduced ALT by 58%, which is comparable to control rats sustaining I/R injury. Rescue therapy with intraportal MMP inhibitor, given after ischemia, in the 5-week HFHF rat reduced ALT by 71% and reduced necrosis. CONCLUSIONS Lack of signaling to recruit BM sprocs that repair injured LSECs renders steatotic liver more susceptible to I/R injury. Liver-selective MMP-9 inhibition enhances VEGF-sdf1 signaling and recruitment of BM sprocs, which markedly protects against I/R injury, even in severely steatotic rats.
Collapse
Affiliation(s)
- Xiangdong Wang
- USC Division of Gastrointestinal and Liver Disease and the USC Research Center for Liver Disease, Keck Medicine of USC Los Angeles CA
| | - Christopher J. Walkey
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston TX
| | - Ana C. Maretti-Mira
- USC Division of Gastrointestinal and Liver Disease and the USC Research Center for Liver Disease, Keck Medicine of USC Los Angeles CA
| | - Lei Wang
- USC Division of Gastrointestinal and Liver Disease and the USC Research Center for Liver Disease, Keck Medicine of USC Los Angeles CA
| | - Deborah L. Johnson
- Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston TX
| | - Laurie D. DeLeve
- USC Division of Gastrointestinal and Liver Disease and the USC Research Center for Liver Disease, Keck Medicine of USC Los Angeles CA
| |
Collapse
|
22
|
Lee BJ, Mace EM. From stem cell to immune effector: how adhesion, migration, and polarity shape T-cell and natural killer cell lymphocyte development in vitro and in vivo. Mol Biol Cell 2020; 31:981-991. [PMID: 32352896 PMCID: PMC7346728 DOI: 10.1091/mbc.e19-08-0424] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Revised: 02/10/2020] [Accepted: 03/10/2020] [Indexed: 12/14/2022] Open
Abstract
Lymphocyte development is a complex and coordinated pathway originating from pluripotent stem cells during embryogenesis and continuing even as matured lymphocytes are primed and educated in adult tissue. Hematopoietic stem cells develop in a specialized niche that includes extracellular matrix and supporting stromal and endothelial cells that both maintain stem cell pluripotency and enable the generation of differentiated cells. Cues for lymphocyte development include changes in integrin-dependent cell motility and adhesion which ultimately help to determine cell fate. The capacity of lymphocytes to adhere and migrate is important for modulating these developmental signals both by regulating the cues that the cell receives from the local microenvironment as well as facilitating the localization of precursors to tissue niches throughout the body. Here we consider how changing migratory and adhesive phenotypes contribute to human natural killer (NK)- and T-cell development as they undergo development from precursors to mature, circulating cells and how our understanding of this process is informed by in vitro models of T- and NK cell generation.
Collapse
Affiliation(s)
- Barclay J. Lee
- Department of Bioengineering, Rice University, Houston, TX 77005
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| | - Emily M. Mace
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032
| |
Collapse
|
23
|
Huizer K, Sacchetti A, Swagemakers S, van der Spek PJ, Dik W, Mustafa DA, Kros JM. Circulating angiogenic cells in glioblastoma: toward defining crucial functional differences in CAC-induced neoplastic versus reactive neovascularization. Neurooncol Adv 2020; 2:vdaa040. [PMID: 32642695 PMCID: PMC7276933 DOI: 10.1093/noajnl/vdaa040] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
Background In order to identify suitable therapeutic targets for glioma anti-angiogenic therapy, the process of neovascularization mediated by circulating angiogenic cells (CACs) needs to be scrutinized. Methods In the present study, we compared the expression of neovascularization-related genes by 3 circulating CAC subsets (hematopoietic progenitor cells [HPCs], CD34+, and KDR+ cells; internal controls: peripheral blood mononuclear cells and circulating endothelial cells) of treatment-naïve patients with glioblastoma (GBM) to those of patients undergoing reactive neovascularization (myocardial infarction (MI). CACs from umbilical cord (representing developmental neovascularization) and healthy subjects served as controls. Fluorescent-activated cell sorting was used to isolate CACs, RT-PCR to determine the expression levels of a panel of 48 neovascularization-related genes, and Luminex assays to measure plasma levels of 21 CAC-related circulating molecules. Results We found essential differences in gene expression between GBM and MI CACs. GBM CACs had a higher expression of proangiogenic factors (especially, KITL, CXCL12, and JAG1), growth factor and chemotactic receptors (IGF1R, TGFBR2, CXCR4, and CCR2), adhesion receptor monomers (ITGA5 and ITGA6), and matricellular factor POSTN. In addition, we found major differences in the levels of neovascularization-related plasma factors. A strong positive correlation between plasma MMP9 levels and expression of CXCR4 in the CAC subset of HPCs was found in GBM patients. Conclusions Our findings indicate that CAC-mediated neovascularization in GBM is characterized by more efficient CAC homing to target tissue and a more potent proangiogenic response than in physiologic tissue repair in MI. Our findings can aid in selecting targets for therapeutic strategies acting against GBM-specific CACs.
Collapse
Affiliation(s)
- Karin Huizer
- Laboratory for Tumor Immuno-Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Andrea Sacchetti
- Laboratory for Tumor Immuno-Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Sigrid Swagemakers
- Department of Pathology and Clinical Bio-Informatics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Peter J van der Spek
- Department of Pathology and Clinical Bio-Informatics, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Wim Dik
- Department of Immunology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Dana A Mustafa
- Laboratory for Tumor Immuno-Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| | - Johan M Kros
- Laboratory for Tumor Immuno-Pathology, Erasmus Medical Center, Rotterdam, The Netherlands
| |
Collapse
|
24
|
Kalem Z, Namli Kalem M, Bakirarar B, Kent E, Makrigiannakis A, Gurgan T. Intrauterine G-CSF Administration in Recurrent Implantation Failure (RIF): An Rct. Sci Rep 2020; 10:5139. [PMID: 32198409 PMCID: PMC7083859 DOI: 10.1038/s41598-020-61955-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 02/26/2020] [Indexed: 01/08/2023] Open
Abstract
This study investigates the effects of intrauterine G-CSF on endometrial thickness, clinical pregnancy rate and live birth rate in a recurrent implantation failure (RIF) group with normal endometrium. This study was designed as a prospective randomized controlled trial with the involvement of 157 RIF group pati; ents. The RIF group was formed on the basis of the RIF criteria: "The failure to achieve a clinical pregnancy after the transfer of at least four good-quality embryos in a minimum of three fresh or frozen cycles to a woman under the age of 40 years. The study sample included 82 patients in the G-CSF group who received G-CSF once a day on hCG. The procedure was performed by administering 30 mIU of Leucostim®(Filgrastim [G-CSF] 30 mIU/mL; DEM Medical, Dong-A; South Korea) through slow infusion into the endometrial cavity using a soft embryo transfer catheter. Normal saline of 1 mL was infused into the endometrial cavity in the same way in 75 patients in the control group. The standard ICSI procedure was used for all patients, and fresh cycle embryos were transferred on the third or fifth day. No statistically significant difference was identified in clinical pregnancy rates, miscarriage rates and live birth rates between the G-CSF group and the control group (p = 0.112, p = 0.171, p = 0.644, respectively), and no difference was observed between the two groups regarding endometrial thickness (p = 0.965). The intervention of administration G-CSF into the uterine cavity in RIF patients with normal endometrium, did not alter the endometrial thickness, clinical pregnancy rates, or live birth rates.
Collapse
Affiliation(s)
- Ziya Kalem
- Istinye University Liv Hospital Bahcesehir, Department of IVF, Istanbul, Turkey
| | - Muberra Namli Kalem
- Bahcesehir University, Department of Obstetrics and Gynecology, Istanbul, Turkey.
| | | | - Erkin Kent
- Gürgan Clinic IVF and Women Health Center, Department of Embryology, Ankara, Turkey
| | | | - Timur Gurgan
- Bahcesehir University, Department of Obstetrics and Gynecology, Istanbul, Turkey
- Gürgan Clinic IVF and Women Health Center, Department of Embryology, Ankara, Turkey
| |
Collapse
|
25
|
Bone marrow niche-derived extracellular matrix-degrading enzymes influence the progression of B-cell acute lymphoblastic leukemia. Leukemia 2020; 34:1540-1552. [PMID: 31919471 PMCID: PMC7266746 DOI: 10.1038/s41375-019-0674-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 11/16/2019] [Accepted: 11/20/2019] [Indexed: 12/11/2022]
Abstract
Specific and reciprocal interactions with the bone marrow microenvironment (BMM) govern the course of hematological malignancies. Matrix metalloproteinase-9 (MMP-9), secreted by leukemia cells, facilitates tumor progression via remodeling of the extracellular matrix (ECM) of the BMM. Hypothesizing that leukemias may instruct the BMM to degrade the ECM, we show, that MMP-9-deficiency in the BMM prolongs survival of mice with BCR-ABL1-induced B-cell acute lymphoblastic leukemia (B-ALL) compared with controls and reduces leukemia-initiating cells. MMP-9-deficiency in the BMM leads to reduced degradation of proteins of the ECM and reduced invasion of B-ALL. Using various in vivo and in vitro assays, as well as recipient mice deficient for the receptor for tumor necrosis factor (TNF) α (TNFR1) we demonstrate that B-ALL cells induce MMP-9-expression in mesenchymal stem cells (MSC) and possibly other cells of the BMM via a release of TNFα. MMP-9-expression in MSC is mediated by activation of nuclear factor kappa B (NF-κB) downstream of TNFR1. Consistently, knockdown of TNF-α in B-ALL-initiating cells or pharmacological inhibition of MMP-9 led to significant prolongation of survival in mice with B-ALL. In summary, leukemia cell-derived Tnfα induced MMP-9-expression by the BMM promoting B-ALL progression. Inhibition of MMP-9 may act as an adjunct to existing therapies.
Collapse
|
26
|
Albumin Modifies Responses to Hematopoietic Stem Cell Mobilizing Agents in Mice. Cells 2019; 9:cells9010004. [PMID: 31861319 PMCID: PMC7017167 DOI: 10.3390/cells9010004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 12/13/2019] [Accepted: 12/15/2019] [Indexed: 12/15/2022] Open
Abstract
Albumin, the most abundant plasma protein, not only controls osmotic blood pressure, but also serves as a carrier for various small molecules, including pharmaceuticals. Its impact on pharmacological properties of many drugs has been extensively studied over decades. Here, we focus on its interaction with the following mobilizing agents: Granulocyte-colony stimulating factor (G-CSF) and AMD3100, where such analyses are lacking. These compounds are widely used for hematopoietic stem cell mobilization of healthy donors or patients. Using albumin-deficient (Alb−/−) mice, we studied the contribution of albumin to mobilization outcomes. Mobilization with the bicyclam CXCR4 antagonist AMD3100 was attenuated in Alb−/− mice compared to wild-type littermates. By contrast, mobilization with recombinant human G-CSF (rhG-CSF), administered twice daily over a five-day course, was significantly increased in Alb−/− mice. In terms of a mechanism, we show that rhG-CSF bioavailability in the bone marrow is significantly improved in Alb−/− mice, compared to wild-type (WT) littermates, where rhG-CSF levels dramatically drop within a few hours of the injection. These observations likely explain the favorable mobilization outcomes with split-dose versus single-dose administration of rhG-CSF to healthy donors.
Collapse
|
27
|
Metalloproteases: On the Watch in the Hematopoietic Niche. Trends Immunol 2019; 40:1053-1070. [DOI: 10.1016/j.it.2019.09.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 08/15/2019] [Accepted: 09/20/2019] [Indexed: 12/19/2022]
|
28
|
Gonzalez-Avila G, Sommer B, Mendoza-Posada DA, Ramos C, Garcia-Hernandez AA, Falfan-Valencia R. Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer. Crit Rev Oncol Hematol 2019; 137:57-83. [PMID: 31014516 DOI: 10.1016/j.critrevonc.2019.02.010] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/11/2019] [Accepted: 02/24/2019] [Indexed: 12/13/2022] Open
Abstract
Matrix metalloproteinases (MMPs) participate from the initial phases of cancer onset to the settlement of a metastatic niche in a second organ. Their role in cancer progression is related to their involvement in the extracellular matrix (ECM) degradation and in the regulation and processing of adhesion and cytoskeletal proteins, growth factors, chemokines and cytokines. MMPs participation in cancer progression makes them an attractive target for cancer therapy. MMPs have also been used for theranostic purposes in the detection of primary tumor and metastatic tissue in which a particular MMP is overexpressed, to follow up on therapy responses, and in the activation of cancer cytotoxic pro-drugs as part of nano-delivery-systems that increase drug concentration in a specific tumor target. Herein, we review MMPs molecular characteristics, their synthesis regulation and enzymatic activity, their participation in the metastatic process, and how their functions have been used to improve cancer treatment.
Collapse
Affiliation(s)
- Georgina Gonzalez-Avila
- Laboratorio Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico.
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | | | - Carlos Ramos
- Laboratorio de Biología Celular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - A Armando Garcia-Hernandez
- Laboratorio Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Ramces Falfan-Valencia
- Laboratorio de HLA, Departamento de Inmunogenética y Alergia, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| |
Collapse
|
29
|
Abstract
Matrix metalloproteinases (MMPs) are responsible for the degradation of extracellular matrix components and hence play a crucial role in physiological and pathologic processes. The imbalance between the expression of MMPs and their inhibitors can be effective in leukemic cell processes such as migration, angiogenesis, survival, and apoptosis, playing a key role in the progression and prognosis of leukemia. In this review, we discuss the potential involvement of MMPs and their inhibitors in the pathogenesis and progression of leukemia by examining their role in the prognosis of leukemia. Inducing leukemic cell growth, migration, invasiveness, and angiogenesis are the main roles of MMPs in leukemia progression mediated by their degradative activity. Given the important role of MMPs in leukemia progression, further clinical trials are needed to confirm the link between MMPs' expressions and leukemia prognosis. It is hoped to use MMPs as therapeutic targets to improve patients' health by recognizing the prognostic value of MMPs in leukemia and their effect on the progression of these malignancies and their response to treatment.
Collapse
|
30
|
Alhattab D, Jamali F, Ali D, Hammad H, Adwan S, Rahmeh R, Samarah O, Salah B, Hamdan M, Awidi A. An insight into the whole transcriptome profile of four tissue-specific human mesenchymal stem cells. Regen Med 2019; 14:841-865. [PMID: 30702025 DOI: 10.2217/rme-2018-0137] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Aim: Variations in the clinical outcomes using mesenchymal stem cells (MSCs) treatments exist, reflecting different origins and niches. To date, there is no consensus on the best source of MSCs most suitable to treat a specific disease. Methods: Total transcriptome analysis of human MSCs was performed. MSCs were isolated from two adult sources bone marrow, adipose tissue and two perinatal sources umbilical cord and placenta. Results: Each MSCs type possessed a unique expression pattern that reflects an advantage in terms of their potential therapeutic use. Advantages in immune modulation, neurogenesis and other aspects were found. Discussion: This study is a milestone for evidence-based choice of the type of MSCs used in the treatment of diseases.
Collapse
Affiliation(s)
- Dana Alhattab
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Fatima Jamali
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Dema Ali
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Hana Hammad
- Department of Biological Sciences, School of Science, The University of Jordan, Amman, Jordan
| | - Sofia Adwan
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Reem Rahmeh
- Cell Therapy Center, The University of Jordan, Amman, Jordan
| | - Omar Samarah
- Special Surgery Department, School of Medicine, The University of Jordan, Amman, Jordan
| | - Bareqa Salah
- General Surgery Department/Plastic & Reconstructive, Jordan University Hospital, The University of Jordan, Amman, Jordan
| | - Mohammad Hamdan
- Special Surgery Department, School of Medicine, The University of Jordan, Amman, Jordan
| | - Abdalla Awidi
- Cell Therapy Center, The University of Jordan, Amman, Jordan.,Department of Hematology & Oncology, Faculty of Medicine, The University of Jordan, Amman, Jordan
| |
Collapse
|
31
|
Wang X, Maretti-Mira AC, Wang L, DeLeve LD. Liver-Selective MMP-9 Inhibition in the Rat Eliminates Ischemia-Reperfusion Injury and Accelerates Liver Regeneration. Hepatology 2019; 69:314-328. [PMID: 30019419 PMCID: PMC6325019 DOI: 10.1002/hep.30169] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Accepted: 07/03/2018] [Indexed: 12/22/2022]
Abstract
Recruitment of liver sinusoidal endothelial cell progenitor cells (sprocs) from the bone marrow by vascular endothelial growth factor-stromal cell-derived factor-1 (VEGF-sdf-1) signaling promotes recovery from injury and drives liver regeneration. Matrix metalloproteinases (MMPs) can proteolytically cleave VEGF, which might inhibit progenitor cell recruitment, but systemic matrix metalloproteinase inhibition might prevent efflux of progenitors from the bone marrow. The hypothesis for this study was that liver-selective MMP-9 inhibition would protect the hepatic VEGF-sdf-1 signaling pathway, enhance bone marrow sproc recruitment, and thereby ameliorate liver injury and accelerate liver regeneration, whereas systemic MMP inhibition would impair bone marrow sproc mobilization and therefore have less benefit or be detrimental. We found that liver-selective MMP-9 inhibition accelerated liver regeneration after partial hepatectomy by 40%, whereas systemic MMP inhibition impaired liver regeneration. Liver-selective MMP-9 inhibition largely abolished warm ischemia-reperfusion injury. In the extended hepatectomy model, liver-selective MMP-9 inhibition restored liver sinusoidal endothelial cell integrity, enhanced liver regeneration, and reduced ascites. Liver-selective MMP-9 inhibition markedly increased recruitment and engraftment of bone marrow sprocs, whereas systemic MMP inhibition impaired mobilization of bone marrow sprocs and their hepatic engraftment. Hepatic MMP-9 proteolytically cleaved VEGF after partial hepatectomy. Liver-selective MMP-9 inhibition prevented VEGF cleavage and doubled protein expression of VEGF and its downstream signaling partner sdf-1. In contrast, systemic MMP inhibition enhanced recruitment and engraftment of infused allogeneic progenitors. Conclusion: Liver-selective MMP inhibition prevents proteolytic cleavage of hepatic VEGF, which enhances recruitment and engraftment of bone marrow sprocs after liver injury. This ameliorates injury and accelerates liver regeneration. Liver-selective MMP-9 inhibition may be a therapeutic tool for liver injury that damages the vasculature, whereas systemic MMP inhibition can enhance the benefit of stem cell therapy with endothelial progenitor cells.
Collapse
Affiliation(s)
| | | | - Lei Wang
- USC Division of Gastrointestinal and Liver Disease and the USC Research Center for Liver Disease, Keck Medicine of USC Los Angeles CA
| | - Laurie D. DeLeve
- USC Division of Gastrointestinal and Liver Disease and the USC Research Center for Liver Disease, Keck Medicine of USC Los Angeles CA
| |
Collapse
|
32
|
Abstract
Cell adhesion is implicated in many physiological settings such as the retention of hematopoietic stem cells (HSCs) in their bone marrow niches or their migration into the bloodstream. During HSC mobilization these adhesion sites are cleaved and have to be newly formed during HSC homing and engraftment. To determine the adhesive properties of HSCs on different extracellular matrix (ECM) molecules, we present a microfluidic shear force assay, where a laminar flow is used to detach a semi-adherent cell population, the HSC model cell line KG-1a, from an ECM protein-coated substrate. This technique combines the high throughput of population-based assays with the ability to observe cell detachment in real time. Additionally, it is suitable for weakly adherent cells, as the setup allows cell incubation on various substrates and application of shear stress ranging several orders of magnitude in one setup without additional washing or transfer steps. As a measure for the adhesion strength of the studied cell population on the substrate, the critical shear force τ50 is determined which is required to remove 50% of the initially adherent cell fraction.
Collapse
|
33
|
Tahhan AS, Hammadah M, Mohamed-Kelli H, Kim JH, Sandesara PB, Alkhoder A, Kaseer B, Gafeer MM, Topel M, Hayek SS, O’Neal WT, Obideen M, Ko YA, Liu C, Hesaroieh I, Mahar E, Vaccarino V, Waller EK, Quyyumi AA. Circulating Progenitor Cells and Racial Differences. Circ Res 2018; 123:467-476. [PMID: 29930146 PMCID: PMC6202175 DOI: 10.1161/circresaha.118.313282] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
RATIONALE Blacks compared with whites have a greater risk of adverse cardiovascular outcomes. Impaired regenerative capacity, measured as lower levels of circulating progenitor cells (CPCs), is a novel determinant of adverse outcomes; however, little is known about racial differences in CPCs. OBJECTIVE To investigate the number of CPCs, PC-mobilizing factors, PC mobilization during acute myocardial infarction and the predictive value of CPC counts in blacks compared with whites. METHODS AND RESULTS CPCs were enumerated by flow cytometry as CD45med+ blood mononuclear cells expressing CD34+, CD133+, VEGF2R+, and CXCR4+ epitopes in 1747 subjects, mean age 58.4±13, 55% male, and 26% self-reported black. Patients presenting with acute myocardial infarction (n=91) were analyzed separately. Models were adjusted for relevant clinical variables. SDF-1α (stromal cell-derived factor-1α), VEGF (vascular endothelial growth factor), and MMP-9 (matrix metallopeptidase-9) levels were measured (n=561), and 623 patients were followed for median of 2.2 years for survival analysis. Blacks were younger, more often female, with a higher burden of cardiovascular risk, and lower CPC counts. Blacks had fewer CD34+ cells (-17.6%; [95% confidence interval (CI), -23.5% to -11.3%]; P<0.001), CD34+/CD133+ cells (-15.5%; [95% CI, -22.4% to -8.1%]; P<0.001), CD34+/CXCR4+ cells (-17.3%; [95% CI, -23.9% to -10.2%]; P<0.001), and CD34+/VEGF2R+ cells (-27.9%; [95% CI, -46.9% to -2.0%]; P=0.04) compared with whites. The association between lower CPC counts and black race was not affected by risk factors or cardiovascular disease. Results were validated in a separate cohort of 411 patients. Blacks with acute myocardial infarction had significantly fewer CPCs compared with whites ( P=0.02). Blacks had significantly lower plasma MMP-9 levels ( P<0.001) which attenuated the association between low CD34+ and black race by 19% (95% CI, 13%-33%). However, VEGF and SDF-1α levels were not significantly different between the races. Lower CD34+ counts were similarly predictive of mortality in blacks (hazard ratio, 2.83; [95% CI, 1.12-7.20]; P=0.03) and whites (hazard ratio, 1.79; [95% CI, 1.09-2.94]; P=0.02) without significant interaction. CONCLUSIONS Black subjects have lower levels of CPCs compared with whites which is partially dependent on lower circulating MMP-9 levels. Impaired regenerative capacity is predictive of adverse outcomes in blacks and may partly account for their increased risk of cardiovascular events.
Collapse
Affiliation(s)
- Ayman Samman Tahhan
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Muhammad Hammadah
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Heval Mohamed-Kelli
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Jeong Hwan Kim
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Pratik B Sandesara
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Ayman Alkhoder
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Belal Kaseer
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Mohamad Mazen Gafeer
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Matthew Topel
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Salim S Hayek
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Wesley T O’Neal
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Malik Obideen
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Yi-An Ko
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA
| | - Chang Liu
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA
| | - Iraj Hesaroieh
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Ernestine Mahar
- Department of Biostatistics and Bioinformatics, Emory University, Atlanta, GA
| | - Viola Vaccarino
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| | - Edmund K. Waller
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Arshed A. Quyyumi
- Emory Clinical Cardiovascular Research Institute; Division of Cardiology, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
34
|
Avanzini MA, Abbonante V, Catarsi P, Dambruoso I, Mantelli M, Poletto V, Lenta E, Guglielmelli P, Croce S, Cobianchi L, Jemos B, Campanelli R, Bonetti E, Di Buduo CA, Salmoiraghi S, Villani L, Massa M, Boni M, Zappatore R, Iurlo A, Rambaldi A, Vannucchi AM, Bernasconi P, Balduini A, Barosi G, Rosti V. The spleen of patients with myelofibrosis harbors defective mesenchymal stromal cells. Am J Hematol 2018; 93:615-622. [PMID: 29359451 DOI: 10.1002/ajh.25047] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 01/17/2018] [Accepted: 01/18/2018] [Indexed: 11/07/2022]
Abstract
Splenic hematopoiesis is a major feature in the course of myelofibrosis (MF). In fact, the spleen of patients with MF contains malignant hematopoietic stem cells retaining a complete differentiation program, suggesting both a pivotal role of the spleen in maintaining the disease and a tight regulation of hematopoiesis by the splenic microenvironment, in particular by mesenchymal stromal cells (MSCs). Little is known about splenic MSCs (Sp-MSCs), both in normal and in pathological context. In this work, we have in vitro expanded and characterized Sp-MSCs from 25 patients with MF and 13 healthy subjects (HS). They shared similar phenotype, growth kinetics, and differentiation capacity. However, MF Sp-MSCs expressed significant lower levels of nestin, and favored megakaryocyte (Mk) differentiation in vitro at a larger extent than their normal counterpart. Moreover, they showed a significant upregulation of matrix metalloprotease 2 (MMP2) and fibronectin 1 (FN1) genes both at mRNA expression and at protein level, and, finally, developed genetic abnormalities which were never detected in HS-derived Sp-MSCs. Our data point toward the existence of a defective splenic niche in patients with MF that could be responsible of some pathological features of the disease, including the increased trafficking of CD34+ cells and the expansion of the megakaryocytic lineage.
Collapse
Affiliation(s)
| | - Vittorio Abbonante
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Paolo Catarsi
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Irene Dambruoso
- Department of Hematology-Oncology, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Melissa Mantelli
- Pediatric Onco-Hematology/Cell Factory, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Valentina Poletto
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Elisa Lenta
- Pediatric Onco-Hematology/Cell Factory, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Paola Guglielmelli
- Department of Clinical and Experimental Medicine, Research and Innovation Center for Myeloproliferative Diseases, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | - Stefania Croce
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Lorenzo Cobianchi
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Basilio Jemos
- Department of Clinical, Surgical, Diagnostic and Pediatric Sciences, University of Pavia, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Rita Campanelli
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Elisa Bonetti
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Christian Andrea Di Buduo
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Silvia Salmoiraghi
- Hematology and Bone Marrow Transplant Unit, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - Laura Villani
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Margherita Massa
- Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Marina Boni
- Department of Hematology-Oncology, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Rita Zappatore
- Department of Hematology-Oncology, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Alessandra Iurlo
- Hematology Division, IRCCS Ca' Granda-Maggiore Policlinico Hospital Foundation, Milan, Italy
| | - Alessandro Rambaldi
- Hematology and Bone Marrow Transplant Unit, Azienda Ospedaliera Papa Giovanni XXIII, Bergamo, Italy
| | - Alessandro Maria Vannucchi
- Department of Clinical and Experimental Medicine, Research and Innovation Center for Myeloproliferative Diseases, Azienda Ospedaliera Universitaria Careggi, University of Florence, Florence, Italy
| | - Paolo Bernasconi
- Department of Hematology-Oncology, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Alessandra Balduini
- Department of Molecular Medicine, University of Pavia, Pavia, Italy
- Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Giovanni Barosi
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Laboratory of Biochemistry, Biotechnology and Advanced Diagnosis, IRCCS Policlinico San Matteo Foundation, Pavia, Italy
| |
Collapse
|
35
|
Hammadah M, Samman Tahhan A, Mheid IA, Wilmot K, Ramadan R, Kindya BR, Kelli HM, O'Neal WT, Sandesara P, Sullivan S, Almuwaqqat Z, Obideen M, Abdelhadi N, Alkhoder A, Pimple PM, Levantsevych O, Mohammed KH, Weng L, Sperling LS, Shah AJ, Sun YV, Pearce BD, Kutner M, Ward L, Bremner JD, Kim J, Waller EK, Raggi P, Sheps D, Vaccarino V, Quyyumi AA. Myocardial Ischemia and Mobilization of Circulating Progenitor Cells. J Am Heart Assoc 2018; 7:e007504. [PMID: 31898922 PMCID: PMC5850188 DOI: 10.1161/jaha.117.007504] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Background The response of progenitor cells (PCs) to transient myocardial ischemia in patients with coronary artery disease remains unknown. We aimed to investigate the PC response to exercise‐induced myocardial ischemia (ExMI) and compare it to flow mismatch during pharmacological stress testing. Methods and Results A total of 356 patients with stable coronary artery disease underwent 99mTc‐sestamibi myocardial perfusion imaging during exercise (69%) or pharmacological stress (31%). CD34+ and CD34+/chemokine (C‐X‐C motif) receptor 4 PCs were enumerated by flow cytometry. Change in PC count was compared between patients with and without myocardial ischemia using linear regression models. Vascular endothelial growth factor and stromal‐derived factor‐1α were quantified. Mean age was 63±9 years; 76% were men. The incidence of ExMI was 31% and 41% during exercise and pharmacological stress testing, respectively. Patients with ExMI had a significant decrease in CD34+/chemokine (C‐X‐C motif) receptor 4 (−18%, P=0.01) after stress that was inversely correlated with the magnitude of ischemia (r=−0.19, P=0.003). In contrast, patients without ExMI had an increase in CD34+/chemokine (C‐X‐C motif) receptor 4 (14.7%, P=0.02), and those undergoing pharmacological stress had no change. Plasma vascular endothelial growth factor levels increased (15%, P<0.001) in all patients undergoing exercise stress testing regardless of ischemia. However, the change in stromal‐derived factor‐1α level correlated inversely with the change in PC counts in those with ExMI (P=0.03), suggesting a greater decrease in PCs in those with a greater change in stromal‐derived factor‐1α level with exercise. Conclusions ExMI is associated with a significant decrease in circulating levels of CD34+/chemokine (C‐X‐C motif) receptor 4 PCs, likely attributable, at least in part, to stromal‐derived factor‐1α–mediated homing of PCs to the ischemic myocardium. The physiologic consequences of this uptake of PCs and their therapeutic implications need further investigation.
Collapse
Affiliation(s)
- Muhammad Hammadah
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Ayman Samman Tahhan
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Ibhar Al Mheid
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Kobina Wilmot
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Ronnie Ramadan
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Bryan R Kindya
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Heval M Kelli
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Wesley T O'Neal
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Pratik Sandesara
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Samaah Sullivan
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Zakaria Almuwaqqat
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Malik Obideen
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Naser Abdelhadi
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Ayman Alkhoder
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Pratik M Pimple
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Oleksiy Levantsevych
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Kareem H Mohammed
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Lei Weng
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Laurence S Sperling
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| | - Amit J Shah
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA.,Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Yan V Sun
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA.,Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Brad D Pearce
- Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Michael Kutner
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Laura Ward
- Department of Biostatistics and Bioinformatics, Rollins School of Public Health, Emory University, Atlanta, GA
| | - J Douglas Bremner
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA
| | - Jinhee Kim
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Edmund K Waller
- Department of Hematology and Oncology, Winship Cancer Institute, Emory University, Atlanta, GA
| | - Paolo Raggi
- Mazankowski Alberta Heart Institute University of Alberta, Edmonton, Alberta, Canada
| | - David Sheps
- Department of Epidemiology, University of Florida, Gainesville, FL
| | - Viola Vaccarino
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA.,Department of Epidemiology, Rollins School of Public Health, Emory University, Atlanta, GA
| | - Arshed A Quyyumi
- Division of Cardiology, Department of Medicine, Emory University School of Medicine, Atlanta, GA
| |
Collapse
|
36
|
Xavier-Ferrucio J, Ricon L, Vieira K, Longhini AL, Lazarini M, Bigarella CL, Franchi G, Krause DS, Saad STO. Hematopoietic defects in response to reduced Arhgap21. Stem Cell Res 2017; 26:17-27. [PMID: 29212046 PMCID: PMC6084430 DOI: 10.1016/j.scr.2017.11.014] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2017] [Revised: 11/13/2017] [Accepted: 11/20/2017] [Indexed: 12/28/2022] Open
Abstract
Arhgap21 is a member of the Rho GTPase activating protein (RhoGAP) family, which function as negative regulators of Rho GTPases. Arhgap21 has been implicated in adhesion and migration of cancer cells. However, the role of Arhgap21 has never been investigated in hematopoietic cells. Herein, we evaluated functional aspects of hematopoietic stem and progenitor cells (HSPC) using a haploinsufficient (Arhgap21+/-) mouse. Our results show that Arhgap21+/- mice have an increased frequency of phenotypic HSC, impaired ability to form progenitor colonies in vitro and decreased hematopoietic engraftment in vivo, along with a decrease in LSK cell frequency during serial bone marrow transplantation. Arhgap21+/- hematopoietic progenitor cells have impaired adhesion and enhanced mobilization of immature LSK and myeloid progenitors. Arhgap21+/- mice also exhibit reduced erythroid commitment and differentiation, which was recapitulated in human primary cells, in which knockdown of ARHGAP21 in CMP and MEP resulted in decreased erythroid commitment. Finally, we observed enhanced RhoC activity in the bone marrow cells of Arhgap21+/- mice, indicating that Arhgap21 functions in hematopoiesis may be at least partially mediated by RhoC inactivation.
Collapse
Affiliation(s)
- Juliana Xavier-Ferrucio
- Hematology and Blood Transfusion Center University of Campinas/Hemocentro-UNICAMP, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, SP, Brazil; Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA.; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Lauremília Ricon
- Hematology and Blood Transfusion Center University of Campinas/Hemocentro-UNICAMP, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, SP, Brazil
| | - Karla Vieira
- Hematology and Blood Transfusion Center University of Campinas/Hemocentro-UNICAMP, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, SP, Brazil
| | - Ana Leda Longhini
- Hematology and Blood Transfusion Center University of Campinas/Hemocentro-UNICAMP, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, SP, Brazil
| | - Mariana Lazarini
- Hematology and Blood Transfusion Center University of Campinas/Hemocentro-UNICAMP, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, SP, Brazil; Department of Biological Sciences, Federal University of São Paulo, Diadema, Brazil
| | - Carolina Louzão Bigarella
- Hematology and Blood Transfusion Center University of Campinas/Hemocentro-UNICAMP, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, SP, Brazil
| | - Gilberto Franchi
- Onco-Hematological Child Research Center (CIPOI), Faculty of Medical Sciences, University of Campinas-UNICAMP, Campinas, SP, Brazil
| | - Diane S Krause
- Department of Laboratory Medicine, Yale School of Medicine, New Haven, CT, USA.; Yale Stem Cell Center, Yale School of Medicine, New Haven, CT, USA
| | - Sara T O Saad
- Hematology and Blood Transfusion Center University of Campinas/Hemocentro-UNICAMP, Instituto Nacional de Ciência e Tecnologia do Sangue, Campinas, SP, Brazil.
| |
Collapse
|
37
|
TGF-β-induced intracellular PAI-1 is responsible for retaining hematopoietic stem cells in the niche. Blood 2017; 130:2283-2294. [PMID: 28821477 DOI: 10.1182/blood-2017-02-767384] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 08/10/2017] [Indexed: 12/19/2022] Open
Abstract
Hematopoietic stem and progenitor cells (HSPCs) reside in the supportive stromal niche in bone marrow (BM); when needed, however, they are rapidly mobilized into the circulation, suggesting that HSPCs are intrinsically highly motile but usually stay in the niche. We questioned what determines the motility of HSPCs. Here, we show that transforming growth factor (TGF)-β-induced intracellular plasminogen activator inhibitor (PAI)-1 activation is responsible for keeping HSPCs in the BM niche. We found that the expression of PAI-1, a downstream target of TGF-β signaling, was selectively augmented in niche-residing HSPCs. Functional inhibition of the TGF-β-PAI-1 signal increased MT1-MMP-dependent cellular motility, causing a detachment of HSPCs from the TGF-β-expressing niche cells, such as megakaryocytes. Furthermore, consistently high motility in PAI-1-deficient HSPCs was demonstrated by both a transwell migration assay and reciprocal transplantation experiments, indicating that intracellular, not extracellular, PAI-1 suppresses the motility of HSPCs, thereby causing them to stay in the niche. Mechanistically, intracellular PAI-1 inhibited the proteolytic activity of proprotein convertase Furin, diminishing MT1-MMP activity. This reduced expression of MT1-MMP in turn affected the expression levels of several adhesion/deadhesion molecules for determination of HSPC localization, such as CD44, VLA-4, and CXCR4, which then promoted the retention of HSPCs in the niche. Our findings open up a new field for the study of intracellular proteolysis as a regulatory mechanism of stem cell fate, which has the potential to improve clinical HSPC mobilization and transplantation protocols.
Collapse
|
38
|
Song L, Martinez L, Zigmond ZM, Hernandez DR, Lassance-Soares RM, Selman G, Vazquez-Padron RI. c-Kit modifies the inflammatory status of smooth muscle cells. PeerJ 2017. [PMID: 28626608 PMCID: PMC5472039 DOI: 10.7717/peerj.3418] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
BACKGROUND c-Kit is a receptor tyrosine kinase present in multiple cell types, including vascular smooth muscle cells (SMC). However, little is known about how c-Kit influences SMC biology and vascular pathogenesis. METHODS High-throughput microarray assays and in silico pathway analysis were used to identify differentially expressed genes between primary c-Kit deficient (KitW/W-v) and control (Kit+/+) SMC. Quantitative real-time RT-PCR and functional assays further confirmed the differences in gene expression and pro-inflammatory pathway regulation between both SMC populations. RESULTS The microarray analysis revealed elevated NF-κB gene expression secondary to the loss of c-Kit that affects both the canonical and alternative NF-κB pathways. Upon stimulation with an oxidized phospholipid as pro-inflammatory agent, c-Kit deficient SMC displayed enhanced NF-κB transcriptional activity, higher phosphorylated/total p65 ratio, and increased protein expression of NF-κB regulated pro-inflammatory mediators with respect to cells from control mice. The pro-inflammatory phenotype of mutant cells was ameliorated after restoring c-Kit activity using lentiviral transduction. Functional assays further demonstrated that c-Kit suppresses NF-κB activity in SMC in a TGFβ-activated kinase 1 (TAK1) and Nemo-like kinase (NLK) dependent manner. DISCUSSION Our study suggests a novel mechanism by which c-Kit suppresses NF-κB regulated pathways in SMC to prevent their pro-inflammatory transformation.
Collapse
Affiliation(s)
- Lei Song
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Division of Vascular Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Zachary M Zigmond
- Department of Molecular and Cellular Pharmacology, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Diana R Hernandez
- DeWitt Daughtry Family Department of Surgery, Division of Vascular Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Roberta M Lassance-Soares
- DeWitt Daughtry Family Department of Surgery, Division of Vascular Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Guillermo Selman
- DeWitt Daughtry Family Department of Surgery, Division of Vascular Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States of America
| | - Roberto I Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Division of Vascular Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, United States of America
| |
Collapse
|
39
|
Fonseca FLA, da Costa Aguiar Alves B, Azzalis LA, Belardo TMG. Matrix Metalloproteases as Biomarkers of Disease. Methods Mol Biol 2017; 1579:299-311. [PMID: 28299745 DOI: 10.1007/978-1-4939-6863-3_17] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Matrix metalloprotease play a vital role in many cellular processes. Dysfunction in activity of these enzymes has been implicated in the pathogenesis of a number of diseases. Factors that affect the balanced interaction between MMPs and their inhibitors, such as genetic mutations of extracellular matrix components or dysregulation of MMP expression, can lead to various diseases. Due to their essential role in ECM remodeling, MMPs have become targets of interest as biomarkers for the diagnosis and prognosis of diseases associated with alterations of the ECM.
Collapse
Affiliation(s)
- Fernando Luiz Affonso Fonseca
- Departamento de Ciências Biológicas, Instituto de Ciências Químicas, Ambientais e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil. .,Laboratório de Análises Clínicas-Anexo 3, Faculdade de Medicina do ABC, Vila Principe de Gales, n.821, Santo André, SP, 09060-650, Brazil.
| | - Beatriz da Costa Aguiar Alves
- Laboratório de Análises Clínicas-Anexo 3, Faculdade de Medicina do ABC, Vila Principe de Gales, n.821, Santo André, SP, 09060-650, Brazil
| | - Ligia Ajaime Azzalis
- Departamento de Ciências Biológicas, Instituto de Ciências Químicas, Ambientais e Farmacêuticas, Universidade Federal de São Paulo, Diadema, SP, Brazil
| | - Thaís Moura Gáscon Belardo
- Laboratório de Análises Clínicas-Anexo 3, Faculdade de Medicina do ABC, Vila Principe de Gales, n.821, Santo André, SP, 09060-650, Brazil
| |
Collapse
|
40
|
tPA-MMP-9 Axis Plays a Pivotal Role in Mobilization of Endothelial Progenitor Cells from Bone Marrow to Circulation and Ischemic Region for Angiogenesis. Stem Cells Int 2016; 2016:5417565. [PMID: 27610138 PMCID: PMC5004042 DOI: 10.1155/2016/5417565] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2016] [Revised: 06/03/2016] [Accepted: 06/20/2016] [Indexed: 01/18/2023] Open
Abstract
We examined the role of tissue plasminogen activator- (tPA-) matrix metalloproteinase- (MMP-) 9 in mobilizing endothelial progenitor cells (EPCs) from bone marrow to circulation and critical limb ischemia (CLI) region. Male C57BL/6J mice having been irradiated were categorized into wild-type mice (WT) receiving WT bone marrow cell (BMC) transfusion (group 1), WT mice receiving MMP-9 knockout (MMP-9−/−) BMC (group 2), MMP-9−/− receiving MMP-9−/− BMC (group 3), and MMP-9−/− receiving WT BMC (group 4), each of which was subdivided into sham control (SC), CLI, SC-tPA, and CLI-tPA. In groups 1 and 4, by post-CLI 18 h and day 14, circulating EPC (C-kit+/CD31+, Sca-1+/KDR+) levels were highest in CLI-tPA subgroup. In groups 2 and 3, EPC levels did not differ among all subgroups. The EPC levels in bone marrow were higher in groups 2 and 3 than those in groups 1 and 4. By day 14, in animals with CLI, expression levels of proangiogenic factors (CXCR4, SDF-1α, and VEGF) showed similar trends as circulating EPC levels. Moreover, the number of infiltrated neutrophils and macrophages in quadriceps was higher in groups 1 and 4 than groups in 2 and 3. In conclusion, tPA-MMP-9 axis plays a crucial role in EPC mobilization and angiogenesis in experimental CLI.
Collapse
|
41
|
Arai Y, Park S, Choi B, Ko KW, Choi WC, Lee JM, Han DW, Park HK, Han I, Lee JH, Lee SH. Enhancement of Matrix Metalloproteinase-2 (MMP-2) as a Potential Chondrogenic Marker during Chondrogenic Differentiation of Human Adipose-Derived Stem Cells. Int J Mol Sci 2016; 17:ijms17060963. [PMID: 27322256 PMCID: PMC4926495 DOI: 10.3390/ijms17060963] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2016] [Revised: 06/07/2016] [Accepted: 06/09/2016] [Indexed: 01/09/2023] Open
Abstract
Human adipose-derived stem cells (hASCs) have a capacity to undergo adipogenic, chondrogenic, and osteogenic differentiation. Recently, hASCs were applied to various fields including cell therapy for tissue regeneration. However, it is hard to predict the direction of differentiation of hASCs in real-time. Matrix metalloproteinases (MMPs) are one family of proteolytic enzymes that plays a pivotal role in regulating the biology of stem cells. MMPs secreted by hASCs are expected to show different expression patterns depending on the differentiation state of hASCs because biological functions exhibit different patterns during the differentiation of stem cells. Here, we investigated proteolytic enzyme activity, especially MMP-2 activity, in hASCs during their differentiation. The activities of proteolytic enzymes and MMP-2 were higher during chondrogenic differentiation than during adipogenic and osteogenic differentiation. During chondrogenic differentiation, mRNA expression of MMP-2 and the level of the active form of MMP-2 were increased, which also correlated with Col II. It is concluded that proteolytic enzyme activity and the level of the active form of MMP-2 were increased during chondrogenic differentiation, which was accelerated in the presence of Col II protein. According to our findings, MMP-2 could be a candidate maker for real-time detection of chondrogenic differentiation of hASCs.
Collapse
Affiliation(s)
- Yoshie Arai
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do 443-742, Korea.
| | - Sunghyun Park
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do 443-742, Korea.
| | - Bogyu Choi
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do 443-742, Korea.
| | - Kyoung-Won Ko
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do 443-742, Korea.
| | - Won Chul Choi
- Department of Orthopedic Surgery, Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do 443-742, Korea.
| | - Joong-Myung Lee
- Department of Orthopedic Surgery, Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do 443-742, Korea.
| | - Dong-Wook Han
- Department of Optics and Mechatronics Engineering, BK21+ Nano-Integrated Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan 619-961, Korea.
| | - Hun-Kuk Park
- Department of Biomedical Engineering, Collage of Medicine, Kyung Hee University, Seoul 151-742, Korea.
| | - Inbo Han
- Department of Neurosurgery, Bundang Medical Center, CHA University, Seongnam-si, Gyeonggi-do 443-742, Korea.
| | - Jong Hun Lee
- Department of Food Science and Biotechnology, College of Life Science, CHA University, Gyeonggi-do 443-742, Korea.
| | - Soo-Hong Lee
- Department of Biomedical Science, CHA University, Seongnam-si, Gyeonggi-do 443-742, Korea.
| |
Collapse
|
42
|
Ferlin A, De Toni L, Sandri M, Foresta C. Relaxin and insulin-like peptide 3 in the musculoskeletal system: from bench to bedside. Br J Pharmacol 2016; 174:1015-1024. [PMID: 27059798 DOI: 10.1111/bph.13490] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 03/10/2016] [Accepted: 03/17/2016] [Indexed: 01/19/2023] Open
Abstract
Skeletal muscles and bones form a joined functional unit sharing a complex mechanical, biochemical and hormonal crosstalk. A number of factors, including sex hormones, physiologically regulate the musculoskeletal system. Striking gender differences in muscle and bone mass, and function are mainly caused by distinct actions exerted by oestrogens and androgens. However, relaxin and relaxin-related peptides, such as insulin-like peptide 3 (INSL3), might contribute to these sex-associated differences in physiological and pathological conditions (such as osteoporosis and sarcopenia). Relaxin is a 'pregnancy' hormone, but it is also produced from the prostate gland, and has recently attracted attention as a potential drug for cardiovascular disorders and fibrosis. In contrast, INSL3 is a male-specific hormone produced by the Leydig cells of the testis with a fundamental role in testicular descent during fetal life. Recent evidence suggests that both hormones have interesting roles in the musculoskeletal system. Relaxin and INSL3, by finely tuning bone formation and resorption, are involved in bone remodelling processes, and relaxin contributes to the healing of injured ligaments and promotes skeletal muscle regeneration. Here, we review the most recent findings on the effects of relaxin and INSL3 on skeletal muscle and the cell components of bone. In the light of the experimental evidence available and animal models, their clinical implications are also discussed. LINKED ARTICLES This article is part of a themed section on Recent Progress in the Understanding of Relaxin Family Peptides and their Receptors. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.10/issuetoc.
Collapse
Affiliation(s)
- Alberto Ferlin
- Department of Medicine, Operative Unit of Andrology and Medicine of Human Reproduction, University of Padova, Padova, Italy
| | - Luca De Toni
- Department of Medicine, Operative Unit of Andrology and Medicine of Human Reproduction, University of Padova, Padova, Italy
| | - Marco Sandri
- Venetian Institute of Molecular Medicine (VIMM), Padova, Italy.,Department of Biomedical Sciences, University of Padova, Padova, Italy.,Institute of Neuroscience, Consiglio Nazionale delle Ricerche (CNR), Padova, Italy.,Department of Medicine, McGill University, Montreal, QC, Canada
| | - Carlo Foresta
- Department of Medicine, Operative Unit of Andrology and Medicine of Human Reproduction, University of Padova, Padova, Italy
| |
Collapse
|
43
|
Abstract
The skeleton is unique from all other tissues in the body because of its ability to mineralize. The incorporation of mineral into bones and teeth is essential to give them strength and structure for body support and function. For years, researchers have wondered how mineralized tissues form and repair. A major focus in this context has been on the role of the extracellular matrix, which harbors key regulators of the mineralization process. In this introductory minireview, we will review some key concepts of matrix biology as it related to mineralized tissues. Concurrently, we will highlight the subject of this special issue covering many aspects of mineralized tissues, including bones and teeth and their associated structures cartilage and tendon. Areas of emphasis are on the generation and analysis of new animal models with permutations of matrix components as well as the development of new approaches for tissue engineering for repair of damaged hard tissue. In assembling key topics on mineralized tissues written by leaders in our field, we hope the reader will get a broad view of the topic and all of its fascinating complexities.
Collapse
Affiliation(s)
- Marian F Young
- Craniofacial and Skeletal Diseases Branch, National Institute of Dental and Craniofacial Research, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States.
| |
Collapse
|
44
|
Gur-Cohen S, Kollet O, Graf C, Esmon CT, Ruf W, Lapidot T. Regulation of long-term repopulating hematopoietic stem cells by EPCR/PAR1 signaling. Ann N Y Acad Sci 2016; 1370:65-81. [PMID: 26928241 DOI: 10.1111/nyas.13013] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 01/05/2016] [Accepted: 01/11/2016] [Indexed: 01/18/2023]
Abstract
The common developmental origin of endothelial and hematopoietic cells is manifested by coexpression of several cell surface receptors. Adult murine bone marrow (BM) long-term repopulating hematopoietic stem cells (LT-HSCs), endowed with the highest repopulation and self-renewal potential, express endothelial protein C receptor (EPCR), which is used as a marker to isolate them. EPCR/protease-activated receptor-1 (PAR1) signaling in endothelial cells has anticoagulant and anti-inflammatory roles, while thrombin/PAR1 signaling induces coagulation and inflammation. Recent studies define two new PAR1-mediated signaling cascades that regulate EPCR(+) LT-HSC BM retention and egress. EPCR/PAR1 signaling facilitates LT-HSC BM repopulation, retention, survival, and chemotherapy resistance by restricting nitric oxide (NO) production, maintaining NO(low) LT-HSC BM retention with increased VLA4 expression, affinity, and adhesion. Conversely, acute stress and clinical mobilization upregulate thrombin generation and activate different PAR1 signaling that overcomes BM EPCR(+) LT-HSC retention, inducing their recruitment to the bloodstream. Thrombin/PAR1 signaling induces NO generation, TACE-mediated EPCR shedding, and upregulation of CXCR4 and PAR1, leading to CXCL12-mediated stem and progenitor cell mobilization. This review discusses new roles for factors traditionally viewed as coagulation related, which independently act in the BM to regulate PAR1 signaling in bone- and blood-forming progenitor cells, navigating their fate by controlling NO production.
Collapse
Affiliation(s)
- Shiri Gur-Cohen
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Orit Kollet
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| | - Claudine Graf
- Center for Thrombosis and Hemostasis and Johannes Gutenberg University Medical Center, Mainz, Germany.,Third Medical Department, Johannes Gutenberg University Medical Center, Mainz, Germany
| | - Charles T Esmon
- Coagulation Biology Laboratory, Oklahoma Medical Research Foundation and Departments of Pathology and Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma
| | - Wolfram Ruf
- Center for Thrombosis and Hemostasis and Johannes Gutenberg University Medical Center, Mainz, Germany.,Department of Immunology and Microbial Science, the Scripps Research Institute, La Jolla, California
| | - Tsvee Lapidot
- Department of Immunology, Weizmann Institute of Science, Rehovot, Israel
| |
Collapse
|
45
|
Apte SS, Parks WC. Metalloproteinases: A parade of functions in matrix biology and an outlook for the future. Matrix Biol 2015; 44-46:1-6. [PMID: 25916966 DOI: 10.1016/j.matbio.2015.04.005] [Citation(s) in RCA: 131] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 12/13/2022]
Abstract
This issue of Matrix Biology is devoted to exploring how metalloproteinases - here inclusive of related families of extracellular proteinases - act on extracellular matrix (ECM) proteins to influence an astonishing diversity of biological systems and diseases. Since their discovery in the 1960's, matrix metalloproteinases (MMPs) have oft and widely been considered as the principal mediators of ECM destruction. However, as becomes clear from several articles in this issue, MMPs affect processes that both promote and limit ECM assembly, structure, and quantity. Furthermore, it has become increasingly apparent that ECM proteolysis is neither the exclusive function of MMPs nor their only sphere of influence. Thus, other enzymes may be important participants in ECM proteolysis, and indeed they are. The ADAMTS (a disintegrin-like and metalloproteinase domain with thrombospondin type 1 repeat) proteinases, BMP/tolloid proteases, and meprins have all emerged as major mechanisms of ECM proteolysis. An aggregate view of proteolysis as an exquisitely specific and crucial post-translational modification of secreted proteins emerges from these reviews. The cumulative evidence strongly suggests that although some MMPs can and do cleave ECM components, notably fibrillar collagens, the majority of these proteinases are not key physiological participants in morphogenesis nor in control of matrix metabolism in homeostasis or disease. In contrast, deficiency of ADAMTS proteases leads to a remarkable array of morphogenetic defects and connective tissue disorders consistent with a specialized role in turnover of the embryonic provisional ECM and in ECM assembly. Astacin-related proteases emerge into crucial positions in ECM assembly and turnover, although they also have numerous roles related to morphogen and growth factor regulation. To further turn the traditional view on its head, it is clear that many MMPs are key participants in many, diverse immune and inflammation processes rather than ECM proteolysis. The overlap in the activities within and between these families leads to the view that ECM proteolysis, which is indispensable for life, was over-engineered to an extraordinary extent during vertebrate evolution. That these proteinases, which likely evolved within networks regulating morphogenesis, immunity and regeneration, also participate in diseases is a side effect of human longevity. Attempts to inhibit metalloproteinases in human diseases thus require continuing appraisal of their biological roles and cautious evaluation of potential new therapeutic opportunities.
Collapse
Affiliation(s)
- Suneel S Apte
- Cleveland Clinic Lerner Research Institute, Cleveland, OH, USA.
| | | |
Collapse
|