1
|
Zhang L, Zhou J, Kong W. Extracellular matrix in vascular homeostasis and disease. Nat Rev Cardiol 2025; 22:333-353. [PMID: 39743560 DOI: 10.1038/s41569-024-01103-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/29/2024] [Indexed: 01/04/2025]
Abstract
The extracellular matrix is an essential component and constitutes a dynamic microenvironment of the vessel wall with an indispensable role in vascular homeostasis and disease. From early development through to ageing, the vascular extracellular matrix undergoes various biochemical and biomechanical alterations in response to diverse environmental cues and exerts precise regulatory control over vessel remodelling. Advances in novel technologies that enable the comprehensive evaluation of extracellular matrix components and cell-matrix interactions have led to the emergence of therapeutic strategies that specifically target this fine-tuned network. In this Review, we explore various aspects of extracellular matrix biology in vascular development, disorders and ageing, emphasizing the effect of the extracellular matrix on disease initiation and progression. Additionally, we provide an overview of the potential therapeutic implications of targeting the extracellular matrix microenvironment in vascular diseases.
Collapse
Affiliation(s)
- Lu Zhang
- Medical Research Center, The Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Zhou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China
| | - Wei Kong
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
| |
Collapse
|
2
|
Sun W, Yu C, Guo J, Wang H, Dou S, Zhang Y, Zheng J, Gao Y. Angiotensin II promotes intramural hematoma of aorta in juvenile mice at early stage. Ultrastruct Pathol 2025; 49:148-157. [PMID: 40103374 DOI: 10.1080/01913123.2025.2474447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 02/27/2025] [Accepted: 02/27/2025] [Indexed: 03/20/2025]
Abstract
OBJECTIVES Intramural hematoma (IMH) is a serious aortic condition characterized by the presence of a contained hematoma within the aortic media. However, the animal model with a high incidence of IMH was lacking, and the specific pathological characteristics of IMH have not been thoroughly characterized. METHODS AND RESULTS We conducted an experimental study using 4-week-old male, 4-week-old female, and 8-week-old male C57BL/6J mice. These mice were subjected to angiotensin II infusion at a rate of 1000 ng/kg/min for a period of 4 days. In situ imaging was performed, and aorta was harvested and serially sectioned. Histological staining and immunostaining techniques were employed, and the subcellular structure was examined using transmission electron microscopy. Our findings revealed that 4-week-old male mice exhibited a higher susceptibility to angiotensin II-induced IMH, characterized by more circumferential appearances and larger affected areas. Furthermore, IMH was more likely to occur in the upper segment of the descending aorta rather than the lower segment. Within the IMH, older fibrinous thrombus was predominantly observed near the adventitia, while younger red thrombus was more prevalent near the lumen. Additionally, platelet activation and degranulation were observed, along with fibrin cross-linking and thrombus organization, indicating a potential relationship between platelet activation and the progression of IMH. CONCLUSION Our study demonstrated that angiotensin II infusion promoted the development of IMH during the early stages, especially in juvenile mice. Furthermore, the presence of platelet activation and thrombus organization suggested their potential involvement in the progression of IMH.
Collapse
Affiliation(s)
- Weiliang Sun
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Changan Yu
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Jing Guo
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Huina Wang
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Shurui Dou
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Yuting Zhang
- Institute of Clinical Medical Sciences, China-Japan Friendship Hospital, Beijing, China
| | - Jingang Zheng
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| | - Yanxiang Gao
- Department of Cardiology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
3
|
Stern I, Barrera V, Randles M, Rooney P. Advances in preparation of acellular human dermis for tissue banking and transplantation. Cell Tissue Bank 2024; 26:3. [PMID: 39653869 PMCID: PMC11628444 DOI: 10.1007/s10561-024-10153-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 11/20/2024] [Indexed: 12/12/2024]
Abstract
Non-healing wounds cost the National Health Service over £5.6 billion annually in wound management. Skin allografts are used to treat non-healing wounds, ulcers and burns, offering the best protection against infection. In order to allow host cells to repopulate and to avoid immunogenicity, cell components are removed through decellularisation. Decellularisation of human dermis has so far been performed in NHS Blood and Transplant using a combination of two enzymes (RNase T1 and the recombinant human DNase Pulmozyme)®. This study aims at validating a new method to remove DNA from donated dermis via the use of a single enzyme, Benzonase, known for its effectiveness of DNA digestion. Skin samples were decellularised by removing the epidermis, lysing of dermal cells, removal of cellular fragments by a detergent wash and removal of nucleic acids by a nuclease incubation with either Benzonase or Pulmozyme + RNase T1. DNA quantification with PicoGreen, as well as histology on wax-embedded biopsies, stained with DAPI and haemotoxylin and eosin, were performed. In vitro toxicity test on human osteosarcoma immortalised cells and skin fibroblasts, and biomechanical (tensile) testing, were also performed. The effectiveness of DNA digestion with the new methodology was comparable to previous procedure. Mean DNA removal percentage following decellularisation with Pulmozyme + RNase was 99.9% (3.83 ng/mg). Mean DNA removal percentage with Benzonase was 99.8% (9.97 ng/mg). Histology staining showed complete decellularisation following either method. Benzonase was proven to be non-toxic to both cell lines used, and a one-way Anova test showed no significant difference in neither stress nor strain between acellular dermal matrix decellularised with either Benzonase or Pulmozyme + RNase T1. Benzonase was able to effectively decellularise dermis after prior removal of epidermis. It performed just as well as the combination of Pulmozyme + RNase T1, but represents significant advantages in terms of cost effectiveness, procurement and storage; Benzonase has been successfully used in the decellularisation of other tissues, thus would be better for Tissue Banking use. Switching to this combined DNase/RNase can have far-reaching consequences in the production of acellular human dermal matrix by NHSBT and in the treatment of patients requiring it.
Collapse
Affiliation(s)
- Irit Stern
- NHS Blood and Transplant, Tissue Services, 14 Estuary Banks, Speke, Liverpool, L24 8RB, UK.
| | - Valentina Barrera
- NHS Blood and Transplant, Tissue Services R&D, 14 Estuary Banks, Speke, Liverpool, L24 8RB, UK
| | - Michael Randles
- Faculty of Medicine and Life Sciences, Chester Medical School, University of Chester, Chester, UK
| | - Paul Rooney
- NHS Blood and Transplant, Tissue Services R&D, 14 Estuary Banks, Speke, Liverpool, L24 8RB, UK
| |
Collapse
|
4
|
Stepanov A, Shishkova D, Markova V, Markova Y, Frolov A, Lazebnaya A, Oshchepkova K, Perepletchikova D, Smirnova D, Basovich L, Repkin E, Kutikhin A. Proteomic Profiling of Endothelial Cell Secretomes After Exposure to Calciprotein Particles Reveals Downregulation of Basement Membrane Assembly and Increased Release of Soluble CD59. Int J Mol Sci 2024; 25:11382. [PMID: 39518935 PMCID: PMC11546392 DOI: 10.3390/ijms252111382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/15/2024] [Accepted: 10/21/2024] [Indexed: 11/16/2024] Open
Abstract
Calciprotein particles (CPPs) are essential circulating scavengers of excessive Ca2+ and PO43- ions, representing a vehicle that removes them from the human body and precludes extraskeletal calcification. Having been internalised by endothelial cells (ECs), CPPs induce their dysfunction, which is accompanied by a remarkable molecular reconfiguration, although little is known about this process's extracellular signatures. Here, we applied ultra-high performance liquid chromatography-tandem mass spectrometry to perform a secretome-wide profiling of the cell culture supernatant from primary human coronary artery ECs (HCAECs) and internal thoracic artery ECs (HITAECs) treated with primary CPPs (CPP-P), secondary CPPs (CPP-S), magnesiprotein particles (MPPs), or Ca2+/Mg2+-free Dulbecco's phosphate-buffered saline (DPBS) for 24 h. Incubation with CPP-P/CPP-S significantly altered the profiles of secreted proteins, delineating physiological and pathological endothelial secretomes. Neither pathway enrichment analysis nor the interrogation of protein-protein interactions detected extracellular matrix- and basement membrane-related molecular terms in the protein datasets from CPP-P/CPP-S-treated ECs. Both proteomic profiling and enzyme-linked immunosorbent assay identified an increased level of protectin (CD59) and reduced levels of osteonectin (SPARC), perlecan (HSPG2), and fibronectin (FN1) in the cell culture supernatant upon CPP-P/CPP-S treatment. Elevated soluble CD59 and decreased release of basement membrane components might be considered as potential signs of dysfunctional endothelium.
Collapse
Affiliation(s)
- Alexander Stepanov
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Barbarash Boulevard, 650002 Kemerovo, Russia; (A.S.); (D.S.); (V.M.); (Y.M.); (A.F.); (A.L.); (K.O.)
| | - Daria Shishkova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Barbarash Boulevard, 650002 Kemerovo, Russia; (A.S.); (D.S.); (V.M.); (Y.M.); (A.F.); (A.L.); (K.O.)
| | - Victoria Markova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Barbarash Boulevard, 650002 Kemerovo, Russia; (A.S.); (D.S.); (V.M.); (Y.M.); (A.F.); (A.L.); (K.O.)
| | - Yulia Markova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Barbarash Boulevard, 650002 Kemerovo, Russia; (A.S.); (D.S.); (V.M.); (Y.M.); (A.F.); (A.L.); (K.O.)
| | - Alexey Frolov
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Barbarash Boulevard, 650002 Kemerovo, Russia; (A.S.); (D.S.); (V.M.); (Y.M.); (A.F.); (A.L.); (K.O.)
| | - Anastasia Lazebnaya
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Barbarash Boulevard, 650002 Kemerovo, Russia; (A.S.); (D.S.); (V.M.); (Y.M.); (A.F.); (A.L.); (K.O.)
| | - Karina Oshchepkova
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Barbarash Boulevard, 650002 Kemerovo, Russia; (A.S.); (D.S.); (V.M.); (Y.M.); (A.F.); (A.L.); (K.O.)
| | - Daria Perepletchikova
- Laboratory of Regenerative Biomedicine, Institute of Cytology of the RAS, 4 Tikhoretskiy Prospekt, 194064 St. Petersburg, Russia; (D.P.); (D.S.); (L.B.)
| | - Daria Smirnova
- Laboratory of Regenerative Biomedicine, Institute of Cytology of the RAS, 4 Tikhoretskiy Prospekt, 194064 St. Petersburg, Russia; (D.P.); (D.S.); (L.B.)
| | - Liubov Basovich
- Laboratory of Regenerative Biomedicine, Institute of Cytology of the RAS, 4 Tikhoretskiy Prospekt, 194064 St. Petersburg, Russia; (D.P.); (D.S.); (L.B.)
| | - Egor Repkin
- Resource Centre for Molecular and Cell Technologies, St. Petersburg State University, Universitetskaya Embankment, 7/9, 199034 St. Petersburg, Russia;
| | - Anton Kutikhin
- Department of Experimental Medicine, Research Institute for Complex Issues of Cardiovascular Diseases, 6 Barbarash Boulevard, 650002 Kemerovo, Russia; (A.S.); (D.S.); (V.M.); (Y.M.); (A.F.); (A.L.); (K.O.)
| |
Collapse
|
5
|
Snyder Y, Jana S. Innovative Substrate Design with Basement Membrane Components for Enhanced Endothelial Cell Function and Endothelization. Adv Healthc Mater 2024; 13:e2401150. [PMID: 39021293 DOI: 10.1002/adhm.202401150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/28/2024] [Indexed: 07/20/2024]
Abstract
Enhancing endothelial cell growth on small-diameter vascular grafts produced from decellularized tissues or synthetic substrates is pivotal for preventing thrombosis. While optimized decellularization protocols can preserve the structure and many components of the extracellular matrix (ECM), the process can still lead to the loss of crucial basement membrane proteins, such as laminin, collagen IV, and perlecan, which are pivotal for endothelial cell adherence and functional growth. This loss can result in poor endothelialization and endothelial cell activation causing thrombosis and intimal hyperplasia. To address this, the basement membrane's ECM is emulated on fiber substrates, providing a more physiological environment for endothelial cells. Thus, fibroblasts are cultured on fiber substrates to produce an ECM membrane substrate (EMMS) with basement membrane proteins. The EMMS then underwent antigen removal (AR) treatment to eliminate antigens from the membrane while preserving essential proteins and producing an AR-treated membrane substrate (AMS). Subsequently, human endothelial cells cultured on the AMS exhibited superior proliferation, nitric oxide production, and increased expression of endothelial markers of quiescence/homeostasis, along with autophagy and antithrombotic factors, compared to those on the decellularized aortic tissue. This strategy showed the potential of pre-endowing fiber substrates with a basement membrane to enable better endothelization.
Collapse
Affiliation(s)
- Yuriy Snyder
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 Rollins Street, Columbia, MO, 65211, USA
| | - Soumen Jana
- Department of Chemical and Biomedical Engineering, University of Missouri, 1406 Rollins Street, Columbia, MO, 65211, USA
| |
Collapse
|
6
|
Yurchenco PD, Kulczyk AW. Polymerizing laminins in development, health, and disease. J Biol Chem 2024; 300:107429. [PMID: 38825010 PMCID: PMC11260871 DOI: 10.1016/j.jbc.2024.107429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 05/12/2024] [Accepted: 05/26/2024] [Indexed: 06/04/2024] Open
Abstract
Polymerizing laminins are multi-domain basement membrane (BM) glycoproteins that self-assemble into cell-anchored planar lattices to establish the initial BM scaffold. Nidogens, collagen-IV and proteoglycans then bind to the scaffold at different domain loci to create a mature BM. The LN domains of adjacent laminins bind to each other to form a polymer node, while the LG domains attach to cytoskeletal-anchoring integrins and dystroglycan, as well as to sulfatides and heparan sulfates. The polymer node, the repeating unit of the polymer scaffold, is organized into a near-symmetrical triskelion. The structure, recently solved by cryo-electron microscopy in combination with AlphaFold2 modeling and biochemical studies, reveals how the LN surface residues interact with each other and how mutations cause failures of self-assembly in an emerging group of diseases, the LN-lamininopathies, that include LAMA2-related dystrophy and Pierson syndrome.
Collapse
Affiliation(s)
- Peter D Yurchenco
- Department of Pathology & Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers University, Piscataway, New Jersey, USA.
| | - Arkadiusz W Kulczyk
- Department of Biochemistry and Microbiology, Institute for Quantitative Biomedicine, Rutgers University, Piscataway, New Jersey, USA
| |
Collapse
|
7
|
Rekvig OP. SLE: a cognitive step forward-a synthesis of rethinking theories, causality, and ignored DNA structures. Front Immunol 2024; 15:1393814. [PMID: 38895113 PMCID: PMC11183320 DOI: 10.3389/fimmu.2024.1393814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/09/2024] [Indexed: 06/21/2024] Open
Abstract
Systemic lupus erythematosus (SLE) is classified by instinctual classification criteria. A valid proclamation is that these formally accepted SLE classification criteria legitimate the syndrome as being difficult to explain and therefore enigmatic. SLE involves scientific problems linked to etiological factors and criteria. Our insufficient understanding of the clinical condition uniformly denoted SLE depends on the still open question of whether SLE is, according to classification criteria, a well-defined one disease entity or represents a variety of overlapping indistinct syndromes. Without rational hypotheses, these problems harm clear definition(s) of the syndrome. Why SLE is not anchored in logic, consequent, downstream interdependent and interactive inflammatory networks may rely on ignored predictive causality principles. Authoritative classification criteria do not reflect consequent causality criteria and do not unify characterization principles such as diagnostic criteria. We need now to reconcile legendary scientific achievements to concretize the delimitation of what SLE really is. Not all classified SLE syndromes are "genuine SLE"; many are theoretically "SLE-like non-SLE" syndromes. In this study, progressive theories imply imperative challenges to reconsider the fundamental impact of "the causality principle". This may offer us logic classification and diagnostic criteria aimed at identifying concise SLE syndromes as research objects. Can a systems science approach solve this problem?
Collapse
Affiliation(s)
- Ole Petter Rekvig
- Fürst Medical Laboratory, Oslo, Norway
- Department of Medical Biology, Faculty of Health Sciences, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
8
|
Byun KA, Kim HM, Oh S, Batsukh S, Son KH, Byun K. Radiofrequency Treatment Attenuates Age-Related Changes in Dermal-Epidermal Junctions of Animal Skin. Int J Mol Sci 2024; 25:5178. [PMID: 38791217 PMCID: PMC11120932 DOI: 10.3390/ijms25105178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/03/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
The dermal-epidermal junction (DEJ) is essential for maintaining skin structural integrity and regulating cell survival and proliferation. Thus, DEJ rejuvenation is key for skin revitalization, particularly in age-related DEJ deterioration. Radiofrequency (RF) treatment, known for its ability to enhance collagen fiber production through thermal mechanisms and increase heat shock protein (HSP) expression, has emerged as a promising method for skin rejuvenation. Additionally, RF activates Piezo1, an ion channel implicated in macrophage polarization toward an M2 phenotype and enhanced TGF-β production. This study investigated the impact of RF treatment on HSP47 and HSP90 expression, known stimulators of DEJ protein expression. Furthermore, using in vitro and aged animal skin models, we assessed whether RF-induced Piezo1 activation and the subsequent M2 polarization could counter age-related DEJ changes. The RF treatment of H2O2-induced senescent keratinocytes upregulated the expression of HSP47, HSP90, TGF-β, and DEJ proteins, including collagen XVII. Similarly, the RF treatment of senescent macrophages increased Piezo1 and CD206 (M2 marker) expression. Conditioned media from RF-treated senescent macrophages enhanced the expression of TGF-β and DEJ proteins, such as nidogen and collagen IV, in senescent fibroblasts. In aged animal skin, RF treatment increased the expression of HSP47, HSP90, Piezo1, markers associated with M2 polarization, IL-10, and TGF-β. Additionally, RF treatment enhanced DEJ protein expression. Moreover, RF reduced lamina densa replication, disrupted lesions, promoted hemidesmosome formation, and increased epidermal thickness. Overall, RF treatment effectively enhanced DEJ protein expression and mitigated age-related DEJ structural changes by increasing HSP levels and activating Piezo1.
Collapse
Affiliation(s)
- Kyung-A Byun
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- LIBON Inc., Incheon 22006, Republic of Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Hyoung Moon Kim
- Maylin Anti-Aging Center Ilsan, Goyang 10391, Republic of Korea
| | - Seyeon Oh
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Sosorburam Batsukh
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
| | - Kuk Hui Son
- Department of Thoracic and Cardiovascular Surgery, Gachon University Gil Medical Center, Gachon University, Incheon 21565, Republic of Korea
| | - Kyunghee Byun
- Department of Anatomy & Cell Biology, College of Medicine, Gachon University, Incheon 21936, Republic of Korea
- Functional Cellular Networks Laboratory, Lee Gil Ya Cancer and Diabetes Institute, Gachon University, Incheon 21999, Republic of Korea
- Department of Health Sciences and Technology, Gachon Advanced Institute for Health & Sciences and Technology (GAIHST), Gachon University, Incheon 21999, Republic of Korea
| |
Collapse
|
9
|
Ji K, Zhang M, Du L, Wang J, Liu Y, Xu C, He N, Wang Q, Gu Y, Song H, Wang Y, Liu Q. Exploring the Role of Inulin in Targeting the Gut Microbiota: An Innovative Strategy for Alleviating Colonic Fibrosis Induced By Irradiation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:5710-5724. [PMID: 38457473 PMCID: PMC10958509 DOI: 10.1021/acs.jafc.3c03432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 02/13/2024] [Accepted: 02/27/2024] [Indexed: 03/10/2024]
Abstract
The use of radiation therapy to treat pelvic and abdominal cancers can lead to the development of either acute or chronic radiation enteropathy. Radiation-induced chronic colonic fibrosis is a common gastrointestinal disorder resulting from the above radiation therapy. In this study, we establish the efficacy of inulin supplements in safeguarding against colonic fibrosis caused by irradiation therapy. Studies have demonstrated that inulin supplements enhance the proliferation of bacteria responsible to produce short-chain fatty acids (SCFAs) and elevate the levels of SCFAs in feces. In a mouse model of chronic radiation enteropathy, the transplantation of gut microbiota and its metabolites from feces of inulin-treated mice were found to reduce colonic fibrosis in validation experiments. Administering inulin-derived metabolites from gut microbiota led to a notable decrease in the expression of genes linked to fibrosis and collagen production in mouse embryonic fibroblast cell line NIH/3T3. In the cell line, inulin-derived metabolites also suppressed the expression of genes linked to the extracellular matrix synthesis pathway. The results indicate a novel and practical approach to safeguarding against chronic radiation-induced colonic fibrosis.
Collapse
Affiliation(s)
| | | | - Liqing Du
- Tianjin Key Laboratory of
Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy
of Medical Science & Peking Union Medical College, State Key Laboratory
of Advanced Medical Materials and Devices, Tianjin 300192, PR China
| | - Jinhan Wang
- Tianjin Key Laboratory of
Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy
of Medical Science & Peking Union Medical College, State Key Laboratory
of Advanced Medical Materials and Devices, Tianjin 300192, PR China
| | - Yang Liu
- Tianjin Key Laboratory of
Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy
of Medical Science & Peking Union Medical College, State Key Laboratory
of Advanced Medical Materials and Devices, Tianjin 300192, PR China
| | - Chang Xu
- Tianjin Key Laboratory of
Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy
of Medical Science & Peking Union Medical College, State Key Laboratory
of Advanced Medical Materials and Devices, Tianjin 300192, PR China
| | - Ningning He
- Tianjin Key Laboratory of
Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy
of Medical Science & Peking Union Medical College, State Key Laboratory
of Advanced Medical Materials and Devices, Tianjin 300192, PR China
| | - Qin Wang
- Tianjin Key Laboratory of
Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy
of Medical Science & Peking Union Medical College, State Key Laboratory
of Advanced Medical Materials and Devices, Tianjin 300192, PR China
| | - Yeqing Gu
- Tianjin Key Laboratory of
Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy
of Medical Science & Peking Union Medical College, State Key Laboratory
of Advanced Medical Materials and Devices, Tianjin 300192, PR China
| | - Huijuan Song
- Tianjin Key Laboratory of
Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy
of Medical Science & Peking Union Medical College, State Key Laboratory
of Advanced Medical Materials and Devices, Tianjin 300192, PR China
| | - Yan Wang
- Tianjin Key Laboratory of
Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy
of Medical Science & Peking Union Medical College, State Key Laboratory
of Advanced Medical Materials and Devices, Tianjin 300192, PR China
| | - Qiang Liu
- Tianjin Key Laboratory of
Radiation Medicine and Molecular Nuclear Medicine, Department of Radiobiology, Institute of Radiation Medicine of Chinese Academy
of Medical Science & Peking Union Medical College, State Key Laboratory
of Advanced Medical Materials and Devices, Tianjin 300192, PR China
| |
Collapse
|
10
|
Jones RA, Trejo B, Sil P, Little KA, Pasolli HA, Joyce B, Posfai E, Devenport D. An mTurq2-Col4a1 mouse model allows for live visualization of mammalian basement membrane development. J Cell Biol 2024; 223:e202309074. [PMID: 38051393 PMCID: PMC10697824 DOI: 10.1083/jcb.202309074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 11/03/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023] Open
Abstract
Basement membranes (BMs) are specialized sheets of extracellular matrix that underlie epithelial and endothelial tissues. BMs regulate the traffic of cells and molecules between compartments, and participate in signaling, cell migration, and organogenesis. The dynamics of mammalian BMs, however, are poorly understood, largely due to a lack of models in which core BM components are endogenously labeled. Here, we describe the mTurquoise2-Col4a1 mouse in which we fluorescently tag collagen IV, the main component of BMs. Using an innovative planar-sagittal live imaging technique to visualize the BM of developing skin, we directly observe BM deformation during hair follicle budding and basal progenitor cell divisions. The BM's inherent pliability enables dividing cells to remain attached to and deform the BM, rather than lose adhesion as generally thought. Using FRAP, we show BM collagen IV is extremely stable, even during periods of rapid epidermal growth. These findings demonstrate the utility of the mTurq2-Col4a1 mouse to shed new light on mammalian BM developmental dynamics.
Collapse
Affiliation(s)
- Rebecca A. Jones
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Brandon Trejo
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Parijat Sil
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | | | - H. Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, New York, NY, USA
| | - Bradley Joyce
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA
| |
Collapse
|
11
|
Schoenenberger MS, Halfter W, Ferrand A, Halfter K, Tzankov A, Scholl HPN, Henrich PB, Monnier CA. The biophysical and compositional properties of human basement membranes. FEBS J 2024; 291:477-488. [PMID: 37984833 DOI: 10.1111/febs.17007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 10/14/2023] [Accepted: 11/16/2023] [Indexed: 11/22/2023]
Abstract
Basement membranes are among the most widespread, non-cellular functional materials in metazoan organisms. Despite this ubiquity, the links between their compositional and biophysical properties are often difficult to establish due to their thin and delicate nature. In this article, we examine these features on a molecular level by combining results from proteomics, elastic, and nanomechanical analyses across a selection of human basement membranes. Comparing results between these different membranes connects certain compositional attributes to distinct nanomechanical signatures and further demonstrates to what extent water defines these properties. In all, these data underline BMs as stiff yet highly elastic connective tissue layers and highlight how the interplay between composition, mechanics and hydration yields such exceptionally adaptable materials.
Collapse
Affiliation(s)
| | - Willi Halfter
- Department of Ophthalmology, University of Basel, Switzerland
| | - Alexia Ferrand
- Imaging Core Facility, Biozentrum of the University of Basel, Switzerland
| | - Kathrin Halfter
- Munich Cancer Registry, Institute of Medical Informatics, Biometry and Epidemiology, Maximilian University Munich, Germany
| | - Alexandar Tzankov
- Histopathology and Autopsy, Institute of Medical Genetics and Pathology, University Hospital and University of Basel, Switzerland
| | - Hendrik P N Scholl
- Department of Ophthalmology, University of Basel, Switzerland
- Institute of Molecular and Clinical Ophthalmology Basel (IOB), Switzerland
| | - Paul Bernhard Henrich
- Department of Ophthalmology, University of Basel, Switzerland
- Università della Svizzera Italiana, Lugano, Switzerland
| | | |
Collapse
|
12
|
Abstract
Multicellular organisms generate tissues of diverse shapes and functions from cells and extracellular matrices. Their adhesion molecules mediate cell-cell and cell-matrix interactions, which not only play crucial roles in maintaining tissue integrity but also serve as key regulators of tissue morphogenesis. Cells constantly probe their environment to make decisions: They integrate chemical and mechanical information from the environment via diffusible ligand- or adhesion-based signaling to decide whether to release specific signaling molecules or enzymes, to divide or differentiate, to move away or stay, or even whether to live or die. These decisions in turn modify their environment, including the chemical nature and mechanical properties of the extracellular matrix. Tissue morphology is the physical manifestation of the remodeling of cells and matrices by their historical biochemical and biophysical landscapes. We review our understanding of matrix and adhesion molecules in tissue morphogenesis, with an emphasis on key physical interactions that drive morphogenesis.
Collapse
Affiliation(s)
- Di Wu
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA;
| | - Kenneth M Yamada
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health, Bethesda, Maryland, USA;
| | - Shaohe Wang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, Virginia, USA;
| |
Collapse
|
13
|
Jin Z, Meng Y, Wang M, Chen D, Zhu M, Huang Y, Xiong L, Xia S, Xiong Z. Comprehensive analysis of basement membrane and immune checkpoint related lncRNA and its prognostic value in hepatocellular carcinoma via machine learning. Heliyon 2023; 9:e20462. [PMID: 37810862 PMCID: PMC10556786 DOI: 10.1016/j.heliyon.2023.e20462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 09/13/2023] [Accepted: 09/26/2023] [Indexed: 10/10/2023] Open
Abstract
Background Hepatocellular carcinoma (HCC), which is characterized by its high malignancy, generally exhibits poor response to immunotherapy. As part of the tumor microenvironment, basement membranes (BMs) are involved in tumor development and immune activities. Presently, there is no integrated analysis linking the basement membrane with immune checkpoints, especially from the perspective of lncRNA. Methods Based on transcriptome data from The Cancer Genome Atlas, BMs-related and immune checkpoint-related lncRNAs were identified. By applying univariable Cox regression and Machine learning (LASSO and SVM-RFE algorithm), a 10-lncRNA prognosis signature was constructed. The prognostic significance of this signature was assessed by survival analysis. GSEA, ssGSEA, and drug sensitivity analysis were conducted to investigate potential functional pathways, immune status, and clinical implications of guiding individual treatments in HCC. Finally, the promoting migration effect of LINC01224 was validated via in vitro experiments. Results The multiple Cox regression, receiver operating characteristic curves, and stratified survival analysis of clinical subgroups exhibited the robust prognostic ability of the lncRNA signature. Results of the GSEA and drug sensitivity analysis revealed significant differences in potential functional pathways and response to drugs between the two risk groups. In addition, the risk level of HCC patients was distinctly correlated with immune cell infiltration status. More importantly, LINC01224 was independently associated with the OS of HCC patients (P < 0.05), suppressing the expression of LINC01224 inhibited the migration of HCC cells. Conclusion This study developed a reliable signature for the prognosis of HCC based on BM and immune checkpoint related lncRNA, revealing that LINC01224 might be a prognostic biomarker for HCC associated with the progression of HCC.
Collapse
Affiliation(s)
- Ze Jin
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yajun Meng
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengmeng Wang
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Di Chen
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Mengpei Zhu
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yumei Huang
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lina Xiong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shang Xia
- Department of Internal Medicine and Geriatrics, Zhongnan Hospital of Wuhan University, Wuhan University, NO.169 Donghu Road, Wuhan, 430071, Hubei, China
| | - Zhifan Xiong
- Department of Gastroenterology, Liyuan Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
14
|
Jones RA, Trejo B, Sil P, Little KA, Pasolli HA, Joyce B, Posfai E, Devenport D. A Window into Mammalian Basement Membrane Development: Insights from the mTurq2-Col4a1 Mouse Model. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.27.559396. [PMID: 37808687 PMCID: PMC10557719 DOI: 10.1101/2023.09.27.559396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/10/2023]
Abstract
Basement membranes (BMs) are specialized sheets of extracellular matrix that underlie epithelial and endothelial tissues. BMs regulate traffic of cells and molecules between compartments, and participate in signaling, cell migration and organogenesis. The dynamics of mammalian BMs, however, are poorly understood, largely due to a lack of models in which core BM components are endogenously labelled. Here, we describe the mTurquoise2-Col4a1 mouse, in which we fluorescently tag collagen IV, the main component of BMs. Using an innovative Planar-Sagittal live imaging technique to visualize the BM of developing skin, we directly observe BM deformation during hair follicle budding and basal progenitor cell divisions. The BM's inherent pliability enables dividing cells to remain attached to and deform the BM, rather than lose adhesion as generally thought. Using FRAP, we show BM collagen IV is extremely stable, even during periods of rapid epidermal growth. These findings demonstrate the utility of the mTurq2-Col4a1 mouse to shed new light on mammalian BM developmental dynamics.
Collapse
Affiliation(s)
- Rebecca A Jones
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Brandon Trejo
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Parijat Sil
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Katherine A Little
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - H Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller University, 1230 York Ave., New York, NY 10065
| | - Bradley Joyce
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Eszter Posfai
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544
| |
Collapse
|
15
|
Petrov PB, Considine JM, Izzi V, Naba A. Matrisome AnalyzeR - a suite of tools to annotate and quantify ECM molecules in big datasets across organisms. J Cell Sci 2023; 136:jcs261255. [PMID: 37555624 PMCID: PMC10499032 DOI: 10.1242/jcs.261255] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023] Open
Abstract
The extracellular matrix (ECM) is a complex meshwork of proteins that forms the scaffold of all tissues in multicellular organisms. It plays crucial roles in all aspects of life - from orchestrating cell migration during development, to supporting tissue repair. It also plays critical roles in the etiology or progression of diseases. To study this compartment, we have previously defined the compendium of all genes encoding ECM and ECM-associated proteins for multiple organisms. We termed this compendium the 'matrisome' and further classified matrisome components into different structural or functional categories. This nomenclature is now largely adopted by the research community to annotate '-omics' datasets and has contributed to advance both fundamental and translational ECM research. Here, we report the development of Matrisome AnalyzeR, a suite of tools including a web-based application and an R package. The web application can be used by anyone interested in annotating, classifying and tabulating matrisome molecules in large datasets without requiring programming knowledge. The companion R package is available to more experienced users, interested in processing larger datasets or in additional data visualization options.
Collapse
Affiliation(s)
- Petar B. Petrov
- Infotech Institute, University of Oulu, FI-90014 Oulu, Finland
| | - James M. Considine
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Valerio Izzi
- Faculty of Biochemistry and Molecular Medicine & Faculty of Medicine, BioIM Unit, University of Oulu, FI-90014 Oulu, Finland
- Foundation for the Finnish Cancer Institute, Tukholmankatu 8, Fl-00290 Helsinki, Finland
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, USA
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
16
|
Fließer E, Lins T, Berg JL, Kolb M, Kwapiszewska G. The endothelium in lung fibrosis: a core signaling hub in disease pathogenesis? Am J Physiol Cell Physiol 2023; 325:C2-C16. [PMID: 37184232 DOI: 10.1152/ajpcell.00097.2023] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/05/2023] [Accepted: 05/05/2023] [Indexed: 05/16/2023]
Abstract
Pulmonary fibrosis (PF) is a progressive chronic lung disease characterized by excessive deposition of extracellular matrix (ECM) and structural destruction, associated with a severe 5-year mortality rate. The onset of the disease is thought to be triggered by chronic damage to the alveolar epithelium. Since the pulmonary endothelium is an important component of the alveolar-capillary niche, it is also affected by the initial injury. In addition to ensuring proper gas exchange, the endothelium has critical functional properties, including regulation of vascular tone, inflammatory responses, coagulation, and maintenance of vascular homeostasis and integrity. Recent single-cell analyses have shown that shifts in endothelial cell (EC) subtypes occur in PF. Furthermore, the increased vascular remodeling associated with PF leads to deteriorated outcomes for patients, underscoring the importance of the vascular bed in PF. To date, the causes and consequences of endothelial and vascular involvement in lung fibrosis are poorly understood. Therefore, it is of great importance to investigate the involvement of EC and the vascular system in the pathogenesis of the disease. In this review, we will outline the current knowledge on the role of the pulmonary vasculature in PF, in terms of abnormal cellular interactions, hyperinflammation, vascular barrier disorders, and an altered basement membrane composition. Finally, we will summarize recent advances in extensive therapeutic research and discuss the significant value of novel therapies targeting the endothelium.
Collapse
Affiliation(s)
- Elisabeth Fließer
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Thomas Lins
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
| | - Johannes Lorenz Berg
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
| | - Martin Kolb
- Firestone Institute for Respiratory Health, Research Institute at St Joseph's Healthcare, Department of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Grazyna Kwapiszewska
- Ludwig Boltzmann Institute for Lung Vascular Research, Graz, Austria
- Otto Loewi Research Center, Division of Physiology and Pathophysiology, Medical University of Graz, Graz, Austria
- Institute for Lung Health, Member of the German Lung Center (DZL), Cardiopulmonary Institute (CPI), Giessen, Germany
| |
Collapse
|
17
|
Titmarsh HF, von Kriegsheim A, Wills JC, O’Connor RA, Dhaliwal K, Frame MC, Pattle SB, Dorward DA, Byron A, Akram AR. Quantitative proteomics identifies tumour matrisome signatures in patients with non-small cell lung cancer. Front Oncol 2023; 13:1194515. [PMID: 37397358 PMCID: PMC10313119 DOI: 10.3389/fonc.2023.1194515] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 05/30/2023] [Indexed: 07/04/2023] Open
Abstract
Introduction The composition and remodelling of the extracellular matrix (ECM) are important factors in the development and progression of cancers, and the ECM is implicated in promoting tumour growth and restricting anti-tumour therapies through multiple mechanisms. The characterisation of differences in ECM composition between normal and diseased tissues may aid in identifying novel diagnostic markers, prognostic indicators and therapeutic targets for drug development. Methods Using tissue from non-small cell lung cancer (NSCLC) patients undergoing curative intent surgery, we characterised quantitative tumour-specific ECM proteome signatures by mass spectrometry. Results We identified 161 matrisome proteins differentially regulated between tumour tissue and nearby non-malignant lung tissue, and we defined a collagen hydroxylation functional protein network that is enriched in the lung tumour microenvironment. We validated two novel putative extracellular markers of NSCLC, the collagen cross-linking enzyme peroxidasin and a disintegrin and metalloproteinase with thrombospondin motifs 16 (ADAMTS16), for discrimination of malignant and non-malignant lung tissue. These proteins were up-regulated in lung tumour samples, and high PXDN and ADAMTS16 gene expression was associated with shorter survival of lung adenocarcinoma and squamous cell carcinoma patients, respectively. Discussion These data chart extensive remodelling of the lung extracellular niche and reveal tumour matrisome signatures in human NSCLC.
Collapse
Affiliation(s)
- Helen F. Titmarsh
- The EPSRC and MRC Centre for Doctoral Training in Optical Medical Imaging, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
| | - Alex von Kriegsheim
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Jimi C. Wills
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Richard A. O’Connor
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
| | - Kevin Dhaliwal
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
| | - Margaret C. Frame
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Samuel B. Pattle
- Department of Pathology, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - David A. Dorward
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
- Department of Pathology, Royal Infirmary of Edinburgh, Edinburgh, United Kingdom
| | - Adam Byron
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Division of Molecular and Cellular Function, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Ahsan R. Akram
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh Bioquarter, Edinburgh, United Kingdom
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
18
|
Petrov PB, Considine JM, Izzi V, Naba A. Matrisome AnalyzeR: A suite of tools to annotate and quantify ECM molecules in big datasets across organisms. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.18.537378. [PMID: 37131773 PMCID: PMC10153148 DOI: 10.1101/2023.04.18.537378] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The extracellular matrix (ECM) is a complex meshwork of proteins that forms the scaffold of all tissues in multicellular organisms. It plays critical roles in all aspects of life: from orchestrating cell migration during development, to supporting tissue repair. It also plays critical roles in the etiology or progression of diseases. To study this compartment, we defined the compendium of all genes encoding ECM and ECM-associated proteins for multiple organisms. We termed this compendium the "matrisome" and further classified matrisome components into different structural or functional categories. This nomenclature is now largely adopted by the research community to annotate -omics datasets and has contributed to advance both fundamental and translational ECM research. Here, we report the development of Matrisome AnalyzeR, a suite of tools including a web-based application ( https://sites.google.com/uic.edu/matrisome/tools/matrisome-analyzer ) and an R package ( https://github.com/Matrisome/MatrisomeAnalyzeR ). The web application can be used by anyone interested in annotating, classifying, and tabulating matrisome molecules in large datasets without requiring programming knowledge. The companion R package is available to more experienced users, interested in processing larger datasets or in additional data visualization options. SUMMARY STATEMENT Matrisome AnalyzeR is a suite of tools, including a web-based app and an R package, designed to facilitate the annotation and quantification of extracellular matrix components in big datasets.
Collapse
Affiliation(s)
- Petar B. Petrov
- Infotech Institute, University of Oulu, FI-90014 Oulu, Finland
| | - James M. Considine
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Valerio Izzi
- Faculty of Biochemistry and Molecular Medicine & Faculty of Medicine, BioIM Unit, University of Oulu, FI-90014 Oulu, Finland
- Foundation for the Finnish Cancer Institute, Tukholmankatu 8, Helsinki, Finland
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois Chicago, Chicago, IL 60612, USA
- University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
19
|
Shen J, Wei Z, Lv L, He J, Du S, Wang F, Wang Y, Ni L, Zhang X, Pan F. A Model of Basement Membrane-Associated Gene Signature Predicts Liver Hepatocellular Carcinoma Response to Immune Checkpoint Inhibitors. Mediators Inflamm 2023; 2023:7992140. [PMID: 37152370 PMCID: PMC10162867 DOI: 10.1155/2023/7992140] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 11/29/2022] [Accepted: 03/17/2023] [Indexed: 05/09/2023] Open
Abstract
Liver hepatocellular carcinoma (LIHC) is a highly lethal malignant tumor originating from the digestive system, which is a serious threat to human health. In recent years, immunotherapy has shown significant therapeutic effects in the treatment of LIHC, but only for a minority of patients. The basement membrane (BM) plays an important role in the occurrence and development of tumors, including LIHC. Therefore, this study is aimed at establishing a risk score model based on basement membrane-related genes (BMRGs) to predict patient prognosis and response to immunotherapy. First, we defined three patterns of BMRG modification (C1, C2, and C3) by consensus clustering of BMRG sets and LIHC transcriptome data obtained from public databases. Survival analysis showed that patients in the C2 group had a better prognosis, and Gene Set Variation Analysis (GSVA) revealed that the statistically significant pathways were mainly enriched in the C2 group. Moreover, we performed Weighted Correlation Network Analysis (WGCNA) on the above three subgroups and obtained 179 intersecting genes. We further applied function enrichment analyses, and the results demonstrated that they were mainly enriched in metabolism-related pathways. Furthermore, we conducted the LASSO regression analysis and obtained 4 BMRGs (MPV17, GNB1, DHX34, and MAFG) that were significantly related to the prognosis of LIHC patients. We further constructed a prognostic risk score model based on the above genes, which was verified to have good predictive performance for LIHC prognosis. In addition, we analyzed the correlation between the risk score and the tumor immune microenvironment (TIM), and the results showed that the high-risk scoring group tended to be in an immunosuppressed status. Finally, we investigated the relationship between the risk score and LIHC immune function. The results demonstrated that the risk score was closely related to the expression levels of multiple immune checkpoints. Patients in the low-risk group had significantly higher IPS scores, and patients in the high-risk group had lower immune escape and TIDE score. In conclusion, we established a novel risk model based on BMRGs, which may serve as a biomarker for prognosis and immunotherapy in LIHC.
Collapse
Affiliation(s)
- Jiajia Shen
- Department of Hepatobiliary Surgery, 900th Hospital of Joint Logistics Support Force (Fuzong Clinical Medical College) (Former Fuzhou General Hospital), Fuzhou, Fujian, China
| | - Zhihong Wei
- Department of Hepatobiliary Surgery, 900th Hospital of Joint Logistics Support Force (Fuzong Clinical Medical College) (Former Fuzhou General Hospital), Fuzhou, Fujian, China
| | - Lizhi Lv
- Department of Hepatobiliary Surgery, 900th Hospital of Joint Logistics Support Force (Fuzong Clinical Medical College) (Former Fuzhou General Hospital), Fuzhou, Fujian, China
| | - Jingxiong He
- Department of Hepatobiliary Surgery, 900th Hospital of Joint Logistics Support Force (Fuzong Clinical Medical College) (Former Fuzhou General Hospital), Fuzhou, Fujian, China
| | - Suming Du
- Department of Hepatobiliary Surgery, 900th Hospital of Joint Logistics Support Force (Fuzong Clinical Medical College) (Former Fuzhou General Hospital), Fuzhou, Fujian, China
| | - Fang Wang
- Department of Hepatobiliary Surgery, 900th Hospital of Joint Logistics Support Force (Fuzong Clinical Medical College) (Former Fuzhou General Hospital), Fuzhou, Fujian, China
| | - Ye Wang
- Department of Hepatobiliary Surgery, 900th Hospital of Joint Logistics Support Force (Fuzong Clinical Medical College) (Former Fuzhou General Hospital), Fuzhou, Fujian, China
| | - Lin Ni
- Department of General Surgery, 900th Hospital of Joint Logistics Support Force (Fuzong Clinical Medical College) (Former Fuzhou General Hospital), Fuzhou, Fujian, China
| | - Xiaojin Zhang
- Department of Hepatobiliary Surgery, 900th Hospital of Joint Logistics Support Force (Fuzong Clinical Medical College) (Former Fuzhou General Hospital), Fuzhou, Fujian, China
| | - Fan Pan
- Department of Hepatobiliary Surgery, 900th Hospital of Joint Logistics Support Force (Fuzong Clinical Medical College) (Former Fuzhou General Hospital), Fuzhou, Fujian, China
| |
Collapse
|
20
|
Rousselle P, Laigle C, Rousselet G. The basement membrane in epidermal polarity, stemness, and regeneration. Am J Physiol Cell Physiol 2022; 323:C1807-C1822. [PMID: 36374168 DOI: 10.1152/ajpcell.00069.2022] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The epidermis is a specialized epithelium that constitutes the outermost layer of the skin, and it provides a protective barrier against environmental assaults. Primarily consisting of multilayered keratinocytes, the epidermis is continuously renewed by proliferation of stem cells and the differentiation of their progeny, which undergo terminal differentiation as they leave the basal layer and move upward toward the surface, where they die and slough off. Basal keratinocytes rest on a basement membrane at the dermal-epidermal junction that is composed of specific extracellular matrix proteins organized into interactive and mechanically supportive networks. Firm attachment of basal keratinocytes, and their dynamic regulation via focal adhesions and hemidesmosomes, is essential for maintaining major skin processes, such as self-renewal, barrier function, and resistance to physical and chemical stresses. The adhesive integrin receptors expressed by epidermal cells serve structural, signaling, and mechanosensory roles that are critical for epidermal cell anchorage and tissue homeostasis. More specifically, the basement membrane components play key roles in preserving the stem cell pool, and establishing cell polarity cues enabling asymmetric cell divisions, which result in the transition from a proliferative basal cell layer to suprabasal cells committed to terminal differentiation. Finally, through a well-regulated sequence of synthesis and remodeling, the components of the dermal-epidermal junction play an essential role in regeneration of the epidermis during skin healing. Here too, they provide biological and mechanical signals that are essential to the restoration of barrier function.
Collapse
Affiliation(s)
- Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, Université Lyon 1, Lyon, France
| | - Chloé Laigle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, Université Lyon 1, Lyon, France
| | - Gaelle Rousselet
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS, Université Lyon 1, Lyon, France
| |
Collapse
|
21
|
Bahr JC, Li XY, Feinberg TY, Jiang L, Weiss SJ. Divergent regulation of basement membrane trafficking by human macrophages and cancer cells. Nat Commun 2022; 13:6409. [PMID: 36302921 PMCID: PMC9613642 DOI: 10.1038/s41467-022-34087-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Accepted: 10/13/2022] [Indexed: 12/25/2022] Open
Abstract
Macrophages and cancer cells populations are posited to navigate basement membrane barriers by either mobilizing proteolytic enzymes or deploying mechanical forces. Nevertheless, the relative roles, or identity, of the proteinase -dependent or -independent mechanisms used by macrophages versus cancer cells to transmigrate basement membrane barriers harboring physiologically-relevant covalent crosslinks remains ill-defined. Herein, both macrophages and cancer cells are shown to mobilize membrane-anchored matrix metalloproteinases to proteolytically remodel native basement membranes isolated from murine tissues while infiltrating the underlying interstitial matrix ex vivo. In the absence of proteolytic activity, however, only macrophages deploy actomyosin-generated forces to transmigrate basement membrane pores, thereby providing the cells with proteinase-independent access to the interstitial matrix while simultaneously exerting global effects on the macrophage transcriptome. By contrast, cancer cell invasive activity is reliant on metalloproteinase activity and neither mechanical force nor changes in nuclear rigidity rescue basement membrane transmigration. These studies identify membrane-anchored matrix metalloproteinases as key proteolytic effectors of basement membrane remodeling by macrophages and cancer cells while also defining the divergent invasive strategies used by normal and neoplastic cells to traverse native tissue barriers.
Collapse
Affiliation(s)
- Julian C Bahr
- Cancer Biology Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Xiao-Yan Li
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Division of Genetic Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Tamar Y Feinberg
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Division of Genetic Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Long Jiang
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA
- Division of Genetic Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Stephen J Weiss
- Cancer Biology Graduate Program, University of Michigan, Ann Arbor, MI, 48109, USA.
- Life Sciences Institute, University of Michigan, Ann Arbor, MI, 48109, USA.
- Division of Genetic Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
- Department of Internal Medicine, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
22
|
Cao Z, Zhang Z, Tang X, Liu R, Wu M, Wu J, Liu Z. Comprehensive analysis of tissue proteomics in patients with papillary thyroid microcarcinoma uncovers the underlying mechanism of lymph node metastasis and its significant sex disparities. Front Oncol 2022; 12:887977. [PMID: 36106120 PMCID: PMC9465038 DOI: 10.3389/fonc.2022.887977] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Background Lymph node metastasis (LNM) in papillary thyroid microcarcinoma (PTMC) is associated with an increased risk of recurrence and poor prognosis. Sex has been regarded as a critical risk factor for LNM. The present study aimed to investigate the molecular mechanisms underlying LNM and its significant sex disparities in PTMC development. Methods A direct data-independent acquisition (DIA) proteomics approach was used to identify differentially expressed proteins (DEPs) in PTMC tumorous tissues with or without LNM and from male and female patients with LNM. The functional annotation of DEPs was performed using bioinformatics methods. Furthermore, The Cancer Genome Atlas Thyroid Carcinoma (TCGA-THCA) dataset and immunohistochemistry (IHC) were used to validate selected DEPs. Results The proteomics profile in PTMC with LNM differed from that of PTMC without LNM. The metastasis-related DEPs were primarily enriched in categories associated with mitochondrial dysfunction and may promote tumor progression by activating oxidative phosphorylation and PI3K/AKT signaling pathways. Comparative analyses of these DEPs revealed downregulated expression of specific proteins with well-established links to tumor metastasis, such as SLC25A15, DIRAS2, PLA2R1, and MTARC1. Additionally, the proteomics profiles of male and female PTMC patients with LNM were dramatically distinguishable. An elevated level of ECM-associated proteins might be related to more LNM in male PTMC than in female PTMC patients. The upregulated expression levels of MMRN2 and NID2 correlated with sex disparities and showed a positive relationship with unfavorable variables, such as LNMs and poor prognosis. Conclusions The proteomics profiles of PTMC show significant differences associated with LNM and its sex disparities, which further expands our understanding of the functional networks and signaling pathways related to PTMC with LNM.
Collapse
Affiliation(s)
- Zhen Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zejian Zhang
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyue Tang
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianqiang Wu
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Jianqiang Wu, ; Ziwen Liu,
| | - Ziwen Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Jianqiang Wu, ; Ziwen Liu,
| |
Collapse
|
23
|
Sacnun JM, Herzog R, Kratochwill K. Proteomic study of mesothelial and endothelial cross-talk: key lessons. Expert Rev Proteomics 2022; 19:289-296. [PMID: 36714918 DOI: 10.1080/14789450.2023.2174851] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
INTRODUCTION The peritoneum, pleura, and pericardium are yet understudied multicellular systems where mesothelial cells (MCs) and endothelial cells (ECs) are in close proximity. Crosstalk between these cell types likely plays role in molecular transport, immunological reactions, and metabolic processes in health, disease, and therapeutic intervention. AREAS COVERED In this review, we discuss recent proteomic efforts to characterize the crosstalk between MC and EC. We describe the proteomic methods necessary for investigation of crosstalk between MC and EC, as well as the in-vitro models that can be employed. Potential experimental approaches range from conditioned medium, via co-culture on semi-permeable membranes, to 3D cell culture based organoid models. While the biological and clinical relevance of the models may increase with their ability to mimic close cell communication, the practicality of these complex experiments corresponds vice versa, making standardization more difficult and expensive. EXPERT OPINION Currently, data and reports on mesothelial-to-endothelial crosstalk are still very scarce. In our opinion, the in-vitro model using semi-permeable cell culture inserts will allow to establish a basic understanding of cellular crosstalk that may occur between those cell types. Later-on, more sophisticated 3D cell cultures may be better able to simulate the transport dynamics within the peritoneal membrane.
Collapse
Affiliation(s)
- Juan Manuel Sacnun
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Rebecca Herzog
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| | - Klaus Kratochwill
- Christian Doppler Laboratory for Molecular Stress Research in Peritoneal Dialysis, Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria.,Division of Pediatric Nephrology and Gastroenterology, Department of Pediatrics and Adolescent Medicine, Comprehensive Center for Pediatrics, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
24
|
Jk L, B R, B O, K S. Lack of autoantibodies against collagen and related proteins in collagenous colitis. BMC Immunol 2022; 23:29. [PMID: 35668375 PMCID: PMC9171945 DOI: 10.1186/s12865-022-00504-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 06/01/2022] [Indexed: 11/22/2022] Open
Abstract
Introduction Collagenous colitis (CC) is a common cause of chronic diarrhea and is characterized by a subepithelial thickened collagen layer in the colonic mucosa. It shares many of the characteristics found in autoimmune diseases, but no autoantibodies have been identified. In CC, an imbalance in collagen turnover is evident. The purpose of the present study was to investigate whether any collagen-associated autoantibodies or other antibodies such as TPO and ASCA were present, and if levels of total IgE were increased. Methods Sera from women with active CC were analysed with ELISA for detection of autoantibodies against collagen type III and IV (Col III and IV), matrix metalloproteinase-9 (MMP-9), tissue inhibitors of metalloproteinase-1 (TIMP-1) and tenascin-C (TNC). Sera were also analysed for TPO, ASCA and total IgE. Healthy female blood donors served as controls. The cut-off value in the control group was defined as relative units > 97.5th percentile. Results Sixty-six women were included (mean age 60 years; range 31–74, mean disease duration 6 years; range 1–22). No autoantibody was significantly overexpressed in the CC population compared to controls. The mean disease duration was lower (p = 0.03) in the subjects who expressed collagen-associated autoantibodies (3.7 years; range 1–14), compared to those who did not (6.4 years; range 1–22). Treatment with budesonide was not associated with any of these autoantibodies. Conclusion No increased presence of the investigated antibodies could be found in the present study of CC. Neither could antibodies against ASCA or TPO, or elevated levels of IgE, be found. Consequently, no association was found between CC and these proteins, even though this may not be generalizable to other compounds in the collagen layer.
Collapse
Affiliation(s)
- Larsson Jk
- Department of Clinical Sciences, Department of Gastroenterology and Nutrition, Lund University, Skåne University Hospital, Malmö, Sweden.
| | - Roth B
- Department of Clinical Sciences, Department of Gastroenterology and Nutrition, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Ohlsson B
- Department of Clinical Sciences, Department of Medicine, Lund University, Skåne University Hospital, Malmö, Sweden
| | - Sjöberg K
- Department of Clinical Sciences, Department of Gastroenterology and Nutrition, Lund University, Skåne University Hospital, Malmö, Sweden
| |
Collapse
|
25
|
Jayadev R, Morais MRPT, Ellingford JM, Srinivasan S, Naylor RW, Lawless C, Li AS, Ingham JF, Hastie E, Chi Q, Fresquet M, Koudis NM, Thomas HB, O’Keefe RT, Williams E, Adamson A, Stuart HM, Banka S, Smedley D, Genomics England Research Consortium, Sherwood DR, Lennon R. A basement membrane discovery pipeline uncovers network complexity, regulators, and human disease associations. SCIENCE ADVANCES 2022; 8:eabn2265. [PMID: 35584218 PMCID: PMC9116610 DOI: 10.1126/sciadv.abn2265] [Citation(s) in RCA: 109] [Impact Index Per Article: 36.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 03/22/2022] [Indexed: 05/17/2023]
Abstract
Basement membranes (BMs) are ubiquitous extracellular matrices whose composition remains elusive, limiting our understanding of BM regulation and function. By developing a bioinformatic and in vivo discovery pipeline, we define a network of 222 human proteins and their animal orthologs localized to BMs. Network analysis and screening in C. elegans and zebrafish uncovered BM regulators, including ADAMTS, ROBO, and TGFβ. More than 100 BM network genes associate with human phenotypes, and by screening 63,039 genomes from families with rare disorders, we found loss-of-function variants in LAMA5, MPZL2, and MATN2 and show that they regulate BM composition and function. This cross-disciplinary study establishes the immense complexity of BMs and their impact on in human health.
Collapse
Affiliation(s)
- Ranjay Jayadev
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Mychel R. P. T. Morais
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Jamie M. Ellingford
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Sandhya Srinivasan
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Richard W. Naylor
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Craig Lawless
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Anna S. Li
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Jack F. Ingham
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Eric Hastie
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Qiuyi Chi
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Maryline Fresquet
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Nikki-Maria Koudis
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Huw B. Thomas
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Raymond T. O’Keefe
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Emily Williams
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Antony Adamson
- Genome Editing Unit Core Facility, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Helen M. Stuart
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Siddharth Banka
- Manchester Centre for Genomic Medicine, Manchester University Hospitals NHS Foundation Trust, Manchester M13 9WL, UK
- Division of Evolution and Genomic Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
| | - Damian Smedley
- William Harvey Research Institute, Charterhouse Square, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
| | - Genomics England Research Consortium
- William Harvey Research Institute, Charterhouse Square, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, EC1M 6BQ London, UK
- Genomics England, London, UK
| | - David R. Sherwood
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, University of Manchester, Manchester Academic Health Science Centre, Manchester M13 9PT, UK
- Department of Paediatric Nephrology, Royal Manchester Children’s Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester M13 9WL, UK
| |
Collapse
|
26
|
Töpfer U, Guerra Santillán KY, Fischer-Friedrich E, Dahmann C. Distinct contributions of ECM proteins to basement membrane mechanical properties in Drosophila. Development 2022; 149:275413. [DOI: 10.1242/dev.200456] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 04/21/2022] [Indexed: 12/23/2022]
Abstract
ABSTRACT
The basement membrane is a specialized extracellular matrix (ECM) that is crucial for the development of epithelial tissues and organs. In Drosophila, the mechanical properties of the basement membrane play an important role in the proper elongation of the developing egg chamber; however, the molecular mechanisms contributing to basement membrane mechanical properties are not fully understood. Here, we systematically analyze the contributions of individual ECM components towards the molecular composition and mechanical properties of the basement membrane underlying the follicle epithelium of Drosophila egg chambers. We find that the Laminin and Collagen IV networks largely persist in the absence of the other components. Moreover, we show that Perlecan and Collagen IV, but not Laminin or Nidogen, contribute greatly towards egg chamber elongation. Similarly, Perlecan and Collagen, but not Laminin or Nidogen, contribute towards the resistance of egg chambers against osmotic stress. Finally, using atomic force microscopy we show that basement membrane stiffness mainly depends on Collagen IV. Our analysis reveals how single ECM components contribute to the mechanical properties of the basement membrane controlling tissue and organ shape.
Collapse
Affiliation(s)
- Uwe Töpfer
- Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany
| | - Karla Yanín Guerra Santillán
- Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany
- Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01062 Dresden, Germany
| | - Elisabeth Fischer-Friedrich
- Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01062 Dresden, Germany
| | - Christian Dahmann
- Institute of Genetics, Technische Universität Dresden, 01062 Dresden, Germany
- Cluster of Excellence Physics of Life, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
27
|
Gray AL, Pun N, Ridley AJL, Dyer DP. Role of extracellular matrix proteoglycans in immune cell recruitment. Int J Exp Pathol 2022; 103:34-43. [PMID: 35076142 PMCID: PMC8961502 DOI: 10.1111/iep.12428] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 01/05/2022] [Accepted: 01/08/2022] [Indexed: 12/28/2022] Open
Abstract
Leucocyte recruitment is a critical component of the immune response and is central to our ability to fight infection. Paradoxically, leucocyte recruitment is also a central component of inflammatory-based diseases such as rheumatoid arthritis, atherosclerosis and cancer. The role of the extracellular matrix, in particular proteoglycans, in this process has been largely overlooked. Proteoglycans consist of protein cores with glycosaminoglycan sugar side chains attached. Proteoglycans have been shown to bind and regulate the function of a number of proteins, for example chemokines, and also play a key structural role in the local tissue environment/niche. Whilst they have been implicated in leucocyte recruitment and inflammatory disease, their mechanistic function has yet to be fully understood, precluding therapeutic targeting. This review summarizes what is currently known about the role of proteoglycans in the different stages of leucocyte recruitment and proposes a number of areas where more research is needed. A better understanding of the mechanistic role of proteoglycans during inflammatory disease will inform the development of next-generation therapeutics.
Collapse
Affiliation(s)
- Anna L. Gray
- Wellcome Centre for Cell‐Matrix ResearchFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreLydia Becker Institute of Immunology and InflammationUniversity of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research CentreNorthern Care Alliance NHS GroupManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| | - Nabina Pun
- Wellcome Centre for Cell‐Matrix ResearchFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreLydia Becker Institute of Immunology and InflammationUniversity of ManchesterManchesterUK
| | - Amanda J. L. Ridley
- Wellcome Centre for Cell‐Matrix ResearchFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreLydia Becker Institute of Immunology and InflammationUniversity of ManchesterManchesterUK
| | - Douglas P. Dyer
- Wellcome Centre for Cell‐Matrix ResearchFaculty of Biology, Medicine and HealthManchester Academic Health Science CentreLydia Becker Institute of Immunology and InflammationUniversity of ManchesterManchesterUK
- Geoffrey Jefferson Brain Research CentreNorthern Care Alliance NHS GroupManchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| |
Collapse
|
28
|
Zajac AL, Horne-Badovinac S. Kinesin-directed secretion of basement membrane proteins to a subdomain of the basolateral surface in Drosophila epithelial cells. Curr Biol 2022; 32:735-748.e10. [PMID: 35021047 PMCID: PMC8891071 DOI: 10.1016/j.cub.2021.12.025] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Revised: 11/23/2021] [Accepted: 12/09/2021] [Indexed: 12/26/2022]
Abstract
Epithelial tissues are lined with a sheet-like basement membrane (BM) extracellular matrix at their basal surfaces that plays essential roles in adhesion and signaling. BMs also provide mechanical support to guide morphogenesis. Despite their importance, we know little about how epithelial cells secrete and assemble BMs during development. BM proteins are sorted into a basolateral secretory pathway distinct from other basolateral proteins. Because BM proteins self-assemble into networks, and the BM lines only a small portion of the basolateral domain, we hypothesized that the site of BM protein secretion might be tightly controlled. Using the Drosophila follicular epithelium, we show that kinesin-3 and kinesin-1 motors work together to define this secretion site. Similar to all epithelia, the follicle cells have polarized microtubules (MTs) along their apical-basal axes. These cells collectively migrate, and they also have polarized MTs along the migratory axis at their basal surfaces. We find follicle cell MTs form one interconnected network, which allows kinesins to transport Rab10+ BM secretory vesicles both basally and to the trailing edge of each cell. This positions them near the basal surface and the basal-most region of the lateral domain for exocytosis. When kinesin transport is disrupted, the site of BM protein secretion is expanded, and ectopic BM networks form between cells that impede migration and disrupt tissue architecture. These results show how epithelial cells can define a subdomain on their basolateral surface through MT-based transport and highlight the importance of controlling the exocytic site of network-forming proteins.
Collapse
Affiliation(s)
- Allison L. Zajac
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA
| | - Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, The University of Chicago, 920 East 58th Street, Chicago, IL 60637, USA.
| |
Collapse
|
29
|
Nellinger S, Mrsic I, Keller S, Heine S, Southan A, Bach M, Volz A, Chassé T, Kluger PJ. Cell‐derived and enzyme‐based decellularized extracellular matrix exhibit compositional and structural differences that are relevant for its use as a biomaterial. Biotechnol Bioeng 2022; 119:1142-1156. [DOI: 10.1002/bit.28047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 01/01/2022] [Accepted: 01/19/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Svenja Nellinger
- Reutlingen Research Institute Alteburgstr. 150 72762 Reutlingen Germany
| | - Ivana Mrsic
- Institute of Physical and Theoretical Chemistry, University of Tuebingen Auf der Morgenstelle 18 72076 Tuebingen Germany
| | - Silke Keller
- 3R‐Center for In Vitro Models and Alternatives to Animal Testing, Eberhard Karls University Tübingen Österbergstr. 3 72074 Tübingen Germany
- Department for Microphysiological Systems Institute of Biomedical Engineering, Faculty of Medicine of the Eberhard Karls University Tübingen Österbergstr. 3 72074 Tübingen Germany
| | - Simon Heine
- Reutlingen Research Institute Alteburgstr. 150 72762 Reutlingen Germany
| | - Alexander Southan
- Institute of Interfacial Process Engineering and Plasma Technology, University of Stuttgart Nobelstr. 12 70569 Stuttgart Germany
| | - Monika Bach
- Core Facility Hohenheim, University of Hohenheim Emil‐Wolff‐Str. 12 70599 Stuttgart Germany
| | - Ann‐Cathrin Volz
- Reutlingen Research Institute Alteburgstr. 150 72762 Reutlingen Germany
| | - Thomas Chassé
- Institute of Physical and Theoretical Chemistry, University of Tuebingen Auf der Morgenstelle 18 72076 Tuebingen Germany
| | - Petra J. Kluger
- School of Applied Chemistry, Reutlingen University Alteburgstr. 150 72762 Reutlingen Germany
| |
Collapse
|
30
|
Gifre-Renom L, Daems M, Luttun A, Jones EAV. Organ-Specific Endothelial Cell Differentiation and Impact of Microenvironmental Cues on Endothelial Heterogeneity. Int J Mol Sci 2022; 23:ijms23031477. [PMID: 35163400 PMCID: PMC8836165 DOI: 10.3390/ijms23031477] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/14/2022] [Accepted: 01/19/2022] [Indexed: 02/04/2023] Open
Abstract
Endothelial cells throughout the body are heterogeneous, and this is tightly linked to the specific functions of organs and tissues. Heterogeneity is already determined from development onwards and ranges from arterial/venous specification to microvascular fate determination in organ-specific differentiation. Acknowledging the different phenotypes of endothelial cells and the implications of this diversity is key for the development of more specialized tissue engineering and vascular repair approaches. However, although novel technologies in transcriptomics and proteomics are facilitating the unraveling of vascular bed-specific endothelial cell signatures, still much research is based on the use of insufficiently specialized endothelial cells. Endothelial cells are not only heterogeneous, but their specialized phenotypes are also dynamic and adapt to changes in their microenvironment. During the last decades, strong collaborations between molecular biology, mechanobiology, and computational disciplines have led to a better understanding of how endothelial cells are modulated by their mechanical and biochemical contexts. Yet, because of the use of insufficiently specialized endothelial cells, there is still a huge lack of knowledge in how tissue-specific biomechanical factors determine organ-specific phenotypes. With this review, we want to put the focus on how organ-specific endothelial cell signatures are determined from development onwards and conditioned by their microenvironments during adulthood. We discuss the latest research performed on endothelial cells, pointing out the important implications of mimicking tissue-specific biomechanical cues in culture.
Collapse
Affiliation(s)
- Laia Gifre-Renom
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven (KU Leuven), BE-3000 Leuven, Belgium; (L.G.-R.); (M.D.); (A.L.)
| | - Margo Daems
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven (KU Leuven), BE-3000 Leuven, Belgium; (L.G.-R.); (M.D.); (A.L.)
| | - Aernout Luttun
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven (KU Leuven), BE-3000 Leuven, Belgium; (L.G.-R.); (M.D.); (A.L.)
| | - Elizabeth A. V. Jones
- Centre for Molecular and Vascular Biology, Department of Cardiovascular Sciences, Katholieke Universiteit Leuven (KU Leuven), BE-3000 Leuven, Belgium; (L.G.-R.); (M.D.); (A.L.)
- Department of Cardiology, CARIM School for Cardiovascular Diseases, Maastricht University, 6229 ER Maastricht, The Netherlands
- Correspondence:
| |
Collapse
|
31
|
Morais MRPT, Tian P, Lawless C, Murtuza-Baker S, Hopkinson L, Woods S, Mironov A, Long DA, Gale DP, Zorn TMT, Kimber SJ, Zent R, Lennon R. Kidney organoids recapitulate human basement membrane assembly in health and disease. eLife 2022; 11:e73486. [PMID: 35076391 PMCID: PMC8849328 DOI: 10.7554/elife.73486] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 01/24/2022] [Indexed: 12/04/2022] Open
Abstract
Basement membranes (BMs) are complex macromolecular networks underlying all continuous layers of cells. Essential components include collagen IV and laminins, which are affected by human genetic variants leading to a range of debilitating conditions including kidney, muscle, and cerebrovascular phenotypes. We investigated the dynamics of BM assembly in human pluripotent stem cell-derived kidney organoids. We resolved their global BM composition and discovered a conserved temporal sequence in BM assembly that paralleled mammalian fetal kidneys. We identified the emergence of key BM isoforms, which were altered by a pathogenic variant in COL4A5. Integrating organoid, fetal, and adult kidney proteomes, we found dynamic regulation of BM composition through development to adulthood, and with single-cell transcriptomic analysis we mapped the cellular origins of BM components. Overall, we define the complex and dynamic nature of kidney organoid BM assembly and provide a platform for understanding its wider relevance in human development and disease.
Collapse
Affiliation(s)
- Mychel RPT Morais
- Wellcome Trust Centre for Cell-Matrix Research, University of ManchesterManchesterUnited Kingdom
| | - Pinyuan Tian
- Wellcome Trust Centre for Cell-Matrix Research, University of ManchesterManchesterUnited Kingdom
| | - Craig Lawless
- Wellcome Trust Centre for Cell-Matrix Research, University of ManchesterManchesterUnited Kingdom
| | - Syed Murtuza-Baker
- Division of Informatics, Imaging and Data Sciences, University of ManchesterManchesterUnited Kingdom
| | - Louise Hopkinson
- Wellcome Trust Centre for Cell-Matrix Research, University of ManchesterManchesterUnited Kingdom
| | - Steven Woods
- Division of Cell Matrix Biology and Regenerative Medicine, University of ManchesterManchesterUnited Kingdom
| | - Aleksandr Mironov
- Electron Microscopy Core Facility, University of ManchesterManchesterUnited Kingdom
| | - David A Long
- Developmental Biology and Cancer Programme, University College LondonLondonUnited Kingdom
| | - Daniel P Gale
- Department of Renal Medicine, University College LondonLondonUnited Kingdom
| | - Telma MT Zorn
- Department of Cell and Developmental Biology, University of São PauloSão PauloBrazil
| | - Susan J Kimber
- Division of Cell Matrix Biology and Regenerative Medicine, University of ManchesterManchesterUnited Kingdom
| | - Roy Zent
- Department of Medicine, Vanderbilt University Medical CenterNashvilleUnited States
| | - Rachel Lennon
- Wellcome Trust Centre for Cell-Matrix Research, University of ManchesterManchesterUnited Kingdom
- Department of Paediatric Nephrology, Royal Manchester Children’s Hospital, Manchester University Hospitals NHS Foundation TrustManchesterUnited Kingdom
| |
Collapse
|
32
|
Wroński P, Wroński S, Kurant M, Malinowski B, Wiciński M. Curcumin May Prevent Basement Membrane Disassembly by Matrix Metalloproteinases and Progression of the Bladder Cancer. Nutrients 2021; 14:32. [PMID: 35010907 PMCID: PMC8746354 DOI: 10.3390/nu14010032] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/18/2021] [Accepted: 12/19/2021] [Indexed: 12/25/2022] Open
Abstract
Authors present a review of crucial mechanisms contributing to the invasion of the basement membrane (BM) of the urothelium by cancer cells and to the progression of bladder cancer (BC). The breeching of the urothelial BM, facilitated by an aberrant activation of matrix metalloproteinases (MMP) is particularly perilous. Inhibition of activation of these proteinases constitutes a logic opportunity to restrain progression. Because of limited efficacy of current therapeutic methods, the search for the development of alternative approaches constitutes "the hot spot" of modern oncology. Recent studies revealed significant anticancer potential of natural phytochemicals. Especially, curcumin has emerged as a one of the most promising phytochemicals and showed its efficacy in several human malignancies. Therefore, this article addresses experimental and clinical data indicating multi-directional inhibitory effect of curcumin on the growth of bladder cancer. We particularly concentrate on the mechanisms, by which curcumin inhibits the MMP's activities, thereby securing BM integrity and alleviating the eventual cancer invasion into the bladder muscles. Authors review the recently accumulating data, that curcumin constitutes a potent factor contributing to the more effective treatment of the bladder cancer.
Collapse
Affiliation(s)
- Paweł Wroński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland; (P.W.); (B.M.)
- Department of Oncological Urology, The Franciszek Lukaszczyk Oncology Center, Romanowskiej 2, 85-796 Bydgoszcz, Poland
| | - Stanisław Wroński
- Department of Urology, Jan Biziel Memorial University Hospital, Ujejskiego 75, 85-168 Bydgoszcz, Poland;
| | - Marcin Kurant
- Department of Urology, District Hospital, 10 Lesna Street, 89-600 Chojnice, Poland;
| | - Bartosz Malinowski
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland; (P.W.); (B.M.)
| | - Michał Wiciński
- Department of Pharmacology and Therapeutics, Faculty of Medicine, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University, M. Curie 9, 85-090 Bydgoszcz, Poland; (P.W.); (B.M.)
| |
Collapse
|
33
|
Lau S, Gossen M, Lendlein A. Designing Cardiovascular Implants Taking in View the Endothelial Basement Membrane. Int J Mol Sci 2021; 22:ijms222313120. [PMID: 34884923 PMCID: PMC8658568 DOI: 10.3390/ijms222313120] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/25/2021] [Accepted: 11/29/2021] [Indexed: 12/28/2022] Open
Abstract
Insufficient endothelialization of cardiovascular grafts is a major hurdle in vascular surgery and regenerative medicine, bearing a risk for early graft thrombosis. Neither of the numerous strategies pursued to solve these problems were conclusive. Endothelialization is regulated by the endothelial basement membrane (EBM), a highly specialized part of the vascular extracellular matrix. Thus, a detailed understanding of the structure–function interrelations of the EBM components is fundamental for designing biomimetic materials aiming to mimic EBM functions. In this review, a detailed description of the structure and functions of the EBM are provided, including the luminal and abluminal interactions with adjacent cell types, such as vascular smooth muscle cells. Moreover, in vivo as well as in vitro strategies to build or renew EBM are summarized and critically discussed. The spectrum of methods includes vessel decellularization and implant biofunctionalization strategies as well as tissue engineering-based approaches and bioprinting. Finally, the limitations of these methods are highlighted, and future directions are suggested to help improve future design strategies for EBM-inspired materials in the cardiovascular field.
Collapse
Affiliation(s)
- Skadi Lau
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany; (S.L.); (M.G.)
| | - Manfred Gossen
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany; (S.L.); (M.G.)
| | - Andreas Lendlein
- Institute of Active Polymers and Berlin-Brandenburg Center for Regenerative Therapies, Helmholtz-Zentrum Hereon, Kantstraße 55, 14513 Teltow, Germany; (S.L.); (M.G.)
- Institute of Chemistry, University of Potsdam, Karl-Liebknecht-Straße 25, 14476 Potsdam, Germany
- Correspondence:
| |
Collapse
|
34
|
Kolundzic N, Khurana P, Crumrine D, Celli A, Mauro TM, Ilic D. Epidermal Basement Membrane Substitutes for Bioengineering of Human Epidermal Equivalents. JID INNOVATIONS 2021; 2:100083. [PMID: 35199088 PMCID: PMC8844655 DOI: 10.1016/j.xjidi.2021.100083] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/25/2021] [Accepted: 11/10/2021] [Indexed: 10/26/2022] Open
|
35
|
Hu X, Zhang J, Lv Y, Chen X, Feng G, Wang L, Ye Y, Jin F, Zhu Y. Preimplantation Genetic Testing Prevented Intergenerational Transmission of X-Linked Alport Syndrome. KIDNEY DISEASES (BASEL, SWITZERLAND) 2021; 7:514-520. [PMID: 34901197 PMCID: PMC8613584 DOI: 10.1159/000517796] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/11/2021] [Indexed: 06/14/2023]
Abstract
BACKGROUND Alport syndrome (AS) is a hereditary renal basement membrane disease that can lead to end-stage renal disease in young adults. It can be diagnosed by genetic analysis, being mostly caused by mutations in COL4A3, COL-4A4, and COL4A5. To date, there is no radical cure for this disease. OBJECTIVES The aim of this study was to avoid the transmission of AS within an affected family by selecting healthy embryos for uterine transfer. The embryos were identified by preimplantation genetic testing for monogenic disorders (PGT-M). METHODS We used next-generation sequencing (NGS) to identify mutations in the proband and his parents. The results of NGS were confirmed by Sanger sequencing. Targeted NGS combined with targeted single-nucleotide polymorphism haplotyping was used for the in vitro identification of COL4A5 mutations in human embryos to prevent their intergenerational transmission. RESULTS The c.349_359delGGACCTCAAGG and c.360_361insTGC mutations in COL4A5 were identified in a family affected by X-linked AS. Whole-genome sequencing by NGS with targeted haplotyping was performed on biopsied trophectoderm cells. A healthy baby was born after transfer of a single freeze-thawed blastocyst. CONCLUSIONS The use of targeted NGS for identifying diagnostic markers combined with targeted haplotyping is an easy and efficient PGT-M method for preventing intergenerational transmission of AS.
Collapse
Affiliation(s)
- Xiaoling Hu
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiahui Zhang
- The MOE Key Laboratory of Biosystems Homeostasis & Protection, Life Sciences Institute, Zhejiang University, Hangzhou, China
| | - Yuan Lv
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xijing Chen
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Guofang Feng
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Liya Wang
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yinghui Ye
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Fan Jin
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| | - Yimin Zhu
- Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Reproductive Genetics, Ministry of Education, Zhejiang University, Hangzhou, China
| |
Collapse
|
36
|
Buravkova L, Larina I, Andreeva E, Grigoriev A. Microgravity Effects on the Matrisome. Cells 2021; 10:2226. [PMID: 34571874 PMCID: PMC8471442 DOI: 10.3390/cells10092226] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/18/2021] [Accepted: 08/24/2021] [Indexed: 12/15/2022] Open
Abstract
Gravity is fundamental factor determining all processes of development and vital activity on Earth. During evolution, a complex mechanism of response to gravity alterations was formed in multicellular organisms. It includes the "gravisensors" in extracellular and intracellular spaces. Inside the cells, the cytoskeleton molecules are the principal gravity-sensitive structures, and outside the cells these are extracellular matrix (ECM) components. The cooperation between the intracellular and extracellular compartments is implemented through specialized protein structures, integrins. The gravity-sensitive complex is a kind of molecular hub that coordinates the functions of various tissues and organs in the gravitational environment. The functioning of this system is of particular importance under extremal conditions, such as spaceflight microgravity. This review covers the current understanding of ECM and associated molecules as the matrisome, the features of the above components in connective tissues, and the role of the latter in the cell and tissue responses to the gravity alterations. Special attention is paid to contemporary methodological approaches to the matrisome composition analysis under real space flights and ground-based simulation of its effects on Earth.
Collapse
Affiliation(s)
- Ludmila Buravkova
- Institute of Biomedical Problems, Russian Academy of Sciences, Khoroshevskoye Shosse 76a, 123007 Moscow, Russia; (I.L.); (E.A.); (A.G.)
| | | | | | | |
Collapse
|
37
|
Saint A, Van Obberghen-Schilling E. The role of the tumor matrix environment in progression of head and neck cancer. Curr Opin Oncol 2021; 33:168-174. [PMID: 33720067 DOI: 10.1097/cco.0000000000000730] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW Head and neck squamous cell carcinoma (HNSCC) tissue is composed of multiple cell types embedded in an extracellular matrix (ECM) that actively participates in disease progression, spread and treatment response. In this review, we provide an update of our current knowledge about the ECM landscape of HNSCC, its functions, methods of analysis, and nonimmunological stromal targeting strategies that modify the tumor ECM to improve conventional and emerging therapies. RECENT FINDINGS The tumor ECM differs significantly from that of normal tissue in abundance, composition, organization and mechanical properties. In HNSCC, signaling between malignant epithelial cells and stromal cells prompts the upregulation of a set of ECM components that serve as substrates for carcinoma cell migration, modulate the cytokine environment and promote immune evasion in these tumors. Advanced imaging techniques and molecular profiling at the single-cell level have provided valuable insights into our understanding of the tumor ECM and its role in malignancy, and opened new avenues for predictive and potentially actionable biomarker discovery for more effective management of the disease. SUMMARY ECM components upregulated in HNSCC can impact several cancer hallmarks by sustaining proliferative signaling, promoting angiogenesis, facilitating invasion and metastasis, modulating growth suppressor activity, and suppressing antitumoral immunity. The tumor ECM is also involved in treatment resistance, making it a potential therapeutic target.
Collapse
Affiliation(s)
- Angélique Saint
- Université Côte d'Azur, CNRS, INSERM, iBV.,Centre Antoine Lacassagne, Nice, France
| | | |
Collapse
|
38
|
Randles MJ, Lausecker F, Kong Q, Suleiman H, Reid G, Kolatsi-Joannou M, Davenport B, Tian P, Falcone S, Potter P, Van Agtmael T, Norman JT, Long DA, Humphries MJ, Miner JH, Lennon R. Identification of an Altered Matrix Signature in Kidney Aging and Disease. J Am Soc Nephrol 2021; 32:1713-1732. [PMID: 34049963 PMCID: PMC8425653 DOI: 10.1681/asn.2020101442] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 03/15/2021] [Accepted: 03/22/2021] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Accumulation of extracellular matrix in organs and tissues is a feature of both aging and disease. In the kidney, glomerulosclerosis and tubulointerstitial fibrosis accompany the decline in function, which current therapies cannot address, leading to organ failure. Although histologic and ultrastructural patterns of excess matrix form the basis of human disease classifications, a comprehensive molecular resolution of abnormal matrix is lacking. METHODS Using mass spectrometry-based proteomics, we resolved matrix composition over age in mouse models of kidney disease. We compared the changes in mice with a global characterization of human kidneymatrix during aging and to existing kidney disease datasets to identify common molecular features. RESULTS Ultrastructural changes in basement membranes are associated with altered cell adhesion and metabolic processes and with distinct matrix proteomes during aging and kidney disease progression in mice. Within the altered matrix, basement membrane components (laminins, type IV collagen, type XVIII collagen) were reduced and interstitial matrix proteins (collagens I, III, VI, and XV; fibrinogens; and nephronectin) were increased, a pattern also seen in human kidney aging. Indeed, this signature of matrix proteins was consistently modulated across all age and disease comparisons, and the increase in interstitial matrix was also observed in human kidney disease datasets. CONCLUSIONS This study provides deep molecular resolution of matrix accumulation in kidney aging and disease, and identifies a common signature of proteins that provides insight into mechanisms of response to kidney injury and repair.
Collapse
Affiliation(s)
- Michael J. Randles
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Franziska Lausecker
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Qingyang Kong
- Department of Renal Medicine, University College London, London, United Kingdom
| | - Hani Suleiman
- Renal Division, Washington University School of Medicine, Saint Louis, Missouri
| | - Graeme Reid
- Department of Histopathology, Manchester Royal Infirmary, Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Maria Kolatsi-Joannou
- Developmental Biology and Cancer Programme, Great Ormond Institute of Child Health, University College London, London, United Kingdom
| | - Bernard Davenport
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Pinyuan Tian
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Sara Falcone
- Centre for Cellular and Molecular Physiology, University of Oxford, Oxford, United Kingdom
| | - Paul Potter
- Department Biological and Medical Sciences, Faculty of Health and Life Sciences, Oxford Brookes University, Oxford, United Kingdom
| | - Tom Van Agtmael
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Jill T. Norman
- Department of Renal Medicine, University College London, London, United Kingdom
| | - David A. Long
- Developmental Biology and Cancer Programme, Great Ormond Institute of Child Health, University College London, London, United Kingdom
| | - Martin J. Humphries
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Jeffrey H. Miner
- Renal Division, Washington University School of Medicine, Saint Louis, Missouri
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
- Department of Paediatric Nephrology, Royal Manchester Children’s Hospital, Manchester University Hospitals National Health Service Foundation Trust, Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
39
|
Sherwood DR. Basement membrane remodeling guides cell migration and cell morphogenesis during development. Curr Opin Cell Biol 2021; 72:19-27. [PMID: 34015751 DOI: 10.1016/j.ceb.2021.04.003] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Revised: 04/14/2021] [Accepted: 04/16/2021] [Indexed: 01/31/2023]
Abstract
Basement membranes (BMs) are thin, dense forms of extracellular matrix that underlie or surround most animal tissues. BMs are enormously complex and harbor numerous proteins that provide essential signaling, mechanical, and barrier support for tissues during their development and normal functioning. As BMs are found throughout animal tissues, cells frequently migrate, change shape, and extend processes along BMs. Although sometimes used only as passive surfaces by cells, studies in developmental contexts are finding that BMs are often actively modified to help guide cell motility and cell morphogenesis. Here, I provide an overview of recent work revealing how BMs are remodeled in remarkably diverse ways to direct cell migration, cell orientation, axon guidance, and dendrite branching events during animal development.
Collapse
Affiliation(s)
- David R Sherwood
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA; Regeneration Next, Duke University, Durham 27710, USA.
| |
Collapse
|
40
|
Chico TJA, Kugler EC. Cerebrovascular development: mechanisms and experimental approaches. Cell Mol Life Sci 2021; 78:4377-4398. [PMID: 33688979 PMCID: PMC8164590 DOI: 10.1007/s00018-021-03790-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 02/04/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
The cerebral vasculature plays a central role in human health and disease and possesses several unique anatomic, functional and molecular characteristics. Despite their importance, the mechanisms that determine cerebrovascular development are less well studied than other vascular territories. This is in part due to limitations of existing models and techniques for visualisation and manipulation of the cerebral vasculature. In this review we summarise the experimental approaches used to study the cerebral vessels and the mechanisms that contribute to their development.
Collapse
Affiliation(s)
- Timothy J A Chico
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
- Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, Sheffield, S1 3JD, UK.
| | - Elisabeth C Kugler
- Department of Infection, Immunity and Cardiovascular Disease, Medical School, University of Sheffield, Beech Hill Road, Sheffield, S10 2RX, UK.
- The Bateson Centre, Firth Court, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK.
- Insigneo Institute for in Silico Medicine, The Pam Liversidge Building, Sheffield, S1 3JD, UK.
| |
Collapse
|
41
|
Wu Y, Cao Y, Xu K, Zhu Y, Qiao Y, Wu Y, Chen J, Li C, Zeng R, Ge G. Dynamically remodeled hepatic extracellular matrix predicts prognosis of early-stage cirrhosis. Cell Death Dis 2021; 12:163. [PMID: 33558482 PMCID: PMC7870969 DOI: 10.1038/s41419-021-03443-y] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 01/12/2021] [Accepted: 01/15/2021] [Indexed: 12/17/2022]
Abstract
Liver cirrhosis remains major health problem. Despite the progress in diagnosis of asymptomatic early-stage cirrhosis, prognostic biomarkers are needed to identify cirrhotic patients at high risk developing advanced stage disease. Liver cirrhosis is the result of deregulated wound healing and is featured by aberrant extracellular matrix (ECM) remodeling. However, it is not comprehensively understood how ECM is dynamically remodeled in the progressive development of liver cirrhosis. It is yet unknown whether ECM signature is of predictive value in determining prognosis of early-stage liver cirrhosis. In this study, we systematically analyzed proteomics of decellularized hepatic matrix and identified four unique clusters of ECM proteins at tissue damage/inflammation, transitional ECM remodeling or fibrogenesis stage in carbon tetrachloride-induced liver fibrosis. In particular, basement membrane (BM) was heavily deposited at the fibrogenesis stage. BM component minor type IV collagen α5 chain expression was increased in activated hepatic stellate cells. Knockout of minor type IV collagen α5 chain ameliorated liver fibrosis by hampering hepatic stellate cell activation and promoting hepatocyte proliferation. ECM signatures were differentially enriched in the biopsies of good and poor prognosis early-stage liver cirrhosis patients. Clusters of ECM proteins responsible for homeostatic remodeling and tissue fibrogenesis, as well as basement membrane signature were significantly associated with disease progression and patient survival. In particular, a 14-gene signature consisting of basement membrane proteins is potent in predicting disease progression and patient survival. Thus, the ECM signatures are potential prognostic biomarkers to identify cirrhotic patients at high risk developing advanced stage disease.
Collapse
Affiliation(s)
- Yuexin Wu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yuyan Cao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Keren Xu
- University of Chinese Academy of Sciences, 100049, Beijing, China
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yue Zhu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- University of Chinese Academy of Sciences, 100049, Beijing, China
| | - Yuemei Qiao
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Yanjun Wu
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
| | - Jianfeng Chen
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310024, Hangzhou, China
| | - Chen Li
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China.
- Center for Single-Cell Omics, School of Public Health, Shanghai Jiao Tong University School of Medicine, 200025, Shanghai, China.
| | - Rong Zeng
- CAS Key Laboratory of Systems Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China.
- CAS Key Laboratory of Systems Biology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310024, Hangzhou, China.
- School of Life Science and Technology, Shanghai Tech University, 201210, Shanghai, China.
| | - Gaoxiang Ge
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, 200031, Shanghai, China.
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 310024, Hangzhou, China.
| |
Collapse
|
42
|
Sant S, Wang D, Abidi M, Walker G, Ferrell N. Mechanical characterization of native and sugar-modified decellularized kidneys. J Mech Behav Biomed Mater 2021; 114:104220. [PMID: 33257205 PMCID: PMC7855467 DOI: 10.1016/j.jmbbm.2020.104220] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 08/28/2020] [Accepted: 11/20/2020] [Indexed: 10/22/2022]
Abstract
Decellularized organs have the potential to be used as scaffolds for tissue engineering organ replacements. The mechanical properties of the extracellular matrix (ECM) following decellularization are critical for structural integrity and for regulation of cell function upon recellularization. Advanced glycation end products (AGEs) accumulate in the ECM with age and their formation is accelerated by several pathological conditions including diabetes. Some AGEs span multiple amino acids to form crosslinks that may alter the mechanical properties of the ECM. The goal of this work was to evaluate how sugar-induced modifications to the ECM affect the mechanical behavior of decellularized kidney. The compressive and tensile properties of the kidney ECM were evaluated using an accelerated model of AGE formation by ribose. Results show that ribose modifications significantly alter the mechanical behavior of decellularized kidney. Increased resistance to deformation corresponds to increased ECM crosslinking, and mechanical changes can be partially mitigated by AGE inhibition. The degree of post-translational modification of the ECM is dependent on the age and health of the organ donor and may play a role in regulating the mechanical properties of decellularized organs.
Collapse
Affiliation(s)
- Snehal Sant
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, United States
| | - Dan Wang
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, United States
| | - Minhal Abidi
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, United States
| | - Gwyneth Walker
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, United States
| | - Nicholas Ferrell
- Department of Medicine, Division of Nephrology, Vanderbilt University Medical Center, United States; Department of Biomedical Engineering, Vanderbilt University, United States; Vanderbilt Center for Kidney Disease, United States.
| |
Collapse
|
43
|
Halfter W, Moes S, Halfter K, Schoenenberger MS, Monnier CA, Kalita J, Asgeirsson D, Binggeli T, Jenoe P, Scholl HPN, Henrich PB. The human Descemet's membrane and lens capsule: Protein composition and biomechanical properties. Exp Eye Res 2020; 201:108326. [PMID: 33147472 DOI: 10.1016/j.exer.2020.108326] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 10/18/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
The Descemet's membrane (DM) and the lens capsule (LC) are two ocular basement membranes (BMs) that are essential in maintaining stability and structure of the cornea and lens. In this study, we investigated the proteomes and biomechanical properties of these two materials to uncover common and unique properties. We also screened for possible protein changes during diabetes. LC-MS/MS was used to determine the proteomes of both BMs. Biomechanical measurements were conducted by atomic force microscopy (AFM) in force spectroscopy mode, and complemented with immunofluorescence microscopy. Proteome analysis showed that all six existing collagen IV chains represent 70% of all LC-protein, and are thus the dominant components of the LC. The DM on the other hand is predominantly composed of a single protein, TGF-induced protein, which accounted for around 50% of all DM-protein. Four collagen IV-family members in DM accounted for only 10% of the DM protein. Unlike the retinal vascular BMs, the LC and DM do not undergo significant changes in their protein compositions during diabetes. Nanomechanical measurements showed that the endothelial/epithelial sides of both BMs are stiffer than their respective stromal/anterior-chamber sides, and both endothelial and stromal sides of the DM were stiffer than the epithelial and anterior-chamber sides of the LC. Long-term diabetes did not change the stiffness of the DM and LC. In summary, our analyses show that the protein composition and biomechanical properties of the DM and LC are different, i.e., the LC is softer than DM despite a significantly higher concentration of collagen IV family members. This finding is unexpected, as collagen IV members are presumed to be responsible for BM stiffness. Diabetes had no significant effect on the protein composition and the biomechanical properties of both the DM and LC.
Collapse
Affiliation(s)
- Willi Halfter
- Department of Ophthalmology, University of Basel, Switzerland.
| | - Suzette Moes
- Proteomics Core Facility, Biozentrum, University of Basel, Switzerland.
| | - Kathrin Halfter
- Munich Cancer Registry, Institute of Medical Informatics, Biometry and Epidemiology, Maximilian University Munich, Germany.
| | | | | | - Joanna Kalita
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Switzerland
| | - Daphne Asgeirsson
- Biozentrum and the Swiss Nanoscience Institute, University of Basel, Switzerland.
| | | | - Paul Jenoe
- Proteomics Core Facility, Biozentrum, University of Basel, Switzerland.
| | - Hendrik P N Scholl
- Department of Ophthalmology, University of Basel, Switzerland; Institute of Molecular and Clinical Ophthalmology Basel (IOB), Switzerland; Wilmer Eye Institute, Johns Hopkins University, Baltimore, MA, USA.
| | - Paul Bernhard Henrich
- Department of Ophthalmology, University of Basel, Switzerland; Università della Svizzera Italiana, Lugano, Switzerland.
| |
Collapse
|
44
|
Leclech C, Natale CF, Barakat AI. The basement membrane as a structured surface - role in vascular health and disease. J Cell Sci 2020; 133:133/18/jcs239889. [PMID: 32938688 DOI: 10.1242/jcs.239889] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The basement membrane (BM) is a thin specialized extracellular matrix that functions as a cellular anchorage site, a physical barrier and a signaling hub. While the literature on the biochemical composition and biological activity of the BM is extensive, the central importance of the physical properties of the BM, most notably its mechanical stiffness and topographical features, in regulating cellular function has only recently been recognized. In this Review, we focus on the biophysical attributes of the BM and their influence on cellular behavior. After a brief overview of the biochemical composition, assembly and function of the BM, we describe the mechanical properties and topographical structure of various BMs. We then focus specifically on the vascular BM as a nano- and micro-scale structured surface and review how its architecture can modulate endothelial cell structure and function. Finally, we discuss the pathological ramifications of the biophysical properties of the vascular BM and highlight the potential of mimicking BM topography to improve the design of implantable endovascular devices and advance the burgeoning field of vascular tissue engineering.
Collapse
Affiliation(s)
- Claire Leclech
- Hydrodynamics Laboratory, CNRS UMR7646, Ecole Polytechnique, Palaiseau, France
| | - Carlo F Natale
- Hydrodynamics Laboratory, CNRS UMR7646, Ecole Polytechnique, Palaiseau, France.,Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Naples, Italy
| | - Abdul I Barakat
- Hydrodynamics Laboratory, CNRS UMR7646, Ecole Polytechnique, Palaiseau, France
| |
Collapse
|
45
|
Hong R, Gu J, Niu G, Hu Z, Zhang X, Song T, Han S, Hong L, Ke C. PRELP has prognostic value and regulates cell proliferation and migration in hepatocellular carcinoma. J Cancer 2020; 11:6376-6389. [PMID: 33033521 PMCID: PMC7532499 DOI: 10.7150/jca.46309] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Accepted: 08/11/2020] [Indexed: 12/24/2022] Open
Abstract
Purpose: Hepatocellular carcinoma (HCC) is an aggressive and prevalent tumor threatening human health. A previous study suggested low PRELP (proline/arginine-rich end leucine-rich repeat protein) expression was associated with poor patient survival in pancreatic ductal adenocarcinoma (PDAC). However, the role of PRELP in HCC has not yet been illuminated. Methods: PRELP expression analyses were carried out using transcriptomic datasets from the Integrative Molecular Database of Hepatocellular Carcinoma (HCCDB). The correlations between PRELP expression and clinicopathological features, and prognostic analyses were performed with a tissue microarray (TMA) and immunohistochemistry (IHC). The endogenous expression and in vitro roles of PRELP were investigated in cultured HCC cell lines. The potential mechanisms were characterized by a Gene Set Enrichment Analysis (GSEA) and gene-gene correlation analyses. Results: We found that PRELP mRNA expression was dramatically decreased in HCCs in comparison with that in adjacent normal tissues (NTs) or hepatic cirrhosis. IHC staining showed that PRELP was down-regulated in HCCs, which mainly located in cytoplasm, and was also found in nuclei. The correlation analyses revealed that PRELP expression was relevant to later p-stages (p= 0.028) and tumor size (p= 0.001). The overall survival (OS) and relapse free survival (RFS) time was shorter in HCC patients with lower PRELP expression levels than that with higher PRELP expression levels. Overexpression of PRELP inhibited, while knockdown of PRELP promoted proliferation and migration of HCC cells. For potential mechanisms, PRELP may inhibit progression of HCCs by interacting with integrin family members and the extracellular microenvironment. Conclusion: Our findings demonstrated that overexpression of PRELP correlates with better patient survival and inhibits both cell proliferation and migration in HCC. Therefore, PRELP can serve as a potential prognostic biomarker and therapeutic target which deserves further investigation.
Collapse
Affiliation(s)
- Runqi Hong
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, P.R. China
| | - Jiawei Gu
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, P.R. China
| | - Gengming Niu
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, P.R. China
| | - Zhiqing Hu
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, P.R. China
| | - Xiaotian Zhang
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, P.R. China
| | - Tao Song
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, P.R. China
| | - Shanliang Han
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, P.R. China
| | - Liang Hong
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, P.R. China
| | - Chongwei Ke
- Department of General Surgery, The Fifth People's Hospital of Shanghai, Fudan University, Shanghai, 200240, P.R. China
| |
Collapse
|
46
|
Clotet-Freixas S, McEvoy CM, Batruch I, Pastrello C, Kotlyar M, Van JAD, Arambewela M, Boshart A, Farkona S, Niu Y, Li Y, Famure O, Bozovic A, Kulasingam V, Chen P, Kim SJ, Chan E, Moshkelgosha S, Rahman SA, Das J, Martinu T, Juvet S, Jurisica I, Chruscinski A, John R, Konvalinka A. Extracellular Matrix Injury of Kidney Allografts in Antibody-Mediated Rejection: A Proteomics Study. J Am Soc Nephrol 2020; 31:2705-2724. [PMID: 32900843 DOI: 10.1681/asn.2020030286] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Accepted: 07/21/2020] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Antibody-mediated rejection (AMR) accounts for >50% of kidney allograft loss. Donor-specific antibodies (DSA) against HLA and non-HLA antigens in the glomeruli and the tubulointerstitium cause AMR while inflammatory cytokines such as TNFα trigger graft injury. The mechanisms governing cell-specific injury in AMR remain unclear. METHODS Unbiased proteomic analysis of laser-captured and microdissected glomeruli and tubulointerstitium was performed on 30 for-cause kidney biopsy specimens with early AMR, acute cellular rejection (ACR), or acute tubular necrosis (ATN). RESULTS A total of 107 of 2026 glomerular and 112 of 2399 tubulointerstitial proteins was significantly differentially expressed in AMR versus ACR; 112 of 2026 glomerular and 181 of 2399 tubulointerstitial proteins were significantly dysregulated in AMR versus ATN (P<0.05). Basement membrane and extracellular matrix (ECM) proteins were significantly decreased in both AMR compartments. Glomerular and tubulointerstitial laminin subunit γ-1 (LAMC1) expression decreased in AMR, as did glomerular nephrin (NPHS1) and receptor-type tyrosine-phosphatase O (PTPRO). The proteomic analysis revealed upregulated galectin-1, which is an immunomodulatory protein linked to the ECM, in AMR glomeruli. Anti-HLA class I antibodies significantly increased cathepsin-V (CTSV) expression and galectin-1 expression and secretion in human glomerular endothelial cells. CTSV had been predicted to cleave ECM proteins in the AMR glomeruli. Glutathione S-transferase ω-1, an ECM-modifying enzyme, was significantly increased in the AMR tubulointerstitium and in TNFα-treated proximal tubular epithelial cells. CONCLUSIONS Basement membranes are often remodeled in chronic AMR. Proteomic analysis performed on laser-captured and microdissected glomeruli and tubulointerstitium identified early ECM remodeling, which may represent a new therapeutic opportunity.
Collapse
Affiliation(s)
- Sergi Clotet-Freixas
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Caitriona M McEvoy
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Ihor Batruch
- Department of Laboratory Medicine and Pathobiology, Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
| | - Chiara Pastrello
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Max Kotlyar
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Julie Anh Dung Van
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Madhurangi Arambewela
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Alex Boshart
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Sofia Farkona
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Yun Niu
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Yanhong Li
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Olusegun Famure
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - Andrea Bozovic
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Vathany Kulasingam
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Peixuen Chen
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada
| | - S Joseph Kim
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Emilie Chan
- Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada
| | - Sajad Moshkelgosha
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Respirology, Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada
| | - Syed Ashiqur Rahman
- Center for Systems Immunology, Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Center for Systems Immunology, Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Jishnu Das
- Center for Systems Immunology, Department of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,Center for Systems Immunology, Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Tereza Martinu
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Respirology, Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada.,Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Stephen Juvet
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Division of Respirology, Toronto Lung Transplant Program, University Health Network, Toronto, Ontario, Canada.,Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Igor Jurisica
- Krembil Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada.,Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.,Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Andrzej Chruscinski
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, Ontario, Canada
| | - Rohan John
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada
| | - Ana Konvalinka
- Toronto General Hospital Research Institute, University Health Network, Toronto, Ontario, Canada .,Division of Nephrology, Department of Medicine, University Health Network, Toronto, Ontario, Canada.,Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Ontario, Canada.,Soham and Shaila Ajmera Family Transplant Centre, University Health Network, Toronto, Ontario, Canada
| |
Collapse
|
47
|
Randles MJ, Lausecker F, Humphries JD, Byron A, Clark SJ, Miner JH, Zent R, Humphries MJ, Lennon R. Basement membrane ligands initiate distinct signalling networks to direct cell shape. Matrix Biol 2020; 90:61-78. [PMID: 32147508 PMCID: PMC7327512 DOI: 10.1016/j.matbio.2020.02.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Revised: 02/29/2020] [Accepted: 02/29/2020] [Indexed: 01/09/2023]
Abstract
Cells have evolved mechanisms to sense the composition of their adhesive microenvironment. Although much is known about general mechanisms employed by adhesion receptors to relay signals between the extracellular environment and the cytoskeleton, the nuances of ligand-specific signalling remain undefined. Here, we investigated how glomerular podocytes, and four other basement membrane-associated cell types, respond morphologically to different basement membrane ligands. We defined the composition of the respective adhesion complexes using mass spectrometry-based proteomics. On type IV collagen, all epithelial cell types adopted a round morphology, with a single lamellipodium and large adhesion complexes rich in actin-binding proteins. On laminin (511 or 521), all cell types attached to a similar degree but were polygonal in shape with small adhesion complexes enriched in endocytic and microtubule-binding proteins. Consistent with their distinctive morphologies, cells on type IV collagen exhibited high Rac1 activity, while those on laminin had elevated PKCα. Perturbation of PKCα was able to interchange morphology consistent with a key role for this pathway in matrix ligand-specific signalling. Therefore, this study defines the switchable basement membrane adhesome and highlights two key signalling pathways within the systems that determine distinct cell morphologies. Proteomic data are availableviaProteomeXchange with identifier PXD017913.
Collapse
Affiliation(s)
- Michael J Randles
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Franziska Lausecker
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Jonathan D Humphries
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Adam Byron
- Cancer Research UK Edinburgh Centre, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, UK
| | - Simon J Clark
- Universitäts-Augenklinik Tübingen, Eberhard Karls University of Tübingen, Germany; The Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, UK
| | - Jeffrey H Miner
- Renal Division, Washington University School of Medicine, Saint Louis, MO, USA
| | - Roy Zent
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Martin J Humphries
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Rachel Lennon
- Wellcome Centre for Cell-Matrix Research, Division of Cell-Matrix Biology and Regenerative Medicine, School of Biological Sciences, Faculty of Biology Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK; Department of Paediatric Nephrology, Royal Manchester Children's Hospital, Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK.
| |
Collapse
|
48
|
Arteel GE, Naba A. The liver matrisome - looking beyond collagens. JHEP Rep 2020; 2:100115. [PMID: 32637906 PMCID: PMC7330160 DOI: 10.1016/j.jhepr.2020.100115] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 03/17/2020] [Accepted: 03/22/2020] [Indexed: 02/07/2023] Open
Abstract
The extracellular matrix (ECM) is a diverse microenvironment that maintains bidirectional communication with surrounding cells to regulate cell and tissue homeostasis. The classical definition of the ECM has more recently been extended to include non-fibrillar proteins that either interact or are structurally affiliated with the ECM, termed the 'matrisome.' In addition to providing the structure and architectural support for cells and tissue, the matrisome serves as a reservoir for growth factors and cytokines, as well as a signaling hub via which cells can communicate with their environment and vice-versa. The matrisome is a master regulator of tissue homeostasis and organ function, which can dynamically and appropriately respond to any stress or injury. Failure to properly regulate these responses can lead to changes in the matrisome that are maladaptive. Hepatic fibrosis is a canonical example of ECM dyshomeostasis, leading to accumulation of predominantly collagenous ECM; indeed, hepatic fibrosis is considered almost synonymous with collagen accumulation. However, the qualitative and quantitative alterations of the hepatic matrisome during fibrosis are much more diverse than simple accumulation of collagens and occur long before fibrosis is histologically detected. A deeper understanding of the hepatic matrisome and its response to injury could yield new mechanistic insights into disease progression and regression, as well as potentially identify new biomarkers for both. In this review, we discuss the role of the ECM in liver diseases and look at new "omic" approaches to study this compartment.
Collapse
Key Words
- AUROC, area under the receiver operating characteristic curve
- CCl4, carbon tetrachloride
- ECM
- ECM, extracellular matrix
- Extracellular matrix
- Fibrosis
- HCC, hepatocellular carcinoma
- Liver disease
- MMP, matrix metalloproteinase
- NAFLD, non-alcoholic fatty liver disease
- NPV, negative predictive value
- POSTN, periostin
- PPV, positive predictive values
- Proteomics
- Regeneration
- TGFβ, transforming growth factor beta
Collapse
Affiliation(s)
- Gavin E. Arteel
- Division of Gastroenterology, Hepatology and Nutrition, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
- Pittsburgh Liver Research Center, Pittsburgh, PA, USA
| | - Alexandra Naba
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, USA
- University of Illinois Cancer Center, Chicago, IL, USA
| |
Collapse
|
49
|
Keeley DP, Hastie E, Jayadev R, Kelley LC, Chi Q, Payne SG, Jeger JL, Hoffman BD, Sherwood DR. Comprehensive Endogenous Tagging of Basement Membrane Components Reveals Dynamic Movement within the Matrix Scaffolding. Dev Cell 2020; 54:60-74.e7. [PMID: 32585132 DOI: 10.1016/j.devcel.2020.05.022] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 03/09/2020] [Accepted: 05/15/2020] [Indexed: 12/18/2022]
Abstract
Basement membranes (BMs) are supramolecular matrices built on laminin and type IV collagen networks that provide structural and signaling support to tissues. BM complexity, however, has hindered an understanding of its formation, dynamics, and regulation. Using genome editing, we tagged 29 BM matrix components and receptors in C. elegans with mNeonGreen. Here, we report a common template that initiates BM formation, which rapidly diversifies during tissue differentiation. Through photobleaching studies, we show that BMs are not static-surprisingly, many matrix proteins move within the laminin and collagen scaffoldings. Finally, quantitative imaging, conditional knockdown, and optical highlighting indicate that papilin, a poorly studied glycoprotein, is the most abundant component in the gonadal BM, where it facilitates type IV collagen removal during BM expansion and tissue growth. Together, this work introduces methods for holistic investigation of BM regulation and reveals that BMs are highly dynamic and capable of rapid change to support tissues.
Collapse
Affiliation(s)
- Daniel P Keeley
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Eric Hastie
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Ranjay Jayadev
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Laura C Kelley
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Qiuyi Chi
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Sara G Payne
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA; Department of Cell Biology, Duke University, Box 3709, Durham, NC 27710, USA
| | - Jonathan L Jeger
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA
| | - Brenton D Hoffman
- Department of Biomedical Engineering, Duke University, Box 90281, Durham, NC 27708, USA
| | - David R Sherwood
- Department of Biology, Duke University, Box 90338, Durham, NC 27708, USA; Regeneration Next Initiative, Duke University, Durham, NC 27710, USA.
| |
Collapse
|
50
|
Merchant ML, Barati MT, Caster DJ, Hata JL, Hobeika L, Coventry S, Brier ME, Wilkey DW, Li M, Rood IM, Deegens JK, Wetzels JF, Larsen CP, Troost JP, Hodgin JB, Mariani LH, Kretzler M, Klein JB, McLeish KR. Proteomic Analysis Identifies Distinct Glomerular Extracellular Matrix in Collapsing Focal Segmental Glomerulosclerosis. J Am Soc Nephrol 2020; 31:1883-1904. [PMID: 32561683 DOI: 10.1681/asn.2019070696] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2019] [Accepted: 04/13/2020] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The mechanisms leading to extracellular matrix (ECM) replacement of areas of glomerular capillaries in histologic variants of FSGS are unknown. This study used proteomics to test the hypothesis that glomerular ECM composition in collapsing FSGS (cFSGS) differs from that of other variants. METHODS ECM proteins in glomeruli from biopsy specimens of patients with FSGS not otherwise specified (FSGS-NOS) or cFSGS and from normal controls were distinguished and quantified using mass spectrometry, verified and localized using immunohistochemistry (IHC) and confocal microscopy, and assessed for gene expression. The analysis also quantified urinary excretion of ECM proteins and peptides. RESULTS Of 58 ECM proteins that differed in abundance between cFSGS and FSGS-NOS, 41 were more abundant in cFSGS and 17 in FSGS-NOS. IHC showed that glomerular tuft staining for cathepsin B, cathepsin C, and annexin A3 in cFSGS was significantly greater than in other FSGS variants, in minimal change disease, or in membranous nephropathy. Annexin A3 colocalized with cathepsin B and C, claudin-1, phosphorylated ERK1/2, and CD44, but not with synaptopodin, in parietal epithelial cells (PECs) infiltrating cFSGS glomeruli. Transcripts for cathepsins B and C were increased in FSGS glomeruli compared with normal controls, and urinary excretion of both cathepsins was significantly greater in cFSGS compared with FSGS-NOS. Urinary excretion of ECM-derived peptides was enhanced in cFSGS, although in silico analysis did not identify enhanced excretion of peptides derived from cathepsin B or C. CONCLUSIONS ECM differences suggest that glomerular sclerosis in cFSGS differs from that in other FSGS variants. Infiltration of activated PECs may disrupt ECM remodeling in cFSGS. These cells and their cathepsins may be therapeutic targets.
Collapse
Affiliation(s)
- Michael L Merchant
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Michelle T Barati
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Dawn J Caster
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Jessica L Hata
- Pathology Department, Norton Children's Hospital, Louisville, Kentucky
| | - Liliane Hobeika
- Division of Nephrology, Department of Medicine, Temple University, Philadelphia, Pennsylvania
| | - Susan Coventry
- Pathology Department, Norton Children's Hospital, Louisville, Kentucky
| | - Michael E Brier
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Daniel W Wilkey
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Ming Li
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky
| | - Ilse M Rood
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jeroen K Deegens
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Jack F Wetzels
- Department of Nephrology, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Jonathan P Troost
- Michigan Institute for Clinical and Health Research, University of Michigan, Ann Arbor, Michigan
| | - Jeffrey B Hodgin
- Division of Pathology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Laura H Mariani
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Matthias Kretzler
- Division of Nephrology, Department of Internal Medicine, University of Michigan, Ann Arbor, Michigan
| | - Jon B Klein
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky.,Robley Rex Veterans Affairs Medical Center, Louisville, Kentucky
| | - Kenneth R McLeish
- Division of Nephrology and Hypertension, Department of Medicine, University of Louisville, Louisville, Kentucky
| |
Collapse
|