1
|
Yang W, Lu T, Gong J, Li Q, Han C, Huang J. Morphological, histopathological and brain transcriptomic assessment reveal reproductive toxicity and neurotoxicity in western mosquitofish (Gambusia affinis) exposed to levonorgestrel. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2025; 296:118153. [PMID: 40220358 DOI: 10.1016/j.ecoenv.2025.118153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 03/28/2025] [Accepted: 04/02/2025] [Indexed: 04/14/2025]
Abstract
In recent years, more and more progestogens have been detected in the environment, especially levonorgestrel (LNG), which is widely used in medicine and veterinary medicine, but its potential effects on the reproductive and nervous systems of fish are not fully understood. The purpose of this study was to investigate the reproductive and neurological effects of LNG on female western mosquitofish (Gambusia affinis). Through a 30-day exposure experiment, we evaluated the morphological data, gonadal and brain histopathology, and brain transcriptome of mosquitofish under different concentrations of LNG (0, 5, 50, 500 ng/L). The results revealed that exposure to LNG led to a significant reduction in the body weight and condition factor of female fish, with the most pronounced decrease observed at a concentration of 500 ng/L. Morphological observations indicated that LNG exposure led to an increase in the 4th/6th anal fin ratio at concentrations of 50 and 500 ng/L. Additionally, histopathological analysis demonstrated pathological alterations, including ovarian degeneration induced by LNG, as well as vasodilation, congestion, and the enlargement of intercellular spaces in brain tissue. Analysis of brain tissue transcriptome data identified numerous differentially expressed genes related to cerebral vascular formation, nerve injury, and neuroendocrine regulation following LNG exposure. In summary, LNG has significant reproductive and neurotoxic effects on female mosquitofish, and these findings provide important data for further research on environmental risk assessment and aquatic toxicology of LNG.
Collapse
Affiliation(s)
- Weicheng Yang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Tongfu Lu
- School of environmental sciences and engineering, Guangzhou University, Guangzhou 510006, China
| | - Jian Gong
- School of environmental sciences and engineering, Guangzhou University, Guangzhou 510006, China
| | - Qiang Li
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| | - Chong Han
- School of Life Sciences, Guangzhou University, Guangzhou 510006, China.
| | - Jianrong Huang
- School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519082, China.
| |
Collapse
|
2
|
Vonica RC, Butuca A, Morgovan C, Pumnea M, Cipaian RC, Frum A, Dobrea CM, Vonica-Tincu AL, Pacnejer AM, Ghibu S, Batar F, Gligor FG. Bevacizumab-Insights from EudraVigilance Database on the Assessments of the Safety Profile of Monoclonal Antibodies Used as Targeted Cancer Treatment. Pharmaceuticals (Basel) 2025; 18:501. [PMID: 40283938 PMCID: PMC12030381 DOI: 10.3390/ph18040501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 03/22/2025] [Accepted: 03/27/2025] [Indexed: 04/29/2025] Open
Abstract
Background/Objectives: Worldwide, colon cancer is a major cause of cancer-related mortality, with an increasing incidence influenced by genetic, environmental, and lifestyle factors. Despite advances in diagnosis and personalized treatments, challenges remain in improving patient prognosis, particularly in metastatic colorectal cancer (mCRC). Bevacizumab (BEV), a monoclonal antibody, is widely used in colorectal cancer treatment. This study aimed to analyze adverse events associated with BEV compared with other therapies based on data from the EudraVigilance (EV) database. Methods: A descriptive and disproportionality analysis was conducted on signals reported in the EV database related to BEV. The study included comparisons with other antineoplastic treatments, such as chemotherapy, targeted therapy, and immunotherapy. Patient demographics, severity of adverse drug reactions (ADRs), and distribution patterns were analyzed to assess the safety profile of BEV in colorectal cancer treatment. Results: The majority of the signals for BEV were from patients aged 18-64 years (39.42%) and 65-85 years (34.08%). Hypertension, thromboembolism, proteinuria, and gastrointestinal disorders have been the most frequently reported. Serious ADRs, including gastrointestinal perforations, hemorrhage, and arterial thromboembolism, were observed in 93.74% of Individual Case Safety Reports. BEV was associated with a higher likelihood of vascular and endocrine disorders compared with chemotherapy and other targeted therapies. Immunotherapy was linked to increased immunological ADRs, while BEV demonstrated fewer immune-related toxicities. Conclusions: Continuous monitoring is necessary to optimize patient management, particularly in elderly patients or those with cardiovascular comorbidities. Understanding BEV's safety profile allows for better personalization of treatment strategies, minimizing risks while enhancing therapeutic outcomes.
Collapse
Affiliation(s)
- Razvan Constantin Vonica
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
| | - Anca Butuca
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
| | - Claudiu Morgovan
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
| | - Manuela Pumnea
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
| | - Remus Calin Cipaian
- Clinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania;
- County Clinical Emergency Hospital of Sibiu, 2–4 Corneliu Coposu Str., 550245 Sibiu, Romania
| | - Adina Frum
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
| | - Carmen Maximiliana Dobrea
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
| | - Andreea Loredana Vonica-Tincu
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
| | - Aliteia-Maria Pacnejer
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
- Department of Toxicology, Drug Industry, Management and Legislation, Faculty of Pharmacy, “Victor Babeş” University of Medicine and Pharmacy, 2nd Eftimie Murgu Sq., 300041 Timişoara, Romania
| | - Steliana Ghibu
- Department of Pharmacology, Physiology and Pathophysiology, Faculty of Pharmacy, “Iuliu Haţieganu” University of Medicine and Pharmacy, 400349 Cluj-Napoca, Romania;
| | - Florina Batar
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
| | - Felicia Gabriela Gligor
- Preclinical Department, Faculty of Medicine, “Lucian Blaga” University of Sibiu, 550169 Sibiu, Romania; (R.C.V.); (M.P.); (A.F.); (C.M.D.); (A.L.V.-T.); (A.-M.P.); (F.B.); (F.G.G.)
| |
Collapse
|
3
|
Lai G, Zhao X, Chen Y, Xie T, Su Z, Lin J, Chen Y, Chen K. The origin and polarization of Macrophages and their role in the formation of the Pre-Metastatic niche in osteosarcoma. Int Immunopharmacol 2025; 150:114260. [PMID: 39938167 DOI: 10.1016/j.intimp.2025.114260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 01/21/2025] [Accepted: 02/06/2025] [Indexed: 02/14/2025]
Abstract
Osteosarcoma, a primary malignant bone tumor commonly found in adolescents, is highly aggressive, with a high rate of disability and mortality. It has a profound negative impact on both the physical and psychological well-being of patients. The standard treatment approach, comprising surgery and chemotherapy, has seen little improvement in patient outcomes over the past several decades. Once relapse or metastasis occurs, prognosis worsens significantly. Therefore, there is an urgent need to explore new therapeutic approaches. In recent years, the successful application of immunotherapy in certain cancers has demonstrated its potential in the field of cancer treatment. Macrophages are the predominant components of the immune microenvironment in osteosarcoma and represent critical targets for immunotherapy. Macrophages exhibit dual characteristics; while they play a key role in maintaining tumor-promoting properties within the microenvironment, such as inflammation, angiogenesis, and immune suppression, they also possess antitumor potential as part of the innate immune system. A deeper understanding of macrophages and their relationship with osteosarcoma is essential for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Guisen Lai
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Xinyi Zhao
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Yuanquan Chen
- Department of Orthopaedic Sun Yat-sen Memorial Hospital Sun Yat-sen University PR China
| | - Tianwei Xie
- The People's Hospital of Hezhou, No.150 Xiyue Street, Hezhou 542800 PR China
| | - Zepeng Su
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Jiajie Lin
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Yuanhai Chen
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China
| | - Keng Chen
- Department of Orthopaedic The Eighth Affiliated Hospital Sun Yat-sen University PR China.
| |
Collapse
|
4
|
Su Y, Ao X, Long Y, Zhang Z, Zhang M, Zhang Z, Wei M, Shan S, Lu S, Yu Y, Xu B. C1GALT1 high expression enhances the progression of glioblastoma through the EGFR-AKT/ERK cascade. Cell Signal 2024; 125:111513. [PMID: 39561885 DOI: 10.1016/j.cellsig.2024.111513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 11/08/2024] [Accepted: 11/14/2024] [Indexed: 11/21/2024]
Abstract
Core1 β1,3-galactosyltransferase (C1GALT1) is an essential glycotransferase controlling the elongation of GalNAc-type O-glycosylation and its altered expression contributes tumor progression in various cancers. However, the mechanism how C1GALT1 influences gliomas remains unclear. Here,our results from The Cancer Genome Atlas (TCGA) database, The Chinese Glioma Genome Atlas (CGGA) database and the Clinical Proteomic Tumor Analysis Consortium (CPTAC) database showed that the expression of C1GALT1 was increased in higher grade gliomas namely glioblastoma compared with low grade gliomas or non-tumor tissues and significantly associated with poor survival. Downregulation of C1GALT1 suppressed cell proliferation, invasion, and migration in glioma cell lines. Consistent with the result in vitro, C1GALT1 knockdown distinctly inhibited the weight and tumor growth in nude mice. Mechanistically, C1GALT1 knockdown decreased the level of terminal galactose O-glycosylation and phosphorylation on epidermal growth factor receptor (EGFR). Moreover, The AKT/ERK phosphorylation was attenuated in C1GALT1 knockdown cells. And C1GALT1 knockdown decreased the expression of cyclinD1, matrix metalloproteinase 9 (MMP9) through the AKT/ERK signaling pathway Furthermore, transcription factor SP1 which the expression was found to be associated the C1GALT1 expression could bind to the promoter of C1GALT1 gene and regulated its expression. In conclusion, our data show that C1GALT1 enhances the progression of glioma by regulated the O-glycosylation and phosphorylation of EGFR and the subsequent downstream AKT/ERK signaling pathway. Therefore, C1GALT1 represents a potential target for the diagnosis and treatment of glioma.
Collapse
Affiliation(s)
- Yanting Su
- School of Basic Medical Sciences, Xianning Medical Colloge, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Xin Ao
- School of Pharmacy, Xianning Medical Colloge, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Yunfeng Long
- School of Pharmacy, Xianning Medical Colloge, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Zhengrong Zhang
- School of Pharmacy, Xianning Medical Colloge, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Mingzhu Zhang
- School of Pharmacy, Xianning Medical Colloge, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Zhenwang Zhang
- Hubei Key Laboratory of Diabetes and Angiopathy, Xianning Medical College, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Mingjie Wei
- School of Pharmacy, Xianning Medical Colloge, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Shigang Shan
- School of Basic Medical Sciences, Xianning Medical Colloge, Hubei University of Science and Technology, Xianning 437100, PR China
| | - Surui Lu
- School of Basic Medical Sciences, Xianning Medical Colloge, Hubei University of Science and Technology, Xianning 437100, PR China
| | - You Yu
- School of Basic Medical Sciences, Xianning Medical Colloge, Hubei University of Science and Technology, Xianning 437100, PR China.
| | - Bo Xu
- School of Basic Medical Sciences, Xianning Medical Colloge, Hubei University of Science and Technology, Xianning 437100, PR China.
| |
Collapse
|
5
|
Morey R, Bui T, Cheung VC, Dong C, Zemke JE, Requena D, Arora H, Jackson MG, Pizzo D, Theunissen TW, Horii M. iPSC-based modeling of preeclampsia identifies epigenetic defects in extravillous trophoblast differentiation. iScience 2024; 27:109569. [PMID: 38623329 PMCID: PMC11016801 DOI: 10.1016/j.isci.2024.109569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/20/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
Preeclampsia (PE) is a hypertensive pregnancy disorder with increased risk of maternal and fetal morbidity and mortality. Abnormal extravillous trophoblast (EVT) development and function is considered to be the underlying cause of PE, but has not been previously modeled in vitro. We previously derived induced pluripotent stem cells (iPSCs) from placentas of PE patients and characterized abnormalities in formation of syncytiotrophoblast and responses to changes in oxygen tension. In this study, we converted these primed iPSC to naïve iPSC, and then derived trophoblast stem cells (TSCs) and EVT to evaluate molecular mechanisms underlying PE. We found that primed (but not naïve) iPSC-derived PE-EVT have reduced surface HLA-G, blunted invasive capacity, and altered EVT-specific gene expression. These abnormalities correlated with promoter hypermethylation of genes associated with the epithelial-mesenchymal transition pathway, specifically in primed-iPSC derived PE-EVT. Our findings indicate that abnormal epigenetic regulation might play a role in PE pathogenesis.
Collapse
Affiliation(s)
- Robert Morey
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA 92093, USA
| | - Tony Bui
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA 92093, USA
| | - Virginia Chu Cheung
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA 92093, USA
| | - Chen Dong
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Joseph E. Zemke
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daniela Requena
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA 92093, USA
| | - Harneet Arora
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA 92093, USA
| | - Madeline G. Jackson
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA 92093, USA
| | - Donald Pizzo
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
| | - Thorold W. Theunissen
- Department of Developmental Biology and Center of Regenerative Medicine, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Mariko Horii
- Department of Pathology, University of California San Diego, La Jolla, CA 92093, USA
- Sanford Consortium for Regenerative Medicine, University of California San Diego, La Jolla, CA 92093, USA
- Center for Perinatal Discovery, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
6
|
Fejza A, Carobolante G, Poletto E, Camicia L, Schinello G, Di Siena E, Ricci G, Mongiat M, Andreuzzi E. The entanglement of extracellular matrix molecules and immune checkpoint inhibitors in cancer: a systematic review of the literature. Front Immunol 2023; 14:1270981. [PMID: 37854588 PMCID: PMC10579931 DOI: 10.3389/fimmu.2023.1270981] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/18/2023] [Indexed: 10/20/2023] Open
Abstract
Introduction Immune-checkpoint inhibitors (ICIs) have emerged as a core pillar of cancer therapy as single agents or in combination regimens both in adults and children. Unfortunately, ICIs provide a long-lasting therapeutic effect in only one third of the patients. Thus, the search for predictive biomarkers of responsiveness to ICIs remains an urgent clinical need. The efficacy of ICIs treatments is strongly affected not only by the specific characteristics of cancer cells and the levels of immune checkpoint ligands, but also by other components of the tumor microenvironment, among which the extracellular matrix (ECM) is emerging as key player. With the aim to comprehensively describe the relation between ECM and ICIs' efficacy in cancer patients, the present review systematically evaluated the current literature regarding ECM remodeling in association with immunotherapeutic approaches. Methods This review followed the Preferred Reporting Items for Systematic Reviews and Meta-analyses (PRISMA) guidelines and was registered at the International Prospective Register of Systematic Reviews (PROSPERO, CRD42022351180). PubMed, Web of Science, and Scopus databases were comprehensively searched from inception to January 2023. Titles, abstracts and full text screening was performed to exclude non eligible articles. The risk of bias was assessed using the QUADAS-2 tool. Results After employing relevant MeSH and key terms, we identified a total of 5070 studies. Among them, 2540 duplicates, 1521 reviews or commentaries were found and excluded. Following title and abstract screening, the full text was analyzed, and 47 studies meeting the eligibility criteria were retained. The studies included in this systematic review comprehensively recapitulate the latest observations associating changes of the ECM composition following remodeling with the traits of the tumor immune cell infiltration. The present study provides for the first time a broad view of the tight association between ECM molecules and ICIs efficacy in different tumor types, highlighting the importance of ECM-derived proteolytic products as promising liquid biopsy-based biomarkers to predict the efficacy of ICIs. Conclusion ECM remodeling has an important impact on the immune traits of different tumor types. Increasing evidence pinpoint at ECM-derived molecules as putative biomarkers to identify the patients that would most likely benefit from ICIs treatments. Systematic review registration https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42022351180, identifier CRD42022351180.
Collapse
Affiliation(s)
- Albina Fejza
- Department of Biochemistry, Faculty of Medical Sciences, UBT-Higher Education Institute, Prishtina, Kosovo
| | - Greta Carobolante
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Lucrezia Camicia
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Giorgia Schinello
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Emanuele Di Siena
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Giuseppe Ricci
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
- Department of Medicine, Surgery and Health Sciences, University of Trieste, Trieste, Italy
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Eva Andreuzzi
- Obstetrics and Gynecology, Institute for Maternal and Child Health, IRCCS Burlo Garofolo, Trieste, Italy
| |
Collapse
|
7
|
Li Y, Fu L, Wu B, Guo X, Shi Y, Lv C, Yu Y, Zhang Y, Liang Z, Zhong C, Han S, Xu F, Tian Y. Angiogenesis modulated by CD93 and its natural ligands IGFBP7 and MMRN2: a new target to facilitate solid tumor therapy by vasculature normalization. Cancer Cell Int 2023; 23:189. [PMID: 37660019 PMCID: PMC10474740 DOI: 10.1186/s12935-023-03044-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/27/2023] [Indexed: 09/04/2023] Open
Abstract
The tumor vasculature was different from the normal vasculature in both function and morphology, which caused hypoxia in the tumor microenvironment (TME). Previous anti-angiogenesis therapy had led to a modest improvement in cancer immunotherapy. However, antiangiogenic therapy only benefitted a few patients and caused many side effects. Therefore, there was still a need to develop a new approach to affect tumor vasculature formation. The CD93 receptor expressed on the surface of vascular endothelial cells (ECs) and its natural ligands, MMRN2 and IGFBP7, were now considered potential targets in the antiangiogenic treatment because recent studies had reported that anti-CD93 could normalize the tumor vasculature without impacting normal blood vessels. Here, we reviewed recent studies on the role of CD93, IGFBP7, and MMRN2 in angiogenesis. We focused on revealing the interaction between IGFBP7-CD93 and MMRN2-CD93 and the signaling cascaded impacted by CD93, IGFBP7, and MMRN2 during the angiogenesis process. We also reviewed retrospective studies on CD93, IGFBP7, and MMRN2 expression and their relationship with clinical factors. In conclusion, CD93 was a promising target for normalizing the tumor vasculature.
Collapse
Affiliation(s)
- Yang Li
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Lei Fu
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Baokang Wu
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Xingqi Guo
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Yu Shi
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Chao Lv
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Yang Yu
- Department of Surgery, The First Affiliated Hospital of Jinzhou Medical University, Jinzhou, 121001, Liaoning Province, China
| | - Yizhou Zhang
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Zhiyun Liang
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Chongli Zhong
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Shukun Han
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Feng Xu
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China
| | - Yu Tian
- Department of General Surgery, Shengjing Hospital of China Medical University, No.36.Sanhao stress, Heping District, Shenyang, 110004, Liaoning Province, China.
| |
Collapse
|
8
|
Fejza A, Camicia L, Carobolante G, Poletto E, Paulitti A, Schinello G, Di Siena E, Cannizzaro R, Iozzo RV, Baldassarre G, Andreuzzi E, Spessotto P, Mongiat M. Emilin2 fosters vascular stability by promoting pericyte recruitment. Matrix Biol 2023; 122:18-32. [PMID: 37579864 DOI: 10.1016/j.matbio.2023.08.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/20/2023] [Accepted: 08/11/2023] [Indexed: 08/16/2023]
Abstract
Angiogenesis, the formation of the new blood vessels from pre-existing vasculature, is an essential process occurring under both normal and pathological conditions, such as inflammation and cancer. This complex process is regulated by several cytokines, growth factors and extracellular matrix components modulating endothelial cell and pericyte function. In this study, we discovered that the extracellular matrix glycoprotein Elastin Microfibril Interfacer 2 (Emilin2) plays a prominent role in pericyte physiology. This work was originally prompted by the observations that tumor-associated vessels from Emilin2-/- mice display less pericyte coverage, impaired vascular perfusion, and reduced drug efficacy, suggesting that Emilin2 could promote vessel maturation and stabilization affecting pericyte recruitment. We found that Emilin2 affects different mechanisms engaged in pericyte recruitment and vascular stabilization. First, human primary endothelial cells challenged with recombinant Emilin2 synthesized and released ∼ 2.1 and 1.2 folds more PDGF-BB and HB-EGF, two cytokines known to promote pericyte recruitment. We also discovered that Emilin2, by directly engaging α5β1 and α6β1 integrins, highly expressed in pericytes, served as an adhesion substrate and haptotactic stimulus for pericytes. Moreover, Emilin2 evoked increased NCadherin expression via the sphingosine-1-phosphate receptor, leading to enhanced vascular stability by fostering interconnection between endothelial cells and pericytes. Finally, restoring pericyte coverage in melanoma and ovarian tumor vessels developed in Emilin2-/- mice improved drug delivery to the tumors. Collectively, our results implicate Emilin2 as a prominent regulator of pericyte function and suggest that Emilin2 expression could represent a promising maker to predict the clinical outcome of patients with melanoma, ovarian, and potentially other forms of cancer.
Collapse
Affiliation(s)
- Albina Fejza
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy; UBT-Higher Education Institution, Kalabria, Street Rexhep Krasniqi Nr. 56, Prishtina 10000, Kosovo
| | - Lucrezia Camicia
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Greta Carobolante
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Alice Paulitti
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy; VivaBioCell S.P.A., Udine, Italy
| | - Giorgia Schinello
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Emanuele Di Siena
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Renato Cannizzaro
- Department of Clinical Oncology, Oncological Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy; Department of Medical, Surgical and Health Sciences, University of Trieste, Trieste 34127, Italy
| | - Renato V Iozzo
- Department of Pathology and Genomic Medicine, and the Translational Cellular Oncology Program, Sidney Kimmel Cancer Center, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Gustavo Baldassarre
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Eva Andreuzzi
- Obstetrics and Gynecology, Institute for Maternal and Child Health - IRCCS "Burlo Garofolo", Trieste 34137, Italy
| | - Paola Spessotto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy.
| |
Collapse
|
9
|
Yuan Z, Li Y, Zhang S, Wang X, Dou H, Yu X, Zhang Z, Yang S, Xiao M. Extracellular matrix remodeling in tumor progression and immune escape: from mechanisms to treatments. Mol Cancer 2023; 22:48. [PMID: 36906534 PMCID: PMC10007858 DOI: 10.1186/s12943-023-01744-8] [Citation(s) in RCA: 316] [Impact Index Per Article: 158.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 02/11/2023] [Indexed: 03/13/2023] Open
Abstract
The malignant tumor is a multi-etiological, systemic and complex disease characterized by uncontrolled cell proliferation and distant metastasis. Anticancer treatments including adjuvant therapies and targeted therapies are effective in eliminating cancer cells but in a limited number of patients. Increasing evidence suggests that the extracellular matrix (ECM) plays an important role in tumor development through changes in macromolecule components, degradation enzymes and stiffness. These variations are under the control of cellular components in tumor tissue via the aberrant activation of signaling pathways, the interaction of the ECM components to multiple surface receptors, and mechanical impact. Additionally, the ECM shaped by cancer regulates immune cells which results in an immune suppressive microenvironment and hinders the efficacy of immunotherapies. Thus, the ECM acts as a barrier to protect cancer from treatments and supports tumor progression. Nevertheless, the profound regulatory network of the ECM remodeling hampers the design of individualized antitumor treatment. Here, we elaborate on the composition of the malignant ECM, and discuss the specific mechanisms of the ECM remodeling. Precisely, we highlight the impact of the ECM remodeling on tumor development, including proliferation, anoikis, metastasis, angiogenesis, lymphangiogenesis, and immune escape. Finally, we emphasize ECM "normalization" as a potential strategy for anti-malignant treatment.
Collapse
Affiliation(s)
- Zhennan Yuan
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yingpu Li
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Sifan Zhang
- Department of Neurobiology, Harbin Medical University, Harbin, 150081, China
| | - Xueying Wang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - He Dou
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Xi Yu
- Department of Gynecological Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Zhiren Zhang
- NHC Key Laboratory of Cell Transplantation, The First Affiliated Hospital of Harbin Medical University, Harbin, 150001, China.,Institute of Metabolic Disease, Heilongjiang Academy of Medical Science, Heilongjiang Key Laboratory for Metabolic Disorder and Cancer Related Cardiovascular Diseases, Harbin, 150001, China
| | - Shanshan Yang
- Department of Gynecological Radiotherapy, Harbin Medical University Cancer Hospital, Harbin, 150000, China.
| | - Min Xiao
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
| |
Collapse
|
10
|
Cao Z, Zhang Z, Tang X, Liu R, Wu M, Wu J, Liu Z. Comprehensive analysis of tissue proteomics in patients with papillary thyroid microcarcinoma uncovers the underlying mechanism of lymph node metastasis and its significant sex disparities. Front Oncol 2022; 12:887977. [PMID: 36106120 PMCID: PMC9465038 DOI: 10.3389/fonc.2022.887977] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 08/10/2022] [Indexed: 11/24/2022] Open
Abstract
Background Lymph node metastasis (LNM) in papillary thyroid microcarcinoma (PTMC) is associated with an increased risk of recurrence and poor prognosis. Sex has been regarded as a critical risk factor for LNM. The present study aimed to investigate the molecular mechanisms underlying LNM and its significant sex disparities in PTMC development. Methods A direct data-independent acquisition (DIA) proteomics approach was used to identify differentially expressed proteins (DEPs) in PTMC tumorous tissues with or without LNM and from male and female patients with LNM. The functional annotation of DEPs was performed using bioinformatics methods. Furthermore, The Cancer Genome Atlas Thyroid Carcinoma (TCGA-THCA) dataset and immunohistochemistry (IHC) were used to validate selected DEPs. Results The proteomics profile in PTMC with LNM differed from that of PTMC without LNM. The metastasis-related DEPs were primarily enriched in categories associated with mitochondrial dysfunction and may promote tumor progression by activating oxidative phosphorylation and PI3K/AKT signaling pathways. Comparative analyses of these DEPs revealed downregulated expression of specific proteins with well-established links to tumor metastasis, such as SLC25A15, DIRAS2, PLA2R1, and MTARC1. Additionally, the proteomics profiles of male and female PTMC patients with LNM were dramatically distinguishable. An elevated level of ECM-associated proteins might be related to more LNM in male PTMC than in female PTMC patients. The upregulated expression levels of MMRN2 and NID2 correlated with sex disparities and showed a positive relationship with unfavorable variables, such as LNMs and poor prognosis. Conclusions The proteomics profiles of PTMC show significant differences associated with LNM and its sex disparities, which further expands our understanding of the functional networks and signaling pathways related to PTMC with LNM.
Collapse
Affiliation(s)
- Zhen Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zejian Zhang
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyue Tang
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Mengwei Wu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianqiang Wu
- Department of Medical Research Center, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Jianqiang Wu, ; Ziwen Liu,
| | - Ziwen Liu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Jianqiang Wu, ; Ziwen Liu,
| |
Collapse
|
11
|
Proteomic profiling of concurrently isolated primary microvascular endothelial cells, pericytes, and vascular smooth muscle cells from adult mouse heart. Sci Rep 2022; 12:8835. [PMID: 35614104 PMCID: PMC9132906 DOI: 10.1038/s41598-022-12749-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 05/10/2022] [Indexed: 11/17/2022] Open
Abstract
The microcirculation serves crucial functions in adult heart, distinct from those carried out by epicardial vessels. Microvessels are governed by unique regulatory mechanisms, impairment of which leads to microvessel-specific pathology. There are few treatment options for patients with microvascular heart disease, primarily due to limited understanding of underlying pathology. High throughput mRNA sequencing and protein expression profiling in specific cells can improve our understanding of microvessel biology and disease at the molecular level. Understanding responses of individual microvascular cells to the same physiological or pathophysiological stimuli requires the ability to isolate the specific cell types that comprise the functional units of the microcirculation in the heart, preferably from the same heart, to ensure that different cells have been exposed to the same in-vivo conditions. We developed an integrated process for simultaneous isolation and culture of the main cell types comprising the microcirculation in adult mouse heart: endothelial cells, pericytes, and vascular smooth muscle cells. These cell types were characterized with isobaric labeling quantitative proteomics and mRNA sequencing. We defined microvascular cell proteomes, identified novel protein markers, and confirmed established cell-specific markers. Our results allow identification of unique markers and regulatory proteins that govern microvascular physiology and pathology.
Collapse
|
12
|
Andreuzzi E, Fejza A, Polano M, Poletto E, Camicia L, Carobolante G, Tarticchio G, Todaro F, Di Carlo E, Scarpa M, Scarpa M, Paulitti A, Capuano A, Canzonieri V, Maiero S, Fornasarig M, Cannizzaro R, Doliana R, Colombatti A, Spessotto P, Mongiat M. Colorectal cancer development is affected by the ECM molecule EMILIN-2 hinging on macrophage polarization via the TLR-4/MyD88 pathway. J Exp Clin Cancer Res 2022; 41:60. [PMID: 35148799 PMCID: PMC8840294 DOI: 10.1186/s13046-022-02271-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/22/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Colorectal cancer is one of the most frequent and deadly tumors. Among the key regulators of CRC growth and progression, the microenvironment has emerged as a crucial player and as a possible route for the development of new therapeutic opportunities. More specifically, the extracellular matrix acts directly on cancer cells and indirectly affecting the behavior of stromal and inflammatory cells, as well as the bioavailability of growth factors. Among the ECM molecules, EMILIN-2 is frequently down-regulated by methylation in CRC and the purpose of this study was to verify the impact of EMILIN-2 loss in CRC development and its possible value as a prognostic biomarker. METHODS The AOM/DSS CRC protocol was applied to Emilin-2 null and wild type mice. Tumor development was monitored by endoscopy, the molecular analyses performed by IHC, IF and WB and the immune subpopulations characterized by flow cytometry. Ex vivo cultures of monocyte/macrophages from the murine models were used to verify the molecular pathways. Publicly available datasets were exploited to determine the CRC patients' expression profile; Spearman's correlation analyses and Cox regression were applied to evaluate the association with the inflammatory response; the clinical outcome was predicted by Kaplan-Meier survival curves. Pearson correlation analyses were also applied to a cohort of patients enrolled in our Institute. RESULTS In preclinical settings, loss of EMILIN-2 associated with an increased number of tumor lesions upon AOM/DSS treatment. In addition, in the early stages of the disease, the Emilin-2 knockout mice displayed a myeloid-derived suppressor cells-rich infiltrate. Instead, in the late stages, lack of EMILIN-2 associated with a decreased number of M1 macrophages, resulting in a higher percentage of the tumor-promoting M2 macrophages. Mechanistically, EMILIN-2 triggered the activation of the Toll-like Receptor 4/MyD88/NF-κB pathway, instrumental for the polarization of macrophages towards the M1 phenotype. Accordingly, dataset and immunofluorescence analyses indicated that low EMILIN-2 expression levels correlated with an increased M2/M1 ratio and with poor CRC patients' prognosis. CONCLUSIONS These novel results indicate that EMILIN-2 is a key regulator of the tumor-associated inflammatory environment and may represent a promising prognostic biomarker for CRC patients.
Collapse
Affiliation(s)
- Eva Andreuzzi
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy.
| | - Albina Fejza
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Maurizio Polano
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Lucrezia Camicia
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Greta Carobolante
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Giulia Tarticchio
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Federico Todaro
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Emma Di Carlo
- Department of Medicine and Sciences of Aging, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy.,Anatomic Pathology and Immuno-Oncology Unit, Center for Advanced Studies and Technology (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Melania Scarpa
- Ricerca Traslazionale Avanzata, Istituto Oncologico Veneto IOV - IRCCS, Padua, Italy
| | - Marco Scarpa
- Clinica Chirurgica I- Azienda Ospedaliera di Padova, Padua, Italy
| | - Alice Paulitti
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Alessandra Capuano
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Vincenzo Canzonieri
- Pathology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Stefania Maiero
- Division of Oncological Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Mara Fornasarig
- Division of Oncological Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Renato Cannizzaro
- Division of Oncological Gastroenterology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Roberto Doliana
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Alfonso Colombatti
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Paola Spessotto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Aviano, Italy.
| |
Collapse
|
13
|
Razeghian-Jahromi I, Karimi Akhormeh A, Razmkhah M, Zibaeenezhad MJ. Immune system and atherosclerosis: Hostile or friendly relationship. Int J Immunopathol Pharmacol 2022; 36:3946320221092188. [PMID: 35410514 PMCID: PMC9009140 DOI: 10.1177/03946320221092188] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 03/16/2022] [Indexed: 11/21/2022] Open
Abstract
Coronary artery disease has remained a major health challenge despite enormous progress in prevention, diagnosis, and treatment strategies. Formation of atherosclerotic plaque is a chronic process that is developmentally influenced by intrinsic and extrinsic determinants. Inflammation triggers atherosclerosis, and the fundamental element of inflammation is the immune system. The immune system involves in the atherosclerosis process by a variety of immune cells and a cocktail of mediators. It is believed that almost all main components of this system possess a profound contribution to the atherosclerosis. However, they play contradictory roles, either protective or progressive, in different stages of atherosclerosis progression. It is evident that monocytes are the first immune cells appeared in the atherosclerotic lesion. With the plaque growth, other types of the immune cells such as mast cells, and T lymphocytes are gradually involved. Each cell releases several cytokines which cause the recruitment of other immune cells to the lesion site. This is followed by affecting the expression of other cytokines as well as altering certain signaling pathways. All in all, a mix of intertwined interactions determine the final outcome in terms of mild or severe manifestations, either clinical or subclinical. Therefore, it is of utmost importance to precisely understand the kind and degree of contribution which is made by each immune component in order to stop the growing burden of cardiovascular morbidity and mortality. In this review, we present a comprehensive appraisal on the role of immune cells in the atherosclerosis initiation and development.
Collapse
Affiliation(s)
| | - Ali Karimi Akhormeh
- Cardiovascular Research Center, Shiraz University of Medical
Sciences, Shiraz, Iran
| | - Mahboobeh Razmkhah
- Shiraz Institute for Cancer
Research, Shiraz University of Medical
Sciences, Shiraz, Iran
| | | |
Collapse
|
14
|
Bae JH. Enhanced recovery after surgery: importance of compliance audits. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2021. [DOI: 10.5124/jkma.2021.64.12.820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background: The enhanced recovery after surgery (ERAS) protocol is associated with improved clinical outcomes. However, implementation of ERAS in clinical practice is difficult because it requires a multidisciplinary approach and complex standardization. Moreover, maintenance and auditing of ERAS protocols is another challenge.Current Concepts: The ERAS society provides guidelines for surgery in almost all areas, and each guideline consists of approximately 20 items. Audits are performed to determine whether the items are being applied appropriately in a compliant manner as well as monitor and improve ERAS protocols. Numerous studies have reported that even with the application of the same ERAS protocol, postoperative short-term outcomes such as reductions of hospital stay and postoperative complications were better in the high-compliance group than in the low-compliance group. In addition, some recent studies have reported that application of ERAS protocols with high compliance can improve the long-term survival outcomes in cancer patients. In this regard, ERAS has been hypothesized to improve long-term oncological outcomes by minimizing surgical stress and reducing the postoperative inflammatory response and damage to immune function.Discussion and Conclusion: In addition to the development of appropriate protocols, auditing of compliance is also an important part of ERAS implementation. High compliance may lead to improved clinical outcomes.
Collapse
|
15
|
Liang J, Shao W, Liu Q, Lu Q, Gu A, Jiang Z. Single Cell RNA-Sequencing Reveals a Murine Gallbladder Cell Transcriptome Atlas During the Process of Cholesterol Gallstone Formation. Front Cell Dev Biol 2021; 9:714271. [PMID: 34650971 PMCID: PMC8505819 DOI: 10.3389/fcell.2021.714271] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Accepted: 08/19/2021] [Indexed: 12/20/2022] Open
Abstract
Gallstone disease is a worldwide common disease. However, the knowledge concerning the gallbladder in the pathogenesis of cholesterol gallstone formation remains limited. In this study, using single-cell RNA sequencing (scRNA-seq) to obtain the transcriptome of gallbladder cells, we showed cellular heterogeneity and transcriptomic dynamics in murine gallbladder cells during the process of lithogenesis. Our results indicated gallbladder walls were subjected to remodeling during the process of lithogenesis. The major molecular events that happened included proliferation of epithelial cells, infiltration of immune-cells, activation of angiogenesis, and extracellular matrix modulation. Furthermore, we observed partial reversal of gallbladder cell transcriptomes by ursodeoxycholic acid treatment. This work thus provides novel and integral knowledges on the cellular changes during lithogenesis, which is of great significance to the understanding of pathogenesis and treatment of cholesterol gallstone.
Collapse
Affiliation(s)
- Jingjia Liang
- Center of Gallbladder Disease, Shanghai East Hospital, Institution of Gallstone Disease, School of Medicine, Tongji University, Shanghai, China.,Key Laboratory of Modern Toxicology of Ministry of Education, State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Wentao Shao
- Center of Gallbladder Disease, Shanghai East Hospital, Institution of Gallstone Disease, School of Medicine, Tongji University, Shanghai, China.,Key Laboratory of Modern Toxicology of Ministry of Education, State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China.,School of Instrument Science and Engineering, Southeast University, Nanjing, China
| | - Qian Liu
- Key Laboratory of Modern Toxicology of Ministry of Education, State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Qifan Lu
- Center of Gallbladder Disease, Shanghai East Hospital, Institution of Gallstone Disease, School of Medicine, Tongji University, Shanghai, China
| | - Aihua Gu
- Key Laboratory of Modern Toxicology of Ministry of Education, State Key Laboratory of Reproductive Medicine, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Zhaoyan Jiang
- Center of Gallbladder Disease, Shanghai East Hospital, Institution of Gallstone Disease, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
16
|
Yang L, Ge Q, Ye Z, Wang L, Wang L, Mashrah MA, Pathak JL. Sulfonylureas for Treatment of Periodontitis-Diabetes Comorbidity-Related Complications: Killing Two Birds With One Stone. Front Pharmacol 2021; 12:728458. [PMID: 34539410 PMCID: PMC8440798 DOI: 10.3389/fphar.2021.728458] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/19/2021] [Indexed: 12/28/2022] Open
Abstract
Periodontitis is one of the most prevalent oral inflammatory diseases leading to teeth loss and oral health problems in adults. Periodontitis mainly affects periodontal tissue by affecting the host immune system and bone homeostasis. Moreover, periodontitis is associated with various systemic diseases. Diabetes is a metabolic disease with systemic effects. Both periodontitis and diabetes are common inflammatory diseases, and comorbidity of two diseases is linked to exacerbation of the pathophysiology of both diseases. Since bacterial dysbiosis is mainly responsible for periodontitis, antibiotics are widely used drugs to treat periodontitis in clinics. However, the outcomes of antibiotic treatments in periodontitis are not satisfactory. Therefore, the application of anti-inflammatory drugs in combination with antibiotics could be a treatment option for periodontitis-diabetes comorbidity. Anti-diabetic drugs usually have anti-inflammatory properties and have shown beneficial effects on periodontitis. Sulfonylureas, insulin secretagogues, are the earliest and most widely used oral hypoglycemic drugs used for type-2 diabetes. Studies have found that sulfonylurea drugs can play a certain role in the mitigation of periodontitis and inflammation. This article reviews the effects of sulfonylurea drugs on the mitigation of periodontitis-diabetes comorbidity-related inflammation, bone loss, and vascular growth as well as the involved molecular mechanisms. We discuss the possibility of a new application of sulfonylureas (old drug) to treat periodontitis-diabetes comorbidity.
Collapse
Affiliation(s)
- Luxi Yang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qing Ge
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhitong Ye
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Lijing Wang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China.,School of Life Sciences and Biopharmaceutics, Vascular Biology Research Institute, Guangdong Pharmaceutical University, Guangzhou, China
| | - Liping Wang
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mubarak Ahmed Mashrah
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| | - Janak L Pathak
- Guangzhou Key Laboratory of Basic and Applied Research of Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
17
|
Fejza A, Poletto E, Carobolante G, Camicia L, Andreuzzi E, Capuano A, Pivetta E, Pellicani R, Colladel R, Marastoni S, Doliana R, Iozzo RV, Spessotto P, Mongiat M. Multimerin-2 orchestrates the cross-talk between endothelial cells and pericytes: A mechanism to maintain vascular stability. Matrix Biol Plus 2021; 11:100068. [PMID: 34435184 PMCID: PMC8377000 DOI: 10.1016/j.mbplus.2021.100068] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 12/12/2022] Open
Abstract
The ECM Multimerin-2 is a substrate for pericyte adhesion. The recruitment of pericytes leads to enhanced Multimerin-2 expression by endothelial cells. Multimerin-2 induces the expression of important cytokines both in endothelial cells and pericytes. The deposition of Multimerin-2 is key for the endothelial cell/pericyte crosstalk required for the establishment of vascular stability.
Tumor angiogenesis is vital for the growth and development of various solid cancers and as such is a valid and promising therapeutic target. Unfortunately, the use of the currently available anti-angiogenic drugs increases the progression-free survival by only a few months. Conversely, targeting angiogenesis to prompt both vessel reduction and normalization, has been recently viewed as a promising approach to improve therapeutic efficacy. As a double-edged sword, this line of attack may on one side halt tumor growth as a consequence of the reduction of nutrients and oxygen supplied to the tumor cells, and on the other side improve drug delivery and, hence, efficacy. Thus, it is of upmost importance to better characterize the mechanisms regulating vascular stability. In this context, recruitment of pericytes along the blood vessels is crucial to their maturation and stabilization. As the extracellular matrix molecule Multimerin-2 is secreted by endothelial cells and deposited also in juxtaposition between endothelial cells and pericytes, we explored Multimerin-2 role in the cross-talk between the two cell types. We discovered that Multimerin-2 is an adhesion substrate for pericytes. Interestingly, and consistent with the notion that Multimerin-2 is a homeostatic molecule deposited in the later stages of vessel formation, we found that the interaction between endothelial cells and pericytes promoted the expression of Multimerin-2. Furthermore, we found that Multimerin-2 modulated the expression of key cytokines both in endothelial cells and pericytes. Collectively, our findings posit Multimerin-2 as a key molecule in the cross-talk between endothelial cells and pericytes and suggest that the expression of this glycoprotein is required to maintain vascular stability.
Collapse
Key Words
- Ang-2, Angiopeietin-2
- Angiogenesis
- CD248, cluster of differentiation 248
- CD93, cluster of differentiation 93
- ECM, extracellular matrix
- EDEN, EMI Domain ENdowed
- Extracellular matrix
- HB-EGF, heparin binding epidermal growth factor
- HBVP, human brain vascular pericytes
- HDMEC, human dermal vascular endothelial cells
- HUVEC, human umbilical vein endothelial cells
- Notch-3-R, Notch Receptor 3
- PDGF, platelet-derived growth factor
- VEGFA, vascular endothelial growth factor A
- VEGFR2, vascular endothelial growth factor receptor 2
- VSMCs, vascular smooth muscle cells
- Vascular stability
Collapse
Affiliation(s)
- Albina Fejza
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Greta Carobolante
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Lucrezia Camicia
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Eva Andreuzzi
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Alessandra Capuano
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Eliana Pivetta
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Rosanna Pellicani
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Roberta Colladel
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Stefano Marastoni
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
| | - Roberto Doliana
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, and the Translational Cellular Oncology Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Paola Spessotto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| |
Collapse
|
18
|
Fejza A, Polano M, Camicia L, Poletto E, Carobolante G, Toffoli G, Mongiat M, Andreuzzi E. The Efficacy of Anti-PD-L1 Treatment in Melanoma Is Associated with the Expression of the ECM Molecule EMILIN2. Int J Mol Sci 2021; 22:ijms22147511. [PMID: 34299131 PMCID: PMC8306837 DOI: 10.3390/ijms22147511] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/14/2022] Open
Abstract
The use of immune checkpoint inhibitors has revolutionized the treatment of melanoma patients, leading to remarkable improvements in the cure. However, to ensure a safe and effective treatment, there is the need to develop markers to identify the patients that would most likely respond to the therapies. The microenvironment is gaining attention in this context, since it can regulate both the immunotherapy efficacyand angiogenesis, which is known to be affected by treatment. Here, we investigated the putative role of the ECM molecule EMILIN-2, a tumor suppressive and pro-angiogenic molecule. We verified that the EMILIN2 expression is variable among melanoma patients and is associated with the response to PD-L1 inhibitors. Consistently, in preclinical settings, the absence of EMILIN-2 is associated with higher PD-L1 expression and increased immunotherapy efficacy. We verified that EMILIN-2 modulates PD-L1 expression in melanoma cells through indirect immune-dependent mechanisms. Notably, upon PD-L1 blockage, Emilin2−/− mice displayed improved intra-tumoral vessel normalization and decreased tumor hypoxia. Finally, we provide evidence indicating that the inclusion of EMILIN2 in a number of gene expression signatures improves their predictive potential, a further indication that the analysis of this molecule may be key for the development of new markers to predict immunotherapy efficacy.
Collapse
Affiliation(s)
- Albina Fejza
- Division of Molecular Oncology, Department of Research and Diagnosis, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (A.F.); (L.C.); (E.P.); (G.C.)
| | - Maurizio Polano
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (M.P.); (G.T.)
| | - Lucrezia Camicia
- Division of Molecular Oncology, Department of Research and Diagnosis, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (A.F.); (L.C.); (E.P.); (G.C.)
| | - Evelina Poletto
- Division of Molecular Oncology, Department of Research and Diagnosis, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (A.F.); (L.C.); (E.P.); (G.C.)
| | - Greta Carobolante
- Division of Molecular Oncology, Department of Research and Diagnosis, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (A.F.); (L.C.); (E.P.); (G.C.)
| | - Giuseppe Toffoli
- Experimental and Clinical Pharmacology Unit, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (M.P.); (G.T.)
| | - Maurizio Mongiat
- Division of Molecular Oncology, Department of Research and Diagnosis, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (A.F.); (L.C.); (E.P.); (G.C.)
- Correspondence: (M.M.); (E.A.)
| | - Eva Andreuzzi
- Division of Molecular Oncology, Department of Research and Diagnosis, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (A.F.); (L.C.); (E.P.); (G.C.)
- Correspondence: (M.M.); (E.A.)
| |
Collapse
|
19
|
Zheng W, Zhang S, Guo H, Chen X, Huang Z, Jiang S, Li M. Multi-omics analysis of tumor angiogenesis characteristics and potential epigenetic regulation mechanisms in renal clear cell carcinoma. Cell Commun Signal 2021; 19:39. [PMID: 33761933 PMCID: PMC7992844 DOI: 10.1186/s12964-021-00728-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 02/20/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Tumor angiogenesis, an essential process for cancer proliferation and metastasis, has a critical role in prognostic of kidney renal clear cell carcinoma (KIRC), as well as a target in guiding treatment with antiangiogenic agents. However, tumor angiogenesis subtypes and potential epigenetic regulation mechanisms in KIRC patient remains poorly characterized. System evaluation of angiogenesis subtypes in KIRC patient might help to reveal the mechanisms of KIRC and develop more target treatments for patients. METHOD Ten independent tumor angiogenesis signatures were obtained from molecular signatures database (MSigDB) and gene set variation analysis was performed to calculate the angiogenesis score in silico using the Cancer Genome Atlas (TCGA) KIRC dataset. Tumor angiogenesis subtypes in 539 TCGA-KIRC patients were identified using consensus clustering analysis. The potential regulation mechanisms was studied using gene mutation, copy number variation, and differential methylation analysis (DMA). The master transcription factors (MTF) that cause the difference in tumor angiogenesis signals were completed by transcription factor enrichment analysis. RESULTS The angiogenesis score of a prognosis related angiogenesis signature including 189 genes was significantly correlated with immune score, stroma score, hypoxia score, and vascular endothelial growth factor (VEGF) signal score in 539 TCGA KIRC patients. MMRN2, CLEC14A, ACVRL1, EFNB2, and TEK in candidate gene set showed highest correlation coefficient with angiogenesis score in TCGA-KIRC patients. In addition, all of them were associated with overall survival in both TCGA-KIRC and E-MTAB-1980 KIRC data. Clustering analysis based on 183 genes in angiogenesis signature identified two prognosis related angiogenesis subtypes in TCGA KIRC patients. Two clusters also showed different angiogenesis score, immune score, stroma score, hypoxia score, VEGF signal score, and microenvironment score. DMA identified 59,654 differential methylation sites between two clusters and part of these sites were correlated with tumor angiogenesis genes including CDH13, COL4A3, and RHOB. In addition, RFX2, SOX13, and THRA were identified as top three MTF in regulating angiogenesis signature in KIRC patients. CONCLUSION Our study indicate that evaluation the angiogenesis subtypes of KIRC based on angiogenesis signature with 183 genes and potential epigenetic mechanisms may help to develop more target treatments for KIRC patients. Video Abstract.
Collapse
Affiliation(s)
- Wenzhong Zheng
- Department of Urology, Fujian Province, Fujian Medical University Union Hospital, Gulou District, 29 Xinquan Road, Fuzhou, 200001, People's Republic of China
| | - Shiqiang Zhang
- Department of Urology, Kidney and Urology Center, The Seventh Affiliated Hospital, Sun Yat-Sen University, Shenzhen, Guangdong, People's Republic of China
| | - Huan Guo
- Department of Urology, Shenzhen University General Hospital and Shenzhen University Clinical Medical Academy Center, Shenzhen University, Shenzhen, Guangdong, People's Republic of China
| | - Xiaobao Chen
- Department of Urology, Fujian Province, Fujian Medical University Union Hospital, Gulou District, 29 Xinquan Road, Fuzhou, 200001, People's Republic of China
| | - Zhangcheng Huang
- Department of Urology, Fujian Province, Fujian Medical University Union Hospital, Gulou District, 29 Xinquan Road, Fuzhou, 200001, People's Republic of China
| | - Shaoqin Jiang
- Department of Urology, Fujian Province, Fujian Medical University Union Hospital, Gulou District, 29 Xinquan Road, Fuzhou, 200001, People's Republic of China
| | - Mengqiang Li
- Department of Urology, Fujian Province, Fujian Medical University Union Hospital, Gulou District, 29 Xinquan Road, Fuzhou, 200001, People's Republic of China.
| |
Collapse
|
20
|
Xie S, Wang Y, Huang Y, Yang B. Mechanisms of the antiangiogenic effects of aspirin in cancer. Eur J Pharmacol 2021; 898:173989. [PMID: 33657423 DOI: 10.1016/j.ejphar.2021.173989] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2020] [Revised: 02/14/2021] [Accepted: 02/22/2021] [Indexed: 01/04/2023]
Abstract
Aspirin is an old drug extracted from willow bark and is widely used for the prevention and treatment of cardiovascular diseases. Accumulating evidence has shown that aspirin use may significantly reduce the angiogenesis of cancer; however, the mechanism of the association between angiogenesis and aspirin is complex. Although COX-1 is widely known as a target of aspirin, several studies reveal other antiangiogenic targets of aspirin, such as angiotensin II, glucose transporter 1, heparanase, and matrix metalloproteinase. In addition, some data indicates that aspirin may produce antiangiogenic effects after acting in different cell types, such as endothelial cells, platelets, pericytes, and macrophages. In this review, we concentrate on research regarding the antiangiogenic effects of aspirin in cancer, and we discuss the molecular mechanisms of aspirin and its metabolites. Moreover, we discuss some mechanisms through which aspirin treatment may normalize existing blood vessels, including preventing the disintegration of endothelial adheres junctions and the recruitment of pericytes. We also address the antiangiogenic effects and the underlying mechanisms of aspirin derivatives, which are aimed at improving safety and efficacy.
Collapse
Affiliation(s)
- Shiyuan Xie
- College of Pharmacy, Guangxi Medical University, Nanning, 530021, Guangxi, PR China
| | - Youqiong Wang
- College of Pharmacy, Guangxi Medical University, Nanning, 530021, Guangxi, PR China
| | - Yixuan Huang
- College of Pharmacy, Guangxi Medical University, Nanning, 530021, Guangxi, PR China
| | - Bin Yang
- College of Pharmacy, Guangxi Medical University, Nanning, 530021, Guangxi, PR China.
| |
Collapse
|
21
|
Zhong J, Lu W, Zhang J, Huang M, Lyu W, Ye G, Deng L, Chen M, Yao N, Li Y, Liu G, Liang Y, Fu J, Zhang D, Ye W. Notoginsenoside R1 activates the Ang2/Tie2 pathway to promote angiogenesis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2020; 78:153302. [PMID: 32823242 DOI: 10.1016/j.phymed.2020.153302] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 05/15/2020] [Accepted: 08/10/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Therapeutic angiogenesis is a novel strategy for the treatment of ischemic diseases that involves promotion of angiogenesis in ischemic tissues via the use of proangiogenic agents. However, effective proangiogenic drugs that activate the Ang2/Tie2 signaling pathway remain scarce. PURPOSE We aimed to investigate the proangiogenic activity of notoginsenoside R1 (NR1) isolated from total saponins of Panax notoginseng with regard to activation of the Ang2/Tie2 signaling pathway. METHODS We examined the proangiogenic effects of NR1 by assessing the effects of NR1 on the proliferation, migration, invasion and tube formation of human umbilical vein endothelial cells (HUVECs). The aortic ring assay and vascular endothelial growth factor receptor inhibitor (VRI)-induced vascular regression in the zebrafish model were used to confirm the proangiogenic effects of NR1 ex vivo and in vivo. Furthermore, the molecular mechanism was investigated by Western blot analysis. RESULTS We found that NR1 promoted the proliferation, mobility and tube formation of HUVECs in vitro. NR1 also increased the number of sprouting vessels in rat aortic rings and rescued VRI-induced vascular regression in zebrafish. NR1-induced angiogenesis was dependent on Tie2 receptor activation mediated by increased autocrine Ang2 in HUVECs, and inhibition of the Ang2/Tie2 pathway abrogated the proangiogenic effects of NR1. CONCLUSIONS Our results suggest that NR1 promotes angiogenesis by activating the Ang2/Tie2 signaling pathway. Thus, NR1-induced activation of the Ang2/Tie2 pathway is an effective proangiogenic approach. NR1 may be useful agent for the treatment of ischemic diseases.
Collapse
Affiliation(s)
- Jincheng Zhong
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Weijin Lu
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Jiayan Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Maohua Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Wenyu Lyu
- College of Pharmacy, Jinan University, Guangzhou 510632, China
| | - Geni Ye
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Lijuan Deng
- Formula‑pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou 510632, China
| | - Minfeng Chen
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Nan Yao
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Yong Li
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Guanping Liu
- Guangxi Engineering Research Center of Innovative Preparations for Natural Medicine, Guangxi Wuzhou Pharmaceutical (Group) Co., Ltd, Wuzhou 543000, China
| | - Yunfei Liang
- Guangxi Engineering Research Center of Innovative Preparations for Natural Medicine, Guangxi Wuzhou Pharmaceutical (Group) Co., Ltd, Wuzhou 543000, China
| | - Jingwen Fu
- The Affiliated High School of South China Normal University, Guangzhou 510630, China
| | - Dongmei Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China.
| | - Wencai Ye
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
22
|
The membrane-bound and soluble form of melanotransferrin function independently in the diagnosis and targeted therapy of lung cancer. Cell Death Dis 2020; 11:933. [PMID: 33127882 PMCID: PMC7599248 DOI: 10.1038/s41419-020-03124-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 09/16/2020] [Accepted: 09/18/2020] [Indexed: 01/28/2023]
Abstract
Melanotransferrin (MFI2) is a newly identified tumor-associated protein, which consists of two forms of proteins, membrane-bound (mMFI2) and secretory (sMFI2). However, little is known about the expression pattern and their relevance in lung cancer. Here, we found that both two forms of MFI2 are highly expressed in lung cancer. The expression of MFI2 in lung cancer was detected by using the public database and qRT-PCR. Overexpression and knockdown cell lines and recombinant sMFI2 protein were used to study the function of mMFI2 and sMFI2. RNA-seq, protein chip, ChIP assay, Immunoprecipitation, ELISA, and immunofluorescence were used to study the molecular biological mechanism of mMFI2 and sMFI2. We found that mMFI2 promoted the expression of EMT’s common marker N-cadherin by downregulating the transcription factor KLI4, which in turn promoted tumor metastasis; sMFI2 could promote the metastasis of autologous tumor cells in an autocrine manner but the mechanism is different from that of mMFI2. In addition, sMFI2 was proved could inhibit the migration of vascular endothelial cells and subsequently enhance angiogenic responses in a paracrine manner. We propose that the expressions and functions of the two forms of MFI2 in lung cancer are relatively independent. Specifically, mMFI2 was a potential lung cancer therapeutic target, while sMFI2 was highly enriched in advanced lung cancer, and could be used as a tumor staging index.
Collapse
|
23
|
Bae JH, Lee CS, Han SR, Park SM, Lee YS, Lee IK. Differences in the prognostic impact of post-operative systemic inflammation and infection in colorectal cancer patients: Using white blood cell counts and procalcitonin levels. Surg Oncol 2020; 35:374-381. [PMID: 33035785 DOI: 10.1016/j.suronc.2020.09.017] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 08/26/2020] [Accepted: 09/07/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND Systemic inflammatory responses cause poor prognosis in cancer patients. However, post-operative systemic inflammatory response may occur owing to post-operative infection as well as cancer-related inflammation. This study aimed to identify the prognostic impact of cancer-related inflammation and infection for colorectal cancer. METHODS Patients who underwent curative surgery for colorectal cancer between January 2011 and March 2015 were enrolled. Procalcitonin (PCT) levels were measured on the fourth post-operative day; white blood cell (WBC) counts were measured daily until the fourth post-operative day. Patients were divided into groups according to the number of post-operative days required for the leukocyte count to decrease to <10,000/mm3 and PCT levels (0.5 ng/ml) as follows: group I, 0-3 days; group II, ≥4 days and high PCT; group III, ≥4 days and normal PCT. RESULTS Totally, 248 patients were identified. A prolonged WBC normalization period was associated with poor disease-free survival (DFS). TNM stage III and IV and group III (hazard ratio [HR] 2.480, 95% confidence interval [CI] 1.137-5.410) were independently associated with poor DFS. In contrast, DFS was not significantly affected in group II. High PCT levels were significantly associated with post-operative infectious complications (odds ratio 10.579, 95% CI 4.182-26.764). Although infectious complication had no prognostic significance for DFS, it was an independently poor prognostic factor for overall survival (HR 3.728; 95% CI 1.291-10.766). CONCLUSIONS The increased post-operative systemic inflammatory response was associated with poor prognosis of colorectal cancer. Otherwise, post-operative infection affected overall mortality but was not associated with disease progression.
Collapse
Affiliation(s)
- Jung Hoon Bae
- Division of Colorectal Surgery, Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Chul Seung Lee
- Division of Colorectal Surgery, Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Seung Rim Han
- Division of Colorectal Surgery, Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Sun Min Park
- Division of Colorectal Surgery, Department of Surgery, Yeouido St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - Yoon Suk Lee
- Division of Colorectal Surgery, Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea
| | - In Kyu Lee
- Division of Colorectal Surgery, Department of Surgery, Seoul St. Mary's Hospital, College of Medicine, The Catholic University of Korea, Seoul, Republic of Korea.
| |
Collapse
|
24
|
Wu J, He J, Tian X, Li H, Wen Y, Shao Q, Cheng C, Wang G, Sun X. Upregulation of miRNA-9-5p Promotes Angiogenesis after Traumatic Brain Injury by Inhibiting Ptch-1. Neuroscience 2020; 440:160-174. [PMID: 32502567 DOI: 10.1016/j.neuroscience.2020.05.045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 05/25/2020] [Accepted: 05/26/2020] [Indexed: 12/12/2022]
Abstract
MicroRNA-9-5p (miRNA-9-5p) is an important regulator of angiogenesis in many pathological states. However, the effect of miRNA-9-5p on angiogenesis after traumatic brain injury (TBI) has not been elucidated. In this study, a controlled cortical impact (CCI) model was used to induce TBI in Sprague-Dawley rats, and an oxygen glucose deprivation (OGD) model was used to mimic the pathological state in vitro. Brain microvascular endothelial cells (BMECs) were extracted from immature rats. The results showed that the level of miRNA-9-5p was significantly increased in the traumatic foci after TBI, and the upregulation of miRNA9-5p promoted the recovery of neurological function. Moreover, the upregulation of miRNA-9-5p with miRNA agomir significantly increased the density of the microvascular and neurons around the traumatic foci in rats after TBI. The results of the in vitro experiments confirmed that the upregulation of miRNA-9-5p with a miRNA mimic improved cellular viability and alleviated cellular apoptosis. Dual luciferase reporter assay validated that miRNA-9-5p was a posttranscriptional modulator of Ptch-1. Activation of the Hedgehog pathway by increasing the level of miRNA-9-5p promoted the migration and tube formation of BMECs in vitro. In addition, we found that the upregulation of miRNA-9-5p activated the Hedgehog pathway and increased the phosphorylation of AKT, which promoted the expression of cyclin D1, MMP-9 and VEGF in BMECs. All these results indicate that the upregulation of miRNA-9-5p promotes angiogenesis and improves neurological functional recovery after TBI, mainly by activating the Hedgehog pathway. MiRNA-9-5p may be a potential new therapeutic target for TBI.
Collapse
Affiliation(s)
- Jingchuan Wu
- Department of Neurosurgery, General Hospital of The YangTze River Shipping, Wuhan Brain Hospital, Wuhan, Hubei 430014, China; Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Junchi He
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Xiaocui Tian
- College of Pharmacy, Chongqing Key Laboratory of Biochemistry and Molecular Pharmacology, Chongqing Medical University, District of Yuzhong, Chongqing 400016, China
| | - Hui Li
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Yi Wen
- Department of Neurosurgery, General Hospital of The YangTze River Shipping, Wuhan Brain Hospital, Wuhan, Hubei 430014, China
| | - Qiang Shao
- Department of Neurosurgery, General Hospital of The YangTze River Shipping, Wuhan Brain Hospital, Wuhan, Hubei 430014, China
| | - Chongjie Cheng
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| | - Guangyu Wang
- Department of Neurosurgery, Qi lu Children's Hospital of Shandong University, Jinan, Shandong 250022, China.
| | - Xiaochuan Sun
- Department of Neurosurgery, the First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
25
|
Andreuzzi E, Capuano A, Poletto E, Pivetta E, Fejza A, Favero A, Doliana R, Cannizzaro R, Spessotto P, Mongiat M. Role of Extracellular Matrix in Gastrointestinal Cancer-Associated Angiogenesis. Int J Mol Sci 2020; 21:E3686. [PMID: 32456248 PMCID: PMC7279269 DOI: 10.3390/ijms21103686] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 05/20/2020] [Accepted: 05/21/2020] [Indexed: 02/07/2023] Open
Abstract
Gastrointestinal tumors are responsible for more cancer-related fatalities than any other type of tumors, and colorectal and gastric malignancies account for a large part of these diseases. Thus, there is an urgent need to develop new therapeutic approaches to improve the patients' outcome and the tumor microenvironment is a promising arena for the development of such treatments. In fact, the nature of the microenvironment in the different gastrointestinal tracts may significantly influence not only tumor development but also the therapy response. In particular, an important microenvironmental component and a potential therapeutic target is the vasculature. In this context, the extracellular matrix is a key component exerting an active effect in all the hallmarks of cancer, including angiogenesis. Here, we summarized the current knowledge on the role of extracellular matrix in affecting endothelial cell function and intratumoral vascularization in the context of colorectal and gastric cancer. The extracellular matrix acts both directly on endothelial cells and indirectly through its remodeling and the consequent release of growth factors. We envision that a deeper understanding of the role of extracellular matrix and of its remodeling during cancer progression is of chief importance for the development of new, more efficacious, targeted therapies.
Collapse
Affiliation(s)
- Eva Andreuzzi
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Alessandra Capuano
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Eliana Pivetta
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Albina Fejza
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Andrea Favero
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Roberto Doliana
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Renato Cannizzaro
- Department of Clinical Oncology, Experimental Gastrointestinal Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy;
| | - Paola Spessotto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, 33081 Aviano, Italy; (E.A.); (A.C.); (E.P.); (E.P.); (A.F.); (A.F.); (R.D.); (P.S.)
| |
Collapse
|
26
|
Pellicani R, Poletto E, Andreuzzi E, Paulitti A, Doliana R, Bizzotto D, Braghetta P, Colladel R, Tarticchio G, Sabatelli P, Bucciotti F, Bressan G, Iozzo RV, Colombatti A, Bonaldo P, Mongiat M. Multimerin-2 maintains vascular stability and permeability. Matrix Biol 2020; 87:11-25. [DOI: 10.1016/j.matbio.2019.08.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 08/08/2019] [Accepted: 08/09/2019] [Indexed: 12/12/2022]
|
27
|
Gonzalez-Avila G, Sommer B, García-Hernández AA, Ramos C. Matrix Metalloproteinases' Role in Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1245:97-131. [PMID: 32266655 DOI: 10.1007/978-3-030-40146-7_5] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Cancer cells evolve in the tumor microenvironment (TME) by the acquisition of characteristics that allow them to initiate their passage through a series of events that constitute the metastatic cascade. For this purpose, tumor cells maintain a crosstalk with TME non-neoplastic cells transforming them into their allies. "Corrupted" cells such as cancer-associated fibroblasts (CAFs), tumor-associated macrophages (TAMs), and tumor-associated neutrophils (TANs) as well as neoplastic cells express and secrete matrix metalloproteinases (MMPs). Moreover, TME metabolic conditions such as hypoxia and acidification induce MMPs' synthesis in both cancer and stromal cells. MMPs' participation in TME consists in promoting events, for example, epithelial-mesenchymal transition (EMT), apoptosis resistance, angiogenesis, and lymphangiogenesis. MMPs also facilitate tumor cell migration through the basement membrane (BM) and extracellular matrix (ECM). The aim of the present chapter is to discuss MMPs' contribution to the evolution of cancer cells, their cellular origin, and their influence in the main processes that take place in the TME.
Collapse
Affiliation(s)
- Georgina Gonzalez-Avila
- Laboratorio de Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico.
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - A Armando García-Hernández
- Laboratorio de Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Carlos Ramos
- Laboratorio de Biología Celular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| |
Collapse
|
28
|
Xu J, Zhang Z, Qian M, Wang S, Qiu W, Chen Z, Sun Z, Xiong Y, Wang C, Sun X, Zhao R, Xue H, Li G. Cullin-7 (CUL7) is overexpressed in glioma cells and promotes tumorigenesis via NF-κB activation. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:59. [PMID: 32252802 PMCID: PMC7132976 DOI: 10.1186/s13046-020-01553-7] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 02/25/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND Cullin-7 (CUL7) is a member of the DOC domain-containing cullin family and is involved in the regulation of cell transformation. However, the clinical significance, potential mechanism and upstream regulators of CUL7 in malignant gliomas remain to be determined. METHODS Expression level data and clinical information were obtained via the Cancer Genome Atlas (TCGA) database, the Chinese Glioma Genome Atlas (CGGA) database, immunohistochemistry (IHC) and western blot analysis. Gene set enrichment analysis (GSEA) was used to explore the potential molecular mechanisms of CUL7. RNA silencing was performed using siRNA or lentiviral constructs in U87MG and U251 glioma cell lines and GSC267 glioma stem cells. CUL7 overexpression was performed using the GV141-CUL7 plasmid construct. In addition, overexpression of miR-3940-5p was performed and validated by quantitative real-time PCR (qRT-PCR). Cells were characterized in vitro or in vivo to evaluate their molecular status, cell proliferation, invasion, and migration by Cell Counting Kit (CCK)-8, EdU, flow cytometry, colony formation, Transwell and 3D tumour spheroid invasion assays. Coimmunoprecipitation (co-IP) and western blotting were performed to test the mechanisms of activation of the NF-κB signalling pathway. RESULTS High CUL7 expression was associated with a high tumour grade, a mesenchymal molecular glioma subtype and a poor prognosis in patients. Gene silencing of CUL7 in U87MG and U251 cells significantly inhibited tumour growth, invasion and migration in vitro and in vivo. Western blot analysis revealed that cyclin-dependent kinase inhibitors and epithelial-mesenchymal transition (EMT) molecular markers changed under CUL7 silencing conditions. In contrast, CUL7 overexpression promoted tumour growth, invasion and migration. Gene set enrichment analysis (GSEA) and western blot analysis revealed that CUL7 was positively associated with the NF-κB pathway. Moreover, with coimmunoprecipitation assays, we discovered that CUL7 physically associated with MST1, which further led to ubiquitin-mediated MST1 protein degradation, which promoted activation of the NF-κB signalling pathway. Finally, CUL7 was found to be downregulated by miR-3940-5p, which suppressed the development of gliomas. CONCLUSIONS Our findings indicate that CUL7 plays a significant role in promoting tumorigenesis via NF-κB activation and that it can be negatively regulated by miR-3940-5p in human gliomas. Furthermore, CUL7 might be a candidate molecular target for the treatment of glioma.
Collapse
Affiliation(s)
- Jianye Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Zongpu Zhang
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Mingyu Qian
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Shaobo Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Wei Qiu
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Zihang Chen
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Zhongzheng Sun
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Department of Neurosurgery, The Second Hospital of Shandong University, #247 Beiyuan Street, Jinan, 250033, China
| | - Ye Xiong
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Department of Neurosurgery, First Affiliated Hospital of Wenzhou Medical University, Fanhai Xi Road, Wenzhou, 325000, China
| | - Chaochao Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Department of Neurosurgery, Qilu hospital of Shandong University (Qingdao), #758 Hefei Road, Qingdao, 266035, China
| | - Xiaopeng Sun
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Department of Neurosurgery, Dezhou People's Hospital, #1751 XinhuStreet, Dezhou, 253014, China
| | - Rongrong Zhao
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China. .,Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China. .,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China. .,Institute of Brain and Brain-Inspired Science, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China. .,Shandong Key Laboratory of Brain Function Remodeling, Shandong University, 107 Wenhua Xi Road, Jinan, 250012, Shandong Province, China.
| |
Collapse
|
29
|
Tang L, Yang M, Qin L, Li X, He G, Liu X, Xu W. Deficiency of DICER reduces the invasion ability of trophoblasts and impairs the pro-angiogenic effect of trophoblast-derived microvesicles. J Cell Mol Med 2020; 24:4915-4930. [PMID: 32198822 PMCID: PMC7205818 DOI: 10.1111/jcmm.14917] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/21/2019] [Accepted: 10/11/2019] [Indexed: 12/11/2022] Open
Abstract
DICER is a key rate‐limiting enzyme in the canonical miRNAs biogenesis pathway, and DICER and DICER‐dependent miRNAs have been proved to play essential roles in many physiological and pathological processes. However, whether DICER is involved in placentation has not been studied. Successful spiral artery remodelling is one of the key milestones during placentation, which depends mostly on the invasion of trophoblasts and the crosstalk between trophoblasts and endothelial cells. In the present study, we show that DICER knockdown impairs the invasion ability of both primary extravillous trophoblasts (EVT) and HTR8/SVneo (HTR8) cell lines. The decreased invasion of HTR8 cells upon DICER knockdown (sh‐Dicer) was partly due to the up‐regulation of miR‐16‐2‐3p, which led to a reduced expression level of the collagen type 1 alpha 2 chain (COL1A2) protein. Moreover, microvesicles (MVs) can be secreted by HTR8 cells and promote the tube formation ability of human umbilical cord vein endothelial cells (HUVECs). However, conditioned medium and MVs derived from sh‐Dicer HTR8 cells have an anti‐angiogenic effect, due to reduced angiogenic factors and increased anti‐angiogenic miRNAs (including let‐7d, miR‐1‐6‐2 and miR‐15b), respectively. In addition, reduced protein expression of DICER is found in PE placenta by immunoblotting and immunohistochemistry. In summary, our study uncovered a novel DICER‐miR‐16‐2‐COL1A2 mediated pathway involved in the invasion ability of EVT, and DICER‐containing MVs mediate the pro‐angiogenic effect of trophoblast‐derived conditioned medium on angiogenesis, implying the involvement of DICER in the pathogenesis of PE.
Collapse
Affiliation(s)
- Li Tang
- Department of Obstetrics/Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,The Joint Laboratory for Reproductive Medicine of Sichuan University-The Chinese University of Hong Kong, West China Second University Hospital, Sichuan University, Chengdu, China.,The Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Ming Yang
- Department of Obstetrics/Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Lang Qin
- Department of Obstetrics/Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaoliang Li
- Department of Obstetrics/Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,The Joint Laboratory for Reproductive Medicine of Sichuan University-The Chinese University of Hong Kong, West China Second University Hospital, Sichuan University, Chengdu, China.,The Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Guolin He
- Department of Obstetrics/Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xinghui Liu
- Department of Obstetrics/Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - WenMing Xu
- Department of Obstetrics/Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China.,The Joint Laboratory for Reproductive Medicine of Sichuan University-The Chinese University of Hong Kong, West China Second University Hospital, Sichuan University, Chengdu, China.,The Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second University Hospital, Sichuan University, Chengdu, China.,Reproductive Endocrinology and Regulation Laboratory, West China Second University Hospital, Sichuan University, Chengdu Sichuan, China
| |
Collapse
|
30
|
Andreuzzi E, Fejza A, Capuano A, Poletto E, Pivetta E, Doliana R, Pellicani R, Favero A, Maiero S, Fornasarig M, Cannizzaro R, Iozzo RV, Spessotto P, Mongiat M. Deregulated expression of Elastin Microfibril Interfacer 2 (EMILIN2) in gastric cancer affects tumor growth and angiogenesis. Matrix Biol Plus 2020; 6-7:100029. [PMID: 33543026 PMCID: PMC7852313 DOI: 10.1016/j.mbplus.2020.100029] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2019] [Revised: 02/13/2020] [Accepted: 02/13/2020] [Indexed: 02/06/2023] Open
Abstract
Gastric cancer is a frequent human tumor and often a lethal disease. Targeted therapy for gastric carcinomas is far behind vis-à-vis other solid tumors, primarily because of the paucity of cancer-driving mutations that could be efficiently and specifically targeted by current therapy. Thus, there is a need to discover actionable pathways/proteins and new diagnostic and prognostic biomarkers. In this study, we explored the role of the extracellular matrix glycoprotein EMILIN2, Elastin Microfibril Interfacer 2, in a cohort of gastric cancer patients. We discovered that EMILIN2 expression was consistently suppressed in gastric cancer and high expression levels of this glycoprotein were linked to abnormal vascular density. Furthermore, we found that EMILIN2 had a dual effect on gastric carcinoma cells: on one hand, it decreased tumor cell proliferation by triggering apoptosis, and on the other hand, it evoked the production of a number of cytokines involved in angiogenesis and inflammation, such as IL-8. Collectively, our findings posit EMILIN2 as an important onco-regulator exerting pleiotropic effects on the gastric cancer microenvironment. EMILIN2 is localized in the gastric lamina propria and its expression is down-regulated in gastric cancer. High levels of EMILIN2 associate with elevated vascular density. EMILIN2 impairs the proliferation of gastric cancer cells by evoking apoptosis. Surprisingly, EMILIN2 triggers the expression of pro-angiogenic and pro-inflammatory cytokines.
Collapse
Key Words
- 5-FU, 5-fluorouracil
- Angiogenesis
- CAFCA, Centrifugal Assay for Fluorescence-based Cell Adhesion
- CD31, cluster of differentiation 31 also known as PECAM-1
- ECM, extracellular matrix
- EGFR, epidermalgrowth factor receptor
- EMILIN 2, Elastin Microfibril Interfacer 2
- Extracellular matrix
- GC, gastric cancer
- Gastric cancer
- HER2, human epidermal growth factor receptor 2
- IGFBP2, insulin growth factor-binding protein 2
- Inflammation
- PFS, progression free survival
- Serpin 1, serine protease inhibitor 1
- Tumor microenvironment
- VEGFA, vascular endothelial growth factor A
Collapse
Affiliation(s)
- Eva Andreuzzi
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Albina Fejza
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Alessandra Capuano
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Evelina Poletto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Eliana Pivetta
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Roberto Doliana
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Rosanna Pellicani
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Andrea Favero
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Stefania Maiero
- Department of Clinical Oncology, Experimental Gastrointestinal, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Mara Fornasarig
- Department of Clinical Oncology, Experimental Gastrointestinal, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Renato Cannizzaro
- Department of Clinical Oncology, Experimental Gastrointestinal, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Paola Spessotto
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| | - Maurizio Mongiat
- Department of Research and Diagnosis, Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, Italy
| |
Collapse
|
31
|
Hamanaka G, Kubo T, Ohtomo R, Takase H, Reyes-Bricio E, Oribe S, Osumi N, Lok J, Lo EH, Arai K. Microglial responses after phagocytosis: Escherichia coli bioparticles, but not cell debris or amyloid beta, induce matrix metalloproteinase-9 secretion in cultured rat primary microglial cells. Glia 2020; 68:1435-1444. [PMID: 32057146 DOI: 10.1002/glia.23791] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2019] [Revised: 01/24/2020] [Accepted: 01/27/2020] [Indexed: 12/13/2022]
Abstract
Upon infection or brain damage, microglia are activated to play roles in immune responses, including phagocytosis and soluble factor release. However, little is known whether the event of phagocytosis could be a trigger for releasing soluble factors from microglia. In this study, we tested if microglia secrete a neurovascular mediator matrix metalloproteinase-9 (MMP-9) after phagocytosis in vitro. Primary microglial cultures were prepared from neonatal rat brains. Cultured microglia phagocytosed Escherichia coli bioparticles within 2 hr after incubation and started to secrete MMP-9 at around 12 hr after the phagocytosis. A TLR4 inhibitor TAK242 suppressed the E. coli-bioparticle-induced MMP-9 secretion. However, TAK242 did not change the engulfment of E. coli bioparticles in microglial cultures. Because lipopolysaccharides (LPS), the major component of the outer membrane of E. coli, also induced MMP-9 secretion in a dose-response manner and because the response was inhibited by TAK242 treatment, we assumed that the LPS-TLR4 pathway, which was activated by adhering to the substance, but not through the engulfing process of phagocytosis, would play a role in releasing MMP-9 from microglia after E. coli bioparticle treatment. To support the finding that the engulfing step would not be a critical trigger for MMP-9 secretion after the event of phagocytosis in microglia, we confirmed that cell debris and amyloid beta were both captured into microglia via phagocytosis, but neither of them induced MMP-9 secretion from microglia. Taken together, these data demonstrate that microglial response in MMP-9 secretion after phagocytosis differs depending on the types of particles/substances that microglia encountered.
Collapse
Affiliation(s)
- Gen Hamanaka
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Neuroprotection Research Laboratory, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Tomoya Kubo
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Neuroprotection Research Laboratory, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ryo Ohtomo
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Neuroprotection Research Laboratory, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Hajime Takase
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Neuroprotection Research Laboratory, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Estefania Reyes-Bricio
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Neuroprotection Research Laboratory, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Shuntaro Oribe
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine, Tohoku University School of Medicine, Sendai, Japan
| | - Noriko Osumi
- Department of Developmental Neuroscience, United Centers for Advanced Research and Translational Medicine, Tohoku University School of Medicine, Sendai, Japan
| | - Josephine Lok
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Neuroprotection Research Laboratory, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Department of Pediatrics, Massachusetts General Hospital, Boston, Massachusetts
| | - Eng H Lo
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Neuroprotection Research Laboratory, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Ken Arai
- Neuroprotection Research Laboratory, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts.,Neuroprotection Research Laboratory, Department of Neurology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
32
|
A simplified aortic ring assay: A useful ex vivo method to assess biochemical and functional parameters of angiogenesis. Matrix Biol Plus 2020; 6-7:100025. [PMID: 33543023 PMCID: PMC7852198 DOI: 10.1016/j.mbplus.2020.100025] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/16/2020] [Accepted: 01/18/2020] [Indexed: 12/27/2022] Open
Abstract
We present a simplified method for conducting aortic ring assays which yields robust sprouting and high reproducibility targeted towards matrix biologists studying angiogenesis and extracellular matrix signaling. Main adjustments from previously established protocols include embedding aortic rings between two layers of 3D type I collagen matrix and supplementing with vascular endothelial media. We also introduce a concise and effective staining protocol for obtaining high-resolution images of intracellular and extracellular matrix proteins along with a more accurate protocol to quantify angiogenesis. Importantly, we present a novel method to perform biochemical analyses of vessel sprouting without contamination from the aortic ring itself. Overall, our refined method enables detection of low abundance and phosphorylated proteins and provides a straightforward ex vivo angiogenic assay that can be easily reproduced by those in the matrix biology field. We report a simplified ex vivo aortic ring assay with enhanced sprouting. We use a two-layered 3D collagen matrix to encapsulate aortic rings. We obtain high-resolution images of intracellular and extracellular matrix proteins. We achieve reproducible biochemical and immunological analyses of aortic rings.
Collapse
Key Words
- Aortic rings
- Collagen
- DAPI, 4′,6-diamidine-2′-phenylindole dihydrochloride
- ECM, extracellular matrix
- Endothelial cell markers
- Extracellular matrix
- HA, hyaluronan
- HABP, HA-binding protein
- Hyaluronan binding protein
- IB4, Griffonia simplicifolia isolectin B4
- PBS, phosphate buffered saline
- PERK, protein kinase R-like endoplasmic reticulum kinase
- PFA, paraformaldehyde
- RIPA buffer, radioimmunoprecipitation assay buffer
- Sprouts
Collapse
|
33
|
Liu X, Huang H, Gao Y, Zhou L, Yang J, Li X, Li Y, Zhao H, Su S, Ke C, Pei Z. Visualization of gene therapy with a liver cancer-targeted adeno-associated virus 3 vector. J Cancer 2020; 11:2192-2200. [PMID: 32127946 PMCID: PMC7052912 DOI: 10.7150/jca.39579] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 01/03/2020] [Indexed: 12/13/2022] Open
Abstract
Background: To evaluate the feasibility of a self-complementing recombinant adeno-associated virus 3 (scrAAV3) vector targeting liver cancer and non-invasively monitor gene therapy of liver cancer. Materials and methods: An scrAAV3-HSV1-TK-kallistatin (ATK) gene drug was constructed, which contained the herpes virus thymidine kinase (HSV1-TK) reporter gene and human endogenous angiogenesis inhibitor (kallistatin) gene for non-invasive imaging of gene expression. Subcutaneous xenografted tumors of hepatoma in nude mice were generated for positron emission tomography/computed tomography (PET/CT) imaging. The ATK group was injected with the ATK gene through the tail vein, and an imaging agent was injected 2 weeks later. PET/CT imaging was performed at 1 hour after injection of the imaging agent. The control group was injected with phosphate-buffered saline at the same volume as the ATK gene drug. HE staining is used for pathological observation of tumor sections. HSV1-TK and kallistatin expression was identified by immunofluorescence, real-time quantitative PCR, and western blotting. Results: Radioactivity on PET/CT images was significantly higher in the ATK group compared with the control group. 18F-FHBG uptake values of left forelegs in ATK and control groups were 0.591±0.151% and 0.017 ± 0.011% ID/g (n=5), respectively (P<0.05). After injection of the ATK gene drug, mRNA and protein expression of HSV1-TK and kallistatin in subcutaneous xenograft tumors was detected successfully. In vitro analysis demonstrated significant differences in the expression of HSV1-TK and kallistatin between ATK and control groups (P<0.05). Conclusions: The scrAAV3 vector has a strong liver cancer-targeting ability, and the ATK gene drug can be used for targeted and non-invasive monitoring of liver cancer gene therapy.
Collapse
Affiliation(s)
- Xusheng Liu
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Hanling Huang
- Health management center, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Yan Gao
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Lumeng Zhou
- Postgraduate Training Base of Taihe Hospital, Jinzhou Medical University, Jinzhou, 121000, China
| | - Jianwei Yang
- Postgraduate Training Base of Taihe Hospital, Jinzhou Medical University, Jinzhou, 121000, China
| | - Xiaohui Li
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Yang Li
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Haiwen Zhao
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Shanchun Su
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Changbin Ke
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
| | - Zhijun Pei
- Department of Nuclear Medicine and Institute of Anesthesiology and Pain, Taihe Hospital, Hubei University of Medicine, Shiyan, 442000, China
- Hubei Key Laboratory of WudangLocal Chinese Medicine Research, Shiyan, 442000, China
- Hubei Key Laboratory of Embryonic Stem Cell Research, Shiyan, 442000, China
| |
Collapse
|
34
|
The role of tumor-derived exosomes in tumor angiogenesis and tumor progression. CURRENT ISSUES IN PHARMACY AND MEDICAL SCIENCES 2019. [DOI: 10.2478/cipms-2019-0034] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Abstract
Exosomes, belonging to the group of extracellular bodies, are released by healthy as well as cancerous cells and serve as a communication pathway. Tumor-derived exosomes (TEX) possess the capacity to reprogram the function of normal cells owing to their genetic and molecular cargo. Such exosomes target endothelial cells (among others) in the tumor microenvironment to promote angiogenesis. Blood supply is essential in solid tumor growth and metastasis. The potential of pro-angiogenic changes is enhanced by an increased amount of circulating tumor-derived exosomes in the body fluids of cancer patients. A vascular network is important, since the proliferation, as well as the metastatic spread of cancer cells depends on an adequate supply of oxygen and nutrients, and the removal of waste products. New blood vessels and lymphatic vessels are formed through processes called angiogenesis and lymphangiogenesis, respectively. Angiogenesis is regulated by both activator and inhibitor molecules. Thousands of patients have received anti-angiogenic therapy to date. Despite their theoretical efficacy, anti-angiogenic treatments have not proved beneficial in terms of long-term survival. Tumor-derived exosomes carrying pro-angiogenic factors might be a target for new anti-cancer therapy.
Collapse
|
35
|
Khan KA, McMurray JL, Mohammed F, Bicknell R. C-type lectin domain group 14 proteins in vascular biology, cancer and inflammation. FEBS J 2019; 286:3299-3332. [PMID: 31287944 PMCID: PMC6852297 DOI: 10.1111/febs.14985] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 05/21/2019] [Accepted: 07/05/2019] [Indexed: 02/06/2023]
Abstract
The C‐type lectin domain (CTLD) group 14 family of transmembrane glycoproteins consist of thrombomodulin, CD93, CLEC14A and CD248 (endosialin or tumour endothelial marker‐1). These cell surface proteins exhibit similar ectodomain architecture and yet mediate a diverse range of cellular functions, including but not restricted to angiogenesis, inflammation and cell adhesion. Thrombomodulin, CD93 and CLEC14A can be expressed by endothelial cells, whereas CD248 is expressed by vasculature associated pericytes, activated fibroblasts and tumour cells among other cell types. In this article, we review the current literature of these family members including their expression profiles, interacting partners, as well as established and speculated functions. We focus primarily on their roles in the vasculature and inflammation as well as their contributions to tumour immunology. The CTLD group 14 family shares several characteristic features including their ability to be proteolytically cleaved and engagement of some shared extracellular matrix ligands. Each family member has strong links to tumour development and in particular CD93, CLEC14A and CD248 have been proposed as attractive candidate targets for cancer therapy.
Collapse
Affiliation(s)
- Kabir A Khan
- Biological Sciences Platform, Sunnybrook Research Institute, Toronto, Canada.,Department of Medical Biophysics, University of Toronto, Canada
| | - Jack L McMurray
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Fiyaz Mohammed
- Cancer Immunology and Immunotherapy Centre, Institute of Immunology and Immunotherapy, University of Birmingham, UK
| | - Roy Bicknell
- Institutes of Cardiovascular Sciences and Biomedical Research, College of Medical and Dental Sciences, University of Birmingham, UK
| |
Collapse
|
36
|
Di Benedetto P, Ruscitti P, Liakouli V, Del Galdo F, Giacomelli R, Cipriani P. Linking myofibroblast generation and microvascular alteration: The role of CD248 from pathogenesis to therapeutic target (Review). Mol Med Rep 2019; 20:1488-1498. [PMID: 31257535 DOI: 10.3892/mmr.2019.10429] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Accepted: 05/29/2019] [Indexed: 11/06/2022] Open
Abstract
Fibrosis is characterized by excessive extracellular matrix (ECM) deposition, and is the pathological outcome of tissue injury in a number of disorders. Accumulation of the ECM may disrupt the structure and function of native tissues and organs, including the lungs, heart, liver and skin, resulting in significant morbidity and mortality. On this basis, multiple lines of evidence have focused on the molecular pathways and cellular mechanisms involved in fibrosis, which has led to the development of novel antifibrotic therapies. CD248 is one of several proteins identified to be localized to the stromal compartment in cancers and fibroproliferative disease, and may serve a key role in myofibroblast generation and accumulation. Numerous studies have supported the contribution of CD248 to tumour growth and fibrosis, stimulating interest in this molecule as a therapeutic target. In addition, it has been revealed that CD248 may be involved in pathological angiogenesis. The present review describes the current understanding of the structure and function of CD248 during angiogenesis and fibrosis, supporting the hypothesis that blocking CD248 signalling may prevent both myofibroblast generation and microvascular alterations during tissue fibrosis.
Collapse
Affiliation(s)
- Paola Di Benedetto
- Department of Biotechnological and Applied Clinical Sciences, Rheumatology Unit, School of Medicine, University of L'Aquila, L'Aquila I‑67100, Italy
| | - Piero Ruscitti
- Department of Biotechnological and Applied Clinical Sciences, Rheumatology Unit, School of Medicine, University of L'Aquila, L'Aquila I‑67100, Italy
| | - Vasiliki Liakouli
- Department of Biotechnological and Applied Clinical Sciences, Rheumatology Unit, School of Medicine, University of L'Aquila, L'Aquila I‑67100, Italy
| | - Francesco Del Galdo
- Leeds Biomedical Research Centre and Leeds Institute of Rheumatic and Musculoskeletal Medicine, University of Leeds, Leeds LS9 7TF, UK
| | - Roberto Giacomelli
- Department of Biotechnological and Applied Clinical Sciences, Rheumatology Unit, School of Medicine, University of L'Aquila, L'Aquila I‑67100, Italy
| | - Paola Cipriani
- Department of Biotechnological and Applied Clinical Sciences, Rheumatology Unit, School of Medicine, University of L'Aquila, L'Aquila I‑67100, Italy
| |
Collapse
|
37
|
Roy R, Morad G, Jedinak A, Moses MA. Metalloproteinases and their roles in human cancer. Anat Rec (Hoboken) 2019; 303:1557-1572. [PMID: 31168956 DOI: 10.1002/ar.24188] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Revised: 12/27/2018] [Accepted: 03/04/2019] [Indexed: 02/06/2023]
Abstract
It is now widely appreciated that members of the matrix metalloproteinase (MMP) family of enzymes play a key role in cancer development and progression along with many of the hallmarks associated with them. The activity of these enzymes has been directly implicated in extracellular matrix remodeling, the processing of growth factors and receptors, the modulation of cell migration, proliferation, and invasion, the epithelial to mesenchymal transition, the regulation of immune responses, and the control of angiogenesis. Certain MMP family members have been validated as biomarkers of a variety of human cancers including those of the breast, brain, pancreas, prostate, ovary, and others. The related metalloproteinases, the A disintegrin and metalloproteinases (ADAMs), share a number of these functions as well. Here, we explore these essential metalloproteinases and some of their disease-associated activities in detail as well as some of their complementary translational potential. Anat Rec, 2019. © 2019 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Roopali Roy
- The Vascular Biology Program, Boston Children's Hospital and the Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Golnaz Morad
- The Vascular Biology Program, Boston Children's Hospital and the Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Andrej Jedinak
- The Vascular Biology Program, Boston Children's Hospital and the Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| | - Marsha A Moses
- The Vascular Biology Program, Boston Children's Hospital and the Department of Surgery, Boston Children's Hospital and Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
38
|
Capuano A, Andreuzzi E, Pivetta E, Doliana R, Favero A, Canzonieri V, Maiero S, Fornasarig M, Magris R, Cannizzaro R, Mongiat M, Spessotto P. The Probe Based Confocal Laser Endomicroscopy (pCLE) in Locally Advanced Gastric Cancer: A Powerful Technique for Real-Time Analysis of Vasculature. Front Oncol 2019; 9:513. [PMID: 31263680 PMCID: PMC6584847 DOI: 10.3389/fonc.2019.00513] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Accepted: 05/29/2019] [Indexed: 12/24/2022] Open
Abstract
Probe based confocal laser endomicroscopy (pCLE) is an advanced technique which provides imaging of gastrointestinal mucosa at subcellular resolution and, importantly, a valid tool for the evaluation of microvasculature during endoscopic examination. In order to assess intratumoral vascularization and the efficiency of blood flow in locally advanced gastric cancer, we examined 57 patients through pCLE imaging. The vascular alterations in gastric cancer were mainly characterized by leakage and by the presence of tortuous and large size vessels. Defects in blood flow were detected very rarely. No association between the angiogenic score and the gastric tumor site or histological type was observed. Interestingly, no correlation was also found with the tumor grading indicating that the vascular angiogenic anomalies in gastric cancer represent an early pathological event to be observed and detected. The majority of patients displayed unchanged vascular alterations following neoadjuvant chemotherapy and this positively correlated with stable or progressive disease, suggesting that an unaltered angiogenic score could per se be indicative of poor therapeutic efficacy. Different vascular parameters were evaluated by immunofluorescence using bioptic samples and the vessel density did not correlate with clinical staging, site or histologic type. Interestingly, only CD105, Multimerin-2 and GLUT1 were able to discriminate normal from tumoral gastric mucosa. Taken together, these findings indicate that functional and structural angiogenic parameters characteristic of tumor blood network were fully detectable by pCLE. Moreover, the evaluation of tumor vasculature by real-time assessment may provide useful information to achieve tailored therapeutic interventions for gastric cancer patients.
Collapse
Affiliation(s)
- Alessandra Capuano
- Molecular Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Eva Andreuzzi
- Molecular Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Eliana Pivetta
- Molecular Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Roberto Doliana
- Molecular Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Andrea Favero
- Molecular Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | | | - Stefania Maiero
- Oncological Gastroenterology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Mara Fornasarig
- Oncological Gastroenterology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Raffaella Magris
- Oncological Gastroenterology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Renato Cannizzaro
- Oncological Gastroenterology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Maurizio Mongiat
- Molecular Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| | - Paola Spessotto
- Molecular Oncology, Centro di Riferimento Oncologico (CRO), IRCCS, Aviano, Italy
| |
Collapse
|
39
|
Sun Z, Xue H, Wei Y, Wang C, Yu R, Wang C, Wang S, Xu J, Qian M, Meng Q, Li G. Mucin O-glycosylating enzyme GALNT2 facilitates the malignant character of glioma by activating the EGFR/PI3K/Akt/mTOR axis. Clin Sci (Lond) 2019; 133:1167-1184. [PMID: 31076460 DOI: 10.1042/cs20190145] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Revised: 05/01/2019] [Accepted: 05/09/2019] [Indexed: 12/13/2022]
Abstract
N-Acetylgalactosaminyltransferase 2 (GALNT2), the enzyme that regulates the initial step of mucin O-glycosylation, has been reported to play a role in influencing the malignancy of various cancers. However, the mechanism through which it influences gliomas is still unknown. In the current study, the Cox proportional hazards model was used to select genes. Data obtained from The Cancer Genome Atlas (TCGA) database and immunohistochemistry (IHC) of clinical specimens showed that increased GALNT2 expression levels were associated with an unfavorable prognosis and a higher tumor grade in human gliomas. Then, GALNT2 knockdown and overexpression were performed in glioma cell lines and verified by quantitative real-time PCR (qRT-PCR) and Western blotting. Functional assays demonstrated that GALNT2 was closely related to glioma cell proliferation, cycle transition, migration and invasion. Western blot analysis and lectin pull-down assays indicated that GALNT2 knockdown decreased the level of phosphorylated epidermal growth factor receptor (EGFR) and the expression of the Tn antigen on EGFR and affected the expression levels of p21, cyclin-dependent kinase 4 (CDK4), cyclinD1, matrix metalloproteinase 2 (MMP2) and matrix metalloproteinase 9 (MMP9) through the EGFR/PI3K/Akt/mTOR pathway. GALNT2 overexpression had the opposite effects. In vivo, the growth of orthotopic glioma xenografts in nude mice was distinctly inhibited by the expression of GALNT2 shRNA, and the tumors with GALNT2 shRNA exhibited less aggressiveness and reduced expression of Ki67 and MMP2. Overall, GALNT2 facilitates the malignant characteristics of glioma by influencing the O-glycosylation and phosphorylation of EGFR and the subsequent downstream PI3K/Akt/mTOR axis. Therefore, GALNT2 may serve as a novel biomarker and a potential target for future therapy of glioma.
Collapse
Affiliation(s)
- Zhongzheng Sun
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China
- Department of Neurosurgery, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan 250033, China
- Institute of Brain and Brain-Inspired Science, Shandong University and Shandong Provincial Key Laboratory of Brain Function Remodeling, 107 Wenhua Xi Road, Jinan 250012, China
| | - Hao Xue
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China
- Institute of Brain and Brain-Inspired Science, Shandong University and Shandong Provincial Key Laboratory of Brain Function Remodeling, 107 Wenhua Xi Road, Jinan 250012, China
| | - Yan Wei
- Department of Neurosurgery, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan 250033, China
| | - Chaochao Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China
- Institute of Brain and Brain-Inspired Science, Shandong University and Shandong Provincial Key Laboratory of Brain Function Remodeling, 107 Wenhua Xi Road, Jinan 250012, China
| | - Rui Yu
- Department of Neurosurgery, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan 250033, China
- Institute of Brain and Brain-Inspired Science, Shandong University and Shandong Provincial Key Laboratory of Brain Function Remodeling, 107 Wenhua Xi Road, Jinan 250012, China
| | - Chengwei Wang
- Department of Neurosurgery, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan 250033, China
| | - Shaobo Wang
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China
- Institute of Brain and Brain-Inspired Science, Shandong University and Shandong Provincial Key Laboratory of Brain Function Remodeling, 107 Wenhua Xi Road, Jinan 250012, China
| | - Jianye Xu
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China
- Institute of Brain and Brain-Inspired Science, Shandong University and Shandong Provincial Key Laboratory of Brain Function Remodeling, 107 Wenhua Xi Road, Jinan 250012, China
| | - Mingyu Qian
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China
- Institute of Brain and Brain-Inspired Science, Shandong University and Shandong Provincial Key Laboratory of Brain Function Remodeling, 107 Wenhua Xi Road, Jinan 250012, China
| | - Qinghu Meng
- Department of Neurosurgery, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan 250033, China
| | - Gang Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan 250012, China
- Institute of Brain and Brain-Inspired Science, Shandong University and Shandong Provincial Key Laboratory of Brain Function Remodeling, 107 Wenhua Xi Road, Jinan 250012, China
| |
Collapse
|
40
|
Zhang J, Liu M, Huang M, Chen M, Zhang D, Luo L, Ye G, Deng L, Peng Y, Wu X, Liu G, Ye W, Zhang D. Ginsenoside F1 promotes angiogenesis by activating the IGF-1/IGF1R pathway. Pharmacol Res 2019; 144:292-305. [PMID: 31048033 DOI: 10.1016/j.phrs.2019.04.021] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 04/06/2019] [Accepted: 04/18/2019] [Indexed: 01/29/2023]
Abstract
Ischemic stroke is one of the most lethal and highly disabling diseases that seriously affects the human health and quality of life. A therapeutic angiogenic strategy has been proposed to alleviate ischemia-induced injury by promoting angiogenesis and improving cerebrovascular function in the ischemic regions. The insulin-like growth factor 1 (IGF-1)/insulin-like growth factor 1 receptor (IGF1R) axis is crucial for cerebral angiogenesis and neurogenesis. However, effective drugs that prevent cerebral ischemic injury by inducing cerebral angiogenesis via activation of the IGF1R pathway are lacking. Here, we screened a pro-angiogenic agent ginsenoside F1 (GF1), a ginseng saponin isolated from a traditional Chinese medicine that was widely used in ischemic stroke treatment. It promoted the proliferation, mobility and tube formation of human umbilical vein endothelial cells and human brain microvascular endothelial cells, as well as pericytes recruitment to the endothelial tubes. GF1 stimulated vessel sprouting in the rat arterial ring and facilitated neovascularization in chicken embryo chorioallantoic membrane (CAM). In the in vivo experiments, GF1 rescued the axitinib-induced vascular defect in zebrafish. It also increased the microvessel density (MVD) and improved focal cerebral blood perfusion in the rat middle cerebral artery occlusion (MCAO) model. Mechanism studies revealed that GF1-induced angiogenesis depended on IGF1R activation mediated by the autocrine IGF-1 loop in endothelial cells. Based on our findings, GF1-induced activation of the IGF-1/IGF1R pathway to promote angiogenesis is an effective approach to alleviate cerebral ischemia, and GF1 is a potential agent that improves cerebrovascular function and promotes recovery from ischemic stroke.
Collapse
Affiliation(s)
- Jiayan Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Mingqun Liu
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Maohua Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Minfeng Chen
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Dong Zhang
- Department of Medical Imaging Centre, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Liangping Luo
- Department of Medical Imaging Centre, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Geni Ye
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Lijuan Deng
- Formula-pattern Research Center, School of Traditional Chinese Medicine, Jinan University, Guangzhou, China
| | - Yinghui Peng
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China
| | - Xin Wu
- Guangxi Engineering Research Center of Innovative Preparations for Natural Medicine, Guangxi Wuzhou Pharmaceutical (Group) Co., Ltd, Wuzhou 543000, China
| | - Guanping Liu
- Guangxi Engineering Research Center of Innovative Preparations for Natural Medicine, Guangxi Wuzhou Pharmaceutical (Group) Co., Ltd, Wuzhou 543000, China
| | - Wencai Ye
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China.
| | - Dongmei Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, China; Guangdong Province Key Laboratory of Pharmacodynamic Constituents of Traditional Chinese Medicine and New Drugs Research, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
41
|
The Role of Monocytes and Macrophages in Human Atherosclerosis, Plaque Neoangiogenesis, and Atherothrombosis. Mediators Inflamm 2019; 2019:7434376. [PMID: 31089324 PMCID: PMC6476044 DOI: 10.1155/2019/7434376] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/17/2019] [Indexed: 12/14/2022] Open
Abstract
Atherosclerosis is one of the leading causes of death and disability worldwide. It is a complex disease characterized by lipid accumulation within the arterial wall, inflammation, local neoangiogenesis, and apoptosis. Innate immune effectors, in particular monocytes and macrophages, play a pivotal role in atherosclerosis initiation and progression. Although most of available evidence on the role of monocytes and macrophages in atherosclerosis is derived from animal studies, a growing body of evidence elucidating the role of these mononuclear cell subtypes in human atherosclerosis is currently accumulating. A novel pathogenic role of monocytes and macrophages in terms of atherosclerosis initiation and progression, in particular concerning the role of these cell subsets in neovascularization, has been discovered. The aim of the present article is to review currently available evidence on the role of monocytes and macrophages in human atherosclerosis and in relation to plaque characteristics, such as plaque neoangiogenesis, and patients' prognosis and their potential role as biomarkers.
Collapse
|
42
|
Gonzalez-Avila G, Sommer B, Mendoza-Posada DA, Ramos C, Garcia-Hernandez AA, Falfan-Valencia R. Matrix metalloproteinases participation in the metastatic process and their diagnostic and therapeutic applications in cancer. Crit Rev Oncol Hematol 2019; 137:57-83. [PMID: 31014516 DOI: 10.1016/j.critrevonc.2019.02.010] [Citation(s) in RCA: 235] [Impact Index Per Article: 39.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/11/2019] [Accepted: 02/24/2019] [Indexed: 12/13/2022] Open
Abstract
Matrix metalloproteinases (MMPs) participate from the initial phases of cancer onset to the settlement of a metastatic niche in a second organ. Their role in cancer progression is related to their involvement in the extracellular matrix (ECM) degradation and in the regulation and processing of adhesion and cytoskeletal proteins, growth factors, chemokines and cytokines. MMPs participation in cancer progression makes them an attractive target for cancer therapy. MMPs have also been used for theranostic purposes in the detection of primary tumor and metastatic tissue in which a particular MMP is overexpressed, to follow up on therapy responses, and in the activation of cancer cytotoxic pro-drugs as part of nano-delivery-systems that increase drug concentration in a specific tumor target. Herein, we review MMPs molecular characteristics, their synthesis regulation and enzymatic activity, their participation in the metastatic process, and how their functions have been used to improve cancer treatment.
Collapse
Affiliation(s)
- Georgina Gonzalez-Avila
- Laboratorio Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico.
| | - Bettina Sommer
- Departamento de Investigación en Hiperreactividad Bronquial, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | | | - Carlos Ramos
- Laboratorio de Biología Celular, Departamento de Fibrosis Pulmonar, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - A Armando Garcia-Hernandez
- Laboratorio Oncología Biomédica, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| | - Ramces Falfan-Valencia
- Laboratorio de HLA, Departamento de Inmunogenética y Alergia, Instituto Nacional de Enfermedades Respiratorias "Ismael Cosío Villegas", Mexico City, Mexico
| |
Collapse
|
43
|
Abstract
A growing body of research demonstrates modulation of autophagy by a variety of matrix constituents, including decorin, endorepellin, and endostatin. These matrix proteins are both pro-autophagic and anti-angiogenic. Here, we detail a series of methods to monitor matrix-induced autophagy and its concurrent effects on angiogenesis. We first discuss cloning and purifying proteoglycan fragment and core proteins in the laboratory and review relevant techniques spanning from cell culture to treatment with these purified proteoglycans in vitro and ex vivo. Further, we cover protocols in monitoring autophagic progression via morphological and microscopic characterization, biochemical western blot analysis, and signaling pathway investigation. Downstream angiogenic effects using in vivo approaches are then discussed using wild-type mice and the GFP-LC3 transgenic mouse model. Finally, we explore matrix-induced mitophagy via monitoring changes in mitochondrial DNA and permeability.
Collapse
Affiliation(s)
- Carolyn Chen
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Aastha Kapoor
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA.
| |
Collapse
|
44
|
Loss of Multimerin-2 and EMILIN-2 Expression in Gastric Cancer Associate with Altered Angiogenesis. Int J Mol Sci 2018; 19:ijms19123983. [PMID: 30544909 PMCID: PMC6321373 DOI: 10.3390/ijms19123983] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 12/06/2018] [Indexed: 01/25/2023] Open
Abstract
Gastric cancer is a deadly tumor and a relatively common disease worldwide. Surgical resection and chemotherapy are the main clinical options to treat this type of disease, however the median overall survival rate is limited to one year. Thus, the development of new therapies is a highly necessary clinical need. Angiogenesis is a promising target for this tumor type, however clinical trials with the use of anti-angiogenic drugs have so far not met expectations. Therefore, it is important to better characterize the expression of molecules whose expression levels may impact on the efficacy of the treatments. In this study the characteristics of the gastric tumor associated blood vessels were first assessed by endomicroscopy. Next, we analyzed the expression of Multimerin-2, EMILIN-2 and EMILIN-1, three molecules of the EMI Domain ENdowed (EDEN) protein family. These molecules play important functions in the tumor microenvironment, affecting cancer progression both directly and indirectly impinging on angiogenesis and lymphangiogenesis. All the molecules were highly expressed in the normal mucosa whereas in a number of patients their expression was altered. We consider that better characterizing the gastric tumor microenvironment and the quality of the vasculature may achieve effective patient tailored therapies.
Collapse
|
45
|
Karamanos NK, Piperigkou Z, Theocharis AD, Watanabe H, Franchi M, Baud S, Brézillon S, Götte M, Passi A, Vigetti D, Ricard-Blum S, Sanderson RD, Neill T, Iozzo RV. Proteoglycan Chemical Diversity Drives Multifunctional Cell Regulation and Therapeutics. Chem Rev 2018; 118:9152-9232. [PMID: 30204432 DOI: 10.1021/acs.chemrev.8b00354] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Aichi 480-1195, Japan
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Rimini 47100, Italy
| | - Stéphanie Baud
- Université de Reims Champagne-Ardenne, Laboratoire SiRMa, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster 48149, Germany
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Sylvie Ricard-Blum
- University Claude Bernard Lyon 1, CNRS, UMR 5246, Institute of Molecular and Supramolecular Chemistry and Biochemistry, Villeurbanne 69622, France
| | - Ralph D. Sanderson
- Department of Pathology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| |
Collapse
|
46
|
Neill T, Andreuzzi E, Wang ZX, Peiper SC, Mongiat M, Iozzo RV. Endorepellin remodels the endothelial transcriptome toward a pro-autophagic and pro-mitophagic gene signature. J Biol Chem 2018; 293:12137-12148. [PMID: 29921586 PMCID: PMC6078466 DOI: 10.1074/jbc.ra118.002934] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/23/2018] [Indexed: 12/24/2022] Open
Abstract
Regulation of autophagy by proteolytically cleaved fragments of heparan sulfate proteoglycans is a novel and current research focus in tumor biology. Endorepellin is the C-terminal angiostatic fragment of the heparan sulfate proteoglycan perlecan and induces autophagy in endothelial cells. To further investigate this property, we used NanoString, a digital PCR platform for measuring pre-defined transcripts in biological samples to analyze a custom subset of 95 autophagy-related genes in human umbilical vein endothelial cells treated with ultrapure human recombinant endorepellin. We discovered an endorepellin-evoked pro-autophagic and pro-mitophagic gene expression signatures, which included two coordinately up-regulated mitochondrial-associated genes encoding the E3 ubiquitin protein ligase Parkin and the tumor suppressor mitostatin. Induction of both proteins required the tyrosine kinase activity of vascular endothelial growth factor receptor 2 (VEGFR2). Furthermore, we discovered that endorepellin evoked mitochondrial depolarization in endothelial cells via a specific interaction between its two proximal LG1/2 domains and VEGFR2. We also found that following loss of membrane potential, mitostatin and parkin interact and that mitostatin associates with the established Parkin receptor mitofusin-2. In conclusion, we have identified a critical role for endorepellin in remodeling the autophagic transcriptome and influencing mitochondrial homeostasis.
Collapse
Affiliation(s)
- Thomas Neill
- Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Eva Andreuzzi
- Department of Translational Research, Experimental Oncology Division 2, CRO Aviano-IRCCS, National Cancer Institute, Aviano 33081, Italy
| | - Zi-Xuan Wang
- Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Stephen C Peiper
- Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Maurizo Mongiat
- Department of Translational Research, Experimental Oncology Division 2, CRO Aviano-IRCCS, National Cancer Institute, Aviano 33081, Italy
| | - Renato V Iozzo
- Department of Pathology, Anatomy, and Cell Biology, and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, Pennsylvania 19107.
| |
Collapse
|
47
|
Gubbiotti MA, Seifert E, Rodeck U, Hoek JB, Iozzo RV. Metabolic reprogramming of murine cardiomyocytes during autophagy requires the extracellular nutrient sensor decorin. J Biol Chem 2018; 293:16940-16950. [PMID: 30049794 DOI: 10.1074/jbc.ra118.004563] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 07/19/2018] [Indexed: 11/06/2022] Open
Abstract
The extracellular matrix is a master regulator of tissue homeostasis in health and disease. Here we examined how the small, leucine-rich, extracellular matrix proteoglycan decorin regulates cardiomyocyte metabolism during fasting in vivo First, we validated in Dcn -/- mice that decorin plays an essential role in autophagy induced by fasting. High-throughput metabolomics analyses of cardiac tissue in Dcn -/- mice subjected to fasting revealed striking differences in the hexosamine biosynthetic pathway resulting in aberrant cardiac O-β-N-acetylglycosylation as compared with WT mice. Functionally, Dcn -/- mice maintained cardiac function at a level comparable with nonfasted animals whereas fasted WT mice showed reduced ejection fraction. Collectively, our results suggest that reduced sensing of nutrient deprivation in the absence of decorin preempts functional adjustments of cardiac output associated with metabolic reprogramming.
Collapse
Affiliation(s)
- Maria A Gubbiotti
- From the Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Erin Seifert
- From the Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.,MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Ulrich Rodeck
- From the Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.,Department of Dermatology and Cutaneous Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107
| | - Jan B Hoek
- From the Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107.,MitoCare Center, Department of Pathology, Anatomy and Cell Biology, Thomas Jefferson University, Philadelphia, Pennsylvania 19107, and
| | - Renato V Iozzo
- From the Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 19107,
| |
Collapse
|
48
|
Lugano R, Vemuri K, Yu D, Bergqvist M, Smits A, Essand M, Johansson S, Dejana E, Dimberg A. CD93 promotes β1 integrin activation and fibronectin fibrillogenesis during tumor angiogenesis. J Clin Invest 2018; 128:3280-3297. [PMID: 29763414 PMCID: PMC6063507 DOI: 10.1172/jci97459] [Citation(s) in RCA: 94] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Accepted: 05/01/2018] [Indexed: 12/22/2022] Open
Abstract
Tumor angiogenesis occurs through regulation of genes that orchestrate endothelial sprouting and vessel maturation, including deposition of a vessel-associated extracellular matrix. CD93 is a transmembrane receptor that is upregulated in tumor vessels in many cancers, including high-grade glioma. Here, we demonstrate that CD93 regulates β1 integrin signaling and organization of fibronectin fibrillogenesis during tumor vascularization. In endothelial cells and mouse retina, CD93 was found to be expressed in endothelial filopodia and to promote filopodia formation. The CD93 localization to endothelial filopodia was stabilized by interaction with multimerin-2 (MMRN2), which inhibited its proteolytic cleavage. The CD93-MMRN2 complex was required for activation of β1 integrin, phosphorylation of focal adhesion kinase (FAK), and fibronectin fibrillogenesis in endothelial cells. Consequently, tumor vessels in gliomas implanted orthotopically in CD93-deficient mice showed diminished activation of β1 integrin and lacked organization of fibronectin into fibrillar structures. These findings demonstrate a key role of CD93 in vascular maturation and organization of the extracellular matrix in tumors, identifying it as a potential target for therapy.
Collapse
Affiliation(s)
- Roberta Lugano
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Kalyani Vemuri
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Di Yu
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Michael Bergqvist
- Centre for Research and Development, Uppsala University, Gävle Hospital, Gävle, Sweden.,Department of Radiation Sciences and Oncology, Umeå University Hospital, Umeå, Sweden
| | - Anja Smits
- Department of Neuroscience, Neurology, Uppsala University, Uppsala, Sweden.,Institute of Neuroscience and Physiology, Department of Clinical Neuroscience, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Magnus Essand
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| | - Staffan Johansson
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Elisabetta Dejana
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden.,Vascular Biology Unit, FIRC Institute of Molecular Oncology, Milan, Italy
| | - Anna Dimberg
- Department of Immunology, Genetics and Pathology, Science for Life Laboratory, Uppsala University, Rudbeck Laboratory, Uppsala, Sweden
| |
Collapse
|
49
|
Bouris P, Manou D, Sopaki-Valalaki A, Kolokotroni A, Moustakas A, Kapoor A, Iozzo RV, Karamanos NK, Theocharis AD. Serglycin promotes breast cancer cell aggressiveness: Induction of epithelial to mesenchymal transition, proteolytic activity and IL-8 signaling. Matrix Biol 2018; 74:35-51. [PMID: 29842969 DOI: 10.1016/j.matbio.2018.05.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 12/20/2022]
Abstract
Serglycin is an intracellular proteoglycan that is expressed and constitutively secreted by numerous malignant cells, especially prominent in the highly-invasive, triple-negative MDA-MB-231 breast carcinoma cells. Notably, de novo expression of serglycin in low aggressive estrogen receptor α (ERα)-positive MCF7 breast cancer cells promotes an aggressive phenotype. In this study, we discovered that serglycin promoted epithelial to mesenchymal transition (EMT) in MCF7 cells as shown by increased expression of mesenchymal markers vimentin, fibronectin and EMT-related transcription factor Snail2. These phenotypic traits were also associated with the development of drug resistance toward various chemotherapy agents and induction of their proteolytic potential as shown by the increased expression of matrix metalloproteinases, including MMP-1, MMP-2, MMP-9, MT1-MMP and up-regulation of urokinase-type plasminogen activator. Knockdown of serglycin markedly reduced the expression of these proteolytic enzymes in MDA-MB-231 cells. In addition, serglycin expression was closely linked to a pro-inflammatory gene signature including the chemokine IL-8 in ERα-negative breast cancer cells and tumors. Notably, serglycin regulated the secretion of IL-8 in breast cancer cells independently of their ERα status and promoted their proliferation, migration and invasion by triggering IL-8/CXCR2 downstream signaling cascades including PI3K, Src and Rac activation. Thus, serglycin promotes the establishment of a pro-inflammatory milieu in breast cancer cells that evokes an invasive mesenchymal phenotype via autocrine activation of IL-8/CXCR2 signaling axis.
Collapse
Affiliation(s)
- Panagiotis Bouris
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Anastasia Sopaki-Valalaki
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Anthi Kolokotroni
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE 75123 Uppsala, Sweden
| | - Aastha Kapoor
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece.
| |
Collapse
|
50
|
Saponaro C, Vagheggini A, Scarpi E, Centonze M, Catacchio I, Popescu O, Pastena MI, Giotta F, Silvestris N, Mangia A. NHERF1 and tumor microenvironment: a new scene in invasive breast carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2018; 37:96. [PMID: 29716631 PMCID: PMC5930748 DOI: 10.1186/s13046-018-0766-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 04/19/2018] [Indexed: 01/10/2023]
Abstract
BACKGROUND Tumor microenvironment (TME) includes many factors such as tumor associated inflammatory cells, vessels, and lymphocytes, as well as different signaling molecules and extracellular matrix components. These aspects can be de-regulated and consequently lead to a worsening of cancer progression. In recent years an association between the scaffolding protein Na+/H+ exchanger regulatory factor 1 (NHERF1) and tumor microenvironment changes in breast cancer (BC) has been reported. METHODS Subcellular NHERF1 localization, vascular endothelial growth factor (VEGF), its receptor VEGFR1, hypoxia inducible factor 1 alpha (HIF-1α), TWIST1 expression and microvessel density (MVD) in 183 invasive BCs were evaluated, using immunohistochemistry on tissue microarrays (TMA). Immunofluorescence was employed to explore protein interactions. RESULTS Cytoplasmic NHERF1(cNHERF1) expression was directly related to cytoplasmic VEGF and VEGFR1 expression (p = 0.001 and p = 0.027 respectively), and inversely to nuclear HIF-1α (p = 0.021) and TWIST1 (p = 0.001). Further, immunofluorescence revealed an involvement of tumor cells with NHERF1 positive staining in neo-vascular formation, suggesting a "mosaic" structure development of these neo-vessels. Survival analyses showed that loss of nuclear TWIST1 (nTWIST1) expression was related to a decrease of disease free survival (DFS) (p < 0.001), while nTWIST1-/mNHERF1+ presented an increased DFS with respect to nTWIST1+/mNHERF1- phenotype (p < 0.001). Subsequently, the analyses of nTWIST1+/cNHERF1+ phenotype selected a subgroup of patients with a worse DFS compared to nTWIST1-/cNHERF1- patients (p = 0.004). CONCLUSION Resulting data suggested a dynamic relation between NHERF1 and TME markers, and confirmed both the oncosuppressor role of membranous NHERF1 expression and the oncogene activity of cytoplasmic NHERF1.
Collapse
Affiliation(s)
- Concetta Saponaro
- Functional Biomorphology Laboratory, IRCCS-Istituto Tumori "Giovanni Paolo II", 70124, Bari, Italy
| | - Alessandro Vagheggini
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST)-IRCCS, 47014, Meldola, FC, Italy
| | - Emanuela Scarpi
- Unit of Biostatistics and Clinical Trials, Istituto Scientifico Romagnolo per lo Studio e la Cura dei Tumori (IRST)-IRCCS, 47014, Meldola, FC, Italy
| | - Matteo Centonze
- Functional Biomorphology Laboratory, IRCCS-Istituto Tumori "Giovanni Paolo II", 70124, Bari, Italy
| | - Ivana Catacchio
- Functional Biomorphology Laboratory, IRCCS-Istituto Tumori "Giovanni Paolo II", 70124, Bari, Italy
| | - Ondina Popescu
- Pathology Department, IRCCS-Istituto Tumori "Giovanni PaoloII", 70124, Bari, Italy
| | - Maria Irene Pastena
- Pathology Department, IRCCS-Istituto Tumori "Giovanni PaoloII", 70124, Bari, Italy
| | - Francesco Giotta
- Medical Oncology Unit, IRCCS-Istituto Tumori "Giovanni Paolo II", 70124, Bari, Italy
| | - Nicola Silvestris
- Scientific Direction, IRCCS-Istituto Tumori "Giovanni Paolo II", 70124, Bari, Italy
| | - Anita Mangia
- Functional Biomorphology Laboratory, IRCCS-Istituto Tumori "Giovanni Paolo II", 70124, Bari, Italy.
| |
Collapse
|