1
|
Sonia N, Saikia S, Limaye AM. Estrogenic control of matrix metalloproteinases: a perspective on breast tumor invasion and metastasis. Mol Biol Rep 2025; 52:453. [PMID: 40358843 DOI: 10.1007/s11033-025-10555-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/29/2025] [Indexed: 05/15/2025]
Abstract
Metastasis is the major cause of mortality in breast cancer patients, and presents an invincible therapeutic challenge. It is a complex process of dissemination of tumor epithelial cells, which is associated with disruption of tissue homeostasis, and alterations in the tumor microenvironment through extracellular matrix (ECM) remodeling, stromal alteration, and epithelial-mesenchymal transition. Matrix metalloproteinases (MMPs) constitute a group of more than 25 zinc-dependent endopeptidases. By virtue of their ability to degrade a wide variety of ECM-associated proteins, they enable ECM remodelling during development, and disease. A large body of clinical data, and experimental evidences implicate MMPs in the invasion and metastasis of breast tumors. While MMPs are aberrantly expressed in breast tumors, few appear to have a dual role in disease progression; either promoting or inhibiting metastasis. Given the role of estrogen in breast cancer development, it is natural to ask whether this steroid hormone has any role in breast cancer metastasis. This review is a round-up of the prominent literature that presents estrogenic control of MMPs, which in turn implies its influence on the tumor microenvironment and metastasis.
Collapse
Affiliation(s)
- Ningthoujam Sonia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Snigdha Saikia
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Anil Mukund Limaye
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India.
| |
Collapse
|
2
|
Górecki M, Żbikowska A, Tokłowicz M, Sajdak S, Englert-Golon M, Andrusiewicz M. Hsa-miR-21-5p and Hsa-miR-145-5p Expression: From Normal Tissue to Malignant Changes-Context-Dependent Correlation with Estrogen- and Hypoxia-Vascularization-Related Pathways Genes: A Pilot Study. Int J Mol Sci 2025; 26:4461. [PMID: 40362695 PMCID: PMC12072406 DOI: 10.3390/ijms26094461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 05/04/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025] Open
Abstract
Ovarian cancer (OC) is a severe gynecological malignancy with a high mortality rate among women worldwide. It is often diagnosed at advanced stages due to the lack of effective screening methods. This study investigated the expression patterns of microRNAs (miRNAs) hsa-miR-21-5p and hsa-miR-145-5p as potential OC prognostic and diagnostic biomarkers and their correlation with estrogen-dependent (ESR1 & 2, PELP1 and c-SRC) and hypoxia-neovascularization-induced (HIF1A, EPAS1, and VEGFA) pathway genes. Tissue samples obtained from twenty patients with confirmed ovarian cancer and twenty controls were analyzed using quantitative polymerase chain reaction (qPCR) to examine miRNA and mRNA levels. The qPCR analysis revealed significantly higher hsa-miR-21-5p and lower hsa-miR-145-5p expression in OC tissues than controls. Moreover, a significant trend was observed in hsa-miR-21-5p and hsa-miR-145-5p expression levels across normal, non-cancerous changes and malignant ovarian tissues. The hsa-miR-21-5p showed better diagnostic potential than hsa-miR-145-5p. We also observed inconsistent correlations in hsa-miR-21-5p and hsa-mir-145-5p and estrogen-related and hypoxia-neovascularization-dependent genes in ovarian cancer across all groups. This suggests that the relationship between these miRNAs and the selected genes is context-specific. Our findings suggest that hsa-miR-21-5p and hsa-miR-145-5p expression levels may be prognostic or diagnostic markers for ovarian cancer patients.
Collapse
Affiliation(s)
- Mateusz Górecki
- Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznań, Poland; (M.G.); (A.Ż.); (M.T.)
- Cell Biology Research Group, Student Scientific Society, Poznan University of Medical Sciences, Rokietnicka 5E, 60-806 Poznań, Poland
| | - Aleksandra Żbikowska
- Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznań, Poland; (M.G.); (A.Ż.); (M.T.)
| | - Małgorzata Tokłowicz
- Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznań, Poland; (M.G.); (A.Ż.); (M.T.)
| | - Stefan Sajdak
- Division of Gynecology, Poznan University of Medical Sciences, 10 Fredry St., 61-701 Poznań, Poland;
- Department of Gynaecology and Obstetrics, Collegium Medicum University of Zielona Góra, Zyty 28, 65-046 Zielona Góra, Poland
| | - Monika Englert-Golon
- Division of Gynaecological Oncology, Department of Gynaecology, Gynecological and Obstetrics Clinical Hospital, Poznan University of Medical Sciences, Polna 33, 60-535 Poznań, Poland;
| | - Mirosław Andrusiewicz
- Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznań, Poland; (M.G.); (A.Ż.); (M.T.)
| |
Collapse
|
3
|
Mangani S, Piperigkou Z, Koletsis NE, Ioannou P, Karamanos NK. Estrogen receptors and extracellular matrix: the critical interplay in cancer development and progression. FEBS J 2025; 292:1558-1572. [PMID: 39285617 PMCID: PMC11970714 DOI: 10.1111/febs.17270] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/26/2024] [Accepted: 09/02/2024] [Indexed: 04/05/2025]
Abstract
Cancer remains a significant global health concern. Breast cancer is a multifaceted and prevalent disease influenced by several factors, among which estrogen receptors (ERs) and the extracellular matrix (ECM) play pivotal roles. ERs, encompassing ERα and ERβ, exert significant diversity on tumor behavior, cell signaling, invasion, and metastatic potential, thus guiding breast cancer prognosis. Understanding the multifunctional connections between ERs and ECM that mediate the dynamics of tumor microenvironment is vital for unraveling the complexity of breast cancer pathobiology and identifying novel therapeutic targets. This critical review delves into the intricate nature of ERs, emphasizing their structural isoforms and the consequential impact on breast cancer outcomes. A detailed examination of ER-mediated cell signaling pathways reveals how differential expression of ERα and ERβ isoforms influence breast cancer cell behavior. The functional ERs-matrix interactions emerge as a pivotal factor in modulating epigenetic mechanisms of breast cancer cells, orchestrating changes in cellular phenotype and expression patterns of matrix modulators. Specifically, ERα isoforms are shown to regulate ECM signaling cascades, while the effects of ECM components on ERα activity highlight a bidirectional regulatory axis. The diversity of ERβ isoforms is also highlighted, illustrating their distinct contribution to ECM-mediated cellular responses. This review underscores the complex interplay between ERα/β isoforms and the ECM, shedding light onto the potential therapeutic strategies targeting these interactions to improve breast cancer management.
Collapse
Affiliation(s)
- Sylvia Mangani
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of ChemistryUniversity of PatrasGreece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of ChemistryUniversity of PatrasGreece
| | - Nikolaos E. Koletsis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of ChemistryUniversity of PatrasGreece
| | - Paraskevi Ioannou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of ChemistryUniversity of PatrasGreece
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of ChemistryUniversity of PatrasGreece
| |
Collapse
|
4
|
Xiao S, Du J, Yuan G, Luo X, Song L. Granulosa Cells-Related MicroRNAs in Ovarian Diseases: Mechanism, Facts and Perspectives. Reprod Sci 2024; 31:3635-3650. [PMID: 38594585 DOI: 10.1007/s43032-024-01523-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Accepted: 03/19/2024] [Indexed: 04/11/2024]
Abstract
MicroRNAs (miRNAs) are a class of short single-stranded, noncoding RNAs that affect the translation of mRNAs by imperfectly binding to homologous 3'UTRs. Research on miRNAs in ovarian diseases is constantly expanding because miRNAs are powerful regulators of gene expression and cellular processes and are promising biomarkers. miRNA mimics, miRNA inhibitors and molecules targeting miRNAs (antimiRs) have shown promise as novel therapeutic agents in preclinical development. Granulosa cells (GCs) are supporting cells for developing oocytes in the ovary. GCs regulate female reproductive health by producing sex hormones and LH receptors. Increasing research has reported the relevance of miRNAs in GC pathophysiology. With in-depth studies of disease mechanisms, there are an increasing number of studies on the biomolecular pathways of miRNAs in gynecology and endocrinology. In the present review, we summarize the different functions of GC-related microRNAs in various ovarian disorders, such as polycystic ovary syndrome, premature ovarian insufficiency, premature ovarian failure and ovarian granulosa cell tumors.
Collapse
Affiliation(s)
- Shengmin Xiao
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Juan Du
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Guanghui Yuan
- Department of Oncology, Hejiang Hospital of Traditional Chinese Medicine, Luzhou, 611137, People's Republic of China
| | - Xiaohong Luo
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China.
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China.
| |
Collapse
|
5
|
Ali AA, Belali TM, Abu-Alghayth MH, Alyahyawi Y, Abalkhail A, Hazazi A, Nassar SA, Khan FR, Shmrany HA, Syed SM. Non-coding RNAs and estrogen receptor signaling in breast cancer: Nanotechnology-based therapeutic approaches. Pathol Res Pract 2024; 263:155568. [PMID: 39288475 DOI: 10.1016/j.prp.2024.155568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/19/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
This review investigates the regulatory role of non-coding RNAs (ncRNAs) in estrogen receptor (ER) signaling pathways, particularly in the context of breast cancer therapy, with an emphasis on the emerging potential of nanotechnology for drug delivery. The information was obtained from reputable databases, including PubMed, Elsevier, Springer, Wiley, Taylor, and Francis, which contain past and present research. Breast cancer remains the most prevalent cancer among women worldwide, and ER signaling mechanisms heavily influence its progression. Treatment options have traditionally encompassed surgery, chemotherapy, radiation therapy, targeted therapy, and hormone therapy. In recent decades, nanomedicine has emerged as a promising approach to breast cancer treatment. By passively targeting tumor cells and reducing toxicity, nanodrugs can overcome the challenges of conventional chemotherapy. Additionally, nanocarriers can stimulate tumor cells, enhancing treatment efficacy. Recent advancements in nanomedicine offer promising approaches for targeted cancer therapy, potentially overcoming the limitations of conventional treatments. This review explores the interactions between long non-coding RNAs (lncRNAs) and microRNAs (miRNAs) with ER pathways, their impact on breast cancer progression, and how these interactions can be leveraged to enhance therapeutic efficacy through nanotechnology-based drug delivery systems.
Collapse
Affiliation(s)
- Amer Al Ali
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, University of Bisha, 255, Al Nakhil, Bisha 67714, Saudi Arabia
| | - Tareg M Belali
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 255, Bisha 67714, Saudi Arabia
| | - Mohammed H Abu-Alghayth
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, P.O. Box 255, Bisha 67714, Saudi Arabia
| | - Yara Alyahyawi
- Department of Medical Laboratory Technology, College of Nursing and Health Sciences, Jazan University, Jazan, Saudi Arabia
| | - Adil Abalkhail
- Department of Public Health, College of Applied Medical Sciences, Qassim University, Buraydah 51452, P.O. Box 6666, Saudi Arabia
| | - Ali Hazazi
- Department of Pathology and Laboratory Medicine, Security Forces Hospital Program, Riyadh, Saudi Arabia; College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Somia A Nassar
- Department of Laboratory Medical Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Saudi Arabia; Department of Parasitology & Animal Diseases, National Research Centre, 33 Bohouth St., Dokki, Giza 12622, Egypt
| | - Farhan R Khan
- Department of Clinical Laboratory Science, College of Applied Medical Sciences, Al- Quwayiyah, Shaqra University, Riyadh, Saudi Arabia
| | - Humood Al Shmrany
- Department of Laboratory Medical Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Saudi Arabia.
| | - Shoaeb Mohammad Syed
- Department of Pharmaceutics, Dayanand College of Pharmacy, Barshi Road, Latur, MS, 413531, India.
| |
Collapse
|
6
|
Wei X, Liu J, Xu Z, Wang D, Zhu Q, Chen Q, Xu W. Research progress on the pharmacological mechanism, in vivo metabolism and structural modification of Erianin. Biomed Pharmacother 2024; 173:116295. [PMID: 38401517 DOI: 10.1016/j.biopha.2024.116295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/17/2024] [Indexed: 02/26/2024] Open
Abstract
Erianin is an important bibenzyl compound in dendrobium and has a wide spectrum of pharmacological properties. Since Erianin was discovered, abundant results have been achieved in the in vitro synthesis, structural modification, and pharmacological mechanism research. Researchers have developed a series of simple and efficient in vitro synthesis methods to improve the shortcomings of poor water solubility by replacing the chemical structure or coating it in nanomaterials. Erianin has a broad anti-tumor spectrum and significant anti-tumor effects. In addition, Erianin also has pharmacological actions like immune regulation, anti-inflammatory, and anti-angiogenesis. A comprehensive understanding of the synthesis, metabolism, structural modification, and pharmacological action pathways of Erianin is of great value for the utilization of Erianin. Therefore, this review conducts a relatively systematic look back at Erianin from the above four aspects, to give a reference for the evolvement and further appliance of Erianin.
Collapse
Affiliation(s)
- Xin Wei
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Jiajia Liu
- University of Science and Technology of China, Hefei 230026, PR China; Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, PR China
| | - Ziming Xu
- University of Science and Technology of China, Hefei 230026, PR China; Department of Ophthalmology, The First Affiliated Hospital of USTC, University of Science and Technology of China, Hefei 230001, PR China
| | - Dan Wang
- University of Science and Technology of China, Hefei 230026, PR China; Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, PR China
| | - Qizhi Zhu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Qi Chen
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China
| | - Weiping Xu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, PR China; University of Science and Technology of China, Hefei 230026, PR China; Department of Geriatrics, Gerontology Institute of Anhui Province, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230001, PR China; Anhui Provincial Key Laboratory of Tumor Immunotherapy and Nutrition Therapy, Hefei 230001, PR China.
| |
Collapse
|
7
|
Revisiting the Syndecans: Master Signaling Regulators with Prognostic and Targetable Therapeutic Values in Breast Carcinoma. Cancers (Basel) 2023; 15:cancers15061794. [PMID: 36980680 PMCID: PMC10046401 DOI: 10.3390/cancers15061794] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 03/10/2023] [Accepted: 03/13/2023] [Indexed: 03/18/2023] Open
Abstract
Syndecans (SDC1 to 4), a family of cell surface heparan sulfate proteoglycans, are frequently expressed in mammalian tissues. SDCs are aberrantly expressed either on tumor or stromal cells, influencing cancer initiation and progression through their pleiotropic role in different signaling pathways relevant to proliferation, cell-matrix adhesion, migration, invasion, metastasis, cancer stemness, and angiogenesis. In this review, we discuss the key roles of SDCs in the pathogenesis of breast cancer, the most common malignancy in females worldwide, focusing on the prognostic significance and molecular regulators of SDC expression and localization in either breast tumor tissue or its microenvironmental cells and the SDC-dependent epithelial–mesenchymal transition program. This review also highlights the molecular mechanisms underlying the roles of SDCs in regulating breast cancer cell behavior via modulation of nuclear hormone receptor signaling, microRNA expression, and exosome biogenesis and functions, as well as summarizing the potential of SDCs as promising candidate targets for therapeutic strategies against breast cancer.
Collapse
|
8
|
Anticancer or carcinogenic? The role of estrogen receptor β in breast cancer progression. Pharmacol Ther 2023; 242:108350. [PMID: 36690079 DOI: 10.1016/j.pharmthera.2023.108350] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Revised: 01/06/2023] [Accepted: 01/17/2023] [Indexed: 01/22/2023]
Abstract
Estrogen receptor β (ERβ) is closely related to breast cancer (BC) progression. Traditional concepts regard ERβ as a tumor suppressor. As studies show the carcinogenic effect of ERβ, some people have come to a new conclusion that ERβ serves as a tumor suppressor in estrogen receptor α (ERα)-positive breast cancer, while it is a carcinogen in ERα-negative breast cancer. However, we re-examine the role of ERβ and find this conclusion to be misleading based on the last decade's research. A large number of studies have shown that ERβ plays an anticancer role in both ERα-positive and ERα-negative breast cancers, and its carcinogenicity does not depend solely on the presence of ERα. Herein, we review the anticancer and oncogenic effects of ERβ on breast cancer progression in the past ten years, discuss the mechanism respectively, analyze the main reasons for the inconsistency and update ERβ selective ligand library. We believe a detailed and continuously updated review will help correct the one-sided understanding of ERβ, promoting ERβ-targeted breast cancer therapy.
Collapse
|
9
|
Espinoza-Sanchez NA, Troschel F, Greve B, Götte M. Proteoglycan Expression Studied by MicroRNAs. Methods Mol Biol 2023; 2619:273-292. [PMID: 36662477 DOI: 10.1007/978-1-0716-2946-8_20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
MicroRNAs are small noncoding RNAs that regulate gene expression at the posttranscriptional level. Proteoglycans are glycoproteins characterized by covalent attachment of a glycosaminoglycan chain, which have been identified as regulatory targets of microRNAs in a physiological and pathophysiological context. We present a strategy and detailed methods for the functional analysis of microRNA regulation of proteoglycans using human cancer cells as an application example. The experimental setup includes in silico microRNA target prediction, transfection of cancer cells with microRNA precursors, validation of target regulation by qPCR, flow cytometry and luciferase reporter assays, and an example for functional analysis and phenotype confirmation by complementation analysis.
Collapse
Affiliation(s)
- Nancy Adriana Espinoza-Sanchez
- Department of Gynecology and Obstetrics, Münster University Hospital, Muenster, Germany
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Muenster, Germany
| | - Fabian Troschel
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Muenster, Germany
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Muenster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Muenster, Germany.
| |
Collapse
|
10
|
Piperigkou Z, Karamanos NK. Evaluating the Effects of MicroRNAs on Proteoglycans and Matrix Constituents' Expression and Functional Properties. Methods Mol Biol 2023; 2619:257-271. [PMID: 36662476 DOI: 10.1007/978-1-0716-2946-8_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Circulating microRNAs (miRNAs) possess significant roles in normal homeostasis and disease conditions, including cardiovascular diseases, fibrosis, inflammatory response, and cancer. Secreted miRNAs, via the membrane vesicles, actively communicate with extracellular matrix (ECM) components to affect cell-cell and cell-matrix interactions, thereby affecting matrix remodeling and metabolic pathways in the recipient cells. Matrix macromolecules regulate the expression of miRNAs, and in turn miRNAs have been identified as emerging mediators of matrix constituents, serving as appealing biomarkers for many pathophysiological processes. Therefore, the expression profile of certain miRNAs highlights the importance of their targeting in several aspects of human pathologies. In this chapter, we report molecular biology protocols to determine the effects of selected miRNAs on the expression and activity of matrix biomolecules.
Collapse
Affiliation(s)
- Zoi Piperigkou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece.
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece.
| |
Collapse
|
11
|
Piperigkou Z, Koutsandreas A, Franchi M, Zolota V, Kletsas D, Passi A, Karamanos NK. ESR2 Drives Mesenchymal-to-Epithelial Transition in Triple-Negative Breast Cancer and Tumorigenesis In Vivo. Front Oncol 2022; 12:917633. [PMID: 35719919 PMCID: PMC9203970 DOI: 10.3389/fonc.2022.917633] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 05/09/2022] [Indexed: 11/21/2022] Open
Abstract
Estrogen receptors (ERs) have pivotal roles in the development and progression of triple-negative breast cancer (TNBC). Interactions among cancer cells and tumor microenvironment are orchestrated by the extracellular matrix that is rapidly emerging as prominent contributor of fundamental processes of breast cancer progression. Early studies have correlated ERβ expression in tumor sites with a more aggressive clinical outcome, however ERβ exact role in the progression of TNBC remains to be elucidated. Herein, we introduce the functional role of ERβ suppression following isolation of monoclonal cell populations of MDA-MB-231 breast cancer cells transfected with shRNA against human ESR2 that permanently resulted in 90% reduction of ERβ mRNA and protein levels. Further, we demonstrate that clone selection results in strongly reduced levels of the aggressive functional properties of MDA-MB-231 cells, by transforming their morphological characteristics, eliminating the mesenchymal-like traits of triple-negative breast cancer cells. Monoclonal populations of shERβ MDA-MB-231 cells undergo universal matrix reorganization and pass on a mesenchymal-to-epithelial transition state. These striking changes are encompassed by the total prevention of tumorigenesis in vivo following ERβ maximum suppression and isolation of monoclonal cell populations in TNBC cells. We propose that these novel findings highlight the promising role of ERβ targeting in future pharmaceutical approaches for managing the metastatic dynamics of TNBC breast cancer.
Collapse
Affiliation(s)
- Zoi Piperigkou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Anastasios Koutsandreas
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Marco Franchi
- Department for Life Quality Study, University of Bologna, Rimini, Italy
| | - Vasiliki Zolota
- Department of Pathology, School of Medicine, University of Patras, Patras, Greece
| | - Dimitrios Kletsas
- Laboratory of Cell Proliferation and Ageing, Institute of Biology, National Centre for Scientific Research (N.C.S.R). "Demokritos", Athens, Greece
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| |
Collapse
|
12
|
Scuruchi M, D'Ascola A, Avenoso A, Zappone A, Mandraffino G, Campo S, Campo GM. miR9 inhibits 6-mer HA-induced cytokine production and apoptosis in human chondrocytes by reducing NF-kB activation. Arch Biochem Biophys 2022; 718:109139. [PMID: 35114139 DOI: 10.1016/j.abb.2022.109139] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 01/21/2022] [Accepted: 01/29/2022] [Indexed: 02/07/2023]
Abstract
The present study aimed to investigate the expression of miR9 and its correlation with cytokines, proteolytic enzymes and apoptosis in an experimental model of 6-mer HA induced inflammation in human chondrocytes. Human articular chondrocytes, transfected with a miR-9 mimic and miR-9 inhibitor, were stimulated with 6-mer HA in presence/absence of a specific NF-kB inhibitor. 6-mer HA induced a significant increase of TLR-4, CD44, IL-8, IL-18, MMP-9, ADAMTS-5, BAX and BCL-2 mRNAs expression and the related proteins, as well as NF-kB activation, associated with a significant up regulation of miR-9. In chondrocytes transfected with the miR-9 mimic before 6-mer HA treatment we found a decrease of such inflammatory cytokines, metalloproteases and pro-apoptotic molecules, while we found them increased in chondrocytes transfected with the miR9 inhibitor before 6-mer HA stimulation. The activities of TLR-4 and CD44, up regulated by 6-mer HA, were not modified by miR9 mimic/inhibitor, while the NF-kB activation was significantly affected. We suggested that the up regulation of miR9, induced by 6-mer HA, could be a cellular attempt to limit cell damage during inflammation.
Collapse
Affiliation(s)
- Michele Scuruchi
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125, Messina, Italy.
| | - Angela D'Ascola
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125, Messina, Italy
| | - Angela Avenoso
- Department of Biomedical and Dental Sciences and Morphofunctional Images, Policlinico Universitario, University of Messina, 98125, Messina, Italy
| | - Annie Zappone
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
| | - Giuseppe Mandraffino
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125, Messina, Italy
| | - Salvatore Campo
- Department of Biomedical and Dental Sciences and Morphofunctional Images, Policlinico Universitario, University of Messina, 98125, Messina, Italy
| | - Giuseppe M Campo
- Department of Clinical and Experimental Medicine, University of Messina, Policlinico Universitario, 98125, Messina, Italy
| |
Collapse
|
13
|
Piperigkou Z, Tzaferi K, Makrokanis G, Cheli K, Karamanos NK. The microRNA-cell surface proteoglycan axis in cancer progression. Am J Physiol Cell Physiol 2022; 322:C825-C832. [PMID: 35294845 DOI: 10.1152/ajpcell.00041.2022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Proteoglycans consist one of the major extracellular matrix class of biomolecules that demonstrate nodal roles in cancer progression. Μodern diagnostic and therapeutic approaches include proteoglycan detection and pharmacological targeting in various cancers. Proteoglycans orchestrate critical signaling pathways for cancer development and progression through dynamic interactions with matrix components. It is well established that the epigenetic signatures of cancer cells play critical role in guiding their functional properties and metastatic potential. Secreted microRNAs (miRNAs) reside in a complex network with matrix proteoglycans, thus affecting cell-cell and cell-matrix communication. This mini-review aims to highlight current knowledge on the proteoglycan-mediated signaling cascades that regulate miRNA biogenesis in cancer. Moreover, the miRNA-mediated proteoglycan regulation during cancer progression and mechanistic aspects on the way that proteoglycans affect miRNA expression are presented. Recent advances on the role of cell surface proteoglycans in exosome biogenesis and miRNA packaging and expression are also discussed.
Collapse
Affiliation(s)
- Zoi Piperigkou
- Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Kyriaki Tzaferi
- Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - George Makrokanis
- Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Konsatntina Cheli
- Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Nikos K Karamanos
- Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| |
Collapse
|
14
|
Karamanos NK, Theocharis AD, Piperigkou Z, Manou D, Passi A, Skandalis SS, Vynios DH, Orian-Rousseau V, Ricard-Blum S, Schmelzer CEH, Duca L, Durbeej M, Afratis NA, Troeberg L, Franchi M, Masola V, Onisto M. A guide to the composition and functions of the extracellular matrix. FEBS J 2021; 288:6850-6912. [PMID: 33605520 DOI: 10.1111/febs.15776] [Citation(s) in RCA: 482] [Impact Index Per Article: 120.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 02/13/2021] [Accepted: 02/18/2021] [Indexed: 12/13/2022]
Abstract
Extracellular matrix (ECM) is a dynamic 3-dimensional network of macromolecules that provides structural support for the cells and tissues. Accumulated knowledge clearly demonstrated over the last decade that ECM plays key regulatory roles since it orchestrates cell signaling, functions, properties and morphology. Extracellularly secreted as well as cell-bound factors are among the major members of the ECM family. Proteins/glycoproteins, such as collagens, elastin, laminins and tenascins, proteoglycans and glycosaminoglycans, hyaluronan, and their cell receptors such as CD44 and integrins, responsible for cell adhesion, comprise a well-organized functional network with significant roles in health and disease. On the other hand, enzymes such as matrix metalloproteinases and specific glycosidases including heparanase and hyaluronidases contribute to matrix remodeling and affect human health. Several cell processes and functions, among them cell proliferation and survival, migration, differentiation, autophagy, angiogenesis, and immunity regulation are affected by certain matrix components. Structural alterations have been also well associated with disease progression. This guide on the composition and functions of the ECM gives a broad overview of the matrisome, the major ECM macromolecules, and their interaction networks within the ECM and with the cell surface, summarizes their main structural features and their roles in tissue organization and cell functions, and emphasizes the importance of specific ECM constituents in disease development and progression as well as the advances in molecular targeting of ECM to design new therapeutic strategies.
Collapse
Affiliation(s)
- Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Spyros S Skandalis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Demitrios H Vynios
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Véronique Orian-Rousseau
- Karlsruhe Institute of Technology, Institute of Biological and Chemical Systems- Functional Molecular Systems, Eggenstein-Leopoldshafen, Germany
| | - Sylvie Ricard-Blum
- University of Lyon, UMR 5246, ICBMS, Université Lyon 1, CNRS, Villeurbanne Cedex, France
| | - Christian E H Schmelzer
- Fraunhofer Institute for Microstructure of Materials and Systems IMWS, Halle (Saale), Germany
- Institute of Pharmacy, Faculty of Natural Sciences I, Martin Luther University Halle-Wittenberg, Halle (Saale), Germany
| | - Laurent Duca
- UMR CNRS 7369 Matrice Extracellulaire et Dynamique Cellulaire (MEDyC), Team 2: Matrix Aging and Vascular Remodelling, Université de Reims Champagne Ardenne (URCA), UFR Sciences Exactes et Naturelles, Reims, France
| | - Madeleine Durbeej
- Department of Experimental Medical Science, Unit of Muscle Biology, Lund University, Sweden
| | - Nikolaos A Afratis
- Department Biological Regulation, Weizmann Institute of Science, Rehovot, Israel
| | - Linda Troeberg
- Norwich Medical School, University of East Anglia, Bob Champion Research and Education Building, Norwich, UK
| | - Marco Franchi
- Department for Life Quality Study, University of Bologna, Rimini, Italy
| | | | - Maurizio Onisto
- Department of Biomedical Sciences, University of Padova, Italy
| |
Collapse
|
15
|
Kong X, Chen R, Zhang L, Wu M, Wu J, Wei Y, Dai W, Jiang Y. ESR2 regulates PINK1-mediated mitophagy via transcriptional repression of microRNA-423 expression to promote asthma development. Pharmacol Res 2021; 174:105956. [PMID: 34700017 DOI: 10.1016/j.phrs.2021.105956] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 10/12/2021] [Accepted: 10/19/2021] [Indexed: 10/20/2022]
Abstract
Asthma represents an inflammatory airway disease related to the induction of airway eosinophilia, mucus overproduction, and bronchial hyperresponsiveness. This study explored the effects of microRNA-423 (miR-423) on mitophagy and inflammation in asthmatic mice challenged with house dust mites (HDMs) and rhinovirus (RV). By searching for differentially expressed miRNAs in the GSE25230 microarray, miR-423 was identified as our target. Moreover, miR-423 was expressed at low levels in the lung tissues from patients with asthma, and agomiR-423 significantly inhibited RV-induced inflammatory injury and activation of inflammasome signaling in mouse lung tissues. Additionally, miR-423 downregulated the expression of IL-1β/NLRP3/Caspase-1 inflammasome signaling by targeting phosphatase and tensin homolog-induced putative kinase 1 (PINK1). Furthermore, luciferase reporter experiments and ChIP-qPCR assays revealed that estrogen receptor 2 (ESR2) transcriptionally repressed miR-423 expression by coordinating with H3K9me2 modification of the miR-423 promoter histone. Overall, ESR2 synergized with the H3K9me2 modification of the miR-423 promoter histone to transcriptionally repress miR-423 expression and increase PINK1 expression in lung tissues, resulting in asthma exacerbation.
Collapse
Affiliation(s)
- Xiaomei Kong
- Department of Respiratory and Critical Care Medicine, the First Hospital of Shanxi Medical, University, Taiyuan 030002, Shanxi, PR China.
| | - Ru Chen
- Department of Respiratory and Critical Care Medicine, the First Hospital of Shanxi Medical, University, Taiyuan 030002, Shanxi, PR China
| | - Lina Zhang
- Intensive Care Unit, Liaocheng People's Hospital, Liaocheng 252000, Shandong, PR China
| | - Meiqiong Wu
- School of Public Health, Shanxi Medical University, Taiyuan 030001, Shanxi, PR China
| | - Juan Wu
- Department of Respiratory and Critical Care Medicine, the First Hospital of Shanxi Medical, University, Taiyuan 030002, Shanxi, PR China
| | - Yangyang Wei
- Department of Respiratory and Critical Care Medicine, the First Hospital of Shanxi Medical, University, Taiyuan 030002, Shanxi, PR China
| | - Wenjuan Dai
- Department of Respiratory and Critical Care Medicine, the First Hospital of Shanxi Medical, University, Taiyuan 030002, Shanxi, PR China
| | - Yi Jiang
- Department of Respiratory and Critical Care Medicine, the First Hospital of Shanxi Medical, University, Taiyuan 030002, Shanxi, PR China
| |
Collapse
|
16
|
Kyriakopoulou K, Kefali E, Piperigkou Z, Riethmüller C, Greve B, Franchi M, Götte M, Karamanos NK. EGFR is a pivotal player of the E2/ERβ - mediated functional properties, aggressiveness, and stemness in triple-negative breast cancer cells. FEBS J 2021; 289:1552-1574. [PMID: 34665934 DOI: 10.1111/febs.16240] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/23/2021] [Accepted: 10/18/2021] [Indexed: 12/31/2022]
Abstract
Triple-negative breast cancer (TNBC) is defined by aggressive behavior, limited response to chemotherapy and lower overall survival rates. The increased metastatic potential of TNBC is a combined result of extensive extracellular matrix (ECM) remodeling that leads to cytoskeleton rearrangement and activation of epithelial-to-mesenchymal transition (EMT). The overexpression of epidermal growth factor receptor (EGFR) in TNBC tumors has been linked to induced expression of EMT-related molecules. EMT activation has often been associated with increased metastasis and stemness. Recently, we described the crucial role of EGFR/estrogen receptor beta (ERβ) interplay in the regulation of invasion and cell-matrix interactions. In this study, we report on the EGFR-ERβ functional relationship in connection to the aggressiveness and cancer stem cell (CSC)-like characteristics of TNBC cells. ERβ-suppressed and MDA-MB-231 cells were subjected to downstream EGFR inhibition and/or estradiol stimulation to assess alterations in functional parameters as well as in morphological characteristics, studied by scanning electron, atomic force, and immunofluorescence microscopies. Moreover, the expression and localization of key EMT and CSC-related markers were also evaluated by real-time qPCR, immunofluorescence microscopy, and flow cytometry. EGFR inhibition resulted in an overall suppression of aggressive functional characteristics, which occurred in an ERβ-mediated manner. These changes could be attributed to a reduction, at the molecular level, of EMT and stemness-linked markers, most notably reduced expression of Notch signaling constituents and the cell surface proteoglycan, syndecan-1. Collectively, our study highlights the importance of EGFR signaling as a key effector of aggressiveness, EMT, and stemness in an ERβ-dependent way in TNBC.
Collapse
Affiliation(s)
- Konstantina Kyriakopoulou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Elena Kefali
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | | | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, University Hospital Münster, Germany
| | - Marco Franchi
- Department for Life Quality Study, University of Bologna, Rimini, Italy
| | - Martin Götte
- Department of Gynecology and Obstetrics, University Hospital Münster, Germany
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| |
Collapse
|
17
|
Karamanos NK, Piperigkou Z, Passi A, Götte M, Rousselle P, Vlodavsky I. Extracellular matrix-based cancer targeting. Trends Mol Med 2021; 27:1000-1013. [PMID: 34389240 DOI: 10.1016/j.molmed.2021.07.009] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
Tumor extracellular matrix (ECM) operates in a coordinated mode with cancer and stroma cells to evoke the multistep process of metastatic potential. The remodeled tumor-associated matrix provides a point for direct or complementary therapeutic targeting. Here, we cover and critically address the importance of ECM networks and their macromolecules in cancer. We focus on the roles of key structural and functional ECM components, and their degradation enzymes and extracellular vesicles, aiming at improving our understanding of the mechanisms contributing to tumor initiation, growth, and dissemination, and discuss potential new approaches for ECM-based therapeutic targeting and diagnosis.
Collapse
Affiliation(s)
- Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece; Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece.
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece; Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Patricia Rousselle
- Laboratoire de Biologie Tissulaire et Ingénierie Thérapeutique, UMR 5305, CNRS-Université Lyon 1, SFR BioSciences Gerland-Lyon Sud, 7 Passage du Vercors, Lyon, France
| | - Israel Vlodavsky
- Technion Integrated Cancer Center, Rappaport Faculty of Medicine, Technion, Haifa, Israel
| |
Collapse
|
18
|
Onyeisi JOS, Greve B, Espinoza-Sánchez NA, Kiesel L, Lopes CC, Götte M. microRNA-140-3p modulates invasiveness, motility, and extracellular matrix adhesion of breast cancer cells by targeting syndecan-4. J Cell Biochem 2021; 122:1491-1505. [PMID: 34180077 DOI: 10.1002/jcb.30071] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 05/31/2021] [Accepted: 06/03/2021] [Indexed: 12/21/2022]
Abstract
Syndecan-4, a predicted target of the microRNA miR-140-3p, plays an important role in multiple steps of tumor progression and is the second most abundant heparan sulfate proteoglycan produced by breast carcinoma cell lines. To investigate the potential functional relationship of miR-140-3p and syndecan-4, MDA-MB-231, SKBR3, and MCF-7 breast cancer (BC) cells were transiently transfected with pre-miR-140-3p, syndecan-4 small interfering RNAJ, or control reagents, respectively. Altered cell behavior was monitored by adhesion, migration, and invasion chamber assays. Moreover, the prognostic value of syndecan-4 was assessed by Kaplan-Maier Plotter analysis of gene expression data from tumor samples of 4929 patients. High expression of syndecan-4 was associated with better relapse-free survival in the whole collective of BC patients, but correlated with a worse survival in the subgroup of estrogen receptor negative and estrogen/progesterone-receptor negative patients. miR-140-3p expression was associated with improved survival irrespective of hormone receptor status. miR-140-3p overexpression induced posttranscriptional downregulation of syndecan-4, as demonstrated by quantitative real-time PCR (qPCR), flow cytometry, and luciferase assays, resulting in decreased BC cell migration and matrigel invasiveness. Furthermore, miR-140-3p overexpression and syndecan-4 silencing increased the adhesion of BC to fibronectin and laminin. qPCR analysis demonstrated that syndecan-4 silencing leads to altered gene expression of adhesion-related molecules, such as fibronectin and focal adhesion kinase, as well as in the gene expression of the proinvasive factors matrix metalloproteinase 2 and heparanase (also known as HPSE). We conclude that syndecan-4 is a novel target of miR-140-3p that regulates BC cell invasiveness and cell-matrix interactions in the tumor microenvironment.
Collapse
Affiliation(s)
- Jessica Oyie Sousa Onyeisi
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.,Disciplina de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, Münster University Hospital, Münster, Germany
| | - Nancy Adriana Espinoza-Sánchez
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany.,Department of Radiotherapy-Radiooncology, Münster University Hospital, Münster, Germany
| | - Ludwig Kiesel
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Carla Cristina Lopes
- Disciplina de Biologia Molecular, Departamento de Bioquímica, Universidade Federal de São Paulo, São Paulo, São Paulo, Brazil.,Departamento de Ciências Biológicas, Instituto de Ciências Ambientais, Químicas e Farmacêuticas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| |
Collapse
|
19
|
Syndecan-1 Depletion Has a Differential Impact on Hyaluronic Acid Metabolism and Tumor Cell Behavior in Luminal and Triple-Negative Breast Cancer Cells. Int J Mol Sci 2021; 22:ijms22115874. [PMID: 34070901 PMCID: PMC8198019 DOI: 10.3390/ijms22115874] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 05/25/2021] [Accepted: 05/27/2021] [Indexed: 12/18/2022] Open
Abstract
Glycosaminoglycans (GAGs) and proteoglycans (PGs) are major components of the glycocalyx. The secreted GAG and CD44 ligand hyaluronic acid (HA), and the cell surface PG syndecan-1 (Sdc-1) modulate the expression and activity of cytokines, chemokines, growth factors, and adhesion molecules, acting as critical regulators of tumor cell behavior. Here, we studied the effect of Sdc-1 siRNA depletion and HA treatment on hallmark processes of cancer in breast cancer cell lines of different levels of aggressiveness. We analyzed HA synthesis, and parameters relevant to tumor progression, including the stem cell phenotype, Wnt signaling constituents, cell cycle progression and apoptosis, and angiogenic markers in luminal MCF-7 and triple-negative MDA-MB-231 cells. Sdc-1 knockdown enhanced HAS-2 synthesis and HA binding in MCF-7, but not in MDA-MB-231 cells. Sdc-1-depleted MDA-MB-231 cells showed a reduced CD24-/CD44+ population. Furthermore, Sdc-1 depletion was associated with survival signals in both cell lines, affecting cell cycle progression and apoptosis evasion. These changes were linked to the altered expression of KLF4, MSI2, and miR-10b and differential changes in Erk, Akt, and PTEN signaling. We conclude that Sdc-1 knockdown differentially affects HA metabolism in luminal and triple-negative breast cancer model cell lines and impacts the stem phenotype, cell survival, and angiogenic factors.
Collapse
|
20
|
Kiselev IS, Kulakova OG, Boyko AN, Favorova OO. DNA Methylation As an Epigenetic Mechanism in the Development of Multiple Sclerosis. Acta Naturae 2021; 13:45-57. [PMID: 34377555 PMCID: PMC8327151 DOI: 10.32607/actanaturae.11043] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Accepted: 09/24/2020] [Indexed: 12/13/2022] Open
Abstract
The epigenetic mechanisms of gene expression regulation are a group of the key cellular and molecular pathways that lead to inherited alterations in genes' activity without changing their coding sequence. DNA methylation at the C5 position of cytosine in CpG dinucleotides is amongst the central epigenetic mechanisms. Currently, the number of studies that are devoted to the identification of methylation patterns specific to multiple sclerosis (MS), a severe chronic autoimmune disease of the central nervous system, is on a rapid rise. However, the issue of the contribution of DNA methylation to the development of the different clinical phenotypes of this highly heterogeneous disease has only begun to attract the attention of researchers. This review summarizes the data on the molecular mechanisms underlying DNA methylation and the MS risk factors that can affect the DNA methylation profile and, thereby, modulate the expression of the genes involved in the disease's pathogenesis. The focus of our attention is centered on the analysis of the published data on the differential methylation of DNA from various biological samples of MS patients obtained using both the candidate gene approach and high-throughput methods.
Collapse
Affiliation(s)
- I. S. Kiselev
- Pirogov Russian National Research Medical University, Moscow, 117997 Russia
| | - O. G. Kulakova
- Pirogov Russian National Research Medical University, Moscow, 117997 Russia
| | - A. N. Boyko
- Pirogov Russian National Research Medical University, Moscow, 117997 Russia
| | - O. O. Favorova
- Pirogov Russian National Research Medical University, Moscow, 117997 Russia
| |
Collapse
|
21
|
Piperigkou Z, Kyriakopoulou K, Koutsakis C, Mastronikolis S, Karamanos NK. Key Matrix Remodeling Enzymes: Functions and Targeting in Cancer. Cancers (Basel) 2021; 13:1441. [PMID: 33809973 PMCID: PMC8005147 DOI: 10.3390/cancers13061441] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/05/2021] [Accepted: 03/17/2021] [Indexed: 12/13/2022] Open
Abstract
Tissue functionality and integrity demand continuous changes in distribution of major components in the extracellular matrices (ECMs) under normal conditions aiming tissue homeostasis. Major matrix degrading proteolytic enzymes are matrix metalloproteinases (MMPs), plasminogen activators, atypical proteases such as intracellular cathepsins and glycolytic enzymes including heparanase and hyaluronidases. Matrix proteases evoke epithelial-to-mesenchymal transition (EMT) and regulate ECM turnover under normal procedures as well as cancer cell phenotype, motility, invasion, autophagy, angiogenesis and exosome formation through vital signaling cascades. ECM remodeling is also achieved by glycolytic enzymes that are essential for cancer cell survival, proliferation and tumor progression. In this article, the types of major matrix remodeling enzymes, their effects in cancer initiation, propagation and progression as well as their pharmacological targeting and ongoing clinical trials are presented and critically discussed.
Collapse
Affiliation(s)
- Zoi Piperigkou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), 265 04 Patras, Greece
| | - Konstantina Kyriakopoulou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
| | - Christos Koutsakis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
| | | | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 265 04 Patras, Greece; (K.K.); (C.K.)
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), 265 04 Patras, Greece
| |
Collapse
|
22
|
MicroRNA profiling identifies Forkhead box transcription factor M1 (FOXM1) regulated miR-186 and miR-200b alterations in triple negative breast cancer. Cell Signal 2021; 83:109979. [PMID: 33744419 DOI: 10.1016/j.cellsig.2021.109979] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/09/2021] [Accepted: 03/10/2021] [Indexed: 02/07/2023]
Abstract
Breast cancer (BC) is the most commonly diagnosed malignancy. MicroRNAs (miRNAs) play important roles in the tumorigenesis, metastasis and progression of BC. Forkhead Box M1 (FOXM1) oncogenic transcription factor is involved in events considered as hallmarks of cancer. However, the specific mechanism by which FOXM1 exerts its oncogenic effects remains unclear and little is known about its effects on the regulation of miRNA expression. We have found that FOXM1 is upregulated in breast cancer cells and that its expression is associated with shortened overall survival and poor prognosis in patients with BC. Using microarray technology, we assessed the expression profiles of 752 miRNAs in highly aggressive and metastatic triple negative breast cancer (TNBC) cells in response to FOXM1 knockdown and identified 13 differentialy expressed miRNAs (3 miRNAs upregulated and 10 miRNAs down-regulated). We validated the results of the miRNA expression profile in two different TNBC cells by performing qRT-PCR and identified that miR-186-5p and miR-200b-5p were consistently down- or up-regulated, respectively, after knockdown of FOXM1. We further performed KEGG pathway analysis and GO enrichment analysis for miR-186-5p and miR-200b-5p, and identified that these miRNAs are associated with cancer development and progression involving toll-like receptor signaling, cell cycle, AMPK, p53 and NF-kappa B signaling pathways. Taken together, our results suggest that increased FOXM1 expression is associated with poor patient survival and leads to induction of oncomiR miR-186-5p expression and tumor-suppressor inhibition miR-200b-5p, suggesting that the FOXM1/miRNA signaling pathway may contribute to poor patient prognosis and may be a potential therapeutic target in TNBC.
Collapse
|
23
|
Zolota V, Tzelepi V, Piperigkou Z, Kourea H, Papakonstantinou E, Argentou MI, Karamanos NK. Epigenetic Alterations in Triple-Negative Breast Cancer-The Critical Role of Extracellular Matrix. Cancers (Basel) 2021; 13:cancers13040713. [PMID: 33572395 PMCID: PMC7916242 DOI: 10.3390/cancers13040713] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 12/11/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is an aggressive subgroup of breast cancer characterized by genomic complexity and therapeutic options limited to only standard chemotherapy. Although it has been suggested that stratifying TNBC patients by pathway-specific molecular alterations may predict benefit from specific therapeutic agents, application in routine clinical practice has not yet been established. There is a growing body of the literature supporting that epigenetic modifications comprised by DNA methylation, chromatin remodeling and non-coding RNAs play a fundamental role in TNBC pathogenesis. Extracellular matrix (ECM) is a highly dynamic 3D network of macromolecules with structural and cellular regulatory roles. Alterations in the expression of ECM components result in uncontrolled matrix remodeling, thus affecting its ability to regulate vital functions of cancer cells, including proliferation, migration, adhesion, invasion and epithelial-to-mesenchymal transition (EMT). Recent molecular data highlight the major role of tumor microenvironment and ECM alterations in TNBC and approaches for targeting tumor microenvironment have recently been recognized as potential therapeutic strategies. Notably, many of the ECM/EMT modifications in cancer are largely driven by epigenetic events, highlighting the pleiotropic effects of the epigenetic network in TNBC. This article presents and critically discusses the current knowledge on the epigenetic alterations correlated with TNBC pathogenesis, with emphasis on those associated with ECM/EMT modifications, their prognostic and predictive value and their use as therapeutic targets.
Collapse
Affiliation(s)
- Vasiliki Zolota
- Department of Pathology, School of Medicine, University of Patras, 26504 Rion, Greece; (V.T.); (H.K.)
- Correspondence: ; Tel.: +30-0693613366
| | - Vasiliki Tzelepi
- Department of Pathology, School of Medicine, University of Patras, 26504 Rion, Greece; (V.T.); (H.K.)
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26110 Patras, Greece; (Z.P.); (N.K.K.)
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), 26110 Patras, Greece
| | - Helen Kourea
- Department of Pathology, School of Medicine, University of Patras, 26504 Rion, Greece; (V.T.); (H.K.)
| | - Efthymia Papakonstantinou
- Department of Gynecology and Obstetrics School of Medicine, University of Patras, 26504 Rion, Greece;
| | - Maria-Ioanna Argentou
- Department of Surgery, School of Medicine, University of Patras, 26504 Rion, Greece;
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, 26110 Patras, Greece; (Z.P.); (N.K.K.)
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), 26110 Patras, Greece
| |
Collapse
|
24
|
Olea-Flores M, Juárez-Cruz JC, Zuñiga-Eulogio MD, Acosta E, García-Rodríguez E, Zacapala-Gomez AE, Mendoza-Catalán MA, Ortiz-Ortiz J, Ortuño-Pineda C, Navarro-Tito N. New Actors Driving the Epithelial-Mesenchymal Transition in Cancer: The Role of Leptin. Biomolecules 2020; 10:E1676. [PMID: 33334030 PMCID: PMC7765557 DOI: 10.3390/biom10121676] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/12/2020] [Accepted: 12/13/2020] [Indexed: 12/24/2022] Open
Abstract
Leptin is a hormone secreted mainly by adipocytes; physiologically, it participates in the control of appetite and energy expenditure. However, it has also been linked to tumor progression in different epithelial cancers. In this review, we describe the effect of leptin on epithelial-mesenchymal transition (EMT) markers in different study models, including in vitro, in vivo, and patient studies and in various types of cancer, including breast, prostate, lung, and ovarian cancer. The different studies report that leptin promotes the expression of mesenchymal markers and a decrease in epithelial markers, in addition to promoting EMT-related processes such as cell migration and invasion and poor prognosis in patients with cancer. Finally, we report that leptin has the greatest biological relevance in EMT and tumor progression in breast, lung, prostate, esophageal, and ovarian cancer. This relationship could be due to the key role played by the enriched tumor microenvironment in adipose tissue. Together, these findings demonstrate that leptin is a key biomolecule that drives EMT and metastasis in cancer.
Collapse
Affiliation(s)
- Monserrat Olea-Flores
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Juan C. Juárez-Cruz
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Miriam D. Zuñiga-Eulogio
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Erika Acosta
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Eduardo García-Rodríguez
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| | - Ana E. Zacapala-Gomez
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (A.E.Z.-G.); (M.A.M.-C.); (J.O.-O.)
| | - Miguel A. Mendoza-Catalán
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (A.E.Z.-G.); (M.A.M.-C.); (J.O.-O.)
| | - Julio Ortiz-Ortiz
- Laboratorio de Biomedicina Molecular, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (A.E.Z.-G.); (M.A.M.-C.); (J.O.-O.)
| | - Carlos Ortuño-Pineda
- Laboratorio de Ácidos Nucleicos y Proteinas, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico;
| | - Napoleón Navarro-Tito
- Laboratorio de Biología Celular del Cáncer, Facultad de Ciencias Químico Biológicas, Universidad Autónoma de Guerrero, Chilpancingo 39090, Mexico; (M.O.-F.); (J.C.J.-C.); (M.D.Z.-E.); (E.A.); (E.G.-R.)
| |
Collapse
|
25
|
Karamanou K, Franchi M, Onisto M, Passi A, Vynios DH, Brézillon S. Evaluation of lumican effects on morphology of invading breast cancer cells, expression of integrins and downstream signaling. FEBS J 2020; 287:4862-4880. [PMID: 32160387 DOI: 10.1111/febs.15289] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2019] [Revised: 10/11/2019] [Accepted: 03/09/2020] [Indexed: 12/19/2022]
Abstract
The small leucine-rich proteoglycan lumican regulates estrogen receptors (ERs)-associated functional properties of breast cancer cells, expression of matrix macromolecules, and epithelial-to-mesenchymal transition. However, it is not known whether the ER-dependent lumican effects on breast cancer cells are related to the expression of integrins and their intracellular signaling pathways. Here, we analyzed the effects of lumican in three breast cancer cell lines: the highly metastatic ERβ-positive MDA-MB-231, cells with the respective ERβ-suppressed (shERβMDA-MB-231), and lowly invasive ERα-positive MCF-7/c breast cancer cells. Scanning electron microscopy, confocal microscopy, real-time PCR, western blot, and cell adhesion assays were performed. Lumican effects on breast cancer cell morphology were also investigated in 3-dimensional collagen cultures. Lumican treatment induced cell-cell contacts and cell grouping and inhibited microvesicles and microvilli formation. The expression of the cell surface adhesion receptor CD44, its isoform and variants, hyaluronan (HA), and HA synthases was also investigated. Lumican inhibited the expression of CD44 and HA synthases, and its effect on cell adhesion revealed a major role of α1, α2, α3, αVβ3, and αVβ5 integrins in MDA-MB-231 cells, but not in MCF-7/c cells. Lumican upregulated the expression of α2 and β1 integrin subunits both in MDA-MB-231 and in shERβMDA-MB-231 as compared to MCF-7/c cells. Downstream signaling pathways for integrins, such as FAK, ERK 1/2 MAPK 42/44, and Akt, were found to be downregulated by lumican. Our data shed light to the molecular mechanisms responsible for the anticancer activity of lumican in invasive breast cancer.
Collapse
Affiliation(s)
- Konstantina Karamanou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, Université de Reims Champagne-Ardenne, Reims, France
- Matrice Extracellulaire et Dynamique Cellulaire, CNRS UMR 7369, Reims, France
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Maurizio Onisto
- Department of Biomedical Sciences, University of Padua, Padua, Italy
| | - Alberto Passi
- Department of Surgical and Morphological Sciences, University of Insubria, Varese, Italy
| | - Demitrios H Vynios
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Stéphane Brézillon
- Laboratoire de Biochimie Médicale et Biologie Moléculaire, Université de Reims Champagne-Ardenne, Reims, France
- Matrice Extracellulaire et Dynamique Cellulaire, CNRS UMR 7369, Reims, France
| |
Collapse
|
26
|
Abstract
Breast cancer, a malignant tumor originating from mammary epithelial tissue, is the most common cancer among women worldwide. Challenges facing the diagnosis and treatment of breast cancer necessitate the search for new mechanisms and drugs to improve outcomes. Estrogen receptor (ER) is considered to be important for determining the diagnosis and treatment strategy. The discovery of the second estrogen receptor, ERβ, provides an opportunity to understand estrogen action. The emergence of ERβ can be traced back to 1996. Over the past 20 years, an increasing body of evidence has implicated the vital effect of ERβ in breast cancer. Although there is controversy among scholars, ERβ is generally thought to have antiproliferative effects in disease progression. This review summarizes available evidence regarding the involvement of ERβ in the clinical treatment and prognosis of breast cancer and describes signaling pathways associated with ERβ. We hope to highlight the potential of ERβ as a therapeutic target.
Collapse
|
27
|
Perspectives on the Role of Non-Coding RNAs in the Regulation of Expression and Function of the Estrogen Receptor. Cancers (Basel) 2020; 12:cancers12082162. [PMID: 32759784 PMCID: PMC7465269 DOI: 10.3390/cancers12082162] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 07/24/2020] [Accepted: 07/27/2020] [Indexed: 12/20/2022] Open
Abstract
Estrogen receptors (ERs) comprise several nuclear and membrane-bound receptors with different tissue-specific functions. ERα and ERβ are two nuclear members of this family, whereas G protein-coupled estrogen receptor (GPER), ER-X, and Gq-coupled membrane estrogen receptor (Gq-mER) are membrane-bound G protein-coupled proteins. ERα participates in the development and function of several body organs such as the reproductive system, brain, heart and musculoskeletal systems. ERβ has a highly tissue-specific expression pattern, particularly in the female reproductive system, and exerts tumor-suppressive roles in some tissues. Recent studies have revealed functional links between both nuclear and membrane-bound ERs and non-coding RNAs. Several oncogenic lncRNAs and miRNAs have been shown to exert their effects through the modulation of the expression of ERs. Moreover, treatment with estradiol has been shown to alter the malignant behavior of cancer cells through functional axes composed of non-coding RNAs and ERs. The interaction between ERs and non-coding RNAs has functional relevance in several human pathologies associated with estrogen regulation, such as cancers, intervertebral disc degeneration, coronary heart disease and diabetes. In the current review, we summarize scientific literature on the role of miRNAs and lncRNAs on ER-associated signaling and related disorders.
Collapse
|
28
|
Karamanos NK. Extracellular matrix: key structural and functional meshwork in health and disease. FEBS J 2020; 286:2826-2829. [PMID: 31379113 DOI: 10.1111/febs.14992] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 07/08/2019] [Indexed: 12/16/2022]
Abstract
The extracellular matrix (ECM) is a multifunctional 3D network of interconnected macromolecules that mediate cellular responses in normal and pathological conditions, including wound healing, tissue homeostasis, skeletal and cardiovascular disease, cancer and drug resistance. The potential of targeting ECM components, such as proteoglycans and glycosaminoglycans, matrix-degrading enzymes and miRNAs will serve as a novel tool for innovative diagnostic methods and therapeutic strategies. With this Special Issue on Extracellular Matrix in Health and Disease, The FEBS Journal offers an updated overview of the functional properties and biological roles of several ECM components, highlighting the significance of ECM targeting in disease management.
Collapse
Affiliation(s)
- Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| |
Collapse
|
29
|
Piperigkou Z, Karamanos NK. Estrogen receptor-mediated targeting of the extracellular matrix network in cancer. Semin Cancer Biol 2020; 62:116-124. [PMID: 31310807 DOI: 10.1016/j.semcancer.2019.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 06/21/2019] [Accepted: 07/08/2019] [Indexed: 01/04/2023]
|
30
|
Iozzo RV, Theocharis AD, Neill T, Karamanos NK. Complexity of matrix phenotypes. Matrix Biol Plus 2020; 6-7:100038. [PMID: 33543032 PMCID: PMC7852209 DOI: 10.1016/j.mbplus.2020.100038] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Accepted: 05/11/2020] [Indexed: 02/06/2023] Open
Abstract
The extracellular matrix is engaged in an ever-evolving and elegant ballet of dynamic reciprocity that directly and bi-directionally regulates cell behavior. Homeostatic and pathophysiological changes in cell-matrix signaling cascades manifest as complex matrix phenotypes. Indeed, the extracellular matrix can be implicated in virtually every known human disease, thus, making it the most critical and dynamic "organ" in the human body. The overall goal of this Special Issue is to provide an accurate and inclusive functional definition that addresses the inherent complexity of matrix phenotypes. This goal is summarily achieved via a corpus of expertly written articles, reviews and original research, focused at answering this question empirically and fundamentally via state-of-the-art methods and research strategies.
Collapse
Key Words
- ADAM, a disintegrin and metalloproteinases
- AGE, advanced glycation end products
- Angiogenesis
- Cancer
- Collagen
- DDR1, discoidin domain receptor 1
- ECM, extracellular matrix
- EGF, epidermal growth factor
- EGFR, epidermal growth factor receptor
- EMILIN1, elastin microfibril interfacer 1
- EMILIN2, elastin microfibril interfacer 2
- EMT, epithelial-mesenchymal transition
- ERα, estrogen receptor α
- ERβ, estrogen receptor β
- GBM, glioblastoma
- HA, hyaluronan
- HAS2, hyaluronan synthase 2
- HAS2-AS1, HAS2 antisense 1
- HB-EGF, heparin binding EGF
- HMGA2, high-mobility group AT-Hook 2
- IBC, inflammatory breast cancer
- IGF-IR, insulin growth factor I receptor
- IR-A, insulin receptor A
- LEKTI, lympho-epithelial Kazal-type inhibitor
- LOX, lysyl oxidases
- LTBP, latent TGFβ-binding proteins
- MAGP, microfibril-associated glycoproteins
- MET, mesenchymal-epithelial transition
- MMP, matrix metalloproteinases
- Methodologies
- OB, osteoblast
- OI, osteogenesis imperfecta
- PARs, protease activated receptors
- PG, proteoglycans
- PLL, poly-l-lysine
- Proteoglycans
- ROS, reactive oxygen species
- RTK, receptor tyrosine kinase
- SLRP, small leucine rich proteoglycans
- SSR, solar-simulated radiation
- TGFβ, transforming growth factor β
- TNT, tunneling nanotubes
- UVR, ultraviolet radiation
- VEGF, vascular endothelial growth factor
- miR, microRNA
- tPA, tissue-type plasminogen activator
- uPA, urokinase-type plasminogen activator
Collapse
Affiliation(s)
- Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, PA, United States of America
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| |
Collapse
|
31
|
El-Nadi M, Hassan H, Saleh ME, Nassar E, Ismail YM, Amer M, Greve B, Götte M, El-Shinawi M, Ibrahim SA. Induction of heparanase via IL-10 correlates with a high infiltration of CD163+ M2-type tumor-associated macrophages in inflammatory breast carcinomas. Matrix Biol Plus 2020; 6-7:100030. [PMID: 33543027 PMCID: PMC7852308 DOI: 10.1016/j.mbplus.2020.100030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 12/29/2022] Open
Abstract
Inflammatory breast cancer (IBC) is the most aggressive and lethal form of breast cancer, characterized by a high infiltration of tumor-associated macrophages and poor prognosis. To identify new biomarkers and to elucidate the molecular mechanisms underlying IBC pathogenesis, we investigated the expression pattern of heparanase (HPSE) and its activator cathepsin L (CTSL). First, we quantitated the HPSE and CTSL mRNA levels in a cohort of breast cancer patients after curative surgery (20 IBC and 20-non-IBC). We discovered that both HPSE and CTSL mRNA levels were significantly induced in IBC tissue vis-à-vis non-IBC patients (p <0 .05 and p <0 .001, respectively). According to the molecular subtypes, HPSE mRNA levels were significantly higher in carcinoma tissues of triple negative (TN)-IBC as compared to TN-non-IBC (p <0 .05). Mechanistically, we discovered that pharmacological inhibition of HPSE activity resulted in a significant reduction of invasiveness in the IBC SUM149 cell line. Moreover, siRNA-mediated HPSE knockdown significantly downregulated the expression of the metastasis-related gene MMP2 and the cancer stem cell marker CD44. We also found that IBC tumors revealed robust heparanase immune-reactivity and CD163+ M2-type tumor-associated macrophages, with a positive correlation of both markers. Moreover, the secretome of axillary tributaries blood IBC CD14+ monocytes and the cytokine IL-10 significantly upregulated HPSE mRNA and protein expression in SUM149 cells. Intriguingly, massively elevated IL-10 mRNA expression with a trend of positive correlation with HPSE mRNA expression was detected in carcinoma tissue of IBC. Our findings highlight a possible role played by CD14+ monocytes and CD163+ M2-type tumor-associated macrophages in regulating HPSE expression possibly via IL-10. Overall, we suggest that heparanase, cathepsin L and CD14+ monocytes-derived IL-10 may play an important role in the pathogenesis of IBC and their targeting could have therapeutic implications.
Collapse
Key Words
- CD163+ M2-type tumor-associated macrophages
- CTSL, cathepsin L
- Cathepsin L
- ECM, extracellular matrix
- ER, estrogen receptor
- FFPE, Formalin-Fixed Paraffin-Embedded
- HER-2, human epidermal growth factor receptor-2
- HPSE, heparanase
- HSPGs, heparan sulfate proteoglycans
- Heparanase
- IBC, inflammatory breast cancer;
- IL-10
- IRB, Institutional Review Board
- Inflammatory breast cancer
- Invasion
- MMP2, matrix metalloproteinase2
- MTT, 3-(4,5-dimethyl-2-yl)-2,5-diphenyltetrazolium bromide
- OGT 2115, 2-[4-[[3-(4-Bromophenyl)-1-oxo-2-propenyl]amino]-3-fluorophenyl]-5-benzoxazoleacetic acid
- PR, progesterone receptor
- TAMs, tumor-associated macrophages
- TN, triple negative
- TNF-α, tumor necrosis factor-α
- Triple negative subtype
- qPCR, quantitative real-time PCR
- rh IL-10, recombinant human interleukin-10
Collapse
Affiliation(s)
- Mennatullah El-Nadi
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Hebatallah Hassan
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Moshira Ezzat Saleh
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Eyyad Nassar
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Yahia Mahmoud Ismail
- Medical Oncology Department, National Cancer Institute, Cairo University, Cairo 11796, Egypt
| | - Mahmoud Amer
- Department of Zoology, Faculty of Science, Cairo University, Giza, 12613, Egypt
| | - Burkhard Greve
- Department of Radiotherapy-Radiooncology, University Hospital Münster, Münster, Germany
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Mohamed El-Shinawi
- Department of General Surgery, Faculty of Medicine, Ain Shams University, Cairo 11566, Egypt
| | | |
Collapse
|
32
|
Piperigkou Z, Franchi M, Riethmüller C, Götte M, Karamanos NK. miR-200b restrains EMT and aggressiveness and regulates matrix composition depending on ER status and signaling in mammary cancer. Matrix Biol Plus 2020; 6-7:100024. [PMID: 33543022 PMCID: PMC7852204 DOI: 10.1016/j.mbplus.2020.100024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 01/14/2020] [Accepted: 01/14/2020] [Indexed: 02/06/2023] Open
Abstract
Secreted microRNAs (miRNAs) reside in a complex regulatory network with extracellular matrix (ECM) macromolecules, which affect cell-cell communication, therefore miRNA expression highlights its significance in several aspects of human diseases, including cancer. miRNA-mediated regulation of breast cancer has received considerable attention due to evidence that shows miRNAs to mediate estrogen receptor (ER) status, metastasis, chemoresistance and epithelial-to-mesenchymal transition (EMT). miR-200b is a pluripotent miRNA, which is inversely regulated by ERα and ERβ in mammary cancer. It has been identified as tumor suppressor and EMT inhibitor serving as a critical biomarker, as its expression in breast tumor determines the disease-free survival, thus highlighting its roles in breast cancer invasion and metastasis. The main goal of this study was to investigate the role of miR-200b in modulating the behavior of breast cancer cells with different ER status. We demonstrate that estrogen signaling through ERs reduces miR-200b expression levels in ERα-positive breast cancer cells. Moreover, miR-200b upregulation reduces the aggressive phenotype of ERβ-positive breast cancer cells by inhibiting cell invasiveness and motility, followed by ECM reorganization as well as cytoskeletal and morphological changes concluded from deep inspection of cell topography. Future investigation towards the mechanistic perspective of miR-200b effects in the behavior of aggressive mammary cancer cells appears rewarding in order to expand our understanding of miR-200b as a novel mediator beyond breast cancer diagnosis and pharmaceutical targeting.
Collapse
Key Words
- Breast cancer
- ECM, extracellular matrix
- EGFR, epidermal growth factor receptor
- EMT, epithelial-to-mesenchymal-transition
- ER, estrogen receptor
- Erk, extracellular signal-regulated kinase
- Estrogen receptors
- Extracellular matrix
- GAG, glycosaminoglycan
- GF, growth factor
- HER2, human epidermal growth factor receptor 2
- IGF-IR, insulin-like growth factor receptor type I
- IL, interleukin
- MMP, matrix metalloproteinase
- PG, proteoglycan
- PR, progesterone receptor
- RISC, RNA-induced silencing complex
- SERM, selective estrogen receptor modulator
- TGFβ, transforming growth factor beta
- miR-200b
- miRNA, microRNA
- miRNAs
- pre-miRNA, precursor miRNA
Collapse
Affiliation(s)
- Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | | | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster, Germany
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| |
Collapse
|
33
|
Franchi M, Piperigkou Z, Riti E, Masola V, Onisto M, Karamanos NK. Long filopodia and tunneling nanotubes define new phenotypes of breast cancer cells in 3D cultures. Matrix Biol Plus 2020; 6-7:100026. [PMID: 33543024 PMCID: PMC7852320 DOI: 10.1016/j.mbplus.2020.100026] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 01/20/2020] [Accepted: 01/20/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer cell invasion into the surrounding extracellular matrix (ECM) takes place when cell-cell junctions are disrupted upon epithelial-to-mesenchymal transition (EMT). Both cancer cell-stroma and cell-cell crosstalk are essential to support the continuous tumor invasion. Cancer cells release microvesicles and exosomes containing bioactive molecules and signal peptides, which are recruited by neighboring cells or carried to distant sites, thus supporting intercellular communication and cargo transfer. Besides this indirect communication mode, cancer cells can develop cytoplasmic intercellular protrusions or tunneling nanotubes (TNTs), which allow the direct communication and molecular exchange between connected distinct cells. Using scanning electron microscopy (SEM) we show for the first time that MDA-MB-231 (high metastatic potential) and shERβ MDA-MB-231 (low metastatic potential) breast cancer cells cultured on fibronectin and collagen type I or 17β-estradiol (E2) develop TNTs and very long flexible filopodia. Interestingly, the less aggressive shERβ MDA-MB-231 cells treated with E2 in 3D collagen matrix showed the highest development of TNTs and filopodia. TNTs were often associated to adhering exosomes and microvesicles surfing from one cell to another, but no filopodia exhibited vesicle-like cytoplasmic structures on their surface. Moreover, E2 affected the expression of matrix macromolecules and cell effectors mostly in the presence of ERβ. Our novel data highlights the significance of matrix substrates and the presence of E2 and ERβ in the formation of cellular protrusion and the production of surface structures, defining novel phenotypes that unravel nodal reports for breast cancer progression.
Collapse
Key Words
- 3D, three dimensional
- Breast cancer
- CAFs, cancer-associated fibroblasts
- E2, 17β-estradiol
- ECM, extracellular matrix
- EMT, epithelial-to-mesenchymal transition
- ER, estrogen receptor
- Estrogen receptor beta
- FGF, fibroblast growth factor
- FIB-SEM, focused-ion beam scanning electron microscopy
- Filopodia
- HGF, hepatocyte growth factor
- Intercellular communication
- MMPs, matrix metalloproteinases
- SEM, scanning electron microscope
- Scanning electron microscopy
- TGFβ, transforming growth factor beta
- TNTs, tunneling nanotubes
- Tunneling nanotubes
- miRNAs, microRNAs
Collapse
Affiliation(s)
- Marco Franchi
- Department for Life Quality Studies, University of Bologna, Rimini, Italy
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Eirini Riti
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| | - Valentina Masola
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Maurizio Onisto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras, Greece
| |
Collapse
|
34
|
Piperigkou Z, Karamanos NK. Dynamic Interplay between miRNAs and the Extracellular Matrix Influences the Tumor Microenvironment. Trends Biochem Sci 2019; 44:1076-1088. [DOI: 10.1016/j.tibs.2019.06.007] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/19/2022]
|
35
|
Wang H, Zhang Z, Xu K, Wei S, Li L, Wang L. Exploration of estrogen receptor-associated hub genes and potential molecular mechanisms in non-smoking females with lung adenocarcinoma using integrated bioinformatics analysis. Oncol Lett 2019; 18:4605-4612. [PMID: 31611968 PMCID: PMC6781748 DOI: 10.3892/ol.2019.10845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2019] [Accepted: 07/26/2019] [Indexed: 12/15/2022] Open
Abstract
The present study aimed to explore important estrogen receptor-associated genes and to determine the potential pathogenic and prognostic factors for lung adenocarcinoma in non-smoking females. The gene expression profiles of the two datasets (GSE32863 and GSE75037) were downloaded from the Gene Expression Omnibus (GEO) database. Data for non-smoking female patients with lung adenocarcinoma from The Cancer Genome Atlas (TCGA) database were also downloaded. The Linear Models for Microarray Data package in R was used to explore the differentially expressed genes (DEGs) between samples from non-smoking female patients with lung adenocarcinoma and samples of adjacent non-cancerous lung tissue. The Database for Annotation, Visualization and Integrated Discovery was used for functional enrichment of the DEGs. The Search Tool for the Retrieval of Interacting Genes/Proteins and Cytoscape software were used to obtain a protein-protein interaction (PPI) network and to identify the hub genes. In addition, the network between the estrogen receptor and the DEGs was constructed. A Kaplan-Meier survival plot was used to analyze the overall survival (OS). In total, 248 DEGs were identified in the GEO database, and 2,362 DEGs were identified in TCGA database. The intersection of the two datasets (DEGs in GEO and TCGA) revealed 170 DEGs, and these were selected for further investigation. Gene Ontology was used to group the 170 DEGs into biological process, molecular function and cellular component categories. Kyoto Encyclopedia of Genes and Genomes pathway analysis was subsequently performed. A total of 27 hub genes, including caveolin 1 (CAV1), matrix metallopeptidase 9 (MMP9), secreted phosphoprotein 1 (SPP1) and collagen type I α 1 chain (COL1A1), were closely associated with the estrogen receptor. CAV1 and SPP1 were associated with the OS. However, MMP9 and COL1A1 did not have any significant effect on OS. In summary, the identification of CAV1, MMP9, SPP1 and COL1A1 may provide novel insights into the molecular mechanism of lung adenocarcinoma in non-smoking female patients, and the results obtained in the current study may guide future clinical studies.
Collapse
Affiliation(s)
- Hao Wang
- Department of Respiratory Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC West District), Hefei, Anhui 230031, P.R. China
| | - Zhihong Zhang
- Department of Respiratory Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC West District), Hefei, Anhui 230031, P.R. China
| | - Ke Xu
- Department of Respiratory Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC West District), Hefei, Anhui 230031, P.R. China
| | - Song Wei
- Department of Respiratory Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC West District), Hefei, Anhui 230031, P.R. China
| | - Lailing Li
- Department of Respiratory Oncology, Anhui Provincial Cancer Hospital (The First Affiliated Hospital of USTC West District), Hefei, Anhui 230031, P.R. China
| | - Lijun Wang
- Department of Respiratory Disease, Tongling People's Hospital, Tongling, Anhui 244000, P.R. China
| |
Collapse
|
36
|
Tavianatou AG, Piperigkou Z, Barbera C, Beninatto R, Masola V, Caon I, Onisto M, Franchi M, Galesso D, Karamanos NK. Molecular size-dependent specificity of hyaluronan on functional properties, morphology and matrix composition of mammary cancer cells. Matrix Biol Plus 2019; 3:100008. [PMID: 33543007 PMCID: PMC7852304 DOI: 10.1016/j.mbplus.2019.100008] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2018] [Revised: 05/28/2019] [Accepted: 05/29/2019] [Indexed: 12/22/2022] Open
Abstract
High levels of hyaluronan (ΗΑ), a major extracellular matrix (ECM) glycosaminoglycan, have been correlated with poor clinical outcome in several malignancies, including breast cancer. The high and low molecular weight HΑ forms exert diverse biological functions. Depending on their molecular size, ΗΑ forms either promote or attenuate signaling cascades that regulate cancer progression. In order to evaluate the effects of different ΗΑ forms on breast cancer cells' behavior, ΗΑ fragments of defined molecular size were synthesized. Breast cancer cells of different estrogen receptor (ER) status - the low metastatic, ERα-positive MCF-7 epithelial cells and the highly aggressive, ERβ-positive MDA-MB-231 mesenchymal cells - were evaluated following treatment with HA fragments. Scanning electron microscopy revealed that HA fragments critically affect the morphology of breast cancer cells in a molecular-size dependent mode. Moreover, the ΗΑ fragments affect cell functional properties, the expression of major ECM mediators and epithelial-to-mesenchymal transition (ΕΜΤ) markers. Notably, treatment with 200 kDa ΗΑ increased the expression levels of the epithelial marker Ε-cadherin and reduced the expression levels of HA synthase 2 and mesenchymal markers, like fibronectin and snail2/slug. These novel data suggest that the effects of HA in breast cancer cells depend on the molecular size and the ER status. An in-depth understanding on the mechanistic basis of these effects may contribute on the development of novel therapeutic strategies for the pharmacological targeting of aggressive breast cancer.
Collapse
Key Words
- BTH, bovine testes hyaluronidase
- Breast cancer
- CD44
- ECM, extracellular matrix
- EMT, epithelial-to-mesenchymal transition
- ER, estrogen receptor
- Epithelial-to-mesenchymal transition
- Estrogen receptors
- HA, hyaluronan or hyaluronic acid
- HAS, hyaluronan synthase
- HMW HA, high molecular weight hyaluronan
- HYAL, hyaluronidase
- Hyaluronan
- LMW HA, low molecular weight hyaluronan
- MET, mesenchymal-to-epithelial transition
- MMPs, matrix metalloproteinases
- SDC, syndecan
- SEM, scanning electron microscopy
- Scanning electron microscopy
- TIMPs, tissue inhibitors of metalloproteinases
- o-HA, hyaluronan oligomers
- s-HA, sulfated hyaluronan
- tPA, tissue plasminogen activator
- uPA, urokinase plasminogen activator
Collapse
Affiliation(s)
- Anastasia-Gerasimoula Tavianatou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patras, Greece
| | - Carlo Barbera
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031 Abano Terme, (PD), Italy
| | - Riccardo Beninatto
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031 Abano Terme, (PD), Italy
| | - Valentina Masola
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Ilaria Caon
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Maurizio Onisto
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Italy
| | - Devis Galesso
- Fidia Farmaceutici S.p.A., via Ponte della Fabbrica 3/A, 35031 Abano Terme, (PD), Italy
| | - Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
- Foundation for Research and Technology-Hellas (FORTH/ICE-HT), Patras, Greece
| |
Collapse
|
37
|
Role of cell surface proteoglycans in cancer immunotherapy. Semin Cancer Biol 2019; 62:48-67. [PMID: 31336150 DOI: 10.1016/j.semcancer.2019.07.012] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2019] [Revised: 07/05/2019] [Accepted: 07/17/2019] [Indexed: 12/23/2022]
Abstract
Over the past few decades, understanding how tumor cells evade the immune system and their communication with their tumor microenvironment, has been the subject of intense investigation, with the aim of developing new cancer immunotherapies. The current therapies against cancer such as monoclonal antibodies against checkpoint inhibitors, adoptive T-cell transfer, cytokines, vaccines, and oncolytic viruses have managed to improve the clinical outcome of the patients. However, in some tumor entities, the response is limited and could benefit from the identification of novel therapeutic targets. It is known that tumor-extracellular matrix interplay and matrix remodeling are necessary for anti-tumor and pro-tumoral immune responses. Proteoglycans are dominant components of the extracellular matrix and are a highly heterogeneous group of proteins characterized by the covalent attachment of a specific linear carbohydrate chain of the glycosaminoglycan type. At cell surfaces, these molecules modulate the expression and activity of cytokines, chemokines, growth factors, adhesion molecules, and function as signaling co-receptors. By these mechanisms, proteoglycans influence the behavior of cancer cells and their microenvironment during the progression of solid tumors and hematopoietic malignancies. In this review, we discuss why cell surface proteoglycans are attractive pharmacological targets in cancer, and we present current and recent developments in cancer immunology and immunotherapy utilizing proteoglycan-targeted strategies.
Collapse
|
38
|
Tavianatou AG, Caon I, Franchi M, Piperigkou Z, Galesso D, Karamanos NK. Hyaluronan: molecular size-dependent signaling and biological functions in inflammation and cancer. FEBS J 2019; 286:2883-2908. [PMID: 30724463 DOI: 10.1111/febs.14777] [Citation(s) in RCA: 287] [Impact Index Per Article: 47.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/14/2019] [Accepted: 02/04/2019] [Indexed: 12/15/2022]
Abstract
Hyaluronan (HA) is a linear nonsulfated glycosaminoglycan of the extracellular matrix that plays a pivotal role in a variety of biological processes. High-molecular weight HA exhibits different biological properties than oligomers and low-molecular weight HA. Depending on their molecular size, HA fragments can influence cellular behavior in a different mode of action. This phenomenon is attributed to the different manner of interaction with the HA receptors, especially CD44 and RHAMM. Both receptors can trigger signaling cascades that regulate cell functional properties, such as proliferation migration, angiogenesis, and wound healing. HA fragments are able to enhance or attenuate the HA receptor-mediated signaling pathways, as they compete with the endogenous HA for binding to the receptors. The modulation of these pathways could be crucial for the development of pathological conditions, such as inflammation and cancer. The primary goal of this review is to critically present the importance of HA molecular size on cellular signaling, functional cell properties, and morphology in normal and pathological conditions, including inflammation and cancer. A deeper understanding of these mechanisms could contribute to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Anastasia G Tavianatou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece
| | - Ilaria Caon
- Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Italy
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH) /Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| | | | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Greece.,Foundation for Research and Technology-Hellas (FORTH) /Institute of Chemical Engineering Sciences (ICE-HT), Patras, Greece
| |
Collapse
|
39
|
Hao S, Jiang L, Fu C, Wu X, Liu Z, Song J, Lu H, Wu X, Li S. 2-Methoxyestradiol attenuates chronic-intermittent-hypoxia-induced pulmonary hypertension through regulating microRNA-223. J Cell Physiol 2018; 234:6324-6335. [PMID: 30246291 DOI: 10.1002/jcp.27363] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 08/17/2018] [Indexed: 12/12/2022]
Abstract
Pulmonary hypertension (PH) is prevalent in patients with obstructive sleep apnea (OSA) syndrome, and coexistence of PH and OSA indicates a worse prognosis and higher mortality. Chronic intermittent hypoxia (CIH) is the key pathogenesis of OSA. Also, microRNA-223 (miR-223) plays a role in the regulation of CIH-induced PH process. However, the detailed mechanism of CIH inducing PH is still unclear. This study aimed to investigate the pathological process of CIH associated PH and explore the potential therapeutic methods. In this study, adult Sprague-Dawley rats were exposed to CIH or normoxic (N) conditions with 2-methoxyestradiol (2-Me) or vehicle treatment for 6 weeks. The results showed that 2-Me treatment reduced the progression of pulmonary angiogenesis in CIH rats, and alleviated proliferation, cellular migration, and reactive oxygen species formation was induced by CIH in pulmonary artery smooth muscle cells (PASMCs). CIH decreased the expression of miR-223, whereas 2-Me reversed the downregulation of miR-223 both in vivo and in vitro. Furthermore, the antiangiogenic effect of 2-Me observed in PASMCs was abrogated by miR-223 inhibitor, while enhanced by miR-223 mimic. These findings suggested that miR-223 played an important role in the process of CIH inducing PH, and 2-Me might reverse CIH-induced PH via upregulating miR-223.
Collapse
Affiliation(s)
- Shengyu Hao
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Clinical Centre for Sleep Breathing Disorder and Snoring, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Liyan Jiang
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cuiping Fu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Clinical Centre for Sleep Breathing Disorder and Snoring, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xu Wu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Zilong Liu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jieqiong Song
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Huan Lu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Clinical Centre for Sleep Breathing Disorder and Snoring, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xiaodan Wu
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Clinical Centre for Sleep Breathing Disorder and Snoring, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Shanqun Li
- Department of Pulmonary Medicine, Zhongshan Hospital, Fudan University, Shanghai, China.,Clinical Centre for Sleep Breathing Disorder and Snoring, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
40
|
Karamanos NK, Piperigkou Z, Theocharis AD, Watanabe H, Franchi M, Baud S, Brézillon S, Götte M, Passi A, Vigetti D, Ricard-Blum S, Sanderson RD, Neill T, Iozzo RV. Proteoglycan Chemical Diversity Drives Multifunctional Cell Regulation and Therapeutics. Chem Rev 2018; 118:9152-9232. [PMID: 30204432 DOI: 10.1021/acs.chemrev.8b00354] [Citation(s) in RCA: 253] [Impact Index Per Article: 36.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Nikos K. Karamanos
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Zoi Piperigkou
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
- Foundation for Research and Technology-Hellas (FORTH)/Institute of Chemical Engineering Sciences (ICE-HT), Patras 26110, Greece
| | - Achilleas D. Theocharis
- Biochemistry, Biochemical Analysis & Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Hideto Watanabe
- Institute for Molecular Science of Medicine, Aichi Medical University, Aichi 480-1195, Japan
| | - Marco Franchi
- Department for Life Quality Studies, University of Bologna, Rimini 47100, Italy
| | - Stéphanie Baud
- Université de Reims Champagne-Ardenne, Laboratoire SiRMa, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Stéphane Brézillon
- Université de Reims Champagne-Ardenne, Laboratoire de Biochimie Médicale et Biologie Moléculaire, CNRS UMR MEDyC 7369, Faculté de Médecine, 51 rue Cognacq Jay, Reims 51100, France
| | - Martin Götte
- Department of Gynecology and Obstetrics, Münster University Hospital, Münster 48149, Germany
| | - Alberto Passi
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Davide Vigetti
- Department of Medicine and Surgery, University of Insubria, Varese 21100, Italy
| | - Sylvie Ricard-Blum
- University Claude Bernard Lyon 1, CNRS, UMR 5246, Institute of Molecular and Supramolecular Chemistry and Biochemistry, Villeurbanne 69622, France
| | - Ralph D. Sanderson
- Department of Pathology, Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama 35294, United States
| | - Thomas Neill
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| | - Renato V. Iozzo
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania 10107, United States
| |
Collapse
|
41
|
Advances in targeting epidermal growth factor receptor signaling pathway in mammary cancer. Cell Signal 2018; 51:99-109. [PMID: 30071291 DOI: 10.1016/j.cellsig.2018.07.010] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 07/28/2018] [Accepted: 07/28/2018] [Indexed: 12/17/2022]
Abstract
Breast cancer is the most common malignancy among women worldwide. The role of epidermal growth factor receptor (EGFR) in many epithelial malignancies has been established, since it is dysregulated, overexpressed or mutated. Its overexpression has been associated with increased aggressiveness and metastatic potential in breast cancer. The well-established interplay between EGFR signaling pathway and estrogen receptors (ERs) as well as major extracellular matrix (ECM) mediators is crucial for regulating basic functional properties of breast cancer cells, including migration, proliferation, adhesion and invasion. EGFR activation leads to endocytosis of the receptor with implications in the regulation of downstream signaling effectors, the modulation of autophagy and cell survival. Therefore, EGFR is considered as a promising therapeutic target in breast cancer. Several anti-EGFR therapies (i.e. monoclonal antibodies and tyrosine kinase inhibitors) have been evaluated both in vitro and in vivo, making their way to clinical trials. However, the response rates of anti-EGFR therapies in the clinical trials is low mainly due to chemoresistance. Novel drug design, phytochemicals and microRNAs (miRNAs) are assessed as new therapeutic approaches against EGFR. The main goal of this review is to highlight the importance of targeting EGFR signaling pathway in terms of its crosstalk with ERs, the involvement of ECM effectors and epigenetics. Moreover, recent insights into the design of specialized delivery systems contributing in the development of novel diagnostic and therapeutic approaches in breast cancer are addressed.
Collapse
|
42
|
Bouris P, Manou D, Sopaki-Valalaki A, Kolokotroni A, Moustakas A, Kapoor A, Iozzo RV, Karamanos NK, Theocharis AD. Serglycin promotes breast cancer cell aggressiveness: Induction of epithelial to mesenchymal transition, proteolytic activity and IL-8 signaling. Matrix Biol 2018; 74:35-51. [PMID: 29842969 DOI: 10.1016/j.matbio.2018.05.011] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Revised: 05/23/2018] [Accepted: 05/24/2018] [Indexed: 12/20/2022]
Abstract
Serglycin is an intracellular proteoglycan that is expressed and constitutively secreted by numerous malignant cells, especially prominent in the highly-invasive, triple-negative MDA-MB-231 breast carcinoma cells. Notably, de novo expression of serglycin in low aggressive estrogen receptor α (ERα)-positive MCF7 breast cancer cells promotes an aggressive phenotype. In this study, we discovered that serglycin promoted epithelial to mesenchymal transition (EMT) in MCF7 cells as shown by increased expression of mesenchymal markers vimentin, fibronectin and EMT-related transcription factor Snail2. These phenotypic traits were also associated with the development of drug resistance toward various chemotherapy agents and induction of their proteolytic potential as shown by the increased expression of matrix metalloproteinases, including MMP-1, MMP-2, MMP-9, MT1-MMP and up-regulation of urokinase-type plasminogen activator. Knockdown of serglycin markedly reduced the expression of these proteolytic enzymes in MDA-MB-231 cells. In addition, serglycin expression was closely linked to a pro-inflammatory gene signature including the chemokine IL-8 in ERα-negative breast cancer cells and tumors. Notably, serglycin regulated the secretion of IL-8 in breast cancer cells independently of their ERα status and promoted their proliferation, migration and invasion by triggering IL-8/CXCR2 downstream signaling cascades including PI3K, Src and Rac activation. Thus, serglycin promotes the establishment of a pro-inflammatory milieu in breast cancer cells that evokes an invasive mesenchymal phenotype via autocrine activation of IL-8/CXCR2 signaling axis.
Collapse
Affiliation(s)
- Panagiotis Bouris
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Dimitra Manou
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Anastasia Sopaki-Valalaki
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Anthi Kolokotroni
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Aristidis Moustakas
- Department of Medical Biochemistry and Microbiology, Science for Life Laboratory, Uppsala University, SE 75123 Uppsala, Sweden
| | - Aastha Kapoor
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology and the Cancer Cell Biology and Signaling Program, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Nikos K Karamanos
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece
| | - Achilleas D Theocharis
- Biochemistry, Biochemical Analysis and Matrix Pathobiology Research Group, Laboratory of Biochemistry, Department of Chemistry, University of Patras, Patras 26110, Greece.
| |
Collapse
|
43
|
Piperigkou Z, Götte M, Theocharis AD, Karamanos NK. Insights into the key roles of epigenetics in matrix macromolecules-associated wound healing. Adv Drug Deliv Rev 2018; 129:16-36. [PMID: 29079535 DOI: 10.1016/j.addr.2017.10.008] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2017] [Revised: 10/14/2017] [Accepted: 10/20/2017] [Indexed: 02/08/2023]
Abstract
Extracellular matrix (ECM) is a dynamic network of macromolecules, playing a regulatory role in cell functions, tissue regeneration and remodeling. Wound healing is a tissue repair process necessary for the maintenance of the functionality of tissues and organs. This highly orchestrated process is divided into four temporally overlapping phases, including hemostasis, inflammation, proliferation and tissue remodeling. The dynamic interplay between ECM and resident cells exerts its critical role in many aspects of wound healing, including cell proliferation, migration, differentiation, survival, matrix degradation and biosynthesis. Several epigenetic regulatory factors, such as the endogenous non-coding microRNAs (miRNAs), are the drivers of the wound healing response. microRNAs have pivotal roles in regulating ECM composition during wound healing and dermal regeneration. Their expression is associated with the distinct phases of wound healing and they serve as target biomarkers and targets for systematic regulation of wound repair. In this article we critically present the importance of epigenetics with particular emphasis on miRNAs regulating ECM components (i.e. glycoproteins, proteoglycans and matrix proteases) that are key players in wound healing. The clinical relevance of miRNA targeting as well as the delivery strategies designed for clinical applications are also presented and discussed.
Collapse
|