1
|
Duan M, Liu Y, Pi C, Zhao Y, Tian Y, Xie J. TGF-β2 enhances nanoscale cortex stiffness via condensation of cytoskeleton-focal adhesion plaque. Biophys J 2025; 124:336-350. [PMID: 39645584 PMCID: PMC11788479 DOI: 10.1016/j.bpj.2024.12.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/27/2024] [Accepted: 12/04/2024] [Indexed: 12/09/2024] Open
Abstract
Physical spatiotemporal characteristics of cellular cortex dominate cell functions and even determine cell fate. The cellular cortex is able to reorganize to a dynamic steady status with changed stiffnesses once stimulated, and thus alter the physiological and pathological activities of almost all types of cells. TGF-β2, a potent pleiotropic growth factor, plays important roles in cartilage development, endochondral ossification, and cartilage diseases. However, it is not yet known whether TGF-β2 would alter the physical spatiotemporal characteristics of the cell cortex such as cortex stiffness, thereby affecting the function of chondrocytes. In this study, we investigated the influence of TGF-β2 on cellular cortex stiffness of chondrocytes and the underlying mechanism. We firstly detected TGF-β2-induced changes in cytoskeleton and focal adhesion plaque, which were closely related to cellular cortex stiffness. We then characterized the landscape of nanoscale cortex stiffness in individual chondrocytes induced by TGF-β2 via atomic force microscopy. By using inhibitors, latrunculin A and blebbistatin, we verified the importance of cytoskeleton-focal adhesion plaque axis on cellular cortex stiffness of chondrocytes induced by TGF-β2. We finally elucidated that TGF-β2 enhanced the phosphorylation of Smad3 and facilitated the nuclear accumulation of p-Smad3. The p-Smad3 aggregated in the nuclei enhanced the cytoskeleton and focal adhesion plaque at transcriptional level, thereby mediating changes in cell cortex stiffness. Taken together, these results provide an understanding about the role of TGF-β2 on physical spatiotemporal properties of cell cortex in chondrocytes, and might provide cues for interpretation of cartilage development and interventions to cartilage diseases.
Collapse
Affiliation(s)
- Mengmeng Duan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yi Liu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Caixia Pi
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yanfang Zhao
- Department of Prosthodontics, Indiana University, Bloomington, Indiana
| | - Yunfei Tian
- Analytical & Testing Center, Sichuan University, Chengdu, Sichuan, China.
| | - Jing Xie
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
2
|
Xiao Y, Martinez L, Zigmond Z, Woltmann D, Singer DV, Singer HA, Vazquez-Padron RI, Salman LH. Functions for platelet factor 4 (PF4/CXCL4) and its receptors in fibroblast-myofibroblast transition and fibrotic failure of arteriovenous fistulas (AVFs). J Vasc Access 2024; 25:1911-1924. [PMID: 37589266 PMCID: PMC10998683 DOI: 10.1177/11297298231192386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Over 60% of End Stage Renal Disease (ESRD) patients are relying on hemodialysis (HD) to survive, and the arteriovenous fistula (AVF) is the preferred vascular access method for HD. However approximately half of all newly created AVF fail to mature and cannot be used without a salvage procedure. We have recently demonstrated an association between AVF maturation failure and post-operative fibrosis, while our RNA-seq study also revealed that veins that ultimately failed during AVF maturation had elevated levels of platelet factor 4 (PF4/CXCL4). However, a link between these two findings was yet to be established. METHODS In this study, we investigated potential mechanisms between PF4 levels and fibrotic remodeling in veins. We compared the local expression of PF4 and fibrosis marker integrin β6 (ITGB6) in veins that successfully underwent maturation with that in veins that ultimately failed to mature. We also measured the changes of expression level of α-smooth muscle actin (αSMA/ACTA2) and collagen (Col1/COL1A1) in venous fibroblasts upon various treatments, such as PF4 pharmacological treatment, alteration of PF4 expression, and blocking of PF4 receptors. RESULTS We found that PF4 is expressed in veins and co-localizes with αSMA. In venous fibroblasts, PF4 stimulates expression of αSMA and Col1 via different pathways. The former requires integrins αvβ5 and α5β1, while chemokine receptor CXCR3 is needed for the latter. Interestingly, we also discovered that the expression of PF4 is associated with that of ITGB6, the β subunit of integrin αvβ6. This integrin is critical for the activation of the major fibrosis factor TGFβ, and overexpression of PF4 promotes activation of the TGFβ pathway. CONCLUSIONS These results indicate that upregulation of PF4 may cause venous fibrosis both directly by stimulating fibroblast differentiation and expression of extracellular matrix (ECM) molecules and indirectly by facilitating the activation of the TGFβ pathway.
Collapse
Affiliation(s)
- Yuxuan Xiao
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Laisel Martinez
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Zachary Zigmond
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Daniel Woltmann
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Diane V Singer
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Harold A Singer
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA
| | - Roberto I Vazquez-Padron
- DeWitt Daughtry Family Department of Surgery, Leonard M. Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Loay H Salman
- Department of Molecular & Cellular Physiology, Albany Medical College, Albany, NY, USA
- Division of Nephrology & Hypertension, Albany Medical College, Albany, NY, USA
| |
Collapse
|
3
|
Qiu Y, Que Y, Ding Z, Zhang S, Wei R, Xia J, Lin Y. Drugs targeting CTGF in the treatment of pulmonary fibrosis. J Cell Mol Med 2024; 28:e18448. [PMID: 38774993 PMCID: PMC11109635 DOI: 10.1111/jcmm.18448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 04/23/2024] [Accepted: 05/13/2024] [Indexed: 05/24/2024] Open
Abstract
Pulmonary fibrosis represents the final alteration seen in a wide variety of lung disorders characterized by increased fibroblast activity and the accumulation of substantial amounts of extracellular matrix, along with inflammatory damage and the breakdown of tissue architecture. This condition is marked by a significant mortality rate and a lack of effective treatments. The depositing of an excessive quantity of extracellular matrix protein follows the damage to lung capillaries and alveolar epithelial cells, leading to pulmonary fibrosis and irreversible damage to lung function. It has been proposed that the connective tissue growth factor (CTGF) plays a critical role in the advancement of pulmonary fibrosis by enhancing the accumulation of the extracellular matrix and exacerbating fibrosis. In this context, the significance of CTGF in pulmonary fibrosis is examined, and a summary of the development of drugs targeting CTGF for the treatment of pulmonary fibrosis is provided.
Collapse
Affiliation(s)
- Yudan Qiu
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang ProvinceHangzhou Normal UniversityHangzhouZhejiangChina
| | - Yueyue Que
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang ProvinceHangzhou Normal UniversityHangzhouZhejiangChina
| | - Zheyu Ding
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang ProvinceHangzhou Normal UniversityHangzhouZhejiangChina
| | - Shanshan Zhang
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang ProvinceHangzhou Normal UniversityHangzhouZhejiangChina
| | - Rong Wei
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang ProvinceHangzhou Normal UniversityHangzhouZhejiangChina
| | - Jianing Xia
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang ProvinceHangzhou Normal UniversityHangzhouZhejiangChina
| | - Yingying Lin
- School of PharmacyHangzhou Normal UniversityHangzhouZhejiangChina
- Key Laboratory of Elemene Class Anti‐Cancer Chinese Medicines; Engineering Laboratory of Development and Application of Traditional Chinese Medicines; Collaborative Innovation Center of Traditional Chinese Medicines of Zhejiang ProvinceHangzhou Normal UniversityHangzhouZhejiangChina
| |
Collapse
|
4
|
Shen J, Wu L, Shi X, Chen G, Liu T, Xu F, Xu X, Kou X, Zhao Y, Wang H, Wang C, Gao S, Xu S. Transplantation of the LRP1 high subpopulation of human umbilical cord-derived mesenchymal stem cells improves ovarian function in mice with premature ovarian failure and aged mice. Stem Cell Res Ther 2024; 15:64. [PMID: 38438896 PMCID: PMC10913679 DOI: 10.1186/s13287-024-03660-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/07/2024] [Indexed: 03/06/2024] Open
Abstract
BACKGROUND Premature ovarian failure (POF) has a profound impact on female reproductive and psychological health. In recent years, the transplantation of umbilical cord-derived mesenchymal stem cells (UC-MSCs) has demonstrated unprecedented potential in the treatment of POF. However, the heterogeneity of human UC-MSCs remains a challenge for their large-scale clinical application. Therefore, it is imperative to identify specific subpopulations within UC-MSCs that possess the capability to improve ovarian function, with the aim of reducing the uncertainty arising from the heterogeneity while achieving more effective treatment of POF. METHODS 10 × Genomics was performed to investigate the heterogeneity of human UC-MSCs. We used LRP1 as a marker and distinguished the potential therapeutic subpopulation by flow cytometry, and determined its secretory functions. Unsorted UC-MSCs, LRP1high and LRP1low subpopulation was transplanted under the ovarian capsules of aged mice and CTX-induced POF mice, and therapeutic effects was evaluated by assessing hormone levels, estrous cycles, follicle counts, and embryo numbers. RNA sequencing on mouse oocytes and granulosa cells after transplantation was performed to explore the mechanism of LRP1high subpopulation on mouse oocytes and granulosa cells. RESULTS We identified three distinct functional subtypes, including mesenchymal stem cells, multilymphoid progenitor cells and trophoblasts. Additionally, we identified the LRP1high subpopulation, which improved ovarian function in aged and POF mice. We elucidated the unique secretory functions of the LRP1high subpopulation, capable of secreting various chemokines, cytokines, and growth factors. Furthermore, LRP1 plays a crucial role in regulating the ovarian microenvironment, including tissue repair and extracellular matrix remodeling. Consistent with its functions, the transcriptomes of oocytes and granulosa cells after transplantation revealed that the LRP1high subpopulation improves ovarian function by modulating the extracellular matrix of oocytes, NAD metabolism, and mitochondrial function in granulosa cells. CONCLUSION Through exploration of the heterogeneity of UC-MSCs, we identified the LRP1high subpopulation capable of improving ovarian function in aged and POF mice by secreting various factors and remodeling the extracellular matrix. This study provides new insights into the targeted exploration of human UC-MSCs in the precise treatment of POF.
Collapse
Affiliation(s)
- Jiacheng Shen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Li Wu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Xiaoying Shi
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Tongji, 200092, China
- Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Gang Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Tingwei Liu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Fangfang Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xiaocui Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Xiaochen Kou
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yanhong Zhao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Hong Wang
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
- Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Chenfei Wang
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Department of Orthopedics, Tongji Hospital, School of Life Science and Technology, Tongji University, Tongji, 200092, China
- Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Shaorong Gao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
- Frontier Science Center for Stem Cell Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Shaohua Xu
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| |
Collapse
|
5
|
Tomoto M, Mineharu Y, Sato N, Tamada Y, Nogami-Itoh M, Kuroda M, Adachi J, Takeda Y, Mizuguchi K, Kumanogoh A, Natsume-Kitatani Y, Okuno Y. Idiopathic pulmonary fibrosis-specific Bayesian network integrating extracellular vesicle proteome and clinical information. Sci Rep 2024; 14:1315. [PMID: 38225283 PMCID: PMC10789725 DOI: 10.1038/s41598-023-50905-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/27/2023] [Indexed: 01/17/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a progressive disease characterized by severe lung fibrosis and a poor prognosis. Although the biomolecules related to IPF have been extensively studied, molecular mechanisms of the pathogenesis and their association with serum biomarkers and clinical findings have not been fully elucidated. We constructed a Bayesian network using multimodal data consisting of a proteome dataset from serum extracellular vesicles, laboratory examinations, and clinical findings from 206 patients with IPF and 36 controls. Differential protein expression analysis was also performed by edgeR and incorporated into the constructed network. We have successfully visualized the relationship between biomolecules and clinical findings with this approach. The IPF-specific network included modules associated with TGF-β signaling (TGFB1 and LRC32), fibrosis-related (A2MG and PZP), myofibroblast and inflammation (LRP1 and ITIH4), complement-related (SAA1 and SAA2), as well as serum markers, and clinical symptoms (KL-6, SP-D and fine crackles). Notably, it identified SAA2 associated with lymphocyte counts and PSPB connected with the serum markers KL-6 and SP-D, along with fine crackles as clinical manifestations. These results contribute to the elucidation of the pathogenesis of IPF and potential therapeutic targets.
Collapse
Affiliation(s)
- Mei Tomoto
- Department of Biomedical Data Intelligence, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Yohei Mineharu
- Department of Biomedical Data Intelligence, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
- Department of Artificial Intelligence in Healthcare and Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
| | - Noriaki Sato
- Department of Biomedical Data Intelligence, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan
- Human Genome Center, The Institute of Medical Science, The University of Tokyo, 4-6-1 Shirokane-Dai, Minato-Ku, Tokyo, 108-8639, Japan
| | - Yoshinori Tamada
- Innovation Center for Health Promotion, Hirosaki University, 5 Zaifu-Cho Hirosaki City, Aomori, 036-8562, Japan
| | - Mari Nogami-Itoh
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, 3-17, Senrioka-Shinmachi, Settsu City, Osaka, 566-0002, Japan
| | - Masataka Kuroda
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, 3-17, Senrioka-Shinmachi, Settsu City, Osaka, 566-0002, Japan
- Discovery Technology Laboratories, Mitsubishi Tanabe Pharma Corporation, 1000, Kamoshida-cho, Aoba-ku, Yokohama, Kanagawa, 227-0033, Japan
| | - Jun Adachi
- Laboratory of Proteomics for Drug Discovery, Center for Drug Design Research, National Institutes of Biomedical Innovation, Health and Nutrition, 7-6-8 Saito-Asagi, Ibaraki, Osaka, 567-0085, Japan
| | - Yoshito Takeda
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita City, Osaka, 565-0871, Japan
| | - Kenji Mizuguchi
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, 3-17, Senrioka-Shinmachi, Settsu City, Osaka, 566-0002, Japan
- Institute for Protein Research, Osaka University, 3-2 Yamada-Oka, Suita City, Osaka, 565-0871, Japan
| | - Atsushi Kumanogoh
- Department of Respiratory Medicine and Clinical Immunology, Graduate School of Medicine, Osaka University, 2-2 Yamada-Oka, Suita City, Osaka, 565-0871, Japan
| | - Yayoi Natsume-Kitatani
- Innovation Center for Health Promotion, Hirosaki University, 5 Zaifu-Cho Hirosaki City, Aomori, 036-8562, Japan.
- Artificial Intelligence Center for Health and Biomedical Research, National Institutes of Biomedical Innovation, Health and Nutrition, 3-17, Senrioka-Shinmachi, Settsu City, Osaka, 566-0002, Japan.
- Institute of Advanced Medical Sciences, Tokushima University, 3-18-15, Kuramoto-Cho, Tokushima City, Tokushima, 770-8503, Japan.
| | - Yasushi Okuno
- Department of Biomedical Data Intelligence, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
- Department of Artificial Intelligence in Healthcare and Medicine, Kyoto University Graduate School of Medicine, 54 Shogoin Kawahara-Cho, Sakyo-Ku, Kyoto, 606-8507, Japan.
- Biomedical Computational Intelligence Unit, HPC- and AI-Driven Drug Development Platform Division, RIKEN Center for Computational Science, 7-1-26, Minatojima-Minami-Machi, Chuo-Ku, Kobe, Hyogo, 650-0047, Japan.
| |
Collapse
|
6
|
Yang F, Zhong W, Pan S, Wang Y, Xiao Q, Gao X. Recent advances in the mechanism of hydrogen sulfide in wound healing in diabetes. Biochem Biophys Res Commun 2024; 692:149343. [PMID: 38065000 DOI: 10.1016/j.bbrc.2023.149343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/13/2023] [Accepted: 11/24/2023] [Indexed: 01/06/2024]
Abstract
Wound healing difficulties in diabetes continue to be a clinical challenge, posing a considerable burden to patients and society. Recently, exploration of the mechanism of wound healing and associated treatment options in diabetes has become topical. Of note, the positive role of hydrogen sulfide in promoting wound healing has been demonstrated in recent studies. Hydrogen sulfide is a confirmed gas transmitter in mammals, playing an essential role in pathology and physiology. This review describes the mechanism underlying the role of hydrogen sulfide in the promotion of diabetic wound healing and the potential for hydrogen sulfide supplementation as a therapeutic application.
Collapse
Affiliation(s)
- Fengze Yang
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China.
| | - Wenjie Zhong
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China.
| | - Shengyuan Pan
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China.
| | - Yue Wang
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China.
| | - Qingyue Xiao
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China.
| | - Xiang Gao
- College of Stomatology, Chongqing Medical University, Chongqing, 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, 401147, China; Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, 401147, China.
| |
Collapse
|
7
|
Zhou S, Wang Q, Yang W, Wang L, Wang J, You R, Luo Z, Zhang Q, Yan S. Development of a bioactive silk fibroin bilayer scaffold for wound healing and scar inhibition. Int J Biol Macromol 2024; 255:128350. [PMID: 37995792 DOI: 10.1016/j.ijbiomac.2023.128350] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 11/16/2023] [Accepted: 11/20/2023] [Indexed: 11/25/2023]
Abstract
In cases of deep skin defects, spontaneous tissue regeneration and excessive collagen deposition lead to hyperplastic scars. Conventional remedial action after scar formation is limited with a high recurrence rate. In this study, we designed a new artificial skin bilayer using silk fibroin nanofibers films (SNF) as the epidermis, and silk fibroin (SF) / hyaluronic acid (HA) scaffold as the dermal layer. The regenerated SF film was used as a binder to form a functional SNF-SF-HA bilayer scaffold. The bilayer scaffold showed high porosity, hydrophilicity, and strength, and retained its shape over 30 days in PBS. In vitro, human umbilical vein endothelial cells were seeded into the bilayer scaffold and showed superior cell viability. In vivo analyses using the rabbit ear hypertrophic scar (HS) model indicated that the bilayer scaffold not only supported the reconstruction of new tissue, but also inhibited scar formation. The scaffold possibly achieved scar inhabitation by reducing wound contraction, weakening inflammatory reactions, and regulating collagen deposition and type conversion, which was partly observed through the downregulation of type I collagen, transforming growth factor-β, and α-smooth muscle actin. This study describes a new strategy to expand the application of silk-based biomaterials for the treatment of hyperplastic skin scars.
Collapse
Affiliation(s)
- Shuiqing Zhou
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Qiusheng Wang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Wenjing Yang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Lu Wang
- Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, School and Hospital of Stomatology, Shanxi Medical University, Taiyuan 030001, China
| | - Jiangnan Wang
- Key Laboratory of Textile Industry for Silk Products in Medical and Health Use, Soochow University, Suzhou 215123, China
| | - Renchuan You
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China
| | - Zuwei Luo
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Qiang Zhang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China.
| | - Shuqin Yan
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, School of Textile Science and Engineering, Wuhan Textile University, Wuhan 430200, China; Key Laboratory of Textile Industry for Silk Products in Medical and Health Use, Soochow University, Suzhou 215123, China.
| |
Collapse
|
8
|
Liu Z, Ji P, Liu H, Yu L, Zhang SM, Liu P, Zhang XZ, Luo GF, Shang Z. FNIII14 Peptide-Enriched Membrane Nanocarrier to Disrupt Stromal Barriers through Reversing CAFs for Augmenting Drug Penetration in Tumors. NANO LETTERS 2023; 23:9963-9971. [PMID: 37729438 DOI: 10.1021/acs.nanolett.3c02983] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Given the key roles of cancer associated fibroblasts (CAFs) in shaping tumor stroma, this study shows a CAF-associated ITGB1-inactivating peptide-enriched membrane nanodelivery system (designated as PMNPs-D) to simultaneously target CAFs and tumor cells for boosted chemotherapy through promoted drug perfusion. In the structure of PMNPs-D, the PLGA-based inner core is loaded with the chemotherapeutic drug doxorubicin, and the outer surface is cloaked by hybrid biomembranes with the insertion of integrin β1 (ITGB1) inhibiting peptide (i.e., FNIII14). After prolonged blood circulation and actively targeting in tumor sites, PMNPs-D can respond to CAF-overexpressed fibroblast activation protein-α (FAP-α) to trigger the release of FNIII14, which will bind to ITGB1 and inhibit CAFs' biological function in producing the stromal matrix, thereby loosening the condensed stromal structure and enhancing the permeability of nanotherapeutics in tumors. As a result, this tailor-designed nanosystem shows substantial tumor inhibition and metastasis retardation in aggressive adenoid cystic carcinoma (ACC) tumor-harboring mice.
Collapse
Affiliation(s)
- Zhenan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| | - Ping Ji
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Hanzhe Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| | - Lili Yu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| | - Shi-Man Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Pan Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education & Department of Chemistry, Wuhan University, Wuhan 430072, P. R. China
| | - Guo-Feng Luo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| | - Zhengjun Shang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, P. R. China
| |
Collapse
|
9
|
Mattoo H, Bangari DS, Cummings S, Humulock Z, Habiel D, Xu EY, Pate N, Resnick R, Savova V, Qian G, Beil C, Rao E, Nestle FO, Bryce PJ, Subramaniam A. Molecular Features and Stages of Pulmonary Fibrosis Driven by Type 2 Inflammation. Am J Respir Cell Mol Biol 2023; 69:404-421. [PMID: 37369139 DOI: 10.1165/rcmb.2022-0301oc] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 06/27/2023] [Indexed: 06/29/2023] Open
Abstract
Systemic sclerosis (SSc) is a progressive, multiorgan disease with limited treatment options. Although a recent proof-of-concept study using romilkimab or SAR156597, a bispecific IL-4/IL-13 antibody, suggests a direct role of these cytokines in the pathophysiology of SSc, their contributions to the balance between inflammation and fibrosis are unclear. Here, we determine the roles of type 2 inflammation in fibrogenesis using FRA2-Tg (Fos-related antigen 2-overexpressing transgenic) mice, which develop spontaneous, age-dependent progressive lung fibrosis. We defined the molecular signatures of inflammation and fibrosis at three key stages in disease progression, corresponding to preonset, inflammatory dominant, and fibrosis dominant biology, and revealed an early increase in cytokine-cytokine receptor interactions and antigen-processing and presentation pathways followed by enhanced Th2- and M2 macrophage-driven type 2 responses. This type 2 inflammation progressed to extensive fibrotic pathology by 14-18 weeks of age, with these gene signatures overlapping significantly with those seen in the lungs of patients with SSc with interstitial lung disease (ILD). These changes were also evident in the histopathology, which showed perivascular and peribronchiolar inflammation with prominent eosinophilia and accumulation of profibrotic M2-like macrophages followed by rapid progression to fibrosis with thickened alveolar walls with multifocal fibrotic bands and signs of interstitial pneumonia. Critically, treatment with a bispecific antibody targeting IL-4 and IL-13 during the inflammatory phase abrogated the Th2 and M2 responses and led to near-complete abrogation of lung fibrosis. These data recapitulate important features of fibrotic progression in the lungs of patients with SSc-ILD and enhance our understanding of the progressive pathobiology of SSc. This study also further establishes FRA2-Tg mice as a valuable tool for testing future therapeutic agents in SSc-ILD.
Collapse
Affiliation(s)
| | | | - Sheila Cummings
- Discovery Pathology, Translational In Vivo Models Platform, and
| | | | - David Habiel
- Immunology and Inflammation Research Therapeutic Area
| | - Ethan Y Xu
- Precision Medicine and Computational Biology
- Aspen Neuroscience, San Diego, California
| | - Nathan Pate
- Discovery Pathology, Translational In Vivo Models Platform, and
| | | | | | - George Qian
- Immunology and Inflammation Research Therapeutic Area
| | | | - Ercole Rao
- Biologics Research, Sanofi, Frankfurt, Germany; and
| | | | - Paul J Bryce
- Immunology and Inflammation Research Therapeutic Area
| | | |
Collapse
|
10
|
Wu R, Fu M, Tao HM, Dong T, Fan WT, Zhao LL, Fan ZN, Liu L. Benign esophageal stricture model construction and mechanism exploration. Sci Rep 2023; 13:11769. [PMID: 37474710 PMCID: PMC10359281 DOI: 10.1038/s41598-023-38575-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Accepted: 07/11/2023] [Indexed: 07/22/2023] Open
Abstract
Esophageal stricture is a debilitating condition that negatively impacts patients' quality of life after undergoing endoscopic mucosal resection (EMR). Despite its significance, this disease remains underexplored due to the lack of a stable animal model. Under direct visualization with choledochoscopy, we retrogradely damaged the esophageal mucosal layer through the gastrostomy to create a rat model of esophageal stricture. The development of histological defects in the mucosal layer was assessed over a 2-week period after model induction. Then the models were evaluated using X-ray barium radiography, Hematoxylin-Eosin, Masson's trichrome, Sirius red, and Victoria blue staining, multiphoton microscopic imaging. Additionally, the molecular mechanisms of esophageal stricture were explored by conducting RNA transcriptome sequencing, PCR, immunohistochemistry, and immunofluorescence staining. We successfully established fifteen rat models of esophageal stricture by injuring the mucosal layer. In the model group, the mucosal defect initially occurs and subsequently repaired. The epithelium was absent and was plastically remodeled by collagen during the acute inflammatory phase (Day 1), proliferation phase (Day 7), anaphase of proliferation (Day 10), and plastic remodeling phase (Day 14). We observed increased expression of COL1A1, acta2, FGF, IL-1, and TGF-β1 pathway in the model group. We established a highly repeatable rat model of esophageal stricture, and our results suggest that the mucosal defect of the esophagus is a critical factor in esophageal stricture development, rather than damage to the muscularis layer. We identified Atp4b, cyp1a2, and gstk1 as potential targets for treating esophageal stricture, while the TGF-β pathway was found to play an important role in its development.
Collapse
Affiliation(s)
- Rui Wu
- Department of Digestive Endoscopy, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
- Department of Gastroenterology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210031, Jiangsu, China
- Department of Critical Care Medicine, Jinling Hospital of Nanjing Medical University, Nanjing, 210010, Jiangsu, China
| | - Min Fu
- Department of Digestive Endoscopy, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Hui-Min Tao
- Department of Gynecology, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China
| | - Tao Dong
- Digestive Endoscopy Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, 210004, Jiangsu, China
| | - Wen-Tao Fan
- Department of Gastroenterology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210031, Jiangsu, China
| | - Li-Li Zhao
- Department of Digestive Endoscopy, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
| | - Zhi-Ning Fan
- Department of Digestive Endoscopy, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
- Department of Gastroenterology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210031, Jiangsu, China.
| | - Li Liu
- Department of Digestive Endoscopy, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, Jiangsu, China.
- Department of Gastroenterology, The Fourth Affiliated Hospital of Nanjing Medical University, Nanjing, 210031, Jiangsu, China.
| |
Collapse
|
11
|
Huang M, Hua N, Zhuang S, Fang Q, Shang J, Wang Z, Tao X, Niu J, Li X, Yu P, Yang W. Cux1+ proliferative basal cells promote epidermal hyperplasia in chronic dry skin disease identified by single-cell RNA transcriptomics. J Pharm Anal 2023; 13:745-759. [PMID: 37577389 PMCID: PMC10422139 DOI: 10.1016/j.jpha.2023.04.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 08/15/2023] Open
Abstract
Pathological dry skin is a disturbing and intractable healthcare burden, characterized by epithelial hyperplasia and severe itch. Atopic dermatitis (AD) and psoriasis models with complications of dry skin have been studied using single-cell RNA sequencing (scRNA-seq). However, scRNA-seq analysis of the dry skin mouse model (acetone/ether/water (AEW)-treated model) is still lacking. Here, we used scRNA-seq and in situ hybridization to identify a novel proliferative basal cell (PBC) state that exclusively expresses transcription factor CUT-like homeobox 1 (Cux1). Further in vitro study demonstrated that Cux1 is vital for keratinocyte proliferation by regulating a series of cyclin-dependent kinases (CDKs) and cyclins. Clinically, Cux1+ PBCs were increased in patients with psoriasis, suggesting that Cux1+ PBCs play an important part in epidermal hyperplasia. This study presents a systematic knowledge of the transcriptomic changes in a chronic dry skin mouse model, as well as a potential therapeutic target against dry skin-related dermatoses.
Collapse
Affiliation(s)
- Minhua Huang
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Ning Hua
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Siyi Zhuang
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Qiuyuan Fang
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Jiangming Shang
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Zhen Wang
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310000, China
| | - Xiaohua Tao
- Department of Dermatology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310000, China
| | - Jianguo Niu
- Key Laboratory of Craniocerebral Diseases of Ningxia Hui Autonomous Region, Ningxia Medical University, Yinchuan, 750000, China
| | - Xiangyao Li
- Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Peilin Yu
- Department of Toxicology, and Department of Medical Oncology of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Wei Yang
- Department of Biophysics, and Department of Neurology of the Fourth Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
- Laboratory Medicine Center, Allergy Center, Department of Transfusion Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310000, China
- MOE Frontier Science Center for Brain Research and Brain-Machine Integration, Zhejiang University School of Medicine, Hangzhou, 310000, China
| |
Collapse
|
12
|
Fibrosis: Types, Effects, Markers, Mechanisms for Disease Progression, and Its Relation with Oxidative Stress, Immunity, and Inflammation. Int J Mol Sci 2023; 24:ijms24044004. [PMID: 36835428 PMCID: PMC9963026 DOI: 10.3390/ijms24044004] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 01/15/2023] [Accepted: 01/19/2023] [Indexed: 02/19/2023] Open
Abstract
Most chronic inflammatory illnesses include fibrosis as a pathogenic characteristic. Extracellular matrix (ECM) components build up in excess to cause fibrosis or scarring. The fibrotic process finally results in organ malfunction and death if it is severely progressive. Fibrosis affects nearly all tissues of the body. The fibrosis process is associated with chronic inflammation, metabolic homeostasis, and transforming growth factor-β1 (TGF-β1) signaling, where the balance between the oxidant and antioxidant systems appears to be a key modulator in managing these processes. Virtually every organ system, including the lungs, heart, kidney, and liver, can be affected by fibrosis, which is characterized as an excessive accumulation of connective tissue components. Organ malfunction is frequently caused by fibrotic tissue remodeling, which is also frequently linked to high morbidity and mortality. Up to 45% of all fatalities in the industrialized world are caused by fibrosis, which can damage any organ. Long believed to be persistently progressing and irreversible, fibrosis has now been revealed to be a very dynamic process by preclinical models and clinical studies in a variety of organ systems. The pathways from tissue damage to inflammation, fibrosis, and/or malfunction are the main topics of this review. Furthermore, the fibrosis of different organs with their effects was discussed. Finally, we highlight many of the principal mechanisms of fibrosis. These pathways could be considered as promising targets for the development of potential therapies for a variety of important human diseases.
Collapse
|
13
|
Pi Z, Qiu X, Liu J, Shi Y, Zeng Z, Xiao R. Activating Protein-1 (AP-1): A Promising Target for the Treatment of Fibrotic Diseases. Curr Med Chem 2023; 31:CMC-EPUB-129375. [PMID: 36757030 DOI: 10.2174/0929867330666230209100059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 12/04/2022] [Accepted: 12/29/2022] [Indexed: 02/10/2023]
Abstract
The fibrosis of tissues and organs occurs via an aberrant tissue remodeling process characterized by an excessive deposition of extracellular matrix, which can lead to organ dysfunction, organ failure, and death. Because the pathogenesis of fibrosis remains unclear and elusive, there is currently no medication to reverse it; hence, this process deserves further study. Activating protein-1 (AP-1)-comprising Jun (c-Jun, JunB, JunD), Fos (c-fos, FosB, Fra1, and Fra2), and activating transcription factor-is a versatile dimeric transcription factor. Numerous studies have demonstrated that AP-1 plays a crucial role in advancing tissue and organ fibrosis via induction of the expression of fibrotic molecules and activating fibroblasts. This review focuses on the role of AP-1 in a range of fibrotic disorders as well as on the antifibrotic effects of AP-1 inhibitors. It also discusses the potential of AP-1 as a new therapeutic target in conditions involving tissue and organ fibrosis.
Collapse
Affiliation(s)
- Zixin Pi
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
- Department of Medical Genetics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Xiangning Qiu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Jiani Liu
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Yaqian Shi
- Second Xiangya Hospital of Central South University Department of Dermatology Changsha China
| | - Zhuotong Zeng
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| | - Rong Xiao
- Department of Dermatology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, China
| |
Collapse
|
14
|
The uPA/uPAR System Orchestrates the Inflammatory Response, Vascular Homeostasis, and Immune System in Fibrosis Progression. Int J Mol Sci 2023; 24:ijms24021796. [PMID: 36675310 PMCID: PMC9866279 DOI: 10.3390/ijms24021796] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/18/2023] Open
Abstract
Fibrotic diseases, such as systemic sclerosis (SSc), idiopathic pulmonary fibrosis, renal fibrosis and liver cirrhosis are characterized by tissue overgrowth due to excessive extracellular matrix (ECM) deposition. Fibrosis progression is caused by ECM overproduction and the inhibition of ECM degradation due to several events, including inflammation, vascular endothelial dysfunction, and immune abnormalities. Recently, it has been reported that urokinase plasminogen activator (uPA) and its receptor (uPAR), known to be fibrinolytic factors, orchestrate the inflammatory response, vascular homeostasis, and immune homeostasis system. The uPA/uPAR system may show promise as a potential therapeutic target for fibrotic diseases. This review considers the role of the uPA/uPAR system in the progression of fibrotic diseases.
Collapse
|
15
|
The Multiple Roles of Periostin in Non-Neoplastic Disease. Cells 2022; 12:cells12010050. [PMID: 36611844 PMCID: PMC9818388 DOI: 10.3390/cells12010050] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 12/05/2022] [Accepted: 12/20/2022] [Indexed: 12/24/2022] Open
Abstract
Periostin, identified as a matricellular protein and an ECM protein, plays a central role in non-neoplastic diseases. Periostin and its variants have been considered to be normally involved in the progression of most non-neoplastic diseases, including brain injury, ocular diseases, chronic rhinosinusitis, allergic rhinitis, dental diseases, atopic dermatitis, scleroderma, eosinophilic esophagitis, asthma, cardiovascular diseases, lung diseases, liver diseases, chronic kidney diseases, inflammatory bowel disease, and osteoarthrosis. Periostin interacts with protein receptors and transduces signals primarily through the PI3K/Akt and FAK two channels as well as other pathways to elicit tissue remodeling, fibrosis, inflammation, wound healing, repair, angiogenesis, tissue regeneration, bone formation, barrier, and vascular calcification. This review comprehensively integrates the multiple roles of periostin and its variants in non-neoplastic diseases, proposes the utility of periostin as a biological biomarker, and provides potential drug-developing strategies for targeting periostin.
Collapse
|
16
|
Bax M, Romanov V, Junday K, Giannoulatou E, Martinac B, Kovacic JC, Liu R, Iismaa SE, Graham RM. Arterial dissections: Common features and new perspectives. Front Cardiovasc Med 2022; 9:1055862. [PMID: 36561772 PMCID: PMC9763901 DOI: 10.3389/fcvm.2022.1055862] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Arterial dissections, which involve an abrupt tear in the wall of a major artery resulting in the intramural accumulation of blood, are a family of catastrophic disorders causing major, potentially fatal sequelae. Involving diverse vascular beds, including the aorta or coronary, cervical, pulmonary, and visceral arteries, each type of dissection is devastating in its own way. Traditionally they have been studied in isolation, rather than collectively, owing largely to the distinct clinical consequences of dissections in different anatomical locations - such as stroke, myocardial infarction, and renal failure. Here, we review the shared and unique features of these arteriopathies to provide a better understanding of this family of disorders. Arterial dissections occur commonly in the young to middle-aged, and often in conjunction with hypertension and/or migraine; the latter suggesting they are part of a generalized vasculopathy. Genetic studies as well as cellular and molecular investigations of arterial dissections reveal striking similarities between dissection types, particularly their pathophysiology, which includes the presence or absence of an intimal tear and vasa vasorum dysfunction as a cause of intramural hemorrhage. Pathway perturbations common to all types of dissections include disruption of TGF-β signaling, the extracellular matrix, the cytoskeleton or metabolism, as evidenced by the finding of mutations in critical genes regulating these processes, including LRP1, collagen genes, fibrillin and TGF-β receptors, or their coupled pathways. Perturbances in these connected signaling pathways contribute to phenotype switching in endothelial and vascular smooth muscle cells of the affected artery, in which their physiological quiescent state is lost and replaced by a proliferative activated phenotype. Of interest, dissections in various anatomical locations are associated with distinct sex and age predilections, suggesting involvement of gene and environment interactions in disease pathogenesis. Importantly, these cellular mechanisms are potentially therapeutically targetable. Consideration of arterial dissections as a collective pathology allows insight from the better characterized dissection types, such as that involving the thoracic aorta, to be leveraged to inform the less common forms of dissections, including the potential to apply known therapeutic interventions already clinically available for the former.
Collapse
Affiliation(s)
- Monique Bax
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Valentin Romanov
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Keerat Junday
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Eleni Giannoulatou
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Boris Martinac
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Jason C. Kovacic
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
- St. Vincent’s Hospital, Darlinghurst, NSW, Australia
- Icahn School of Medicine at Mount Sinai, Cardiovascular Research Institute, New York, NY, United States
| | - Renjing Liu
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Siiri E. Iismaa
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
| | - Robert M. Graham
- Victor Chang Cardiac Research Institute, Darlinghurst, NSW, Australia
- UNSW Medicine and Health, UNSW Sydney, Kensington, NSW, Australia
- St. Vincent’s Hospital, Darlinghurst, NSW, Australia
| |
Collapse
|
17
|
Guo J, Tang C, Shu Z, Guo J, Tang H, Huang P, Ye X, Liang T, Tang K. Single-cell analysis reveals that Jinwu Gutong capsule attenuates the inflammatory activity of synovial cells in osteoarthritis by inhibiting AKR1C3. Front Physiol 2022; 13:1031996. [PMID: 36505054 PMCID: PMC9727177 DOI: 10.3389/fphys.2022.1031996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
Jinwu Gutong capsule (JGC) is a traditional Chinese medicine formula for the treatment of osteoarthritis (OA). Synovitis is a typical pathological change in OA and promotes disease progression. Elucidating the therapeutic mechanism of JGC is crucial for the precise treatment of OA synovitis. In this study, we demonstrate that JGC effectively inhibits hyperproliferation, attenuates inflammation, and promotes apoptosis of synovial cells. Through scRNA-seq data analysis of OA synovitis, we dissected two distinct cell fates that influence disease progression (one fate led to recovery while the other fate resulted in deterioration), which illustrates the principles of fate determination. By intersecting JGC targets with synovitis hub genes and then mimicking picomolar affinity interactions between bioactive compounds and binding pockets, we found that the quercetin-AKR1C3 pair exhibited the best affinity, indicating that this pair constitutes the most promising molecular mechanism. In vitro experiments confirmed that the expression of AKR1C3 in synovial cells was reduced after JGC addition. Further overexpression of AKR1C3 significantly attenuated the therapeutic efficacy of JGC. Thus, we revealed that JGC effectively treats OA synovitis by inhibiting AKR1C3 expression.
Collapse
Affiliation(s)
- Junfeng Guo
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Chuyue Tang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Zhao Shu
- The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Junfeng Guo
- Department of Stomatology, The 970th Hospital of the Joint Logistics Support Force, Yantai, China
| | - Hong Tang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Pan Huang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Xiao Ye
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Taotao Liang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, Southwest Hospital, Third Military Medical University, Chongqing, China,*Correspondence: Kanglai Tang, ; Taotao Liang,
| | - Kanglai Tang
- State Key Laboratory of Trauma, Burn and Combined Injury, Department of Orthopedics/Sports Medicine Center, Southwest Hospital, Third Military Medical University, Chongqing, China,*Correspondence: Kanglai Tang, ; Taotao Liang,
| |
Collapse
|
18
|
Liu S, Chen T, Chen B, Liu Y, Lu X, Li J. Lrpap1 deficiency leads to myopia through TGF-β-induced apoptosis in zebrafish. Cell Commun Signal 2022; 20:162. [PMID: 36261846 PMCID: PMC9580148 DOI: 10.1186/s12964-022-00970-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/03/2022] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Frameshift mutations in LRPAP1 are responsible for autosomal recessive high myopia in human beings but its underlying mechanism remains elusive. This study aims to investigate the effect of LRPAP1 defect on ocular refractive development and its involved mechanism. METHODS A lrpap1 mutant zebrafish line with homozygous frameshift mutation was generated by CRISPR/Cas9 technology and confirmed by Sanger sequencing. The ocular refractive phenotype was analyzed by calculating the relative refractive error (RRE) with vivo photography and histological analysis at different development stages, together with examining ocular structure change via transmission electron microscopy. Further, RNA sequencing and bioinformatics analysis were performed. The potentially involved signaling pathway as well as the interacted protein were investigated in vivo. RESULTS The lrpap1 homozygous mutant zebrafish line showed myopic phenotype. Specifically, the mutant lines showed larger eye axial length-to-body length in one-month old individuals and a myopic shift with an RRE that changed after two months. Collagen fibers became thinning and disordered in the sclera. Further, RNA sequencing and bioinformatics analysis indicated that apoptosis signaling was activated in mutant line; this was further confirmed by acridine orange and TUNEL staining. Moreover, the expression of TGF-β protein was elevated in the mutant lines. Finally, the treatment of wild-type embryos with a TGF-β agonist aggravated the degree of eyeball apoptosis; conversely, the use of a TGF-β inhibitor mitigated apoptosis in mutant embryos. CONCLUSION The study provides functional evidence of a link between lrpap1 and myopia, suggesting that lrpap1 deficiency could lead to myopia through TGF-β-induced apoptosis signaling. Video abstract.
Collapse
Affiliation(s)
- Shanshan Liu
- grid.284723.80000 0000 8877 7471Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Ting Chen
- grid.284723.80000 0000 8877 7471Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Binghao Chen
- grid.459579.30000 0004 0625 057XDepartment of Orthopedics, Guangdong Women and Children Hospital, Guangzhou, China
| | - Yijun Liu
- grid.413107.0Department of Foot and Ankle Surgery, Center for Orthopedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, China
| | - Xiaohe Lu
- grid.284723.80000 0000 8877 7471Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jiali Li
- grid.284723.80000 0000 8877 7471Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
19
|
Bianchi L, Altera A, Barone V, Bonente D, Bacci T, De Benedetto E, Bini L, Tosi GM, Galvagni F, Bertelli E. Untangling the Extracellular Matrix of Idiopathic Epiretinal Membrane: A Path Winding among Structure, Interactomics and Translational Medicine. Cells 2022; 11:cells11162531. [PMID: 36010606 PMCID: PMC9406781 DOI: 10.3390/cells11162531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 12/16/2022] Open
Abstract
Idiopathic epiretinal membranes (iERMs) are fibrocellular sheets of tissue that develop at the vitreoretinal interface. The iERMs consist of cells and an extracellular matrix (ECM) formed by a complex array of structural proteins and a large number of proteins that regulate cell–matrix interaction, matrix deposition and remodelling. Many components of the ECM tend to produce a layered pattern that can influence the tractional properties of the membranes. We applied a bioinformatics approach on a list of proteins previously identified with an MS-based proteomic analysis on samples of iERM to report the interactome of some key proteins. The performed pathway analysis highlights interactions occurring among ECM molecules, their cell receptors and intra- or extracellular proteins that may play a role in matrix biology in this special context. In particular, integrin β1, cathepsin B, epidermal growth factor receptor, protein-glutamine gamma-glutamyltransferase 2 and prolow-density lipoprotein receptor-related protein 1 are key hubs in the outlined protein–protein cross-talks. A section on the biomarkers that can be found in the vitreous humor of patients affected by iERM and that can modulate matrix deposition is also presented. Finally, translational medicine in iERM treatment has been summed up taking stock of the techniques that have been proposed for pharmacologic vitreolysis.
Collapse
Affiliation(s)
- Laura Bianchi
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Annalisa Altera
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Virginia Barone
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Denise Bonente
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
| | - Tommaso Bacci
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Elena De Benedetto
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Luca Bini
- Department of Life Sciences, University of Siena, 53100 Siena, Italy
| | - Gian Marco Tosi
- Department of Medicine, Surgery and Neuroscience, University of Siena, 53100 Siena, Italy
| | - Federico Galvagni
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, 53100 Siena, Italy
| | - Eugenio Bertelli
- Department of Molecular and Developmental Medicine, University of Siena, 53100 Siena, Italy
- Correspondence:
| |
Collapse
|
20
|
Chen L, Kong D, Xia S, Wang F, Li Z, Zhang F, Zheng S. Crosstalk Between Autophagy and Innate Immunity: A Pivotal Role in Hepatic Fibrosis. Front Pharmacol 2022; 13:891069. [PMID: 35656309 PMCID: PMC9152088 DOI: 10.3389/fphar.2022.891069] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 03/29/2022] [Indexed: 11/13/2022] Open
Abstract
Liver fibrosis is a repair process of chronic liver injuries induced by toxic substances, pathogens, and inflammation, which exhibits a feature such as deposition of the extracellular matrix. The initiation and progression of liver fibrosis heavily relies on excessive activation of hepatic stellate cells (HSCs). The activated HSCs express different kinds of chemokine receptors to further promote matrix remodulation. The long-term progression of liver fibrosis will contribute to dysfunction of the liver and ultimately cause hepatocellular carcinoma. The liver also has abundant innate immune cells, including DCs, NK cells, NKT cells, neutrophils, and Kupffer cells, which conduct complicated functions to activation and expansion of HSCs and liver fibrosis. Autophagy is one specific type of cell death, by which the aberrantly expressed protein and damaged organelles are transferred to lysosomes for further degradation, playing a crucial role in cellular homeostasis. Autophagy is also important to innate immune cells in various aspects. The previous studies have shown that dysfunction of autophagy in hepatic immune cells can result in the initiation and progression of inflammation in the liver, directly or indirectly causing activation of HSCs, which ultimately accelerate liver fibrosis. Given the crosstalk between innate immune cells, autophagy, and fibrosis progression is complicated, and the therapeutic options for liver fibrosis are quite limited, the exploration is essential. Herein, we review the previous studies about the influence of autophagy and innate immunity on liver fibrosis and the molecular mechanism to provide novel insight into the prevention and treatment of liver fibrosis.
Collapse
Affiliation(s)
- Li Chen
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Desong Kong
- Chinese Medicine Modernization and Big Data Research Center, Nanjing Hospital of Chinese Medicine Affiliated to Nanjing University of Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, China
| | - Siwei Xia
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feixia Wang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhanghao Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Feng Zhang
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Shizhong Zheng
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
21
|
Niu K, Dai G, Jiang W, Zhang I, Zhang P, Tan Y, Feng B. Study on the Action Mechanism of Dkk-1, TGF-β1 and TNF-α Expression Levels in Dupuytren's Contracture. HANDCHIR MIKROCHIR P 2022; 54:149-154. [PMID: 35419784 DOI: 10.1055/a-1794-5668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
BACKGROUND The biological mechanism of Dupuytren's contracture needs to be further studied in order to minimize postoperative recurrence and provide a pathological basis for the development of new therapeutic targets. METHODS HE staining, immunohistochemistry, PCR and western blotting were performed in pathological palmar aponeurosis specimens and normal palmar aponeurosis tissues for comparative study. RESULTS (1) TNF-α expression was up-regulated: TNF-α mRNA was more highly expressed in the pathological tissues of DD patients than in the CT group, P < 0.05, and the difference between the two groups was statistically significant; (2) Dkk-1 expression was down-regulated: Dkk-1 mRNA was lower expressed in the pathological tissues of DD patients than in the CT group, P < 0.05, and the difference between the two groups was statistically significant; (3) TGF-β1 expression was up-regulated: TGF-β1 mRNA was higher expressed in the pathological tissues of DD patients than in the CT group, P < 0.05, and the difference between the two groups was statistically significant; (4) Pearson correlation analysis suggested that TNF-α expression was positively correlated with TGF-β1 expression, TNF-α expression was negatively correlated with DKK-1 expression, and TGF-β1 expression was negatively correlated with DKK-1 expression. CONCLUSION TNF-α, DKK-1 and TGF-β1 may play a role in the pathogenesis of palmar aponeurosis contracture, and there is a relationship between them. The study of the relationship between the three and their related signaling pathways provides a therapeutic target and a basis for the prevention and early treatment of palmar aponeurotic contracture.
Collapse
Affiliation(s)
- Kecheng Niu
- The third Affiliated Hospital of Inner Mongolia Medicial University
| | - Guanming Dai
- The third Affiliated Hospital of Inner Mongolia Medicial University
| | - Wei Jiang
- The third Affiliated Hospital of Inner Mongolia Medicial University
| | - Ian Zhang
- The third Affiliated Hospital of Inner Mongolia Medicial University
| | - Peiguang Zhang
- The third Affiliated Hospital of Inner Mongolia Medicial University
| | - Yunyan Tan
- The third Affiliated Hospital of Inner Mongolia Medicial University
| | - Bo Feng
- The third Affiliated Hospital of Inner Mongolia Medicial University
| |
Collapse
|
22
|
Calvier L, Herz J, Hansmann G. Interplay of Low-Density Lipoprotein Receptors, LRPs, and Lipoproteins in Pulmonary Hypertension. JACC Basic Transl Sci 2022; 7:164-180. [PMID: 35257044 PMCID: PMC8897182 DOI: 10.1016/j.jacbts.2021.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 12/21/2022]
Abstract
The low-density lipoprotein receptor (LDLR) gene family includes LDLR, very LDLR, and LDL receptor-related proteins (LRPs) such as LRP1, LRP1b (aka LRP-DIT), LRP2 (aka megalin), LRP4, and LRP5/6, and LRP8 (aka ApoER2). LDLR family members constitute a class of closely related multifunctional, transmembrane receptors, with diverse functions, from embryonic development to cancer, lipid metabolism, and cardiovascular homeostasis. While LDLR family members have been studied extensively in the systemic circulation in the context of atherosclerosis, their roles in pulmonary arterial hypertension (PAH) are understudied and largely unknown. Endothelial dysfunction, tissue infiltration of monocytes, and proliferation of pulmonary artery smooth muscle cells are hallmarks of PAH, leading to vascular remodeling, obliteration, increased pulmonary vascular resistance, heart failure, and death. LDLR family members are entangled with the aforementioned detrimental processes by controlling many pathways that are dysregulated in PAH; these include lipid metabolism and oxidation, but also platelet-derived growth factor, transforming growth factor β1, Wnt, apolipoprotein E, bone morpohogenetic proteins, and peroxisome proliferator-activated receptor gamma. In this paper, we discuss the current knowledge on LDLR family members in PAH. We also review mechanisms and drugs discovered in biological contexts and diseases other than PAH that are likely very relevant in the hypertensive pulmonary vasculature and the future care of patients with PAH or other chronic, progressive, debilitating cardiovascular diseases.
Collapse
Key Words
- ApoE, apolipoprotein E
- Apoer2
- BMP
- BMPR, bone morphogenetic protein receptor
- BMPR2
- COPD, chronic obstructive pulmonary disease
- CTGF, connective tissue growth factor
- HDL, high-density lipoprotein
- KO, knockout
- LDL receptor related protein
- LDL, low-density lipoprotein
- LDLR
- LDLR, low-density lipoprotein receptor
- LRP
- LRP, low-density lipoprotein receptor–related protein
- LRP1
- LRP1B
- LRP2
- LRP4
- LRP5
- LRP6
- LRP8
- MEgf7
- Mesd, mesoderm development
- PAH
- PAH, pulmonary arterial hypertension
- PASMC, pulmonary artery smooth muscle cell
- PDGF
- PDGFR-β, platelet-derived growth factor receptor-β
- PH, pulmonary hypertension
- PPARγ
- PPARγ, peroxisome proliferator-activated receptor gamma
- PVD
- RV, right ventricle/ventricular
- RVHF
- RVSP, right ventricular systolic pressure
- TGF-β1
- TGF-β1, transforming growth factor β1
- TGFBR, transforming growth factor β1 receptor
- TNF, tumor necrosis factor receptor
- VLDLR
- VLDLR, very low density lipoprotein receptor
- VSMC, vascular smooth muscle cell
- Wnt
- apolipoprotein E receptor 2
- endothelial cell
- gp330
- low-density lipoprotein receptor
- mRNA, messenger RNA
- megalin
- monocyte
- multiple epidermal growth factor-like domains 7
- pulmonary arterial hypertension
- pulmonary vascular disease
- right ventricle heart failure
- smooth muscle cell
- very low density lipoprotein receptor
- β-catenin
Collapse
Affiliation(s)
- Laurent Calvier
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Joachim Herz
- Department of Molecular Genetics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Center for Translational Neurodegeneration Research, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neuroscience, University of Texas Southwestern Medical Center, Dallas, Texas, USA
- Department of Neurology and Neurotherapeutics, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Georg Hansmann
- Department of Pediatric Cardiology and Critical Care, Hannover Medical School, Hannover, Germany
- Pulmonary Vascular Research Center, Hannover Medical School, Hannover, Germany
| |
Collapse
|
23
|
Role of the LRP1-pPyk2-MMP9 pathway in hyperoxia-induced lung injury in neonatal rats. ZHONGGUO DANG DAI ER KE ZA ZHI = CHINESE JOURNAL OF CONTEMPORARY PEDIATRICS 2021; 23:1289-1294. [PMID: 34911615 PMCID: PMC8690715 DOI: 10.7499/j.issn.1008-8830.2108125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
OBJECTIVES To study the role of the low-density lipoprotein receptor-related protein 1 (LRP1)-proline-rich tyrosine kinase 2 phosphorylation (pPyk2)-matrix metalloproteinases 9 (MMP9) pathway in hyperoxia-induced lung injury in neonatal rats. METHODS A total of 16 neonatal rats were randomly placed in chambers containing room air (air group) or 95% medical oxygen (hyperoxia group) immediately after birth, with 8 rats in each group. All of the rats were sacrificed on day 8 of life. Hematoxylin and eosin staining was used to observe the pathological changes of lung tissue. ELISA was used to measure the levels of soluble LRP1 (sLRP1) and MMP9 in serum and bronchoalveolar lavage fluid (BALF). Western blot was used to measure the protein expression levels of LRP1, MMP9, Pyk2, and pPyk2 in lung tissue. RT-PCR was used to measure the mRNA expression levels of LRP1 and MMP9 in lung tissue. RESULTS The hyperoxia group had significantly higher levels of sLRP1 and MMP9 in serum and BALF than the air group (P<0.05). Compared with the air group, the hyperoxia group had significant increases in the protein expression levels of LRP1, MMP9, and pPyk2 in lung tissue (P<0.05). The hyperoxia group had significantly higher relative mRNA expression levels of LRP1 and MMP9 in lung tissue than the air group (P<0.05). CONCLUSIONS The activation of the LRP1-pPyk2-MMP9 pathway is enhanced in hyperoxia-induced lung injury in neonatal rats, which may be involved in the pathogenesis of bronchopulmonary dysplasia.
Collapse
|
24
|
Chen J, Su Y, Pi S, Hu B, Mao L. The Dual Role of Low-Density Lipoprotein Receptor-Related Protein 1 in Atherosclerosis. Front Cardiovasc Med 2021; 8:682389. [PMID: 34124208 PMCID: PMC8192809 DOI: 10.3389/fcvm.2021.682389] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Accepted: 05/05/2021] [Indexed: 12/26/2022] Open
Abstract
Low-density lipoprotein receptor–related protein-1 (LRP1) is a large endocytic and signaling receptor belonging to the LDL receptor (LDLR) gene family and that is widely expressed in several tissues. LRP1 comprises a large extracellular domain (ECD; 515 kDa, α chain) and a small intracellular domain (ICD; 85 kDa, β chain). The deletion of LRP1 leads to embryonic lethality in mice, revealing a crucial but yet undefined role in embryogenesis and development. LRP1 has been postulated to participate in numerous diverse physiological and pathological processes ranging from plasma lipoprotein homeostasis, atherosclerosis, tumor evolution, and fibrinolysis to neuronal regeneration and survival. Many studies using cultured cells and in vivo animal models have revealed the important roles of LRP1 in vascular remodeling, foam cell biology, inflammation and atherosclerosis. However, its role in atherosclerosis remains controversial. LRP1 not only participates in the removal of atherogenic lipoproteins and proatherogenic ligands in the liver but also mediates the uptake of aggregated LDL to promote the formation of macrophage- and vascular smooth muscle cell (VSMC)-derived foam cells, which causes a prothrombotic transformation of the vascular wall. The dual and opposing roles of LRP1 may also represent an interesting target for atherosclerosis therapeutics. This review highlights the influence of LRP1 during atherosclerosis development, focusing on its dual role in vascular cells and immune cells.
Collapse
Affiliation(s)
- Jiefang Chen
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Su
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Shulan Pi
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Bo Hu
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Mao
- Department of Neurology, Tongji Medical College, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
25
|
Condorelli AG, El Hachem M, Zambruno G, Nystrom A, Candi E, Castiglia D. Notch-ing up knowledge on molecular mechanisms of skin fibrosis: focus on the multifaceted Notch signalling pathway. J Biomed Sci 2021; 28:36. [PMID: 33966637 PMCID: PMC8106838 DOI: 10.1186/s12929-021-00732-8] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 05/04/2021] [Indexed: 12/15/2022] Open
Abstract
Fibrosis can be defined as an excessive and deregulated deposition of extracellular matrix proteins, causing loss of physiological architecture and dysfunction of different tissues and organs. In the skin, fibrosis represents the hallmark of several acquired (e.g. systemic sclerosis and hypertrophic scars) and inherited (i.e. dystrophic epidermolysis bullosa) diseases. A complex series of interactions among a variety of cellular types and a wide range of molecular players drive the fibrogenic process, often in a context-dependent manner. However, the pathogenetic mechanisms leading to skin fibrosis are not completely elucidated. In this scenario, an increasing body of evidence has recently disclosed the involvement of Notch signalling cascade in fibrosis of the skin and other organs. Despite its apparent simplicity, Notch represents one of the most multifaceted, strictly regulated and intricate pathways with still unknown features both in health and disease conditions. Starting from the most recent advances in Notch activation and regulation, this review focuses on the pro-fibrotic function of Notch pathway in fibroproliferative skin disorders describing molecular networks, interplay with other pro-fibrotic molecules and pathways, including the transforming growth factor-β1, and therapeutic strategies under development.
Collapse
Affiliation(s)
- Angelo Giuseppe Condorelli
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant' Onofrio 4, 00165, Rome, Italy.
| | - May El Hachem
- Dermatology Unit and Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant' Onofrio 4, 00165, Rome, Italy
| | - Giovanna Zambruno
- Genodermatosis Unit, Genetics and Rare Diseases Research Division, Bambino Gesù Children's Hospital, IRCCS, Piazza Sant' Onofrio 4, 00165, Rome, Italy
| | - Alexander Nystrom
- Department of Dermatology, Medical Faculty, Medical Center, University of Freiburg, Freiburg, Germany
| | - Eleonora Candi
- Department of Experimental Medicine, University of Rome "Tor Vergata", via Montpellier, 1, 00133, Rome, Italy.,IDI-IRCCS, via Monti di Creta 104, 00167, Rome, Italy
| | - Daniele Castiglia
- Laboratory of Molecular and Cell Biology, IDI-IRCCS, via Monti di Creta 104, 00167, Rome, Italy
| |
Collapse
|
26
|
He Z, Wang G, Wu J, Tang Z, Luo M. The molecular mechanism of LRP1 in physiological vascular homeostasis and signal transduction pathways. Biomed Pharmacother 2021; 139:111667. [PMID: 34243608 DOI: 10.1016/j.biopha.2021.111667] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 04/07/2021] [Accepted: 04/23/2021] [Indexed: 01/10/2023] Open
Abstract
Interactions between vascular smooth muscle cells (VSMCs), endothelial cells (ECs), pericytes (PCs) and macrophages (MФ), the major components of blood vessels, play a crucial role in maintaining vascular structural and functional homeostasis. Low-density lipoprotein (LDL) receptor-related protein-1 (LRP1), a transmembrane receptor protein belonging to the LDL receptor family, plays multifunctional roles in maintaining endocytosis, homeostasis, and signal transduction. Accumulating evidence suggests that LRP1 modulates vascular homeostasis mainly by regulating vasoactive substances and specific intracellular signaling pathways, including the plasminogen activator inhibitor 1 (PAI-1) signaling pathway, platelet-derived growth factor (PDGF) signaling pathway, transforming growth factor-β (TGF-β) signaling pathway and vascular endothelial growth factor (VEGF) signaling pathway. The aim of the present review is to focus on recent advances in the discovery and mechanism of vascular homeostasis regulated by LRP1-dependent signaling pathways. These recent discoveries expand our understanding of the mechanisms controlling LRP1 as a target for studies on vascular complications.
Collapse
Affiliation(s)
- Zhaohui He
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Department of Clinical Medicine, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Gang Wang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
| | - Jianbo Wu
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China; Dalton Cardiovascular Research Center, University of Missouri, Columbia, MO, United States
| | - Zonghao Tang
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| | - Mao Luo
- Collaborative Innovation Center for Prevention and Treatment of Cardiovascular Disease of Sichuan Province, Drug Discovery Reseach Center, Southwest Medical University, 319 Zhongshan Road, Luzhou, Sichuan 646000, China; Laboratory for Cardiovascular Pharmacology of Department of Pharmacology, the School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China.
| |
Collapse
|
27
|
Shen P, Chen Y, Luo S, Fan Z, Wang J, Chang J, Deng J. Applications of biomaterials for immunosuppression in tissue repair and regeneration. Acta Biomater 2021; 126:31-44. [PMID: 33722787 DOI: 10.1016/j.actbio.2021.03.019] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/24/2021] [Accepted: 03/08/2021] [Indexed: 12/13/2022]
Abstract
The immune system plays an essential role in tissue repair and regeneration. Regardless of innate or adaptive immune responses, immunosuppressive strategies such as macrophage polarization and regulatory T (Treg) cell induction can be used to modulate the immune system to promote tissue repair and regeneration. Biomaterials can improve the production of anti-inflammatory macrophages and Treg cells by providing physiochemical cues or delivering therapeutics such as cytokines, small molecules, microRNA, growth factors, or stem cells in the damaged tissues. Herein, we present an overview of immunosuppressive modulation by biomaterials in tissue regeneration and highlight the mechanisms of macrophage polarization and Treg cell induction. Overall, we foresee that future biomaterials for regenerative strategies will entail more interactions between biomaterials and the immune cells, and more mechanisms of immunosuppression related to T cell subsets remain to be discovered and applied to develop novel biomaterials for tissue repair and regeneration. STATEMENT OF SIGNIFICANCE: Immunosuppression plays a key role in tissue repair and regeneration, and biomaterials can interact with the immune system through their biological properties and by providing physiochemical cues. Here, we summarize the studies on biomaterials that have been used for immunosuppression to facilitate tissue regeneration. In the first part of this review, we demonstrate the crucial role of macrophage polarization and induction of T regulatory (Treg) cells in immunosuppression. In the second part, distinct approaches used by biomaterials to induce immunosuppression are introduced, which show excellent performance in terms of promoting tissue regeneration.
Collapse
Affiliation(s)
- Peng Shen
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Yanxin Chen
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Shuai Luo
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Zhiyuan Fan
- Department of Materials Science and Engineering, Drexel University, Philadelphia, PA 19104, USA
| | - Jilong Wang
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Jiang Chang
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China; State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, Shanghai, China.
| | - Junjie Deng
- Engineering Research Center of Clinical Functional Materials and Diagnosis & Treatment Devices of Zhejiang Province, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China.
| |
Collapse
|
28
|
Yao X, Levine SJ. The Long and Winding Road from GWAS to Obstructive Lung Disease: Is There a Role for LRP1? Am J Respir Cell Mol Biol 2021; 64:279-280. [PMID: 33352084 PMCID: PMC7909341 DOI: 10.1165/rcmb.2020-0567ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Affiliation(s)
- Xianglan Yao
- Laboratory of Asthma and Lung Inflammation National Heart, Lung, and Blood Institute, National Institutes of Health Bethesda, Maryland
| | - Stewart J Levine
- Laboratory of Asthma and Lung Inflammation National Heart, Lung, and Blood Institute, National Institutes of Health Bethesda, Maryland
| |
Collapse
|
29
|
Cheng D, Xu Q, Liu Y, Li G, Sun W, Ma D, Ni C. Long noncoding RNA-SNHG20 promotes silica-induced pulmonary fibrosis by miR-490-3p/TGFBR1 axis. Toxicology 2021; 451:152683. [PMID: 33482250 DOI: 10.1016/j.tox.2021.152683] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 01/07/2021] [Accepted: 01/11/2021] [Indexed: 12/20/2022]
Abstract
Silicosis is a universal occupational disease, which is caused by long-term crystalline silica exposure. Recent studies have shown that noncoding RNAs participate in diverse pathological cellular pathways. However, the precise regulation mechanism remains limited in silicosis. Here, we established a silica-induced mouse fibrosis model (all mice received a one-time intratracheal instillation with 50 mg/kg of silica in 0.05 mL sterile saline). MiR-490-3p was significantly downregulated in silica-induced fibrotic mouse lung tissues and TGF-β1 treated fibroblasts. Moreover, overexpressed miR-490-3p could relieve silica-induced lung fibrosis in vivo, and prevent the process of fibroblast-to-myofibroblast transition(FMT)in vitro. Mechanistically, TGFBR1 was one of the major target genes of miR-490-3p, and tightly associated with the process of fibroblasts activation. SNHG20, as opposed to miR-490-3p expression, was elevated in TGF-β1-treated fibroblast cell lines and contributed to decreased levels of miR-490-3p. Taken together, these data indicated that miR-490-3p plays a key role in silica-induced pulmonary fibrosis. Our results suggested that SNHG20/miR-490-3p/TGFBR1 axis may provide a new treatment target of pulmonary fibrosis.
Collapse
Affiliation(s)
- Demin Cheng
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Qi Xu
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Yi Liu
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Guanru Li
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Wenqing Sun
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Dongyu Ma
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| | - Chunhui Ni
- Department of Occupational Medical and Environmental Health, Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
30
|
Zhou L, Liu Z, Chen S, Qiu J, Li Q, Wang S, Zhou W, Chen D, Yang G, Guo L. Transcription factor EB‑mediated autophagy promotes dermal fibroblast differentiation and collagen production by regulating endoplasmic reticulum stress and autophagy‑dependent secretion. Int J Mol Med 2020; 47:547-560. [PMID: 33416091 PMCID: PMC7797452 DOI: 10.3892/ijmm.2020.4814] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/11/2020] [Indexed: 01/18/2023] Open
Abstract
Autophagy is reported to be involved in the formation of skin hypertrophic scar (HTS). However, the role of autophagy in the process of fibrosis remains unclear, therefore an improved understanding of the molecular mechanisms associated with autophagy may accelerate the development of effective therapeutic strategies against HTS. The present study evaluated the roles of autophagy mediated by transcription factor EB (TFEB), a pivotal regulator of lysosome biogenesis and autophagy, in transforming growth factor-β1 (TGF-β1)-induced fibroblast differentiation and collagen production. Fibroblasts were treated with TGF-β1, TGF-β1 + tauroursodeoxycholic acid (TUDCA) or TGF-β1 + TFEB-small interfering RNA (siRNA). TGF-β1 induced phenotypic transformation of fibro-blasts, as well as collagen synthesis and secretion in fibroblasts in a dose-dependent manner. Western blotting and immuno-fluorescence analyses demonstrated that TGF-β1 upregulated the expression of autophagy-related proteins through the endoplasmic reticulum (ER) stress pathway, whereas TUDCA reversed TGF-β1-induced changes. Reverse transcription-quantitative PCR (RT-qPCR), western blotting and RFP-GFP-LC3 double fluorescence analyses demonstrated that knockdown of TFEB by TFEB-siRNA decreased autophagic flux, upregulated the expression of proteins involved in the apoptotic pathway, such as phosphorylated-α subunit of eukaryotic initiation factor 2, C/EBP homologous protein and cysteinyl aspartate specific proteinase 3, and also downregulated the expression of α-smooth muscle actin and collagen I (COL I) in fibroblasts. Immunofluorescence confocal analyses and enzyme-linked immunosorbent assay indicated that TGF-β1 increased the colocalization of COL I with lysosomal-associated membrane protein 1 and Ras-related protein Rab-8A, a marker of secretory vesicles, in fibroblasts, as well as the secretion of pro-COL Iα1 in culture supernatants. Meanwhile, these effects were abolished by TFEB knockdown. The present results suggested that autophagy reduced ER stress, decreased cell apoptosis and maintained fibroblast activation not only through degradation of misfolded or unfolded proteins, but also through promotion of COL I release from the autolysosome to the extracellular environment.
Collapse
Affiliation(s)
- Ling Zhou
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Zeming Liu
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Sichao Chen
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Jing Qiu
- Department of Geriatrics, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430070, P.R. China
| | - Qianqian Li
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Shipei Wang
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Wei Zhou
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Danyang Chen
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| | - Guang Yang
- Department of Geriatrics, Hubei Provincial Hospital of Traditional Chinese Medicine, Wuhan, Hubei 430070, P.R. China
| | - Liang Guo
- Department of Plastic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430071, P.R. China
| |
Collapse
|
31
|
Li M, Wu M, Qin Y, Liu H, Tu C, Shen B, Xu X, Chen H. Differentially expressed serum proteins in children with or without asthma as determined using isobaric tags for relative and absolute quantitation proteomics. PeerJ 2020; 8:e9971. [PMID: 33194371 PMCID: PMC7646293 DOI: 10.7717/peerj.9971] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 08/26/2020] [Indexed: 12/31/2022] Open
Abstract
Background Although asthma is one of the most common chronic, noncommunicable diseases worldwide, the pathogenesis of childhood asthma is not yet clear. Genetic factors and environmental factors may lead to airway immune-inflammation responses and an imbalance of airway nerve regulation. The aim of the present study was to determine which serum proteins are differentially expressed between children with or without asthma and to ascertain the potential roles that these differentially expressed proteins (DEPs) may play in the pathogenesis of childhood asthma. Methods Serum samples derived from four children with asthma and four children without asthma were collected. The DEPs were identified by using isobaric tags for relative and absolute quantitation (iTRAQ) combined with liquid chromatography tandem mass spectrometry (LC-MS/MS) analyses. Using biological information technology, including Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and Cluster of Orthologous Groups of Proteins (COG) databases and analyses, we determined the biological processes associated with these DEPs. Key protein glucose-6-phosphate dehydrogenase (G6PD) was verified by enzyme linked immunosorbent assay (ELISA). Results We found 46 DEPs in serum samples of children with asthma vs. children without asthma. Among these DEPs, 12 proteins were significantly (>1.5 fold change) upregulated and 34 proteins were downregulated. The results of GO analyses showed that the DEPs were mainly involved in binding, the immune system, or responding to stimuli or were part of a cellular anatomical entity. In the KEGG signaling pathway analysis, most of the downregulated DEPs were associated with cardiomyopathy, phagosomes, viral infections, and regulation of the actin cytoskeleton. The results of a COG analysis showed that the DEPs were primarily involved in signal transduction mechanisms and posttranslational modifications. These DEPs were associated with and may play important roles in the immune response, the inflammatory response, extracellular matrix degradation, and the nervous system. The downregulated of G6PD in the asthma group was confirmed using ELISA experiment. Conclusion After bioinformatics analyses, we found numerous DEPs that may play important roles in the pathogenesis of childhood asthma. Those proteins may be novel biomarkers of childhood asthma and may provide new clues for the early clinical diagnosis and treatment of childhood asthma.
Collapse
Affiliation(s)
- Ming Li
- Department of Neonatology, Maternal and Child Health Hospital, the Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Mingzhu Wu
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital, the Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Ying Qin
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Huaqing Liu
- Department of Neonatology, Maternal and Child Health Hospital, the Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Chengcheng Tu
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital, the Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Bing Shen
- School of Basic Medicine, Anhui Medical University, Hefei, Anhui, China
| | - Xiaohong Xu
- Department of Clinical Laboratory, Maternal and Child Health Hospital, the Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Hongbo Chen
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital, the Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
32
|
Campion O, Al Khalifa T, Langlois B, Thevenard-Devy J, Salesse S, Savary K, Schneider C, Etique N, Dedieu S, Devy J. Contribution of the Low-Density Lipoprotein Receptor Family to Breast Cancer Progression. Front Oncol 2020; 10:882. [PMID: 32850302 PMCID: PMC7406569 DOI: 10.3389/fonc.2020.00882] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 05/05/2020] [Indexed: 12/18/2022] Open
Abstract
The low-density lipoprotein receptor (LDLR) family comprises 14 single-transmembrane receptors sharing structural homology and common repeats. These receptors specifically recognize and internalize various extracellular ligands either alone or complexed with membrane-spanning co-receptors that are then sorted for lysosomal degradation or cell-surface recovery. As multifunctional endocytic receptors, some LDLR members from the core family were first considered as potential tumor suppressors due to their clearance activity against extracellular matrix-degrading enzymes. LDLRs are also involved in pleiotropic functions including growth factor signaling, matricellular proteins, and cell matrix adhesion turnover and chemoattraction, thereby affecting both tumor cells and their surrounding microenvironment. Therefore, their roles could appear controversial and dependent on the malignancy state. In this review, recent advances highlighting the contribution of LDLR members to breast cancer progression are discussed with focus on (1) specific expression patterns of these receptors in primary cancers or distant metastasis and (2) emerging mechanisms and signaling pathways. In addition, potential diagnosis and therapeutic options are proposed.
Collapse
Affiliation(s)
- Océane Campion
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Tesnim Al Khalifa
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Benoit Langlois
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Jessica Thevenard-Devy
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Stéphanie Salesse
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Katia Savary
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Christophe Schneider
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Nicolas Etique
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Stéphane Dedieu
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| | - Jérôme Devy
- Université de Reims Champagne-Ardenne (URCA), Reims, France.,CNRS UMR 7369, Matrice Extracellulaire et Dynamique Cellulaire, MEDyC, Reims, France
| |
Collapse
|
33
|
AlQudah M, Hale TM, Czubryt MP. Targeting the renin-angiotensin-aldosterone system in fibrosis. Matrix Biol 2020; 91-92:92-108. [PMID: 32422329 DOI: 10.1016/j.matbio.2020.04.005] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 02/06/2023]
Abstract
Fibrosis is characterized by excessive deposition of extracellular matrix components such as collagen in tissues or organs. Fibrosis can develop in the heart, kidneys, liver, skin or any other body organ in response to injury or maladaptive reparative processes, reducing overall function and leading eventually to organ failure. A variety of cellular and molecular signaling mechanisms are involved in the pathogenesis of fibrosis. The renin-angiotensin-aldosterone system (RAAS) interacts with the potent Transforming Growth Factor β (TGFβ) pro-fibrotic pathway to mediate fibrosis in many cell and tissue types. RAAS consists of both classical and alternative pathways, which act to potentiate or antagonize fibrotic signaling mechanisms, respectively. This review provides an overview of recent literature describing the roles of RAAS in the pathogenesis of fibrosis, particularly in the liver, heart, kidney and skin, and with a focus on RAAS interactions with TGFβ signaling. Targeting RAAS to combat fibrosis represents a promising therapeutic approach, particularly given the lack of strategies for treating fibrosis as its own entity, thus animal and clinical studies to examine the impact of natural and synthetic substances to alter RAAS signaling as a means to treat fibrosis are reviewed as well.
Collapse
Affiliation(s)
- Mohammad AlQudah
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Canada; Department of Physiology and Biochemistry, College of Medicine, Jordan University of Science and Technology, Jordan
| | - Taben M Hale
- Department of Basic Medical Sciences, University of Arizona College of Medicine Phoenix, United States
| | - Michael P Czubryt
- Department of Physiology and Pathophysiology, Rady Faculty of Health Sciences, University of Manitoba, Canada.
| |
Collapse
|
34
|
Eckersley A, Ozols M, O'Cualain R, Keevill EJ, Foster A, Pilkington S, Knight D, Griffiths CEM, Watson REB, Sherratt MJ. Proteomic fingerprints of damage in extracellular matrix assemblies. Matrix Biol Plus 2020; 5:100027. [PMID: 33543016 PMCID: PMC7852314 DOI: 10.1016/j.mbplus.2020.100027] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Revised: 01/21/2020] [Accepted: 01/21/2020] [Indexed: 12/11/2022] Open
Abstract
In contrast to the dynamic intracellular environment, structural extracellular matrix (ECM) proteins with half-lives measured in decades, are susceptible to accumulating damage. Whilst conventional approaches such as histology, immunohistochemistry and mass spectrometry are able to identify age- and disease-related changes in protein abundance or distribution, these techniques are poorly suited to characterising molecular damage. We have previously shown that mass spectrometry can detect tissue-specific differences in the proteolytic susceptibility of protein regions within fibrillin-1 and collagen VI alpha-3. Here, we present a novel proteomic approach to detect damage-induced “peptide fingerprints” within complex multi-component ECM assemblies (fibrillin and collagen VI microfibrils) following their exposure to ultraviolet radiation (UVR) by broadband UVB or solar simulated radiation (SSR). These assemblies were chosen because, in chronically photoaged skin, fibrillin and collagen VI microfibril architectures are differentially susceptible to UVR. In this study, atomic force microscopy revealed that fibrillin microfibril ultrastructure was significantly altered by UVR exposure whereas the ultrastructure of collagen VI microfibrils was resistant. UVR-induced molecular damage was further characterised by proteolytic peptide generation with elastase followed by liquid chromatography tandem mass spectrometry (LC-MS/MS). Peptide mapping revealed that UVR exposure increased regional proteolytic susceptibility within the protein structures of fibrillin-1 and collagen VI alpha-3. This allowed the identification of UVR-induced molecular changes within these two key ECM assemblies. Additionally, similar changes were observed within protein regions of co-purifying, microfibril-associated receptors integrins αv and β1. This study demonstrates that LC-MS/MS mapping of peptides enables the characterisation of molecular post-translational damage (via direct irradiation and radiation-induced oxidative mechanisms) within a complex in vitro model system. This peptide fingerprinting approach reliably allows both the identification of UVR-induced molecular damage in and between proteins and the identification of specific protein domains with increased proteolytic susceptibility as a result of photo-denaturation. This has the potential to serve as a sensitive method of identifying accumulated molecular damage in vivo using conventional mass spectrometry data-sets. Mass spectrometry “peptide fingerprinting” can detect post-translational damage within extracellular matrix proteins. UVR-induced FBN1 and COL6A3 peptide fingerprints are reproducibly identified from purified microfibrils. Peptide mapping reveals increased regional susceptibilities to proteolysis in FBN1 and COL6A3 proteins. Regional changes are also observed in protein structures of microfibril-associated receptor integrins αv and β1. This “peptide fingerprinting” approach is applicable to conventional LC-MS/MS datasets.
Collapse
Key Words
- AFM, atomic force microscopy
- COL6A3, collagen VI alpha 3 chain
- Collagen VI microfibril
- ECM, extracellular matrix
- EGF, epidermal growth factor domain
- Fibrillin microfibril
- HDF, human dermal fibroblast
- LC-MS/MS, liquid chromatography tandem mass spectrometry
- Mass spectrometry
- PSM, peptide spectrum match
- Photodamage
- ROS, reactive oxygen species
- SSR, solar simulated radiation
- TGFβ, transforming growth factor beta
- UVR, ultraviolet radiation
- Ultraviolet radiation
- vWA, von Willebrand factor type A domain
Collapse
Affiliation(s)
- Alexander Eckersley
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Matiss Ozols
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Ronan O'Cualain
- Biological Mass Spectrometry Core Research Facility, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Emma-Jayne Keevill
- Biological Mass Spectrometry Core Research Facility, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - April Foster
- Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Suzanne Pilkington
- Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - David Knight
- Biological Mass Spectrometry Core Research Facility, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| | - Christopher E M Griffiths
- Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Rachel E B Watson
- Division of Musculoskeletal & Dermatological Sciences, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK.,NIHR Manchester Biomedical Research Centre, Central Manchester University Hospitals NHS Foundation Trust, Manchester Academic Health Science Centre, Manchester, UK
| | - Michael J Sherratt
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, UK
| |
Collapse
|