1
|
Francis J, Gibeily CR, Smith WV, Petropoulos IS, Anderson M, Heitler WJ, Prinz AA, Pulver SR. Inhibitory circuit motifs in Drosophila larvae generate motor program diversity and variability. PLoS Biol 2025; 23:e3003094. [PMID: 40258087 DOI: 10.1371/journal.pbio.3003094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 03/03/2025] [Indexed: 04/23/2025] Open
Abstract
How do neural networks generate and regulate diversity and variability in motor outputs with finite cellular components? Here we examine this problem by exploring the role that inhibitory neuron motifs play in generating mixtures of motor programs in the segmentally organised Drosophila larval locomotor system. We developed a computational model that is constrained by experimental calcium imaging data. The model comprises single-compartment cells with a single voltage-gated calcium current, which are interconnected by graded excitatory and inhibitory synapses. Local excitatory and inhibitory neurons form conditional oscillators in each hemisegment. Surrounding architecture reflects key aspects of inter- and intrasegmental connectivity motifs identified in the literature. The model generates metachronal waves of activity that recapitulate key features of fictive forwards and backwards locomotion, as well as bilaterally asymmetric activity in anterior regions that represents fictive head sweeps. The statistics of inputs to competing command-like motifs, coupled with inhibitory motifs that detect activity across multiple segments generate network states that promote diversity in motor outputs, while at the same time preventing maladaptive overlap in motor programs. Overall, the model generates testable predictions for connectomics and physiological studies while providing a platform for uncovering how inhibitory circuit motifs underpin generation of diversity and variability in motor systems.
Collapse
Affiliation(s)
- Jacob Francis
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - Caius R Gibeily
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - William V Smith
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - Isabel S Petropoulos
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - Michael Anderson
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - William J Heitler
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - Astrid A Prinz
- Department of Biology, Emory University, Atlanta, Georgia, United States of America
| | - Stefan R Pulver
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
- Institute for Behavioural and Neural Sciences, Centre of Biophotonics, and Centre for Biological Diversity, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
2
|
Matos YB, Velichkova N, Kirchknopf Riera M, da Luz MGE, Berni J. Characterizing stage-dependent neuromotor patterns in Drosophila melanogaster larvae through a graph construction approach. Front Neurosci 2025; 19:1557624. [PMID: 40182146 PMCID: PMC11965661 DOI: 10.3389/fnins.2025.1557624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2025] [Accepted: 02/28/2025] [Indexed: 04/05/2025] Open
Abstract
We investigated developmental changes in neuromotor activity patterns in Drosophila melanogaster larvae by combining calcium imaging with a novel graph-based mathematical framework. This allows to perform relevant quantitative comparisons between first (L1) and early third (L3) instar larvae. We found that L1 larvae exhibit higher frequencies of spontaneous neural activity that fail to propagate, indicating a less mature neuromotor system. In contrast, L3 larvae show efficient initiation and propagation of neural activity along the entire ventral nerve cord (VNC), resulting in longer activity chains. The time of chain propagation along the entire VNC is shorter in L1 than in L3, probably reflecting the increased length of the VNC. On the other hand, the time of peristaltic waves through the whole body during locomotion is much faster in L3 than in L1, so correlating with higher velocities and greater dispersal rates. Hence, the VNC-body interaction determines the characteristics of peristaltic waves propagation in crawling larvae. Further, asymmetrical neuronal activity, predominantly in anterior segments of L3 larvae, was associated with turning behaviors and enhanced navigation. These findings illustrate that the proposed quantitative model provides a systematic method to analyze neuromotor patterns across developmental stages, for instance, helping to uncover the maturation stages of neural circuits and their role in locomotion.
Collapse
Affiliation(s)
- Yuri Bilk Matos
- Departamento de Física, Universidade Federal do Paraná, Curitiba, Brazil
| | - Nadezhda Velichkova
- Brighton and Sussex Medical School, University of Brighton and University of Sussex, Brighton, United Kingdom
| | - Mateo Kirchknopf Riera
- Brighton and Sussex Medical School, University of Brighton and University of Sussex, Brighton, United Kingdom
| | | | - Jimena Berni
- Brighton and Sussex Medical School, University of Brighton and University of Sussex, Brighton, United Kingdom
| |
Collapse
|
3
|
Elisha G, Gast R, Halder S, Solla SA, Kahrilas PJ, Pandolfino JE, Patankar NA. Direct and Retrograde Wave Propagation in Unidirectionally Coupled Wilson-Cowan Oscillators. PHYSICAL REVIEW LETTERS 2025; 134:058401. [PMID: 39983140 DOI: 10.1103/physrevlett.134.058401] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 09/19/2024] [Accepted: 12/11/2024] [Indexed: 02/23/2025]
Abstract
Some biological systems exhibit both direct and retrograde propagating signal waves despite unidirectional coupling. To explain this phenomenon, we study a chain of unidirectionally coupled Wilson-Cowan oscillators. Surprisingly, we find that changes in the homogeneous global input to the chain suffice to reverse the wave propagation direction. To obtain insights, we analyze the frequencies and bifurcations of the limit cycle solutions of the chain as a function of the global input. Specifically, we determine that the directionality of wave propagation is controlled by differences in the intrinsic frequencies of oscillators caused by the differential proximity of the oscillators to a homoclinic bifurcation.
Collapse
Affiliation(s)
- Guy Elisha
- Northwestern University, Department of Mechanical Engineering, Evanston, Illinois, USA
| | - Richard Gast
- Northwestern University, Department of Neuroscience, Feinberg School of Medicine, Evanston, Illinois, USA
| | - Sourav Halder
- Northwestern University, Division of Gastroenterology and Hepatology, Feinberg School of Medicine, Evanston, Illinois, USA
- Northwestern University, Kenneth C. Griffin Esophageal Center, Feinberg School of Medicine, Evanston, Illinois, USA
| | - Sara A Solla
- Northwestern University, Department of Neuroscience, Feinberg School of Medicine, Evanston, Illinois, USA
- Northwestern University, Department of Physics and Astronomy, Evanston, Illinois, USA
| | - Peter J Kahrilas
- Northwestern University, Division of Gastroenterology and Hepatology, Feinberg School of Medicine, Evanston, Illinois, USA
- Northwestern University, Kenneth C. Griffin Esophageal Center, Feinberg School of Medicine, Evanston, Illinois, USA
| | - John E Pandolfino
- Northwestern University, Division of Gastroenterology and Hepatology, Feinberg School of Medicine, Evanston, Illinois, USA
- Northwestern University, Kenneth C. Griffin Esophageal Center, Feinberg School of Medicine, Evanston, Illinois, USA
| | - Neelesh A Patankar
- Northwestern University, Department of Mechanical Engineering, Evanston, Illinois, USA
| |
Collapse
|
4
|
Tann JY, Xu F, Kimura M, Wilkes OR, Yoong LF, Skibbe H, Moore AW. Study of Dendrite Differentiation Using Drosophila Dendritic Arborization Neurons. Cold Spring Harb Protoc 2024; 2024:pdb.top108146. [PMID: 38148165 DOI: 10.1101/pdb.top108146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2023]
Abstract
Neurons receive, process, and integrate inputs. These operations are organized by dendrite arbor morphology, and the dendritic arborization (da) neurons of the Drosophila peripheral sensory nervous system are an excellent experimental model for examining the differentiation processes that build and shape the dendrite arbor. Studies in da neurons are enabled by a wealth of fly genetic tools that allow targeted neuron manipulation and labeling of the neuron's cytoskeletal or organellar components. Moreover, as da neuron dendrite arbors cover the body wall, they are highly accessible for live imaging analysis of arbor patterning. Here, we outline the structure and function of different da neuron types and give examples of how they are used to elucidate central mechanisms of dendritic arbor formation.
Collapse
Affiliation(s)
- Jason Y Tann
- Laboratory for Neurodiversity, RIKEN Center for Brain Science, Wako-shi, 351-0106, Japan
| | - Fangke Xu
- Laboratory for Neurodiversity, RIKEN Center for Brain Science, Wako-shi, 351-0106, Japan
| | - Minami Kimura
- Laboratory for Neurodiversity, RIKEN Center for Brain Science, Wako-shi, 351-0106, Japan
| | - Oliver R Wilkes
- Laboratory for Neurodiversity, RIKEN Center for Brain Science, Wako-shi, 351-0106, Japan
- Department of Cellular and Molecular Biology, Institute for Translational Medicine, University of Liverpool, Liverpool L69 3BX, United Kingdom
| | - Li-Foong Yoong
- Laboratory for Neurodiversity, RIKEN Center for Brain Science, Wako-shi, 351-0106, Japan
| | - Henrik Skibbe
- Brain Image Analysis Unit, RIKEN Center for Brain Science, Wako-shi, 351-0106, Japan
| | - Adrian W Moore
- Laboratory for Neurodiversity, RIKEN Center for Brain Science, Wako-shi, 351-0106, Japan
| |
Collapse
|
5
|
Schoofs A, Miroschnikow A, Schlegel P, Zinke I, Schneider-Mizell CM, Cardona A, Pankratz MJ. Serotonergic modulation of swallowing in a complete fly vagus nerve connectome. Curr Biol 2024; 34:4495-4512.e6. [PMID: 39270641 PMCID: PMC7616834 DOI: 10.1016/j.cub.2024.08.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 07/15/2024] [Accepted: 08/15/2024] [Indexed: 09/15/2024]
Abstract
How the body interacts with the brain to perform vital life functions, such as feeding, is a fundamental issue in physiology and neuroscience. Here, we use a whole-animal scanning transmission electron microscopy volume of Drosophila to map the neuronal circuits that connect the entire enteric nervous system to the brain via the insect vagus nerve at synaptic resolution. We identify a gut-brain feedback loop in which Piezo-expressing mechanosensory neurons in the esophagus convey food passage information to a cluster of six serotonergic neurons in the brain. Together with information on food value, these central serotonergic neurons enhance the activity of serotonin receptor 7-expressing motor neurons that drive swallowing. This elemental circuit architecture includes an axo-axonic synaptic connection from the glutamatergic motor neurons innervating the esophageal muscles onto the mechanosensory neurons that signal to the serotonergic neurons. Our analysis elucidates a neuromodulatory sensory-motor system in which ongoing motor activity is strengthened through serotonin upon completion of a biologically meaningful action, and it may represent an ancient form of motor learning.
Collapse
Affiliation(s)
- Andreas Schoofs
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Carl-Troll-Straße, Bonn 53115, Germany
| | - Anton Miroschnikow
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Carl-Troll-Straße, Bonn 53115, Germany
| | - Philipp Schlegel
- Department of Zoology, University of Cambridge, Downing Street, Cambridge CB2 TN1, UK; MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Trumpington, Cambridge CB2 0QH, UK
| | - Ingo Zinke
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Carl-Troll-Straße, Bonn 53115, Germany
| | | | - Albert Cardona
- MRC Laboratory of Molecular Biology, Cambridge Biomedical Campus, Francis Crick Avenue, Trumpington, Cambridge CB2 0QH, UK; Janelia Research Campus, Howard Hughes Medical Institute, Helix Drive, Ashburn, VA 20147, USA; Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Place, Cambridge CB2 3EL, UK
| | - Michael J Pankratz
- Department of Molecular Brain Physiology and Behavior, LIMES Institute, University of Bonn, Carl-Troll-Straße, Bonn 53115, Germany.
| |
Collapse
|
6
|
Warren B, Göpfert MC. Mechanically evoked spike responses of pentascolopidial chordotonal organs of Drosophila melanogaster larvae. J Exp Biol 2024; 227:jeb246197. [PMID: 39206682 PMCID: PMC11418168 DOI: 10.1242/jeb.246197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/12/2024] [Indexed: 09/04/2024]
Abstract
Mechanosensitive ensembles of neurons in insects, known as chordotonal organs (COs), function in proprioception, the detection of sound and substrate vibrations. Here, we characterized the mechanical sensitivity of the lateral pentascolopidial CO (lch5) of Drosophila melanogaster larvae to establish its postulated role in proprioception. We developed a physiologically realistic method to replicate proprioceptive input to lch5 by pulling the apodeme (tendon) to which the tips of the neurons attach. We found that lch5 sensory neurons respond transiently with a short latency to the velocity component of stretch displacements and the release of stretch (relaxation). In the mechanosensory mutant inactive, lch5 has a decreased response to mechanical stimuli and a lower overall spontaneous spike rate. Finally, we simulated the input that lch5 receives during crawling and observed spike rate changes of peristaltic body contraction. We provide a characterization of proprioceptive feedback in D. melanogaster larvae and firmly establish the proprioceptive function of lch5 in larval locomotion.
Collapse
Affiliation(s)
- Ben Warren
- Neurogenetics Group, College of Life Sciences, University of Leicester, University Road, Leicester, Leicestershire LE 7RH, UK
| | - Martin C. Göpfert
- Department of Cellular Neurobiology, University of Göttingen, Schwann-Schleiden Research Centre, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| |
Collapse
|
7
|
Hertzler JI, Teng J, Bernard AR, Stone MC, Kline HL, Mahata G, Kumar N, Rolls MM. Voltage-gated calcium channels act upstream of adenylyl cyclase Ac78C to promote timely initiation of dendrite regeneration. PLoS Genet 2024; 20:e1011388. [PMID: 39186815 PMCID: PMC11379402 DOI: 10.1371/journal.pgen.1011388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/06/2024] [Accepted: 08/06/2024] [Indexed: 08/28/2024] Open
Abstract
Most neurons are not replaced after injury and thus possess robust intrinsic mechanisms for repair after damage. Axon injury triggers a calcium wave, and calcium and cAMP can augment axon regeneration. In comparison to axon regeneration, dendrite regeneration is poorly understood. To test whether calcium and cAMP might also be involved in dendrite injury signaling, we tracked the responses of Drosophila dendritic arborization neurons to laser severing of axons and dendrites. We found that calcium and subsequently cAMP accumulate in the cell body after both dendrite and axon injury. Two voltage-gated calcium channels (VGCCs), L-Type and T-Type, are required for the calcium influx in response to dendrite injury and play a role in rapid initiation of dendrite regeneration. The AC8 family adenylyl cyclase, Ac78C, is required for cAMP production after dendrite injury and timely initiation of regeneration. Injury-induced cAMP production is sensitive to VGCC reduction, placing calcium upstream of cAMP generation. We propose that two VGCCs initiate global calcium influx in response to dendrite injury followed by production of cAMP by Ac78C. This signaling pathway promotes timely initiation of dendrite regrowth several hours after dendrite damage.
Collapse
Affiliation(s)
- J Ian Hertzler
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Jiajing Teng
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Annabelle R Bernard
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Michelle C Stone
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Hannah L Kline
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Gibarni Mahata
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Nitish Kumar
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences The Pennsylvania State University, University Park, Pennsylvania, United States of America
| | - Melissa M Rolls
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences The Pennsylvania State University, University Park, Pennsylvania, United States of America
| |
Collapse
|
8
|
Menzies JAC, Maia Chagas A, Baden T, Alonso CR. A microRNA that controls the emergence of embryonic movement. eLife 2024; 13:RP95209. [PMID: 38869942 PMCID: PMC11175612 DOI: 10.7554/elife.95209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024] Open
Abstract
Movement is a key feature of animal systems, yet its embryonic origins are not fully understood. Here, we investigate the genetic basis underlying the embryonic onset of movement in Drosophila focusing on the role played by small non-coding RNAs (microRNAs, miRNAs). To this end, we first develop a quantitative behavioural pipeline capable of tracking embryonic movement in large populations of fly embryos, and using this system, discover that the Drosophila miRNA miR-2b-1 plays a role in the emergence of movement. Through the combination of spectral analysis of embryonic motor patterns, cell sorting and RNA in situs, genetic reconstitution tests, and neural optical imaging we define that miR-2b-1 influences the emergence of embryonic movement by exerting actions in the developing nervous system. Furthermore, through the combination of bioinformatics coupled to genetic manipulation of miRNA expression and phenocopy tests we identify a previously uncharacterised (but evolutionarily conserved) chloride channel encoding gene - which we term Movement Modulator (Motor) - as a genetic target that mechanistically links miR-2b-1 to the onset of movement. Cell-specific genetic reconstitution of miR-2b-1 expression in a null miRNA mutant background, followed by behavioural assays and target gene analyses, suggest that miR-2b-1 affects the emergence of movement through effects in sensory elements of the embryonic circuitry, rather than in the motor domain. Our work thus reports the first miRNA system capable of regulating embryonic movement, suggesting that other miRNAs are likely to play a role in this key developmental process in Drosophila as well as in other species.
Collapse
Affiliation(s)
- Jonathan AC Menzies
- Department of Neuroscience, Sussex Neuroscience, School of Life Sciences, University of SussexBrightonUnited Kingdom
| | - André Maia Chagas
- Department of Neuroscience, Sussex Neuroscience, School of Life Sciences, University of SussexBrightonUnited Kingdom
| | - Tom Baden
- Department of Neuroscience, Sussex Neuroscience, School of Life Sciences, University of SussexBrightonUnited Kingdom
| | - Claudio R Alonso
- Department of Neuroscience, Sussex Neuroscience, School of Life Sciences, University of SussexBrightonUnited Kingdom
| |
Collapse
|
9
|
Zhang Y, Sung HH, Ziegler AB, Wu YC, Viais R, Sánchez-Huertas C, Kilo L, Agircan FG, Cheng YJ, Mouri K, Uemura T, Lüders J, Chien CT, Tavosanis G. Augmin complex activity finetunes dendrite morphology through non-centrosomal microtubule nucleation in vivo. J Cell Sci 2024; 137:jcs261512. [PMID: 38587100 PMCID: PMC11128282 DOI: 10.1242/jcs.261512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 04/03/2024] [Indexed: 04/09/2024] Open
Abstract
During development, neurons achieve a stereotyped neuron type-specific morphology, which relies on dynamic support by microtubules (MTs). An important player is the augmin complex (hereafter augmin), which binds to existing MT filaments and recruits the γ-tubulin ring complex (γ-TuRC), to form branched MTs. In cultured neurons, augmin is important for neurite formation. However, little is known about the role of augmin during neurite formation in vivo. Here, we have revisited the role of mammalian augmin in culture and then turned towards the class four Drosophila dendritic arborization (c4da) neurons. We show that MT density is maintained through augmin in cooperation with the γ-TuRC in vivo. Mutant c4da neurons show a reduction of newly emerging higher-order dendritic branches and in turn also a reduced number of their characteristic space-filling higher-order branchlets. Taken together, our data reveal a cooperative function for augmin with the γ-TuRC in forming enough MTs needed for the appropriate differentiation of morphologically complex dendrites in vivo.
Collapse
Affiliation(s)
- Yun Zhang
- German Center for Neurodegenerative Diseases (DZNE), Dynamics of Neuronal Circuits Group, Venusberg Campus 1 Building 99, 53127 Bonn, Germany
| | - Hsin-Ho Sung
- Institute of Molecular Biology, Academia Sinica, 11529 Taipei, Taiwan
| | - Anna B. Ziegler
- German Center for Neurodegenerative Diseases (DZNE), Dynamics of Neuronal Circuits Group, Venusberg Campus 1 Building 99, 53127 Bonn, Germany
| | - Ying-Chieh Wu
- Institute of Molecular Biology, Academia Sinica, 11529 Taipei, Taiwan
| | - Ricardo Viais
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Carlos Sánchez-Huertas
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Lukas Kilo
- German Center for Neurodegenerative Diseases (DZNE), Dynamics of Neuronal Circuits Group, Venusberg Campus 1 Building 99, 53127 Bonn, Germany
| | - Fikret Gürkan Agircan
- German Center for Neurodegenerative Diseases (DZNE), Dynamics of Neuronal Circuits Group, Venusberg Campus 1 Building 99, 53127 Bonn, Germany
| | - Ying-Ju Cheng
- Institute of Molecular Biology, Academia Sinica, 11529 Taipei, Taiwan
| | - Kousuke Mouri
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Tadashi Uemura
- Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
- Center for Living Systems Information Science, Kyoto University
| | - Jens Lüders
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Baldiri Reixac 10, 08028 Barcelona, Spain
| | - Cheng-Ting Chien
- Institute of Molecular Biology, Academia Sinica, 11529 Taipei, Taiwan
| | - Gaia Tavosanis
- German Center for Neurodegenerative Diseases (DZNE), Dynamics of Neuronal Circuits Group, Venusberg Campus 1 Building 99, 53127 Bonn, Germany
- LIMES Institute, University of Bonn, 53115 Bonn, Germany
| |
Collapse
|
10
|
Gowda SBM, Banu A, Hussain S, Mohammad F. Neuronal mechanisms regulating locomotion in adult Drosophila. J Neurosci Res 2024; 102:e25332. [PMID: 38646942 DOI: 10.1002/jnr.25332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
The coordinated action of multiple leg joints and muscles is required even for the simplest movements. Understanding the neuronal circuits and mechanisms that generate precise movements is essential for comprehending the neuronal basis of the locomotion and to infer the neuronal mechanisms underlying several locomotor-related diseases. Drosophila melanogaster provides an excellent model system for investigating the neuronal circuits underlying motor behaviors due to its simple nervous system and genetic accessibility. This review discusses current genetic methods for studying locomotor circuits and their function in adult Drosophila. We highlight recently identified neuronal pathways that modulate distinct forward and backward locomotion and describe the underlying neuronal control of leg swing and stance phases in freely moving flies. We also report various automated leg tracking methods to measure leg motion parameters and define inter-leg coordination, gait and locomotor speed of freely moving adult flies. Finally, we emphasize the role of leg proprioceptive signals to central motor circuits in leg coordination. Together, this review highlights the utility of adult Drosophila as a model to uncover underlying motor circuitry and the functional organization of the leg motor system that governs correct movement.
Collapse
Affiliation(s)
- Swetha B M Gowda
- Division of Biological and Biomedical Sciences (BBS), College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Ayesha Banu
- Division of Biological and Biomedical Sciences (BBS), College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Sadam Hussain
- Division of Biological and Biomedical Sciences (BBS), College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| | - Farhan Mohammad
- Division of Biological and Biomedical Sciences (BBS), College of Health and Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha, Qatar
| |
Collapse
|
11
|
Bazzi W, Monticelli S, Delaporte C, Riet C, Giangrande A, Cattenoz PB. Gcm counteracts Toll-induced inflammation and impacts hemocyte number through cholinergic signaling. Front Immunol 2023; 14:1293766. [PMID: 38035083 PMCID: PMC10684909 DOI: 10.3389/fimmu.2023.1293766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 10/26/2023] [Indexed: 12/02/2023] Open
Abstract
Hemocytes, the myeloid-like immune cells of Drosophila, fulfill a variety of functions that are not completely understood, ranging from phagocytosis to transduction of inflammatory signals. We here show that downregulating the hemocyte-specific Glial cell deficient/Glial cell missing (Glide/Gcm) transcription factor enhances the inflammatory response to the constitutive activation of the Toll pathway. This correlates with lower levels of glutathione S-transferase, suggesting an implication of Glide/Gcm in reactive oxygen species (ROS) signaling and calling for a widespread anti-inflammatory potential of Glide/Gcm. In addition, our data reveal the expression of acetylcholine receptors in hemocytes and that Toll activation affects their expressions, disclosing a novel aspect of the inflammatory response mediated by neurotransmitters. Finally, we provide evidence for acetylcholine receptor nicotinic acetylcholine receptor alpha 6 (nAchRalpha6) regulating hemocyte proliferation in a cell autonomous fashion and for non-cell autonomous cholinergic signaling regulating the number of hemocytes. Altogether, this study provides new insights on the molecular pathways involved in the inflammatory response.
Collapse
Affiliation(s)
- Wael Bazzi
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Sara Monticelli
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Claude Delaporte
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Céline Riet
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Angela Giangrande
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| | - Pierre B. Cattenoz
- Université de Strasbourg, IGBMC UMR 7104- UMR-S 1258, Illkirch, France
- CNRS, UMR 7104, Illkirch, France
- Inserm, UMR-S 1258, Illkirch, France
- IGBMC, Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch, France
| |
Collapse
|
12
|
Berne A, Zhang T, Shomar J, Ferrer AJ, Valdes A, Ohyama T, Klein M. Mechanical vibration patterns elicit behavioral transitions and habituation in crawling Drosophila larvae. eLife 2023; 12:e69205. [PMID: 37855833 PMCID: PMC10586805 DOI: 10.7554/elife.69205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 10/06/2023] [Indexed: 10/20/2023] Open
Abstract
How animals respond to repeatedly applied stimuli, and how animals respond to mechanical stimuli in particular, are important questions in behavioral neuroscience. We study adaptation to repeated mechanical agitation using the Drosophila larva. Vertical vibration stimuli elicit a discrete set of responses in crawling larvae: continuation, pause, turn, and reversal. Through high-throughput larva tracking, we characterize how the likelihood of each response depends on vibration intensity and on the timing of repeated vibration pulses. By examining transitions between behavioral states at the population and individual levels, we investigate how the animals habituate to the stimulus patterns. We identify time constants associated with desensitization to prolonged vibration, with re-sensitization during removal of a stimulus, and additional layers of habituation that operate in the overall response. Known memory-deficient mutants exhibit distinct behavior profiles and habituation time constants. An analogous simple electrical circuit suggests possible neural and molecular processes behind adaptive behavior.
Collapse
Affiliation(s)
- Alexander Berne
- Department of Physics, Department of Biology, University of MiamiCoral GablesUnited States
| | - Tom Zhang
- Department of Physics, Department of Biology, University of MiamiCoral GablesUnited States
| | - Joseph Shomar
- Department of Physics, Department of Biology, University of MiamiCoral GablesUnited States
| | - Anggie J Ferrer
- Department of Physics, Department of Biology, University of MiamiCoral GablesUnited States
| | - Aaron Valdes
- Department of Physics, Department of Biology, University of MiamiCoral GablesUnited States
| | - Tomoko Ohyama
- Department of Biology, McGill UniversityMontrealCanada
| | - Mason Klein
- Department of Physics, Department of Biology, University of MiamiCoral GablesUnited States
| |
Collapse
|
13
|
Dallmann CJ, Dickerson BH, Simpson JH, Wyart C, Jayaram K. Mechanosensory Control of Locomotion in Animals and Robots: Moving Forward. Integr Comp Biol 2023; 63:450-463. [PMID: 37279901 PMCID: PMC10445419 DOI: 10.1093/icb/icad057] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/10/2023] [Accepted: 05/24/2023] [Indexed: 06/08/2023] Open
Abstract
While animals swim, crawl, walk, and fly with apparent ease, building robots capable of robust locomotion remains a significant challenge. In this review, we draw attention to mechanosensation-the sensing of mechanical forces generated within and outside the body-as a key sense that enables robust locomotion in animals. We discuss differences between mechanosensation in animals and current robots with respect to (1) the encoding properties and distribution of mechanosensors and (2) the integration and regulation of mechanosensory feedback. We argue that robotics would benefit greatly from a detailed understanding of these aspects in animals. To that end, we highlight promising experimental and engineering approaches to study mechanosensation, emphasizing the mutual benefits for biologists and engineers that emerge from moving forward together.
Collapse
Affiliation(s)
- Chris J Dallmann
- Department of Physiology and Biophysics, University of Washington, Seattle, WA 98195, USA
| | - Bradley H Dickerson
- Princeton Neuroscience Institute, Princeton University, Princeton, NJ 08544, USA
| | - Julie H Simpson
- Department of Molecular, Cellular, and Developmental Biology and Neuroscience Research Institute, University of California Santa Barbara, Santa Barbara, CA 93106, USA
| | - Claire Wyart
- Institut du Cerveau et de la Moelle épinière (ICM), Sorbonne Université, Paris 75005, France
| | - Kaushik Jayaram
- Paul M Rady Department of Mechanical Engineering, University of Colorado Boulder, Boulder, CO 80309, USA
| |
Collapse
|
14
|
Kohsaka H. Linking neural circuits to the mechanics of animal behavior in Drosophila larval locomotion. Front Neural Circuits 2023; 17:1175899. [PMID: 37711343 PMCID: PMC10499525 DOI: 10.3389/fncir.2023.1175899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/13/2023] [Indexed: 09/16/2023] Open
Abstract
The motions that make up animal behavior arise from the interplay between neural circuits and the mechanical parts of the body. Therefore, in order to comprehend the operational mechanisms governing behavior, it is essential to examine not only the underlying neural network but also the mechanical characteristics of the animal's body. The locomotor system of fly larvae serves as an ideal model for pursuing this integrative approach. By virtue of diverse investigation methods encompassing connectomics analysis and quantification of locomotion kinematics, research on larval locomotion has shed light on the underlying mechanisms of animal behavior. These studies have elucidated the roles of interneurons in coordinating muscle activities within and between segments, as well as the neural circuits responsible for exploration. This review aims to provide an overview of recent research on the neuromechanics of animal locomotion in fly larvae. We also briefly review interspecific diversity in fly larval locomotion and explore the latest advancements in soft robots inspired by larval locomotion. The integrative analysis of animal behavior using fly larvae could establish a practical framework for scrutinizing the behavior of other animal species.
Collapse
Affiliation(s)
- Hiroshi Kohsaka
- Graduate School of Informatics and Engineering, The University of Electro-Communications, Chofu, Tokyo, Japan
- Department of Complexity Science and Engineering, Graduate School of Frontier Science, The University of Tokyo, Chiba, Japan
| |
Collapse
|
15
|
Liu Y, Hasegawa E, Nose A, Zwart MF, Kohsaka H. Synchronous multi-segmental activity between metachronal waves controls locomotion speed in Drosophila larvae. eLife 2023; 12:e83328. [PMID: 37551094 PMCID: PMC10409504 DOI: 10.7554/elife.83328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 06/14/2023] [Indexed: 08/09/2023] Open
Abstract
The ability to adjust the speed of locomotion is essential for survival. In limbed animals, the frequency of locomotion is modulated primarily by changing the duration of the stance phase. The underlying neural mechanisms of this selective modulation remain an open question. Here, we report a neural circuit controlling a similarly selective adjustment of locomotion frequency in Drosophila larvae. Drosophila larvae crawl using peristaltic waves of muscle contractions. We find that larvae adjust the frequency of locomotion mostly by varying the time between consecutive contraction waves, reminiscent of limbed locomotion. A specific set of muscles, the lateral transverse (LT) muscles, co-contract in all segments during this phase, the duration of which sets the duration of the interwave phase. We identify two types of GABAergic interneurons in the LT neural network, premotor neuron A26f and its presynaptic partner A31c, which exhibit segmentally synchronized activity and control locomotor frequency by setting the amplitude and duration of LT muscle contractions. Altogether, our results reveal an inhibitory central circuit that sets the frequency of locomotion by controlling the duration of the period in between peristaltic waves. Further analysis of the descending inputs onto this circuit will help understand the higher control of this selective modulation.
Collapse
Affiliation(s)
- Yingtao Liu
- Department of Physics, Graduate School of Science, The University of TokyoTokyoJapan
- Department of Complexity Science and Engineering, Graduate School of Frontier Science, The University of TokyoKashiwaJapan
| | - Eri Hasegawa
- Department of Complexity Science and Engineering, Graduate School of Frontier Science, The University of TokyoKashiwaJapan
| | - Akinao Nose
- Department of Physics, Graduate School of Science, The University of TokyoTokyoJapan
- Department of Complexity Science and Engineering, Graduate School of Frontier Science, The University of TokyoKashiwaJapan
| | - Maarten F Zwart
- School of Psychology and Neuroscience, Centre of Biophotonics, University of St AndrewsSt AndrewsUnited Kingdom
| | - Hiroshi Kohsaka
- Department of Complexity Science and Engineering, Graduate School of Frontier Science, The University of TokyoKashiwaJapan
- Graduate School of Informatics and Engineering, The University of Electro-CommunicationsTokyoJapan
| |
Collapse
|
16
|
Greaney MR, Wreden CC, Heckscher ES. Distinctive features of the central synaptic organization of Drosophila larval proprioceptors. Front Neural Circuits 2023; 17:1223334. [PMID: 37564629 PMCID: PMC10410283 DOI: 10.3389/fncir.2023.1223334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 07/07/2023] [Indexed: 08/12/2023] Open
Abstract
Proprioceptive feedback is critically needed for locomotor control, but how this information is incorporated into central proprioceptive processing circuits remains poorly understood. Circuit organization emerges from the spatial distribution of synaptic connections between neurons. This distribution is difficult to discern in model systems where only a few cells can be probed simultaneously. Therefore, we turned to a relatively simple and accessible nervous system to ask: how are proprioceptors' input and output synapses organized in space, and what principles underlie this organization? Using the Drosophila larval connectome, we generated a map of the input and output synapses of 34 proprioceptors in several adjacent body segments (5-6 left-right pairs per segment). We characterized the spatial organization of these synapses, and compared this organization to that of other somatosensory neurons' synapses. We found three distinguishing features of larval proprioceptor synapses: (1) Generally, individual proprioceptor types display segmental somatotopy. (2) Proprioceptor output synapses both converge and diverge in space; they are organized into six spatial domains, each containing a unique set of one or more proprioceptors. Proprioceptors form output synapses along the proximal axonal entry pathway into the neuropil. (3) Proprioceptors receive few inhibitory input synapses. Further, we find that these three features do not apply to other larval somatosensory neurons. Thus, we have generated the most comprehensive map to date of how proprioceptor synapses are centrally organized. This map documents previously undescribed features of proprioceptors, raises questions about underlying developmental mechanisms, and has implications for downstream proprioceptive processing circuits.
Collapse
Affiliation(s)
- Marie R. Greaney
- Committee on Neurobiology, The University of Chicago, Chicago, IL, United States
| | - Chris C. Wreden
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
| | - Ellie S. Heckscher
- Committee on Neurobiology, The University of Chicago, Chicago, IL, United States
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
- Institute for Neuroscience, The University of Chicago, Chicago, IL, United States
| |
Collapse
|
17
|
Hertzler JI, Bernard AR, Rolls MM. Dendrite regeneration mediates functional recovery after complete dendrite removal. Dev Biol 2023; 497:18-25. [PMID: 36870669 PMCID: PMC10073339 DOI: 10.1016/j.ydbio.2023.03.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 02/28/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023]
Abstract
Unlike many cell types, neurons are not typically replaced if damaged. Therefore, regeneration of damaged cellular domains is critical for maintenance of neuronal function. While axon regeneration has been documented for several hundred years, it has only recently become possible to determine whether neurons respond to dendrite removal with regeneration. Regrowth of dendrite arbors has been documented in invertebrate and vertebrate model systems, but whether it leads to functional restoration of a circuit remains unknown. To test whether dendrite regeneration restores function, we used larval Drosophila nociceptive neurons. Their dendrites detect noxious stimuli to initiate escape behavior. Previous studies of Drosophila sensory neurons have shown that dendrites of single neurons regrow after laser severing. We removed dendrites from 16 neurons per animal to clear most of the dorsal surface of nociceptive innervation. As expected, this reduced aversive responses to noxious touch. Surprisingly, behavior was completely restored 24 h after injury, at the stage when dendrite regeneration has begun, but the new arbor has only covered a small portion of its former territory. This behavioral recovery required regenerative outgrowth as it was eliminated in a genetic background in which new growth is blocked. We conclude that dendrite regeneration can restore behavior.
Collapse
Affiliation(s)
- J Ian Hertzler
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, University Park, PA, 16802, USA
| | - Annabelle R Bernard
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, University Park, PA, 16802, USA
| | - Melissa M Rolls
- Biochemistry and Molecular Biology and the Huck Institutes of the Life Sciences, University Park, PA, 16802, USA.
| |
Collapse
|
18
|
Boivin JC, Zhu J, Ohyama T. Nociception in fruit fly larvae. FRONTIERS IN PAIN RESEARCH 2023; 4:1076017. [PMID: 37006412 PMCID: PMC10063880 DOI: 10.3389/fpain.2023.1076017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
Nociception, the process of encoding and processing noxious or painful stimuli, allows animals to detect and avoid or escape from potentially life-threatening stimuli. Here, we provide a brief overview of recent technical developments and studies that have advanced our understanding of the Drosophila larval nociceptive circuit and demonstrated its potential as a model system to elucidate the mechanistic basis of nociception. The nervous system of a Drosophila larva contains roughly 15,000 neurons, which allows for reconstructing the connectivity among them directly by transmission electron microscopy. In addition, the availability of genetic tools for manipulating the activity of individual neurons and recent advances in computational and high-throughput behavior analysis methods have facilitated the identification of a neural circuit underlying a characteristic nocifensive behavior. We also discuss how neuromodulators may play a key role in modulating the nociceptive circuit and behavioral output. A detailed understanding of the structure and function of Drosophila larval nociceptive neural circuit could provide insights into the organization and operation of pain circuits in mammals and generate new knowledge to advance the development of treatment options for pain in humans.
Collapse
Affiliation(s)
- Jean-Christophe Boivin
- Department of Biology, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Jiayi Zhu
- Department of Biology, McGill University, Montreal, QC, Canada
- Integrated Program in Neuroscience, McGill University, Montreal, QC, Canada
| | - Tomoko Ohyama
- Department of Biology, McGill University, Montreal, QC, Canada
- Alan Edwards Centre for Research on Pain, McGill University, Montreal, QC, Canada
| |
Collapse
|
19
|
Nemtsova Y, Steinert BL, Wharton KA. Compartment specific mitochondrial dysfunction in Drosophila knock-in model of ALS reversed by altered gene expression of OXPHOS subunits and pro-fission factor Drp1. Mol Cell Neurosci 2023; 125:103834. [PMID: 36868541 DOI: 10.1016/j.mcn.2023.103834] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 02/20/2023] [Accepted: 02/23/2023] [Indexed: 03/05/2023] Open
Abstract
Amyotrophic Lateral Sclerosis (ALS) is a fatal multisystem neurodegenerative disease, characterized by a loss in motor function. ALS is genetically diverse, with mutations in genes ranging from those regulating RNA metabolism, like TAR DNA-binding protein (TDP-43) and Fused in sarcoma (FUS), to those that act to maintain cellular redox homeostasis, like superoxide dismutase 1 (SOD1). Although varied in genetic origin, pathogenic and clinical commonalities are clearly evident between cases of ALS. Defects in mitochondria is one such common pathology, thought to occur prior to, rather than as a consequence of symptom onset, making these organelles a promising therapeutic target for ALS, as well as other neurodegenerative diseases. Depending on the homeostatic needs of neurons throughout life, mitochondria are normally shuttled to different subcellular compartments to regulate metabolite and energy production, lipid metabolism, and buffer calcium. While originally considered a motor neuron disease due to the dramatic loss in motor function accompanied by motor neuron cell death in ALS patients, many studies have now implicated non-motor neurons and glial cells alike. Defects in non-motor neuron cell types often preceed motor neuron death suggesting their dysfunction may initiate and/or facilitate the decline in motor neuron health. Here, we investigate mitochondria in a Drosophila Sod1 knock-in model of ALS. In depth, in vivo, examination reveals mitochondrial dysfunction evident prior to onset of motor neuron degeneration. Genetically encoded redox biosensors identify a general disruption in the electron transport chain (ETC). Compartment specific abnormalities in mitochondrial morphology is observed in diseased sensory neurons, accompanied by no apparent defects in the axonal transport machinery, but instead an increase in mitophagy in synaptic regions. The decrease in networked mitochondria at the synapse is reversed upon downregulation of the pro-fission factor Drp1. Furthermore, altered expression of specific OXPHOS subunits reverses ALS-associated defects in mitochondrial morphology and function.
Collapse
Affiliation(s)
- Y Nemtsova
- Molecular Biology, Cell Biology, and Biochemistry Department, Brown University, Providence, RI 02912, United States.
| | - B L Steinert
- Molecular Biology, Cell Biology, and Biochemistry Department, Brown University, Providence, RI 02912, United States.
| | - K A Wharton
- Molecular Biology, Cell Biology, and Biochemistry Department, Brown University, Providence, RI 02912, United States; Robert J. and Nancy D. Carney Institute for Brain Science, Brown University, Providence, RI 02912, United States.
| |
Collapse
|
20
|
Niu X, Mao CX, Wang S, Wang X, Zhang Y, Hu J, Bi R, Liu Z, Shan J. α-Tubulin acetylation at lysine 40 regulates dendritic arborization and larval locomotion by promoting microtubule stability in Drosophila. PLoS One 2023; 18:e0280573. [PMID: 36827311 PMCID: PMC9955671 DOI: 10.1371/journal.pone.0280573] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Accepted: 01/03/2023] [Indexed: 02/25/2023] Open
Abstract
Posttranslational modification of tubulin increases the dynamic complexity and functional diversity of microtubules. Acetylation of α-tubulin at Lys-40 is a highly conserved posttranslational modification that has been shown to improve the flexibility and resilience of microtubules. Here we studied the in vivo functions of α-tubulin acetylation by knocking-out Atat, the Drosophila α-tubulin acetyltransferase, and by mutating Lys-40 to Arg in α1-tubulin. We found a reduction in the dendritic arborization of larval class I dendritic arborization (da) neurons in both mutants. The dendritic developmental defects in atat mutants could be reversed by enhancing the stability of microtubules either through knocking down the microtubule severing protein Katanin 60 or through overexpressing tubulin-specific chaperone E, suggesting that α-tubulin deacetylation impairsed dendritic morphology by decreasing the stability of microtubules. Using time-lapse recordings, we found that atat and α1-tubulinK40R mutations dramatically increased the number of dendritic protrusions that were likely to be immature dendritic precursors. Finally, we showed that both Atat and α-tubulin acetylation were required in class I da neurons to control larval locomotion. These findings add novel insight into the current knowledge of the role of α-tubulin acetylation in regulating neuronal development and functions.
Collapse
Affiliation(s)
- Xiaoxiao Niu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of life science, Hubei University, Wuhan, China
| | - Chuan-Xi Mao
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of life science, Hubei University, Wuhan, China
| | - Shan Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of life science, Hubei University, Wuhan, China
| | - Xiongxiong Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of life science, Hubei University, Wuhan, China
| | - Youyu Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of life science, Hubei University, Wuhan, China
| | - Juncheng Hu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of life science, Hubei University, Wuhan, China
| | - Ran Bi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of life science, Hubei University, Wuhan, China
| | - Zhihua Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of life science, Hubei University, Wuhan, China
- * E-mail: (SJ); (ZL)
| | - Jin Shan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Province Key Laboratory of Biotechnology of Chinese Traditional Medicine, National & Local Joint Engineering Research Center of High-throughput Drug Screening Technology, School of life science, Hubei University, Wuhan, China
- * E-mail: (SJ); (ZL)
| |
Collapse
|
21
|
Kanaoka Y, Onodera K, Watanabe K, Hayashi Y, Usui T, Uemura T, Hattori Y. Inter-organ Wingless/Ror/Akt signaling regulates nutrient-dependent hyperarborization of somatosensory neurons. eLife 2023; 12:79461. [PMID: 36647607 PMCID: PMC9844989 DOI: 10.7554/elife.79461] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 12/11/2022] [Indexed: 01/18/2023] Open
Abstract
Nutrition in early life has profound effects on an organism, altering processes such as organogenesis. However, little is known about how specific nutrients affect neuronal development. Dendrites of class IV dendritic arborization neurons in Drosophila larvae become more complex when the larvae are reared on a low-yeast diet compared to a high-yeast diet. Our systematic search for key nutrients revealed that the neurons increase their dendritic terminal densities in response to a combined deficiency in vitamins, metal ions, and cholesterol. The deficiency of these nutrients upregulates Wingless in a closely located tissue, body wall muscle. Muscle-derived Wingless activates Akt in the neurons through the receptor tyrosine kinase Ror, which promotes the dendrite branching. In larval muscles, the expression of wingless is regulated not only in this key nutrient-dependent manner, but also by the JAK/STAT signaling pathway. Additionally, the low-yeast diet blunts neuronal light responsiveness and light avoidance behavior, which may help larvae optimize their survival strategies under low-nutritional conditions. Together, our studies illustrate how the availability of specific nutrients affects neuronal development through inter-organ signaling.
Collapse
Affiliation(s)
| | - Koun Onodera
- Graduate School of Biostudies, Kyoto UniversityKyotoJapan
| | - Kaori Watanabe
- Graduate School of Biostudies, Kyoto UniversityKyotoJapan
| | - Yusaku Hayashi
- Graduate School of Biostudies, Kyoto UniversityKyotoJapan
| | - Tadao Usui
- Graduate School of Biostudies, Kyoto UniversityKyotoJapan
| | - Tadashi Uemura
- Graduate School of Biostudies, Kyoto UniversityKyotoJapan
- Research Center for Dynamic Living Systems, Kyoto UniversityKyotoJapan
- AMED-CRESTTokyoJapan
| | - Yukako Hattori
- Graduate School of Biostudies, Kyoto UniversityKyotoJapan
- JST FORESTTokyoJapan
| |
Collapse
|
22
|
Search performance and octopamine neuronal signaling mediate parasitoid induced changes in Drosophila oviposition behavior. Nat Commun 2022; 13:4476. [PMID: 35918358 PMCID: PMC9345866 DOI: 10.1038/s41467-022-32203-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 07/18/2022] [Indexed: 11/09/2022] Open
Abstract
Making the appropriate responses to predation risk is essential for the survival of an organism; however, the underlying mechanisms are still largely unknown. Here, we find that Drosophila has evolved an adaptive strategy to manage the threat from its parasitoid wasp by manipulating the oviposition behavior. Through perception of the differences in host search performance of wasps, Drosophila is able to recognize younger wasps as a higher level of threat and consequently depress the oviposition. We further show that this antiparasitoid behavior is mediated by the regulation of the expression of Tdc2 and Tβh in the ventral nerve cord via LC4 visual projection neurons, which in turn leads to the dramatic reduction in octopamine and the resulting dysfunction of mature follicle trimming and rupture. Our study uncovers a detailed mechanism underlying the defensive behavior in insects that may advance our understanding of predator avoidance in animals.
Collapse
|
23
|
Fujiwara T, Brotas M, Chiappe ME. Walking strides direct rapid and flexible recruitment of visual circuits for course control in Drosophila. Neuron 2022; 110:2124-2138.e8. [PMID: 35525243 PMCID: PMC9275417 DOI: 10.1016/j.neuron.2022.04.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 01/31/2022] [Accepted: 04/08/2022] [Indexed: 12/19/2022]
Abstract
Flexible mapping between activity in sensory systems and movement parameters is a hallmark of motor control. This flexibility depends on the continuous comparison of short-term postural dynamics and the longer-term goals of an animal, thereby necessitating neural mechanisms that can operate across multiple timescales. To understand how such body-brain interactions emerge across timescales to control movement, we performed whole-cell patch recordings from visual neurons involved in course control in Drosophila. We show that the activity of leg mechanosensory cells, propagating via specific ascending neurons, is critical for stride-by-stride steering adjustments driven by the visual circuit, and, at longer timescales, it provides information about the moving body's state to flexibly recruit the visual circuit for course control. Thus, our findings demonstrate the presence of an elegant stride-based mechanism operating at multiple timescales for context-dependent course control. We propose that this mechanism functions as a general basis for the adaptive control of locomotion.
Collapse
Affiliation(s)
- Terufumi Fujiwara
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal
| | - Margarida Brotas
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal
| | - M Eugenia Chiappe
- Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon 1400-038, Portugal.
| |
Collapse
|
24
|
Sun X, Liu Y, Liu C, Mayumi K, Ito K, Nose A, Kohsaka H. A neuromechanical model for Drosophila larval crawling based on physical measurements. BMC Biol 2022; 20:130. [PMID: 35701821 PMCID: PMC9199175 DOI: 10.1186/s12915-022-01336-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/20/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Animal locomotion requires dynamic interactions between neural circuits, the body (typically muscles), and surrounding environments. While the neural circuitry of movement has been intensively studied, how these outputs are integrated with body mechanics (neuromechanics) is less clear, in part due to the lack of understanding of the biomechanical properties of animal bodies. Here, we propose an integrated neuromechanical model of movement based on physical measurements by taking Drosophila larvae as a model of soft-bodied animals. RESULTS We first characterized the kinematics of forward crawling in Drosophila larvae at a segmental and whole-body level. We then characterized the biomechanical parameters of fly larvae, namely the contraction forces generated by neural activity, and passive elastic and viscosity of the larval body using a stress-relaxation test. We established a mathematical neuromechanical model based on the physical measurements described above, obtaining seven kinematic values characterizing crawling locomotion. By optimizing the parameters in the neural circuit, our neuromechanical model succeeded in quantitatively reproducing the kinematics of larval locomotion that were obtained experimentally. This model could reproduce the observation of optogenetic studies reported previously. The model predicted that peristaltic locomotion could be exhibited in a low-friction condition. Analysis of floating larvae provided results consistent with this prediction. Furthermore, the model predicted a significant contribution of intersegmental connections in the central nervous system, which contrasts with a previous study. This hypothesis allowed us to make a testable prediction for the variability in intersegmental connection in sister species of the genus Drosophila. CONCLUSIONS We generated a neurochemical model based on physical measurement to provide a new foundation to study locomotion in soft-bodied animals and soft robot engineering.
Collapse
Affiliation(s)
- Xiyang Sun
- Department of Complexity Science and Engineering, Graduate School of Frontier Science, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Yingtao Liu
- Department of Physics, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 133-0033, Japan
| | - Chang Liu
- Department of Advanced Materials Science, Graduate School of Frontier Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Koichi Mayumi
- Department of Advanced Materials Science, Graduate School of Frontier Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Kohzo Ito
- Department of Advanced Materials Science, Graduate School of Frontier Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Akinao Nose
- Department of Complexity Science and Engineering, Graduate School of Frontier Science, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.,Department of Physics, Graduate School of Science, the University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 133-0033, Japan
| | - Hiroshi Kohsaka
- Department of Complexity Science and Engineering, Graduate School of Frontier Science, the University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan. .,Division of General Education, Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1, Chofugaoka, Chofu, Tokyo, 182-8585, Japan.
| |
Collapse
|
25
|
Agrawal S, Tuthill JC. The two-body problem: Proprioception and motor control across the metamorphic divide. Curr Opin Neurobiol 2022; 74:102546. [PMID: 35512562 DOI: 10.1016/j.conb.2022.102546] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 03/11/2022] [Accepted: 03/27/2022] [Indexed: 11/17/2022]
Abstract
Like a rocket being propelled into space, evolution has engineered flies to launch into adulthood via multiple stages. Flies develop and deploy two distinct bodies, linked by the transformative process of metamorphosis. The fly larva is a soft hydraulic tube that can crawl to find food and avoid predators. The adult fly has a stiff exoskeleton with articulated limbs that enable long-distance navigation and rich social interactions. Because the larval and adult forms are so distinct in structure, they require distinct strategies for sensing and moving the body. The metamorphic divide thus presents an opportunity for comparative analysis of neural circuits. Here, we review recent progress toward understanding the neural mechanisms of proprioception and motor control in larval and adult Drosophila. We highlight commonalities that point toward general principles of sensorimotor control and differences that may reflect unique constraints imposed by biomechanics. Finally, we discuss emerging opportunities for comparative analysis of neural circuit architecture in the fly and other animal species.
Collapse
Affiliation(s)
- Sweta Agrawal
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA.
| | - John C Tuthill
- Department of Physiology and Biophysics, University of Washington, Seattle, WA, USA
| |
Collapse
|
26
|
Garg V, André S, Giraldo D, Heyer L, Göpfert MC, Dosch R, Geurten BRH. A Markerless Pose Estimator Applicable to Limbless Animals. Front Behav Neurosci 2022; 16:819146. [PMID: 35418841 PMCID: PMC8997243 DOI: 10.3389/fnbeh.2022.819146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Accepted: 02/09/2022] [Indexed: 11/25/2022] Open
Abstract
The analysis of kinematics, locomotion, and spatial tasks relies on the accurate detection of animal positions and pose. Pose and position can be assessed with video analysis programs, the “trackers.” Most available trackers represent animals as single points in space (no pose information available) or use markers to build a skeletal representation of pose. Markers are either physical objects attached to the body (white balls, stickers, or paint) or they are defined in silico using recognizable body structures (e.g., joints, limbs, color patterns). Physical markers often cannot be used if the animals are small, lack prominent body structures on which the markers can be placed, or live in environments such as aquatic ones that might detach the marker. Here, we introduce a marker-free pose-estimator (LACE Limbless Animal traCkEr) that builds the pose of the animal de novo from its contour. LACE detects the contour of the animal and derives the body mid-line, building a pseudo-skeleton by defining vertices and edges. By applying LACE to analyse the pose of larval Drosophila melanogaster and adult zebrafish, we illustrate that LACE allows to quantify, for example, genetic alterations of peristaltic movements and gender-specific locomotion patterns that are associated with different body shapes. As illustrated by these examples, LACE provides a versatile method for assessing position, pose and movement patterns, even in animals without limbs.
Collapse
Affiliation(s)
- Vranda Garg
- Department of Cellular Neuroscience, Georg-August-University Göttingen, Gottingen, Germany
| | - Selina André
- Department of Cellular Neuroscience, Georg-August-University Göttingen, Gottingen, Germany
| | - Diego Giraldo
- Department of Cellular Neuroscience, Georg-August-University Göttingen, Gottingen, Germany
| | - Luisa Heyer
- Department of Cellular Neuroscience, Georg-August-University Göttingen, Gottingen, Germany
| | - Martin C. Göpfert
- Department of Cellular Neuroscience, Georg-August-University Göttingen, Gottingen, Germany
| | - Roland Dosch
- Institute for Humangenetics, University Medical Center Göttingen, Georg-August-University Göttingen, Gottingen, Germany
| | - Bart R. H. Geurten
- Department of Cellular Neuroscience, Georg-August-University Göttingen, Gottingen, Germany
- *Correspondence: Bart R. H. Geurten
| |
Collapse
|
27
|
Heckman EL, Doe CQ. Presynaptic contact and activity opposingly regulate postsynaptic dendrite outgrowth. eLife 2022; 11:82093. [PMID: 36448675 PMCID: PMC9728994 DOI: 10.7554/elife.82093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
The organization of neural circuits determines nervous system function. Variability can arise during neural circuit development (e.g. neurite morphology, axon/dendrite position). To ensure robust nervous system function, mechanisms must exist to accommodate variation in neurite positioning during circuit formation. Previously, we developed a model system in the Drosophila ventral nerve cord to conditionally induce positional variability of a proprioceptive sensory axon terminal, and used this model to show that when we altered the presynaptic position of the sensory neuron, its major postsynaptic interneuron partner modified its dendritic arbor to match the presynaptic contact, resulting in functional synaptic input (Sales et al., 2019). Here, we investigate the cellular mechanisms by which the interneuron dendrites detect and match variation in presynaptic partner location and input strength. We manipulate the presynaptic sensory neuron by (a) ablation; (b) silencing or activation; or (c) altering its location in the neuropil. From these experiments we conclude that there are two opposing mechanisms used to establish functional connectivity in the face of presynaptic variability: presynaptic contact stimulates dendrite outgrowth locally, whereas presynaptic activity inhibits postsynaptic dendrite outgrowth globally. These mechanisms are only active during an early larval critical period for structural plasticity. Collectively, our data provide new insights into dendrite development, identifying mechanisms that allow dendrites to flexibly respond to developmental variability in presynaptic location and input strength.
Collapse
Affiliation(s)
- Emily L Heckman
- Institute of Neuroscience, Howard Hughes Medical Institute, University of OregonEugeneUnited States
| | - Chris Q Doe
- Institute of Neuroscience, Howard Hughes Medical Institute, University of OregonEugeneUnited States
| |
Collapse
|
28
|
Ormerod KG, Scibelli AE, Littleton JT. Regulation of excitation-contraction coupling at the Drosophila neuromuscular junction. J Physiol 2022; 600:349-372. [PMID: 34788476 PMCID: PMC9044916 DOI: 10.1113/jp282092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 10/28/2021] [Indexed: 01/05/2023] Open
Abstract
The Drosophila neuromuscular system is widely used to characterize synaptic development and function. However, little is known about how specific synaptic alterations effect neuromuscular transduction and muscle contractility, which ultimately dictate behavioural output. Here we develop and use a force transducer system to characterize excitation-contraction coupling at Drosophila larval neuromuscular junctions (NMJs), examining how specific neuronal and muscle manipulations disrupt muscle contractility. Muscle contraction force increased with motoneuron stimulation frequency and duration, showing considerable plasticity between 5 and 40 Hz and saturating above 50 Hz. Endogenous recordings of fictive contractions revealed average motoneuron burst frequencies of 20-30 Hz, consistent with the system operating within this plastic range of contractility. Temperature was also a key factor in muscle contractility, as force was enhanced at lower temperatures and dramatically reduced with increasing temperatures. Pharmacological and genetic manipulations of critical components of Ca2+ regulation in both pre- and postsynaptic compartments affected the strength and time course of muscle contractions. A screen for modulators of muscle contractility led to identification and characterization of the molecular and cellular pathway by which the FMRFa peptide, TPAEDFMRFa, increases muscle performance. These findings indicate Drosophila NMJs provide a robust system to correlate synaptic dysfunction, regulation and modulation to alterations in excitation-contraction coupling. KEY POINTS: Larval muscle contraction force increases with stimulation frequency and duration, revealing substantial plasticity between 5 and 40 Hz. Fictive contraction recordings demonstrate endogenous motoneuron burst frequencies consistent with the neuromuscular system operating within the range of greatest plasticity. Genetic and pharmacological manipulations of critical components of pre- and postsynaptic Ca2+ regulation significantly affect the strength and time course of muscle contractions. A screen for modulators of the excitation-contraction machinery identified a FMRFa peptide, TPAEDFMRFa and its associated signalling pathway, that dramatically increases muscle performance. Drosophila serves as an excellent model for dissecting components of the excitation-contraction coupling machinery.
Collapse
Affiliation(s)
- Kiel G Ormerod
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - J Troy Littleton
- The Picower Institute for Learning and Memory, Department of Biology, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| |
Collapse
|
29
|
Ravbar P, Zhang N, Simpson JH. Behavioral evidence for nested central pattern generator control of Drosophila grooming. eLife 2021; 10:e71508. [PMID: 34936550 PMCID: PMC8694699 DOI: 10.7554/elife.71508] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 12/08/2021] [Indexed: 01/20/2023] Open
Abstract
Central pattern generators (CPGs) are neurons or neural circuits that produce periodic output without requiring patterned input. More complex behaviors can be assembled from simpler subroutines, and nested CPGs have been proposed to coordinate their repetitive elements, organizing control over different time scales. Here, we use behavioral experiments to establish that Drosophila grooming may be controlled by nested CPGs. On a short time scale (5-7 Hz, ~ 200 ms/movement), flies clean with periodic leg sweeps and rubs. More surprisingly, transitions between bouts of head sweeping and leg rubbing are also periodic on a longer time scale (0.3-0.6 Hz, ~2 s/bout). We examine grooming at a range of temperatures to show that the frequencies of both oscillations increase-a hallmark of CPG control-and also that rhythms at the two time scales increase at the same rate, indicating that the nested CPGs may be linked. This relationship holds when sensory drive is held constant using optogenetic activation, but oscillations can decouple in spontaneously grooming flies, showing that alternative control modes are possible. Loss of sensory feedback does not disrupt periodicity but slow down the longer time scale alternation. Nested CPGs simplify the generation of complex but repetitive behaviors, and identifying them in Drosophila grooming presents an opportunity to map the neural circuits that constitute them.
Collapse
Affiliation(s)
- Primoz Ravbar
- Molecular Cellular and Developmental Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Neil Zhang
- Molecular Cellular and Developmental Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| | - Julie H Simpson
- Molecular Cellular and Developmental Biology and Neuroscience Research Institute, University of California, Santa BarbaraSanta BarbaraUnited States
| |
Collapse
|
30
|
Piñeiro M, Mena W, Ewer J, Orio P. Extracting temporal relationships between weakly coupled peptidergic and motoneuronal signaling: Application to Drosophila ecdysis behavior. PLoS Comput Biol 2021; 17:e1008933. [PMID: 34910730 PMCID: PMC8716061 DOI: 10.1371/journal.pcbi.1008933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Revised: 12/29/2021] [Accepted: 11/14/2021] [Indexed: 11/18/2022] Open
Abstract
Neuromodulators, such as neuropeptides, can regulate and reconfigure neural circuits to alter their output, affecting in this way animal physiology and behavior. The interplay between the activity of neuronal circuits, their modulation by neuropeptides, and the resulting behavior, is still poorly understood. Here, we present a quantitative framework to study the relationships between the temporal pattern of activity of peptidergic neurons and of motoneurons during Drosophila ecdysis behavior, a highly stereotyped motor sequence that is critical for insect growth. We analyzed, in the time and frequency domains, simultaneous intracellular calcium recordings of peptidergic CCAP (crustacean cardioactive peptide) neurons and motoneurons obtained from isolated central nervous systems throughout fictive ecdysis behavior induced ex vivo by Ecdysis triggering hormone. We found that the activity of both neuronal populations is tightly coupled in a cross-frequency manner, suggesting that CCAP neurons modulate the frequency of motoneuron firing. To explore this idea further, we used a probabilistic logistic model to show that calcium dynamics in CCAP neurons can predict the oscillation of motoneurons, both in a simple model and in a conductance-based model capable of simulating many features of the observed neural dynamics. Finally, we developed an algorithm to quantify the motor behavior observed in videos of pupal ecdysis, and compared their features to the patterns of neuronal calcium activity recorded ex vivo. We found that the motor activity of the intact animal is more regular than the motoneuronal activity recorded from ex vivo preparations during fictive ecdysis behavior; the analysis of the patterns of movement also allowed us to identify a new post-ecdysis phase.
Collapse
Affiliation(s)
- Miguel Piñeiro
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
| | - Wilson Mena
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Department of Neuroscience, Institut Pasteur, Paris, France
| | - John Ewer
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- * E-mail: (JE); (PO)
| | - Patricio Orio
- Centro Interdisciplinario de Neurociencia de Valparaíso, Universidad de Valparaíso, Valparaíso, Chile
- Instituto de Neurociencias, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- * E-mail: (JE); (PO)
| |
Collapse
|
31
|
Zeng X, Komanome Y, Kawasaki T, Inada K, Jonaitis J, Pulver SR, Kazama H, Nose A. An electrically coupled pioneer circuit enables motor development via proprioceptive feedback in Drosophila embryos. Curr Biol 2021; 31:5327-5340.e5. [PMID: 34666002 DOI: 10.1016/j.cub.2021.10.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 09/03/2021] [Accepted: 10/04/2021] [Indexed: 02/02/2023]
Abstract
Precocious movements are widely seen in embryos of various animal species. Whether such movements via proprioceptive feedback play instructive roles in motor development or are a mere reflection of activities in immature motor circuits is a long-standing question. Here we image the emerging motor activities in Drosophila embryos that lack proprioceptive feedback and show that proprioceptive experience is essential for the development of locomotor central pattern generators (CPGs). Downstream of proprioceptive inputs, we identify a pioneer premotor circuit composed of two pairs of segmental interneurons, whose gap-junctional transmission requires proprioceptive experience and plays a crucial role in CPG formation. The circuit autonomously generates rhythmic plateau potentials via IP3-mediated Ca2+ release from internal stores, which contribute to muscle contractions and hence produce proprioceptive feedback. Our findings demonstrate the importance of self-generated movements in instructing motor development and identify the cells, circuit, and physiology at the core of this proprioceptive feedback.
Collapse
Affiliation(s)
- Xiangsunze Zeng
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Yuko Komanome
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Tappei Kawasaki
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan
| | - Kengo Inada
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Julius Jonaitis
- School of Psychology and Neuroscience, University of St Andrews, St Mary's Quad, South Street, St Andrews KY16 9JP, UK
| | - Stefan R Pulver
- School of Psychology and Neuroscience, University of St Andrews, St Mary's Quad, South Street, St Andrews KY16 9JP, UK
| | - Hokto Kazama
- RIKEN Center for Brain Science, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan; Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1 Komaba, Meguro-ku, Tokyo 153-8902, Japan.
| | - Akinao Nose
- Graduate School of Frontier Sciences, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8561, Japan; Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan.
| |
Collapse
|
32
|
Matsuo Y, Nose A, Kohsaka H. Interspecies variation of larval locomotion kinematics in the genus Drosophila and its relation to habitat temperature. BMC Biol 2021; 19:176. [PMID: 34470643 PMCID: PMC8411537 DOI: 10.1186/s12915-021-01110-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 07/29/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Speed and trajectory of locomotion are the characteristic traits of individual species. Locomotion kinematics may have been shaped during evolution towards increased survival in the habitats of each species. Although kinematics of locomotion is thought to be influenced by habitats, the quantitative relation between the kinematics and environmental factors has not been fully revealed. Here, we performed comparative analyses of larval locomotion in 11 Drosophila species. RESULTS We found that larval locomotion kinematics are divergent among the species. The diversity is not correlated to the body length but is correlated instead to the habitat temperature of the species. Phylogenetic analyses using Bayesian inference suggest that the evolutionary rate of the kinematics is diverse among phylogenetic tree branches. CONCLUSIONS The results of this study imply that the kinematics of larval locomotion has diverged in the evolutionary history of the genus Drosophila and evolved under the effects of the ambient temperature of habitats.
Collapse
Affiliation(s)
- Yuji Matsuo
- Department of Complexity Science and Engineering, Graduate School of Frontier Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
| | - Akinao Nose
- Department of Complexity Science and Engineering, Graduate School of Frontier Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan
- Department of Physics, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 133-0033, Japan
| | - Hiroshi Kohsaka
- Department of Complexity Science and Engineering, Graduate School of Frontier Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.
- School of Informatics and Engineering, The University of Electro-Communications, 1-5-1, Chofugaoka, Chofu-shi, Tokyo, 182-8585, Japan.
| |
Collapse
|
33
|
Abstract
In animals, proper locomotion is crucial to find mates and foods and avoid predators or dangers. Multiple sensory systems detect external and internal cues and integrate them to modulate motor outputs. Proprioception is the internal sense of body position, and proprioceptive control of locomotion is essential to generate and maintain precise patterns of movement or gaits. This proprioceptive feedback system is conserved in many animal species and is mediated by stretch-sensitive receptors called proprioceptors. Recent studies have identified multiple proprioceptive neurons and proprioceptors and their roles in the locomotion of various model organisms. In this review we describe molecular and neuronal mechanisms underlying proprioceptive feedback systems in C. elegans, Drosophila, and mice.
Collapse
Affiliation(s)
- Kyeong Min Moon
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
| | - Jimin Kim
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
| | - Yurim Seong
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
| | - Byung-Chang Suh
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
| | - KyeongJin Kang
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
- KBRI (Korea Brain Research Institute), Daegu 41068, Korea
| | - Han Kyoung Choe
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
- KBRI (Korea Brain Research Institute), Daegu 41068, Korea
| | - Kyuhyung Kim
- Department of Brain and Cognitive Sciences, DGIST, Daegu 42988, Korea
- KBRI (Korea Brain Research Institute), Daegu 41068, Korea
| |
Collapse
|
34
|
Galbraith A, Leone S, Stuart K, Emery J, Renkemeyer MK, Pritchett N, Galbraith L, Stuckmeyer H, Berke B. Reducing the expression of the Numb adaptor protein in neurons increases the searching behavior of Drosophila larvae. MICROPUBLICATION BIOLOGY 2021; 2021:10.17912/micropub.biology.000426. [PMID: 34327314 PMCID: PMC8314082 DOI: 10.17912/micropub.biology.000426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Revised: 07/14/2021] [Accepted: 07/15/2021] [Indexed: 11/23/2022]
Abstract
Drosophila larval crawling is easily-observable and relatively stereotyped. Crawling consists of linear locomotion interrupted by periods when the larvae pause, swing their heads, and change direction (a 'search'). Here we identify Numb, a peripheral membrane adaptor protein, as an important regulator of searching behavior. When Numb RNAi transgenes were expressed in all neurons, searching frequency increased while linear movement appeared normal. Numb's role in suppressing searching behavior was verified by rescuing this phenotype with a Numb homologue from mice. Such behavioral specificity suggests that further analysis of searching might help identify additional, evolutionarily-conserved interactors of the Numb protein.
Collapse
Affiliation(s)
- Andrew Galbraith
- Department of Biology, Truman State University, Kirksville, MO USA
| | - Samuel Leone
- Department of Biology, Truman State University, Kirksville, MO USA
| | - Katherine Stuart
- Department of Biology, Truman State University, Kirksville, MO USA
| | - Josie Emery
- Department of Biology, Truman State University, Kirksville, MO USA
| | | | | | - Lauren Galbraith
- Department of Biology, Truman State University, Kirksville, MO USA
| | - Haley Stuckmeyer
- Department of Biology, Truman State University, Kirksville, MO USA
| | - Brett Berke
- Department of Biology, Truman State University, Kirksville, MO USA,
Correspondence to: Brett Berke ()
| |
Collapse
|
35
|
Hunter I, Coulson B, Zarin AA, Baines RA. The Drosophila Larval Locomotor Circuit Provides a Model to Understand Neural Circuit Development and Function. Front Neural Circuits 2021; 15:684969. [PMID: 34276315 PMCID: PMC8282269 DOI: 10.3389/fncir.2021.684969] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2021] [Accepted: 06/09/2021] [Indexed: 11/13/2022] Open
Abstract
It is difficult to answer important questions in neuroscience, such as: "how do neural circuits generate behaviour?," because research is limited by the complexity and inaccessibility of the mammalian nervous system. Invertebrate model organisms offer simpler networks that are easier to manipulate. As a result, much of what we know about the development of neural circuits is derived from work in crustaceans, nematode worms and arguably most of all, the fruit fly, Drosophila melanogaster. This review aims to demonstrate the utility of the Drosophila larval locomotor network as a model circuit, to those who do not usually use the fly in their work. This utility is explored first by discussion of the relatively complete connectome associated with one identified interneuron of the locomotor circuit, A27h, and relating it to similar circuits in mammals. Next, it is developed by examining its application to study two important areas of neuroscience research: critical periods of development and interindividual variability in neural circuits. In summary, this article highlights the potential to use the larval locomotor network as a "generic" model circuit, to provide insight into mammalian circuit development and function.
Collapse
Affiliation(s)
- Iain Hunter
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Bramwell Coulson
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| | - Aref Arzan Zarin
- Department of Biology, The Texas A&M Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Richard A Baines
- Division of Neuroscience and Experimental Psychology, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, School of Biological Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
36
|
Feng C, Cleary JM, Kothe GO, Stone MC, Weiner AT, Hertzler JI, Hancock WO, Rolls MM. Trim9 and Klp61F promote polymerization of new dendritic microtubules along parallel microtubules. J Cell Sci 2021; 134:jcs258437. [PMID: 34096607 PMCID: PMC8214762 DOI: 10.1242/jcs.258437] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 05/04/2021] [Indexed: 02/03/2023] Open
Abstract
Axons and dendrites are distinguished by microtubule polarity. In Drosophila, dendrites are dominated by minus-end-out microtubules, whereas axons contain plus-end-out microtubules. Local nucleation in dendrites generates microtubules in both orientations. To understand why dendritic nucleation does not disrupt polarity, we used live imaging to analyze the fate of microtubules generated at branch points. We found that they had different rates of success exiting the branch based on orientation: correctly oriented minus-end-out microtubules succeeded in leaving about twice as often as incorrectly oriented microtubules. Increased success relied on other microtubules in a parallel orientation. From a candidate screen, we identified Trim9 and kinesin-5 (Klp61F) as machinery that promoted growth of new microtubules. In S2 cells, Eb1 recruited Trim9 to microtubules. Klp61F promoted microtubule growth in vitro and in vivo, and could recruit Trim9 in S2 cells. In summary, the data argue that Trim9 and kinesin-5 act together at microtubule plus ends to help polymerizing microtubules parallel to pre-existing ones resist catastrophe.
Collapse
Affiliation(s)
- Chengye Feng
- Biochemistry and Molecular Biology Department and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Joseph M. Cleary
- Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Gregory O. Kothe
- Biochemistry and Molecular Biology Department and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Michelle C. Stone
- Biochemistry and Molecular Biology Department and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - Alexis T. Weiner
- Biochemistry and Molecular Biology Department and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - James I. Hertzler
- Biochemistry and Molecular Biology Department and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| | - William O. Hancock
- Biomedical Engineering, The Pennsylvania State University, University Park, PA 16802, USA
| | - Melissa M. Rolls
- Biochemistry and Molecular Biology Department and the Huck Institutes of the Life Sciences, The Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
37
|
Yin C, Peterman E, Rasmussen JP, Parrish JZ. Transparent Touch: Insights From Model Systems on Epidermal Control of Somatosensory Innervation. Front Cell Neurosci 2021; 15:680345. [PMID: 34135734 PMCID: PMC8200473 DOI: 10.3389/fncel.2021.680345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 04/28/2021] [Indexed: 12/28/2022] Open
Abstract
Somatosensory neurons (SSNs) densely innervate our largest organ, the skin, and shape our experience of the world, mediating responses to sensory stimuli including touch, pressure, and temperature. Historically, epidermal contributions to somatosensation, including roles in shaping innervation patterns and responses to sensory stimuli, have been understudied. However, recent work demonstrates that epidermal signals dictate patterns of SSN skin innervation through a variety of mechanisms including targeting afferents to the epidermis, providing instructive cues for branching morphogenesis, growth control and structural stability of neurites, and facilitating neurite-neurite interactions. Here, we focus onstudies conducted in worms (Caenorhabditis elegans), fruit flies (Drosophila melanogaster), and zebrafish (Danio rerio): prominent model systems in which anatomical and genetic analyses have defined fundamental principles by which epidermal cells govern SSN development.
Collapse
Affiliation(s)
| | | | | | - Jay Z. Parrish
- Department of Biology, University of Washington, Seattle, WA, United States
| |
Collapse
|
38
|
Hiramoto A, Jonaitis J, Niki S, Kohsaka H, Fetter RD, Cardona A, Pulver SR, Nose A. Regulation of coordinated muscular relaxation in Drosophila larvae by a pattern-regulating intersegmental circuit. Nat Commun 2021; 12:2943. [PMID: 34011945 PMCID: PMC8134441 DOI: 10.1038/s41467-021-23273-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 04/22/2021] [Indexed: 02/03/2023] Open
Abstract
Typical patterned movements in animals are achieved through combinations of contraction and delayed relaxation of groups of muscles. However, how intersegmentally coordinated patterns of muscular relaxation are regulated by the neural circuits remains poorly understood. Here, we identify Canon, a class of higher-order premotor interneurons, that regulates muscular relaxation during backward locomotion of Drosophila larvae. Canon neurons are cholinergic interneurons present in each abdominal neuromere and show wave-like activity during fictive backward locomotion. Optogenetic activation of Canon neurons induces relaxation of body wall muscles, whereas inhibition of these neurons disrupts timely muscle relaxation. Canon neurons provide excitatory outputs to inhibitory premotor interneurons. Canon neurons also connect with each other to form an intersegmental circuit and regulate their own wave-like activities. Thus, our results demonstrate how coordinated muscle relaxation can be realized by an intersegmental circuit that regulates its own patterned activity and sequentially terminates motor activities along the anterior-posterior axis.
Collapse
Affiliation(s)
- Atsuki Hiramoto
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | - Julius Jonaitis
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Sawako Niki
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
- Research Center for Advanced Science and Technology, The University of Tokyo, Tokyo, Japan
| | - Hiroshi Kohsaka
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan
| | | | - Albert Cardona
- HHMI Janelia Research Campus, Ashburn, VA, USA
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Stefan R Pulver
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, UK
| | - Akinao Nose
- Department of Complexity Science and Engineering, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, Japan.
- Department of Physics, Graduate School of Science, The University of Tokyo, Tokyo, Japan.
| |
Collapse
|
39
|
Kratschmer P, Lowe SA, Buhl E, Chen K, Kullmann DM, Pittman A, Hodge JJ, Jepson JE. Impaired Pre-Motor Circuit Activity and Movement in a Drosophila Model of KCNMA1-Linked Dyskinesia. Mov Disord 2021; 36:1158-1169. [PMID: 33449381 PMCID: PMC8248399 DOI: 10.1002/mds.28479] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 11/19/2020] [Accepted: 12/14/2020] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Paroxysmal dyskinesias (PxDs) are characterized by involuntary movements and altered pre-motor circuit activity. Causative mutations provide a means to understand the molecular basis of PxDs. Yet in many cases, animal models harboring corresponding mutations are lacking. Here we utilize the fruit fly, Drosophila, to study a PxD linked to a gain-of-function (GOF) mutation in the KCNMA1/hSlo1 BK potassium channel. OBJECTIVES We aimed to recreate the equivalent BK (big potassium) channel mutation in Drosophila. We sought to determine how this mutation altered action potentials (APs) and synaptic release in vivo; to test whether this mutation disrupted pre-motor circuit function and locomotion; and to define neural circuits involved in locomotor disruption. METHODS We generated a knock-in Drosophila model using homologous recombination. We used electrophysiological recordings and calcium-imaging to assess AP shape, neurotransmission, and the activity of the larval pre-motor central pattern generator (CPG). We used video-tracking and automated systems to measure movement, and developed a genetic method to limit BK channel expression to defined circuits. RESULTS Neuronal APs exhibited reduced width and an enhanced afterhyperpolarization in the PxD model. We identified calcium-dependent reductions in neurotransmitter release, dysfunction of the CPG, and corresponding alterations in movement, in model larvae. Finally, we observed aberrant locomotion and dyskinesia-like movements in adult model flies, and partially mapped the impact of GOF BK channels on movement to cholinergic neurons. CONCLUSION Our model supports a link between BK channel GOF and hyperkinetic movements, and provides a platform to dissect the mechanistic basis of PxDs. © 2021 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
Collapse
Affiliation(s)
- Patrick Kratschmer
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Simon A. Lowe
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Edgar Buhl
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUnited Kingdom
| | - Ko‐Fan Chen
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUnited Kingdom
- Department of Genetics and Genome BiologyUniversity of LeicesterLeicesterUnited Kingdom
| | - Dimitri M. Kullmann
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUnited Kingdom
| | - Alan Pittman
- Genetics Research Centre, St George'sUniversity of LondonLondonUnited Kingdom
| | - James J.L. Hodge
- School of Physiology, Pharmacology and NeuroscienceUniversity of BristolBristolUnited Kingdom
| | - James E.C. Jepson
- Department of Clinical and Experimental EpilepsyUCL Queen Square Institute of NeurologyLondonUnited Kingdom
| |
Collapse
|
40
|
Mase A, Augsburger J, Brückner K. Macrophages and Their Organ Locations Shape Each Other in Development and Homeostasis - A Drosophila Perspective. Front Cell Dev Biol 2021; 9:630272. [PMID: 33777939 PMCID: PMC7991785 DOI: 10.3389/fcell.2021.630272] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/25/2021] [Indexed: 12/15/2022] Open
Abstract
Across the animal kingdom, macrophages are known for their functions in innate immunity, but they also play key roles in development and homeostasis. Recent insights from single cell profiling and other approaches in the invertebrate model organism Drosophila melanogaster reveal substantial diversity among Drosophila macrophages (plasmatocytes). Together with vertebrate studies that show genuine expression signatures of macrophages based on their organ microenvironments, it is expected that Drosophila macrophage functional diversity is shaped by their anatomical locations and systemic conditions. In vivo evidence for diverse macrophage functions has already been well established by Drosophila genetics: Drosophila macrophages play key roles in various aspects of development and organogenesis, including embryogenesis and development of the nervous, digestive, and reproductive systems. Macrophages further maintain homeostasis in various organ systems and promote regeneration following organ damage and injury. The interdependence and interplay of tissues and their local macrophage populations in Drosophila have implications for understanding principles of organ development and homeostasis in a wide range of species.
Collapse
Affiliation(s)
- Anjeli Mase
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, United States
| | - Jordan Augsburger
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, United States
| | - Katja Brückner
- Department of Cell and Tissue Biology, University of California, San Francisco, San Francisco, CA, United States
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, San Francisco, CA, United States
- Cardiovascular Research Institute, University of California, San Francisco, San Francisco, CA, United States
| |
Collapse
|
41
|
Belalcazar HM, Hendricks EL, Zamurrad S, Liebl FLW, Secombe J. The histone demethylase KDM5 is required for synaptic structure and function at the Drosophila neuromuscular junction. Cell Rep 2021; 34:108753. [PMID: 33596422 PMCID: PMC7945993 DOI: 10.1016/j.celrep.2021.108753] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/14/2020] [Accepted: 01/25/2021] [Indexed: 02/08/2023] Open
Abstract
Mutations in the genes encoding the lysine demethylase 5 (KDM5) family of histone demethylases are observed in individuals with intellectual disability (ID). Despite clear evidence linking KDM5 function to neurodevelopmental pathways, how this family of proteins impacts transcriptional programs to mediate synaptic structure and activity remains unclear. Using the Drosophila larval neuromuscular junction (NMJ), we show that KDM5 is required presynaptically for neuroanatomical development and synaptic function. The Jumonji C (JmjC) domain-encoded histone demethylase activity of KDM5, which is expected to be diminished by many ID-associated alleles, is required for appropriate synaptic morphology and neurotransmission. The activity of the C5HC2 zinc finger is also required, as an ID-associated mutation in this motif reduces NMJ bouton number, increases bouton size, and alters microtubule dynamics. KDM5 therefore uses demethylase-dependent and independent mechanisms to regulate NMJ structure and activity, highlighting the complex nature by which this chromatin modifier carries out its neuronal gene-regulatory programs.
Collapse
Affiliation(s)
- Helen M Belalcazar
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Emily L Hendricks
- Department of Biological Sciences, Southern Illinois University Edwardsville, 44 Circle Drive, Edwardsville, IL 62026, USA
| | - Sumaira Zamurrad
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA
| | - Faith L W Liebl
- Department of Biological Sciences, Southern Illinois University Edwardsville, 44 Circle Drive, Edwardsville, IL 62026, USA
| | - Julie Secombe
- Department of Genetics, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, NY 10461, USA; Dominick P. Purpura Department of Neuroscience, Albert Einstein College of Medicine, 1410 Pelham Parkway South, Bronx, NY 10461, USA.
| |
Collapse
|
42
|
Gowda SBM, Salim S, Mohammad F. Anatomy and Neural Pathways Modulating Distinct Locomotor Behaviors in Drosophila Larva. BIOLOGY 2021; 10:90. [PMID: 33504061 PMCID: PMC7910854 DOI: 10.3390/biology10020090] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/07/2020] [Accepted: 12/30/2020] [Indexed: 11/17/2022]
Abstract
The control of movements is a fundamental feature shared by all animals. At the most basic level, simple movements are generated by coordinated neural activity and muscle contraction patterns that are controlled by the central nervous system. How behavioral responses to various sensory inputs are processed and integrated by the downstream neural network to produce flexible and adaptive behaviors remains an intense area of investigation in many laboratories. Due to recent advances in experimental techniques, many fundamental neural pathways underlying animal movements have now been elucidated. For example, while the role of motor neurons in locomotion has been studied in great detail, the roles of interneurons in animal movements in both basic and noxious environments have only recently been realized. However, the genetic and transmitter identities of many of these interneurons remains unclear. In this review, we provide an overview of the underlying circuitry and neural pathways required by Drosophila larvae to produce successful movements. By improving our understanding of locomotor circuitry in model systems such as Drosophila, we will have a better understanding of how neural circuits in organisms with different bodies and brains lead to distinct locomotion types at the organism level. The understanding of genetic and physiological components of these movements types also provides directions to understand movements in higher organisms.
Collapse
Affiliation(s)
| | | | - Farhan Mohammad
- Division of Biological and Biomedical Sciences (BBS), College of Health & Life Sciences (CHLS), Hamad Bin Khalifa University (HBKU), Doha 34110, Qatar; (S.B.M.G.); (S.S.)
| |
Collapse
|
43
|
Booth JRH, Sane V, Gather MC, Pulver SR. Inexpensive Methods for Live Imaging of Central Pattern Generator Activity in the Drosophila Larval Locomotor System. JOURNAL OF UNDERGRADUATE NEUROSCIENCE EDUCATION : JUNE : A PUBLICATION OF FUN, FACULTY FOR UNDERGRADUATE NEUROSCIENCE 2020; 19:A124-A133. [PMID: 33880100 PMCID: PMC8040839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 10/26/2020] [Indexed: 06/12/2023]
Abstract
Central pattern generators (CPGs) are neural networks that produce rhythmic motor activity in the absence of sensory input. CPGs produce 'fictive' behaviours in vitro which parallel activity seen in intact animals. CPG networks have been identified in a wide variety of model organisms and have been shown to be critical for generating rhythmic behaviours such as swimming, walking, chewing and breathing. Work with CPG preparations has led to fundamental advances in neuroscience; however, most CPG preparations involve intensive dissections and require sophisticated electrophysiology equipment, making export to teaching laboratories problematic. Here we present an integrated approach for bringing the study of locomotor CPGs in Drosophila larvae into teaching laboratories. First, we present freely available genetic constructs that enable educators to express genetically encoded calcium indicators in cells of interest in the larval central nervous system. Next, we describe how to isolate the larval central nervous system and prepare it for live imaging. We then show how to modify standard compound microscopes to enable fluorescent imaging using 3D printed materials and inexpensive optical components. Finally, we show how to use the free image analysis programme ImageJ and freely available features in the signal analysis programme DataView to analyse rhythmic CPG activity in the larval CNS. Comparison of results to those obtained on research equipment shows that signal-to-noise levels are comparable and core features of larval CPG activity can be observed. Overall, this work shows the viability of exporting live imaging experiments to low cost environments and paves the way for new teaching laboratory exercises revolving around optical imaging of CPG activity.
Collapse
Affiliation(s)
- Jonathan R H Booth
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, United Kingdom
| | - Varun Sane
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| | - Malte C Gather
- SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, United Kingdom
- Centre for Nanobiophotonics, Department of Chemistry, University of Cologne, Cologne, Germany
| | - Stefan R Pulver
- School of Psychology and Neuroscience, University of St Andrews, St Andrews, United Kingdom
| |
Collapse
|
44
|
Nanda S, Bhattacharjee S, Cox DN, Ascoli GA. Distinct Relations of Microtubules and Actin Filaments with Dendritic Architecture. iScience 2020; 23:101865. [PMID: 33319182 PMCID: PMC7725934 DOI: 10.1016/j.isci.2020.101865] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 09/09/2020] [Accepted: 11/20/2020] [Indexed: 12/15/2022] Open
Abstract
Microtubules (MTs) and F-actin (F-act) have long been recognized as key regulators of dendritic morphology. Nevertheless, precisely ascertaining their distinct influences on dendritic trees have been hampered until now by the lack of direct, arbor-wide cytoskeletal quantification. We pair live confocal imaging of fluorescently labeled dendritic arborization (da) neurons in Drosophila larvae with complete multi-signal neural tracing to separately measure MTs and F-act. We demonstrate that dendritic arbor length is highly interrelated with local MT quantity, whereas local F-act enrichment is associated with dendritic branching. Computational simulation of arbor structure solely constrained by experimentally observed subcellular distributions of these cytoskeletal components generated synthetic morphological and molecular patterns statistically equivalent to those of real da neurons, corroborating the efficacy of local MT and F-act in describing dendritic architecture. The analysis and modeling outcomes hold true for the simplest (class I), most complex (class IV), and genetically altered (Formin3 overexpression) da neuron types.
Collapse
Affiliation(s)
- Sumit Nanda
- Center for Neural Informatics, Structures, & Plasticity and Neuroscience Program, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA
| | | | - Daniel N. Cox
- Neuroscience Institute, Georgia State University, Atlanta, GA 30303, USA
| | - Giorgio A. Ascoli
- Center for Neural Informatics, Structures, & Plasticity and Neuroscience Program, Krasnow Institute for Advanced Study, George Mason University, Fairfax, VA 22030, USA
- Bioengineering Department, Volgenau School of Engineering, George Mason University, Fairfax, VA 22032, USA
| |
Collapse
|
45
|
Murawski C, Pulver SR, Gather MC. Segment-specific optogenetic stimulation in Drosophila melanogaster with linear arrays of organic light-emitting diodes. Nat Commun 2020; 11:6248. [PMID: 33288763 PMCID: PMC7721879 DOI: 10.1038/s41467-020-20013-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 11/06/2020] [Indexed: 11/08/2022] Open
Abstract
Optogenetics allows light-driven, non-contact control of neural systems, but light delivery remains challenging, in particular when fine spatial control of light is required to achieve local specificity. Here, we employ organic light-emitting diodes (OLEDs) that are micropatterned into linear arrays to obtain precise optogenetic control in Drosophila melanogaster larvae expressing the light-gated activator CsChrimson and the inhibitor GtACR2 within their peripheral sensory system. Our method allows confinement of light stimuli to within individual abdominal segments, which facilitates the study of larval behaviour in response to local sensory input. We show controlled triggering of specific crawling modes and find that targeted neurostimulation in abdominal segments switches the direction of crawling. More broadly, our work demonstrates how OLEDs can provide tailored patterns of light for photo-stimulation of neuronal networks, with future implications ranging from mapping neuronal connectivity in cultures to targeted photo-stimulation with pixelated OLED implants in vivo.
Collapse
Affiliation(s)
- Caroline Murawski
- Organic Semiconductor Centre and Centre of Biophotonics, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK
- Kurt-Schwabe-Institut für Mess- und Sensortechnik Meinsberg e.V., Kurt-Schwabe-Str. 4, 04736, Waldheim, Germany
| | - Stefan R Pulver
- School of Psychology and Neuroscience and Centre of Biophotonics, University of St Andrews, St Mary's Quad, South Street, St Andrews, KY16 9JP, UK
| | - Malte C Gather
- Organic Semiconductor Centre and Centre of Biophotonics, SUPA, School of Physics and Astronomy, University of St Andrews, St Andrews, KY16 9SS, UK.
- Centre for Nanobiophotonics, Department of Chemistry, University of Cologne, Greinstr. 4-6, 50939, Köln, Germany.
| |
Collapse
|
46
|
Eschbach C, Zlatic M. Useful road maps: studying Drosophila larva's central nervous system with the help of connectomics. Curr Opin Neurobiol 2020; 65:129-137. [PMID: 33242722 PMCID: PMC7773133 DOI: 10.1016/j.conb.2020.09.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 12/16/2022]
Abstract
The larva of Drosophila melanogaster is emerging as a powerful model system for comprehensive brain-wide understanding of the circuit implementation of neural computations. With an unprecedented amount of tools in hand, including synaptic-resolution connectomics, whole-brain imaging, and genetic tools for selective targeting of single neuron types, it is possible to dissect which circuits and computations are at work behind behaviors that have an interesting level of complexity. Here we present some of the recent advances regarding multisensory integration, learning, and action selection in Drosophila larva.
Collapse
Affiliation(s)
- Claire Eschbach
- Department of Zoology, University of Cambridge, United Kingdom.
| | - Marta Zlatic
- Department of Zoology, University of Cambridge, United Kingdom; MRC Laboratory of Molecular Biology, United Kingdom.
| |
Collapse
|
47
|
Hehlert P, Zhang W, Göpfert MC. Drosophila Mechanosensory Transduction. Trends Neurosci 2020; 44:323-335. [PMID: 33257000 DOI: 10.1016/j.tins.2020.11.001] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 10/09/2020] [Accepted: 11/02/2020] [Indexed: 02/07/2023]
Abstract
Mechanosensation in Drosophila relies on sensory neurons transducing mechanical stimuli into ionic currents. The molecular mechanisms of this transduction are in the process of being revealed. Transduction relies on mechanogated ion channels that are activated by membrane stretch or the tension of force-conveying tethers. NOMPC (no-mechanoreceptor potential C) and DmPiezo were put forward as bona fide mechanoelectrical transduction (MET) channels, providing insights into MET channel architecture and the structural basis of mechanogating. Various additional channels were implicated in Drosophila mechanosensory neuron functions, and parallels between fly and vertebrate mechanotransduction were delineated. Collectively, these advances put forward Drosophila mechanosensory neurons as cellular paradigms for mechanotransduction and mechanogated ion channel function in the context of proprio- and nociception as well as the detection of substrate vibrations, touch, gravity, and sound.
Collapse
Affiliation(s)
- Philip Hehlert
- Department of Cellular Neurobiology, University of Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany
| | - Wei Zhang
- School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China; Chinese Institute for Brain Research, Beijing, 102206, China
| | - Martin C Göpfert
- Department of Cellular Neurobiology, University of Göttingen, Julia-Lermontowa-Weg 3, 37077 Göttingen, Germany; Collaborative Research Center 889, University of Göttingen, 37075 Göttingen, Germany; Multiscale Bioimaging Cluster of Excellence (MBExC), University of Göttingen, Göttingen, Germany.
| |
Collapse
|
48
|
Ferreira Castro A, Baltruschat L, Stürner T, Bahrami A, Jedlicka P, Tavosanis G, Cuntz H. Achieving functional neuronal dendrite structure through sequential stochastic growth and retraction. eLife 2020; 9:e60920. [PMID: 33241995 PMCID: PMC7837678 DOI: 10.7554/elife.60920] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 11/15/2020] [Indexed: 02/06/2023] Open
Abstract
Class I ventral posterior dendritic arborisation (c1vpda) proprioceptive sensory neurons respond to contractions in the Drosophila larval body wall during crawling. Their dendritic branches run along the direction of contraction, possibly a functional requirement to maximise membrane curvature during crawling contractions. Although the molecular machinery of dendritic patterning in c1vpda has been extensively studied, the process leading to the precise elaboration of their comb-like shapes remains elusive. Here, to link dendrite shape with its proprioceptive role, we performed long-term, non-invasive, in vivo time-lapse imaging of c1vpda embryonic and larval morphogenesis to reveal a sequence of differentiation stages. We combined computer models and dendritic branch dynamics tracking to propose that distinct sequential phases of stochastic growth and retraction achieve efficient dendritic trees both in terms of wire and function. Our study shows how dendrite growth balances structure-function requirements, shedding new light on general principles of self-organisation in functionally specialised dendrites.
Collapse
Affiliation(s)
- André Ferreira Castro
- Frankfurt Institute for Advanced StudiesFrankfurt am MainGermany
- Ernst Strüngmann Institute (ESI) for Neuroscience in cooperation with Max Planck SocietyFrankfurt am MainGermany
- Center for Neurodegenerative Diseases (DZNE)BonnGermany
| | | | - Tomke Stürner
- Center for Neurodegenerative Diseases (DZNE)BonnGermany
- Department of Zoology, University of CambridgeCambridgeUnited Kingdom
| | | | - Peter Jedlicka
- Frankfurt Institute for Advanced StudiesFrankfurt am MainGermany
- Faculty of Medicine, ICAR3R – Interdisciplinary Centre for 3Rs in Animal Research, Justus Liebig University GiessenGiessenGermany
- Neuroscience Center, Institute of Clinical Neuroanatomy, Goethe UniversityFrankfurt am MainGermany
| | - Gaia Tavosanis
- Center for Neurodegenerative Diseases (DZNE)BonnGermany
- LIMES Institute, University of BonnBonnGermany
| | - Hermann Cuntz
- Frankfurt Institute for Advanced StudiesFrankfurt am MainGermany
- Ernst Strüngmann Institute (ESI) for Neuroscience in cooperation with Max Planck SocietyFrankfurt am MainGermany
| |
Collapse
|
49
|
Controlling the behaviour of Drosophila melanogaster via smartphone optogenetics. Sci Rep 2020; 10:17614. [PMID: 33077824 PMCID: PMC7572528 DOI: 10.1038/s41598-020-74448-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/24/2020] [Indexed: 01/05/2023] Open
Abstract
Invertebrates such as Drosophila melanogaster have proven to be a valuable model organism for studies of the nervous system. In order to control neuronal activity, optogenetics has evolved as a powerful technique enabling non-invasive stimulation using light. This requires light sources that can deliver patterns of light with high temporal and spatial precision. Currently employed light sources for stimulation of small invertebrates, however, are either limited in spatial resolution or require sophisticated and bulky equipment. In this work, we used smartphone displays for optogenetic control of Drosophila melanogaster. We developed an open-source smartphone app that allows time-dependent display of light patterns and used this to activate and inhibit different neuronal populations in both larvae and adult flies. Characteristic behavioural responses were observed depending on the displayed colour and brightness and in agreement with the activation spectra and light sensitivity of the used channelrhodopsins. By displaying patterns of light, we constrained larval movement and were able to guide larvae on the display. Our method serves as a low-cost high-resolution testbench for optogenetic experiments using small invertebrate species and is particularly appealing to application in neuroscience teaching labs.
Collapse
|
50
|
Mishra S, van Rees WM, Mahadevan L. Coordinated crawling via reinforcement learning. J R Soc Interface 2020; 17:20200198. [PMID: 32842883 PMCID: PMC7482564 DOI: 10.1098/rsif.2020.0198] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 07/27/2020] [Indexed: 11/12/2022] Open
Abstract
Rectilinear crawling locomotion is a primitive and common mode of locomotion in slender soft-bodied animals. It requires coordinated contractions that propagate along a body that interacts frictionally with its environment. We propose a simple approach to understand how this coordination arises in a neuromechanical model of a segmented, soft-bodied crawler via an iterative process that might have both biological antecedents and technological relevance. Using a simple reinforcement learning algorithm, we show that an initial all-to-all neural coupling converges to a simple nearest-neighbour neural wiring that allows the crawler to move forward using a localized wave of contraction that is qualitatively similar to what is observed in Drosophila melanogaster larvae and used in many biomimetic solutions. The resulting solution is a function of how we weight gait regularization in the reward, with a trade-off between speed and robustness to proprioceptive noise. Overall, our results, which embed the brain-body-environment triad in a learning scheme, have relevance for soft robotics while shedding light on the evolution and development of locomotion.
Collapse
Affiliation(s)
- Shruti Mishra
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Wim M. van Rees
- Department of Mechanical Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - L. Mahadevan
- Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|