1
|
Torres VO, Turchan-Cholewo J, Colson MK, Yanev P, Britsch DRS, Cotter KM, McAtee AM, Ujas TA, Mercurio D, Kong X, Plautz EJ, Joshi CR, Matsui TK, Mori E, Cajigas-Hernandez A, Zuurbier K, Estus S, Goldberg MP, Monson NL, Stowe AM. B cells upregulate NMDARs, respond to extracellular glutamate, and express mature BDNF to protect the brain from ischemic injury. Neurobiol Dis 2025; 207:106819. [PMID: 39900302 PMCID: PMC11948303 DOI: 10.1016/j.nbd.2025.106819] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 01/27/2025] [Accepted: 01/27/2025] [Indexed: 02/05/2025] Open
Abstract
Following stroke, B cells enter brain regions outside of the ischemic injury to mediate functional recovery. Although B cells produce neurotrophins that support remote plasticity, including brain-derived neurotrophic factor (BDNF), it remains unclear which signal(s) activate B cells in the absence of infarct-localized pro-inflammatory cues. Activation of N-methyl-d-aspartate (NMDA)-type receptor (NMDAR) subunits on neurons can upregulate mature BDNF (mBDNF) production from a pro-BDNF precursor, but whether this occurs in B cells is unknown. We identified GluN2A and GluN2B NMDAR subunits on B cells that respond to glutamate and mediate nearly half of the glutamate-induced Ca2+ responses in activated B cell subsets. Ischemic stroke recruits GluN2A+ B cells into the ipsilesional hemisphere and both stroke and neurophysiologic levels of glutamate regulate gene and surface expression. Regardless of injury, pro-BDNF+ B cells localize to spleen/circulation whereas mBDNF+ B cells localize to the brain, including in aged male and female mice. We confirmed B cell-derived BDNF was required for in vitro and in vivo B cell-mediated neuroprotection. Lastly, GluN2A, GluN2B, glutamate-induced Ca2+ responses, and BDNF expression were all clinically confirmed in B cells from healthy donors, with BDNF+ B cells present in post-stroke human parenchyma. These data suggest that B cells express functional NMDARs that respond to glutamate, enhance NMDAR signaling with activation, and upregulate mature BDNF expression within the brain. This study identifies potential glutamate-induced neurotrophic roles for B cells in the brain; an immune response to neurotransmitters unique from established pro-inflammatory stimuli and relevant to any CNS-localized injury or disease.
Collapse
Affiliation(s)
- Vanessa O Torres
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Suite NL9.114, Dallas, TX 75390-8813, USA; Denali Therapeutics Inc., 161 Oyster Point Blvd., South San Francisco, CA 94080, USA
| | - Jadwiga Turchan-Cholewo
- Department of Neurology, University of Kentucky, 740 S. Limestone, Kentucky Clinic J-455, Lexington, KY 40536, USA
| | - Mary K Colson
- Department of Neurology, University of Kentucky, 740 S. Limestone, Kentucky Clinic J-455, Lexington, KY 40536, USA
| | - Pavel Yanev
- Department of Neurology, University of Kentucky, 740 S. Limestone, Kentucky Clinic J-455, Lexington, KY 40536, USA
| | - Daimen R S Britsch
- Department of Neurology, University of Kentucky, 740 S. Limestone, Kentucky Clinic J-455, Lexington, KY 40536, USA
| | - Katherine M Cotter
- Department of Neurology, University of Kentucky, 740 S. Limestone, Kentucky Clinic J-455, Lexington, KY 40536, USA
| | - Annabel M McAtee
- Department of Neurology, University of Kentucky, 740 S. Limestone, Kentucky Clinic J-455, Lexington, KY 40536, USA
| | - Thomas A Ujas
- Department of Neurology, University of Kentucky, 740 S. Limestone, Kentucky Clinic J-455, Lexington, KY 40536, USA
| | - Domenico Mercurio
- Department of Neurology, University of Kentucky, 740 S. Limestone, Kentucky Clinic J-455, Lexington, KY 40536, USA
| | - Xiangmei Kong
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Suite NL9.114, Dallas, TX 75390-8813, USA
| | - Erik J Plautz
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Suite NL9.114, Dallas, TX 75390-8813, USA
| | - Chaitanya R Joshi
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Suite NL9.114, Dallas, TX 75390-8813, USA
| | - Takeshi K Matsui
- Department of Neural and Muscular Physiology, Shimane University School of Medicine, 89-1 Enya-cho, Izumo-shi 693-8501, Shimane, Japan; Department of Future Basic Medicine, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8521 Nara, Japan
| | - Eiichiro Mori
- Department of Future Basic Medicine, Nara Medical University, 840 Shijo-Cho, Kashihara, 634-8521 Nara, Japan
| | - Ambar Cajigas-Hernandez
- Department of Neuroscience, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9111, USA
| | - Kielen Zuurbier
- Department of Molecular Biology, University of Texas Southwestern Medical Center, 6000 Harry Hines Blvd., Dallas, TX 75390-9148, USA
| | - Steven Estus
- Department of Physiology, University of Kentucky, 741 S. Limestone, BBSRB B243, Lexington, KY 40536, USA
| | - Mark P Goldberg
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Suite NL9.114, Dallas, TX 75390-8813, USA; Department of Neurology, Institute for Integration of Medicine and Science, UT Health San Antonio, 7703 Floyd Curl Drive, MSC 7883, San Antonio, TX 78229, USA
| | - Nancy L Monson
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Suite NL9.114, Dallas, TX 75390-8813, USA; Department of Immunology, University of Texas Southwestern Medical Center, 6124 Harry Hines Blvd., Dallas, TX 75390-9093, USA
| | - Ann M Stowe
- Department of Neurology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd., Suite NL9.114, Dallas, TX 75390-8813, USA; Department of Neurology, University of Kentucky, 740 S. Limestone, Kentucky Clinic J-455, Lexington, KY 40536, USA.
| |
Collapse
|
2
|
Ford K, Zuin E, Righelli D, Medina E, Schoch H, Singletary K, Muheim C, Frank MG, Hicks SC, Risso D, Peixoto L. A global transcriptional atlas of the effect of acute sleep deprivation in the mouse frontal cortex. iScience 2024; 27:110752. [PMID: 39280614 PMCID: PMC11402219 DOI: 10.1016/j.isci.2024.110752] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 05/31/2024] [Accepted: 08/13/2024] [Indexed: 09/18/2024] Open
Abstract
Sleep deprivation (SD) has negative effects on brain and body function. Sleep problems are prevalent in a variety of disorders, including neurodevelopmental and psychiatric conditions. Thus, understanding the molecular consequences of SD is of fundamental importance in biology. In this study, we present the first simultaneous bulk and single-nuclear RNA sequencing characterization of the effects of SD in the male mouse frontal cortex. We show that SD predominantly affects glutamatergic neurons, specifically in layers 4 and 5, and produces isoform switching of over 1500 genes, particularly those involved in splicing and RNA binding. At both the global and cell-type specific level, SD has a large repressive effect on transcription, downregulating thousands of genes and transcripts. As a resource we provide extensive characterizations of cell-types, genes, transcripts, and pathways affected by SD. We also provide publicly available tutorials aimed at allowing readers adapt analyses performed in this study to their own datasets.
Collapse
Affiliation(s)
- Kaitlyn Ford
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Elena Zuin
- Department of Biology, University of Padova, 35131 Padova, Veneto, Italy
- Department of Statistical Sciences, University of Padova, 35121 Padova, Veneto, Italy
| | - Dario Righelli
- Department of Statistical Sciences, University of Padova, 35121 Padova, Veneto, Italy
| | - Elizabeth Medina
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Hannah Schoch
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Kristan Singletary
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Christine Muheim
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Marcos G. Frank
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| | - Stephanie C. Hicks
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD 21218, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD 21218, USA
- Malone Center for Engineering in Healthcare, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Davide Risso
- Department of Statistical Sciences, University of Padova, 35121 Padova, Veneto, Italy
| | - Lucia Peixoto
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center, Elson S. Floyd College of Medicine, Washington State University, Spokane, WA 99202, USA
| |
Collapse
|
3
|
Ford K, Zuin E, Righelli D, Medina E, Schoch H, Singletary K, Muheim C, Frank MG, Hicks SC, Risso D, Peixoto L. A Global Transcriptional Atlas of the Effect of Sleep Deprivation in the Mouse Frontal Cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.569011. [PMID: 38076891 PMCID: PMC10705260 DOI: 10.1101/2023.11.28.569011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Sleep deprivation (SD) has negative effects on brain function. Sleep problems are prevalent in neurodevelopmental, neurodegenerative and psychiatric disorders. Thus, understanding the molecular consequences of SD is of fundamental importance in neuroscience. In this study, we present the first simultaneous bulk and single-nuclear (sn)RNA sequencing characterization of the effects of SD in the mouse frontal cortex. We show that SD predominantly affects glutamatergic neurons, specifically in layers 4 and 5, and produces isoform switching of thousands of transcripts. At both the global and cell-type specific level, SD has a large repressive effect on transcription, down-regulating thousands of genes and transcripts; underscoring the importance of accounting for the effects of sleep loss in transcriptome studies of brain function. As a resource we provide extensive characterizations of cell types, genes, transcripts and pathways affected by SD; as well as tutorials for data analysis.
Collapse
Affiliation(s)
- Kaitlyn Ford
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center. Elson S. Floyd College of Medicine. Washington State University, Spokane, WA
| | - Elena Zuin
- Department of Biology, University of Padova, Italy
- Department of Statistical Sciences, University of Padova, Italy
| | - Dario Righelli
- Department of Statistical Sciences, University of Padova, Italy
| | - Elizabeth Medina
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center. Elson S. Floyd College of Medicine. Washington State University, Spokane, WA
| | - Hannah Schoch
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center. Elson S. Floyd College of Medicine. Washington State University, Spokane, WA
| | - Kristan Singletary
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center. Elson S. Floyd College of Medicine. Washington State University, Spokane, WA
| | - Christine Muheim
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center. Elson S. Floyd College of Medicine. Washington State University, Spokane, WA
| | - Marcos G Frank
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center. Elson S. Floyd College of Medicine. Washington State University, Spokane, WA
| | - Stephanie C Hicks
- Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins School of Medicine, Baltimore, MD, USA
- Center for Computational Biology, Johns Hopkins University, Baltimore, MD, USA
- Malone Center for Engineering in Healthcare, Johns Hopkins University, MD, USA
| | - Davide Risso
- Department of Statistical Sciences, University of Padova, Italy
| | - Lucia Peixoto
- Department of Translational Medicine and Physiology, Sleep and Performance Research Center. Elson S. Floyd College of Medicine. Washington State University, Spokane, WA
| |
Collapse
|
4
|
McNerney MW, Kraybill EP, Narayanan S, Mojabi FS, Venkataramanan V, Heath A. Memory-related hippocampal brain-derived neurotrophic factor activation pathways from repetitive transcranial magnetic stimulation in the 3xTg-AD mouse line. Exp Gerontol 2023; 183:112323. [PMID: 39351497 PMCID: PMC11441629 DOI: 10.1016/j.exger.2023.112323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/04/2024]
Abstract
Alzheimer's disease is associated with a loss of plasticity and cognitive functioning. Previous research has shown that repetitive transcranial magnetic stimulation (rTMS) boosts cortical neurotrophic factors, potentially addressing this loss. The current study aimed to expand these findings by measuring brain-derived neurotrophic factor (BDNF), its downstream hippocampal signaling molecules, and behavioral effects of rTMS on the 3xTg-AD mouse line. 3xTg-AD (n = 24) and B6 wild-type controls (n = 26), aged 12 months, were given 14 days of consecutive rTMS at 10 Hz for 10 min. Following treatment, mice underwent a battery of behavioral tests and biochemical analysis of BDNF and its downstream cascades were evaluated via Western blot and ELISA. Results showed that brain stimulation did improve performance on the Object Place Task and increased hippocampal TrkB, ERK, and PLCγ in 3xTg-AD mice with minimal effects on wild-type mice. There was no significant difference in the levels of AKT and Truncated TrkB (TrkB.T1) between treatment and sham. Thus, rTMS has the potential to provide an efficacious non-invasive therapy for the treatment of Alzheimer's disease through activation of neurotrophic factor signaling.
Collapse
Affiliation(s)
- M Windy McNerney
- Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| | - Eric P Kraybill
- Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Sindhu Narayanan
- Medical Anthropology and Global Health, University of Washington, Seattle, WA, USA
| | - Fatemeh S Mojabi
- Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
| | - Vaibhavi Venkataramanan
- Department of Psychological and Brain Sciences, University of Louisville, Louisville, KY, USA
| | - Alesha Heath
- Mental Illness Research Education and Clinical Center (MIRECC), Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Department of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Palo Alto, CA, USA
| |
Collapse
|
5
|
Bahabry R, Hauser RM, Sánchez RG, Jago SS, Ianov L, Stuckey RJ, Parrish RR, Hoef LV, Lubin FD. Alterations in DNA 5-hydroxymethylation Patterns in the Hippocampus of an Experimental Model of Refractory Epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.03.560698. [PMID: 37873276 PMCID: PMC10592907 DOI: 10.1101/2023.10.03.560698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Temporal lobe epilepsy (TLE) is a type of focal epilepsy characterized by spontaneous recurrent seizures originating from the hippocampus. The epigenetic reprogramming hypothesis of epileptogenesis suggests that the development of TLE is associated with alterations in gene transcription changes resulting in a hyperexcitable network in TLE. DNA 5-methylcytosine (5-mC) is an epigenetic mechanism that has been associated with chronic epilepsy. However, the contribution of 5-hydroxymethylcytosine (5-hmC), a product of 5-mC demethylation by the Ten-Eleven Translocation (TET) family proteins in chronic TLE is poorly understood. 5-hmC is abundant in the brain and acts as a stable epigenetic mark altering gene expression through several mechanisms. Here, we found that the levels of bulk DNA 5-hmC but not 5-mC were significantly reduced in the hippocampus of human TLE patients and in the kainic acid (KA) TLE rat model. Using 5-hmC hMeDIP-sequencing, we characterized 5-hmC distribution across the genome and found bidirectional regulation of 5-hmC at intergenic regions within gene bodies. We found that hypohydroxymethylated 5-hmC intergenic regions were associated with several epilepsy-related genes, including Gal , SV2, and Kcnj11 and hyperdroxymethylation 5-hmC intergenic regions were associated with Gad65 , TLR4 , and Bdnf gene expression. Mechanistically, Tet1 knockdown in the hippocampus was sufficient to decrease 5-hmC levels and increase seizure susceptibility following KA administration. In contrast, Tet1 overexpression in the hippocampus resulted in increased 5-hmC levels associated with improved seizure resiliency in response to KA. These findings suggest an important role for 5-hmC as an epigenetic regulator of epilepsy that can be manipulated to influence seizure outcomes.
Collapse
|
6
|
Winstone J, Shafique H, Clemmer ME, Mackie K, Wager-Miller J. Effects of Tetrahydrocannabinol and Cannabidiol on Brain-Derived Neurotrophic Factor and Tropomyosin Receptor Kinase B Expression in the Adolescent Hippocampus. Cannabis Cannabinoid Res 2023; 8:612-622. [PMID: 35639364 PMCID: PMC10442678 DOI: 10.1089/can.2021.0025] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Introduction: Adolescence is an important phase in brain maturation, specifically it is a time during which weak synapses are pruned and neural pathways are strengthened. Adolescence is also a time of experimentation with drugs, including cannabis, which may have detrimental effects on the developing nervous system. The cannabinoid type 1 receptor (CB1) is an important modulator of neurotransmitter release and plays a central role in neural development. Neurotrophic factors such as brain-derived neurotrophic factor (BDNF) and its receptor, tropomyosin receptor kinase B (TrkB), are also critical during development for axon guidance and synapse specification. Objective: The objective of this study was to examine the effects of the phytocannabinoids, Δ9-tetrahydrocannabinol (THC) and cannabidiol (CBD), on the expression of BDNF, its receptor TrkB, and other synaptic markers in the adolescent mouse hippocampus. Materials and Methods: Mice of both sexes were injected daily from P28 to P49 with 3 mg/kg THC, CBD, or a combination of THC/CBD. Brains were harvested on P50, and the dorsal and ventral hippocampi were analyzed for levels of BDNF, TrkB, and several synaptic markers using quantitative polymerase chain reaction, western blotting, and image analyses. Results: THC treatment statistically significantly reduced transcript levels of BDNF in adolescent female (BDNF I) and male (BDNF I, II, IV, VI, and IX) hippocampi. These changes were prevented when CBD was co-administered with THC. CBD by itself statistically significantly increased expression of some transcripts (BDNF II, VI, and IX for females, BDNF VI for males). No statistically significant changes were observed in protein expression for BDNF, TrkB, phospho-TrkB, phospho-CREB (cAMP response element-binding protein), and the synaptic markers, vesicular GABA transporter, vesicular glutamate transporter, synaptobrevin, and postsynaptic density protein 95. However, CB1 receptors were statistically significantly reduced in the ventral hippocampus with THC treatment. Conclusions: This study found changes in BDNF mRNA expression within the hippocampus of adolescent mice exposed to THC and CBD. THC represses transcript expression for some BDNF variants, and this effect is rescued when CBD is co-administered. These effects were seen in both males and females, but sex differences were observed in specific BDNF isoforms. While a statistically significant reduction in CB1 receptor protein in the ventral dentate gyrus was seen, no other changes in protein levels were observed.
Collapse
Affiliation(s)
- Joanna Winstone
- Department of Psychological and Brain Sciences, The Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana, USA
| | - Hana Shafique
- Department of Psychological and Brain Sciences, The Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana, USA
| | - Madeleine E. Clemmer
- Department of Psychological and Brain Sciences, The Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana, USA
| | - Ken Mackie
- Department of Psychological and Brain Sciences, The Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana, USA
| | - Jim Wager-Miller
- Department of Psychological and Brain Sciences, The Gill Center for Biomolecular Science, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
7
|
Esvald EE, Tuvikene J, Kiir CS, Avarlaid A, Tamberg L, Sirp A, Shubina A, Cabrera-Cabrera F, Pihlak A, Koppel I, Palm K, Timmusk T. Revisiting the expression of BDNF and its receptors in mammalian development. Front Mol Neurosci 2023; 16:1182499. [PMID: 37426074 PMCID: PMC10325033 DOI: 10.3389/fnmol.2023.1182499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/22/2023] [Indexed: 07/11/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) promotes the survival and functioning of neurons in the central nervous system and contributes to proper functioning of many non-neural tissues. Although the regulation and role of BDNF have been extensively studied, a rigorous analysis of the expression dynamics of BDNF and its receptors TrkB and p75NTR is lacking. Here, we have analyzed more than 3,600 samples from 18 published RNA sequencing datasets, and used over 17,000 samples from GTEx, and ~ 180 samples from BrainSpan database, to describe the expression of BDNF in the developing mammalian neural and non-neural tissues. We show evolutionarily conserved dynamics and expression patterns of BDNF mRNA and non-conserved alternative 5' exon usage. Finally, we also show increasing BDNF protein levels during murine brain development and BDNF protein expression in several non-neural tissues. In parallel, we describe the spatiotemporal expression pattern of BDNF receptors TrkB and p75NTR in both murines and humans. Collectively, our in-depth analysis of the expression of BDNF and its receptors gives insight into the regulation and signaling of BDNF in the whole organism throughout life.
Collapse
Affiliation(s)
- Eli-Eelika Esvald
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
- Protobios LLC, Tallinn, Estonia
| | - Jürgen Tuvikene
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
- Protobios LLC, Tallinn, Estonia
- dxlabs LLC, Tallinn, Estonia
| | - Carl Sander Kiir
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Annela Avarlaid
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Laura Tamberg
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Alex Sirp
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | - Anastassia Shubina
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | | | | | - Indrek Koppel
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | | | - Tõnis Timmusk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
- Protobios LLC, Tallinn, Estonia
| |
Collapse
|
8
|
Lekk I, Cabrera-Cabrera F, Turconi G, Tuvikene J, Esvald EE, Rähni A, Casserly L, Garton DR, Andressoo JO, Timmusk T, Koppel I. Untranslated regions of brain-derived neurotrophic factor mRNA control its translatability and subcellular localization. J Biol Chem 2023; 299:102897. [PMID: 36639028 PMCID: PMC9943900 DOI: 10.1016/j.jbc.2023.102897] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/04/2023] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Brain-derived neurotrophic factor (BDNF) promotes neuronal survival and growth during development. In the adult nervous system, BDNF is important for synaptic function in several biological processes such as memory formation and food intake. In addition, BDNF has been implicated in development and maintenance of the cardiovascular system. The Bdnf gene comprises several alternative untranslated 5' exons and two variants of 3' UTRs. The effects of these entire alternative UTRs on translatability have not been established. Using reporter and translating ribosome affinity purification analyses, we show that prevalent Bdnf 5' UTRs, but not 3' UTRs, exert a repressive effect on translation. However, contrary to previous reports, we do not detect a significant effect of neuronal activity on BDNF translation. In vivo analysis via knock-in conditional replacement of Bdnf 3' UTR by bovine growth hormone 3' UTR reveals that Bdnf 3' UTR is required for efficient Bdnf mRNA and BDNF protein production in the brain, but acts in an inhibitory manner in lung and heart. Finally, we show that Bdnf mRNA is enriched in rat brain synaptoneurosomes, with higher enrichment detected for exon I-containing transcripts. In conclusion, these results uncover two novel aspects in understanding the function of Bdnf UTRs. First, the long Bdnf 3' UTR does not repress BDNF expression in the brain. Second, exon I-derived 5' UTR has a distinct role in subcellular targeting of Bdnf mRNA.
Collapse
Affiliation(s)
- Ingrid Lekk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia
| | | | - Giorgio Turconi
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland,Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jürgen Tuvikene
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia,Protobios Llc, Tallinn, Estonia
| | - Eli-Eelika Esvald
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia,Protobios Llc, Tallinn, Estonia
| | - Annika Rähni
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia,Protobios Llc, Tallinn, Estonia
| | - Laoise Casserly
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland,Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Daniel R. Garton
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland,Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jaan-Olle Andressoo
- Helsinki Institute of Life Science, University of Helsinki, Helsinki, Finland; Department of Pharmacology, Faculty of Medicine, University of Helsinki, Helsinki, Finland; Division of Neurogeriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska Institutet, Stockholm, Sweden.
| | - Tõnis Timmusk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia; Protobios Llc, Tallinn, Estonia.
| | - Indrek Koppel
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Tallinn, Estonia.
| |
Collapse
|
9
|
Mottarlini F, Rizzi B, Targa G, Fumagalli F, Caffino L. Long-lasting BDNF signaling alterations in the amygdala of adolescent female rats exposed to the activity-based anorexia model. Front Behav Neurosci 2022; 16:1087075. [PMID: 36570702 PMCID: PMC9772010 DOI: 10.3389/fnbeh.2022.1087075] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
Introduction: Anorexia nervosa (AN) is a severe psychiatric disorder characterized by a pathological fear of gaining weight, excessive physical exercise, and emotional instability. Since the amygdala is a key region for emotion processing and BDNF has been shown to play a critical role in this process, we hypothesized that alteration in the amygdalar BDNF system might underline vulnerability traits typical of AN patients. Methods: To this end, adolescent female rats have been exposed to the Activity-Based Anorexia (ABA) protocol, characterized by the combination of caloric restriction and intense physical exercise. Results: The induction of the anorexic phenotype caused hyperactivity and body weight loss in ABA animals. These changes were paralleled by amygdalar hyperactivation, as measured by the up-regulation of cfos mRNA levels. In the acute phase of the pathology, we observed reduced Bdnf exon IX, exon IV, and exon VI gene expression, while mBDNF protein levels were enhanced, an increase that was, instead, uncoupled from its downstream signaling as the phosphorylation of TrkB, Akt, and S6 in ABA rats were reduced. Despite the body weight recovery observed 7 days later, the BDNF-mediated signaling was still downregulated at this time point. Discussion: Our findings indicate that the BDNF system is downregulated in the amygdala of adolescent female rats under these experimental conditions, which mimic the anorexic phenotype in humans, pointing to such dysregulation as a potential contributor to the altered emotional processing observed in AN patients. In addition, since the modulation of BDNF levels is observed in other psychiatric conditions, the persistent AN-induced changes of the BDNF system in the amygdala might contribute to explaining the onset of comorbid psychiatric disorders that persist in patients even beyond recovery from AN.
Collapse
|
10
|
Costa RO, Martins LF, Tahiri E, Duarte CB. Brain-derived neurotrophic factor-induced regulation of RNA metabolism in neuronal development and synaptic plasticity. WILEY INTERDISCIPLINARY REVIEWS. RNA 2022; 13:e1713. [PMID: 35075821 DOI: 10.1002/wrna.1713] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 12/17/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
The neurotrophin brain-derived neurotrophic factor (BDNF) plays multiple roles in the nervous system, including in neuronal development, in long-term synaptic potentiation in different brain regions, and in neuronal survival. Alterations in these regulatory mechanisms account for several diseases of the nervous system. The synaptic effects of BDNF mediated by activation of tropomyosin receptor kinase B (TrkB) receptors are partly mediated by stimulation of local protein synthesis which is now considered a ubiquitous feature in both presynaptic and postsynaptic compartments of the neuron. The capacity to locally synthesize proteins is of great relevance at several neuronal developmental stages, including during neurite development, synapse formation, and stabilization. The available evidence shows that the effects of BDNF-TrkB signaling on local protein synthesis regulate the structure and function of the developing and mature synapses. While a large number of studies have illustrated a wide range of effects of BDNF on the postsynaptic proteome, a growing number of studies also point to presynaptic effects of the neurotrophin in the local regulation of the protein composition at the presynaptic level. Here, we will review the latest evidence on the role of BDNF in local protein synthesis, comparing the effects on the presynaptic and postsynaptic compartments. Additionally, we overview the relevance of BDNF-associated local protein synthesis in neuronal development and synaptic plasticity, at the presynaptic and postsynaptic compartments, and their relevance in terms of disease. This article is categorized under: RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications RNA Export and Localization > RNA Localization.
Collapse
Affiliation(s)
- Rui O Costa
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
| | - Luís F Martins
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Institute for Interdisciplinary Research, University of Coimbra, Coimbra, Portugal
- Molecular Neurobiology Laboratory, Division of Neuroscience, San Raffaele Scientific Institute, Milan, Italy
| | - Emanuel Tahiri
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Carlos B Duarte
- CNC-Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| |
Collapse
|
11
|
Bhat VD, Jayaraj J, Babu K. RNA and neuronal function: the importance of post-transcriptional regulation. OXFORD OPEN NEUROSCIENCE 2022; 1:kvac011. [PMID: 38596700 PMCID: PMC10913846 DOI: 10.1093/oons/kvac011] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/03/2022] [Accepted: 05/28/2022] [Indexed: 04/11/2024]
Abstract
The brain represents an organ with a particularly high diversity of genes that undergo post-transcriptional gene regulation through multiple mechanisms that affect RNA metabolism and, consequently, brain function. This vast regulatory process in the brain allows for a tight spatiotemporal control over protein expression, a necessary factor due to the unique morphologies of neurons. The numerous mechanisms of post-transcriptional regulation or translational control of gene expression in the brain include alternative splicing, RNA editing, mRNA stability and transport. A large number of trans-elements such as RNA-binding proteins and micro RNAs bind to specific cis-elements on transcripts to dictate the fate of mRNAs including its stability, localization, activation and degradation. Several trans-elements are exemplary regulators of translation, employing multiple cofactors and regulatory machinery so as to influence mRNA fate. Networks of regulatory trans-elements exert control over key neuronal processes such as neurogenesis, synaptic transmission and plasticity. Perturbations in these networks may directly or indirectly cause neuropsychiatric and neurodegenerative disorders. We will be reviewing multiple mechanisms of gene regulation by trans-elements occurring specifically in neurons.
Collapse
Affiliation(s)
- Vandita D Bhat
- Centre for Neuroscience, Indian Institute of Science, CV Raman Road, Bangalore 560012, Karnataka, India
| | - Jagannath Jayaraj
- Centre for Neuroscience, Indian Institute of Science, CV Raman Road, Bangalore 560012, Karnataka, India
| | - Kavita Babu
- Centre for Neuroscience, Indian Institute of Science, CV Raman Road, Bangalore 560012, Karnataka, India
| |
Collapse
|
12
|
Brait VH, Jackman KA, Pang TY. Effects of wheel-running on anxiety and depression-relevant behaviours in the MCAO mouse model of stroke: moderation of brain-derived neurotrophic factor and serotonin receptor gene expression. Behav Brain Res 2022; 432:113983. [PMID: 35777551 DOI: 10.1016/j.bbr.2022.113983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 06/06/2022] [Accepted: 06/27/2022] [Indexed: 11/02/2022]
Abstract
Stroke continues to be a major cause of mortality globally. Post-stroke treatment is complicated by the heterogenous nature of pathology and the emergence of secondary psychological symptoms are an additional challenge to the recovery process. Poststroke depression (PSD) is a common co-morbidity and is a major impediment to recovery. While selective serotonin reuptake inhibitors (SSRIs) have proven to be clinically efficacious in treating PSD, the pathogenic processes that underlie the manifestation of depressive mood post-stroke remains unclear. Furthermore, the use of SSRIs is associated with risks of intracerebral haemorrhage, so alternative treatment options need to be continuously explored. Exercise has been demonstrated to be beneficial for improving mood in humans and preclinical models of neurological conditions. Little is known of the mood-related benefits of physical exercise post-stroke. Using the middle cerebral artery occlusion (MCAO) mouse model of cerebral ischaemia, we investigated whether behavioural deficits emerge post-MCAO and could be rescued by voluntary wheel-running. We report that MCAO induced hypo-locomotion and anhedonia-related behaviours, with some improvements conferred by wheel-running. Serotonin transporter gene expression was increased in the MCAO hippocampus and frontal cortex, but this increase remained despite wheel-running. Wheel-running associated up-regulation of BDNF gene expression was unaffected in MCAO mice, reflecting conservation of key neuroplasticity molecular pathways. Taken together, our results highlight the need for further research into serotonergic modulation of the affective symptoms of stroke.
Collapse
Affiliation(s)
- Vanessa H Brait
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Katherine A Jackman
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia
| | - Terence Y Pang
- The Florey Institute of Neuroscience and Mental Health, Parkville, VIC 3052, Australia; Department of Anatomy and Physiology, University of Melbourne, VIC 3010, Australia.
| |
Collapse
|
13
|
Ramnauth AD, Maynard KR, Kardian AS, Phan BN, Tippani M, Rajpurohit S, Hobbs JW, Cerceo Page S, Jaffe AE, Martinowich K. Induction of Bdnf from promoter I following electroconvulsive seizures contributes to structural plasticity in neurons of the piriform cortex. Brain Stimul 2022; 15:427-433. [PMID: 35183789 PMCID: PMC8957536 DOI: 10.1016/j.brs.2022.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 01/19/2022] [Accepted: 02/10/2022] [Indexed: 11/02/2022] Open
Abstract
BACKGROUND Electroconvulsive therapy (ECT) efficacy is hypothesized to depend on induction of molecular and cellular events that trigger neuronal plasticity. Investigating how electroconvulsive seizures (ECS) impact plasticity in animal models can help inform our understanding of basic mechanisms by which ECT relieves symptoms of depression. ECS-induced plasticity is associated with differential expression of unique isoforms encoding the neurotrophin, brain-derived neurotrophic factor (BDNF). HYPOTHESIS We hypothesized that cells expressing the Bdnf exon 1-containing isoform are important for ECS-induced structural plasticity in the piriform cortex, a highly epileptogenic region that is responsive to ECS. METHODS We selectively labeled Bdnf exon 1-expressing neurons in mouse piriform cortex using Cre recombinase dependent on GFP technology (CRE-DOG). We then quantified changes in dendrite morphology and density of Bdnf exon 1-expressing neurons. RESULTS Loss of promoter I-derived BDNF caused changes in spine density and morphology in Bdnf exon 1-expressing neurons following ECS. CONCLUSIONS Promoter I-derived Bdnf is required for ECS-induced dendritic structural plasticity in Bdnf exon 1-expressing neurons.
Collapse
Affiliation(s)
- Anthony D. Ramnauth
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kristen R. Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Alisha S. Kardian
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - BaDoi N. Phan
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA,Computational Biology Department, School of Computer Science, Carnegie Mellon University, Pittsburgh, PA, USA,Medical Scientist Training Program, School of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Madhavi Tippani
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Sumita Rajpurohit
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - John W. Hobbs
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Stephanie Cerceo Page
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA
| | - Andrew E. Jaffe
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Mental Health, Johns Hopkins University, Baltimore, MD, USA.,Department of Biostatistics, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA.,Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, Maryland, USA,Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Psychiatry & Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
14
|
Park J, Farris S. Spatiotemporal Regulation of Transcript Isoform Expression in the Hippocampus. Front Mol Neurosci 2021; 14:694234. [PMID: 34305526 PMCID: PMC8295539 DOI: 10.3389/fnmol.2021.694234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Accepted: 06/15/2021] [Indexed: 11/13/2022] Open
Abstract
Proper development and plasticity of hippocampal neurons require specific RNA isoforms to be expressed in the right place at the right time. Precise spatiotemporal transcript regulation requires the incorporation of essential regulatory RNA sequences into expressed isoforms. In this review, we describe several RNA processing strategies utilized by hippocampal neurons to regulate the spatiotemporal expression of genes critical to development and plasticity. The works described here demonstrate how the hippocampus is an ideal investigative model for uncovering alternate isoform-specific mechanisms that restrict the expression of transcripts in space and time.
Collapse
Affiliation(s)
- Joun Park
- Fralin Biomedical Research Institute, Center for Neurobiology Research, Virginia Tech Carilion, Roanoke, VA, United States
| | - Shannon Farris
- Fralin Biomedical Research Institute, Center for Neurobiology Research, Virginia Tech Carilion, Roanoke, VA, United States.,Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, United States.,Virginia Tech Carilion School of Medicine, Roanoke, VA, United States
| |
Collapse
|
15
|
Gascon S, Jann J, Langlois-Blais C, Plourde M, Lavoie C, Faucheux N. Peptides Derived from Growth Factors to Treat Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22116071. [PMID: 34199883 PMCID: PMC8200100 DOI: 10.3390/ijms22116071] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 05/30/2021] [Accepted: 06/01/2021] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is a devastating neurodegenerative disease characterized by progressive neuron losses in memory-related brain structures. The classical features of AD are a dysregulation of the cholinergic system, the accumulation of amyloid plaques, and neurofibrillary tangles. Unfortunately, current treatments are unable to cure or even delay the progression of the disease. Therefore, new therapeutic strategies have emerged, such as the exogenous administration of neurotrophic factors (e.g., NGF and BDNF) that are deficient or dysregulated in AD. However, their low capacity to cross the blood-brain barrier and their exorbitant cost currently limit their use. To overcome these limitations, short peptides mimicking the binding receptor sites of these growth factors have been developed. Such peptides can target selective signaling pathways involved in neuron survival, differentiation, and/or maintenance. This review focuses on growth factors and their derived peptides as potential treatment for AD. It describes (1) the physiological functions of growth factors in the brain, their neuronal signaling pathways, and alteration in AD; (2) the strategies to develop peptides derived from growth factor and their capacity to mimic the role of native proteins; and (3) new advancements and potential in using these molecules as therapeutic treatments for AD, as well as their limitations.
Collapse
Affiliation(s)
- Suzanne Gascon
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, 2500 Boulevard Université, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (S.G.); (J.J.)
| | - Jessica Jann
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, 2500 Boulevard Université, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (S.G.); (J.J.)
| | - Chloé Langlois-Blais
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Mélanie Plourde
- Centre de Recherche sur le Vieillissement, Centre Intégré Universitaire de Santé et Services Sociaux de l’Estrie–Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC J1G 1B1, Canada;
- Département de Médecine, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada
| | - Christine Lavoie
- Département de Pharmacologie-Physiologie, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
- Institut de Pharmacologie de Sherbrooke, 3001 12th Avenue, N., Sherbrooke, QC J1H 5N4, Canada
- Correspondence: (C.L.); (N.F.); Tel.: +1-819-821-8000 (ext. 72732) (C.L.); +1-819-821-8000 (ext. 61343) (N.F.)
| | - Nathalie Faucheux
- Laboratory of Cell-Biomaterial Biohybrid Systems, Department of Chemical and Biotechnological Engineering, 2500 Boulevard Université, Université de Sherbrooke, Sherbrooke, QC J1K 2R1, Canada; (S.G.); (J.J.)
- Institut de Pharmacologie de Sherbrooke, 3001 12th Avenue, N., Sherbrooke, QC J1H 5N4, Canada
- Correspondence: (C.L.); (N.F.); Tel.: +1-819-821-8000 (ext. 72732) (C.L.); +1-819-821-8000 (ext. 61343) (N.F.)
| |
Collapse
|
16
|
Perea Vega ML, Sanchez MS, Fernández G, Paglini MG, Martin M, de Barioglio SR. Ghrelin treatment leads to dendritic spine remodeling in hippocampal neurons and increases the expression of specific BDNF-mRNA species. Neurobiol Learn Mem 2021; 179:107409. [PMID: 33609738 DOI: 10.1016/j.nlm.2021.107409] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 02/02/2021] [Accepted: 02/11/2021] [Indexed: 11/15/2022]
Abstract
Ghrelin (Gr) is an orexigenic peptide that acts via its specific receptor, GHSR-1a distributed throughout the brain, being mainly enriched in pituitary, cortex and hippocampus (Hp) modulating a variety of brain functions. Behavioral, electrophysiological and biochemical evidence indicated that Gr modulates the excitability and the synaptic plasticity in Hp. The present experiments were designed in order to extend the knowledge about the Gr effect upon structural synaptic plasticity since morphological and quantitative changes in spine density after Gr administration were analyzed "in vitro" and "in vivo". The results show that Gr administered to hippocampal cultures or stereotactically injected in vivo to Thy-1 mice increases the density of dendritic spines (DS) being the mushroom type highly increased in secondary and tertiary extensions. Spines classified as thin type were increased particularly in primary extensions. Furthermore, we show that Gr enhances selectively the expression of BDNF-mRNA species.
Collapse
Affiliation(s)
- M L Perea Vega
- Departamento de Farmacología, Instituto de Farmacología Experimental-IFEC-CONICET-Universidad Nacional de Córdoba, Argentina
| | - M S Sanchez
- Laboratorio de Neurobiología, Instituto de Investigación Médica Mercedes y Martín Ferreyra-INIMEC-CONICET-Universidad Nacional de Córdoba. Córdoba, Argentina; Instituto Universitario Ciencias Biomédicas Córdoba, Córdoba, Argentina
| | - G Fernández
- Laboratorio de Neurofisiología, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M G Paglini
- Laboratorio de Neurofisiología, Instituto de Investigación Médica Mercedes y Martín Ferreyra, INIMEC-CONICET, Universidad Nacional de Córdoba, Córdoba, Argentina
| | - M Martin
- Laboratorio de Neurobiología, Instituto de Investigación Médica Mercedes y Martín Ferreyra-INIMEC-CONICET-Universidad Nacional de Córdoba. Córdoba, Argentina
| | - S R de Barioglio
- Departamento de Farmacología, Instituto de Farmacología Experimental-IFEC-CONICET-Universidad Nacional de Córdoba, Argentina.
| |
Collapse
|
17
|
Comparative Genomics of the BDNF Gene, Non-Canonical Modes of Transcriptional Regulation, and Neurological Disease. Mol Neurobiol 2021; 58:2851-2861. [PMID: 33517560 DOI: 10.1007/s12035-021-02306-z] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 01/20/2021] [Indexed: 12/11/2022]
Abstract
Alternative splicing of genes in the central nervous system is ubiquitous and utilizes many different mechanisms. Splicing generates unique transcript or protein isoforms of the primary gene that result in shortened, lengthened, or reorganized products that may have distinct functions from the parent gene. Learning and memory genes respond selectively to a variety of environmental stimuli and have evolved a number of complex mechanisms for transcriptional regulation to act rapidly and flexibly to environmental demands. Their patterns of expression, however, are incompletely understood. Many activity-inducible genes generate transcripts by alternative splicing that have an unknown physiological or behavioral function. One such gene codes for the protein brain-derived neurotrophic factor (BDNF). BDNF is a neurotrophin whose expression is essential for cellular growth, synaptogenesis, and synaptic plasticity. It is an important model gene because of its complex structure and the variety of transcriptional mechanisms it displays for expression in response to external stimuli. Some of these are unexpected, or non-canonical, transcriptional control mechanisms that require further exploration in an activity-dependent context. In this review, a comparative genomics approach is taken to highlight the different forms of BDNF gene transcription including potential autoregulatory mechanisms. Modes of BDNF control have general implications for understanding the origins of several neurological disorders that are associated with reduced BDNF function.
Collapse
|
18
|
Colliva A, Tongiorgi E. Distinct role of 5'UTR sequences in dendritic trafficking of BDNF mRNA: additional mechanisms for the BDNF splice variants spatial code. Mol Brain 2021; 14:10. [PMID: 33436052 PMCID: PMC7805101 DOI: 10.1186/s13041-020-00680-8] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 10/02/2020] [Indexed: 01/07/2023] Open
Abstract
The neurotrophin Brain-derived neurotrophic factor (BDNF) is encoded by multiple bipartite transcripts. Each BDNF transcript is composed by one out of 11 alternatively spliced exons containing the 5'untranslated region (UTR), and one common exon encompassing the coding sequence (CDS) and the 3'UTR with two variants (short and long). In neurons, BDNF mRNA variants have a distinct subcellular distribution, constituting a "spatial code", with exon 1, 3, 5, 7 and 8 located in neuronal somata, exon 4 extending into proximal dendrites, and exon 2 and 6 reaching distal dendrites. We previously showed that the CDS encodes constitutive dendritic targeting signals (DTS) and that both the 3'UTR-short and the 3'UTR-long contain activity-dependent DTS. However, the role of individual 5'UTR exons in mRNA sorting remains unclear. Here, we tested the ability of each different BDNF 5'UTRs to affect the subcellular localization of the green fluorescent protein (GFP) reporter mRNA. We found that exon 2 splicing isoforms (2a, 2b, and 2c) induced a constitutive dendritic targeting of the GFP reporter mRNA towards distal dendritic segments. The other isoforms did not affect GFP-mRNA dendritic trafficking. Through a bioinformatic analysis, we identified five unique cis-elements in exon 2a, 2b, and 2c which might contribute to building a DTS. This study provides additional information on the mechanism regulating the cellular sorting of BDNF mRNA variants.
Collapse
Affiliation(s)
- Andrea Colliva
- Department of Life Sciences (Q Building), University of Trieste, Via Licio Giorgieri, 5, 34127, Trieste, Italy
| | - Enrico Tongiorgi
- Department of Life Sciences (Q Building), University of Trieste, Via Licio Giorgieri, 5, 34127, Trieste, Italy.
| |
Collapse
|
19
|
Molecular, physiological and behavioral characterization of the heterozygous Df[h15q13]/+ mouse model associated with the human 15q13.3 microdeletion syndrome. Brain Res 2020; 1746:147024. [PMID: 32712126 DOI: 10.1016/j.brainres.2020.147024] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 07/13/2020] [Accepted: 07/18/2020] [Indexed: 12/29/2022]
Abstract
The human 15q13.3 microdeletion syndrome (DS) is caused by a heterozygous microdeletion (MD) affecting six genes: FAN1; MTMR10; TRPM1; KLF13; OTUD7A; and CHRNA7. Carriers are at risk for intellectual disability, epilepsy, autism spectrum disorder, and schizophrenia. Here we used the Df[h15q13]/+ mouse model with an orthologous deletion to further characterize molecular, neurophysiological, and behavioral parameters that are relevant to the 15q13.3 DS. First, we verified the expression and distribution of the α7 nicotinic acetylcholine receptor (nAChR), a gene product of the CHRNA7, in cortical and subcortical areas. Results revealed similar mRNA distribution pattern in wildtype (WT) and heterozygous (Het) mice, with about half the number of α7 nAChR binding sites in mutants. Hippocampal recordings showed similar input/output responses of field excitatory post-synaptic potentials and theta-burst induced long-term potentiation in WT and Het mice. Het males exhibited impaired spatial learning acquisition in the Barnes Maze. Indicative of increased seizure susceptibility, Het mice developed secondary seizures after 6-Hz corneal stimulation, and had significantly increased sensitivity to the chemoconvulsant pentylenetetrazol resulting in increased spiking in hippocampal EEG recordings. Basal mRNA expression of brain derived neurotrophic factor and activity regulated immediate early genes (c-fos, Arc, Erg-1 and Npas4) during adolescence, a critical period of brain maturation, was unaffected by genotype. Thus, the MD did not show gross neuroanatomical, molecular, and neurophysiological abnormalities despite deficits in spatial learning and increased susceptibility to seizures. Altogether, our results verify the phenotypic profile of the heterozygous Df[h15q13]/+ mouse model and underscore its translational relevance for human 15q13.3 DS.
Collapse
|
20
|
Roversi K, Buizza C, Brivio P, Calabrese F, Verheij MMM, Antoniazzi CTD, Burger ME, Riva MA, Homberg JR. Neonatal Tactile Stimulation Alters Behaviors in Heterozygous Serotonin Transporter Male Rats: Role of the Amygdala. Front Behav Neurosci 2020; 14:142. [PMID: 32903627 PMCID: PMC7438747 DOI: 10.3389/fnbeh.2020.00142] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 07/23/2020] [Indexed: 02/02/2023] Open
Abstract
The serotonin transporter (SERT) gene, especially the short allele of the human serotonin transporter linked polymorphic region (5-HTTLPR), has been associated with the development of stress-related neuropsychiatric disorders. In line, exposure to early life stress in SERT knockout animals contributes to anxiety- and depression-like behavior. However, there is a lack of investigation of how early-life exposure to beneficial stimuli, such as tactile stimulation (TS), affects later life behavior in these animals. In this study, we investigated the effect of TS on social, anxiety, and anhedonic behavior in heterozygous SERT knockouts rats and wild-type controls and its impact on gene expression in the basolateral amygdala. Heterozygous SERT+/– rats were submitted to TS during postnatal days 8–14, for 10 min per day. In adulthood, rats were assessed for social and affective behavior. Besides, brain-derived neurotrophic factor (Bdnf) gene expression and its isoforms, components of glutamatergic and GABAergic systems as well as glucocorticoid-responsive genes were measured in the basolateral amygdala. We found that exposure to neonatal TS improved social and affective behavior in SERT+/– animals compared to naïve SERT+/– animals and was normalized to the level of naïve SERT+/+ animals. At the molecular level, we observed that TS per se affected Bdnf, the glucocorticoid-responsive genes Nr4a1, Gadd45β, the co-chaperone Fkbp5 as well as glutamatergic and GABAergic gene expression markers including the enzyme Gad67, the vesicular GABA transporter, and the vesicular glutamate transporter genes. Our results suggest that exposure of SERT+/– rats to neonatal TS can normalize their phenotype in adulthood and that TS per se alters the expression of plasticity and stress-related genes in the basolateral amygdala. These findings demonstrate the potential effect of a supportive stimulus in SERT rodents, which are more susceptible to develop psychiatric disorders.
Collapse
Affiliation(s)
- Karine Roversi
- Department of Physiology and Pharmacology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Carolina Buizza
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Michel M M Verheij
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| | - Caren T D Antoniazzi
- International Centre for Neurotherapeutics, Dublin City University, Dublin, Ireland
| | - Marilise E Burger
- Department of Physiology and Pharmacology, Health Sciences Center, Federal University of Santa Maria, Santa Maria, Brazil
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Milan, Italy
| | - Judith R Homberg
- Department of Cognitive Neuroscience, Donders Institute for Brain, Cognition, and Behavior, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
21
|
Caffino L, Mottarlini F, Mingardi J, Zita G, Barbon A, Fumagalli F. Anhedonic-like behavior and BDNF dysregulation following a single injection of cocaine during adolescence. Neuropharmacology 2020; 175:108161. [PMID: 32585251 DOI: 10.1016/j.neuropharm.2020.108161] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/19/2020] [Accepted: 05/23/2020] [Indexed: 12/14/2022]
Abstract
We have previously demonstrated that a single exposure to cocaine during adolescence causes several behavioural and neurobiological changes, highlighting the unique vulnerability of this period of life. The purpose of our work was to investigate whether a single exposure to cocaine during brain development is sufficient to shape a negative emotional state in adolescent rats. A single injection of cocaine during adolescence followed by measurement of sucrose consumption, a measure of anhedonia, identifies two separate groups of rats, i.e. anhedonic (AN) and non anhedonic (NON-AN) rats. AN rats show reduced ability to synthesize, traffic and translate the neurotrophin BDNF at synaptic level, reduced activation of hippocampal BDNF signaling, reduced BDNF plasma levels and a steep rise of corticosterone secretion. Conversely, NON-AN rats exhibit reduced trafficking of BDNF while up-regulating hippocampal BDNF synthesis and stabilizing its downstream signaling with no changes of BDNF and corticosterone plasma levels. Adult rats exposed to cocaine showed no signs of anhedonia, an increase of BDNF both in hippocampus and plasma and decreased levels of corticosterone. In conclusion, our findings reveal a complex central and peripheral dysregulation of BDNF-related mechanisms that instead are preserved in NON-AN rats, suggesting that BDNF modulation dictates behavioural vulnerability vs. resiliency to cocaine-induced anhedonia, a profile uniquely restricted to adolescent rats.
Collapse
Affiliation(s)
- Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milano, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milano, Italy
| | - Jessica Mingardi
- Biology and Genetic Division, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Gianmaria Zita
- Dipartimento di Salute Mentale e Dipendenze, ASST Fatebenefratelli-Sacco, Milan, Italy
| | - Alessandro Barbon
- Biology and Genetic Division, Department of Molecular and Translational Medicine, University of Brescia, Brescia, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università Degli Studi di Milano, Via Balzaretti 9, 20133, Milano, Italy.
| |
Collapse
|
22
|
Abstract
Alzheimer's disease is a chronic neurodegenerative devastating disorder affecting a high percentage of the population over 65 years of age and causing a relevant emotional, social, and economic burden. Clinically, it is characterized by a prominent cognitive deficit associated with language and behavioral impairments. The molecular pathogenesis of Alzheimer's disease is multifaceted and involves changes in neurotransmitter levels together with alterations of inflammatory, oxidative, hormonal, and synaptic pathways, which may represent a drug target for both prevention and treatment; however, an effective treatment for Alzheimer's disease still represents an unmet goal. As neurotrophic factors participate in the modulation of the above-mentioned pathways, they have been highlighted as critical contributors of Alzheimer's disease etiology, whose modulation might be beneficial for Alzheimer's disease. We focused on the neurotrophin brain-derived neurotrophic factor, providing several lines of evidence pointing to brain-derived neurotrophic factor as a plausible endophenotype of cognitive deficits in Alzheimer's disease, illustrating some of the most recent possibilities to modulate the expression of this neurotrophin in the brain in an attempt to ameliorate cognition and delay the progression of Alzheimer's disease. This review shows that otherwise disparate pharmacologic or non-pharmacologic approaches converge on brain-derived neurotrophic factor, providing a means whereby apparently unrelated medical approaches may nevertheless produce similar synaptic and cognitive outcomes in Alzheimer's disease pathogenesis, suggesting that brain-derived neurotrophic factor-based synaptic repair may represent a modifying strategy to ameliorate cognition in Alzheimer's disease.
Collapse
|
23
|
Abstract
The brain-derived neurotrophic factor (BDNF) is a secretory growth factor that promotes neuronal proliferation and survival, synaptic plasticity and long-term potentiation in the central nervous system. Brain-derived neurotrophic factor biosynthesis and secretion are chrono-topically regulated processes at the cellular level, accounting for specific localizations and functions. Given its role in regulating brain development and activity, BDNF represents a potentially relevant gene for schizophrenia, and indeed BDNF and its non-synonymous functional variant, rs6265 (C → T, Val → Met) have been widely studied in psychiatric genetics. Human and animal studies have indicated that brain-derived neurotrophic factor is relevant for schizophrenia-related phenotypes, and that: (1) fine-tuned regulation of brain-derived neurotrophic factor secretion and activity is necessary to guarantee brain optimal development and functioning; (2) the Val → Met substitution is associated with impaired activity-dependent secretion of brain-derived neurotrophic factor; (3) disruption of brain-derived neurotrophic factor signaling is associated with altered synaptic plasticity and neurodevelopment. However, genome-wide association studies failed to associate the BDNF locus with schizophrenia, even though a sub-threshold association exists. Here, we will review studies focused on the relationship between the genetic variation of BDNF and schizophrenia, trying to fill the gap between genetic risk per se and insights from molecular biology. A deeper understanding of brain-derived neurotrophic factor biology and of the epigenetic regulation of brain-derived neurotrophic factor and its interactome during development may help clarifying the potential role of this gene in schizophrenia, thus informing development of brain-derived neurotrophic factor-based strategies of prevention and treatment of this disorder.
Collapse
|
24
|
Miao Z, Wang Y, Sun Z. The Relationships Between Stress, Mental Disorders, and Epigenetic Regulation of BDNF. Int J Mol Sci 2020; 21:ijms21041375. [PMID: 32085670 PMCID: PMC7073021 DOI: 10.3390/ijms21041375] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/01/2020] [Accepted: 02/15/2020] [Indexed: 12/25/2022] Open
Abstract
Brain-derived neurotrophic factor (BDNF), a critical member of the neurotrophic family, plays an important role in multiple stress-related mental disorders. Although alterations in BDNF in multiple brain regions of individuals experiencing stress have been demonstrated in previous studies, it appears that a set of elements are involved in the complex regulation. In this review, we summarize the specific brain regions with altered BDNF expression during stress exposure. How various environmental factors, including both physical and psychological stress, affect the expression of BDNF in specific brain regions are further summarized. Moreover, epigenetic regulation of BDNF, including DNA methylation, histone modification, and noncoding RNA, in response to diverse types of stress, as well as sex differences in the sensitivity of BDNF to the stress response, is also summarized. Clarification of the underlying role of BDNF in the stress process will promote our understanding of the pathology of stress-linked mental disorders and provide a potent target for the future treatment of stress-related illness.
Collapse
Affiliation(s)
- Zhuang Miao
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China;
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China;
- Department of Physiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Yan Wang
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China;
- School of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
| | - Zhongsheng Sun
- Institute of Genomic Medicine, Wenzhou Medical University, Wenzhou 325000, China;
- Beijing Institutes of Life Science, Chinese Academy of Sciences, Beijing 100101, China;
- School of Life Sciences, University of the Chinese Academy of Sciences, Beijing 100049, China
- Correspondence:
| |
Collapse
|
25
|
Sbrini G, Brivio P, Fumagalli M, Giavarini F, Caruso D, Racagni G, Dell’Agli M, Sangiovanni E, Calabrese F. Centella asiatica L. Phytosome Improves Cognitive Performance by Promoting Bdnf Expression in Rat Prefrontal Cortex. Nutrients 2020; 12:nu12020355. [PMID: 32013132 PMCID: PMC7071263 DOI: 10.3390/nu12020355] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 01/15/2023] Open
Abstract
A wide range of people in the world use natural remedies as primary approaches against illnesses. Accordingly, understanding the mechanisms of action of phytochemicals has become of great interest. In this context, Centella asiatica L. is extensively used, not only as anti-inflammatory or antioxidant agent but also as brain tonic. On this basis, the purpose of this study was to evaluate whether the chronic administration of C. asiatica L. to adult male rats was able to improve the expression of Bdnf, one of the main mediators of brain plasticity. Moreover, we assessed whether the treatment could affect the cognitive performance in the novel object recognition (NOR) test. We confirmed the presence of the main compounds in the plasma. Furthermore, C. asiatica L. administration induced an increase of Bdnf in the prefrontal cortex, and the administration of the higher dose of the extract was able to improve cognitive performance. Finally, the increase in the preference index in the NOR test was paralleled by a further increase in Bdnf expression. Overall, we highlight the ability of C. asiatica L. to affect brain functions by increasing Bdnf expression and by enhancing the cognitive performance.
Collapse
|
26
|
Caffino L, Mottarlini F, Diniz DM, Verheij MM, Fumagalli F, Homberg JR. Deletion of the serotonin transporter perturbs BDNF signaling in the central amygdala following long-access cocaine self-administration. Drug Alcohol Depend 2019; 205:107610. [PMID: 31606593 DOI: 10.1016/j.drugalcdep.2019.107610] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Revised: 09/06/2019] [Accepted: 09/09/2019] [Indexed: 12/14/2022]
Abstract
BACKGROUND Human neuroimaging studies indicate that the amygdala plays a key role in cocaine addiction. One key plasticity factor that modulates effects of cocaine on the brain is Brain-Derived Neurotrophic Factor (BDNF). A wealth of evidence shows that cocaine exposure alters BDNF signaling in corticolimbic structures, but, surprisingly, such evidence is very limited for the amygdala. Additionally, while BDNF is strongly regulated by serotonin levels and inherited serotonin transporter down-regulation is associated with increased vulnerability to cocaine addiction, the effects of serotonin transporter genotype on BDNF signaling in the amygdala under naïve and cocaine exposure conditions are unknown. METHODS We measured BDNF signaling in the central amygdala of wild-type and serotonin transporter knockout rats 24 h into withdrawal from long-access cocaine self-administration. RESULTS In wild-type rats mature BDNF (mBDNF) protein levels were decreased, whereas the phosphorylation of its receptor TrkB as well as of its intracellular signaling molecules Akt and ERK1 were increased. mBDNF protein expression and its signaling in cocaine-naïve serotonin transporter knockout rats resembled that of wild-type rats with a history of long-access cocaine self-administration. Interestingly, cocaine-exposed serotonin transporter knockout rats showed increased BDNF levels, with no signs of phospho-TrkB receptor coupling to phospho-Akt and phospho-ERK1. CONCLUSIONS Long-access cocaine self-administration dysregulates BDNF signaling in the central amygdala. Vulnerability to cocaine addiction is associated with dysregulation of this signaling.
Collapse
Affiliation(s)
- Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy
| | - Danielle Mendes Diniz
- Department of Cognitive Neuroscience, division of Molecular Neurogenetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, the Netherlands
| | - Michel M Verheij
- Department of Cognitive Neuroscience, division of Molecular Neurogenetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, the Netherlands
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Italy
| | - Judith R Homberg
- Department of Cognitive Neuroscience, division of Molecular Neurogenetics, Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen Medical Centre, the Netherlands.
| |
Collapse
|
27
|
Fuentealba CR, Fiedler JL, Peralta FA, Avalos AM, Aguayo FI, Morgado-Gallardo KP, Aliaga EE. Region-Specific Reduction of BDNF Protein and Transcripts in the Hippocampus of Juvenile Rats Prenatally Treated With Sodium Valproate. Front Mol Neurosci 2019; 12:261. [PMID: 31787877 PMCID: PMC6853897 DOI: 10.3389/fnmol.2019.00261] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 10/14/2019] [Indexed: 11/18/2022] Open
Abstract
Autism is a neurodevelopmental disorder characterized by a deep deficit in language and social interaction, accompanied by restricted, stereotyped and repetitive behaviors. The use of genetic autism animal models has revealed that the alteration of the mechanisms controlling the formation and maturation of neural circuits are points of convergence for the physiopathological pathways in several types of autism. Brain Derived Neurotrophic Factor (BDNF), a key multifunctional regulator of brain development, has been related to autism in several ways. However, its precise role is still elusive, in part, due to its extremely complex posttranscriptional regulation. In order to contribute to this topic, we treated prenatal rats with Valproate, a well-validated model of autism, to analyze BDNF levels in the hippocampus of juvenile rats. Valproate-treated rats exhibited an autism-like behavioral profile, characterized by a deficit in social interaction, anxiety-like behavior and repetitive behavior. In situ hybridization (ISH) experiments revealed that Valproate reduced BDNF mRNA, especially long-3′UTR-containing transcripts, in specific areas of the dentate gyrus (DG) and CA3 regions. At the same time, Valproate reduced BDNF immunoreactivity in the suprapyramidal and lucidum layers of CA3, but improved hippocampus-dependent spatial learning. The molecular changes reported here may help to explain the cognitive and behavioral signs of autism and reinforce BDNF as a potential molecular target for this neurodevelopmental disorder.
Collapse
Affiliation(s)
- Constanza R Fuentealba
- Department of Kinesiology, Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile
| | - Jenny L Fiedler
- Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Francisco A Peralta
- Department of Kinesiology, Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile
| | - Ana María Avalos
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | - Felipe I Aguayo
- Department of Biochemistry and Molecular Biology, Faculty of Chemical and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| | - Katherine P Morgado-Gallardo
- Department of Psychology, Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile.,The Neuropsychology and Cognitive Neurosciences Research Center (CINPSI-Neurocog), Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile
| | - Esteban E Aliaga
- Department of Kinesiology, Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile.,The Neuropsychology and Cognitive Neurosciences Research Center (CINPSI-Neurocog), Faculty of Health Sciences, Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
28
|
Caffino L, Giannotti G, Messa G, Mottarlini F, Fumagalli F. Repeated cocaine exposure dysregulates BDNF expression and signaling in the mesocorticolimbic pathway of the adolescent rat. World J Biol Psychiatry 2019; 20:531-544. [PMID: 29380665 DOI: 10.1080/15622975.2018.1433328] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
Objectives: Long-term abstinence following cocaine exposure up-regulates brain-derived neurotrophic factor (BDNF) expression in the mesocorticolimbic pathway. Given the increased vulnerability to drug abuse typical of adolescence, we hypothesized that changes in BDNF expression may become manifest early after the end of cocaine treatment in the adolescent brain.Methods: Rats received cocaine injections from postnatal day 28 (PND28) to PND42 and the mesocorticolimbic expression of BDNF was measured by real-time PCR and Western blotting at PND43.Results: In the ventral tegmental area, BDNF-tropomyosin receptor kinase B (TrΚB) expression and phosphorylation are enhanced while the intracellular signaling is unaltered. In the nucleus accumbens (NAc) shell and core, BDNF and its signaling were down-regulated. In the prelimbic (PL) cortex, we found reduced BDNF expression and increased phosphoprylation of TrΚB, ERK and AKT. In the infralimbic (IL) cortex, increased BDNF expression was coupled with reduced activity and expression of its downstream targets. To evaluate the role of glutamate on BDNF-independent changes, we investigated the expression of the transporter GLT-1 and the activation of the NMDA receptor subunit GluN2B, which were both increased in the PL cortex while reduced in the IL cortex.Conclusions: Our results show that adolescent cocaine exposure modulates BDNF system early after treatment in the mesocorticolimbic pathway, identifying a complex but specific set of changes that could provide clues for treatment.
Collapse
Affiliation(s)
- Lucia Caffino
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giuseppe Giannotti
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Giulia Messa
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Francesca Mottarlini
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
29
|
Mallei A, Ieraci A, Popoli M. Chronic social defeat stress differentially regulates the expression of BDNF transcripts and epigenetic modifying enzymes in susceptible and resilient mice. World J Biol Psychiatry 2019; 20:555-566. [PMID: 30058429 DOI: 10.1080/15622975.2018.1500029] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Objectives: Although stress is considered a primary risk factor for neuropsychiatric disorders, a majority of individuals are resilient to the effects of stress exposure and successfully adapt to adverse life events, while others, the so-called susceptible individuals, may have problems to properly adapt to environmental changes. However, the mechanisms underlying these different responses to stress exposure are poorly understood.Methods: Adult male C57BL/6J mice were exposed to chronic social defeat stress protocol and levels of brain derived neurotrophic factor (BDNF) transcripts and epigenetic modifying enzymes were analysed by real-time PCR in the hippocampus (HPC) and prefrontal cortex (PFC) of susceptible and resilient mice.Results: We found a selective reduction of BDNF-6 transcript in the HPC and an increase of BDNF-4 transcript in the PFC of susceptible mice. Moreover, susceptible mice showed a selective reduction of the g9a mRNA levels in the HPC, while HDAC-5 and DNMT3a mRNA levels were specifically reduced in the PFC.Conclusions: Overall, our results, showing a different expression of BDNF transcripts and epigenetic modifying enzymes in susceptible and resilient mice, suggest that stress resilience is not simply a lack of activation of stress-related pathways, but is related to the activation of additional different specific mechanisms.
Collapse
Affiliation(s)
- Alessandra Mallei
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics - Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milano, Italy
| | - Alessandro Ieraci
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics - Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milano, Italy
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics - Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence on Neurodegenerative Diseases, University of Milano, Milano, Italy
| |
Collapse
|
30
|
Tornese P, Sala N, Bonini D, Bonifacino T, La Via L, Milanese M, Treccani G, Seguini M, Ieraci A, Mingardi J, Nyengaard JR, Calza S, Bonanno G, Wegener G, Barbon A, Popoli M, Musazzi L. Chronic mild stress induces anhedonic behavior and changes in glutamate release, BDNF trafficking and dendrite morphology only in stress vulnerable rats. The rapid restorative action of ketamine. Neurobiol Stress 2019; 10:100160. [PMID: 31193464 PMCID: PMC6535630 DOI: 10.1016/j.ynstr.2019.100160] [Citation(s) in RCA: 65] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Revised: 03/28/2019] [Accepted: 03/28/2019] [Indexed: 12/18/2022] Open
Abstract
Depression is a debilitating mental disease, characterized by persistent low mood and anhedonia. Stress represents a major environmental risk factor for depression; the complex interaction of stress with genetic factors results in different individual vulnerability or resilience to the disorder. Dysfunctions of the glutamate system have a primary role in depression. Clinical neuroimaging studies have consistently reported alterations in volume and connectivity of cortico-limbic areas, where glutamate neurons and synapses predominate. This is confirmed by preclinical studies in rodents, showing that repeated stress induces morphological and functional maladaptive changes in the same brain regions altered in humans. Confirming the key role of glutamatergic transmission in depression, compelling evidence has shown that the non-competitive NMDA receptor antagonist, ketamine, induces, at sub-anesthetic dose, rapid and sustained antidepressant response in both humans and rodents. We show here that the Chronic Mild Stress model of depression induces, only in stress-vulnerable rats, depressed-like anhedonic behavior, together with impairment of glutamate/GABA presynaptic release, BDNF mRNA trafficking in dendrites and dendritic morphology in hippocampus. Moreover, we show that a single administration of ketamine restores, in 24 h, normal behavior and most of the cellular/molecular maladaptive changes in vulnerable rats. Interestingly, ketamine treatment did not restore BDNF mRNA levels reduced by chronic stress but rescued dendritic trafficking of BDNF mRNA. The present results are consistent with a mechanism of ketamine involving rapid restoration of synaptic homeostasis, through re-equilibration of glutamate/GABA release and dendritic BDNF for synaptic translation and reversal of synaptic and circuitry impairment. Chronic mild stress (CMS) induces anhedonic behavior and maladaptive changes in the hippocampus (HPC) of vulnerable rats. CMS reduces basal and evoked release of glutamate in the HPC of vulnerable rats. SCMS reduces evoked release of GABA in the HPC of vulnerable rats. CMS reduces expression of BDNF mRNA and trafficking along dendrites in the HPC of vulnerable rats. CMS reduces length of apical dendrites in CA3 pyramidal neurons of vulnerable rats. Ketamine injection (10 mg/kg) restores in 24h anhedonic behavior and most maladaptive changes, except BDNF expression. The present results suggest that the antidepressant mechanism of ketamine involves restoration of synaptic homeostasis.
Collapse
Affiliation(s)
- Paolo Tornese
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence for Neurodegenerative Diseases, Università degli Studi di Milano, 20133, Milan, Italy
| | - Nathalie Sala
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence for Neurodegenerative Diseases, Università degli Studi di Milano, 20133, Milan, Italy
| | - Daniela Bonini
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Tiziana Bonifacino
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research, University of Genoa, 16148, Genova, Italy
| | - Luca La Via
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Marco Milanese
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research, University of Genoa, 16148, Genova, Italy
| | - Giulia Treccani
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8240, Risskov, Denmark
| | - Mara Seguini
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence for Neurodegenerative Diseases, Università degli Studi di Milano, 20133, Milan, Italy
| | - Alessandro Ieraci
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence for Neurodegenerative Diseases, Università degli Studi di Milano, 20133, Milan, Italy
| | - Jessica Mingardi
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Jens R Nyengaard
- Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Department of Clinical Medicine, Centre for Stochastic Geometry and Advanced Bioimaging, Aarhus University, 8000, Aarhus, Denmark
| | - Stefano Calza
- Unit of Biostatistics and Biomathematics, Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Giambattista Bonanno
- Department of Pharmacy, Unit of Pharmacology and Toxicology and Center of Excellence for Biomedical Research, University of Genoa, 16148, Genova, Italy
| | - Gregers Wegener
- Translational Neuropsychiatry Unit, Department of Clinical Medicine, Aarhus University, 8240, Risskov, Denmark.,Pharmaceutical Research Centre of Excellence, School of Pharmacy, North-West University, 2520, Potchefstroom, South Africa
| | - Alessandro Barbon
- Division of Biology and Genetics, Department of Molecular and Translational Medicine, University of Brescia, 25123, Brescia, Italy
| | - Maurizio Popoli
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence for Neurodegenerative Diseases, Università degli Studi di Milano, 20133, Milan, Italy
| | - Laura Musazzi
- Laboratory of Neuropsychopharmacology and Functional Neurogenomics, Dipartimento di Scienze Farmacologiche e Biomolecolari and Center of Excellence for Neurodegenerative Diseases, Università degli Studi di Milano, 20133, Milan, Italy
| |
Collapse
|
31
|
Argyrousi EK, de Nijs L, Lagatta DC, Schlütter A, Weidner MT, Zöller J, van Goethem NP, Joca SR, van den Hove DL, Prickaerts J. Effects of DNA methyltransferase inhibition on pattern separation performance in mice. Neurobiol Learn Mem 2019; 159:6-15. [DOI: 10.1016/j.nlm.2019.02.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 01/27/2019] [Accepted: 02/02/2019] [Indexed: 10/27/2022]
|
32
|
McGregor CE, English AW. The Role of BDNF in Peripheral Nerve Regeneration: Activity-Dependent Treatments and Val66Met. Front Cell Neurosci 2019; 12:522. [PMID: 30687012 PMCID: PMC6336700 DOI: 10.3389/fncel.2018.00522] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2018] [Accepted: 12/14/2018] [Indexed: 11/29/2022] Open
Abstract
Despite the ability of peripheral nerves to spontaneously regenerate after injury, recovery is generally very poor. The neurotrophins have emerged as an important modulator of axon regeneration, particularly brain derived neurotrophic factor (BDNF). BDNF regulation and signaling, as well as its role in activity-dependent treatments including electrical stimulation, exercise, and optogenetic stimulation are discussed here. The importance of a single nucleotide polymorphism in the BDNF gene, Val66Met, which is present in 30% of the human population and may hinder the efficacy of these treatments in enhancing regeneration after injury is considered. Preliminary data are presented on the effectiveness of one such activity-dependent treatment, electrical stimulation, in enhancing axon regeneration in mice expressing the met allele of the Val66Met polymorphism.
Collapse
Affiliation(s)
- Claire Emma McGregor
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| | - Arthur W English
- Department of Cell Biology, Emory University School of Medicine, Atlanta, GA, United States
| |
Collapse
|
33
|
Brivio P, Sbrini G, Peeva P, Todiras M, Bader M, Alenina N, Calabrese F. TPH2 Deficiency Influences Neuroplastic Mechanisms and Alters the Response to an Acute Stress in a Sex Specific Manner. Front Mol Neurosci 2018; 11:389. [PMID: 30425618 PMCID: PMC6218558 DOI: 10.3389/fnmol.2018.00389] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 10/04/2018] [Indexed: 01/13/2023] Open
Abstract
Dysregulations of the central serotoninergic system have been implicated in several psychopathologies, characterized by different susceptibility between males and females. We took advantage of tryptophan hydroxylase 2 (TPH2) deficient rats, lacking serotonin specifically in the brain, to investigate whether a vulnerable genotype can be associated with alterations of neuronal plasticity from the early stage of maturation of the brain until adulthood. We found a significant increase, in both gene and protein expression, of the neurotrophin brain-derived neurotrophic factor (BDNF), in the prefrontal cortex (PFC) of adult TPH2-deficient (TPH2−/−) male and female rats in comparison to wild type (TPH2+/+) counterparts. Interestingly, a development-specific pattern was observed during early postnatal life: whereas the increase in Bdnf expression, mainly driven by the modulation of Bdnf isoform IV was clearly visible after weaning at postnatal day (pnd) 30 in both sexes of TPH2−/− in comparison to TPH2+/+ rats, at early stages (pnd1 and pnd10) Bdnf expression levels did not differ between the genotypes, or even were downregulated in male TPH2−/− animals at pnd10. Moreover, to establish if hyposerotonergia may influence the response to a challenging situation, we exposed adult rats to an acute stress. Although the pattern of corticosterone release was similar between the genotypes, neuronal activation in response to stress, quantified by the expression of the immediate early genes activity regulated cytoskeleton associated protein (Arc) and Fos Proto-Oncogene (cFos), was blunted in both sexes of animals lacking brain serotonin. Interestingly, although upregulation of Bdnf mRNA levels after stress was observed in both genotypes, it was less pronounced in TPH2−/− in comparison to TPH2+/+ rats. In summary, our results demonstrated that serotonin deficiency affects neuroplastic mechanisms following a specific temporal pattern and influences the response to an acute stress.
Collapse
Affiliation(s)
- Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Giulia Sbrini
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Polina Peeva
- Cardiovascular and Metabolic Diseases, Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Mihail Todiras
- Cardiovascular and Metabolic Diseases, Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany
| | - Michael Bader
- Cardiovascular and Metabolic Diseases, Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany.,Charite-University Medicine, Berlin, Germany
| | - Natalia Alenina
- Cardiovascular and Metabolic Diseases, Max-Delbrück-Center for Molecular Medicine (MDC), Berlin, Germany.,Institute of Translational Biomedicine, St. Petersburg State University, St. Petersburg, Russia
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| |
Collapse
|
34
|
Singer W, Manthey M, Panford-Walsh R, Matt L, Geisler HS, Passeri E, Baj G, Tongiorgi E, Leal G, Duarte CB, Salazar IL, Eckert P, Rohbock K, Hu J, Strotmann J, Ruth P, Zimmermann U, Rüttiger L, Ott T, Schimmang T, Knipper M. BDNF-Live-Exon-Visualization (BLEV) Allows Differential Detection of BDNF Transcripts in vitro and in vivo. Front Mol Neurosci 2018; 11:325. [PMID: 30319348 PMCID: PMC6170895 DOI: 10.3389/fnmol.2018.00325] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/22/2018] [Indexed: 12/16/2022] Open
Abstract
Bdnf exon-IV and exon-VI transcripts are driven by neuronal activity and are involved in pathologies related to sleep, fear or memory disorders. However, how their differential transcription translates activity changes into long-lasting network changes is elusive. Aiming to trace specifically the network controlled by exon-IV and -VI derived BDNF during activity-dependent plasticity changes, we generated a transgenic reporter mouse for B DNF- l ive- e xon- v isualization (BLEV), in which expression of Bdnf exon-IV and -VI can be visualized by co-expression of CFP and YFP. CFP and YFP expression was differentially activated and targeted in cell lines, primary cultures and BLEV reporter mice without interfering with BDNF protein synthesis. CFP and YFP expression, moreover, overlapped with BDNF protein expression in defined hippocampal neuronal, glial and vascular locations in vivo. So far, activity-dependent BDNF cannot be explicitly monitored independent of basal BDNF levels. The BLEV reporter mouse therefore provides a new model, which can be used to test whether stimulus-induced activity-dependent changes in BDNF expression are instrumental for long-lasting plasticity modifications.
Collapse
Affiliation(s)
- Wibke Singer
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Marie Manthey
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Rama Panford-Walsh
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Lucas Matt
- Department of Pharmacology, Institute of Pharmacy, Toxicology and Clinical Pharmacy, University of Tübingen, Tübingen, Germany
| | - Hyun-Soon Geisler
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Eleonora Passeri
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Gabriele Baj
- B.R.A.I.N. Centre for Neuroscience, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Enrico Tongiorgi
- B.R.A.I.N. Centre for Neuroscience, Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Graciano Leal
- Centre for Neuroscience and Cell Biology (CNC), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Carlos B. Duarte
- Centre for Neuroscience and Cell Biology (CNC), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Ivan L. Salazar
- Centre for Neuroscience and Cell Biology (CNC), Department of Life Sciences, University of Coimbra, Coimbra, Portugal
| | - Philipp Eckert
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Karin Rohbock
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Jing Hu
- Centre for Integrative Neuroscience (CIN), University of Tübingen, Tübingen, Germany
| | - Jörg Strotmann
- Department of Physiology, Institute of Physiology, University of Hohenheim, Stuttgart, Germany
| | - Peter Ruth
- Department of Pharmacology, Institute of Pharmacy, Toxicology and Clinical Pharmacy, University of Tübingen, Tübingen, Germany
| | - Ulrike Zimmermann
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Lukas Rüttiger
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| | - Thomas Ott
- Transgenic Facility Tübingen, University of Tübingen, Tübingen, Germany
| | - Thomas Schimmang
- Instituto de Biologíay Genética Molecular, Universidad de Valladolid y Consejo Superior de Investigaciones Científicas, Valladolid, Spain
| | - Marlies Knipper
- Department of Otolaryngology, Tübingen Hearing Research Centre (THRC), Molecular Physiology of Hearing, University of Tübingen, Tübingen, Germany
| |
Collapse
|
35
|
Simonato M. Neurotrophic factors and status epilepticus. Epilepsia 2018; 59 Suppl 2:87-91. [DOI: 10.1111/epi.14501] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/23/2017] [Indexed: 01/02/2023]
Affiliation(s)
- Michele Simonato
- Department of Medical Sciences; University of Ferrara; Ferrara Italy
- Division of Neuroscience; University Vita-Salute San Raffaele; Milan Italy
| |
Collapse
|
36
|
Meyers KT, Marballi KK, Brunwasser SJ, Renda B, Charbel M, Marrone DF, Gallitano AL. The Immediate Early Gene Egr3 Is Required for Hippocampal Induction of Bdnf by Electroconvulsive Stimulation. Front Behav Neurosci 2018; 12:92. [PMID: 29867393 PMCID: PMC5958205 DOI: 10.3389/fnbeh.2018.00092] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/23/2018] [Indexed: 01/19/2023] Open
Abstract
Early growth response 3 (Egr3) is an immediate early gene (IEG) that is regulated downstream of a cascade of genes associated with risk for psychiatric disorders, and dysfunction of Egr3 itself has been implicated in schizophrenia, bipolar disorder, and depression. As an activity-dependent transcription factor, EGR3 is poised to regulate the neuronal expression of target genes in response to environmental events. In the current study, we sought to identify a downstream target of EGR3 with the goal of further elucidating genes in this biological pathway relevant for psychiatric illness risk. We used electroconvulsive stimulation (ECS) to induce high-level expression of IEGs in the brain, and conducted expression microarray to identify genes differentially regulated in the hippocampus of Egr3-deficient (-/-) mice compared to their wildtype (WT) littermates. Our results replicated previous work showing that ECS induces high-level expression of the brain-derived neurotrophic factor (Bdnf) in the hippocampus of WT mice. However, we found that this induction is absent in Egr3-/- mice. Quantitative real-time PCR (qRT-PCR) validated the microarray results (performed in males) and replicated the findings in two separate cohorts of female mice. Follow-up studies of activity-dependent Bdnf exons demonstrated that ECS-induced expression of both exons IV and VI requires Egr3. In situ hybridization demonstrated high-level cellular expression of Bdnf in the hippocampal dentate gyrus following ECS in WT, but not Egr3-/-, mice. Bdnf promoter analysis revealed eight putative EGR3 binding sites in the Bdnf promoter, suggesting a mechanism through which EGR3 may directly regulate Bdnf gene expression. These findings do not appear to result from a defect in the development of hippocampal neurons in Egr3-/- mice, as cell counts in tissue sections stained with anti-NeuN antibodies, a neuron-specific marker, did not differ between Egr3-/- and WT mice. In addition, Sholl analysis and counts of dendritic spines in golgi-stained hippocampal sections revealed no difference in dendritic morphology or synaptic spine density in Egr3-/-, compared to WT, mice. These findings indicate that Egr3 is required for ECS-induced expression of Bdnf in the hippocampus and suggest that Bdnf may be a downstream gene in our previously identified biologically pathway for psychiatric illness susceptibility.
Collapse
Affiliation(s)
- Kimberly T Meyers
- Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, Phoenix, AZ, United States.,Interdisciplinary Graduate Program in Neuroscience, Arizona State University, Tempe, AZ, United States
| | - Ketan K Marballi
- Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, Phoenix, AZ, United States
| | - Samuel J Brunwasser
- Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, Phoenix, AZ, United States.,Medical Scientist Training Program, School of Medicine, Washington University in St. Louis, St. Louis, MO, United States
| | - Briana Renda
- Department of Psychology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Milad Charbel
- Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, Phoenix, AZ, United States.,Barrett, The Honors college, Arizona State University, Tempe, AZ, United States
| | - Diano F Marrone
- Department of Psychology, Wilfrid Laurier University, Waterloo, ON, Canada.,Evelyn F. McKnight Brain Institute, The University of Arizona, Tucson, AZ, United States
| | - Amelia L Gallitano
- Department of Basic Medical Sciences, College of Medicine Phoenix, University of Arizona, Phoenix, AZ, United States
| |
Collapse
|
37
|
Beyond good and evil: A putative continuum-sorting hypothesis for the functional role of proBDNF/BDNF-propeptide/mBDNF in antidepressant treatment. Neurosci Biobehav Rev 2018; 90:70-83. [PMID: 29626490 DOI: 10.1016/j.neubiorev.2018.04.001] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/13/2018] [Accepted: 04/03/2018] [Indexed: 02/07/2023]
Abstract
Depression and posttraumatic stress disorder are assumed to be maladaptive responses to stress and antidepressants are thought to counteract such responses by increasing BDNF (brain-derived neurotrophic factor) levels. BDNF acts through TrkB (tropomyosin-related receptor kinase B) and plays a central role in neuroplasticity. In contrast, both precursor proBDNF and BDNF propeptide (another metabolic product from proBDNF cleavage) have a high affinity to p75 receptor (p75R) and usually convey apoptosis and neuronal shrinkage. Although BDNF and proBDNF/propeptide apparently act in opposite ways, neuronal turnover and remodeling might be a final common way that both act to promote more effective neuronal networking, avoiding neuronal redundancy and the misleading effects of environmental contingencies. This review aims to provide a brief overview about the BDNF functional role in antidepressant action and about p75R and TrkB signaling to introduce the "continuum-sorting hypothesis." The resulting hypothesis suggests that both BDNF/proBDNF and BDNF/propeptide act as protagonists to fine-tune antidepressant-dependent neuroplasticity in crucial brain structures to modulate behavioral responses to stress.
Collapse
|
38
|
Hing B, Sathyaputri L, Potash JB. A comprehensive review of genetic and epigenetic mechanisms that regulate BDNF expression and function with relevance to major depressive disorder. Am J Med Genet B Neuropsychiatr Genet 2018; 177:143-167. [PMID: 29243873 DOI: 10.1002/ajmg.b.32616] [Citation(s) in RCA: 97] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 11/21/2017] [Indexed: 12/11/2022]
Abstract
Major depressive disorder (MDD) is a mood disorder that affects behavior and impairs cognition. A gene potentially important to this disorder is the brain derived neurotrophic factor (BDNF) as it is involved in processes controlling neuroplasticity. Various mechanisms exist to regulate BDNF's expression level, subcellular localization, and sorting to appropriate secretory pathways. Alterations to these processes by genetic factors and negative stressors can dysregulate its expression, with possible implications for MDD. Here, we review the mechanisms governing the regulation of BDNF expression, and discuss how disease-associated single nucleotide polymorphisms (SNPs) can alter these mechanisms, and influence MDD. As negative stressors increase the likelihood of MDD, we will also discuss the impact of these stressors on BDNF expression, the cellular effect of such a change, and its impact on behavior in animal models of stress. We will also describe epigenetic processes that mediate this change in BDNF expression. Similarities in BDNF expression between animal models of stress and those in MDD will be highlighted. We will also contrast epigenetic patterns at the BDNF locus between animal models of stress, and MDD patients, and address limitations to current clinical studies. Future work should focus on validating current genetic and epigenetic findings in tightly controlled clinical studies. Regions outside of BDNF promoters should also be explored, as should other epigenetic marks, to improve identification of biomarkers for MDD.
Collapse
Affiliation(s)
- Benjamin Hing
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - Leela Sathyaputri
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| | - James B Potash
- Department of Psychiatry, Carver College of Medicine, University of Iowa, Iowa City, Iowa
| |
Collapse
|
39
|
Moy JK, Khoutorsky A, Asiedu MN, Dussor G, Price TJ. eIF4E Phosphorylation Influences Bdnf mRNA Translation in Mouse Dorsal Root Ganglion Neurons. Front Cell Neurosci 2018; 12:29. [PMID: 29467623 PMCID: PMC5808250 DOI: 10.3389/fncel.2018.00029] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 01/23/2018] [Indexed: 01/19/2023] Open
Abstract
Plasticity in dorsal root ganglion (DRG) neurons that promotes pain requires activity-dependent mRNA translation. Protein synthesis inhibitors block the ability of many pain-promoting molecules to enhance excitability in DRG neurons and attenuate behavioral signs of pain plasticity. In line with this, we have recently shown that phosphorylation of the 5′ cap-binding protein, eIF4E, plays a pivotal role in plasticity of DRG nociceptors in models of hyperalgesic priming. However, mRNA targets of eIF4E phosphorylation have not been elucidated in the DRG. Brain-derived neurotrophic factor (BDNF) signaling from nociceptors in the DRG to spinal dorsal horn neurons is an important mediator of hyperalgesic priming. Regulatory mechanisms that promote pain plasticity via controlling BDNF expression that is involved in promoting pain plasticity have not been identified. We show that phosphorylation of eIF4E is paramount for Bdnf mRNA translation in the DRG. Bdnf mRNA translation is reduced in mice lacking eIF4E phosphorylation (eIF4ES209A) and pro-nociceptive factors fail to increase BDNF protein levels in the DRGs of these mice despite robust upregulation of Bdnf-201 mRNA levels. Importantly, bypassing the DRG by giving intrathecal injection of BDNF in eIF4ES209A mice creates a strong hyperalgesic priming response that is normally absent or reduced in these mice. We conclude that eIF4E phosphorylation-mediated translational control of BDNF expression is a key mechanism for nociceptor plasticity leading to hyperalgesic priming.
Collapse
Affiliation(s)
- Jamie K Moy
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States.,Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Arkady Khoutorsky
- Department of Anesthesia, McGill University, Montréal, QC, Canada.,Alan Edwards Centre for Research on Pain, McGill University, Montréal, QC, Canada
| | - Marina N Asiedu
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States.,Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Gregory Dussor
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States.,Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| | - Theodore J Price
- School of Behavioral and Brain Sciences, University of Texas at Dallas, Richardson, TX, United States.,Department of Pharmacology, University of Arizona, Tucson, AZ, United States
| |
Collapse
|
40
|
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by a mutation that expands the polyglutamine (CAG) repeat in exon 1 of the huntingtin (HTT) gene. Wild-type HTT protein interacts with other proteins to protect cells against toxic stimuli, mediate vesicle transport and endocytosis, and modulate synaptic activity. Mutant HTT protein disrupts autophagy, vesicle transport, neurotransmitter signaling, and mitochondrial function. Although many of the activities of wild-type HTT protein and the toxicities of mutant HTT protein are characterized, less is known about the activities of HTT mRNA. Most putative HD therapies aim to target mutant HTT mRNA before it is translated into the protein. Therefore, it is imperative to learn as much as we can about how cells handle both wild-type and mutant HTT mRNA so that effective therapies can be designed. Here, we review the structure of wild-type and mutant HTT mRNA, with emphasis on their alternatively polyadenylated or spliced isoforms. We then consider the abundance of HTT mRNA isoforms in HD and discuss the potential implications of these findings. Evidence in the review should be used to guide future research aimed at developing mRNA-lowering therapies for HD.
Collapse
Affiliation(s)
- Lindsay Romo
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
| | - Emily S. Mohn
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| | - Neil Aronin
- Department of Medicine, University of Massachusetts Medical School, Worcester, MA, USA
- RNA Therapeutics Institute, University of Massachusetts Medical School, Worcester, MA, USA
| |
Collapse
|
41
|
Cao D, Cui J, Cao D, Guo C, Min G, Liu M, Li L. S-adenosylmethionine reduces the inhibitory effect of Aβ on BDNF expression through decreasing methylation level of BDNF exon Ⅳ in rats. Biochem Biophys Res Commun 2018; 495:2609-2615. [DOI: 10.1016/j.bbrc.2017.12.166] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2017] [Accepted: 12/30/2017] [Indexed: 12/27/2022]
|
42
|
Yan D, Jin C, Cao Y, Wang L, Lu X, Yang J, Wu S, Cai Y. Effects of Aluminium on Long-Term Memory in Rats and on SIRT1 Mediating the Transcription of CREB-Dependent Gene in Hippocampus. Basic Clin Pharmacol Toxicol 2017; 121:342-352. [PMID: 28429887 DOI: 10.1111/bcpt.12798] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 04/08/2017] [Indexed: 12/22/2022]
Abstract
Epidemiological investigations have shown that aluminium (Al) is an important neurotoxicant which can be absorbed by organisms via various routes. Previous studies have confirmed that exposure to Al could cause neurodegenerative diseases, decline CREB phosphorylation and then down-regulate the transcription and protein expression of its target genes including BDNF. However, recent studies revealed that CREB activation alone was far from enough to activate the expression of long-term memory (LTM)-related genes; there might be other regulatory factors involved in this process. Several studies showed that TORC1 might be involved in regulating the transcription of downstream target genes as well. Also, TORC1 could be mediated by SIRT1 during the formation of LTM. However, the role of CREB regulating system in Al-induced LTM impairment was still not utterly elucidated till now. This study was designed to establish the rat model of subchronic Al exposure to observe the neuroethology, regulatory factor levels and molecular biological alterations in hippocampal cells. The results showed that, with the increasing AlCl3 dose, blood Al content increased gradually; morphology of the hippocampus and neuronal ultrastructure were aberrant; in the Morris water maze test, the escape latency and distance travelled became longer, swimming traces turned more complicated in the place navigation test; intracellular Ca2+ , cAMP levels declined significantly in AlCl3 -treated rats, followed by abated nuclear translocation of TORC1 and decreased SIRT1, TORC1 and pCREB levels. These results indicate that SIRT1 and TORC1 might play an important mediating role in Al-induced LTM impairment.
Collapse
Affiliation(s)
- Dongying Yan
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
- Jinzhou Medical University, Section III, Linghe District, Jinzhou, China
| | - Cuihong Jin
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Yang Cao
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Lulu Wang
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Xiaobo Lu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Jinghua Yang
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Shengwen Wu
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| | - Yuan Cai
- Department of Toxicology, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|
43
|
BDNF at the synapse: why location matters. Mol Psychiatry 2017; 22:1370-1375. [PMID: 28937692 PMCID: PMC5646361 DOI: 10.1038/mp.2017.144] [Citation(s) in RCA: 150] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2017] [Revised: 04/13/2017] [Accepted: 05/26/2017] [Indexed: 12/14/2022]
Abstract
Neurotrophic factors, a family of secreted proteins that support the growth, survival and differentiation of neurons, have been intensively studied for decades due to the powerful and diverse effects on neuronal physiology, as well as their therapeutic potential. Such efforts have led to a detailed understanding on the molecular mechanisms of neurotrophic factor signaling. One member, brain-derived neurotrophic factor (BDNF) has drawn much attention due to its pleiotropic roles in the central nervous system and implications in various brain disorders. In addition, recent advances linking the rapid-acting antidepressant, ketamine, to BDNF translation and BDNF-dependent signaling, has re-emphasized the importance of understanding the precise details of BDNF biology at the synapse. Although substantial knowledge related to the genetic, epigenetic, cell biological and biochemical aspects of BDNF biology has now been established, certain aspects related to the precise localization and release of BDNF at the synapse have remained obscure. A recent series of genetic and cell biological studies have shed light on the question-the site of BDNF release at the synapse. In this Perspectives article, these new insights will be placed in the context of previously unresolved issues related to BDNF biology, as well as how BDNF may function as a downstream mediator of newer pharmacological agents currently under investigation for treating psychiatric disorders.
Collapse
|
44
|
Stevens AJ, Rucklidge JJ, Kennedy MA. Epigenetics, nutrition and mental health. Is there a relationship? Nutr Neurosci 2017; 21:602-613. [PMID: 28553986 DOI: 10.1080/1028415x.2017.1331524] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many aspects of human development and disease are influenced by the interaction between genetic and environmental factors. Understanding how our genes respond to the environment is central to managing health and disease, and is one of the major contemporary challenges in human genetics. Various epigenetic processes affect chromosome structure and accessibility of deoxyribonucleic acid (DNA) to the enzymatic machinery that leads to expression of genes. One important epigenetic mechanism that appears to underlie the interaction between environmental factors, including diet, and our genome, is chemical modification of the DNA. The best understood of these modifications is methylation of cytosine residues in DNA. It is now recognized that the pattern of methylated cytosines throughout our genomes (the 'methylome') can change during development and in response to environmental cues, often with profound effects on gene expression. Many dietary constituents may indirectly influence genomic pathways that methylate DNA, and there is evidence for biochemical links between nutritional quality and mental health. Deficiency of both macro- and micronutrients has been associated with increased behavioural problems, and nutritional supplementation has proven efficacious in treatment of certain neuropsychiatric disorders. In this review we examine evidence from the fields of nutrition, developmental biology, and mental health that supports dietary impacts on epigenetic processes, particularly DNA methylation. We then consider whether such processes could underlie the demonstrated efficacy of dietary supplementation in treatment of mental disorders, and whether targeted manipulation of DNA methylation patterns using controlled dietary supplementation may be of wider clinical value.
Collapse
Affiliation(s)
- Aaron J Stevens
- a Department of Pathology , University of Otago , P.O. Box 4345, Christchurch , New Zealand
| | - Julia J Rucklidge
- b Department of Psychology , University of Canterbury , Christchurch , New Zealand
| | - Martin A Kennedy
- a Department of Pathology , University of Otago , P.O. Box 4345, Christchurch , New Zealand
| |
Collapse
|
45
|
Martínez-Levy GA, Rocha L, Rodríguez-Pineda F, Alonso-Vanegas MA, Nani A, Buentello-García RM, Briones-Velasco M, San-Juan D, Cienfuegos J, Cruz-Fuentes CS. Increased Expression of Brain-Derived Neurotrophic Factor Transcripts I and VI, cAMP Response Element Binding, and Glucocorticoid Receptor in the Cortex of Patients with Temporal Lobe Epilepsy. Mol Neurobiol 2017; 55:3698-3708. [PMID: 28527108 DOI: 10.1007/s12035-017-0597-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2017] [Accepted: 05/03/2017] [Indexed: 12/19/2022]
Abstract
A body of evidence supports a relevant role of brain-derived neurotrophic factor (BDNF) in temporal lobe epilepsy (TLE). Magnetic resonance data reveal that the cerebral atrophy extends to regions that are functionally and anatomically connected with the hippocampus, especially the temporal cortex. We previously reported an increased expression of BDNF messenger for the exon VI in the hippocampus of temporal lobe epilepsy patients compared to an autopsy control group. Altered levels of this particular transcript were also associated with pre-surgical use of certain psychotropic. We extended here our analysis of transcripts I, II, IV, and VI to the temporal cortex since this cerebral region holds intrinsic communication with the hippocampus and is structurally affected in patients with TLE. We also assayed the cyclic adenosine monophosphate response element-binding (CREB) and glucocorticoid receptor (GR) genes as there is experimental evidence of changes in their expression associated with BDNF and epilepsy. TLE and pre-surgical pharmacological treatment were considered as the primary clinical independent variables. Transcripts BDNF I and BDNF VI increased in the temporal cortex of patients with pharmacoresistant TLE. The expression of CREB and GR expression follow the same direction. Pre-surgical use of selective serotonin reuptake inhibitors, carbamazepine (CBZ) and valproate (VPA), was associated with the differential expression of specific BDNF transcripts and CREB and GR genes. These changes could have functional implication in the plasticity mechanisms related to temporal lobe epilepsy.
Collapse
Affiliation(s)
- G A Martínez-Levy
- Department of Genetics, National Institute of Psychiatry "Ramón de la Fuente Muñiz" (INPRFM), Mexico City, Mexico
| | - L Rocha
- Department of Pharmacobiology, Center for Research and Advanced Studies, CINVESTAV, Mexico City, Mexico
| | - F Rodríguez-Pineda
- Department of Genetics, National Institute of Psychiatry "Ramón de la Fuente Muñiz" (INPRFM), Mexico City, Mexico
| | - M A Alonso-Vanegas
- Neurosurgery Section, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez" (INNNMVS), Mexico City, Mexico
| | - A Nani
- Department of Genetics, National Institute of Psychiatry "Ramón de la Fuente Muñiz" (INPRFM), Mexico City, Mexico
| | - R M Buentello-García
- Neurosurgery Section, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez" (INNNMVS), Mexico City, Mexico
| | - M Briones-Velasco
- Department of Genetics, National Institute of Psychiatry "Ramón de la Fuente Muñiz" (INPRFM), Mexico City, Mexico
| | - D San-Juan
- Clinical Research Department, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez" (INNNMVS), Mexico City, Mexico
| | - J Cienfuegos
- Neurosurgery Section, National Institute of Neurology and Neurosurgery "Manuel Velasco Suárez" (INNNMVS), Mexico City, Mexico
| | - C S Cruz-Fuentes
- Department of Genetics, National Institute of Psychiatry "Ramón de la Fuente Muñiz" (INPRFM), Mexico City, Mexico.
| |
Collapse
|
46
|
Calabrese F, Savino E, Mocaer E, Bretin S, Racagni G, Riva MA. Upregulation of neurotrophins by S 47445, a novel positive allosteric modulator of AMPA receptors in aged rats. Pharmacol Res 2017; 121:59-69. [PMID: 28442348 DOI: 10.1016/j.phrs.2017.04.019] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 02/06/2023]
Abstract
At molecular levels, it has been shown that aging is associated with alterations in neuroplastic mechanisms. In this study, it was examined if the altered expression of neurotrophins observed in aged rats could be corrected by a chronic treatment with S 47445 (1-3-10mg/kg, p.o.), a novel selective positive allosteric modulator of the AMPA receptors. Both the mRNA and the protein levels of the neurotrophins Bdnf, NT-3 and Ngf were specifically measured in the prefrontal cortex and hippocampus (ventral and dorsal) of aged rats. It was found that 2-week-treatment with S 47445 corrected the age-related deficits of these neurotrophins and/or positively modulated their expression in comparison to vehicle aged rats in the range of procognitive and antidepressant active doses in rodents. Collectively, the ability of S 47445 to modulate various neurotrophins demonstrated its neurotrophic properties in two major brain structures involved in cognition and mood regulation suggesting its therapeutic potential for improving several diseases such as Alzheimer's disease and/or Major Depressive Disorders.
Collapse
Affiliation(s)
- Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, Universita' degli Studi di Milano, Milan, Italy
| | - Elisa Savino
- Department of Pharmacological and Biomolecular Sciences, Universita' degli Studi di Milano, Milan, Italy
| | - Elisabeth Mocaer
- Neuropsychiatric Innovation Therapeutic Pole, Institut de Recherches Internationales Servier, Suresnes, France
| | - Sylvie Bretin
- Neuropsychiatric Innovation Therapeutic Pole, Institut de Recherches Internationales Servier, Suresnes, France
| | - Giorgio Racagni
- Department of Pharmacological and Biomolecular Sciences, Universita' degli Studi di Milano, Milan, Italy
| | - Marco A Riva
- Department of Pharmacological and Biomolecular Sciences, Universita' degli Studi di Milano, Milan, Italy.
| |
Collapse
|
47
|
Maynard KR, Hobbs JW, Sukumar M, Kardian AS, Jimenez DV, Schloesser RJ, Martinowich K. Bdnf mRNA splice variants differentially impact CA1 and CA3 dendrite complexity and spine morphology in the hippocampus. Brain Struct Funct 2017; 222:3295-3307. [PMID: 28324222 DOI: 10.1007/s00429-017-1405-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/13/2017] [Indexed: 12/22/2022]
Abstract
Brain-derived neurotrophic factor (BDNF) is an activity-dependent neurotrophin critical for neuronal plasticity in the hippocampus. BDNF is encoded by multiple transcripts with alternative 5' untranslated regions (5'UTRS) that display activity-induced targeting to distinct subcellular compartments. While individual Bdnf 5'UTR transcripts influence dendrite morphology in cultured hippocampal neurons, it is unknown whether Bdnf splice variants impact dendrite arborization in functional classes of neurons in the intact hippocampus. Moreover, the contribution of Bdnf 5'UTR splice variants to dendritic spine density and shape has not been explored. We analyzed the structure of CA1 and CA3 dendrite arbors in transgenic mice lacking BDNF production from exon (Ex) 1, 2, 4, or 6 splice variants (Bdnf-e1, -e2, -e4, and -e6-/- mice) and found that loss of BDNF from individual Bdnf mRNA variants differentially impacts the complexity of apical and basal arbors in vivo. Consistent with the subcellular localization studies, Bdnf Ex2 and Ex6 transcripts significantly contributed to dendrite morphology in both CA1 and CA3 neurons. While Bdnf-e2-/- mice showed increased branching proximal to the soma in CA1 and CA3 apical arbors, Bdnf-e6-/- mice showed decreased apical and basal dendrite complexity. Analysis of spine morphology on Bdnf-e6-/- CA1 dendrites revealed changes in the percentage of differently sized spines on apical, but not basal, branches. These results provide further evidence that Bdnf splice variants generate a spatial code that mediates the local actions of BDNF in distinct dendritic compartments on structural and functional plasticity.
Collapse
Affiliation(s)
- Kristen R Maynard
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 North Wolfe Street, Suite 300, Baltimore, MD, 21205, USA
| | - John W Hobbs
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 North Wolfe Street, Suite 300, Baltimore, MD, 21205, USA
| | - Mahima Sukumar
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 North Wolfe Street, Suite 300, Baltimore, MD, 21205, USA
| | - Alisha S Kardian
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 North Wolfe Street, Suite 300, Baltimore, MD, 21205, USA
| | - Dennisse V Jimenez
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 North Wolfe Street, Suite 300, Baltimore, MD, 21205, USA
| | | | - Keri Martinowich
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, 855 North Wolfe Street, Suite 300, Baltimore, MD, 21205, USA. .,Departments of Psychiatry & Behavioral Sciences, and Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
48
|
Peregud DI, Freiman SV, Tishkina AO, Sokhranyaeva LS, Lazareva NA, Onufriev MV, Stepanichev MY, Gulyaeva NV. Effects of early neonatal proinflammatory stress on the expression of BDNF transcripts in the brain regions of prepubertal male rats. ACTA ACUST UNITED AC 2017. [DOI: 10.1134/s2079059717010117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
49
|
Fasulo L, Brandi R, Arisi I, La Regina F, Berretta N, Capsoni S, D'Onofrio M, Cattaneo A. ProNGF Drives Localized and Cell Selective Parvalbumin Interneuron and Perineuronal Net Depletion in the Dentate Gyrus of Transgenic Mice. Front Mol Neurosci 2017; 10:20. [PMID: 28232789 PMCID: PMC5299926 DOI: 10.3389/fnmol.2017.00020] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2016] [Accepted: 01/16/2017] [Indexed: 01/12/2023] Open
Abstract
ProNGF, the precursor of mature Nerve Growth Factor (NGF), is the most abundant NGF form in the brain and increases markedly in the cortex in Alzheimer's Disease (AD), relative to mature NGF. A large body of evidence shows that the actions of ProNGF and mature NGF are often conflicting, depending on the receptors expressed in target cells. TgproNGF#3 mice, expressing furin-cleavage resistant proNGF in CNS neurons, directly reveal consequences of increased proNGF levels on brain homeostasis. Their phenotype clearly indicates that proNGF can be a driver of neurodegeneration, including severe learning and memory behavioral deficits, cholinergic deficits, and diffuse immunoreactivity for A-beta and A-beta-oligomers. In aged TgproNGF#3 mice spontaneous epileptic-like events are detected in entorhinal cortex-hippocampal slices, suggesting occurrence of excitatory/inhibitory (E/I) imbalance. In this paper, we investigate the molecular events linking increased proNGF levels to the epileptiform activity detected in hippocampal slices. The occurrence of spontaneous epileptiform discharges in the hippocampal network in TgproNGF#3 mice suggests an impaired inhibitory interneuron homeostasis. In the present study, we detect the onset of hippocampal epileptiform events at 1-month of age. Later, we observe a regional- and cellular-selective Parvalbumin interneuron and perineuronal net (PNN) depletion in the dentate gyrus (DG), but not in other hippocampal regions of TgproNGF#3 mice. These results demonstrate that, in the hippocampus, the DG is selectively vulnerable to altered proNGF/NGF signaling. Parvalbumin interneuron depletion is also observed in the amygdala, a region strongly connected to the hippocampus and likewise receiving cholinergic afferences. Transcriptome analysis of TgproNGF#3 hippocampus reveals a proNGF signature with broad down-regulation of transcription. The most affected mRNAs modulated at early times belong to synaptic transmission and plasticity and extracellular matrix (ECM) gene families. Moreover, alterations in the expression of selected BDNF splice variants were observed. Our results provide further mechanistic insights into the vicious negative cycle linking proNGF and neurodegeneration, confirming the regulation of E/I homeostasis as a crucial mediating mechanism.
Collapse
Affiliation(s)
- Luisa Fasulo
- Bio@SNS Laboratory, Scuola Normale SuperiorePisa, Italy; European Brain Research Institute Rita Levi-MontalciniRome, Italy
| | - Rossella Brandi
- European Brain Research Institute Rita Levi-Montalcini Rome, Italy
| | - Ivan Arisi
- European Brain Research Institute Rita Levi-Montalcini Rome, Italy
| | | | - Nicola Berretta
- Department of Experimental Neurology, Fondazione Santa Lucia IRCCS Rome, Italy
| | - Simona Capsoni
- Bio@SNS Laboratory, Scuola Normale Superiore Pisa, Italy
| | - Mara D'Onofrio
- European Brain Research Institute Rita Levi-Montalcini Rome, Italy
| | - Antonino Cattaneo
- Bio@SNS Laboratory, Scuola Normale SuperiorePisa, Italy; European Brain Research Institute Rita Levi-MontalciniRome, Italy
| |
Collapse
|
50
|
Orrù A, Caffino L, Moro F, Cassina C, Giannotti G, Di Clemente A, Fumagalli F, Cervo L. Contingent and non-contingent recreational-like exposure to ethanol alters BDNF expression and signaling in the cortico-accumbal network differently. Psychopharmacology (Berl) 2016; 233:3149-60. [PMID: 27370019 DOI: 10.1007/s00213-016-4358-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 06/09/2016] [Indexed: 01/03/2023]
Abstract
RATIONALE Although brain-derived neurotrophic factor (BDNF) is part of a homeostatic pathway involved in the development of alcohol dependence, it is not clear whether this is also true after recreational ethanol consumption. OBJECTIVES We examined BDNF expression and signaling in the cortico-striatal network immediately and 24 h after either a single intravenous (i.v.) ethanol operant self-administration session or the last of 14 sessions. METHODS To compare contingent and non-contingent ethanol exposure, we incorporated the "yoked control-operant paradigm" in which rats actively taking ethanol (S-Et) were paired with two yoked controls receiving passive infusions of ethanol (Y-Et) or saline. RESULTS A single ethanol exposure transiently reduced BDNF mRNA levels in the medial prefrontal cortex (mPFC) of Y-Et. Immediately after the last of 14 sessions, mRNA and mature BDNF protein levels (mBDNF) were reduced in the mPFC in both S-Et and Y-Et while mBDNF expression was raised in the nucleus accumbens (NAc), suggesting enhanced anterograde transport from the mPFC. Conversely, 24 h later mBDNF expression and signaling were raised in the mPFC and NAc of S-Et rats but reduced in the NAc of Y-Et rats, with concomitant reduction of downstream signaling pathways. CONCLUSIONS Our findings indicate that recreational-like i.v. doses of ethanol promote early changes in neurotrophin expression, depending on the length and modality of administration, the brain region investigated, and the presence of the drug. A rapid intervention targeting the BDNF system might be useful to prevent escalation to alcohol abuse.
Collapse
Affiliation(s)
- Alessandro Orrù
- Experimental Psychopharmacology, Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Via Giuseppe La Masa 19, 20156, Milan, Italy.
- Institute of Translational Pharmacology (C.N.R.), Parco Scientifico e Tecnologico della Sardegna, Polaris - Edificio 5 - Località, Piscinamanna, 09010, Pula, Cagliari, Italy.
| | - Lucia Caffino
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Federico Moro
- Experimental Psychopharmacology, Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Via Giuseppe La Masa 19, 20156, Milan, Italy
| | - Chiara Cassina
- Experimental Psychopharmacology, Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Via Giuseppe La Masa 19, 20156, Milan, Italy
| | - Giuseppe Giannotti
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Angelo Di Clemente
- Experimental Psychopharmacology, Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Via Giuseppe La Masa 19, 20156, Milan, Italy
| | - Fabio Fumagalli
- Dipartimento di Scienze Farmacologiche e Biomolecolari, Università degli Studi di Milano, Via Balzaretti 9, 20133, Milan, Italy
| | - Luigi Cervo
- Experimental Psychopharmacology, Department of Neuroscience, IRCCS-Istituto di Ricerche Farmacologiche 'Mario Negri', Via Giuseppe La Masa 19, 20156, Milan, Italy.
| |
Collapse
|