1
|
Wang L, Jiang B, Ji X, Tu J, Lu F, Yang C, Zhong X, Wang L, Cai X, Yi F, He Z, Xie L, Zhou J. Sex shapes phenotype-linked metabolic signatures of stress exposure in the mouse hypothalamus and pituitary. Neurobiol Dis 2025; 209:106898. [PMID: 40185250 DOI: 10.1016/j.nbd.2025.106898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/02/2025] [Accepted: 04/02/2025] [Indexed: 04/07/2025] Open
Abstract
In chronic stress-induced anxiodepression, sex differences in the dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis are well-documented, yet the underlying molecular mechanisms remain largely unexplored. This study investigated sex-specific metabolic signatures associated with stress exposure in the hypothalamus and pituitary, given the potential significance of brain metabolism in sex-related mechanisms underlying anxiodepression. Utilizing a chronic restraint stress (CRS) model, we conducted a comparative analysis of the metabolic profiles in female and male mice to identify distinct phenotypic expressions related to sex differences. Our findings revealed that metabolite alterations in the pituitary were more pronounced than those in the hypothalamus, indicating significant sex-based variations. These differences facilitated phenotypic differentiation and underscored the relevance of sex-specific metabolic changes and their functional associations to behavioral phenotypes. Moreover, diverging and converging pathways were identified to elucidate the molecular and physiological bases of stress susceptibility in both sexes. Key metabolic and immune-related pathways in the hypothalamus and pituitary, such as histidine, tryptophan, lipid, glycerophospholipid, amino acid, and carbohydrate metabolism, showed specific associations with sex and phenotype. Additionally, correlation analysis uncovered several differential metabolites that were significantly linked to mouse behaviors, with marked sex differences. Collectively, our results demonstrate a pronounced sexual dimorphism at the metabolic level in the hypothalamus and pituitary in response to chronic stress. This study provides a valuable molecular resource for further exploration of the interplay between sex and behavioral phenotypes within the dysregulation of the HPA axis that contributes to stress susceptibility and immune response, emphasizing the critical role of sex-specific metabolic mechanisms in anxiodepressive disorder.
Collapse
Affiliation(s)
- Lili Wang
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Bingtao Jiang
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Xunan Ji
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Jiaxin Tu
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Fengmei Lu
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Chen Yang
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Xianhui Zhong
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Lu Wang
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Xiao Cai
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Faping Yi
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing 400016, China
| | - Zongling He
- The Clinical Hospital of Chengdu Brain Science Institute, MOE Key Laboratory for Neuroinformation, School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 611731, China.
| | - Liang Xie
- Department of Neurology, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China.
| | - Jian Zhou
- Institute of Neuroscience, School of Basic Medical Sciences, Chongqing Medical University, Chongqing 400016, China; Key Laboratory of Major Brain Disease and Aging Research (Ministry of Education), Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
2
|
Ogun AO, Kim H, Yoon S, Lee S, Jeon H, Aulia D, Hur J, Lee S. Effects of Dietary Gamma-Aminobutyric Acid (GABA) Inclusion on Acute Temperature Stress Responses in Juvenile Olive Flounder ( Paralichthys olivaceus). Animals (Basel) 2025; 15:809. [PMID: 40150338 PMCID: PMC11939177 DOI: 10.3390/ani15060809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025] Open
Abstract
This study investigated the potential of dietary gamma-aminobutyric acid (GABA) inclusion to mitigate acute temperature stress impacting the physiological resilience of juvenile olive flounder (Paralichthys olivaceus). A total of 360 juvenile fish, with an average initial weight of 12.97 ± 0.1 g (mean ± SEM), were randomly assigned in triplicate to 18 tanks (20 fish per tank) and reared at 19.5 °C for 8 weeks, with bi-monthly collection of growth performance data. The fish were fed one of six experimental diets: control (GABA74), 174 ppm of GABA (GABA174), 275 ppm of GABA (GABA275), 396 ppm of GABA (GABA396), 476 ppm of GABA (GABA476), and 516 ppm of GABA (GABA516). At the end of the trial, one group of fish was subjected to lethal temperature stress (31 °C) for 48 h, while another was exposed to acute temperature stress (29 °C) for 6 h. Growth performance remained relatively stable across all inclusion levels (p > 0.05), with the final body weight (FBW) ranging from 48.2 ± 0.3 g (GABA174) to 50.3 ± 0.6 g (GABA516) and the feed conversion ratio (FCR) varying between 2.06 ± 0.07 (GABA396) and 2.35 ± 0.07 (control). There were no significant differences in average whole-body composition across all dietary treatments, with moisture content ranging from 74.8 to 75.0%, crude protein from 17.8 to 18.2%, crude lipid from 2.89 to 3.15%, and crude ash from 3.62 to 3.80%. Similarly, there were no significant differences in cumulative survival rates during lethal temperature exposure between the GABA-supplemented groups and the control group, with an average of 28.5 ± 4.6%. Additionally, GABA inclusion did not significantly alter plasma-free amino acid profiles, antioxidant enzyme activities, or immune functions (p > 0.05). However, temperature significantly reduced the levels of superoxide dismutase (SOD) from 3.34 ± 0.17 to 2.29 ± 0.36 µg/mL and increased the levels of glutamate oxaloacetate transaminase (GOT) from 17.1 ± 0.8 to 46.3 ± 6.2 U/L, glutamate pyruvate transaminase (GPT) from 14.4 ± 0.6 to 30.2 ± 2.1 U/L, glucose (GLU) from 13.3 ± 0.5 to 68.7 ± 7.7 mg/dL, total protein (TP) from 2.94 ± 0.00 to 3.21 ± 0.1 g/dL, and cortisol from 5001 ± 147 to 6395 ± 194 ng/mL. Furthermore, no significant changes were observed in the expression of key stress-related genes, including heat shock proteins (hsp60, hsp70, and hsp90) and the warm water acclimation-related gene wap65. This study establishes the safety of GABA as a dietary inclusion for olive flounder and highlights its potential to enhance stress resilience in aquaculture. However, the effectiveness of GABA-based interventions could depend on critical factors such as dosage, stress duration, and species-specific responses. Our findings highlight the need for further research to optimize GABA inclusion strategies, particularly with consideration for long-term physiological impacts.
Collapse
Affiliation(s)
- Abayomi Oladimeji Ogun
- Major of Aquaculture and Applied Life Sciences, Division of Fisheries Life Sciences, Pukyong National University, Busan 48513, Republic of Korea; (A.O.O.); (H.K.); (S.Y.); (S.L.); (H.J.); (D.A.); (J.H.)
| | - Haham Kim
- Major of Aquaculture and Applied Life Sciences, Division of Fisheries Life Sciences, Pukyong National University, Busan 48513, Republic of Korea; (A.O.O.); (H.K.); (S.Y.); (S.L.); (H.J.); (D.A.); (J.H.)
| | - Sooa Yoon
- Major of Aquaculture and Applied Life Sciences, Division of Fisheries Life Sciences, Pukyong National University, Busan 48513, Republic of Korea; (A.O.O.); (H.K.); (S.Y.); (S.L.); (H.J.); (D.A.); (J.H.)
| | - Suhyun Lee
- Major of Aquaculture and Applied Life Sciences, Division of Fisheries Life Sciences, Pukyong National University, Busan 48513, Republic of Korea; (A.O.O.); (H.K.); (S.Y.); (S.L.); (H.J.); (D.A.); (J.H.)
| | - Hyuncheol Jeon
- Major of Aquaculture and Applied Life Sciences, Division of Fisheries Life Sciences, Pukyong National University, Busan 48513, Republic of Korea; (A.O.O.); (H.K.); (S.Y.); (S.L.); (H.J.); (D.A.); (J.H.)
| | - Deni Aulia
- Major of Aquaculture and Applied Life Sciences, Division of Fisheries Life Sciences, Pukyong National University, Busan 48513, Republic of Korea; (A.O.O.); (H.K.); (S.Y.); (S.L.); (H.J.); (D.A.); (J.H.)
| | - Junhyeok Hur
- Major of Aquaculture and Applied Life Sciences, Division of Fisheries Life Sciences, Pukyong National University, Busan 48513, Republic of Korea; (A.O.O.); (H.K.); (S.Y.); (S.L.); (H.J.); (D.A.); (J.H.)
| | - Seunghyung Lee
- Major of Aquaculture and Applied Life Sciences, Division of Fisheries Life Sciences, Pukyong National University, Busan 48513, Republic of Korea; (A.O.O.); (H.K.); (S.Y.); (S.L.); (H.J.); (D.A.); (J.H.)
- Feeds and Foods Nutrition Research Center, Pukyong National University, Busan 48547, Republic of Korea
| |
Collapse
|
3
|
Ogundeyi KJ, Ajayi AM, Oduyomi OJ, Adeyemo SA, Ologe MO, Ademowo OG. Vitamin C co-administration with artemether-lumefantrine abrogates chronic stress exacerbated Plasmodium berghei-induced sickness behaviour, inflammatory and oxidative stress responses in mice. J Neuroimmunol 2025; 399:578518. [PMID: 39733552 DOI: 10.1016/j.jneuroim.2024.578518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 12/10/2024] [Accepted: 12/17/2024] [Indexed: 12/31/2024]
Abstract
This study evaluated the effects of vitamin C and artemether-lumefantrine (AL) on sickness behaviour and oxido-inflammatory response in chronically stressed mice infected with Plasmodium berghei. Sickness behaviour severity was examined with weight and assessment of mice behaviours. Results showed that stress increased parasitaemia in infected mice. Vitamin C co-administration with AL increased parasite clearance over AL alone, and modulated inflammatory cytokines (TNF-α, IL-1β, IL-10, IL-12) and antioxidant parameters in plasma and brain tissue. Conclusively, stress worsens malaria-induced sickness behaviour and up-regulates the inflammatory and oxidative stress response. Co-administration of vitamin C with AL appears to counteract these detrimental effects.
Collapse
Affiliation(s)
- Kehinde Joshua Ogundeyi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo-State, Nigeria
| | - Abayomi Mayowa Ajayi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo-State, Nigeria.
| | - Ololade Justina Oduyomi
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo-State, Nigeria
| | - Stella Afolakemi Adeyemo
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo-State, Nigeria
| | - Mary O Ologe
- Department of Pharmacology and Therapeutics, Faculty of Basic Clinical Sciences, University of Ilorin, Kwara-State, Nigeria
| | - Olusegun George Ademowo
- Department of Pharmacology and Therapeutics, Faculty of Basic Medical Sciences, University of Ibadan, Ibadan, Oyo-State, Nigeria; Institute of Advanced Medical Research and Training (IAMRAT), College of Medicine, University of Ibadan, Ibadan, Oyo-State, Nigeria
| |
Collapse
|
4
|
Wang T, Wang X, Wang K, Yu M, Bai R, Zhang Y, Zhang Z, Liu F, Wang R, Shi X, Jia L, Liu K, Li X, Jin G, Zhao S, Dong Z. Chronic stress-induced cholesterol metabolism abnormalities promote ESCC tumorigenesis and predict neoadjuvant therapy response. Proc Natl Acad Sci U S A 2025; 122:e2415042122. [PMID: 39869796 PMCID: PMC11804521 DOI: 10.1073/pnas.2415042122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Accepted: 12/10/2024] [Indexed: 01/29/2025] Open
Abstract
Recent studies have demonstrated that chronic stress can enhance the development of multiple human diseases, including cancer. However, the role of chronic stress in esophageal carcinogenesis and its underlying molecular mechanisms remain unclear. This study uncovered that dysregulated cholesterol metabolism significantly promotes esophageal carcinogenesis under chronic stress conditions. Our findings indicate that the persistent elevation of glucocorticoids induced by chronic stress stimulates cholesterol uptake, contributing to esophageal carcinogenesis. The activated glucocorticoid receptor (GCR) enrichment at the promoter region of High Mobility Group Box 2 (HMGB2) facilitates its transcription. As a transcription coactivator, HMGB2 enhances Sterol Regulatory Element Binding Transcription Factor 1 (SREBF1) transcription and regulates cholesterol metabolism through LDL particle uptake into cells via Low Density Lipoprotein Receptor (LDLR). These results emphasize the significant impact of chronic stress on esophageal carcinogenesis and establish cholesterol metabolism disorder as a crucial link between chronic stress and the development of ESCC. The implications suggest that effectively managing chronic stress may serve as a viable strategy for preventing and treating ESCC.
Collapse
Affiliation(s)
- Ting Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan450000, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Bio-medical Sciences, Cancer Prevention and Treatment Lab, Zhengzhou University, Zhengzhou, Henan450000, China
| | - Xiangyu Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan450000, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Bio-medical Sciences, Cancer Prevention and Treatment Lab, Zhengzhou University, Zhengzhou, Henan450000, China
| | - Keke Wang
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan450000, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Bio-medical Sciences, Cancer Prevention and Treatment Lab, Zhengzhou University, Zhengzhou, Henan450000, China
| | - Mengyuan Yu
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan450000, China
| | - Ruihua Bai
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan450000, China
| | - Yiru Zhang
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan450000, China
| | - Zihan Zhang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan450000, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Bio-medical Sciences, Cancer Prevention and Treatment Lab, Zhengzhou University, Zhengzhou, Henan450000, China
| | - Feifei Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan450000, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Bio-medical Sciences, Cancer Prevention and Treatment Lab, Zhengzhou University, Zhengzhou, Henan450000, China
| | - Rui Wang
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan450000, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Bio-medical Sciences, Cancer Prevention and Treatment Lab, Zhengzhou University, Zhengzhou, Henan450000, China
| | - Xiaodan Shi
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan450000, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Bio-medical Sciences, Cancer Prevention and Treatment Lab, Zhengzhou University, Zhengzhou, Henan450000, China
| | - Ludan Jia
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan450000, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Bio-medical Sciences, Cancer Prevention and Treatment Lab, Zhengzhou University, Zhengzhou, Henan450000, China
| | - Kangdong Liu
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan450000, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Bio-medical Sciences, Cancer Prevention and Treatment Lab, Zhengzhou University, Zhengzhou, Henan450000, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan450000, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Cancer Prevention and Treatment Lab, Zhengzhou University, Zhengzhou, Henan450000, China
| | - Xiang Li
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan450000, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Bio-medical Sciences, Cancer Prevention and Treatment Lab, Zhengzhou University, Zhengzhou, Henan450000, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan450000, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Cancer Prevention and Treatment Lab, Zhengzhou University, Zhengzhou, Henan450000, China
| | - Guoguo Jin
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan450000, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Bio-medical Sciences, Cancer Prevention and Treatment Lab, Zhengzhou University, Zhengzhou, Henan450000, China
- Henan Key Laboratory of Chronic Disease Management, Fuwai Central China Car-Diovascular Hospital, Zhengzhou, Henan450000, China
| | - Simin Zhao
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan450000, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Bio-medical Sciences, Cancer Prevention and Treatment Lab, Zhengzhou University, Zhengzhou, Henan450000, China
- Department of Pathology, Affiliated Cancer Hospital of Zhengzhou University & Henan Cancer Hospital, Zhengzhou, Henan450000, China
| | - Zigang Dong
- Department of Pathophysiology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou450000, China
- China-US (Henan) Hormel Cancer Institute, Zhengzhou, Henan450000, China
- Tianjian Laboratory of Advanced Biomedical Sciences, Institute of Advanced Bio-medical Sciences, Cancer Prevention and Treatment Lab, Zhengzhou University, Zhengzhou, Henan450000, China
- The Collaborative Innovation Center of Henan Province for Cancer Chemoprevention, Zhengzhou, Henan450000, China
- State Key Laboratory of Esophageal Cancer Prevention and Treatment, Cancer Prevention and Treatment Lab, Zhengzhou University, Zhengzhou, Henan450000, China
| |
Collapse
|
5
|
Wei Z, Li A, Su L, Zhang B, Yan Y. Bibliometric and visual analysis of chronic stress in cancer research from 2014 to 2024. Discov Oncol 2025; 16:79. [PMID: 39843635 PMCID: PMC11754581 DOI: 10.1007/s12672-025-01744-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 01/02/2025] [Indexed: 01/24/2025] Open
Abstract
OBJECTIVE In today's fast-paced society, stress has become a widespread phenomenon, garnering increasing attention for its impact on cancer. This study aims to investigate the current status and research hotspots of chronic stress in cancer research from 2014 to 2024, with the goal of providing valuable insights for future studies. METHODS We retrieved 618 articles published between 2014 and 2024 from the Web of Science database and analyzed them using R software, VOSviewer, and CiteSpace. RESULTS There is an overall upward trend in chronic stress-related cancer research, with China leading in publications, followed by the United States, India, Australia, and Italy. The journal most cited is Brain Behavior and Immunity. Key themes identified include 'inflammation', 'breast cancer', 'anxiety', 'psychological stress', and 'oxidative stress'. The primary focus of the research is the impact of chronic stress on various cancer types, the underlying molecular mechanisms, and the implications of chronic stress-related treatments on cancer outcomes. CONCLUSION Chronic stress is increasingly recognized as a Carcinogenic factors. This study provides a comprehensive analysis of chronic stress-related cancer research from 2014 to 2024, offering valuable guidance for future research in this field.
Collapse
Affiliation(s)
- Zhuheng Wei
- Scientific Research Center, Guilin Medical University, Guilin, China
| | - Anxia Li
- Sanya Central Hospital (The Third People's Hospital of Hainan Province), Hainan, China
| | - Ling Su
- Scientific Research Center, Guilin Medical University, Guilin, China
| | - Bo Zhang
- Scientific Research Center, Guilin Medical University, Guilin, China.
| | - Yuanyuan Yan
- Sanya Central Hospital (The Third People's Hospital of Hainan Province), Hainan, China.
| |
Collapse
|
6
|
Kirchberg MC, Pinson C, Frank GKW. Pharmacotherapeutic strategies for the treatment of anorexia nervosa - novel targets to break a vicious cycle. Expert Opin Pharmacother 2024; 25:2253-2265. [PMID: 39497232 PMCID: PMC11972612 DOI: 10.1080/14656566.2024.2424316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 10/29/2024] [Indexed: 11/07/2024]
Abstract
INTRODUCTION Anorexia nervosa (AN) has one of the highest mortality rates of all mental illnesses. No approved pharmacological treatments exist for AN, but novel neurobiological targets show promise. AREAS COVERED Studies show that in individuals with AN, there are alterations in brain neurotransmitter signaling, alongside associated mental rigidity and comorbid anxiety and depression. Available and new therapies could be used to improve alterations in neurobiology and behavior. This narrative review serves as a review of previously published literature assessing the efficacy of traditional pharmacotherapy in treating AN while also exploring novel treatments, including dissociative anesthetics, psychedelics, cannabinoids, hormones, neurosteroids, and ketogenic nutrition. EXPERT OPINION If best practice psychotherapeutic interventions have failed, we recommend a neuroscience and brain research-based medication approach that targets dopamine neurotransmitter receptors to enhance cognitive flexibility and illness insight while reducing dread and avoidance toward food. It is furthermore essential to recognize and treat comorbid conditions such as anxiety, depression, or obsessive-compulsive disorder as they interfere with recovery, and typically do not resolve even with successful AN treatment. Novel strategies have the promise to show efficacy in improving mood and reducing specific AN psychopathology with hopes to be used in clinical practice soon.
Collapse
Affiliation(s)
| | - Claire Pinson
- School of Medicine, University of California San Diego, CA, USA
| | - Guido K. W. Frank
- Department of Psychiatry, University of California San Diego, CA, USA
- Medical Behavioral Unit, Rady Children’s Hospital San Diego, CA, USA
| |
Collapse
|
7
|
Bioletto F, Varaldo E, Gasco V, Maccario M, Arvat E, Ghigo E, Grottoli S. Central and peripheral regulation of the GH/IGF-1 axis: GHRH and beyond. Rev Endocr Metab Disord 2024:10.1007/s11154-024-09933-6. [PMID: 39579280 DOI: 10.1007/s11154-024-09933-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/13/2024] [Indexed: 11/25/2024]
Abstract
The regulation of growth hormone (GH) synthesis and secretion by somatotroph cells of the anterior pituitary is a highly complex process, mediated by a variety of neuroendocrine and peripheral influences. In particular, a key role is played by the hypothalamic peptides growth hormone-releasing hormone (GHRH) and somatostatin, which regulate the somatotroph axis with opposite actions, stimulating and inhibiting GH release, respectively. Since the discovery of GHRH about 50 years ago, many pathophysiological studies have explored the underlying intricate hormonal balance that regulates GHRH secretion and its interplay with the somatotroph axis. Various molecules and pathophysiological states have been shown to modulate the release of GH, GHRH, somatostatin and GH secretagogues. Collectively, the available evidence demonstrates how a vast number of neural and peripheral signals are conveyed and integrated to orchestrate a finely tuned response of the somatotroph axis that adapts to the body's varying needs for growth, metabolism, and repair. The present review aims to summarize the available evidence regarding the key regulators involved in the modulation of the somatotroph axis in humans, presenting detailed molecular insights on the signaling cascades at play. The interplay between different mechanisms governing somatotroph secretion is highlighted, underscoring the nuanced interdependence that maintains homeostasis and facilitates the body's ability to respond to internal and external stimuli.
Collapse
Affiliation(s)
- Fabio Bioletto
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Emanuele Varaldo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Valentina Gasco
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Mauro Maccario
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Emanuela Arvat
- Division of Oncological Endocrinology, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Ezio Ghigo
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Silvia Grottoli
- Division of Endocrinology, Diabetes and Metabolism, Department of Medical Sciences, University of Turin, Turin, Italy.
| |
Collapse
|
8
|
Vuković M, Nosek I, Slotboom J, Medić Stojanoska M, Kozić D. Neurometabolic Profile in Obese Patients: A Cerebral Multi-Voxel Magnetic Resonance Spectroscopy Study. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1880. [PMID: 39597065 PMCID: PMC11596650 DOI: 10.3390/medicina60111880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/05/2024] [Accepted: 11/14/2024] [Indexed: 11/29/2024]
Abstract
Background and Objectives: Obesity-related chronic inflammation may lead to neuroinflammation and neurodegeneration. This study aimed to evaluate the neurometabolic profile of obese patients using cerebral multivoxel magnetic resonance spectroscopy (mvMRS) and assess correlations between brain metabolites and obesity markers, including body mass index (BMI), waist circumference, waist-hip ratio, body fat percentage, and indicators of metabolic syndrome (e.g., triglycerides, HDL cholesterol, fasting blood glucose, insulin, and insulin resistance index (HOMA-IR)). Materials and Methods: This prospective study involved 100 participants, stratified into two groups: 50 obese individuals (BMI ≥ 30 kg/m2) and 50 controls (18.5 ≤ BMI < 25 kg/m2). Anthropometric measurements, body fat percentage, and biochemical markers were evaluated. All subjects underwent long- and short-echo mvMRS analysis of the frontal and parietal supracallosal subcortical and deep white matter, as well as the cingulate gyrus, analyzing NAA/Cr, Cho/Cr, and mI/Cr ratios, along with absolute concentrations of NAA and Cho. Results: Obese participants exhibited significantly decreased NAA/Cr and Cho/Cr ratios in the deep white matter of the right cerebral hemisphere (p < 0.001), while absolute concentrations of NAA and Cho did not differ significantly between groups (p > 0.05). NAA levels showed negative correlations with more reliable obesity parameters (waist circumference and waist-to-hip ratio) but not with BMI, particularly in the deep frontal white matter and dorsal anterior cingulate gyrus of the left cerebral hemisphere. Notably, insulin demonstrated a significant negative impact on NAA (ρ = -0.409 and ρ = -0.410; p < 0.01) and Cho levels (ρ = -0.403 and ρ = -0.392; p < 0.01) at these locations in obese individuals. Conclusions: Central obesity and hyperinsulinemia negatively affect specific brain regions associated with cognitive and emotional processing, while BMI is not a reliable parameter for assessing brain metabolism.
Collapse
Affiliation(s)
- Miloš Vuković
- Faculty of Medicine, University in Novi Sad, 21000 Novi Sad, Serbia; (I.N.); (M.M.S.); (D.K.)
| | - Igor Nosek
- Faculty of Medicine, University in Novi Sad, 21000 Novi Sad, Serbia; (I.N.); (M.M.S.); (D.K.)
| | - Johannes Slotboom
- Institute for Diagnostic and Interventional Neuroradiology, University Hospital Bern and Inselspital, 3010 Bern, Switzerland;
| | - Milica Medić Stojanoska
- Faculty of Medicine, University in Novi Sad, 21000 Novi Sad, Serbia; (I.N.); (M.M.S.); (D.K.)
| | - Duško Kozić
- Faculty of Medicine, University in Novi Sad, 21000 Novi Sad, Serbia; (I.N.); (M.M.S.); (D.K.)
| |
Collapse
|
9
|
Evertse D, Alves-Martinez P, Treccani G, Müller MB, Meye FJ, van der Kooij MA. Transient impact of chronic social stress on effort-based reward motivation in non-food restricted mice: Involvement of corticosterone. Neurobiol Stress 2024; 33:100690. [PMID: 39611010 PMCID: PMC11602574 DOI: 10.1016/j.ynstr.2024.100690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 10/25/2024] [Accepted: 11/08/2024] [Indexed: 11/30/2024] Open
Abstract
Chronic stress has been connected to a reduced effort and motivational deficits. To study effort-based motivation in rodents, operant conditioning is often employed. However, caloric restriction is typically imposed simultaneously. Since caloric restriction is a stressor in its own right, this procedure interferes with data interpretation. Here, we investigate whether chronic social defeat stress (CSD), lasting 10 consecutive days, would alter effort-based reward motivation in mice trained under ad libitum food conditions. Utilizing operant FED3 boxes in home cages, mice were trained within eight days to nose poke for palatable food. After training completion, operant memory was retained for at least 16 days, and mice demonstrated sustained effort, as assessed with a progressive ratio schedule, to obtain reward pellets. Directly after CSD exposure (10th day), mice exhibited reduced effort for palatable food rewards, but also displayed reduced nose poking in general. The effects of CSD on effort were short-lived, with no lasting impact on effort-based reward motivation one week post-stress. As corticosterone (CORT) levels were increased at day 10 of CSD, but not at day 17, we hypothesized that CORT might mediate the acute effects of CSD on effort-based reward motivation. Indeed, CORT administration [100 μg/ml], supplied via the drinking water, mirrored the CSD-induced CORT spike and temporarily reduced reward motivation. Our findings emphasize that CSD does not result in long-term deficits in reward motivation, suggesting a resilient adaptive response in mice under unrestricted feeding conditions. This study underscores the necessity of considering temporal dynamics of stress impacts and highlights the modulating effects of CORT. These insights contribute to a deeper understanding of the resilience mechanisms in motivational impairments and pave the way for further research into factors facilitating this resilience.
Collapse
Affiliation(s)
- Danina Evertse
- Department for Developmental Origins of Disease, Wilhelmina Children's Hospital, Utrecht University, Utrecht, the Netherlands
| | - Pilar Alves-Martinez
- Department for Developmental Origins of Disease, Wilhelmina Children's Hospital, Utrecht University, Utrecht, the Netherlands
| | - Giulia Treccani
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Department for Systemic Neuroscience, Institute of Anatomy and Cell Biology, University of Marburg, Marburg, Germany
| | - Marianne B. Müller
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Department of Psychiatry and Psychotherapy, Translational Psychiatry, University Medical Center of the Johannes Gutenberg University, Mainz, Germany
| | - Frank J. Meye
- Department of Translational Neuroscience, Brain Center, UMC Utrecht, Utrecht University, Utrecht, the Netherlands
| | | |
Collapse
|
10
|
Meijboom FS, Hasch A, Ruiz de Azua I, Cologna CT, Loopmans S, Lutz B, Müller MB, Ghesquière B, van der Kooij MA. Adaptations in hepatic glucose metabolism after chronic social defeat stress in mice. Sci Rep 2024; 14:25511. [PMID: 39462137 PMCID: PMC11513145 DOI: 10.1038/s41598-024-76310-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Chronic stress has been shown to induce hyperglycemia in both peripheral blood and the brain, yet the detailed mechanisms of glucose metabolism under stress remain unclear. Utilizing 13C6-labeled glucose to trace metabolic pathways, our study investigated the impact of stress by chronic social defeat (CSD) on glucose metabolites in the liver and brain one week post-stress. We observed a reduction in 13C6-enrichment of glucose metabolites in the liver, contrasting with unchanged levels in the brain. Notably, hepatic glycogen levels were reduced while lactate concentrations were elevated, suggesting lactate as an alternative energy source during stress. Long-term effects were also examined, revealing normalized blood glucose levels and restored glycogen stores in the liver three weeks post-CSD, despite sustained increases in food intake. This normalization is hypothesized to result from diminished glucagon levels leading to reduced glycogen phosphorylase activity. Our findings highlight a temporal shift in glucose metabolism, with hyperglycemia and glycogen depletion in the liver early after CSD, followed by a later phase of metabolic stabilization. These results underscore the liver's critical role in adapting to CSD and provide insights into the metabolic adjustments that maintain glucose homeostasis under prolonged stress conditions.
Collapse
Affiliation(s)
- Fabiënne S Meijboom
- Department for Developmental Origins of Disease (DDOD), Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Annika Hasch
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
| | - Inigo Ruiz de Azua
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Camila Takeno Cologna
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, Metabolomics Core Leuven, VIB, Leuven, Belgium
| | - Shauni Loopmans
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, Metabolomics Core Leuven, VIB, Leuven, Belgium
| | - Beat Lutz
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Marianne B Müller
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany
- Department of Psychiatry and Psychotherapy, Translational Psychiatry, University Medical Center of the Johannes Gutenberg University Mainz, Mainz, Germany
| | - Bart Ghesquière
- Laboratory of Applied Mass Spectrometry, Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium
- Center for Cancer Biology, Metabolomics Core Leuven, VIB, Leuven, Belgium
| | - Michael A van der Kooij
- Department for Developmental Origins of Disease (DDOD), Wilhelmina Children's Hospital, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands.
- Leibniz Institute for Resilience Research (LIR), Mainz, Germany.
| |
Collapse
|
11
|
Frank GKW, Scolnick B. Therapeutic ketogenic diet as treatment for anorexia nervosa. Front Nutr 2024; 11:1392135. [PMID: 39296512 PMCID: PMC11409850 DOI: 10.3389/fnut.2024.1392135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 08/13/2024] [Indexed: 09/21/2024] Open
Abstract
Anorexia nervosa (AN) is a severe psychiatric disorder. However, we lack neurobiological models and interventions to explain and treat the core characteristics of food restriction, feeling fat, and body size overestimation. Research has made progress in understanding brain function involved in the pathophysiology of AN, but translating those results into biological therapies has been challenging. Studies have suggested that metabolic factors could contribute to developing and maintaining AN pathophysiology. Here, we describe a neurobiological model for why using a therapeutic ketogenic diet could address key alterations in brain function in AN and prevent the desire for weight loss and associated eating disorder-specific symptoms. This translational model is based on animal studies and human data and integrates behavioral traits, brain neural energy metabolism, and neurotransmitter function. Pilot data indicate that the intervention can dramatically reduce eating and body-related fears, although larger studies across illness stages still need to be conducted.
Collapse
Affiliation(s)
- Guido K W Frank
- Department of Psychiatry, San Diego School of Medicine, University of California, San Diego, San Diego, CA, United States
| | | |
Collapse
|
12
|
Rog J, Nowak K, Wingralek Z. The Relationship between Psychological Stress and Anthropometric, Biological Outcomes: A Systematic Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1253. [PMID: 39202534 PMCID: PMC11356149 DOI: 10.3390/medicina60081253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/27/2024] [Accepted: 07/29/2024] [Indexed: 09/03/2024]
Abstract
Background and Objectives: Challenges and threats to global security and the growing demands of today's society lead to significantly increased exposure to stress. Stress can negatively affect numerous physiological processes, including metabolic changes. An unhealthy lifestyle might intensify this disruption. The aim of the systematic review was to establish the effect of psychological stress on metabolic and anthropometric factors in healthy individuals. Materials and Methods: The study was conducted according to the PRISMA guidelines; and the risk of bias (ROB) assessment was based on the Newcastle-Ottawa Scale (NOS). A literature search of the MEDLINE/PubMed database was conducted using specific search terms. Results: We identified 32 articles meeting the inclusion criteria for the review with the different experimental designs and aims. Most of the papers were at high ROB. The included studies were conducted in groups of adults and children/teenagers. The most-often-applied tool to measure stress severity was the Perceived Stress Scale (PSS). Twenty-two studies analyzed the connection between stress and body composition, and bioimpedance analysis (BIA) was the most often used method. For biological parameters, the most frequently analyzed was cortisol (n = 9). The other examined factors included glucose, insulin, parameters related to food intake regulation, carbohydrates, lipid metabolism, inflammation, and oxidative stress. The included studies were incompliance in relation to the assessment method and type of assessed biological fluids. Conclusions: The vast majority of studies do not support the effect of chronic distress on anthropometric measurements and biological markers levels. However, many of them suggest adverse, synergistic effects of unhealthy lifestyle patterns and the stress on the examined variables. Further experiments should implement a similar and repeatable methodology.
Collapse
Affiliation(s)
- Joanna Rog
- Laboratory of Human Metabolism Research, Department of Dietetics, Institute of Human Nutrition Sciences, Warsaw University of Life Sciences (WULS-SGGW), Nowoursynowska 66 Str., 02-787 Warsaw, Poland
| | - Katarzyna Nowak
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, 20-950 Lublin, Poland; (K.N.); (Z.W.)
| | - Zuzanna Wingralek
- 1st Department of Psychiatry, Psychotherapy and Early Intervention, Medical University of Lublin, 20-950 Lublin, Poland; (K.N.); (Z.W.)
| |
Collapse
|
13
|
Kiuchi K, Kang X, Nishimura R, Sasayama M, Matsumoto K. Causal Effects of High Stress Assessed Via Interviews on Mental and Physical Health: Toward Computer Agent-Driven Stress Assessment. J Occup Environ Med 2024; 66:e285-e295. [PMID: 38603579 DOI: 10.1097/jom.0000000000003117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
OBJECTIVES This study investigated the causal effect of high stress assessment via an interview on the mental and physical health of workers 1 month later. METHODS Stress assessment interviews and feedback were conducted with 50 Japanese workers. In addition to the interviewer, two occupational health professionals assessed participants' stress based on recordings. The average treatment effect was estimated by propensity score matching. RESULTS High stress, according to the interview-based assessment, had a significant negative causal effect on self-reported well-being 1 month later (95% confidence interval: -3.02, -1.10). In addition, no effect of high stress on stress load, mental and physical symptoms, or burnout was observed. CONCLUSIONS This study provides important insights into the prognosis of individuals who were assessed through interviews to have high stress. The findings are expected to help automate stress assessments using computer agents.
Collapse
Affiliation(s)
- Keita Kiuchi
- From the National Institute of Occupational Safety and Health Japan, Organization of Occupational Health and Safety, Kawasaki, Japan (K.K.); Graduate School of Technology, Industrial and Social Sciences, Tokushima University, Tokushima, Japan (X.K., R.N., K.M.); and National Institute of Technology, Kagawa College, Takamatsu, Japan (M.S.)
| | | | | | | | | |
Collapse
|
14
|
Zhou W, Su H, Tong J, Du W, Wang B, Chen P, Wan H, Zhou M. Multiple factor assessment for determining resting metabolic rate in young adults. Sci Rep 2024; 14:11821. [PMID: 38783110 PMCID: PMC11116489 DOI: 10.1038/s41598-024-62639-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/20/2024] [Indexed: 05/25/2024] Open
Abstract
Existing formulas cannot fully explain the variation of resting metabolic rate (RMR). This study aims to examine potential influencing factors beyond anthropometric measurements and develop more accurate equations using accessible parameters. 324 healthy adults (230 females; 18-32 years old) participated in the study. Height, fat-free mass (FFM), fat mass (FM) and RMR were measured. Menstrual cycle, stress levels, living habits, and frequency of consuming caffeinated foods were collected. Measured RMR were compared with predictive values of the new equations and previous 11 equations. Mean RMR for men and women was 1825.2 ± 248.8 and 1345.1 ± 178.7 kcal/day, respectively. RMR adjusted for FFM0.66FM0.066 was positively correlated with BMI. The multiple regression model showed that RMR can be predicted in this population with model 1 (with FFM, FM, age, sex and daily sun exposure duration) or model 2 (with weight and height replacing FFM and FM). The accuracy was 75.31% in the population for predictive model 1 and 70.68% for predictive model 2. The new equations had overall improved performance when compared with existing equations. The predictive formula that consider daily sun exposure duration improve RMR prediction in young adults. Additional investigation is required among individuals in the middle-aged and elderly demographic.
Collapse
Affiliation(s)
- Wanqing Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Hong Su
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Jiali Tong
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Wenwen Du
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Bo Wang
- Department of Nutrition and Food Hygiene, Gusu School, Nanjing Medical University, Suzhou, 215004, China
| | - Pei Chen
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China
| | - Hua Wan
- Sir Run Run Hospital, Nanjing Medical University, Nanjing, 211166, China.
| | - Ming Zhou
- Department of Nutrition and Food Hygiene, School of Public Health, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
15
|
Chen L, Zhang S, Tan Y, Zheng Y, Fang S, Yi Y, Xiong X. Anxiety mediates association between sex and jaw function limitation in temporomandibular disorder patients from China. Front Neurol 2024; 15:1398788. [PMID: 38803643 PMCID: PMC11128587 DOI: 10.3389/fneur.2024.1398788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 04/24/2024] [Indexed: 05/29/2024] Open
Abstract
AIM The objective of this study is to explore the relationship between sex and jaw function and to test whether anxiety mediates the causal relationship between sex and jaw function in temporomandibular disorders (TMDs) patients. METHODS A total of 488 participants with TMD were included in the analysis. Demographic data were collected. Generalized anxiety symptoms and anxiety severity were initially assessed using the GAD-7 questionnaire. And jaw function limitation was measured using the JFLS-8 scale. A directed acyclic graph (DAG) was used in this study to evaluate the hypotheses. Mediation analysis was conducted to explore causality and to calculate the total effect, natural direct effect (NDE) and natural indirect effect (NIE). RESULTS In TMD patients, there was a significant association between female and jaw function (r = 0.17, p < 0.001), female and anxiety (r = 0.15, p = 0.002), anxiety and jaw function (r = 0.35, p < 0.001). In addition, sex can directly lead to differences in impaired jaw function (NDE: 3.719, 95% CI: 1.619-5.828, p < 0.001), and can also be causally related to jaw function through anxiety (NIE: 1.146, 95% CI: 0.267-2.024, p = 0.011). And the total effect was 4.865 (95% CI, 2.709-7.029, p < 0.001). CONCLUSION A causal mechanism was found that anxiety acts as a mediator of sex effects on jaw function. Therefore, psychological factors need to be taken into account in the treatment of female TMD patients. Further clinical trials are needed to explore whether psychotherapy is more beneficial to improve jaw function in female TMD patients.
Collapse
Affiliation(s)
- Li Chen
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Shuyuan Zhang
- West China Hospital of Sichuan University, Chengdu, China
| | - Yanyue Tan
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Nursing, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Yunhao Zheng
- West China Hospital of Sichuan University, Chengdu, China
| | - Shanbao Fang
- Department of Orthodontics, College and Hospital of Stomatology, Guangxi Medical University, Nanning, China
| | - Yating Yi
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Xin Xiong
- State Key Laboratory of Oral Disease, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Adkins AM, Luyo ZNM, Kim WK, Wellman LL, Sanford LD. Evidence for a role of the basolateral amygdala in regulating regional metabolism in the stressed brain. Sci Prog 2024; 107:368504241253692. [PMID: 38780474 PMCID: PMC11119309 DOI: 10.1177/00368504241253692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
The brain regulates every physiological process in the body, including metabolism. Studies investigating brain metabolism have shown that stress can alter major metabolic processes, and that these processes can vary between regions. However, no study has investigated how metabolic pathways may be altered by stressor perception, or whether stress-responsive brain regions can also regulate metabolism. The basolateral amygdala (BLA), a region important for stress and fear, has reciprocal connections to regions responsible for metabolic regulation. In this study, we investigated how BLA influences regional metabolic profiles within the hippocampus (HPC) and medial prefrontal cortex (mPFC), regions involved in regulating the stress response and stress perception, using optogenetics in male C57BL/6 mice during footshock presentation in a yoked shuttlebox paradigm based on controllable (ES) and uncontrollable (IS) stress. RNA extracted from HPC and mPFC were loaded into NanoString® Mouse Neuroinflammation Panels, which also provides a broad view of metabolic processes, for compilation of gene expression profiles. Results showed differential regulation of carbohydrate and lipid metabolism, and insulin signaling gene expression pathways in HPC and mPFC following ES and IS, and that these differences were altered in response to optogenetic excitation or inhibition of the BLA. These findings demonstrate for the first time that individual brain regions can utilize metabolites in a way that are unique to their needs and function in response to a stressor, and that vary based on stressor controllability and influence by BLA.
Collapse
Affiliation(s)
- Austin M Adkins
- Sleep Research Laboratory, Eastern Virginia Medical School, Norfolk, VA, USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA, USA
- Pathology and Anatomy, Eastern Virginia Medical School, Norfolk,
VA, USA
| | - Zachary N M Luyo
- Sleep Research Laboratory, Eastern Virginia Medical School, Norfolk, VA, USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA, USA
- Pathology and Anatomy, Eastern Virginia Medical School, Norfolk,
VA, USA
| | - Woong-Ki Kim
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA, USA
- Microbiology and Molecular Cell Biology, Eastern Virginia Medical School, Norfolk, VA, USA
| | - Laurie L Wellman
- Sleep Research Laboratory, Eastern Virginia Medical School, Norfolk, VA, USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA, USA
- Pathology and Anatomy, Eastern Virginia Medical School, Norfolk,
VA, USA
| | - Larry D Sanford
- Sleep Research Laboratory, Eastern Virginia Medical School, Norfolk, VA, USA
- Center for Integrative Neuroscience and Inflammatory Diseases, Eastern Virginia Medical School, Norfolk, VA, USA
- Pathology and Anatomy, Eastern Virginia Medical School, Norfolk,
VA, USA
| |
Collapse
|
17
|
Li XY, Yin X, Lu JJ, Li QR, Xing WQ, Han Q, Ji H, Li SZ, Yang HM, Guo JR, Wang ZQ, Xu B. Ubiquitinome Analysis Uncovers Alterations in Synaptic Proteins and Glucose Metabolism Enzymes in the Hippocampi of Adolescent Mice Following Cold Exposure. Cells 2024; 13:570. [PMID: 38607009 PMCID: PMC11011669 DOI: 10.3390/cells13070570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/08/2024] [Accepted: 03/11/2024] [Indexed: 04/13/2024] Open
Abstract
Cold exposure exerts negative effects on hippocampal nerve development in adolescent mice, but the underlying mechanisms are not fully understood. Given that ubiquitination is essential for neurodevelopmental processes, we attempted to investigate the effects of cold exposure on the hippocampus from the perspective of ubiquitination. By conducting a ubiquitinome analysis, we found that cold exposure caused changes in the ubiquitination levels of a variety of synaptic-associated proteins. We validated changes in postsynaptic density-95 (PSD-95) ubiquitination levels by immunoprecipitation, revealing reductions in both the K48 and K63 polyubiquitination levels of PSD-95. Golgi staining further demonstrated that cold exposure decreased the dendritic-spine density in the CA1 and CA3 regions of the hippocampus. Additionally, bioinformatics analysis revealed that differentially ubiquitinated proteins were enriched in the glycolytic, hypoxia-inducible factor-1 (HIF-1), and 5'-monophosphate (AMP)-activated protein kinase (AMPK) pathways. Protein expression analysis confirmed that cold exposure activated the mammalian target of rapamycin (mTOR)/HIF-1α pathway. We also observed suppression of pyruvate kinase M2 (PKM2) protein levels and the pyruvate kinase (PK) activity induced by cold exposure. Regarding oxidative phosphorylation, a dramatic decrease in mitochondrial respiratory-complex I activity was observed, along with reduced gene expression of the key subunits NADH: ubiquinone oxidoreductase core subunit V1 (Ndufv1) and Ndufv2. In summary, cold exposure negatively affects hippocampal neurodevelopment and causes abnormalities in energy homeostasis within the hippocampus.
Collapse
Affiliation(s)
- Xin-Yue Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (X.-Y.L.)
| | - Xin Yin
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (X.-Y.L.)
| | - Jing-Jing Lu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (X.-Y.L.)
| | - Qian-Ru Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (X.-Y.L.)
| | - Wan-Qun Xing
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (X.-Y.L.)
| | - Qi Han
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (X.-Y.L.)
| | - Hong Ji
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (X.-Y.L.)
| | - Shi-Ze Li
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (X.-Y.L.)
| | - Huan-Min Yang
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (X.-Y.L.)
| | - Jing-Ru Guo
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (X.-Y.L.)
| | - Zhi-Quan Wang
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Bin Xu
- College of Animal Science and Veterinary Medicine, Heilongjiang Bayi Agricultural University, Daqing 163319, China; (X.-Y.L.)
| |
Collapse
|
18
|
Chamaa F, Magistretti PJ, Fiumelli H. Astrocyte-derived lactate in stress disorders. Neurobiol Dis 2024; 192:106417. [PMID: 38296112 DOI: 10.1016/j.nbd.2024.106417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 12/04/2023] [Accepted: 01/23/2024] [Indexed: 02/05/2024] Open
Abstract
Stress disorders are psychiatric disorders arising following stressful or traumatic events. They could deleteriously affect an individual's health because they often co-occur with mental illnesses. Considerable attention has been focused on neurons when considering the neurobiology of stress disorders. However, like other mental health conditions, recent studies have highlighted the importance of astrocytes in the pathophysiology of stress-related disorders. In addition to their structural and homeostatic support role, astrocytes actively serve several functions in regulating synaptic transmission and plasticity, protecting neurons from toxic compounds, and providing metabolic support for neurons. The astrocyte-neuron lactate shuttle model sets forth the importance of astrocytes in providing lactate for the metabolic supply of neurons under intense activity. Lactate also plays a role as a signaling molecule and has been recently studied regarding its antidepressant activity. This review discusses the involvement of astrocytes and brain energy metabolism in stress and further reflects on the importance of lactate as an energy supply in the brain and its emerging antidepressant role in stress-related disorders.
Collapse
Affiliation(s)
- Farah Chamaa
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Pierre J Magistretti
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia
| | - Hubert Fiumelli
- Biological and Environmental Science and Engineering Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955, Saudi Arabia.
| |
Collapse
|
19
|
Głombik K, Kukla-Bartoszek M, Curzytek K, Basta-Kaim A, Budziszewska B. Contribution of changes in the orexin system and energy sensors in the brain in depressive disorder - a study in an animal model. Pharmacol Rep 2024; 76:51-71. [PMID: 38194217 PMCID: PMC10830606 DOI: 10.1007/s43440-023-00559-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/14/2023] [Accepted: 11/14/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Maternal elevated glucocorticoid levels during pregnancy can affect the developing fetus, permanently altering the structure and function of its brain throughout life. Excessive action of these hormones is known to contribute to psychiatric disorders, including depression. MATERIALS The study was performed in a rat model of depression based on prenatal administration of dexamethasone (DEX) in late pregnancy (0.1 mg/kg, days 14-21). We evaluated the effects of prenatal DEX treatment on the cognition and bioenergetic signaling pathways in the brain of adult male rats, in the frontal cortex and hippocampus, and in response to stress in adulthood, using behavioral and biochemical test batteries. RESULTS We revealed cognitive deficits in rats prenatally treated with DEX. At the molecular level, a decrease in the orexin A and orexin B levels and downregulation of the AMPK-SIRT1-PGC1α transduction pathway in the frontal cortex of these animals were observed. In the hippocampus, a decreased expression of orexin B was found and changes in the MR/GR ratio were demonstrated. Furthermore, an increase in HDAC5 level triggered by the prenatal DEX treatment in both brain structures and a decrease in MeCP2 level in the hippocampus were reported. CONCLUSIONS Our study demonstrated that prenatal DEX treatment is associated with cognitive dysfunction and alterations in various proteins leading to metabolic changes in the frontal cortex, while in the hippocampus adaptation mechanisms were activated. The presented results imply that different pathophysiological metabolic processes may be involved in depression development, which may be useful in the search for novel therapies.
Collapse
Affiliation(s)
- Katarzyna Głombik
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland.
| | - Magdalena Kukla-Bartoszek
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Katarzyna Curzytek
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Agnieszka Basta-Kaim
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| | - Bogusława Budziszewska
- Laboratory of Immunoendocrinology, Department of Experimental Neuroendocrinology, Maj Institute of Pharmacology, Polish Academy of Sciences, Smętna 12, 31-343, Kraków, Poland
| |
Collapse
|
20
|
Ciubuc-Batcu MT, Stapelberg NJC, Headrick JP, Renshaw GMC. A mitochondrial nexus in major depressive disorder: Integration with the psycho-immune-neuroendocrine network. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166920. [PMID: 37913835 DOI: 10.1016/j.bbadis.2023.166920] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 11/03/2023]
Abstract
Nervous system processes, including cognition and affective state, fundamentally rely on mitochondria. Impaired mitochondrial function is evident in major depressive disorder (MDD), reflecting cumulative detrimental influences of both extrinsic and intrinsic stressors, genetic predisposition, and mutation. Glucocorticoid 'stress' pathways converge on mitochondria; oxidative and nitrosative stresses in MDD are largely mitochondrial in origin; both initiate cascades promoting mitochondrial DNA (mtDNA) damage with disruptions to mitochondrial biogenesis and tryptophan catabolism. Mitochondrial dysfunction facilitates proinflammatory dysbiosis while directly triggering immuno-inflammatory activation via released mtDNA, mitochondrial lipids and mitochondria associated membranes (MAMs), further disrupting mitochondrial function and mitochondrial quality control, promoting the accumulation of abnormal mitochondria (confirmed in autopsy studies). Established and putative mechanisms highlight a mitochondrial nexus within the psycho-immune neuroendocrine (PINE) network implicated in MDD. Whether lowering neuronal resilience and thresholds for disease, or linking mechanistic nodes within the MDD pathogenic network, impaired mitochondrial function emerges as an important risk, a functional biomarker, providing a therapeutic target in MDD. Several treatment modalities have been demonstrated to reset mitochondrial function, which could benefit those with MDD.
Collapse
Affiliation(s)
- M T Ciubuc-Batcu
- Griffith University School of Medicine and Dentistry, Australia; Gold Coast Health, Queensland, Australia
| | - N J C Stapelberg
- Bond University Faculty of Health Sciences and Medicine, Australia; Gold Coast Health, Queensland, Australia
| | - J P Headrick
- Griffith University School of Pharmacy and Medical Science, Australia
| | - G M C Renshaw
- Hypoxia and Ischemia Research Unit, Griffith University, School of Health Sciences and Social Work, Australia.
| |
Collapse
|
21
|
Boguszewicz Ł, Heyda A, Ciszek M, Bieleń A, Skorupa A, Mrochem-Kwarciak J, Składowski K, Sokół M. Metabolite Biomarkers of Prolonged and Intensified Pain and Distress in Head and Neck Cancer Patients Undergoing Radio- or Chemoradiotherapy by Means of NMR-Based Metabolomics-A Preliminary Study. Metabolites 2024; 14:60. [PMID: 38248863 PMCID: PMC10819132 DOI: 10.3390/metabo14010060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 01/09/2024] [Accepted: 01/13/2024] [Indexed: 01/23/2024] Open
Abstract
Treatment of head and neck squamous cell carcinoma (HNSCC) has a detrimental impact on patient quality of life. The rate of recognized distress/depression among HNSCC patients ranges from 9.8% to 83.8%, and the estimated prevalence of depression among patients receiving radiotherapy is 63%. Shorter overall survival also occurs in preexisting depression or depressive conditions. The present study analyzes the nuclear magnetic resonance (NMR) blood serum metabolic profiles during radio-/chemoradiotherapy and correlates the detected alterations with pain and/or distress accumulated with the disease and its treatment. NMR spectra were acquired on a Bruker 400 MHz spectrometer and analyzed using multivariate methods. The results indicate that distress and/or pain primarily affect the serum lipids and metabolites of energy (glutamine, glucose, lactate, acetate) and one-carbon (glycine, choline, betaine, methanol, threonine, serine, histidine, formate) metabolism. Sparse disturbances in the branched-chain amino acids (BCAA) and in the metabolites involved in protein metabolism (lysine, tyrosine, phenylalanine) are also observed. Depending on the treatment modality-radiotherapy or concurrent chemoradiotherapy-there are some differences in the altered metabolites.
Collapse
Affiliation(s)
- Łukasz Boguszewicz
- Department of Medical Physics, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.C.); (A.S.); (M.S.)
| | - Alicja Heyda
- 1st Radiation and Clinical Oncology Department, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (A.H.); (A.B.)
| | - Mateusz Ciszek
- Department of Medical Physics, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.C.); (A.S.); (M.S.)
| | - Agata Bieleń
- 1st Radiation and Clinical Oncology Department, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (A.H.); (A.B.)
| | - Agnieszka Skorupa
- Department of Medical Physics, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.C.); (A.S.); (M.S.)
| | - Jolanta Mrochem-Kwarciak
- Analytics and Clinical Biochemistry Department, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland;
| | - Krzysztof Składowski
- 1st Radiation and Clinical Oncology Department, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (A.H.); (A.B.)
| | - Maria Sokół
- Department of Medical Physics, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (M.C.); (A.S.); (M.S.)
- 1st Radiation and Clinical Oncology Department, Maria Sklodowska-Curie National Research Institute of Oncology, Gliwice Branch, 44-102 Gliwice, Poland; (A.H.); (A.B.)
| |
Collapse
|
22
|
Liu X, Zhang X, Zhao L, Long J, Feng Z, Su J, Gao F, Liu J. Mitochondria as a sensor, a central hub and a biological clock in psychological stress-accelerated aging. Ageing Res Rev 2024; 93:102145. [PMID: 38030089 DOI: 10.1016/j.arr.2023.102145] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 11/19/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023]
Abstract
The theory that oxidative damage caused by mitochondrial free radicals leads to aging has brought mitochondria into the forefront of aging research. Psychological stress that encompasses many different experiences and exposures across the lifespan has been identified as a catalyst for accelerated aging. Mitochondria, known for their dynamic nature and adaptability, function as a highly sensitive stress sensor and central hub in the process of accelerated aging. In this review, we explore how mitochondria as sensors respond to psychological stress and contribute to the molecular processes in accelerated aging by viewing mitochondria as hormonal, mechanosensitive and immune suborganelles. This understanding of the key role played by mitochondria and their close association with accelerated aging helps us to distinguish normal aging from accelerated aging, correct misconceptions in aging studies, and develop strategies such as exercise and mitochondria-targeted nutrients and drugs for slowing down accelerated aging, and also hold promise for prevention and treatment of age-related diseases.
Collapse
Affiliation(s)
- Xuyun Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Lin Zhao
- Cardiometabolic Innovation Center, Ministry of Education, Department of Cardiology, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China.
| | - Jiangang Long
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Zhihui Feng
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Jiacan Su
- Department of Orthopedics, Xinhua Hospital Affiliated to Shanghai JiaoTong University School of Medicine, Shanghai 200092, China; National Center for Translational Medicine (Shanghai) SHU Branch, Shanghai University, Shanghai 200444, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an 710032, China.
| | - Jiankang Liu
- Center for Mitochondrial Biology and Medicine, The Key Laboratory of Biomedical Information Engineering of Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an 710049, China; School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266071, China.
| |
Collapse
|
23
|
Gorman-Sandler E, Wood G, Cloude N, Frambes N, Brennen H, Robertson B, Hollis F. Mitochondrial might: powering the peripartum for risk and resilience. Front Behav Neurosci 2023; 17:1286811. [PMID: 38187925 PMCID: PMC10767224 DOI: 10.3389/fnbeh.2023.1286811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Accepted: 11/01/2023] [Indexed: 01/09/2024] Open
Abstract
The peripartum period, characterized by dynamic hormonal shifts and physiological adaptations, has been recognized as a potentially vulnerable period for the development of mood disorders such as postpartum depression (PPD). Stress is a well-established risk factor for developing PPD and is known to modulate mitochondrial function. While primarily known for their role in energy production, mitochondria also influence processes such as stress regulation, steroid hormone synthesis, glucocorticoid response, GABA metabolism, and immune modulation - all of which are crucial for healthy pregnancy and relevant to PPD pathology. While mitochondrial function has been implicated in other psychiatric illnesses, its role in peripartum stress and mental health remains largely unexplored, especially in relation to the brain. In this review, we first provide an overview of mitochondrial involvement in processes implicated in peripartum mood disorders, underscoring their potential role in mediating pathology. We then discuss clinical and preclinical studies of mitochondria in the context of peripartum stress and mental health, emphasizing the need for better understanding of this relationship. Finally, we propose mitochondria as biological mediators of resilience to peripartum mood disorders.
Collapse
Affiliation(s)
- Erin Gorman-Sandler
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
- Columbia VA Healthcare System, Columbia, SC, United States
| | - Gabrielle Wood
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Nazharee Cloude
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Noelle Frambes
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Hannah Brennen
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Breanna Robertson
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Fiona Hollis
- Department of Pharmacology, Physiology, and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
- Columbia VA Healthcare System, Columbia, SC, United States
- USC Institute for Cardiovascular Disease Research, Columbia, SC, United States
| |
Collapse
|
24
|
Lin Z, Zhang X, Wu M, Ming Y, Wang X, Li H, Huang F, Gao F, Zhu Y. High-fiber diet and rope-skipping benefit cardiometabolic health and modulate gut microbiota in young adults: A randomized controlled trial. Food Res Int 2023; 173:113421. [PMID: 37803759 DOI: 10.1016/j.foodres.2023.113421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 08/27/2023] [Accepted: 08/29/2023] [Indexed: 10/08/2023]
Abstract
Previous studies have shown that high intake of dietary fiber (DF) and efficient levels of physical activity are beneficial for cardiometabolic health in middle-aged and elderly populations with cardiometabolic disease. However, evidence from young adults with low cardiometabolic risk is lacking. This study aimed to investigate the effects of various interventions including a high-fiber (HF) diet and the rope-skipping (RS) exercise on cardiometabolic risk factors (CRFs) and the composition of the gut microbiota in young adults. A 12-week parallel-designed randomized controlled trial was conducted in undergraduates (n = 96), who were randomly assigned to the HF group (≥20 g/d DF), the RS group (2000 jumps/week), and the control (CON) group. Among the 84 people who completed the trial, measurements of anthropometric characteristics, biochemical parameters, and gut microbiota were taken at the beginning and end of the intervention. After the intervention, the RS exercise led to a significant decrease in the heart rate and triglyceride levels compared to the CON group (all P < 0.05), but there was no significant difference in CRFs between the HF and CON groups. When compared to baseline, the 12-week HF diet intervention resulted in an increase in fat-free mass, and a decrease in the percentage of body fat and waist circumference (all P < 0.05). With regard to gut microbiota alterations after intervention, we found that compared with the CON group, the relative abundance of Lactobacillus decreased significantly in both the HF group and the RS group, Muribaculaceae decreased in the RS group, and Eubacterium_coprostanoligenes_group decreased in the HF group (all P < 0.05). Finally, shifts in 7 metabolic pathways were detected in the RS group using predictive functional profiling, while only one pathway was altered in the HF group (all P < 0.05). In conclusion, the RS exercise improved body composition compared to the CON group in young adults, while the HF diet just enhanced CRFs in contrast to baseline. Furthermore, both RS and HF interventions altered Lactobacillus and various other gut microbiota. The results indicated that the HF diet and RS exercise could partly benefit cardiometabolic health and modulate gut microbiota in young adults. Trial registration: ClinicalTrials.gov, NCT04834687.
Collapse
Affiliation(s)
- Zongyu Lin
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Xin Zhang
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Miao Wu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Yingan Ming
- Department of Physical Education, Sun Yat-sen University, Guangzhou 510080, China
| | - Xiaotong Wang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Hailin Li
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Fenglian Huang
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China
| | - Fei Gao
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518000, China
| | - Yanna Zhu
- Department of Maternal and Child Health, School of Public Health, Sun Yat-sen University, Guangzhou 510080, China; Guangdong Provincial Key Laboratory of Food, Nutrition and Health, Guangzhou 510080, China.
| |
Collapse
|
25
|
Hariri A, Mirian M, Zarrabi A, Kohandel M, Amini-Pozveh M, Aref AR, Tabatabaee A, Prabhakar PK, Sivakumar PM. The circadian rhythm: an influential soundtrack in the diabetes story. Front Endocrinol (Lausanne) 2023; 14:1156757. [PMID: 37441501 PMCID: PMC10333930 DOI: 10.3389/fendo.2023.1156757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 05/03/2023] [Indexed: 07/15/2023] Open
Abstract
Type 2 Diabetes Mellitus (T2DM) has been the main category of metabolic diseases in recent years due to changes in lifestyle and environmental conditions such as diet and physical activity. On the other hand, the circadian rhythm is one of the most significant biological pathways in humans and other mammals, which is affected by light, sleep, and human activity. However, this cycle is controlled via complicated cellular pathways with feedback loops. It is widely known that changes in the circadian rhythm can alter some metabolic pathways of body cells and could affect the treatment process, particularly for metabolic diseases like T2DM. The aim of this study is to explore the importance of the circadian rhythm in the occurrence of T2DM via reviewing the metabolic pathways involved, their relationship with the circadian rhythm from two perspectives, lifestyle and molecular pathways, and their effect on T2DM pathophysiology. These impacts have been demonstrated in a variety of studies and led to the development of approaches such as time-restricted feeding, chronotherapy (time-specific therapies), and circadian molecule stabilizers.
Collapse
Affiliation(s)
- Amirali Hariri
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mina Mirian
- Department of Pharmaceutical Biotechnology, School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul, Türkiye
| | - Mohammad Kohandel
- Department of Applied Mathematics, Faculty of Mathematics, University of Waterloo, Waterloo, ON, Canada
| | - Maryam Amini-Pozveh
- Department of Prosthodontics Dentistry, Dental Materials Research Center, Dental Research Institute, School of Dentistry, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana Farber Cancer Institute, Boston, MA, United States
- Translational Sciences, Xsphera Biosciences Inc., Boston, MA, United States
| | - Aliye Tabatabaee
- School of Pharmacy and Pharmaceutical Sciences, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Pranav Kumar Prabhakar
- Department of Medical Laboratory Sciences, School of Allied Medical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Division of Research and Development, Lovely Professional University, Phagwara Punjab, India
| | - Ponnurengam Malliappan Sivakumar
- Institute of Research and Development, Duy Tan University, Da Nang, Vietnam
- School of Medicine and Pharmacy, Duy Tan University, Da Nang, Vietnam
| |
Collapse
|
26
|
Dai C, Zheng J, Qi L, Deng P, Wu M, Li L, Yuan J. Chronic stress boosts systemic inflammation and compromises antiviral innate immunity in Carassius gibel. Front Immunol 2023; 14:1105156. [PMID: 36814911 PMCID: PMC9939519 DOI: 10.3389/fimmu.2023.1105156] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/26/2023] [Indexed: 02/08/2023] Open
Abstract
It is generally considered that stress causes decreased immune function and render fish vulnerable to infection and diseases. However, the molecular mechanisms between stress responses and susceptibility to infections, especially viral diseases, in fish remain unknown. Understanding and monitoring the biological consequences and mechanisms underlying stress responses in fish may contribute to the improvement of animal welfare and production efficiency. In this study, long-term exposure to a variety of stressors, including chasing, overcrowding, restraint stress, and air exposure mimicking chronic stresses, in aquaculture practices was conducted in Carassius gibel to investigate the consequences of chronic stress on inflammation and antiviral capability. With the continuation of stimulation, experimental fish gradually became insensitive to the stress of net chasing and feeding with the accompaniment of upregulated gene expressed in the HPI axis and elevated levels of stress hormones. As expected, stress-induced hyperglycaemia with a decrease in the insulin signaling pathway and altered gene expression in glycolysis and gluconeogenesis, suggesting the disturbance of glycometabolism. Importantly, a link between intestinal homoeostasis and systemic low-grade inflammation in stressed C. gibel was observed, implying crosstalk among the brain, intestine, and other organs. Furthermore, the compromised antiviral capability with impaired antiviral innate immunity in stressed fish was confirmed by RNA sequencing and infection with Cyprinid herpesvirus 2 (CyHV-2), promoting the understanding of enhanced susceptibility to viral infection in stressed fish.
Collapse
Affiliation(s)
- Caijiao Dai
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- National Aquatic Animal Diseases Para-reference Laboratory, Huazhong Agricultural University (HZUA), Wuhan, China
| | - Jianduo Zheng
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- Hubei Engineering Research Center for Aquatic Animal Diseases Control and Prevention, Huazhong Agricultural University, Wuhan, China
| | - Lin Qi
- Department of Consultation, Tianbin Ruicheng Environmental Technology Engineering Co., LTD, Tianjin, China
| | - Ping Deng
- Fisheries Science Research Institute, Wuhan Academy of Agricultural Sciences, Wuhan, China
| | - Mengke Wu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
| | - Lijuan Li
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- National Aquatic Animal Diseases Para-reference Laboratory, Huazhong Agricultural University (HZUA), Wuhan, China
| | - Junfa Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, China
- National Aquatic Animal Diseases Para-reference Laboratory, Huazhong Agricultural University (HZUA), Wuhan, China
- Hubei Engineering Research Center for Aquatic Animal Diseases Control and Prevention, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
27
|
Lou F, Long H, Luo S, Liu Y, Pu J, Wang H, Ji P, Jin X. Chronic restraint stress promotes the tumorigenic potential of oral squamous cell carcinoma cells by reprogramming fatty acid metabolism via CXCL3 mediated Wnt/β-catenin pathway. Exp Neurol 2023; 359:114268. [PMID: 36343679 DOI: 10.1016/j.expneurol.2022.114268] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/26/2022] [Accepted: 11/01/2022] [Indexed: 11/06/2022]
Abstract
Chronic stress promotes tumor progression and may harm homeostasis of energy metabolism by disrupting key metabolic processes. Recently, emerging evidence that chemokines CXCL3 as a novel adipokine plays a new role in lipid metabolism and various human malignancies. However, the role and mechanism of the CXCL3 in oral squamous cell carcinoma (OSCC) progression and reprogramming lipid metabolism induced by chronic restraint stress is unclear. The analysis of transcriptome sequencing, LC-MS, GC-MS, CCK8, cell apoptosis assays, cell cycle analysis, qRT-PCR, ELISA, western blotting, immunofluorescence, immunohistochemistry, RNA interference and lentivirus transfection and a xenograft tumor growth and chronic restraint stress model were used to investigate the role of CXCL3 in the regulation of lipid metabolism and OSCC and explore the underlying molecular mechanisms. We showed that CXCL3 plays a critical role in in fatty acid de novo synthesis and tumor growth induced by chronic restraint stress. We demonstrated that chronic restraint stress promoted lipid accumulation, OSCC growth and metastasis in a mouse xenograft model. CXCL3 knockdown and FH535, an inhibitor of Wnt/β-catenin pathway, could attenuate fatty acid de novo synthesis, cell proliferation and epithelial-mesenchymal transition induced by chronic restraint stress in OSCC cells. Our findings demonstrate that chronic restraint stress promotes the proliferation and metastasis of OSCC by reprogramming fatty acid metabolism via CXCL3 mediated Wnt/β-catenin pathway. Our study provides novel insights to help understand the underlying mechanisms of CXCL3 in OSCC progression induced by chronic restraint stress.
Collapse
Affiliation(s)
- Fangzhi Lou
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
| | - Huiqing Long
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
| | - Shihong Luo
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
| | - Yiyun Liu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Juncai Pu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Haiyang Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Ping Ji
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China
| | - Xin Jin
- Key Laboratory of Psychoseomadsy, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, China; Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing 401147, China.
| |
Collapse
|
28
|
Zhou R, Wang Z, Zhou B, Yu Z, Wu C, Hou J, Cheng K, Liu TC. Estrogen receptors mediate the antidepressant effects of aerobic exercise: A possible new mechanism. Front Aging Neurosci 2022; 14:1040828. [PMID: 36570542 PMCID: PMC9780551 DOI: 10.3389/fnagi.2022.1040828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Accepted: 10/25/2022] [Indexed: 12/14/2022] Open
Abstract
Purpose This study aimed to examine whether aerobic exercise exerts mood-modulating effects through an estrogen signaling mechanism. Method The experiment was divided into two parts. The first part is to compare the three modeling methods to obtain the most obvious method of depression-like phenotype for further study in the second part. The first part of ovariectomized rats (age, 13 weeks) was tested when rats were 14 or 22 weeks old or in the sixth week after 3 weeks of chronic restraint stress. The second part was to treat the animals with the most obvious depression-like phenotype in different ways, placebo treatment or estradiol (E2) replacement therapy was administered, aerobic training, or estrogen receptor antagonist treatment. The cognitive (Barnes maze and 3-chamber social tests), anxiety-like (open-field and elevated plus maze tests) and depression-like (sucrose preference and forced swim tests) behaviors of rats in both parts were analyzed to study the effects of estrogen depletion and aerobic exercise. Results Rats did not develop depressive symptoms immediately after ovariectomy, however, the symptoms became more pronounced with a gradual decrease in ovarian hormone levels. Compared with the placebo or control groups, the exercise and E2 groups showed improved performance in all behavioral test tasks, and the antidepressant effects of aerobic exercise were comparable to those of estrogen. Moreover, the estrogen receptor antagonist has markedly inhibited the antidepressant effects of aerobic exercise. Conclusion Estrogen receptors may mediate the antidepressant effects of aerobic exercise. In addition, an increasingly fragile ovarian hormonal environment may underlies chronic restraint stress-induced depression.
Collapse
|
29
|
Brivio P, Gallo MT, Karel P, Cogi G, Fumagalli F, Homberg JR, Calabrese F. Alterations of mitochondrial dynamics in serotonin transporter knockout rats: A possible role in the fear extinction recall mechanisms. Front Behav Neurosci 2022; 16:957702. [PMID: 36386781 PMCID: PMC9650094 DOI: 10.3389/fnbeh.2022.957702] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 10/05/2022] [Indexed: 08/20/2023] Open
Abstract
Stress-related mental disorders encompass a plethora of pathologies that share the exposure to a negative environment as trigger for their development. The vulnerability to the effects of a negative environment is not equal to all but differs between individuals based on the genetic background makeup. Here, to study the molecular mechanisms potentially underlying increased threat anticipation, we employed an animal model showing this symptom (5-HTT knockout rats) which we exposed to Pavlovian fear conditioning (FC). We investigated the role of mitochondria, taking advantage of the recent evidence showing that the dynamic of these organelles is dysregulated after stress exposure. Behavioral experiments revealed that, during the second day of extinction of the FC paradigm, 5-HTT knockout (5-HTT-/-) animals showed a lack of fear extinction recall. From a mechanistic standpoint, we carried out our molecular analyses on the amygdala and prefrontal cortex, given their role in the management of the fear response due to their tight connection. We demonstrated that mitochondrial dynamics are impaired in the amygdala and prefrontal cortex of 5-HTT-/- rats. The dissection of the potential contributing factors revealed a critical role in the mechanisms regulating fission and fusion that are dysregulated in transgenic animals. Furthermore, mitochondrial oxidative phosphorylation, mitochondrial biogenesis, and the production of antioxidant enzymes were altered in these brain regions in 5-HTT-/- rats. In summary, our data suggest that increased extracellular 5-HT levels cause an unbalance of mitochondrial functionality that could contribute to the reduced extinction recall of 5-HTT-/- rats, pointing out the role of mitochondrial dynamics in the etiology of psychiatric disorders. Our findings, also, provide some interesting insights into the targeted development of drugs to treat such disorders.
Collapse
Affiliation(s)
- Paola Brivio
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Maria Teresa Gallo
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Peter Karel
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Giulia Cogi
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Fabio Fumagalli
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| | - Judith R. Homberg
- Department of Cognitive Neuroscience, Centre for Neuroscience, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, Netherlands
| | - Francesca Calabrese
- Department of Pharmacological and Biomolecular Sciences, Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
30
|
van der Kooij MA, Rojas-Charry L, Givehchi M, Wolf C, Bueno D, Arndt S, Tenzer S, Mattioni L, Treccani G, Hasch A, Schmeisser MJ, Vianello C, Giacomello M, Methner A. Chronic social stress disrupts the intracellular redistribution of brain hexokinase 3 induced by shifts in peripheral glucose levels. J Mol Med (Berl) 2022; 100:1441-1453. [PMID: 35943566 PMCID: PMC9470722 DOI: 10.1007/s00109-022-02235-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 06/06/2022] [Accepted: 07/04/2022] [Indexed: 11/26/2022]
Abstract
Abstract
Chronic stress has the potential to impair health and may increase the vulnerability for psychiatric disorders. Emerging evidence suggests that specific neurometabolic dysfunctions play a role herein. In mice, chronic social defeat (CSD) stress reduces cerebral glucose uptake despite hyperglycemia. We hypothesized that this metabolic decoupling would be reflected by changes in contact sites between mitochondria and the endoplasmic reticulum, important intracellular nutrient sensors, and signaling hubs. We thus analyzed the proteome of their biochemical counterparts, mitochondria-associated membranes (MAMs) from whole brain tissue obtained from CSD and control mice. This revealed a lack of the glucose-metabolizing enzyme hexokinase 3 (HK3) in MAMs from CSD mice. In controls, HK3 protein abundance in MAMs and also in striatal synaptosomes correlated positively with peripheral blood glucose levels, but this connection was lost in CSD. We conclude that the ability of HK3 to traffic to sites of need, such as MAMs or synapses, is abolished upon CSD and surmise that this contributes to a cellular dysfunction instigated by chronic stress.
Key messages Chronic social defeat (CSD) alters brain glucose metabolism CSD depletes hexokinase 3 (HK3) from mitochondria-associated membranes (MAMs) CSD results in loss of positive correlation between blood glucose and HK3 in MAMs and synaptosomes
Collapse
Affiliation(s)
| | - Liliana Rojas-Charry
- Institute for Molecular Medicine, Johannes Gutenberg University Mainz, Mainz, 55131, Germany.,Institute of Anatomy, Johannes Gutenberg University Mainz, Mainz, 55131, Germany
| | - Maryam Givehchi
- Leibniz Institute for Resilience Research (LIR), Mainz, 55122, Germany
| | - Christina Wolf
- Institute for Molecular Medicine, Johannes Gutenberg University Mainz, Mainz, 55131, Germany
| | - Diones Bueno
- Institute for Molecular Medicine, Johannes Gutenberg University Mainz, Mainz, 55131, Germany
| | - Sabine Arndt
- Institute for Immunology, Johannes Gutenberg University Mainz, Mainz, 55131, Germany
| | - Stefan Tenzer
- Institute for Immunology, Johannes Gutenberg University Mainz, Mainz, 55131, Germany
| | - Lorenzo Mattioni
- Institute of Anatomy, Johannes Gutenberg University Mainz, Mainz, 55131, Germany
| | - Giulia Treccani
- Institute of Anatomy, Johannes Gutenberg University Mainz, Mainz, 55131, Germany.,Department of Psychiatry and Psychotherapy, Translational Psychiatry, University Medical Center, Johannes Gutenberg University Mainz, Mainz, 55131, Germany
| | - Annika Hasch
- Leibniz Institute for Resilience Research (LIR), Mainz, 55122, Germany
| | - Michael J Schmeisser
- Institute of Anatomy, Johannes Gutenberg University Mainz, Mainz, 55131, Germany
| | - Caterina Vianello
- Institute for Molecular Medicine, Johannes Gutenberg University Mainz, Mainz, 55131, Germany.,Department of Biology, University of Padua, Padua, 35121, Italy
| | | | - Axel Methner
- Institute for Molecular Medicine, Johannes Gutenberg University Mainz, Mainz, 55131, Germany.
| |
Collapse
|
31
|
Burtscher J, Niedermeier M, Hüfner K, van den Burg E, Kopp M, Stoop R, Burtscher M, Gatterer H, Millet GP. The interplay of hypoxic and mental stress: Implications for anxiety and depressive disorders. Neurosci Biobehav Rev 2022; 138:104718. [PMID: 35661753 DOI: 10.1016/j.neubiorev.2022.104718] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022]
Abstract
Adequate oxygen supply is essential for the human brain to meet its high energy demands. Therefore, elaborate molecular and systemic mechanism are in place to enable adaptation to low oxygen availability. Anxiety and depressive disorders are characterized by alterations in brain oxygen metabolism and of its components, such as mitochondria or hypoxia inducible factor (HIF)-pathways. Conversely, sensitivity and tolerance to hypoxia may depend on parameters of mental stress and the severity of anxiety and depressive disorders. Here we discuss relevant mechanisms of adaptations to hypoxia, as well as their involvement in mental stress and the etiopathogenesis of anxiety and depressive disorders. We suggest that mechanisms of adaptations to hypoxia (including metabolic responses, inflammation, and the activation of chemosensitive brain regions) modulate and are modulated by stress-related pathways and associated psychiatric diseases. While severe chronic hypoxia or dysfunctional hypoxia adaptations can contribute to the pathogenesis of anxiety and depressive disorders, harnessing controlled responses to hypoxia to increase cellular and psychological resilience emerges as a novel treatment strategy for these diseases.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Martin Niedermeier
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Katharina Hüfner
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Clinic for Psychiatry II, Innsbruck Medical University, Innsbruck, Austria
| | - Erwin van den Burg
- Department of Psychiatry, Center of Psychiatric Neuroscience (CNP), University Hospital of Lausanne (CHUV), Prilly, Lausanne, Switzerland
| | - Martin Kopp
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Ron Stoop
- Department of Psychiatry, Center of Psychiatric Neuroscience (CNP), University Hospital of Lausanne (CHUV), Prilly, Lausanne, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
32
|
Montoya B, Briga M, Jimeno B, Verhulst S. Glucose tolerance predicts survival in old zebra finches. J Exp Biol 2022; 225:275426. [DOI: 10.1242/jeb.243205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 05/08/2022] [Indexed: 11/20/2022]
Abstract
The capacity to deal with external and internal challenges is thought to affect fitness, and the age-linked impairment of this capacity defines the ageing process. Using a recently developed intra-peritoneal glucose tolerance test (GTT) in zebra finches, we tested for a link between the capacity to regulate glucose levels and survival. We also investigated for the effects of ambient factors, age, sex, and manipulated developmental and adult conditions (i.e. natal brood size and foraging cost, in a full factorial design) on glucose tolerance. Glucose tolerance was quantified using the incremental ‘area under the curve’ (AUC), with lower values indicating higher tolerance. Glucose tolerance predicted survival probability in old birds, above the median age, with individuals with higher glucose tolerance showing better survival than individuals with low or intermediate glucose tolerance. In young birds there was no association between glucose tolerance and survival. Experimentally induced adverse developmental conditions did not affect glucose tolerance, but low ambient temperature at sampling and hard foraging conditions during adulthood induced a fast return to baseline levels (i.e. high glucose tolerance). These findings can be interpreted as an efficient return to baseline glucose levels when energy requirements are high, with glucose presumably being used for energy metabolism or storage. Glucose tolerance was independent of sex. Our main finding that old birds with higher glucose tolerance had better survival supports the hypothesis that the capacity to efficiently cope with a physiological challenge predicts lifespan, at least in old birds.
Collapse
Affiliation(s)
- Bibiana Montoya
- Laboratorio de Conducta Animal, Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Mexico City, Mexico
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
- Estación Científica La Malinche, Centro Tlaxcala de Biología de la Conducta (CTBC), Universidad Autónoma de Tlaxcala, Mexico
| | - Michael Briga
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
- Department of Biology, University of Turku, Turku, Finland
- Infectious Disease Epidemiology group, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Blanca Jimeno
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
- Instituto de Investigación en Recursos Cinegéticos (IREC), CSIC-UCLM-JCCM, Ronda de Toledo 12, 13005 Ciudad Real, Spain
| | - Simon Verhulst
- Groningen Institute for Evolutionary Life Sciences, University of Groningen, the Netherlands
| |
Collapse
|
33
|
Alteration in the Expression of Genes Involved in Cerebral Glucose Metabolism as a Process of Adaptation to Stressful Conditions. Brain Sci 2022; 12:brainsci12040498. [PMID: 35448030 PMCID: PMC9030173 DOI: 10.3390/brainsci12040498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/08/2022] [Accepted: 04/12/2022] [Indexed: 02/05/2023] Open
Abstract
Exposure to chronic stress leads to disturbances in glucose metabolism in the brain, and changes in the functioning of neurons coexisting with the development of depression. The detailed molecular mechanism and cerebral gluconeogenesis during depression are not conclusively established. The aim of the research was to assess the expression of selected genes involved in cerebral glucose metabolism of mice in the validated animal paradigm of chronic stress. To confirm the induction of depression-like disorders, we performed three behavioral tests: sucrose preference test (SPT), forced swim test (FST), and tail suspension test (TST). In order to study the cerebral glucose metabolism of the brain, mRNA levels of the following genes were determined in the prefrontal cortex of mice: Slc2a3, Gapdh, Ldha, Ldhb, and Pkfb3. It has been shown that exogenous, chronic administration of corticosterone developed a model of depression in behavioral tests. There were statistically significant changes in the mRNA level of the Slc2a3, Ldha, Gapdh, and Ldhb genes. The obtained results suggest changes in cerebral glucose metabolism as a process of adaptation to stressful conditions, and may provide the basis for introducing new therapeutic strategies for chronic stress-related depression.
Collapse
|
34
|
Formolo DA, Cheng T, Yu J, Kranz GS, Yau SY. Central Adiponectin Signaling – A Metabolic Regulator in Support of Brain Plasticity. Brain Plast 2022; 8:79-96. [DOI: 10.3233/bpl-220138] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/22/2022] [Indexed: 12/18/2022] Open
Abstract
Brain plasticity and metabolism are tightly connected by a constant influx of peripheral glucose to the central nervous system in order to meet the high metabolic demands imposed by neuronal activity. Metabolic disturbances highly affect neuronal plasticity, which underlies the prevalent comorbidity between metabolic disorders, cognitive impairment, and mood dysfunction. Effective pro-cognitive and neuropsychiatric interventions, therefore, should consider the metabolic aspect of brain plasticity to achieve high effectiveness. The adipocyte-secreted hormone, adiponectin, is a metabolic regulator that crosses the blood-brain barrier and modulates neuronal activity in several brain regions, where it exerts neurotrophic and neuroprotective properties. Moreover, adiponectin has been shown to improve neuronal metabolism in different animal models, including obesity, diabetes, and Alzheimer’s disease. Here, we aim at linking the adiponectin’s neurotrophic and neuroprotective properties with its main role as a metabolic regulator and to summarize the possible mechanisms of action on improving brain plasticity via its role in regulating the intracellular energetic activity. Such properties suggest adiponectin signaling as a potential target to counteract the central metabolic disturbances and impaired neuronal plasticity underlying many neuropsychiatric disorders.
Collapse
Affiliation(s)
- Douglas A. Formolo
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| | - Tong Cheng
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| | - Jiasui Yu
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| | - Georg S. Kranz
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Department of Psychiatry and Psychotherapy, Medical University of Vienna, Austria
- The State Key Laboratory of Brain and Cognitive Sciences, The University of Hong Kong, Hong Kong, China
| | - Suk-Yu Yau
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hung Hom, Hong Kong
- Mental Health Research Center (MHRC), Hong Kong Polytechnic University3Institute of future foods
- Research Institute for Smart Ageing (RISA), Hong Kong Polytechnic University
| |
Collapse
|
35
|
Metabolomic signature and mitochondrial dynamics outline the difference between vulnerability and resilience to chronic stress. Transl Psychiatry 2022; 12:87. [PMID: 35228511 PMCID: PMC8885712 DOI: 10.1038/s41398-022-01856-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 12/14/2022] Open
Abstract
Stress is the foremost environmental factor involved in the pathophysiology of major depressive disorder (MDD). However, individual differences among people are critical as some people exhibit vulnerability while other are resilient to repeated exposure to stress. Among the others, a recent theory postulates that alterations of energy metabolism might contribute to the development of psychopathologies. Here we show that the bioenergetic status in the ventral hippocampus (vHip), a brain subregion tightly involved in the regulation of MDD, defined the development of vulnerability or resilience following two weeks of chronic mild stress. Among the different metabolomic signatures observed, the glycolysis and tricarboxylic acid cycle may be specifically involved in defining vulnerability, revealing a previously unappreciated mechanism of sensitivity to stress. These findings point to mitochondrial morphology and recycling as critical in the ability to cope with stress. We show that vulnerable rats favor mitochondrial fusion to counteract the overproduction of reactive oxidative species whereas resilient rats activate fission to guarantee metabolic efficiency. Our results indicate that the modulation of the energetic metabolite profile in vHip under chronic stress exposure may represent a mechanism to explain the difference between vulnerable and resilient rats, unraveling novel and promising targets for specific therapeutic interventions.
Collapse
|
36
|
Abstract
In order to survive and thrive, organisms must adapt to constantly changing environmental pressures. When there are significant shifts in the environment, the brain and body engage a set of physiological and behavioral countermeasures collectively known as the "stress response". These responses, which include changes at the cellular, systems, and organismal level, are geared toward protecting homeostasis and adapting physiological operating parameters so as to enable the organism to overcome short-term challenges. It is the shift of these well-organized acute responses to dysregulated chronic responses that leads to pathologies. In a sense, the protective measures become destructive, causing the myriad health problems that are associated with chronic stress. To further complicate the situation, these challenges need not be purely physical in nature. Indeed, psychosocial stressors such as ruminating about challenges at work, resource insecurity, and unstable social environments can engage the very same emergency threat systems and eventually lead to the same types of pathologies that sometimes are described as "burnout" in humans. This short review focuses on very recent empirical work exploring the effects of chronic stress on key brain circuits, metabolism and metabolic function, and immune function.
Collapse
Affiliation(s)
- Brandon L Roberts
- Department of Psychological and Brain Sciences, Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, USA
| | - Ilia N Karatsoreos
- Department of Psychological and Brain Sciences, Neuroscience and Behavior Program, University of Massachusetts Amherst, Amherst, MA, USA
| |
Collapse
|
37
|
Bazin I, Desmarchelier M. Retrospective study on the use of fluvoxamine in 72 dogs with anxiety disorders. J Vet Behav 2022. [DOI: 10.1016/j.jveb.2022.01.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
38
|
Xiaotong L, Jiazhi Y, Xiaoguang L, Gang Z. PLC, PTH and NF-κB increased during orthodontic bone remodeling in chronic stress rats. Stress 2022; 25:357-365. [PMID: 36433628 DOI: 10.1080/10253890.2022.2146998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022] Open
Abstract
This study was designed to investigate the potential effects of chronic stress on periodontal bone remodeling and its mechanism during orthodontic tooth movement in rats. Forty-eight male SD rats aged 8 weeks were randomly divided into control group and chronic stress group. Chronic unpredictable mild stress model (CUMS) was established in the stress group, which was validated by behavioral experiment as well as cortisol (CORT) and adrenocorticotropic hormone (ATCH) levels. Then, the two groups were further divided into three distinct groups, namely group with no orthodontic force, group with 30 g orthodontic force and group with 50 g orthodontic force respectively to construct orthodontic tooth movement model. The rats were sacrificed after 14 days and maxilla on the loading side was obtained to measure tooth movement distance. It was found that compared with the control group, the chronic stress group displayed increased parathyroid hormone (PTH), amino terminal peptide of type I procollagen (PINP) and c-terminal peptide of type I collagen branch (CTX) levels as measured by enzyme-linked immunosorbent assay (ELISA). Hematoxylin and Eosin (HE) and TRAP staining showed fewer osteoblasts and more number of osteoclasts. The results of western blot showed no significant change in expression of Adenylate cyclase (AC) but increased phospholipase C (PLC) levels were noted. In addition, increased NF-κB expression was observed by immunohistochemistry. Overall, chronic stress can affect bone remodeling during orthodontic tooth movement by increasing the content of PTH in the blood and increasing PLC and NF-κB.
Collapse
Affiliation(s)
- Li Xiaotong
- Department of Orthodontic, School of Stomatology, Jiamusi University, Jiamusi, China
| | - Yu Jiazhi
- Department of Orthodontic, School of Stomatology, Jiamusi University, Jiamusi, China
| | - Li Xiaoguang
- Department of Orthodontic, School of Stomatology, Jiamusi University, Jiamusi, China
| | - Zhao Gang
- Department of Orthodontic, School of Stomatology, Jiamusi University, Jiamusi, China
| |
Collapse
|
39
|
Tang WQ, Liu Y, Ji CH, Gu JH, Chen YM, Huang J, Guan W, Xu DW, Jiang B. Virus-mediated decrease of LKB1 activity in the mPFC diminishes stress-induced depressive-like behaviors in mice. Biochem Pharmacol 2021; 197:114885. [PMID: 34968488 DOI: 10.1016/j.bcp.2021.114885] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 11/30/2021] [Accepted: 12/06/2021] [Indexed: 01/01/2023]
Abstract
As a highly prevalent neuropsychiatric disorder worldwide, the pathophysiology of depression is not yet fully understood and based on multiple factors among which chronic stress is critical. Numerous previous studies have shown the role of central mammalian target of rapamycin complex 1 (mTORC1) signaling in depression. However, so far it remains elusive by which way chronic stress down-regulates the activity of central mTORC1. Liver kinase b1 (LKB1) has been demonstrated to regulate the activity of the mTORC1 signaling cascade by phosphorylating AMP activated protein kinase (AMPK). Here, this study aimed to explore whether LKB1 participates in depression by regulating the downstream AMPK-mTORC1 signaling, and various methods including mouse models of depression, western blotting and immunofluorescence were used together. Our results showed that chronic stress significantly enhanced the expression of both phosphorylated LKB1 and total LKB1 in the medial prefrontal cortex (mPFC) but not the hippocampus. Furthermore, genetic knockdown of LKB1 in the mPFC fully reversed not only the depressive-like behaviors induced by chronic stress in mice but also the effects of chronic stress on the activity of AMPK and the mTORC1 system. Taken together, this study preliminarily suggests that LKB1 in the mPFC could be a feasible target for antidepressants. This study also provides support for the potential use of LKB1 inhibition strategies against the chronic stress-related neuropsychiatric disorders.
Collapse
Affiliation(s)
- Wen-Qian Tang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yue Liu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Chun-Hui Ji
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Jiang-Hong Gu
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Yan-Mei Chen
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Jie Huang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Wei Guan
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China
| | - Da-Wei Xu
- Department of Orthopaedics, Affiliated Hospital 2 of Nantong University, Nantong 226001, Jiangsu, China.
| | - Bo Jiang
- Department of Pharmacology, School of Pharmacy, Nantong University, Nantong 226001, Jiangsu, China.
| |
Collapse
|
40
|
Stapel B, Nösel P, Heitland I, Mahmoudi N, Lanfermann H, Kahl KG, Ding XQ. In vivo magnetic resonance spectrometry imaging demonstrates comparable adaptation of brain energy metabolism to metabolic stress induced by 72 h of fasting in depressed patients and healthy volunteers. J Psychiatr Res 2021; 143:422-428. [PMID: 34656874 DOI: 10.1016/j.jpsychires.2021.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 10/01/2021] [Accepted: 10/10/2021] [Indexed: 01/19/2023]
Abstract
Major depressive disorder (MDD) is characterized by dysregulation of stress systems and by abnormalities in cerebral energy metabolism. Stress induction has been shown to impact neurometabolism in healthy individuals. Contrarily, neurometabolic changes in response to stress are insufficiently investigated in MDD patients. Metabolic stress was induced in MDD patients (MDD, N = 24) and in healthy individuals (CTRL, N = 22) by application of an established fasting protocol in which calorie intake was omitted for 72 h. Both study groups were comparable regarding age, gender distribution, and body mass index (BMI). Fasting-induced effects on brain high-energy phosphate levels and membrane phospholipid metabolism were assessed using phosphorus-31 magnetic resonance spectroscopy (31P-MRS). Two-way repeated measures ANOVAs did not reveal significant interaction effects (group x fasting) or group differences in adenosine triphosphate (ATP), phosphocreatine (PCr), inorganic phosphate (Pi), phosphomonoesters (PME), phosphodiesters (PDE), or pH levels between MDD and CTRL. Fasting, independent of group, significantly increased ATP and decreased Pi levels and an overall increase in PME/PDE ratio as marker for membrane turnover was observed. Overall these results indicate reactive changes in cerebral energetics and in membrane phospholipid metabolism in response to fasting. The observed effects did not significantly differ between CTRL and MDD, indicating that neurometabolic adaptation to metabolic stress is preserved in MDD patients.
Collapse
Affiliation(s)
- B Stapel
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany.
| | - P Nösel
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - I Heitland
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - N Mahmoudi
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - H Lanfermann
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| | - K G Kahl
- Department of Psychiatry, Social Psychiatry and Psychotherapy, Hannover Medical School, Hannover, Germany
| | - X Q Ding
- Institute of Diagnostic and Interventional Neuroradiology, Hannover Medical School, Hannover, Germany
| |
Collapse
|