1
|
Joshua A, Allen KE, Orsi NM. An Overview of Artificial Intelligence in Gynaecological Pathology Diagnostics. Cancers (Basel) 2025; 17:1343. [PMID: 40282519 PMCID: PMC12025868 DOI: 10.3390/cancers17081343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 03/24/2025] [Accepted: 03/30/2025] [Indexed: 04/29/2025] Open
Abstract
Background: The advent of artificial intelligence (AI) has revolutionised many fields in healthcare. More recently, it has garnered interest in terms of its potential applications in histopathology, where algorithms are increasingly being explored as adjunct technologies that can support pathologists in diagnosis, molecular typing and prognostication. While many research endeavours have focused on solid tumours, gynaecological malignancies have nevertheless been relatively overlooked. The aim of this review was therefore to provide a summary of the status quo in the field of AI in gynaecological pathology by encompassing malignancies throughout the entirety of the female reproductive tract rather than focusing on individual cancers. Methods: This narrative/scoping review explores the potential application of AI in whole slide image analysis in gynaecological histopathology, drawing on both findings from the research setting (where such technologies largely remain confined), and highlights any findings and/or applications identified and developed in other cancers that could be translated to this arena. Results: A particular focus is given to ovarian, endometrial, cervical and vulval/vaginal tumours. This review discusses different algorithms, their performance and potential applications. Conclusions: The effective application of AI tools is only possible through multidisciplinary co-operation and training.
Collapse
Affiliation(s)
- Anna Joshua
- Christian Medical College, Vellore 632004, Tamil Nadu, India;
| | - Katie E. Allen
- Women’s Health Research Group, Leeds Institute of Cancer & Pathology, Wellcome Trust Brenner Building, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK;
| | - Nicolas M. Orsi
- Women’s Health Research Group, Leeds Institute of Cancer & Pathology, Wellcome Trust Brenner Building, St James’s University Hospital, Beckett Street, Leeds LS9 7TF, UK;
| |
Collapse
|
2
|
Nguyen T, Panwar V, Jamale V, Perny A, Dusek C, Cai Q, Kapur P, Danuser G, Rajaram S. Autonomous learning of pathologists' cancer grading rules. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.18.643999. [PMID: 40166226 PMCID: PMC11956981 DOI: 10.1101/2025.03.18.643999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Deep learning (DL) algorithms have demonstrated remarkable proficiency in histopathology classification tasks, presenting an opportunity to discover disease-related features escaping visual inspection. However, the "black box" nature of DL obfuscates the basis of the classification. Here, we develop an algorithm for interpretable Deep Learning (IDL) that sheds light on the links between tissue morphology and cancer biology. We make use of a generative model trained to represent images via a combination of a semantic latent space and a noise vector to capture low level image details. We traversed the latent space so as to induce prototypical image changes associated with the disease state, which we identified via a second DL model. Applied to a dataset of clear cell renal cell carcinoma (ccRCC) tissue images the AI system pinpoints nuclear size and nucleolus density in tumor cells (but not other cell types) as the decisive features of tumor progression from grade 1 to grade 4 - mirroring the rules that have been used for decades in the clinic and are taught in textbooks. Moreover, the AI system posits a decrease in vasculature with increasing grade. While the association has been illustrated by some previous reports, the correlation is not part of currently implemented grading systems. These results indicate the potential of IDL to autonomously formalize the connection between the histopathological presentation of a disease and the underlying tissue architectural drivers.
Collapse
Affiliation(s)
- Thuong Nguyen
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vandana Panwar
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vipul Jamale
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Averi Perny
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Cecilia Dusek
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Qi Cai
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Payal Kapur
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Urology, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA
| | - Gaudenz Danuser
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Satwik Rajaram
- Lyda Hill Department of Bioinformatics, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Pathology, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
3
|
Brodsky V, Ullah E, Bychkov A, Song AH, Walk EE, Louis P, Rasool G, Singh RS, Mahmood F, Bui MM, Parwani AV. Generative Artificial Intelligence in Anatomic Pathology. Arch Pathol Lab Med 2025; 149:298-318. [PMID: 39836377 DOI: 10.5858/arpa.2024-0215-ra] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2024] [Indexed: 01/22/2025]
Abstract
CONTEXT.— Generative artificial intelligence (AI) has emerged as a transformative force in various fields, including anatomic pathology, where it offers the potential to significantly enhance diagnostic accuracy, workflow efficiency, and research capabilities. OBJECTIVE.— To explore the applications, benefits, and challenges of generative AI in anatomic pathology, with a focus on its impact on diagnostic processes, workflow efficiency, education, and research. DATA SOURCES.— A comprehensive review of current literature and recent advancements in the application of generative AI within anatomic pathology, categorized into unimodal and multimodal applications, and evaluated for clinical utility, ethical considerations, and future potential. CONCLUSIONS.— Generative AI demonstrates significant promise in various domains of anatomic pathology, including diagnostic accuracy enhanced through AI-driven image analysis, virtual staining, and synthetic data generation; workflow efficiency, with potential for improvement by automating routine tasks, quality control, and reflex testing; education and research, facilitated by AI-generated educational content, synthetic histology images, and advanced data analysis methods; and clinical integration, with preliminary surveys indicating cautious optimism for nondiagnostic AI tasks and growing engagement in academic settings. Ethical and practical challenges require rigorous validation, prompt engineering, federated learning, and synthetic data generation to help ensure trustworthy, reliable, and unbiased AI applications. Generative AI can potentially revolutionize anatomic pathology, enhancing diagnostic accuracy, improving workflow efficiency, and advancing education and research. Successful integration into clinical practice will require continued interdisciplinary collaboration, careful validation, and adherence to ethical standards to ensure the benefits of AI are realized while maintaining the highest standards of patient care.
Collapse
Affiliation(s)
- Victor Brodsky
- From the Department of Pathology and Immunology, Washington University School of Medicine in St Louis, St Louis, Missouri (Brodsky)
| | - Ehsan Ullah
- the Department of Surgery, Health New Zealand, Counties Manukau, New Zealand (Ullah)
| | - Andrey Bychkov
- the Department of Pathology, Kameda Medical Center, Kamogawa City, Chiba Prefecture, Japan (Bychkov)
- the Department of Pathology, Nagasaki University, Nagasaki, Japan (Bychkov)
| | - Andrew H Song
- the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Song, Mahmood)
| | - Eric E Walk
- Office of the Chief Medical Officer, PathAI, Boston, Massachusetts (Walk)
| | - Peter Louis
- the Department of Pathology and Laboratory Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey (Louis)
| | - Ghulam Rasool
- the Department of Oncologic Sciences, Morsani College of Medicine and Department of Electrical Engineering, University of South Florida, Tampa (Rasool)
- the Department of Machine Learning, Moffitt Cancer Center and Research Institute, Tampa, Florida (Rasool)
- Department of Machine Learning, Neuro-Oncology, Moffitt Cancer Center and Research Institute, Tampa, Florida (Rasool)
| | - Rajendra S Singh
- Dermatopathology and Digital Pathology, Summit Health, Berkley Heights, New Jersey (Singh)
| | - Faisal Mahmood
- the Department of Pathology, Brigham and Women's Hospital, Boston, Massachusetts (Song, Mahmood)
| | - Marilyn M Bui
- Department of Machine Learning, Pathology, Moffitt Cancer Center and Research Institute, Tampa, Florida (Bui)
| | - Anil V Parwani
- the Department of Pathology, The Ohio State University, Columbus (Parwani)
| |
Collapse
|
4
|
Mill L, Aust O, Ackermann JA, Burger P, Pascual M, Palumbo-Zerr K, Krönke G, Uderhardt S, Schett G, Clemen CS, Holtzhausen C, Jabari S, Schröder R, Maier A, Grüneboom A. Deep learning-based image analysis in muscle histopathology using photo-realistic synthetic data. COMMUNICATIONS MEDICINE 2025; 5:64. [PMID: 40050400 PMCID: PMC11885816 DOI: 10.1038/s43856-025-00777-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 02/20/2025] [Indexed: 03/09/2025] Open
Abstract
BACKGROUND Artificial intelligence (AI), specifically Deep learning (DL), has revolutionized biomedical image analysis, but its efficacy is limited by the need for representative, high-quality large datasets with manual annotations. While latest research on synthetic data using AI-based generative models has shown promising results to tackle this problem, several challenges such as lack of interpretability and need for vast amounts of real data remain. This study aims to introduce a new approach-SYNTA-for the generation of photo-realistic synthetic biomedical image data to address the challenges associated with state-of-the art generative models and DL-based image analysis. METHODS The SYNTA method employs a fully parametric approach to create photo-realistic synthetic training datasets tailored to specific biomedical tasks. Its applicability is tested in the context of muscle histopathology and skeletal muscle analysis. This new approach is evaluated for two real-world datasets to validate its applicability to solve complex image analysis tasks on real data. RESULTS Here we show that SYNTA enables expert-level segmentation of unseen real-world biomedical data using only synthetic training data. By addressing the lack of representative and high-quality real-world training data, SYNTA achieves robust performance in muscle histopathology image analysis, offering a scalable, controllable and interpretable alternative to generative models such as Generative Adversarial Networks (GANs) or Diffusion Models. CONCLUSIONS SYNTA demonstrates great potential to accelerate and improve biomedical image analysis. Its ability to generate high-quality photo-realistic synthetic data reduces reliance on extensive collection of data and manual annotations, paving the way for advancements in histopathology and medical research.
Collapse
Affiliation(s)
- Leonid Mill
- MIRA Vision Microscopy GmbH, 73037, Göppingen, Germany.
- Pattern Recognition Lab, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91058, Erlangen, Germany.
| | - Oliver Aust
- Department of Medicine 3 - Rheumatology and Immunology & Deutsches Zentrum für Immuntherapie, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Jochen A Ackermann
- Department of Medicine 3 - Rheumatology and Immunology & Deutsches Zentrum für Immuntherapie, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Philipp Burger
- Department of Medicine 3 - Rheumatology and Immunology & Deutsches Zentrum für Immuntherapie, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Monica Pascual
- Department of Medicine 3 - Rheumatology and Immunology & Deutsches Zentrum für Immuntherapie, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Katrin Palumbo-Zerr
- Department of Medicine 3 - Rheumatology and Immunology & Deutsches Zentrum für Immuntherapie, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Gerhard Krönke
- Department of Medicine 3 - Rheumatology and Immunology & Deutsches Zentrum für Immuntherapie, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Stefan Uderhardt
- Department of Medicine 3 - Rheumatology and Immunology & Deutsches Zentrum für Immuntherapie, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Georg Schett
- Department of Medicine 3 - Rheumatology and Immunology & Deutsches Zentrum für Immuntherapie, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, 91054, Erlangen, Germany
| | - Christoph S Clemen
- Institute of Aerospace Medicine, German Aerospace Center (DLR), Cologne, Germany
- Institute of Vegetative Physiology, Medical Faculty, University of Cologne, Cologne, Germany
| | - Christian Holtzhausen
- Department of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Samir Jabari
- Department of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
- Klinikum Nuremberg, Institute of Pathology, Paracelsus Medical University, 90419, Nuremberg, Germany
| | - Rolf Schröder
- Department of Neuropathology, Universitätsklinikum Erlangen, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91054, Erlangen, Germany
| | - Andreas Maier
- Pattern Recognition Lab, Friedrich-Alexander University Erlangen-Nürnberg (FAU), 91058, Erlangen, Germany
| | - Anika Grüneboom
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V, 44139, Dortmund, Germany.
| |
Collapse
|
5
|
Luo L, Wang X, Lin Y, Ma X, Tan A, Chan R, Vardhanabhuti V, Chu WC, Cheng KT, Chen H. Deep Learning in Breast Cancer Imaging: A Decade of Progress and Future Directions. IEEE Rev Biomed Eng 2025; 18:130-151. [PMID: 38265911 DOI: 10.1109/rbme.2024.3357877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2024]
Abstract
Breast cancer has reached the highest incidence rate worldwide among all malignancies since 2020. Breast imaging plays a significant role in early diagnosis and intervention to improve the outcome of breast cancer patients. In the past decade, deep learning has shown remarkable progress in breast cancer imaging analysis, holding great promise in interpreting the rich information and complex context of breast imaging modalities. Considering the rapid improvement in deep learning technology and the increasing severity of breast cancer, it is critical to summarize past progress and identify future challenges to be addressed. This paper provides an extensive review of deep learning-based breast cancer imaging research, covering studies on mammograms, ultrasound, magnetic resonance imaging, and digital pathology images over the past decade. The major deep learning methods and applications on imaging-based screening, diagnosis, treatment response prediction, and prognosis are elaborated and discussed. Drawn from the findings of this survey, we present a comprehensive discussion of the challenges and potential avenues for future research in deep learning-based breast cancer imaging.
Collapse
|
6
|
Liu Q, Zhou T, Cheng C, Ma J, Hoque Tania M. Hybrid generative adversarial network based on frequency and spatial domain for histopathological image synthesis. BMC Bioinformatics 2025; 26:29. [PMID: 39871140 PMCID: PMC11773846 DOI: 10.1186/s12859-025-06057-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 01/17/2025] [Indexed: 01/29/2025] Open
Abstract
BACKGROUND Due to the complexity and cost of preparing histopathological slides, deep learning-based methods have been developed to generate high-quality histological images. However, existing approaches primarily focus on spatial domain information, neglecting the periodic information in the frequency domain and the complementary relationship between the two domains. In this paper, we proposed a generative adversarial network that employs a cross-attention mechanism to extract and fuse features across spatial and frequency domains. The method optimizes frequency domain features using spatial domain guidance and refines spatial features with frequency domain information, preserving key details while eliminating redundancy to generate high-quality histological images. RESULTS Our model incorporates a variable-window mixed attention module to dynamically adjust attention window sizes, capturing both local details and global context. A spectral filtering module enhances the extraction of repetitive textures and periodic structures, while a cross-attention fusion module dynamically weights features from both domains, focusing on the most critical information to produce realistic and detailed images. CONCLUSIONS The proposed method achieves efficient spatial-frequency domain fusion, significantly improving image generation quality. Experiments on the Patch Camelyon dataset show superior performance over eight state-of-the-art models across five metrics. This approach advances automated histopathological image generation with potential for clinical applications.
Collapse
Affiliation(s)
- Qifeng Liu
- Centre for Big Data Research in Health, University of New South Wales, Sydney, Australia
| | - Tao Zhou
- Department of Respiratory and Critical Medicine, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Chi Cheng
- School of Computer Science and Engineering, University of New South Wales, Sydney, Australia
| | - Jin Ma
- Faculty of Engineering, The University of Sydney, Sydney, Australia
| | - Marzia Hoque Tania
- Centre for Big Data Research in Health, University of New South Wales, Sydney, Australia.
| |
Collapse
|
7
|
Acien A, Morales A, Giancardo L, Vera-Rodriguez R, Holmes AA, Fierrez J, Arroyo-Gallego T. KeyGAN: Synthetic keystroke data generation in the context of digital phenotyping. Comput Biol Med 2025; 184:109460. [PMID: 39615234 DOI: 10.1016/j.compbiomed.2024.109460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 11/06/2024] [Accepted: 11/19/2024] [Indexed: 12/22/2024]
Abstract
OBJECTIVE This paper aims to introduce and assess KeyGAN, a generative modeling-based keystroke data synthesizer. The synthesizer is designed to generate realistic synthetic keystroke data capturing the nuances of fine motor control and cognitive processes that govern finger-keyboard kinematics, thereby paving the way to support biomarker development for psychomotor impairment due to neurodegeneration. METHODS KeyGAN is designed with two primary objectives: (i) to ensure high realism in the synthetic distributions of the keystroke features and (ii) to analyze its ability to replicate the subtleties of natural typing for enhancing biomarker development. The quality of synthetic keystroke data produced by KeyGAN is evaluated against two keystroke-based applications, TypeNet and nQiMechPD, employed as'referee' controls. The performance of KeyGAN is compared with a reference random Gaussian generator, testing its ability to fool the biometric authentication method TypeNet, and its ability to characterize fine motor impairment in Parkinson's Disease using nQiMechPD. RESULTS KeyGAN outperformed the reference comparator in fooling the biometric authentication method TypeNet. It also exhibited a superior approximation to real data than the reference comparator when using nQiMechPD, showcasing its adaptability and versatility in mimicking early signs of Parkinson's Disease in natural typing. KeyGAN's synthetic data demonstrated that almost 20% of real PD samples could be replaced in the training set without a decline in classification performance on the real test set. Low Fréchet Distance (<0.03) and Kullback-Leibler Divergence (<700) between KeyGAN outputs and real data distributions underline the high performance of KeyGAN. CONCLUSION KeyGAN presents strong potential as a realistic keystroke data synthesizer, displaying impressive capability to reproduce complex typing patterns relevant to biomarkers for neurological disorders, like Parkinson's Disease. The ability of its synthetic data to effectively supplement real data for training algorithms without affecting performance implies significant promise for advancing research in digital biomarkers for neurodegenerative and psychomotor disorders.
Collapse
Affiliation(s)
- Alejandro Acien
- Area 2 AI Corporation, 245 Main Street, Cambridge, 02142, MA, United States.
| | - Aythami Morales
- Universidad Autonoma de Madrid, School of Engineering, Madrid, 28049, Spain
| | - Luca Giancardo
- McWilliams School of Biomedical Informatics, University of Texas Health Science Center, Houston, 77030, TX, United States
| | | | - Ashley A Holmes
- ProKidney Corporation, 3929 W Pt Blvd, Winston-Salem, 27103, NC, United States
| | - Julian Fierrez
- Universidad Autonoma de Madrid, School of Engineering, Madrid, 28049, Spain
| | | |
Collapse
|
8
|
El Kojok Z, Al Khansa H, Trad F, Chehab A. Augmenting a spine CT scans dataset using VAEs, GANs, and transfer learning for improved detection of vertebral compression fractures. Comput Biol Med 2025; 184:109446. [PMID: 39550911 DOI: 10.1016/j.compbiomed.2024.109446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 10/26/2024] [Accepted: 11/13/2024] [Indexed: 11/19/2024]
Abstract
In recent years, deep learning has become a popular tool to analyze and classify medical images. However, challenges such as limited data availability, high labeling costs, and privacy concerns remain significant obstacles. As such, generative models have been extensively explored as a solution to generate new images and overcome the stated challenges. In this paper, we augment a dataset of chest CT scans for Vertebral Compression Fractures (VCFs) collected from the American University of Beirut Medical Center (AUBMC), specifically targeting the detection of incidental fractures that are often overlooked in routine chest CTs, as these scans are not typically focused on spinal analysis. Our goal is to enhance AI systems to enable automated early detection of such incidental fractures, addressing a critical healthcare gap and leading to improved patient outcomes by catching fractures that might otherwise go undiagnosed. We first generate a synthetic dataset based on the segmented CTSpine1K dataset to simulate real grayscale data that aligns with our specific scenario. Then, we use this generated data to evaluate the generative capabilities of Deep Convolutional Generative Adverserial Networks (DCGANs), variational autoencoders (VAEs), and VAE-GAN models. The VAE-GAN model demonstrated the highest performance, achieving a Fréchet Inception Distance (FID) five times lower than the other architectures. To adapt this model to real-image scenarios, we perform transfer learning on the GAN, training it with the real dataset collected from AUBMC and generating additional samples. Finally, we train a CNN using augmented datasets that include both real and generated synthetic data and compare its performance to training on real data alone. We then evaluate the model exclusively on a test set composed of real images to assess the effect of the generated data on real-world performance. We find that training on augmented datasets significantly improves the classification accuracy on a test set composed of real images by 16 %, increasing it from 73 % to 89 %. This improvement demonstrates that the generated data is of high quality and enhances the model's ability to perform well against unseen, real data.
Collapse
Affiliation(s)
- Zeina El Kojok
- Electrical and Computer Engineering, American University of Beirut, Beirut, Lebanon
| | - Hadi Al Khansa
- Electrical and Computer Engineering, American University of Beirut, Beirut, Lebanon
| | - Fouad Trad
- Electrical and Computer Engineering, American University of Beirut, Beirut, Lebanon.
| | - Ali Chehab
- Electrical and Computer Engineering, American University of Beirut, Beirut, Lebanon
| |
Collapse
|
9
|
Budginaite E, Magee DR, Kloft M, Woodruff HC, Grabsch HI. Computational methods for metastasis detection in lymph nodes and characterization of the metastasis-free lymph node microarchitecture: A systematic-narrative hybrid review. J Pathol Inform 2024; 15:100367. [PMID: 38455864 PMCID: PMC10918266 DOI: 10.1016/j.jpi.2024.100367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/31/2024] [Accepted: 01/31/2024] [Indexed: 03/09/2024] Open
Abstract
Background Histological examination of tumor draining lymph nodes (LNs) plays a vital role in cancer staging and prognostication. However, as soon as a LN is classed as metastasis-free, no further investigation will be performed and thus, potentially clinically relevant information detectable in tumor-free LNs is currently not captured. Objective To systematically study and critically assess methods for the analysis of digitized histological LN images described in published research. Methods A systematic search was conducted in several public databases up to December 2023 using relevant search terms. Studies using brightfield light microscopy images of hematoxylin and eosin or immunohistochemically stained LN tissue sections aiming to detect and/or segment LNs, their compartments or metastatic tumor using artificial intelligence (AI) were included. Dataset, AI methodology, cancer type, and study objective were compared between articles. Results A total of 7201 articles were collected and 73 articles remained for detailed analyses after article screening. Of the remaining articles, 86% aimed at LN metastasis identification, 8% aimed at LN compartment segmentation, and remaining focused on LN contouring. Furthermore, 78% of articles used patch classification and 22% used pixel segmentation models for analyses. Five out of six studies (83%) of metastasis-free LNs were performed on publicly unavailable datasets, making quantitative article comparison impossible. Conclusions Multi-scale models mimicking multiple microscopy zooms show promise for computational LN analysis. Large-scale datasets are needed to establish the clinical relevance of analyzing metastasis-free LN in detail. Further research is needed to identify clinically interpretable metrics for LN compartment characterization.
Collapse
Affiliation(s)
- Elzbieta Budginaite
- Department of Pathology, GROW - Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Precision Medicine, GROW - Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | | | - Maximilian Kloft
- Department of Pathology, GROW - Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
- Department of Internal Medicine, Justus-Liebig-University, Giessen, Germany
| | - Henry C. Woodruff
- Department of Precision Medicine, GROW - Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
| | - Heike I. Grabsch
- Department of Pathology, GROW - Research Institute for Oncology and Reproduction, Maastricht University Medical Center+, Maastricht, The Netherlands
- Pathology and Data Analytics, Leeds Institute of Medical Research at St James’s, University of Leeds, Leeds, UK
| |
Collapse
|
10
|
Deng T, Huang Y, Han G, Shi Z, Lin J, Dou Q, Liu Z, Guo XJ, Philip Chen CL, Han C. FedDBL: Communication and Data Efficient Federated Deep-Broad Learning for Histopathological Tissue Classification. IEEE TRANSACTIONS ON CYBERNETICS 2024; 54:7851-7864. [PMID: 38923486 DOI: 10.1109/tcyb.2024.3403927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Histopathological tissue classification is a fundamental task in computational pathology. Deep learning (DL)-based models have achieved superior performance but centralized training suffers from the privacy leakage problem. Federated learning (FL) can safeguard privacy by keeping training samples locally, while existing FL-based frameworks require a large number of well-annotated training samples and numerous rounds of communication which hinder their viability in real-world clinical scenarios. In this article, we propose a lightweight and universal FL framework, named federated deep-broad learning (FedDBL), to achieve superior classification performance with limited training samples and only one-round communication. By simply integrating a pretrained DL feature extractor, a fast and lightweight broad learning inference system with a classical federated aggregation approach, FedDBL can dramatically reduce data dependency and improve communication efficiency. Five-fold cross-validation demonstrates that FedDBL greatly outperforms the competitors with only one-round communication and limited training samples, while it even achieves comparable performance with the ones under multiple-round communications. Furthermore, due to the lightweight design and one-round communication, FedDBL reduces the communication burden from 4.6 GB to only 138.4 KB per client using the ResNet-50 backbone at 50-round training. Extensive experiments also show the scalability of FedDBL on model generalization to the unseen dataset, various client numbers, model personalization and other image modalities. Since no data or deep model sharing across different clients, the privacy issue is well-solved and the model security is guaranteed with no model inversion attack risk. Code is available at https://github.com/tianpeng-deng/FedDBL.
Collapse
|
11
|
Pantanowitz J, Manko CD, Pantanowitz L, Rashidi HH. Synthetic Data and Its Utility in Pathology and Laboratory Medicine. J Transl Med 2024; 104:102095. [PMID: 38925488 DOI: 10.1016/j.labinv.2024.102095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 06/03/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
In our rapidly expanding landscape of artificial intelligence, synthetic data have become a topic of great promise and also some concern. This review aimed to provide pathologists and laboratory professionals with a primer on the role of synthetic data and how it may soon shape the landscape within our field. Using synthetic data presents many advantages but also introduces a milieu of new obstacles and limitations. This review aimed to provide pathologists and laboratory professionals with a primer on the general concept of synthetic data and its potential to transform our field. By leveraging synthetic data, we can help accelerate the development of various machine learning models and enhance our medical education and research/quality study needs. This review explored the methods for generating synthetic data, including rule-based, machine learning model-based and hybrid approaches, as they apply to applications within pathology and laboratory medicine. We also discussed the limitations and challenges associated with such synthetic data, including data quality, malicious use, and ethical bias/concerns and challenges. By understanding the potential benefits (ie, medical education, training artificial intelligence programs, and proficiency testing, etc) and limitations of this new data realm, we can not only harness its power to improve patient outcomes, advance research, and enhance the practice of pathology but also become readily aware of their intrinsic limitations.
Collapse
Affiliation(s)
- Joshua Pantanowitz
- Computational Pathology and AI Center of Excellence (CPACE), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Christopher D Manko
- Guthrie Clinic Robert Packer Hospital; Geisinger Commonwealth School of Medicine, Guthrie, Pennsylvania
| | - Liron Pantanowitz
- Computational Pathology and AI Center of Excellence (CPACE), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Hooman H Rashidi
- Computational Pathology and AI Center of Excellence (CPACE), University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania; Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.
| |
Collapse
|
12
|
Hu W, Cheng L, Huang G, Yuan X, Zhong G, Pun CM, Zhou J, Cai M. Learning From Incorrectness: Active Learning With Negative Pre-Training and Curriculum Querying for Histological Tissue Classification. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:625-637. [PMID: 37682642 DOI: 10.1109/tmi.2023.3313509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/10/2023]
Abstract
Patch-level histological tissue classification is an effective pre-processing method for histological slide analysis. However, the classification of tissue with deep learning requires expensive annotation costs. To alleviate the limitations of annotation budgets, the application of active learning (AL) to histological tissue classification is a promising solution. Nevertheless, there is a large imbalance in performance between categories during application, and the tissue corresponding to the categories with relatively insufficient performance are equally important for cancer diagnosis. In this paper, we propose an active learning framework called ICAL, which contains Incorrectness Negative Pre-training (INP) and Category-wise Curriculum Querying (CCQ) to address the above problem from the perspective of category-to-category and from the perspective of categories themselves, respectively. In particular, INP incorporates the unique mechanism of active learning to treat the incorrect prediction results that obtained from CCQ as complementary labels for negative pre-training, in order to better distinguish similar categories during the training process. CCQ adjusts the query weights based on the learning status on each category by the model trained by INP, and utilizes uncertainty to evaluate and compensate for query bias caused by inadequate category performance. Experimental results on two histological tissue classification datasets demonstrate that ICAL achieves performance approaching that of fully supervised learning with less than 16% of the labeled data. In comparison to the state-of-the-art active learning algorithms, ICAL achieved better and more balanced performance in all categories and maintained robustness with extremely low annotation budgets. The source code will be released at https://github.com/LactorHwt/ICAL.
Collapse
|
13
|
Park H, Li B, Liu Y, Nelson MS, Wilson HM, Sifakis E, Eliceiri KW. Collagen fiber centerline tracking in fibrotic tissue via deep neural networks with variational autoencoder-based synthetic training data generation. Med Image Anal 2023; 90:102961. [PMID: 37802011 PMCID: PMC10591913 DOI: 10.1016/j.media.2023.102961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 08/18/2023] [Accepted: 08/22/2023] [Indexed: 10/08/2023]
Abstract
The role of fibrillar collagen in the tissue microenvironment is critical in disease contexts ranging from cancers to chronic inflammations, as evidenced by many studies. Quantifying fibrillar collagen organization has become a powerful approach for characterizing the topology of collagen fibers and studying the role of collagen fibers in disease progression. We present a deep learning-based pipeline to quantify collagen fibers' topological properties in microscopy-based collagen images from pathological tissue samples. Our method leverages deep neural networks to extract collagen fiber centerlines and deep generative models to create synthetic training data, addressing the current shortage of large-scale annotations. As a part of this effort, we have created and annotated a collagen fiber centerline dataset, with the hope of facilitating further research in this field. Quantitative measurements such as fiber orientation, alignment, density, and length can be derived based on the centerline extraction results. Our pipeline comprises three stages. Initially, a variational autoencoder is trained to generate synthetic centerlines possessing controllable topological properties. Subsequently, a conditional generative adversarial network synthesizes realistic collagen fiber images from the synthetic centerlines, yielding a synthetic training set of image-centerline pairs. Finally, we train a collagen fiber centerline extraction network using both the original and synthetic data. Evaluation using collagen fiber images from pancreas, liver, and breast cancer samples collected via second-harmonic generation microscopy demonstrates our pipeline's superiority over several popular fiber centerline extraction tools. Incorporating synthetic data into training further enhances the network's generalizability. Our code is available at https://github.com/uw-loci/collagen-fiber-metrics.
Collapse
Affiliation(s)
- Hyojoon Park
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA; Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA; Morgridge Institute for Research, Madison, WI 53706, USA.
| | - Bin Li
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA; Morgridge Institute for Research, Madison, WI 53706, USA.
| | - Yuming Liu
- Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Michael S Nelson
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Helen M Wilson
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Eftychios Sifakis
- Department of Computer Sciences, University of Wisconsin-Madison, Madison, WI 53706, USA.
| | - Kevin W Eliceiri
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA; Laboratory for Optical and Computational Instrumentation, University of Wisconsin-Madison, Madison, WI 53706, USA; Morgridge Institute for Research, Madison, WI 53706, USA.
| |
Collapse
|
14
|
Küttel D, Kovács L, Szölgyén Á, Paulik R, Jónás V, Kozlovszky M, Molnár B. Artifact Augmentation for Enhanced Tissue Detection in Microscope Scanner Systems. SENSORS (BASEL, SWITZERLAND) 2023; 23:9243. [PMID: 38005629 PMCID: PMC10675542 DOI: 10.3390/s23229243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/10/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023]
Abstract
As the field of routine pathology transitions into the digital realm, there is a surging demand for the full automation of microscope scanners, aiming to expedite the process of digitizing tissue samples, and consequently, enhancing the efficiency of case diagnoses. The key to achieving seamless automatic imaging lies in the precise detection and segmentation of tissue sample regions on the glass slides. State-of-the-art approaches for this task lean heavily on deep learning techniques, particularly U-Net convolutional neural networks. However, since samples can be highly diverse and prepared in various ways, it is almost impossible to be fully prepared for and cover every scenario with training data. We propose a data augmentation step that allows artificially modifying the training data by extending some artifact features of the available data to the rest of the dataset. This procedure can be used to generate images that can be considered synthetic. These artifacts could include felt pen markings, speckles of dirt, residual bubbles in covering glue, or stains. The proposed approach achieved a 1-6% improvement for these samples according to the F1 Score metric.
Collapse
Affiliation(s)
- Dániel Küttel
- Image Analysis Department, 3DHISTECH Ltd., 1141 Budapest, Hungary
- John von Neumann Faculty of Informatics, Óbuda University, 1034 Budapest, Hungary
| | - László Kovács
- Image Analysis Department, 3DHISTECH Ltd., 1141 Budapest, Hungary
| | - Ákos Szölgyén
- Image Analysis Department, 3DHISTECH Ltd., 1141 Budapest, Hungary
| | - Róbert Paulik
- Image Analysis Department, 3DHISTECH Ltd., 1141 Budapest, Hungary
| | - Viktor Jónás
- Image Analysis Department, 3DHISTECH Ltd., 1141 Budapest, Hungary
| | - Miklós Kozlovszky
- John von Neumann Faculty of Informatics, Óbuda University, 1034 Budapest, Hungary
- Medical Device Research Group, LPDS, Institute for Computer Science and Control, Hungarian Academy of Sciences (SZTAKI), 1111 Budapest, Hungary
| | - Béla Molnár
- Image Analysis Department, 3DHISTECH Ltd., 1141 Budapest, Hungary
- 2nd Department of Internal Medicine, Semmelweis University, 1088 Budapest, Hungary
| |
Collapse
|
15
|
Jiang L, Huang S, Luo C, Zhang J, Chen W, Liu Z. An improved multi-scale gradient generative adversarial network for enhancing classification of colorectal cancer histological images. Front Oncol 2023; 13:1240645. [PMID: 38023227 PMCID: PMC10679330 DOI: 10.3389/fonc.2023.1240645] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/23/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Deep learning-based solutions for histological image classification have gained attention in recent years due to their potential for objective evaluation of histological images. However, these methods often require a large number of expert annotations, which are both time-consuming and labor-intensive to obtain. Several scholars have proposed generative models to augment labeled data, but these often result in label uncertainty due to incomplete learning of the data distribution. Methods To alleviate these issues, a method called InceptionV3-SMSG-GAN has been proposed to enhance classification performance by generating high-quality images. Specifically, images synthesized by Multi-Scale Gradients Generative Adversarial Network (MSG-GAN) are selectively added to the training set through a selection mechanism utilizing a trained model to choose generated images with higher class probabilities. The selection mechanism filters the synthetic images that contain ambiguous category information, thus alleviating label uncertainty. Results Experimental results show that compared with the baseline method which uses InceptionV3, the proposed method can significantly improve the performance of pathological image classification from 86.87% to 89.54% for overall accuracy. Additionally, the quality of generated images is evaluated quantitatively using various commonly used evaluation metrics. Discussion The proposed InceptionV3-SMSG-GAN method exhibited good classification ability, where histological image could be divided into nine categories. Future work could focus on further refining the image generation and selection processes to optimize classification performance.
Collapse
Affiliation(s)
- Liwen Jiang
- Department of Pathology, Affiliated Cancer Hospital and Institution of Guangzhou Medical University, Guangzhou, China
| | - Shuting Huang
- School of Information Engineering, Guangdong University of Technology, Guangzhou, China
| | - Chaofan Luo
- School of Information Engineering, Guangdong University of Technology, Guangzhou, China
| | - Jiangyu Zhang
- Department of Pathology, Affiliated Cancer Hospital and Institution of Guangzhou Medical University, Guangzhou, China
| | - Wenjing Chen
- Department of Pathology, Guangdong Women and Children Hospital, Guangzhou, China
| | - Zhenyu Liu
- School of Information Engineering, Guangdong University of Technology, Guangzhou, China
| |
Collapse
|
16
|
Zhang H, Zhu D, Tan H, Shafiq M, Gu Z. Medical Specialty Classification Based on Semiadversarial Data Augmentation. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2023; 2023:4919371. [PMID: 37881209 PMCID: PMC10597728 DOI: 10.1155/2023/4919371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/07/2022] [Accepted: 11/17/2022] [Indexed: 10/27/2023]
Abstract
Rapidly increasing adoption of electronic health record (EHR) systems has caused automated medical specialty classification to become an important research field. Medical specialty classification not only improves EHR system retrieval efficiency and helps general practitioners identify urgent patient issues but also is useful in studying the practice and validity of clinical referral patterns. However, currently available medical note data are imbalanced and insufficient. In addition, medical specialty classification is a multicategory problem, and it is not easy to remove sensitive information from numerous medical notes and tag them. To solve those problems, we propose a data augmentation method based on adversarial attacks. The semiadversarial examples generated during the dynamic process of adversarial attacking are added to the training set as augmented examples, which can effectively expand the coverage of the training data on the decision space. Besides, as nouns in medical notes are critical information, we design a classification framework incorporating probabilistic information of nouns, with confidence recalculation after the softmax layer. We validate our proposed method on an 18-class dataset with extremely unbalanced data, and comparison experiments with four benchmarks show that our method improves accuracy and F1 score to the optimal level, by an average of 14.9%.
Collapse
Affiliation(s)
- Huan Zhang
- Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, China
- Department of New Networks, Peng Cheng Laboratory, Shenzhen, China
| | - Dong Zhu
- Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, China
| | - Hao Tan
- Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, China
- Department of New Networks, Peng Cheng Laboratory, Shenzhen, China
| | - Muhammad Shafiq
- Cyberspace Institute of Advanced Technology, Guangzhou University, Guangzhou, China
| | - Zhaoquan Gu
- Department of New Networks, Peng Cheng Laboratory, Shenzhen, China
- School of Computer Science and Technology, Harbin Institute of Technology (Shenzhen), Shenzhen, China
| |
Collapse
|
17
|
Yang Y, Sun K, Gao Y, Wang K, Yu G. Preparing Data for Artificial Intelligence in Pathology with Clinical-Grade Performance. Diagnostics (Basel) 2023; 13:3115. [PMID: 37835858 PMCID: PMC10572440 DOI: 10.3390/diagnostics13193115] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 09/27/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The pathology is decisive for disease diagnosis but relies heavily on experienced pathologists. In recent years, there has been growing interest in the use of artificial intelligence in pathology (AIP) to enhance diagnostic accuracy and efficiency. However, the impressive performance of deep learning-based AIP in laboratory settings often proves challenging to replicate in clinical practice. As the data preparation is important for AIP, the paper has reviewed AIP-related studies in the PubMed database published from January 2017 to February 2022, and 118 studies were included. An in-depth analysis of data preparation methods is conducted, encompassing the acquisition of pathological tissue slides, data cleaning, screening, and subsequent digitization. Expert review, image annotation, dataset division for model training and validation are also discussed. Furthermore, we delve into the reasons behind the challenges in reproducing the high performance of AIP in clinical settings and present effective strategies to enhance AIP's clinical performance. The robustness of AIP depends on a randomized collection of representative disease slides, incorporating rigorous quality control and screening, correction of digital discrepancies, reasonable annotation, and sufficient data volume. Digital pathology is fundamental in clinical-grade AIP, and the techniques of data standardization and weakly supervised learning methods based on whole slide image (WSI) are effective ways to overcome obstacles of performance reproduction. The key to performance reproducibility lies in having representative data, an adequate amount of labeling, and ensuring consistency across multiple centers. Digital pathology for clinical diagnosis, data standardization and the technique of WSI-based weakly supervised learning will hopefully build clinical-grade AIP.
Collapse
Affiliation(s)
- Yuanqing Yang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China; (Y.Y.); (K.S.)
- Department of Biomedical Engineering, School of Medical, Tsinghua University, Beijing 100084, China
| | - Kai Sun
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China; (Y.Y.); (K.S.)
- Furong Laboratory, Changsha 410013, China
| | - Yanhua Gao
- Department of Ultrasound, Shaanxi Provincial People’s Hospital, Xi’an 710068, China;
| | - Kuansong Wang
- Department of Pathology, School of Basic Medical Sciences, Central South University, Changsha 410013, China;
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410013, China
| | - Gang Yu
- Department of Biomedical Engineering, School of Basic Medical Sciences, Central South University, Changsha 410013, China; (Y.Y.); (K.S.)
| |
Collapse
|
18
|
Ding K, Zhou M, Wang H, Gevaert O, Metaxas D, Zhang S. A Large-scale Synthetic Pathological Dataset for Deep Learning-enabled Segmentation of Breast Cancer. Sci Data 2023; 10:231. [PMID: 37085533 PMCID: PMC10121551 DOI: 10.1038/s41597-023-02125-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 03/31/2023] [Indexed: 04/23/2023] Open
Abstract
The success of training computer-vision models heavily relies on the support of large-scale, real-world images with annotations. Yet such an annotation-ready dataset is difficult to curate in pathology due to the privacy protection and excessive annotation burden. To aid in computational pathology, synthetic data generation, curation, and annotation present a cost-effective means to quickly enable data diversity that is required to boost model performance at different stages. In this study, we introduce a large-scale synthetic pathological image dataset paired with the annotation for nuclei semantic segmentation, termed as Synthetic Nuclei and annOtation Wizard (SNOW). The proposed SNOW is developed via a standardized workflow by applying the off-the-shelf image generator and nuclei annotator. The dataset contains overall 20k image tiles and 1,448,522 annotated nuclei with the CC-BY license. We show that SNOW can be used in both supervised and semi-supervised training scenarios. Extensive results suggest that synthetic-data-trained models are competitive under a variety of model training settings, expanding the scope of better using synthetic images for enhancing downstream data-driven clinical tasks.
Collapse
Affiliation(s)
- Kexin Ding
- Department of Computer Science, University of North Carolina at Charlotte, Charlotte, NC, 28262, USA
| | - Mu Zhou
- Sensebrain Research, San Jose, CA, 95131, USA
| | - He Wang
- Department of Pathology, Yale University, New Haven, CT, 06520, USA
| | - Olivier Gevaert
- Stanford Center for Biomedical Informatics Research, Department of Medicine and Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA
| | - Dimitris Metaxas
- Department of Computer Science, Rutgers University, New Brunswick, NJ, 08901, USA
| | - Shaoting Zhang
- Shanghai Artificial Intelligence Laboratory, Shanghai, 200232, China.
| |
Collapse
|
19
|
Anaam A, Al-Antari MA, Hussain J, Abdel Samee N, Alabdulhafith M, Gofuku A. Deep Active Learning for Automatic Mitotic Cell Detection on HEp-2 Specimen Medical Images. Diagnostics (Basel) 2023; 13:diagnostics13081416. [PMID: 37189517 DOI: 10.3390/diagnostics13081416] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 04/09/2023] [Accepted: 04/12/2023] [Indexed: 05/17/2023] Open
Abstract
Identifying Human Epithelial Type 2 (HEp-2) mitotic cells is a crucial procedure in anti-nuclear antibodies (ANAs) testing, which is the standard protocol for detecting connective tissue diseases (CTD). Due to the low throughput and labor-subjectivity of the ANAs' manual screening test, there is a need to develop a reliable HEp-2 computer-aided diagnosis (CAD) system. The automatic detection of mitotic cells from the microscopic HEp-2 specimen images is an essential step to support the diagnosis process and enhance the throughput of this test. This work proposes a deep active learning (DAL) approach to overcoming the cell labeling challenge. Moreover, deep learning detectors are tailored to automatically identify the mitotic cells directly in the entire microscopic HEp-2 specimen images, avoiding the segmentation step. The proposed framework is validated using the I3A Task-2 dataset over 5-fold cross-validation trials. Using the YOLO predictor, promising mitotic cell prediction results are achieved with an average of 90.011% recall, 88.307% precision, and 81.531% mAP. Whereas, average scores of 86.986% recall, 85.282% precision, and 78.506% mAP are obtained using the Faster R-CNN predictor. Employing the DAL method over four labeling rounds effectively enhances the accuracy of the data annotation, and hence, improves the prediction performance. The proposed framework could be practically applicable to support medical personnel in making rapid and accurate decisions about the mitotic cells' existence.
Collapse
Affiliation(s)
- Asaad Anaam
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| | - Mugahed A Al-Antari
- Department of Artificial Intelligence, College of Software & Convergence Technology, Daeyang AI Center, Sejong University, Seoul 05006, Republic of Korea
| | - Jamil Hussain
- Department of Data Science, College of Software & Convergence Technology, Daeyang AI Center, Sejong University, Seoul 05006, Republic of Korea
| | - Nagwan Abdel Samee
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Maali Alabdulhafith
- Department of Information Technology, College of Computer and Information Sciences, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Akio Gofuku
- Graduate School of Interdisciplinary Science and Engineering in Health Systems, Okayama University, Okayama 700-8530, Japan
| |
Collapse
|
20
|
Wang H, Xian M, Vakanski A, Shareef B. SIAN: STYLE-GUIDED INSTANCE-ADAPTIVE NORMALIZATION FOR MULTI-ORGAN HISTOPATHOLOGY IMAGE SYNTHESIS. PROCEEDINGS. IEEE INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING 2023; 2023:10.1109/isbi53787.2023.10230507. [PMID: 38572450 PMCID: PMC10989245 DOI: 10.1109/isbi53787.2023.10230507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Existing deep neural networks for histopathology image synthesis cannot generate image styles that align with different organs, and cannot produce accurate boundaries of clustered nuclei. To address these issues, we propose a style-guided instance-adaptive normalization (SIAN) approach to synthesize realistic color distributions and textures for histopathology images from different organs. SIAN contains four phases, semantization, stylization, instantiation, and modulation. The first two phases synthesize image semantics and styles by using semantic maps and learned image style vectors. The instantiation module integrates geometrical and topological information and generates accurate nuclei boundaries. We validate the proposed approach on a multiple-organ dataset, Extensive experimental results demonstrate that the proposed method generates more realistic histopathology images than four state-of-the-art approaches for five organs. By incorporating synthetic images from the proposed approach to model training, an instance segmentation network can achieve state-of-the-art performance.
Collapse
Affiliation(s)
- Haotian Wang
- Department of Computer Science, University of Idaho, USA
| | - Min Xian
- Department of Computer Science, University of Idaho, USA
| | | | - Bryar Shareef
- Department of Computer Science, University of Idaho, USA
| |
Collapse
|
21
|
Rabbani A, Babaei M, Gharib M. Automated segmentation and morphological characterization of placental intervillous space based on a single labeled image. Micron 2023; 169:103448. [PMID: 36965271 DOI: 10.1016/j.micron.2023.103448] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 03/19/2023] [Accepted: 03/20/2023] [Indexed: 03/27/2023]
Abstract
In this study, a novel method of data augmentation has been presented for the segmentation of placental histological images when the labeled data are scarce. This method generates new realizations of the placenta intervillous morphology while maintaining the general textures and orientations. As a result, a diversified artificial dataset of images is generated that can be used for training deep learning segmentation models. We have observed that on average the presented method of data augmentation led to a 42% decrease in the binary cross-entropy loss of the validation dataset compared to the common approach in the literature. Additionally, the morphology of the intervillous space is studied under the effect of the proposed image reconstruction technique, and the diversity of the artificially generated population is quantified. We have demonstrated that the proposed method results in a more accurate morphological characterization of the placental intervillous space with an average feature relative error of 6.5%, which is significantly lower than the 11.5% error observed with conventional augmentation techniques. Due to the high resemblance of the generated images to the real ones, applications of the proposed method may not be limited to placental histological images, and it is recommended that other types of tissue be investigated in future studies.
Collapse
Affiliation(s)
- Arash Rabbani
- School of Computing, University of Leeds, Leeds, UK.
| | - Masoud Babaei
- School of Chemical Engineering and Analytical Science, The University of Manchester, Manchester, UK
| | - Masoumeh Gharib
- Department of Pathology, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
22
|
Oliveira SP, Montezuma D, Moreira A, Oliveira D, Neto PC, Monteiro A, Monteiro J, Ribeiro L, Gonçalves S, Pinto IM, Cardoso JS. A CAD system for automatic dysplasia grading on H&E cervical whole-slide images. Sci Rep 2023; 13:3970. [PMID: 36894572 PMCID: PMC9998461 DOI: 10.1038/s41598-023-30497-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 02/24/2023] [Indexed: 03/11/2023] Open
Abstract
Cervical cancer is the fourth most common female cancer worldwide and the fourth leading cause of cancer-related death in women. Nonetheless, it is also among the most successfully preventable and treatable types of cancer, provided it is early identified and properly managed. As such, the detection of pre-cancerous lesions is crucial. These lesions are detected in the squamous epithelium of the uterine cervix and are graded as low- or high-grade intraepithelial squamous lesions, known as LSIL and HSIL, respectively. Due to their complex nature, this classification can become very subjective. Therefore, the development of machine learning models, particularly directly on whole-slide images (WSI), can assist pathologists in this task. In this work, we propose a weakly-supervised methodology for grading cervical dysplasia, using different levels of training supervision, in an effort to gather a bigger dataset without the need of having all samples fully annotated. The framework comprises an epithelium segmentation step followed by a dysplasia classifier (non-neoplastic, LSIL, HSIL), making the slide assessment completely automatic, without the need for manual identification of epithelial areas. The proposed classification approach achieved a balanced accuracy of 71.07% and sensitivity of 72.18%, at the slide-level testing on 600 independent samples, which are publicly available upon reasonable request.
Collapse
Affiliation(s)
- Sara P Oliveira
- INESCTEC, 4200-465, Porto, Portugal.,FEUP, University of Porto, 4200-465, Porto, Portugal
| | - Diana Montezuma
- IMP Diagnostics, 4150-146, Porto, Portugal. .,ICBAS, University of Porto, 4050-313, Porto, Portugal.
| | - Ana Moreira
- FEUP, University of Porto, 4200-465, Porto, Portugal
| | | | - Pedro C Neto
- INESCTEC, 4200-465, Porto, Portugal.,FEUP, University of Porto, 4200-465, Porto, Portugal
| | | | | | | | | | | | - Jaime S Cardoso
- INESCTEC, 4200-465, Porto, Portugal.,FEUP, University of Porto, 4200-465, Porto, Portugal
| |
Collapse
|
23
|
Giuste FO, Sequeira R, Keerthipati V, Lais P, Mirzazadeh A, Mohseni A, Zhu Y, Shi W, Marteau B, Zhong Y, Tong L, Das B, Shehata B, Deshpande S, Wang MD. Explainable synthetic image generation to improve risk assessment of rare pediatric heart transplant rejection. J Biomed Inform 2023; 139:104303. [PMID: 36736449 PMCID: PMC10031799 DOI: 10.1016/j.jbi.2023.104303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/23/2022] [Accepted: 01/29/2023] [Indexed: 02/05/2023]
Abstract
Expert microscopic analysis of cells obtained from frequent heart biopsies is vital for early detection of pediatric heart transplant rejection to prevent heart failure. Detection of this rare condition is prone to low levels of expert agreement due to the difficulty of identifying subtle rejection signs within biopsy samples. The rarity of pediatric heart transplant rejection also means that very few gold-standard images are available for developing machine learning models. To solve this urgent clinical challenge, we developed a deep learning model to automatically quantify rejection risk within digital images of biopsied tissue using an explainable synthetic data augmentation approach. We developed this explainable AI framework to illustrate how our progressive and inspirational generative adversarial network models distinguish between normal tissue images and those containing cellular rejection signs. To quantify biopsy-level rejection risk, we first detect local rejection features using a binary image classifier trained with expert-annotated and synthetic examples. We converted these local predictions into a biopsy-wide rejection score via an interpretable histogram-based approach. Our model significantly improves upon prior works with the same dataset with an area under the receiver operating curve (AUROC) of 98.84% for the local rejection detection task and 95.56% for the biopsy-rejection prediction task. A biopsy-level sensitivity of 83.33% makes our approach suitable for early screening of biopsies to prioritize expert analysis. Our framework provides a solution to rare medical imaging challenges currently limited by small datasets.
Collapse
Affiliation(s)
- Felipe O Giuste
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, 30332, GA, USA.
| | - Ryan Sequeira
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, 30332, GA, USA
| | - Vikranth Keerthipati
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, 30332, GA, USA
| | - Peter Lais
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, 30332, GA, USA
| | - Ali Mirzazadeh
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, 30332, GA, USA
| | - Arshawn Mohseni
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, 30332, GA, USA
| | - Yuanda Zhu
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, 30332, GA, USA
| | - Wenqi Shi
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, 30332, GA, USA
| | - Benoit Marteau
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, 30332, GA, USA
| | - Yishan Zhong
- School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, 30332, GA, USA
| | - Li Tong
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, 30332, GA, USA
| | - Bibhuti Das
- Department of Pediatric Cardiology, University of Mississippi Medical Center, Jackson, 39216, MS, USA
| | - Bahig Shehata
- Department of Pathology, Wayne State University School of Medicine, Detroit, 48201, MI, USA
| | - Shriprasad Deshpande
- Department of Pediatric Cardiology, Children's National Health System, Washington, 20010, DC, USA
| | - May D Wang
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, 30332, GA, USA; School of Electrical and Computer Engineering, Georgia Institute of Technology, Atlanta, 30332, GA, USA.
| |
Collapse
|
24
|
A generalizable and robust deep learning algorithm for mitosis detection in multicenter breast histopathological images. Med Image Anal 2023; 84:102703. [PMID: 36481608 DOI: 10.1016/j.media.2022.102703] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 09/16/2022] [Accepted: 11/21/2022] [Indexed: 11/24/2022]
Abstract
Mitosis counting of biopsies is an important biomarker for breast cancer patients, which supports disease prognostication and treatment planning. Developing a robust mitotic cell detection model is highly challenging due to its complex growth pattern and high similarities with non-mitotic cells. Most mitosis detection algorithms have poor generalizability across image domains and lack reproducibility and validation in multicenter settings. To overcome these issues, we propose a generalizable and robust mitosis detection algorithm (called FMDet), which is independently tested on multicenter breast histopathological images. To capture more refined morphological features of cells, we convert the object detection task as a semantic segmentation problem. The pixel-level annotations for mitotic nuclei are obtained by taking the intersection of the masks generated from a well-trained nuclear segmentation model and the bounding boxes provided by the MIDOG 2021 challenge. In our segmentation framework, a robust feature extractor is developed to capture the appearance variations of mitotic cells, which is constructed by integrating a channel-wise multi-scale attention mechanism into a fully convolutional network structure. Benefiting from the fact that the changes in the low-level spectrum do not affect the high-level semantic perception, we employ a Fourier-based data augmentation method to reduce domain discrepancies by exchanging the low-frequency spectrum between two domains. Our FMDet algorithm has been tested in the MIDOG 2021 challenge and ranked first place. Further, our algorithm is also externally validated on four independent datasets for mitosis detection, which exhibits state-of-the-art performance in comparison with previously published results. These results demonstrate that our algorithm has the potential to be deployed as an assistant decision support tool in clinical practice. Our code has been released at https://github.com/Xiyue-Wang/1st-in-MICCAI-MIDOG-2021-challenge.
Collapse
|
25
|
Conditional TransGAN-Based Data Augmentation for PCB Electronic Component Inspection. COMPUTATIONAL INTELLIGENCE AND NEUROSCIENCE 2023; 2023:2024237. [PMID: 36660560 PMCID: PMC9845033 DOI: 10.1155/2023/2024237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 10/06/2022] [Accepted: 12/21/2022] [Indexed: 01/12/2023]
Abstract
Automatic recognition and positioning of electronic components on PCBs can enhance quality inspection efficiency for electronic products during manufacturing. Efficient PCB inspection requires identification and classification of PCB components as well as defects for better quality assurance. The small size of the electronic component and PCB defect targets means that there are fewer feature areas for the neural network to detect, and the complex grain backgrounds of both datasets can cause significant interference, making the target detection task challenging. Meanwhile, the detection performance of deep learning models is significantly impacted due to the lack of samples. In this paper, we propose conditional TransGAN (cTransGAN), a generative model for data augmentation, which enhances the quantity and diversity of the original training set and further improves the accuracy of PCB electronic component recognition. The design of cTransGAN brings together the merits of both conditional GAN and TransGAN, allowing a trained model to generate high-quality synthetic images conditioned on the class embeddings. To validate the proposed method, we conduct extensive experiments on two datasets, including a self-developed dataset for PCB component detection and an existing dataset for PCB defect detection. Also, we have evaluated three existing object detection algorithms, including Faster R-CNN ResNet101, YOLO V3 DarkNet-53, and SCNet ResNet101, and each is validated under four experimental settings to form an ablation study. Results demonstrate that the proposed cTransGAN can effectively enhance the quality and diversity of the training set, leading to superior performance on both tasks. We have open-sourced the project to facilitate further studies.
Collapse
|
26
|
Chen Y, Dong Y, Si L, Yang W, Du S, Tian X, Li C, Liao Q, Ma H. Dual Polarization Modality Fusion Network for Assisting Pathological Diagnosis. IEEE TRANSACTIONS ON MEDICAL IMAGING 2023; 42:304-316. [PMID: 36155433 DOI: 10.1109/tmi.2022.3210113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
Polarization imaging is sensitive to sub-wavelength microstructures of various cancer tissues, providing abundant optical characteristics and microstructure information of complex pathological specimens. However, how to reasonably utilize polarization information to strengthen pathological diagnosis ability remains a challenging issue. In order to take full advantage of pathological image information and polarization features of samples, we propose a dual polarization modality fusion network (DPMFNet), which consists of a multi-stream CNN structure and a switched attention fusion module for complementarily aggregating the features from different modality images. Our proposed switched attention mechanism could obtain the joint feature embeddings by switching the attention map of different modality images to improve their semantic relatedness. By including a dual-polarization contrastive training scheme, our method can synthesize and align the interaction and representation of two polarization features. Experimental evaluations on three cancer datasets show the superiority of our method in assisting pathological diagnosis, especially in small datasets and low imaging resolution cases. Grad-CAM visualizes the important regions of the pathological images and the polarization images, indicating that the two modalities play different roles and allow us to give insightful corresponding explanations and analysis on cancer diagnosis conducted by the DPMFNet. This technique has potential to facilitate the performance of pathological aided diagnosis and broaden the current digital pathology boundary based on pathological image features.
Collapse
|
27
|
Ni H, Xue Y, Ma L, Zhang Q, Li X, Huang SX. Semi-supervised body parsing and pose estimation for enhancing infant general movement assessment. Med Image Anal 2023; 83:102654. [PMID: 36327657 DOI: 10.1016/j.media.2022.102654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 09/12/2022] [Accepted: 10/08/2022] [Indexed: 11/07/2022]
Abstract
General movement assessment (GMA) of infant movement videos (IMVs) is an effective method for early detection of cerebral palsy (CP) in infants. We demonstrate in this paper that end-to-end trainable neural networks for image sequence recognition can be applied to achieve good results in GMA, and more importantly, augmenting raw video with infant body parsing and pose estimation information can significantly improve performance. To solve the problem of efficiently utilizing partially labeled IMVs for body parsing, we propose a semi-supervised model, termed SiamParseNet (SPN), which consists of two branches, one for intra-frame body parts segmentation and another for inter-frame label propagation. During training, the two branches are jointly trained by alternating between using input pairs of only labeled frames and input of both labeled and unlabeled frames. We also investigate training data augmentation by proposing a factorized video generative adversarial network (FVGAN) to synthesize novel labeled frames for training. FVGAN decouples foreground and background generation which allows for generating multiple labeled frames from one real labeled frame. When testing, we employ a multi-source inference mechanism, where the final result for a test frame is either obtained via the segmentation branch or via propagation from a nearby key frame. We conduct extensive experiments for body parsing using SPN on two infant movement video datasets; on these partially labeled IMVs, we show that SPN coupled with FVGAN achieves state-of-the-art performance. We further demonstrate that our proposed SPN can be easily adapted to the infant pose estimation task with superior performance. Last but not least, we explore the clinical application of our method for GMA. We collected a new clinical IMV dataset with GMA annotations, and our experiments show that our SPN models for body parsing and pose estimation trained on the first two datasets generalize well to the new clinical dataset and their results can significantly boost the convolutional recurrent neural network (CRNN) based GMA prediction performance when combined with raw video inputs.
Collapse
Affiliation(s)
- Haomiao Ni
- College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA, USA
| | - Yuan Xue
- College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA, USA; Department of Electrical and Computer Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Liya Ma
- Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China
| | - Qian Zhang
- School of Information and Control Engineering, Xi'an University of Architecture and Technology, Xi'an, China
| | - Xiaoye Li
- Shenzhen Baoan Women's and Children's Hospital, Jinan University, Shenzhen, China.
| | - Sharon X Huang
- College of Information Sciences and Technology, The Pennsylvania State University, University Park, PA, USA.
| |
Collapse
|
28
|
Wang X, Du Y, Yang S, Zhang J, Wang M, Zhang J, Yang W, Huang J, Han X. RetCCL: Clustering-guided contrastive learning for whole-slide image retrieval. Med Image Anal 2023; 83:102645. [PMID: 36270093 DOI: 10.1016/j.media.2022.102645] [Citation(s) in RCA: 73] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 07/21/2022] [Accepted: 09/27/2022] [Indexed: 02/07/2023]
Abstract
Benefiting from the large-scale archiving of digitized whole-slide images (WSIs), computer-aided diagnosis has been well developed to assist pathologists in decision-making. Content-based WSI retrieval can be a new approach to find highly correlated WSIs in a historically diagnosed WSI archive, which has the potential usages for assisted clinical diagnosis, medical research, and trainee education. During WSI retrieval, it is particularly challenging to encode the semantic content of histopathological images and to measure the similarity between images for interpretable results due to the gigapixel size of WSIs. In this work, we propose a Retrieval with Clustering-guided Contrastive Learning (RetCCL) framework for robust and accurate WSI-level image retrieval, which integrates a novel self-supervised feature learning method and a global ranking and aggregation algorithm for much improved performance. The proposed feature learning method makes use of existing large-scale unlabeled histopathological image data, which helps learn universal features that could be used directly for subsequent WSI retrieval tasks without extra fine-tuning. The proposed WSI retrieval method not only returns a set of WSIs similar to a query WSI, but also highlights patches or sub-regions of each WSI that share high similarity with patches of the query WSI, which helps pathologists interpret the searching results. Our WSI retrieval framework has been evaluated on the tasks of anatomical site retrieval and cancer subtype retrieval using over 22,000 slides, and the performance exceeds other state-of-the-art methods significantly (around 10% for the anatomic site retrieval in terms of average mMV@10). Besides, the patch retrieval using our learned feature representation offers a performance improvement of 24% on the TissueNet dataset in terms of mMV@5 compared with using ImageNet pre-trained features, which further demonstrates the effectiveness of the proposed CCL feature learning method.
Collapse
Affiliation(s)
- Xiyue Wang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; College of Computer Science, Sichuan University, Chengdu 610065, China
| | - Yuexi Du
- College of Engineering, University of Michigan, Ann Arbor, MI, 48109, United States
| | - Sen Yang
- Tencent AI Lab, Shenzhen 518057, China
| | - Jun Zhang
- Tencent AI Lab, Shenzhen 518057, China
| | - Minghui Wang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China; College of Computer Science, Sichuan University, Chengdu 610065, China
| | - Jing Zhang
- College of Biomedical Engineering, Sichuan University, Chengdu 610065, China.
| | - Wei Yang
- Tencent AI Lab, Shenzhen 518057, China
| | | | - Xiao Han
- Tencent AI Lab, Shenzhen 518057, China.
| |
Collapse
|
29
|
Xia T, Sanchez P, Qin C, Tsaftaris SA. Adversarial counterfactual augmentation: application in Alzheimer's disease classification. FRONTIERS IN RADIOLOGY 2022; 2:1039160. [PMID: 37492661 PMCID: PMC10365114 DOI: 10.3389/fradi.2022.1039160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2022] [Accepted: 11/07/2022] [Indexed: 07/27/2023]
Abstract
Due to the limited availability of medical data, deep learning approaches for medical image analysis tend to generalise poorly to unseen data. Augmenting data during training with random transformations has been shown to help and became a ubiquitous technique for training neural networks. Here, we propose a novel adversarial counterfactual augmentation scheme that aims at finding the most effective synthesised images to improve downstream tasks, given a pre-trained generative model. Specifically, we construct an adversarial game where we update the input conditional factor of the generator and the downstream classifier with gradient backpropagation alternatively and iteratively. This can be viewed as finding the 'weakness' of the classifier and purposely forcing it to overcome its weakness via the generative model. To demonstrate the effectiveness of the proposed approach, we validate the method with the classification of Alzheimer's Disease (AD) as a downstream task. The pre-trained generative model synthesises brain images using age as conditional factor. Extensive experiments and ablation studies have been performed to show that the proposed approach improves classification performance and has potential to alleviate spurious correlations and catastrophic forgetting. Code: https://github.com/xiat0616/adversarial_counterfactual_augmentation.
Collapse
Affiliation(s)
- Tian Xia
- School of Engineering, University of Edinburgh, Edinburgh, United Kingdom
| | - Pedro Sanchez
- School of Engineering, University of Edinburgh, Edinburgh, United Kingdom
| | - Chen Qin
- School of Engineering, University of Edinburgh, Edinburgh, United Kingdom
- Department of Electrical and Electronic Engineering, Imperial College London, London, United Kingdom
| | - Sotirios A. Tsaftaris
- School of Engineering, University of Edinburgh, Edinburgh, United Kingdom
- The Alan Turing Institute, London, United Kingdom
| |
Collapse
|
30
|
Gou F, Liu J, Zhu J, Wu J. A Multimodal Auxiliary Classification System for Osteosarcoma Histopathological Images Based on Deep Active Learning. Healthcare (Basel) 2022; 10:2189. [PMID: 36360530 PMCID: PMC9690420 DOI: 10.3390/healthcare10112189] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 10/29/2023] Open
Abstract
Histopathological examination is an important criterion in the clinical diagnosis of osteosarcoma. With the improvement of hardware technology and computing power, pathological image analysis systems based on artificial intelligence have been widely used. However, classifying numerous intricate pathology images by hand is a tiresome task for pathologists. The lack of labeling data makes the system costly and difficult to build. This study constructs a classification assistance system (OHIcsA) based on active learning (AL) and a generative adversarial network (GAN). The system initially uses a small, labeled training set to train the classifier. Then, the most informative samples from the unlabeled images are selected for expert annotation. To retrain the network, the final chosen images are added to the initial labeled dataset. Experiments on real datasets show that our proposed method achieves high classification performance with an AUC value of 0.995 and an accuracy value of 0.989 using a small amount of labeled data. It reduces the cost of building a medical system. Clinical diagnosis can be aided by the system's findings, which can also increase the effectiveness and verifiable accuracy of doctors.
Collapse
Affiliation(s)
- Fangfang Gou
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
| | - Jun Liu
- The Second People’s Hospital of Huaihua, Huaihua 418000, China
| | - Jun Zhu
- The First People’s Hospital of Huaihua, Huaihua 418000, China
- Collaborative Innovation Center for Medical Artificial Intelligence and Big Data Decision Making Assistance, Hunan University of Medicine, Huaihua 418000, China
| | - Jia Wu
- School of Computer Science and Engineering, Central South University, Changsha 410083, China
- Research Center for Artificial Intelligence, Monash University, Melbourne, VIC 3800, Australia
| |
Collapse
|
31
|
Lin J, Han G, Pan X, Liu Z, Chen H, Li D, Jia X, Shi Z, Wang Z, Cui Y, Li H, Liang C, Liang L, Wang Y, Han C. PDBL: Improving Histopathological Tissue Classification With Plug-and-Play Pyramidal Deep-Broad Learning. IEEE TRANSACTIONS ON MEDICAL IMAGING 2022; 41:2252-2262. [PMID: 35320093 DOI: 10.1109/tmi.2022.3161787] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Histopathological tissue classification is a simpler way to achieve semantic segmentation for the whole slide images, which can alleviate the requirement of pixel-level dense annotations. Existing works mostly leverage the popular CNN classification backbones in computer vision to achieve histopathological tissue classification. In this paper, we propose a super lightweight plug-and-play module, named Pyramidal Deep-Broad Learning (PDBL), for any well-trained classification backbone to improve the classification performance without a re-training burden. For each patch, we construct a multi-resolution image pyramid to obtain the pyramidal contextual information. For each level in the pyramid, we extract the multi-scale deep-broad features by our proposed Deep-Broad block (DB-block). We equip PDBL in three popular classification backbones, ShuffLeNetV2, EfficientNetb0, and ResNet50 to evaluate the effectiveness and efficiency of our proposed module on two datasets (Kather Multiclass Dataset and the LC25000 Dataset). Experimental results demonstrate the proposed PDBL can steadily improve the tissue-level classification performance for any CNN backbones, especially for the lightweight models when given a small among of training samples (less than 10%). It greatly saves the computational resources and annotation efforts. The source code is available at: https://github.com/linjiatai/PDBL.
Collapse
|
32
|
Zhao J, Hou X, Pan M, Zhang H. Attention-based generative adversarial network in medical imaging: A narrative review. Comput Biol Med 2022; 149:105948. [PMID: 35994931 DOI: 10.1016/j.compbiomed.2022.105948] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 07/24/2022] [Accepted: 08/06/2022] [Indexed: 11/18/2022]
Abstract
As a popular probabilistic generative model, generative adversarial network (GAN) has been successfully used not only in natural image processing, but also in medical image analysis and computer-aided diagnosis. Despite the various advantages, the applications of GAN in medical image analysis face new challenges. The introduction of attention mechanisms, which resemble the human visual system that focuses on the task-related local image area for certain information extraction, has drawn increasing interest. Recently proposed transformer-based architectures that leverage self-attention mechanism encode long-range dependencies and learn representations that are highly expressive. This motivates us to summarize the applications of using transformer-based GAN for medical image analysis. We reviewed recent advances in techniques combining various attention modules with different adversarial training schemes, and their applications in medical segmentation, synthesis and detection. Several recent studies have shown that attention modules can be effectively incorporated into a GAN model in detecting lesion areas and extracting diagnosis-related feature information precisely, thus providing a useful tool for medical image processing and diagnosis. This review indicates that research on the medical imaging analysis of GAN and attention mechanisms is still at an early stage despite the great potential. We highlight the attention-based generative adversarial network is an efficient and promising computational model advancing future research and applications in medical image analysis.
Collapse
Affiliation(s)
- Jing Zhao
- School of Engineering Medicine, Beihang University, Beijing, 100191, China; School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Xiaoyuan Hou
- School of Engineering Medicine, Beihang University, Beijing, 100191, China; School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Meiqing Pan
- School of Engineering Medicine, Beihang University, Beijing, 100191, China; School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Hui Zhang
- School of Engineering Medicine, Beihang University, Beijing, 100191, China; Key Laboratory of Biomechanics and Mechanobiology (Beihang University), Ministry of Education, Beijing, 100191, China; Key Laboratory of Big Data-Based Precision Medicine (Beihang University), Ministry of Industry and Information Technology of the People's Republic of China, Beijing, 100191, China.
| |
Collapse
|
33
|
Sabitha P, Meeragandhi G. A dual stage AlexNet-HHO-DrpXLM archetype for an effective feature extraction, classification and prediction of liver cancer based on histopathology images. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
34
|
He W, Liu T, Han Y, Ming W, Du J, Liu Y, Yang Y, Wang L, Jiang Z, Wang Y, Yuan J, Cao C. A review: The detection of cancer cells in histopathology based on machine vision. Comput Biol Med 2022; 146:105636. [PMID: 35751182 DOI: 10.1016/j.compbiomed.2022.105636] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/04/2022] [Accepted: 04/28/2022] [Indexed: 12/24/2022]
Abstract
Machine vision is being employed in defect detection, size measurement, pattern recognition, image fusion, target tracking and 3D reconstruction. Traditional cancer detection methods are dominated by manual detection, which wastes time and manpower, and heavily relies on the pathologists' skill and work experience. Therefore, these manual detection approaches are not convenient for the inheritance of domain knowledge, and are not suitable for the rapid development of medical care in the future. The emergence of machine vision can iteratively update and learn the domain knowledge of cancer cell pathology detection to achieve automated, high-precision, and consistent detection. Consequently, this paper reviews the use of machine vision to detect cancer cells in histopathology images, as well as the benefits and drawbacks of various detection approaches. First, we review the application of image preprocessing and image segmentation in histopathology for the detection of cancer cells, and compare the benefits and drawbacks of different algorithms. Secondly, for the characteristics of histopathological cancer cell images, the research progress of shape, color and texture features and other methods is mainly reviewed. Furthermore, for the classification methods of histopathological cancer cell images, the benefits and drawbacks of traditional machine vision approaches and deep learning methods are compared and analyzed. Finally, the above research is discussed and forecasted, with the expected future development tendency serving as a guide for future research.
Collapse
Affiliation(s)
- Wenbin He
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Ting Liu
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Yongjie Han
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Wuyi Ming
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou, 450002, China; Guangdong HUST Industrial Technology Research Institute, Guangdong Provincial Key Laboratory of Digital Manufacturing Equipment, Dongguan, 523808, China.
| | - Jinguang Du
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Yinxia Liu
- Laboratory Medicine of Dongguan Kanghua Hospital, Dongguan, 523808, China
| | - Yuan Yang
- Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, 510120, China.
| | - Leijie Wang
- School of Mechanical Engineering, Dongguan University of Technology Dongguan, 523808, China
| | - Zhiwen Jiang
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Yongqiang Wang
- Zhengzhou Coal Mining Machinery Group Co., Ltd, Zhengzhou, 450016, China
| | - Jie Yuan
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou, 450002, China
| | - Chen Cao
- Henan Key Lab of Intelligent Manufacturing of Mechanical Equipment, Zhengzhou University of Light Industry, Zhengzhou, 450002, China; Guangdong HUST Industrial Technology Research Institute, Guangdong Provincial Key Laboratory of Digital Manufacturing Equipment, Dongguan, 523808, China
| |
Collapse
|
35
|
Luz DS, Lima TJ, Silva RR, Magalhães DM, Araujo FH. Automatic detection metastasis in breast histopathological images based on ensemble learning and color adjustment. Biomed Signal Process Control 2022. [DOI: 10.1016/j.bspc.2022.103564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
36
|
Chen Y, Yang XH, Wei Z, Heidari AA, Zheng N, Li Z, Chen H, Hu H, Zhou Q, Guan Q. Generative Adversarial Networks in Medical Image augmentation: A review. Comput Biol Med 2022; 144:105382. [PMID: 35276550 DOI: 10.1016/j.compbiomed.2022.105382] [Citation(s) in RCA: 96] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 12/31/2022]
Abstract
OBJECT With the development of deep learning, the number of training samples for medical image-based diagnosis and treatment models is increasing. Generative Adversarial Networks (GANs) have attracted attention in medical image processing due to their excellent image generation capabilities and have been widely used in data augmentation. In this paper, a comprehensive and systematic review and analysis of medical image augmentation work are carried out, and its research status and development prospects are reviewed. METHOD This paper reviews 105 medical image augmentation related papers, which mainly collected by ELSEVIER, IEEE Xplore, and Springer from 2018 to 2021. We counted these papers according to the parts of the organs corresponding to the images, and sorted out the medical image datasets that appeared in them, the loss function in model training, and the quantitative evaluation metrics of image augmentation. At the same time, we briefly introduce the literature collected in three journals and three conferences that have received attention in medical image processing. RESULT First, we summarize the advantages of various augmentation models, loss functions, and evaluation metrics. Researchers can use this information as a reference when designing augmentation tasks. Second, we explore the relationship between augmented models and the amount of the training set, and tease out the role that augmented models may play when the quality of the training set is limited. Third, the statistical number of papers shows that the development momentum of this research field remains strong. Furthermore, we discuss the existing limitations of this type of model and suggest possible research directions. CONCLUSION We discuss GAN-based medical image augmentation work in detail. This method effectively alleviates the challenge of limited training samples for medical image diagnosis and treatment models. It is hoped that this review will benefit researchers interested in this field.
Collapse
Affiliation(s)
- Yizhou Chen
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China.
| | - Xu-Hua Yang
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China.
| | - Zihan Wei
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China.
| | - Ali Asghar Heidari
- School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran; Department of Computer Science, School of Computing, National University of Singapore, Singapore, Singapore.
| | - Nenggan Zheng
- Qiushi Academy for Advanced Studies, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Zhicheng Li
- Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.
| | - Huiling Chen
- College of Computer Science and Artificial Intelligence, Wenzhou University, Wenzhou, Zhejiang, 325035, China.
| | - Haigen Hu
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China.
| | - Qianwei Zhou
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China.
| | - Qiu Guan
- College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou, China.
| |
Collapse
|
37
|
Li X, Jiang Y, Rodriguez-Andina JJ, Luo H, Yin S, Kaynak O. When medical images meet generative adversarial network: recent development and research opportunities. DISCOVER ARTIFICIAL INTELLIGENCE 2021; 1:5. [DOI: 10.1007/s44163-021-00006-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 07/12/2021] [Indexed: 11/27/2022]
Abstract
AbstractDeep learning techniques have promoted the rise of artificial intelligence (AI) and performed well in computer vision. Medical image analysis is an important application of deep learning, which is expected to greatly reduce the workload of doctors, contributing to more sustainable health systems. However, most current AI methods for medical image analysis are based on supervised learning, which requires a lot of annotated data. The number of medical images available is usually small and the acquisition of medical image annotations is an expensive process. Generative adversarial network (GAN), an unsupervised method that has become very popular in recent years, can simulate the distribution of real data and reconstruct approximate real data. GAN opens some exciting new ways for medical image generation, expanding the number of medical images available for deep learning methods. Generated data can solve the problem of insufficient data or imbalanced data categories. Adversarial training is another contribution of GAN to medical imaging that has been applied to many tasks, such as classification, segmentation, or detection. This paper investigates the research status of GAN in medical images and analyzes several GAN methods commonly applied in this area. The study addresses GAN application for both medical image synthesis and adversarial learning for other medical image tasks. The open challenges and future research directions are also discussed.
Collapse
|
38
|
Jacaruso LC. Accuracy improvement for Fully Convolutional Networks via selective augmentation with applications to electrocardiogram data. INFORMATICS IN MEDICINE UNLOCKED 2021. [DOI: 10.1016/j.imu.2021.100729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|