1
|
Bouaka Tsakeng CU, Melachio Tanekou TT, Ngambia Freitas FS, Tirados I, Tsagmo Ngoune JM, Bigoga JD, Njiokou F, Wondji CS. Patterns of microbiome composition in tsetse fly Glossina palpalis palpalis during vector control using Tiny Targets in Campo, South Cameroon. Microbiol Spectr 2024; 12:e0093524. [PMID: 39297636 PMCID: PMC11540164 DOI: 10.1128/spectrum.00935-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 08/22/2024] [Indexed: 11/08/2024] Open
Abstract
Novel vector control tools against African trypanosomiases require a deep understanding of the factors driving tsetse vector fitness or population resilience in their ecosystems. Following evidence of microbiota-mediated host fitness or traits shaping, including insecticide resistance in arthropod populations, we undertook a comparative study of the microbiota in wild-caught tsetse flies during vector control with deltamethrin-impregnated traps called Tiny Targets. The bacterial microbiome composition of tsetse flies collected before and after 6, 12, and 18 months of vector control were characterized using high-throughput sequencing of the V3-V4 hypervariable region of the bacterial 16S rRNA gene and compared. Overall, 48 bacterial genera and five phyla were identified. The primary symbiont Wigglesworthia dominated almost all the samples with an overall relative abundance of 71.76%. A significant increase was observed in microbiome diversities over the vector control with new taxa identified. Interestingly, few genera, like Curvibacter for instance, displayed a regularly increasing abundance, from 0.57% to 0.65%, 4.73%, and 8.57% after 6, 12, and 18 months of tsetse control, respectively. This study provided preliminary for further investigation into the role and mechanism of action of microbiota in tsetse fly fitness under selective pressure like insecticides.IMPORTANCEThe interest in vector control in the fight against African trypanosomiases has been reinforced in recent years, with the development of small insecticide-impregnated screens, known as "Tiny Targets". As some tsetse biotopes are difficult to access for their installation, other tools are under consideration that involve using bacteria harbored by the tsetse vector to block the development of trypanosomes or impair the tsetse's fitness in its natural environment. Several bacterial symbionts were previously described as important for tsetse fly development, and some like Burkholderia and Citrobacter also found in tsetse flies were found associated with insecticide tolerance in other arthropods. In this research, we found the bacterial genera, Curvibacter and Acinetobacter, increased in abundance in tsetse flies during vector control. These bacteria deserve further attention to determine if they can interfere with insecticides used to control tsetse fly populations.
Collapse
Affiliation(s)
- Calmes Ursain Bouaka Tsakeng
- Centre for Research in
Infectious Diseases (CRID),
Yaoundé, Cameroon
- Department of
Biochemistry, Faculty of Science, University of Yaoundé
I, Yaoundé,
Cameroon
| | - Tito Tresor Melachio Tanekou
- Centre for Research in
Infectious Diseases (CRID),
Yaoundé, Cameroon
- Department of
Microbiology and Parasitology, Faculty of Science, University of
Bamenda, Bamenda,
Cameroon
| | | | - Inaki Tirados
- Department of Vector
Biology, Liverpool School of Tropical Medicine (LSTM), Pembroke
Place, Liverpool,
United Kingdom
| | - Jean Marc Tsagmo Ngoune
- Department of
Parasites and Insect Vectors, Trypanosome Transmission Group,
Trypanosome Cell Biology Unit, INSERM U1201, Institut Pasteur,
Université Paris Cité,
Paris, France
| | - Jude Daiga Bigoga
- Department of
Biochemistry, Faculty of Science, University of Yaoundé
I, Yaoundé,
Cameroon
| | - Flobert Njiokou
- Department of Animal
Biology and Physiology, Faculty of Science, University of Yaoundé
I, Yaoundé,
Cameroon
| | - Charles Sinclair Wondji
- Centre for Research in
Infectious Diseases (CRID),
Yaoundé, Cameroon
- Department of Vector
Biology, Liverpool School of Tropical Medicine (LSTM), Pembroke
Place, Liverpool,
United Kingdom
| |
Collapse
|
2
|
Mfopit YM, Bilgo E, Boma S, Somda MB, Gnambani JE, Konkobo M, Diabate A, Dayo GK, Mamman M, Kelm S, Balogun EO, Shuaibu MN, Kabir J. Symbiotic bacteria Sodalis glossinidius, Spiroplasma sp and Wolbachia do not favour Trypanosoma grayi coexistence in wild population of tsetse flies collected in Bobo-Dioulasso, Burkina Faso. BMC Microbiol 2024; 24:373. [PMID: 39342132 PMCID: PMC11437622 DOI: 10.1186/s12866-024-03531-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/18/2024] [Indexed: 10/01/2024] Open
Abstract
BACKGROUND Tsetse flies, the biological vectors of African trypanosomes, have established symbiotic associations with different bacteria. Their vector competence is suggested to be affected by bacterial endosymbionts. The current study provided the prevalence of three tsetse symbiotic bacteria and trypanosomes in Glossina species from Burkina Faso. RESULTS A total of 430 tsetse flies were captured using biconical traps in four different collection sites around Bobo-Dioulasso (Bama, Bana, Nasso, and Peni), and their guts were removed. Two hundred tsetse were randomly selected and their guts were screened by PCR for the presence of Sodalis glossinidius, Spiroplasma sp., Wolbachia and trypanosomes. Of the 200 tsetse, 196 (98.0%) were Glossina palpalis gambiensis and 4 (2.0%) Glossina tachinoides. The overall symbiont prevalence was 49.0%, 96.5%, and 45.0%, respectively for S. glossinidius, Spiroplasma and Wolbachia. Prevalence varied between sampling locations: S. glossinidius (54.7%, 38.5%, 31.6%, 70.8%); Spiroplasma (100%, 100%, 87.7%, 100%); and Wolbachia (43.4%, 38.5%, 38.6%, 70.8%), respectively in Bama, Bana, Nasso and Peni. Noteworthy, no G. tachnoides was infected by S. glossinidius and Wolbachia, but they were all infected by Spiroplasma sp. A total of 196 (98.0%) harbored at least one endosymbionts. Fifty-five (27.5%) carried single endosymbiont. Trypanosomes were found only in G. p. gambiensis, but not G. tachinoides. Trypanosomes were present in flies from all study locations with an overall prevalence of 29.5%. In Bama, Bana, Nasso, and Peni, the trypanosome infection rate was respectively 39.6%, 23.1%, 8.8%, and 37.5%. Remarkably, only Trypanosoma grayi was present. Of all trypanosome-infected flies, 55.9%, 98.3%, and 33.9% hosted S. glossinidius, Spiroplasma sp and Wolbachia, respectively. There was no association between Sodalis, Spiroplasma and trypanosome presence, but there was a negative association with Wolbachia presence. We reported 1.9 times likelihood of trypanosome absence when Wolbachia was present. CONCLUSION This is the first survey reporting the presence of Trypanosoma grayi in tsetse from Burkina Faso. Tsetse from these localities were highly positive for symbiotic bacteria, more predominantly with Spiroplasma sp. Modifications of symbiotic interactions may pave way for disease control.
Collapse
Affiliation(s)
- Youssouf Mouliom Mfopit
- Institute of Agricultural Research for Development (IRAD), Yaounde, Cameroon.
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria.
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Zaria, Nigeria.
| | - Etienne Bilgo
- Centre d'Excellence Africain en Innovations Biotechnologiques pour l'Elimination des Maladies à Transmission Vectorielle (CEA/ITECH-MTV), Bobo-Dioulasso, Burkina Faso
- Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de l'Ouest (DRO), Bobo-Dioulasso, Burkina Faso
- Institut National de Santé Publique (INSP) / Centre MURAZ, Bobo-Dioulasso, Burkina Faso
| | - Soudah Boma
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
| | - Martin Bienvenu Somda
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
- Université Nazi BONI, Bobo-Dioulasso, Burkina Faso
| | - Jacques Edounou Gnambani
- Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de l'Ouest (DRO), Bobo-Dioulasso, Burkina Faso
- Institut National de Santé Publique (INSP) / Centre MURAZ, Bobo-Dioulasso, Burkina Faso
| | - Maurice Konkobo
- Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de l'Ouest (DRO), Bobo-Dioulasso, Burkina Faso
- Institut National de Santé Publique (INSP) / Centre MURAZ, Bobo-Dioulasso, Burkina Faso
| | - Abdoulaye Diabate
- Centre d'Excellence Africain en Innovations Biotechnologiques pour l'Elimination des Maladies à Transmission Vectorielle (CEA/ITECH-MTV), Bobo-Dioulasso, Burkina Faso
- Institut de Recherche en Sciences de la Santé (IRSS), Direction Régionale de l'Ouest (DRO), Bobo-Dioulasso, Burkina Faso
- Institut National de Santé Publique (INSP) / Centre MURAZ, Bobo-Dioulasso, Burkina Faso
| | - Guiguigbaza-Kossigan Dayo
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), Bobo-Dioulasso, Burkina Faso
| | - Mohammed Mamman
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Zaria, Nigeria
- Department of Veterinary Pharmacology and Toxicology, Ahmadu Bello University, Zaria, Nigeria
| | - Soerge Kelm
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| | - Emmanuel Oluwadare Balogun
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Zaria, Nigeria
| | - Mohammed Nasir Shuaibu
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Zaria, Nigeria
| | - Junaidu Kabir
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology (ACENTDFB), Zaria, Nigeria
- Department of Veterinary Public Health and Preventive Medicine, Ahmadu Bello University, Zaria, Nigeria
| |
Collapse
|
3
|
Omondi ZN, Caner A, Arserim SK. Trypanosomes and gut microbiota interactions in triatomine bugs and tsetse flies: A vectorial perspective. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:253-268. [PMID: 38651684 DOI: 10.1111/mve.12723] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 04/05/2024] [Indexed: 04/25/2024]
Abstract
Triatomines (kissing bugs) and tsetse flies (genus: Glossina) are natural vectors of Trypanosoma cruzi and Trypanosoma brucei, respectively. T. cruzi is the causative agent of Chagas disease, endemic in Latin America, while T. brucei causes African sleeping sickness disease in sub-Saharan Africa. Both triatomines and tsetse flies are host to a diverse community of gut microbiota that co-exist with the parasites in the gut. Evidence has shown that the gut microbiota of both vectors plays a key role in parasite development and transmission. However, knowledge on the mechanism involved in parasite-microbiota interaction remains limited and scanty. Here, we attempt to analyse Trypanosoma spp. and gut microbiota interactions in tsetse flies and triatomines, with a focus on understanding the possible mechanisms involved by reviewing published articles on the subject. We report that interactions between Trypanosoma spp. and gut microbiota can be both direct and indirect. In direct interactions, the gut microbiota directly affects the parasite via the formation of biofilms and the production of anti-parasitic molecules, while on the other hand, Trypanosoma spp. produces antimicrobial proteins to regulate gut microbiota of the vector. In indirect interactions, the parasite and gut bacteria affect each other through host vector-activated processes such as immunity and metabolism. Although we are beginning to understand how gut microbiota interacts with the Trypanosoma parasites, there is still a need for further studies on functional role of gut microbiota in parasite development to maximize the use of symbiotic bacteria in vector and parasite control.
Collapse
Affiliation(s)
- Zeph Nelson Omondi
- Department of Biology, Faculty of Science, Ege University, Izmir, Turkey
| | - Ayşe Caner
- Department of Parasitology, Faculty of Medicine, Ege University, Izmir, Turkey
- Department of Basic Oncology, Institute of Health Sciences, Ege University, Izmir, Turkey
| | - Suha Kenan Arserim
- Vocational School of Health Sciences, Manisa Celal Bayar University, Manisa, Turkey
| |
Collapse
|
4
|
Mfopit YM, Bilgo E, Boma S, Somda MB, Gnambani JE, Konkobo M, Diabate A, Dayo GK, Mamman M, Kelm S, Balogun EO, Shuaibu MN, Kabir J. Symbiotic bacteria Sodalis glossinidius, Spiroplasma sp and Wolbachia do not favour Trypanosoma grayi coexistence in wild population of tsetse flies collected in Bobo-Dioulasso, Burkina Faso. RESEARCH SQUARE 2024:rs.3.rs-4756528. [PMID: 39257987 PMCID: PMC11384793 DOI: 10.21203/rs.3.rs-4756528/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
Background Tsetse flies, the biological vectors of African trypanosomes, have established symbiotic associations with different bacteria. Their vector competence is suggested to be affected by bacterial endosymbionts. The current study provided the prevalence of three tsetse symbiotic bacteria and trypanosomes in Glossina species from Burkina Faso. Results A total of 430 tsetse flies were captured using biconical traps in four different collection sites around Bobo-Dioulasso (Bama, Bana, Nasso, and Peni), and their guts were removed. Two hundred tsetse were randomly selected and their guts were screened byPCR for the presence of Sodalis glossinidius, Spiroplasmasp., Wolbachia and trypanosomes. Of the 200 tsetse, 196 (98.0%) were Glossina palpalis gambienseand 4 (2.0%) Glossina tachinoides. The overall symbiont prevalence was 49.0%, 96.5%, and 45.0%, respectively for S. glossinidius, Spiroplasma and Wolbachia. Prevalence varied between sampling locations: S. glossinidius(54.7%, 38.5%, 31.6%, 70.8%); Spiroplasma (100%, 100%, 87.7%, 100%); and Wolbachia(43.4%, 38.5%, 38.6%, 70.8%),respectively in Bama, Bana, Nasso and Peni. Noteworthy, no G. tachhnoideswas infected by S. glossinidius and Wolbachia, but they were all infected by Spiroplasma sp. A total of 196 (98.0 %) harbored at least one endosymbionts. Fifty-five (27.5%) carried single endosymbiont. Trypanosomes were found only in G.p. gambiense, but not G. tachinoides. Trypanosomes were present in flies from all study locations with an overall prevalence of 29.5%. In Bama, Bana, Nasso, and Peni, the trypanosome infection rate was respectively 39.6%, 23.1%, 8.8%, and 37.5%. Remarkably, only Trypanosoma grayi was present. Of all trypanosome-infected flies, 55.9%, 98.3%, and 33.9% hosted S. glossinidius, Spiroplasma sp and Wolbachia, respectively. There was no association between Sodalis, Spiroplasma and trypanosome presence, but there was a negative association with Wolbachia presence. We reported1.9 times likelihood of trypanosome absence when Wolbachia was present. Conclusion This is the first survey reporting the presence of Trypanosoma grayi in tsetse from Burkina Faso. Tsetse from these localities were highly positive for symbiotic bacteria, more predominantly with Spiroplasma sp. Modifications of symbiotic interactions may pave way for disease control.
Collapse
Affiliation(s)
| | | | - Soudah Boma
- Centre international de recherche-développement sur l'elevage en zone subhumide
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Ungogo MA, de Koning HP. Drug resistance in animal trypanosomiases: Epidemiology, mechanisms and control strategies. Int J Parasitol Drugs Drug Resist 2024; 25:100533. [PMID: 38555795 PMCID: PMC10990905 DOI: 10.1016/j.ijpddr.2024.100533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 03/13/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024]
Abstract
Animal trypanosomiasis (AT) is a complex of veterinary diseases known under various names such as nagana, surra, dourine and mal de caderas, depending on the country, the infecting trypanosome species and the host. AT is caused by parasites of the genus Trypanosoma, and the main species infecting domesticated animals are T. brucei brucei, T. b. rhodesiense, T. congolense, T. simiae, T. vivax, T. evansi and T. equiperdum. AT transmission, again depending on species, is through tsetse flies or common Stomoxys and tabanid flies or through copulation. Therefore, the geographical spread of all forms of AT together is not restricted to the habitat of a single vector like the tsetse fly and currently includes almost all of Africa, and most of South America and Asia. The disease is a threat to millions of companion and farm animals in these regions, creating a financial burden in the billions of dollars to developing economies as well as serious impacts on livestock rearing and food production. Despite the scale of these impacts, control of AT is neglected and under-resourced, with diagnosis and treatments being woefully inadequate and not improving for decades. As a result, neither the incidence of the disease, nor the effectiveness of treatment is documented in most endemic countries, although it is clear that there are serious issues of resistance to the few old drugs that are available. In this review we particularly look at the drugs, their application to the various forms of AT, and their mechanisms of action and resistance. We also discuss the spread of veterinary trypanocide resistance and its drivers, and highlight current and future strategies to combat it.
Collapse
Affiliation(s)
- Marzuq A Ungogo
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Edinburgh, United Kingdom; School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Harry P de Koning
- School of Infection and Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
6
|
Feudjio Soffack S, Melachio Tanekou TT, Farikou O, Kame Ngasse GI, Tchami Mbagnia MC, Wondji M, Wondji CS, Abd-Alla AMM, Geiger A, Simo G, Njiokou F. The internal transcribed spacer 1 sequence polymorphism brings updates to tsetse species distribution in the northern Cameroon: Importance in planning efficient vector control. MEDICAL AND VETERINARY ENTOMOLOGY 2024; 38:216-226. [PMID: 38563591 DOI: 10.1111/mve.12717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/02/2024] [Indexed: 04/04/2024]
Abstract
Vector control remains one of the best strategies to prevent the transmission of trypanosome infections in humans and livestock and, thus, a good way to achieve the elimination of human African trypanosomiasis and animal African trypanosomiasis. A key prerequisite for the success of any vector control strategy is the accurate identification and correct mapping of tsetse species. In this work, we updated the tsetse fly species identification and distribution in many geographical areas in Cameroon. Tsetse flies were captured from six localities in Cameroon, and their species were morphologically identified. Thereafter, DNA was extracted from legs of each tsetse fly and the length polymorphism of internal transcribed spacer-1 (ITS1) region of each fly was investigated using PCR. ITS1 DNA fragments of each tsetse species were sequenced. The sequences obtained were analysed and compared to those available in GenBank. This enabled to confirm/infirm results of the morphologic identification and then, to establish the phylogenetic relationships between tsetse species. Morphologic features allowed to clearly distinguish all the tsetse species captured in the South Region of Cameroon, that is, Glossina palpalis palpalis, G. pallicera, G. caliginea and G. nigrofusca. In the northern area, G. morsitans submorsitans could also be distinguished from G. palpalis palpalis, G. tachinoides and G. fuscipes, but these three later could not be distinguished with routine morphological characters. The ITS1 length polymorphism was high among most of the studied species and allowed to identify the following similar species with a single PCR, that is, G. palpalis palpalis with 241 or 242 bp and G. tachinoides with 221 or 222 bp, G. fuscipes with 236 or 237 bp. We also updated the old distribution of tsetse species in the areas assessed, highlighting the presence of G. palpalis palpalis instead of G. fuscipes in Mbakaou, or in sympatry with G. morsitans submorsitans in Dodeo (northern Cameroon). This study confirms the presence of G. palpalis palpalis in the Adamawa Region of Cameroon. It highlights the limits of using morphological criteria to differentiate some tsetse species. Molecular tools based on the polymorphism of ITS1 of tsetse flies can differentiate tsetse species through a simple PCR before downstream analyses or vector control planning.
Collapse
Affiliation(s)
- Steve Feudjio Soffack
- Laboratory of Parasitology and Ecology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Tito Tresor Melachio Tanekou
- Department of Microbiology and Parasitology, Faculty of Science, University of Bamenda, Bamenda, Cameroon
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Oumarou Farikou
- Faculty of Health Science, University of Bamenda, Bamenda, Cameroon
| | | | | | - Murielle Wondji
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Charles S Wondji
- Centre for Research in Infectious Diseases (CRID), Yaoundé, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Anne Geiger
- UMR177, Institut de Recherche pour le Développement (IRD)-CIRAD, Montpellier, France
| | - Gustave Simo
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Flobert Njiokou
- Laboratory of Parasitology and Ecology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| |
Collapse
|
7
|
El Yamlahi Y, Bel Mokhtar N, Maurady A, Britel MR, Batargias C, Mutembei DE, Nyingilili HS, Malulu DJ, Malele II, Asimakis E, Stathopoulou P, Tsiamis G. Characterization of the Bacterial Profile from Natural and Laboratory Glossina Populations. INSECTS 2023; 14:840. [PMID: 37999039 PMCID: PMC10671886 DOI: 10.3390/insects14110840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/05/2023] [Accepted: 10/27/2023] [Indexed: 11/25/2023]
Abstract
Tsetse flies (Glossina spp.; Diptera: Glossinidae) are viviparous flies that feed on blood and are found exclusively in sub-Saharan Africa. They are the only cyclic vectors of African trypanosomes, responsible for human African trypanosomiasis (HAT) and animal African trypanosomiasis (AAT). In this study, we employed high throughput sequencing of the 16S rRNA gene to unravel the diversity of symbiotic bacteria in five wild and three laboratory populations of tsetse species (Glossina pallidipes, G. morsitans, G. swynnertoni, and G. austeni). The aim was to assess the dynamics of bacterial diversity both within each laboratory and wild population in relation to the developmental stage, insect age, gender, and location. Our results indicated that the bacterial communities associated with the four studied Glossina species were significantly influenced by their region of origin, with wild samples being more diverse compared to the laboratory samples. We also observed that the larval microbiota was significantly different than the adults. Furthermore, the sex and the species did not significantly influence the formation of the bacterial profile of the laboratory colonies once these populations were kept under the same rearing conditions. In addition, Wigglesworthia, Acinetobacter, and Sodalis were the most abundant bacterial genera in all the samples, while Wolbachia was significantly abundant in G. morsitans compared to the other studied species. The operational taxonomic unit (OTU) co-occurrence network for each location (VVBD insectary, Doma, Makao, and Msubugwe) indicated a high variability between G. pallidipes and the other species in terms of the number of mutual exclusion and copresence interactions. In particular, some bacterial genera, like Wigglesworthia and Sodalis, with high relative abundance, were also characterized by a high degree of interactions.
Collapse
Affiliation(s)
- Youssef El Yamlahi
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, Tétouan 93000, Morocco; (Y.E.Y.); (N.B.M.); (A.M.); (M.R.B.)
- Faculty of Sciences and Technics of Tangier, Abdelmalek Essaâdi University, Tétouan 93000, Morocco
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 2 Seferi St, 30131 Agrinio, Greece; (E.A.); (P.S.)
| | - Naima Bel Mokhtar
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, Tétouan 93000, Morocco; (Y.E.Y.); (N.B.M.); (A.M.); (M.R.B.)
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 2 Seferi St, 30131 Agrinio, Greece; (E.A.); (P.S.)
| | - Amal Maurady
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, Tétouan 93000, Morocco; (Y.E.Y.); (N.B.M.); (A.M.); (M.R.B.)
- Faculty of Sciences and Technics of Tangier, Abdelmalek Essaâdi University, Tétouan 93000, Morocco
| | - Mohammed R. Britel
- Laboratory of Innovative Technologies, National School of Applied Sciences of Tangier, Abdelmalek Essaâdi University, Tétouan 93000, Morocco; (Y.E.Y.); (N.B.M.); (A.M.); (M.R.B.)
| | - Costas Batargias
- Department of Biology, University of Patras, 26504 Patras, Greece;
| | - Delphina E. Mutembei
- Vector & Vector Borne Diseases, Tanzania Veterinary Laboratory Agency (TVLA), Tanga P.O. Box 1026, Tanzania; (D.E.M.); (H.S.N.); (D.J.M.)
| | - Hamisi S. Nyingilili
- Vector & Vector Borne Diseases, Tanzania Veterinary Laboratory Agency (TVLA), Tanga P.O. Box 1026, Tanzania; (D.E.M.); (H.S.N.); (D.J.M.)
| | - Deusdedit J. Malulu
- Vector & Vector Borne Diseases, Tanzania Veterinary Laboratory Agency (TVLA), Tanga P.O. Box 1026, Tanzania; (D.E.M.); (H.S.N.); (D.J.M.)
| | - Imna I. Malele
- Directorate of Research and Technology Development, TVLA, Dar Es Salaam P.O. Box 9254, Tanzania;
| | - Elias Asimakis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 2 Seferi St, 30131 Agrinio, Greece; (E.A.); (P.S.)
| | - Panagiota Stathopoulou
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 2 Seferi St, 30131 Agrinio, Greece; (E.A.); (P.S.)
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Sustainable Agriculture, University of Patras, 2 Seferi St, 30131 Agrinio, Greece; (E.A.); (P.S.)
| |
Collapse
|
8
|
Mfopit YM, Engel JS, Chechet GD, Ibrahim MAM, Signaboubo D, Achukwi DM, Mamman M, Balogun EO, Shuaibu MN, Kabir J, Kelm S. Molecular detection of Sodalis glossinidius, Spiroplasma species and Wolbachia endosymbionts in wild population of tsetse flies collected in Cameroon, Chad and Nigeria. BMC Microbiol 2023; 23:260. [PMID: 37716961 PMCID: PMC10504758 DOI: 10.1186/s12866-023-03005-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 09/05/2023] [Indexed: 09/18/2023] Open
Abstract
BACKGROUND Tsetse flies are cyclical vectors of African trypanosomiasis (AT). The flies have established symbiotic associations with different bacteria that influence certain aspects of their physiology. Vector competence of tsetse flies for different trypanosome species is highly variable and is suggested to be affected by bacterial endosymbionts amongst other factors. Symbiotic interactions may provide an avenue for AT control. The current study provided prevalence of three tsetse symbionts in Glossina species from Cameroon, Chad and Nigeria. RESULTS Tsetse flies were collected and dissected from five different locations. DNA was extracted and polymerase chain reaction used to detect presence of Sodalis glossinidius, Spiroplasma species and Wolbachia endosymbionts, using species specific primers. A total of 848 tsetse samples were analysed: Glossina morsitans submorsitans (47.52%), Glossina palpalis palpalis (37.26%), Glossina fuscipes fuscipes (9.08%) and Glossina tachinoides (6.13%). Only 95 (11.20%) were infected with at least one of the three symbionts. Among infected flies, six (6.31%) had Wolbachia and Spiroplasma mixed infection. The overall symbiont prevalence was 0.88, 3.66 and 11.00% respectively, for Sodalis glossinidius, Spiroplasma species and Wolbachia endosymbionts. Prevalence varied between countries and tsetse fly species. Neither Spiroplasma species nor S. glossinidius were detected in samples from Cameroon and Nigeria respectively. CONCLUSION The present study revealed, for the first time, presence of Spiroplasma species infections in tsetse fly populations in Chad and Nigeria. These findings provide useful information on repertoire of bacterial flora of tsetse flies and incite more investigations to understand their implication in the vector competence of tsetse flies.
Collapse
Affiliation(s)
- Youssouf Mouliom Mfopit
- Institute of Agricultural Research for Development, Yaounde, Cameroon.
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria.
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria.
| | | | - Gloria Dada Chechet
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | | | | | | | - Mohammed Mamman
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
- Department of Veterinary Pharmacology and Toxicology, Faculty of Veterinary Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Emmanuel Oluwadare Balogun
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Mohammed Nasir Shuaibu
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
- Department of Biochemistry, Ahmadu Bello University, Zaria, Nigeria
| | - Junaidu Kabir
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
- Department of Veterinary Public Health and Preventive Medicine, Ahmadu Bello University, Zaria, Nigeria
| | - Soerge Kelm
- Centre for Biomolecular Interactions Bremen, University of Bremen, Bremen, Germany
| |
Collapse
|
9
|
Gashururu RS, Maingi N, Githigia SM, Getange DO, Ntivuguruzwa JB, Habimana R, Cecchi G, Gashumba J, Bargul JL, Masiga DK. Trypanosomes infection, endosymbionts, and host preferences in tsetse flies ( Glossina spp.) collected from Akagera park region, Rwanda: A correlational xenomonitoring study. One Health 2023; 16:100550. [PMID: 37363264 PMCID: PMC10288097 DOI: 10.1016/j.onehlt.2023.100550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 04/10/2023] [Accepted: 04/21/2023] [Indexed: 06/28/2023] Open
Abstract
Akagera National Park and its surroundings are home to tsetse flies and a number of their mammalian hosts in Rwanda. A One-health approach is being used in the control and surveillance of both animal and human trypanosomosis in Rwanda. Determination of the infection level in tsetse flies, species of trypanosomes circulating in vectors, the source of tsetse blood meal and endosymbionts is crucial in understanding the epidemiology of the disease in animals and humans in the region. Tsetse flies (n = 1101), comprising Glossina pallidipes (n = 771) and Glossina morsitans centralis (n = 330) were collected from Akagera park and surrounding areas between May 2018 and June 2019. The flies were screened for trypanosomes, vertebrate host DNA to identify sources of blood meal, and endosymbionts by PCR - High Resolution Melting analysis and amplicon sequencing. The feeding frequency and the feeding indices (selection index - W) were calculated to identify the preferred hosts. An overall trypanosome infection rate of 13.9% in the fly's Head and Proboscis (HP) and 24.3% in the Thorax and Abdomen (TA) were found. Eight trypanosome species were identified in the tsetse fly HP and TA, namely: Trypanosoma (T.) brucei brucei, T. congolense Kilifi, T. congolense savannah, T. vivax, T. simiae, T. evansi, T. godfreyi, T. grayi and T. theileri. We found no evidence of human-infective T. brucei rhodesiense. We also identified eighteen species of vertebrate hosts that tsetse flies fed on, and the most frequent one was the buffalo (Syncerus caffer) (36.5%). The frequently detected host by selection index was the rhinoceros (Diceros bicornis) (W = 16.2). Most trypanosome infections in tsetse flies were associated with the buffalo blood meal. The prevalence of tsetse endosymbionts Sodalis and Wolbachia was 2.8% and 4.8%, respectively. No Spiroplasma and Salivary Gland Hypertrophy Virus were detected. These findings implicate the buffaloes as the important reservoirs of tsetse-transmitted trypanosomes in the area. This contributes to predicting the main cryptic reservoirs and therefore guiding the effective control of the disease. The study findings provide the key scientific information that supports the current One Health collaboration in the control and surveillance of tsetse-transmitted trypanosomosis in Rwanda.
Collapse
Affiliation(s)
- Richard S. Gashururu
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
- School of Veterinary Medicine, University of Rwanda, P.O. Box 57, Nyagatare, Rwanda
| | - Ndichu Maingi
- Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Nairobi, Kenya
| | - Samuel M. Githigia
- Faculty of Veterinary Medicine, University of Nairobi, P.O. Box 29053, Nairobi, Kenya
| | - Dennis O. Getange
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| | - Jean B. Ntivuguruzwa
- School of Veterinary Medicine, University of Rwanda, P.O. Box 57, Nyagatare, Rwanda
| | - Richard Habimana
- Food and Drugs Assessment and Registration Department, Rwanda Food and Drugs Authority (FDA), P.O Box 1948, Kigali, Rwanda
| | - Giuliano Cecchi
- Food and Agriculture Organization of the United Nations (FAO), Animal Production and Health Division, Rome, Italy
| | | | - Joel L. Bargul
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
- Department of Biochemistry, Jomo Kenyatta University of Agriculture and Technology, P.O. Box 62000-00200, Nairobi, Kenya
| | - Daniel K. Masiga
- International Centre of Insect Physiology and Ecology (icipe), P.O. Box 30772-00100, Nairobi, Kenya
| |
Collapse
|
10
|
Mfopit YM, Weber JS, Chechet GD, Ibrahim MAM, Signaboubo D, Achukwi DM, Mamman M, Balogun EO, Shuaibu MN, Kabir J, Kelm S. Molecular detection of Sodalis glossinidius, Spiroplasma and Wolbachia endosymbionts in wild population of tsetse flies collected in Cameroon, Chad and Nigeria. RESEARCH SQUARE 2023:rs.3.rs-2902767. [PMID: 37214831 PMCID: PMC10197739 DOI: 10.21203/rs.3.rs-2902767/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Background Tsetse flies are cyclical vectors of African trypanosomiasis. They have established symbiotic associations with different bacteria, which influence certain aspects of their physiology. The vector competence of tsetse flies for different trypanosome species is highly variable and is suggested to be affected by various factors, amongst which are bacterial endosymbionts. Symbiotic interactions may provide an avenue for the disease control. The current study provided the prevalence of 3 tsetse symbionts in Glossina species from Cameroon, Chad and Nigeria. Results Tsetse flies were collected from five different locations and dissected. DNA was extracted and polymerase chain reaction PCR was used to detect the presence of Sodalis glossinidius , Spiroplasma sp and Wolbachia using specific primers. A total of 848 tsetse samples were analysed: Glossina morsitans submorsitans (47.52%), Glossina palpalis palpalis (37.26%), Glossina fuscipes fuscipes (9.08%) and Glossina tachinoides (6.13%). Only 95 (11.20%) were infected with at least one of the 3 symbionts. Among the infected, 6 (6.31%) were carrying mixed infection ( Wolbachia and Spiroplasma ). The overall symbiont prevalence was 0.88%, 3.66% and 11.00% respectively, for Sodalis , Spiroplasma and Wolbachia . Prevalence varied between countries and tsetse species. No Spiroplasma was detected in samples from Cameroon and no Sodalis was found in samples from Nigeria. Conclusion The present study revealed for the first time, the presence of infection by Spiroplasma in tsetse in Chad and Nigeria. These findings provide useful information to the repertoire of bacterial flora of tsetse flies and incite to more investigations to understand their implication in the vector competence of tsetse flies.
Collapse
|
11
|
Kallu SA, Ndebe J, Qiu Y, Nakao R, Simuunza MC. Prevalence and Association of Trypanosomes and Sodalis glossinidius in Tsetse Flies from the Kafue National Park in Zambia. Trop Med Infect Dis 2023; 8:tropicalmed8020080. [PMID: 36828496 PMCID: PMC9960957 DOI: 10.3390/tropicalmed8020080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 01/25/2023] Open
Abstract
Tsetse flies are obligate hematophagous vectors of animal and human African trypanosomosis. They cyclically transmit pathogenic Trypanosoma species. The endosymbiont Sodalis glossinidius is suggested to play a role in facilitating the susceptibility of tsetse flies to trypanosome infections. Therefore, this study was aimed at determining the prevalence of S. glossinidius and trypanosomes circulating in tsetse flies and checking whether an association exists between trypanosomes and Sodalis infections in tsetse flies from Kafue National Park in Zambia. A total of 326 tsetse flies were sampled from the Chunga and Ngoma areas of the national park. After DNA extraction was conducted, the presence of S. glossinidius and trypanosome DNA was checked using PCR. The Chi-square test was carried out to determine whether there was an association between the presence of S. glossinidius and trypanosome infections. Out of the total tsetse flies collected, the prevalence of S. glossinidius and trypanosomes was 21.8% and 19.3%, respectively. The prevalence of S. glossinidius was 22.2% in Glossina morsitans and 19.6% in Glossina pallidipes. In relation to sampling sites, the prevalence of S. glossinidius was 26.0% in Chunga and 21.0% in Ngoma. DNA of trypanosomes was detected in 18.9% of G. morsitans and 21.4% of G. pallidipes. The prevalence of trypanosomes was 21.7% and 6.0% for Ngoma and Chunga, respectively. The prevalences of trypanosome species detected in this study were 6.4%, 4.6%, 4.0%, 3.7%, 3.1%, and 2.5% for T. vivax, T. simiae, T. congolense, T. godfreyi, T. simiae Tsavo, and T. b. brucei, respectively. Out of 63 trypanosome infected tsetse flies, 47.6% of the flies also carried S. glossinidius, and the remaining flies were devoid of S. glossinidius. A statistically significant association was found between S. glossinidius and trypanosomes (p < 0.001) infections in tsetse flies. Our findings indicated that presence of S. glossinidius increases the susceptibility of tsetse flies to trypanosome infections and S. glossinidius could be a potential candidate for symbiont-mediated vector control in these tsetse species.
Collapse
Affiliation(s)
- Simegnew Adugna Kallu
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 32379, Zambia
- College of Veterinary Medicine, Haramaya University, Dire Dawa P.O. Box 138, Ethiopia
- Correspondence: ; Tel.: +251-913786532
| | - Joseph Ndebe
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 32379, Zambia
| | - Yongjin Qiu
- Department of Virology-I, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku, Tokyo 162-8640, Japan
- Management Department of Biosafety, Laboratory Animal, and Pathogen Bank, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku, Tokyo 162-8640, Japan
| | - Ryo Nakao
- Laboratory of Parasitology, Department of Disease Control, Faculty of Veterinary Medicine, Hokkaido University, N18 W9, Kitaku, Sapporo 060-0818, Japan
| | - Martin C. Simuunza
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 32379, Zambia
- Africa Centre of Excellence for Infectious Diseases of Humans and Animals, University of Zambia, Lusaka P.O. Box 32379, Zambia
| |
Collapse
|
12
|
Djoukzoumka S, Mahamat Hassane H, Khan Payne V, Ibrahim MAM, Tagueu Kanté S, Mouliom Mfopit Y, Berger P, Kelm S, Simo G. Sodalis glossinidius and Wolbachia infections in wild population of Glossina morsitans submorsitans caught in the area of Lake Iro in the south of Chad. J Invertebr Pathol 2022; 195:107835. [DOI: 10.1016/j.jip.2022.107835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/01/2022] [Accepted: 10/07/2022] [Indexed: 10/31/2022]
|
13
|
Oumarou F, Irma KNG, Gustave S, Steve FS, Louis B, Flobert N, Anne G. Diversity of tsetse flies and trypanosome species circulating in the highly infested cattle rearing area of the Faro and Deo subdivision, Adamawa region, Cameroon. Vet Parasitol Reg Stud Reports 2022; 35:100783. [PMID: 36184110 DOI: 10.1016/j.vprsr.2022.100783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 09/03/2022] [Accepted: 09/12/2022] [Indexed: 06/16/2023]
Abstract
Animal African Trypanosomiasis (AAT) remains an animal health problem in sub-Saharan Africa and in Cameroon in particular. Despite more than 40 years of fighting against AAT in some tsetse infested areas, the disease prevalence is still a concern. Improving the control strategies in different settings requires to understand the current epidemiological situation of AAT. The aim of the present study was to update our knowledge on the diversity of tsetse fauna and trypanosome species in the tsetse infested area of Faro and Deo division, Adamawa region, Cameroon. Tsetse flies were caught using Vavoua trap in two villages and the apparent density per trap (ADP) were estimated. After morphological identification of tsetse fly species, flies were dissected and their midguts recovered. The presence of blood meal residues was recorded. Trypanosomes species were checked in the flies' midguts by microscopy followed by PCR method. The vertebrate taxa on which tsetse flies have taken blood meal were determined using the heteroduplex-PCR method. A total of 338 tsetse flies including 11 teneral flies (10 Glossina palpalis palpalis and 01 G. morsitans submorsitans) and 327 non-teneral were trapped in Mayo Lainde and Tchabal Mbabo. Amongst the caught tsetse flies, of the 327 non-teneral flies, 315 (96.3%) were G. p. palpalis, 8 (2.4%) were G. morsitans submorsitans and 4 (1.2%) G. fuscipes fuscipes. Trypanosome infections including Trypanosoma congolense forest (19.88%) and savanah (2.53%) "types", T. brucei s.l. (7.30%) and T. vivax (2.85%) were identified in 45.08% of non-teneral flies (32.38% for single infection and 12.70% for mixed infection). Amongst the 54 blood meals identified in tsetse midguts, 41% were from humans, 33% from cattle and 26% from other vertebrate hosts. About 51.9% of blood meals were found with various trypanosome species including 42.6% with T. congolense and 24% with T. brucei s.l. This study revealed the presence of three tsetse taxa and the circulation of four trypanosome taxa in villages of the Faro and Deo division. About 45% of captured tsetse fly are infected with trypanosome species causing AAT. Tsetse flies feed on humans, cattle and many other vertebrates. Strategies to eliminate the vectors must be improved to reduce the pathological impacts of trypanosome infections in this area.
Collapse
Affiliation(s)
- Farikou Oumarou
- Faculty of Health Sciences, Department of Biomedical Sciences (BMS), University of Bamenda, Bambili, PO Box 39, Cameroon.
| | - Kame-Ngasse Ginette Irma
- Institute of Medical Research and Plants Medicinal Studies (IMPM), Ministry of Scientific Research and Innovation, Yaoundé, Cameroon
| | - Simo Gustave
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Sciences, University of Dschang, PO BOX 67, DSCHANG CAMEROON
| | - Feudjio Soffack Steve
- Faculty of Sciences, Department of Animal Biology and Physiology, University of Yaoundé I, PO BOX 812, YAOUNDE CAMEROON
| | - Banipé Louis
- Ministry of Livestock, Fisheries and Animal Industries, Livestock Development Project, Zone 3, Douala, Cameroon
| | - Njiokou Flobert
- Faculty of Sciences, Department of Animal Biology and Physiology, University of Yaoundé I, PO BOX 812, YAOUNDE CAMEROON
| | - Geiger Anne
- Institut de recherche pour le développement, UMR INTERTRYP, Montpellier, France
| |
Collapse
|
14
|
Melachio Tanekou TT, Bouaka Tsakeng CU, Tirados I, Torr SJ, Njiokou F, Acho A, Wondji CS. Environmental mutations in the Campo focus challenge elimination of sleeping sickness transmission in Cameroon. MEDICAL AND VETERINARY ENTOMOLOGY 2022; 36:260-268. [PMID: 35593526 PMCID: PMC10138755 DOI: 10.1111/mve.12579] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 05/03/2022] [Indexed: 05/13/2023]
Abstract
Sleeping sickness is still prevalent in Campo, southern Cameroon, despite the efforts of World Health Organization and the National Control Programme in screening and treating cases. Reducing disease incidence still further may need the control of tsetse vectors. We update entomological and parasitological parameters necessary to guide tsetse control in Campo. Tsetse flies were trapped, their apparent densities were evaluated as the number of flies captured per trap per day and mapped using GIS tools. Polymerase chain reaction based methods were used to identify their trypanosome infection rates. Glossina palpalis palpalis was the dominant vector species representing 93.42% and 92.85% of flies captured respectively during the heavy and light dry seasons. This species presented high densities, that is, 3.87, 95% CI [3.84-3.91], and 2.51, 95% CI [2.49-2.53] flies/trap/day in the two seasons. Moreover, 16.79% (of 1054) and 20.23% (of 1132 flies) were found infected with at least 1 trypanosome species for the 2 seasons respectively, Trypanosoma congolense being the most prevalent species, and Trypanosoma. brucei gambiense identified in 4 samples. Tsetse flies are abundant in Campo and present high trypanosome infection rates. The detection of tsetse infected with human trypanosomes near the newly created palm grove show workers' exposition. Tsetse densities maps built will guide vector control with 'Tiny Targets'.
Collapse
Affiliation(s)
- Tito Tresor Melachio Tanekou
- Centre for Research in Infectious Diseases (CRID)YaoundéCameroon
- Department of Biological Sciences, Faculty of ScienceUniversity of BamendaBamendaCameroon
| | - Calmes Ursain Bouaka Tsakeng
- Centre for Research in Infectious Diseases (CRID)YaoundéCameroon
- Department of Biochemistry, Faculty of ScienceUniversity of Yaoundé IYaoundéCameroon
| | - Inaki Tirados
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Steve J. Torr
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| | - Flobert Njiokou
- Department of Animal Biology and Physiology, Faculty of ScienceUniversity of Yaoundé IYaoundéCameroon
| | - Alphonse Acho
- Programme National de Lutte contre la Trypanosomose Humaine Africaine (PNLTHA)Ministry of Public HealthYaoundéCameroon
| | - Charles Sinclair Wondji
- Centre for Research in Infectious Diseases (CRID)YaoundéCameroon
- Department of Vector BiologyLiverpool School of Tropical MedicineLiverpoolUK
| |
Collapse
|
15
|
Prevalence of trypanosomes and selected symbionts in tsetse species of eastern Zambia. Parasitology 2022; 149:1406-1410. [PMID: 35699129 PMCID: PMC10090762 DOI: 10.1017/s0031182022000804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Insect symbionts have attracted attention for their potential use as anti-parasitic gene products in arthropod disease vectors. While tsetse species of the Luangwa valley have been extensively studied, less is known about the prevalence of symbionts and their interactions with the trypanosome parasite. Polymerase chain reaction was used to investigate the presence of Wolbachia and Sodalis bacteria, in tsetse flies infected with trypanosomes (Trypanosoma vivax, Trypanosoma congolense and Trypanosoma brucei). Out of 278 captured tsetse flies in eastern Zambia, 95.3% (n = 265, 95% CI = 92.8–97.8) carried endosymbionts: Wolbachia (79.1%, 95% CI 73.9–83.8) and Sodalis (86.3%, 95% CI 81.7–90.1). Overall, trypanosome prevalence was 25.5% (n = 71, 95% CI = 20.4–30.7), 10.8% (n = 30, 95% CI 7.1–14.4) for T. brucei, 1.4% (n = 4, 95% CI = 0.4–3.6) for both T. congolense and T. vivax, and 0.7% (n = 2, 95% CI 0.1–2.6) for T. b. rhodesiense. Out of 240 tsetse flies that were infected with Sodalis, trypanosome infection was reported in 40 tsetse flies (16.7%, 95% CI = 12.0–21.4) while 37 (16.8%, 95% CI 11.9–21.8) of the 220 Wolbachia infected tsetse flies were infected with trypanosomes. There was 1.3 times likelihood of T. brucei infection to be present when Wolbachia was present and 1.7 likelihood of T. brucei infection when Sodalis was present. Overall findings suggest absence of correlation between the presence of tsetse endosymbionts and tsetse with trypanosome infection. Lastly, the presence of pathogenic trypanosomes in tsetse species examined provided insights into the risk communities face, and the importance of African trypanosomiasis in the area.
Collapse
|
16
|
Tsakeng CUB, Tanekou TTM, Soffack SF, Tirados I, Noutchih C, Njiokou F, Bigoga JD, Wondji CS. Assessing the Tsetse Fly Microbiome Composition and the Potential Association of Some Bacteria Taxa with Trypanosome Establishment. Microorganisms 2022; 10:1141. [PMID: 35744659 PMCID: PMC9229743 DOI: 10.3390/microorganisms10061141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/30/2022] [Indexed: 02/01/2023] Open
Abstract
The tsetse flies, biological vectors of African trypanosomes, harbour a variety of bacteria involved in their vector competence that may help in developing novel vector control tools. This study provides an inventory of tsetse bacterial communities in Cameroon and explores their possible associations with trypanosome establishment in Glossina palpalis palpalis. High throughput sequencing of the V3-V4 hypervariable region of the bacterial 16S rRNA gene, with subsequent metagenomic, multivariate, and association analyses, were used to investigate the levels and patterns of microbial diversity in four tsetse species. Overall, 31 bacterial genera and four phyla were identified. The primary symbiont Wigglesworthia dominated almost all the samples, with an overall relative abundance of 47.29%, and seemed to be replaced by Serratia or Burkholderia in some G. tachinoides flies. Globally, significant differences were observed in the microbiome diversity and composition among tsetse species and between teneral and non-teneral flies, or between flies displaying or not displaying mature trypanosome infections. In addition, differential abundance testing showed some OTUs, or some bacteria taxa, associated with trypanosome maturation in tsetse flies. These bacteria could be further investigated for an understanding of their mechanism of action and alternatively, transformed and used to block trypanosome development in tsetse flies.
Collapse
Affiliation(s)
- Calmes Ursain Bouaka Tsakeng
- Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (C.U.B.T.); (C.N.); (F.N.); (C.S.W.)
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon;
| | - Tito Tresor Melachio Tanekou
- Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (C.U.B.T.); (C.N.); (F.N.); (C.S.W.)
- Department of Biological Sciences, Faculty of Science, University of Bamenda, Bamenda P.O. Box 39, Cameroon
| | - Steve Feudjio Soffack
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon;
| | - Inaki Tirados
- Department of Vector Biology, Liverpool School of Tropical Medicine Pembroke Place, Liverpool L3 5QA, UK;
| | - Cedrique Noutchih
- Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (C.U.B.T.); (C.N.); (F.N.); (C.S.W.)
| | - Flobert Njiokou
- Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (C.U.B.T.); (C.N.); (F.N.); (C.S.W.)
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon;
| | - Jude Daiga Bigoga
- Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé P.O. Box 812, Cameroon;
| | - Charles Sinclair Wondji
- Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon; (C.U.B.T.); (C.N.); (F.N.); (C.S.W.)
- Department of Vector Biology, Liverpool School of Tropical Medicine Pembroke Place, Liverpool L3 5QA, UK;
| |
Collapse
|
17
|
Ratcliffe NA, Furtado Pacheco JP, Dyson P, Castro HC, Gonzalez MS, Azambuja P, Mello CB. Overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. Parasit Vectors 2022; 15:112. [PMID: 35361286 PMCID: PMC8969276 DOI: 10.1186/s13071-021-05132-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 12/13/2021] [Indexed: 12/12/2022] Open
Abstract
This article presents an overview of paratransgenesis as a strategy to control pathogen transmission by insect vectors. It first briefly summarises some of the disease-causing pathogens vectored by insects and emphasises the need for innovative control methods to counter the threat of resistance by both the vector insect to pesticides and the pathogens to therapeutic drugs. Subsequently, the state of art of paratransgenesis is described, which is a particularly ingenious method currently under development in many important vector insects that could provide an additional powerful tool for use in integrated pest control programmes. The requirements and recent advances of the paratransgenesis technique are detailed and an overview is given of the microorganisms selected for genetic modification, the effector molecules to be expressed and the environmental spread of the transgenic bacteria into wild insect populations. The results of experimental models of paratransgenesis developed with triatomines, mosquitoes, sandflies and tsetse flies are analysed. Finally, the regulatory and safety rules to be satisfied for the successful environmental release of the genetically engineered organisms produced in paratransgenesis are considered.
Collapse
Affiliation(s)
- Norman A. Ratcliffe
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Department of Biosciences, Swansea University, Singleton Park, Swansea, UK
| | - João P. Furtado Pacheco
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Paul Dyson
- Institute of Life Science, Medical School, Swansea University, Singleton Park, Swansea, UK
| | - Helena Carla Castro
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Marcelo S. Gonzalez
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Patricia Azambuja
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| | - Cicero B. Mello
- Programa de Pós-Graduação em Ciências e Biotecnologia, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
- Laboratório de Biologia de Insetos, Instituto de Biologia (EGB), Universidade Federal Fluminense (UFF), Niterói, Brazil
| |
Collapse
|
18
|
Dieng MM, Dera KSM, Moyaba P, Ouedraogo GMS, Demirbas-Uzel G, Gstöttenmayer F, Mulandane FC, Neves L, Mdluli S, Rayaisse JB, Belem AMG, Pagabeleguem S, de Beer CJ, Parker AG, Van Den Abbeele J, Mach RL, Vreysen MJB, Abd-Alla AMM. Prevalence of Trypanosoma and Sodalis in wild populations of tsetse flies and their impact on sterile insect technique programmes for tsetse eradication. Sci Rep 2022; 12:3322. [PMID: 35228552 PMCID: PMC8885713 DOI: 10.1038/s41598-022-06699-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 02/03/2022] [Indexed: 11/24/2022] Open
Abstract
The sterile insect technique (SIT) is an environment friendly and sustainable method to manage insect pests of economic importance through successive releases of sterile irradiated males of the targeted species to a defined area. A mating of a sterile male with a virgin wild female will result in no offspring, and ultimately lead to the suppression or eradication of the targeted population. Tsetse flies, vectors of African Trypanosoma, have a highly regulated and defined microbial fauna composed of three bacterial symbionts that may have a role to play in the establishment of Trypanosoma infections in the flies and hence, may influence the vectorial competence of the released sterile males. Sodalis bacteria seem to interact with Trypanosoma infection in tsetse flies. Field-caught tsetse flies of ten different taxa and from 15 countries were screened using PCR to detect the presence of Sodalis and Trypanosoma species and analyse their interaction. The results indicate that the prevalence of Sodalis and Trypanosoma varied with country and tsetse species. Trypanosome prevalence was higher in east, central and southern African countries than in west African countries. Tsetse fly infection rates with Trypanosoma vivax and T. brucei sspp were higher in west African countries, whereas tsetse infection with T. congolense and T. simiae, T. simiae (tsavo) and T. godfreyi were higher in east, central and south African countries. Sodalis prevalence was high in Glossina morsitans morsitans and G. pallidipes but absent in G. tachinoides. Double and triple infections with Trypanosoma taxa and coinfection of Sodalis and Trypanosoma were rarely observed but it occurs in some taxa and locations. A significant Chi square value (< 0.05) seems to suggest that Sodalis and Trypanosoma infection correlate in G. palpalis gambiensis, G. pallidipes and G. medicorum. Trypanosoma infection seemed significantly associated with an increased density of Sodalis in wild G. m. morsitans and G. pallidipes flies, however, there was no significant impact of Sodalis infection on trypanosome density.
Collapse
Affiliation(s)
- Mouhamadou M Dieng
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, 1400, Vienna, Austria
| | - Kiswend-Sida M Dera
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, 1400, Vienna, Austria.,Insectarium de Bobo Dioulasso-Campagne d'Eradication de la mouche tsetse et de la Trypanosomose (IBD-CETT), 01 BP 1087, Bobo Dioulasso 01, Burkina Faso
| | - Percy Moyaba
- Epidemiology, Vectors and Parasites, Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria, South Africa
| | - Gisele M S Ouedraogo
- Insectarium de Bobo Dioulasso-Campagne d'Eradication de la mouche tsetse et de la Trypanosomose (IBD-CETT), 01 BP 1087, Bobo Dioulasso 01, Burkina Faso
| | - Guler Demirbas-Uzel
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, 1400, Vienna, Austria
| | - Fabian Gstöttenmayer
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, 1400, Vienna, Austria
| | - Fernando C Mulandane
- University Eduardo Mondlane, Centro de Biotecnologia, Av. de Moçambique Km 1.5, Maputo, Mozambique
| | - Luis Neves
- University Eduardo Mondlane, Centro de Biotecnologia, Av. de Moçambique Km 1.5, Maputo, Mozambique.,Department of Veterinary Tropical Diseases, University of Pretoria, Private Bag X04, Onderstepoort, 0110, South Africa
| | - Sihle Mdluli
- Epidemiology Unit, Department of Veterinary Services, PO Box 4192, Manzini, Eswatini
| | - Jean-Baptiste Rayaisse
- Centre International de Recherche-Développement sur l'Elevage en zone Subhumide (CIRDES), 01 BP 454, Bobo-Dioulasso 01, Burkina Faso
| | | | - Soumaïla Pagabeleguem
- Insectarium de Bobo Dioulasso-Campagne d'Eradication de la mouche tsetse et de la Trypanosomose (IBD-CETT), 01 BP 1087, Bobo Dioulasso 01, Burkina Faso.,University of Dedougou, B.P. 176, Dédougou 01, Burkina Faso
| | - Chantel J de Beer
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, 1400, Vienna, Austria.,Epidemiology, Vectors and Parasites, Agricultural Research Council-Onderstepoort Veterinary Research, Pretoria, South Africa
| | | | | | - Robert L Mach
- Institute of Chemical, Environmental, and Bioscience Engineering, Vienna University of Technology, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Marc J B Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, 1400, Vienna, Austria
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Centre of Nuclear Techniques in Food and Agriculture, 1400, Vienna, Austria.
| |
Collapse
|
19
|
Medina Munoz M, Brenner C, Richmond D, Spencer N, Rio RVM. The holobiont transcriptome of teneral tsetse fly species of varying vector competence. BMC Genomics 2021; 22:400. [PMID: 34058984 PMCID: PMC8166097 DOI: 10.1186/s12864-021-07729-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2020] [Accepted: 05/21/2021] [Indexed: 12/13/2022] Open
Abstract
Background Tsetse flies are the obligate vectors of African trypanosomes, which cause Human and Animal African Trypanosomiasis. Teneral flies (newly eclosed adults) are especially susceptible to parasite establishment and development, yet our understanding of why remains fragmentary. The tsetse gut microbiome is dominated by two Gammaproteobacteria, an essential and ancient mutualist Wigglesworthia glossinidia and a commensal Sodalis glossinidius. Here, we characterize and compare the metatranscriptome of teneral Glossina morsitans to that of G. brevipalpis and describe unique immunological, physiological, and metabolic landscapes that may impact vector competence differences between these two species. Results An active expression profile was observed for Wigglesworthia immediately following host adult metamorphosis. Specifically, ‘translation, ribosomal structure and biogenesis’ followed by ‘coenzyme transport and metabolism’ were the most enriched clusters of orthologous genes (COGs), highlighting the importance of nutrient transport and metabolism even following host species diversification. Despite the significantly smaller Wigglesworthia genome more differentially expressed genes (DEGs) were identified between interspecific isolates (n = 326, ~ 55% of protein coding genes) than between the corresponding Sodalis isolates (n = 235, ~ 5% of protein coding genes) likely reflecting distinctions in host co-evolution and adaptation. DEGs between Sodalis isolates included genes involved in chitin degradation that may contribute towards trypanosome susceptibility by compromising the immunological protection provided by the peritrophic matrix. Lastly, G. brevipalpis tenerals demonstrate a more immunologically robust background with significant upregulation of IMD and melanization pathways. Conclusions These transcriptomic differences may collectively contribute to vector competence differences between tsetse species and offers translational relevance towards the design of novel vector control strategies. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07729-5.
Collapse
Affiliation(s)
- Miguel Medina Munoz
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA
| | - Caitlyn Brenner
- Department of Biology, Washington and Jefferson College, Washington, PA, 15301, USA
| | - Dylan Richmond
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA
| | - Noah Spencer
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA
| | - Rita V M Rio
- Department of Biology, Eberly College of Arts and Sciences, West Virginia University, Morgantown, WV, 26505, USA.
| |
Collapse
|
20
|
Demirbas-Uzel G, Augustinos AA, Doudoumis V, Parker AG, Tsiamis G, Bourtzis K, Abd-Alla AMM. Interactions Between Tsetse Endosymbionts and Glossina pallidipes Salivary Gland Hypertrophy Virus in Glossina Hosts. Front Microbiol 2021; 12:653880. [PMID: 34122367 PMCID: PMC8194091 DOI: 10.3389/fmicb.2021.653880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 04/29/2021] [Indexed: 11/13/2022] Open
Abstract
Tsetse flies are the sole cyclic vector for trypanosomosis, the causative agent for human African trypanosomosis or sleeping sickness and African animal trypanosomosis or nagana. Tsetse population control is the most efficient strategy for animal trypanosomosis control. Among all tsetse control methods, the Sterile Insect Technique (SIT) is one of the most powerful control tactics to suppress or eradicate tsetse flies. However, one of the challenges for the implementation of SIT is the mass production of target species. Tsetse flies have a highly regulated and defined microbial fauna composed of three bacterial symbionts (Wigglesworthia, Sodalis and Wolbachia) and a pathogenic Glossina pallidipes Salivary Gland Hypertrophy Virus (GpSGHV) which causes reproduction alterations such as testicular degeneration and ovarian abnormalities with reduced fertility and fecundity. Interactions between symbionts and GpSGHV might affect the performance of the insect host. In the present study, we assessed the possible impact of GpSGHV on the prevalence of tsetse endosymbionts under laboratory conditions to decipher the bidirectional interactions on six Glossina laboratory species. The results indicate that tsetse symbiont densities increased over time in tsetse colonies with no clear impact of the GpSGHV infection on symbionts density. However, a positive correlation between the GpSGHV and Sodalis density was observed in Glossina fuscipes species. In contrast, a negative correlation between the GpSGHV density and symbionts density was observed in the other taxa. It is worth noting that the lowest Wigglesworthia density was observed in G. pallidipes, the species which suffers most from GpSGHV infection. In conclusion, the interactions between GpSGHV infection and tsetse symbiont infections seems complicated and affected by the host and the infection density of the GpSGHV and tsetse symbionts.
Collapse
Affiliation(s)
- Güler Demirbas-Uzel
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Antonios A Augustinos
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Vangelis Doudoumis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, Agrinio, Greece
| | - Kostas Bourtzis
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Programme of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| |
Collapse
|
21
|
Cansado-Utrilla C, Zhao SY, McCall PJ, Coon KL, Hughes GL. The microbiome and mosquito vectorial capacity: rich potential for discovery and translation. MICROBIOME 2021; 9:111. [PMID: 34006334 PMCID: PMC8132434 DOI: 10.1186/s40168-021-01073-2] [Citation(s) in RCA: 84] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Accepted: 04/07/2021] [Indexed: 05/09/2023]
Abstract
Microbiome research has gained considerable interest due to the emerging evidence of its impact on human and animal health. As in other animals, the gut-associated microbiota of mosquitoes affect host fitness and other phenotypes. It is now well established that microbes can alter pathogen transmission in mosquitoes, either positively or negatively, and avenues are being explored to exploit microbes for vector control. However, less attention has been paid to how microbiota affect phenotypes that impact vectorial capacity. Several mosquito and pathogen components, such as vector density, biting rate, survival, vector competence, and the pathogen extrinsic incubation period all influence pathogen transmission. Recent studies also indicate that mosquito gut-associated microbes can impact each of these components, and therefore ultimately modulate vectorial capacity. Promisingly, this expands the options available to exploit microbes for vector control by also targeting parameters that affect vectorial capacity. However, there are still many knowledge gaps regarding mosquito-microbe interactions that need to be addressed in order to exploit them efficiently. Here, we review current evidence of impacts of the microbiome on aspects of vectorial capacity, and we highlight likely opportunities for novel vector control strategies and areas where further studies are required. Video abstract.
Collapse
Affiliation(s)
- Cintia Cansado-Utrilla
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Serena Y Zhao
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Philip J McCall
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, UK
| | - Kerri L Coon
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA.
| | - Grant L Hughes
- Departments of Vector Biology and Tropical Disease Biology, Centre for Neglected Tropical Disease, Liverpool School of Tropical Medicine, Liverpool, UK.
| |
Collapse
|
22
|
Bacterial Symbionts of Tsetse Flies: Relationships and Functional Interactions Between Tsetse Flies and Their Symbionts. Results Probl Cell Differ 2021; 69:497-536. [PMID: 33263885 DOI: 10.1007/978-3-030-51849-3_19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/04/2023]
Abstract
Tsetse flies (Glossina spp.) act as the sole vectors of the African trypanosome species that cause Human African Trypanosomiasis (HAT or African Sleeping Sickness) and Nagana in animals. These flies have undergone a variety of specializations during their evolution including an exclusive diet consisting solely of vertebrate blood for both sexes as well as an obligate viviparous reproductive biology. Alongside these adaptations, Glossina species have developed intricate relationships with specific microbes ranging from mutualistic to parasitic. These relationships provide fundamental support required to sustain the specializations associated with tsetse's biology. This chapter provides an overview on the knowledge to date regarding the biology behind these relationships and focuses primarily on four bacterial species that are consistently associated with Glossina species. Here their interactions with the host are reviewed at the morphological, biochemical and genetic levels. This includes: the obligate symbiont Wigglesworthia, which is found in all tsetse species and is essential for nutritional supplementation to the blood-specific diet, immune system maturation and facilitation of viviparous reproduction; the commensal symbiont Sodalis, which is a frequently associated symbiont optimized for survival within the fly via nutritional adaptation, vertical transmission through mating and may alter vectorial capacity of Glossina for trypanosomes; the parasitic symbiont Wolbachia, which can manipulate Glossina via cytoplasmic incompatibility and shows unique interactions at the genetic level via horizontal transmission of its genetic material into the genome in two Glossina species; finally, knowledge on recently observed relations between Spiroplasma and Glossina is explored and potential interactions are discussed based on knowledge of interactions between this bacterial Genera and other insect species. These flies have a simple microbiome relative to that of other insects. However, these relationships are deep, well-studied and provide a window into the complexity and function of host/symbiont interactions in an important disease vector.
Collapse
|
23
|
Tsetse blood-meal sources, endosymbionts and trypanosome-associations in the Maasai Mara National Reserve, a wildlife-human-livestock interface. PLoS Negl Trop Dis 2021; 15:e0008267. [PMID: 33406097 PMCID: PMC7822626 DOI: 10.1371/journal.pntd.0008267] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 01/22/2021] [Accepted: 11/22/2020] [Indexed: 01/06/2023] Open
Abstract
African trypanosomiasis (AT) is a neglected disease of both humans and animals caused by Trypanosoma parasites, which are transmitted by obligate hematophagous tsetse flies (Glossina spp.). Knowledge on tsetse fly vertebrate hosts and the influence of tsetse endosymbionts on trypanosome presence, especially in wildlife-human-livestock interfaces, is limited. We identified tsetse species, their blood-meal sources, and correlations between endosymbionts and trypanosome presence in tsetse flies from the trypanosome-endemic Maasai Mara National Reserve (MMNR) in Kenya. Among 1167 tsetse flies (1136 Glossina pallidipes, 31 Glossina swynnertoni) collected from 10 sampling sites, 28 (2.4%) were positive by PCR for trypanosome DNA, most (17/28) being of Trypanosoma vivax species. Blood-meal analyses based on high-resolution melting analysis of vertebrate cytochrome c oxidase 1 and cytochrome b gene PCR products (n = 354) identified humans as the most common vertebrate host (37%), followed by hippopotamus (29.1%), African buffalo (26.3%), elephant (3.39%), and giraffe (0.84%). Flies positive for trypanosome DNA had fed on hippopotamus and buffalo. Tsetse flies were more likely to be positive for trypanosomes if they had the Sodalis glossinidius endosymbiont (P = 0.0002). These findings point to complex interactions of tsetse flies with trypanosomes, endosymbionts, and diverse vertebrate hosts in wildlife ecosystems such as in the MMNR, which should be considered in control programs. These interactions may contribute to the maintenance of tsetse populations and/or persistent circulation of African trypanosomes. Although the African buffalo is a key reservoir of AT, the higher proportion of hippopotamus blood-meals in flies with trypanosome DNA indicates that other wildlife species may be important in AT transmission. No trypanosomes associated with human disease were identified, but the high proportion of human blood-meals identified are indicative of human African trypanosomiasis risk. Our results add to existing data suggesting that Sodalis endosymbionts are associated with increased trypanosome presence in tsetse flies.
Collapse
|
24
|
Sontowski R, Gerth M, Richter S, Gruppe A, Schlegel M, van Dam NM, Bleidorn C. Infection Patterns and Fitness Effects of Rickettsia and Sodalis Symbionts in the Green Lacewing Chrysoperla carnea. INSECTS 2020; 11:insects11120867. [PMID: 33297293 PMCID: PMC7762206 DOI: 10.3390/insects11120867] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 11/27/2020] [Accepted: 12/04/2020] [Indexed: 11/16/2022]
Abstract
Simple Summary Bacteria have occupied a wide range of habitats including insect hosts. There they can strongly affect host physiology and ecology in a positive or negative way. Bacteria living exclusively inside other organisms are called endosymbionts. They often establish a long-term and stable association with their host. Although more and more studies focus on endosymbiont–insect interactions, the group of Neuroptera is largely neglected in such studies. We were interested in the common green lacewing (Chrysoperla carnea), a representative of Neuroptera, which is mainly known for its use in biological pest control. We asked ourselves which endosymbionts are present in these lacewings. By screening natural and laboratory populations, we found that the endosymbiont Rickettsia is present in all populations but the symbiont Sodalis only occurred in laboratory populations. We were curious whether both endosymbionts affect reproduction success. Through establishing and studying green lacewing lines carrying different endosymbionts, we found that Rickettsia had no effect on the insect reproduction, while Sodalis reduced the number of eggs laid by lacewings, alone and in co-infections with Rickettsia. The economic and ecological importance of green lacewings in biological pest control warrants a more profound understanding of its biology, which might be strongly influenced by symbionts. Abstract Endosymbionts are widely distributed in insects and can strongly affect their host ecology. The common green lacewing (Chrysoperla carnea) is a neuropteran insect which is widely used in biological pest control. However, their endosymbionts and their interactions with their hosts have not been very well studied. Therefore, we screened for endosymbionts in natural and laboratory populations of Ch. carnea using diagnostic PCR amplicons. We found the endosymbiont Rickettsia to be very common in all screened natural and laboratory populations, while a hitherto uncharacterized Sodalis strain was found only in laboratory populations. By establishing lacewing lines with no, single or co-infections of Sodalis and Rickettsia, we found a high vertical transmission rate for both endosymbionts (>89%). However, we were only able to estimate these numbers for co-infected lacewings. Sodalis negatively affected the reproductive success in single and co-infected Ch. carnea, while Rickettsia showed no effect. We hypothesize that the fitness costs accrued by Sodalis infections might be more tolerable in the laboratory than in natural populations, as the latter are also prone to fluctuating environmental conditions and natural enemies. The economic and ecological importance of lacewings in biological pest control warrants a more profound understanding of its biology, which might be influenced by symbionts.
Collapse
Affiliation(s)
- Rebekka Sontowski
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany; (R.S.); (M.S.); (N.M.v.D.)
- Institute of Biodiversity, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Michael Gerth
- Department of Biological and Medical Sciences, Oxford Brookes University, Oxford OX3 0BP, UK;
| | - Sandy Richter
- Department of Basic and Clinical Neuroscience, King’s College London, 5 Cutcombe Road, London SE5 9RT, UK;
- Institute of Biology, Molecular Evolution and Systematics of Animals, University of Leipzig, 04109 Leipzig, Germany
| | - Axel Gruppe
- Chair of Zoology—Entomology Group, Technical University of Munich, 85354 Freising, Germany;
| | - Martin Schlegel
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany; (R.S.); (M.S.); (N.M.v.D.)
- Institute of Biology, Molecular Evolution and Systematics of Animals, University of Leipzig, 04109 Leipzig, Germany
| | - Nicole M. van Dam
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany; (R.S.); (M.S.); (N.M.v.D.)
- Institute of Biodiversity, Friedrich-Schiller-University, 07743 Jena, Germany
| | - Christoph Bleidorn
- German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, 04103 Leipzig, Germany; (R.S.); (M.S.); (N.M.v.D.)
- Animal Evolution and Biodiversity, Georg-Augustus-University, 37073 Göttingen, Germany
- Correspondence: ; Tel.: +49-5513925459
| |
Collapse
|
25
|
Abstract
Almost all living things need to be able to move, whether it is toward desirable environments or away from danger. For vector-borne parasites, successful transmission and infection require that these organisms be able to sense where they are and use signals from their environment to direct where they go next, a process known as chemotaxis. Here, we show that Trypanosoma brucei, the deadly protozoan parasite that causes African sleeping sickness, can sense and move toward an attractive cue. To our knowledge, this is the first report of positive chemotaxis in these organisms. In addition to describing a new behavior in T. brucei, our findings enable future studies of how chemotaxis works in these pathogens, which will lead to deeper understanding of how they move through their hosts and may lead to new therapeutic or transmission-blocking strategies. To complete its infectious cycle, the protozoan parasite Trypanosoma brucei must navigate through diverse tissue environments in both its tsetse fly and mammalian hosts. This is hypothesized to be driven by yet unidentified chemotactic cues. Prior work has shown that parasites engaging in social motility in vitro alter their trajectory to avoid other groups of parasites, an example of negative chemotaxis. However, movement of T. brucei toward a stimulus, positive chemotaxis, has so far not been reported. Here, we show that upon encountering Escherichia coli, socially behaving T. brucei parasites exhibit positive chemotaxis, redirecting group movement toward the neighboring bacterial colony. This response occurs at a distance from the bacteria and involves active changes in parasite motility. By developing a quantitative chemotaxis assay, we show that the attractant is a soluble, diffusible signal dependent on actively growing E. coli. Time-lapse and live video microscopy revealed that T. brucei chemotaxis involves changes in both group and single cell motility. Groups of parasites change direction of group movement and accelerate as they approach the source of attractant, and this correlates with increasingly constrained movement of individual cells within the group. Identification of positive chemotaxis in T. brucei opens new opportunities to study mechanisms of chemotaxis in these medically and economically important pathogens. This will lead to deeper insights into how these parasites interact with and navigate through their host environments. IMPORTANCE Almost all living things need to be able to move, whether it is toward desirable environments or away from danger. For vector-borne parasites, successful transmission and infection require that these organisms be able to sense where they are and use signals from their environment to direct where they go next, a process known as chemotaxis. Here, we show that Trypanosoma brucei, the deadly protozoan parasite that causes African sleeping sickness, can sense and move toward an attractive cue. To our knowledge, this is the first report of positive chemotaxis in these organisms. In addition to describing a new behavior in T. brucei, our findings enable future studies of how chemotaxis works in these pathogens, which will lead to deeper understanding of how they move through their hosts and may lead to new therapeutic or transmission-blocking strategies.
Collapse
|
26
|
Simo G, Magang EMK, Mewamba EM, Farikou O, Kamga RMN, Tume C, Solano P, Ravel S. Molecular identification of diminazene aceturate resistant trypanosomes in tsetse flies from Yoko in the Centre region of Cameroon and its epidemiological implications. Parasite Epidemiol Control 2020; 9:e00135. [PMID: 31956704 PMCID: PMC6957779 DOI: 10.1016/j.parepi.2020.e00135] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 01/03/2020] [Accepted: 01/03/2020] [Indexed: 11/24/2022] Open
Abstract
African animal trypanosomiases are caused by trypanosomes cyclically or mechanically transmitted by tsetse and other biting flies. Although molecular tools have been developed to identify drug-resistant trypanosomes in mammals, little or no investigation on drug-resistance has been undertaken on trypanosomes harbored by tsetse flies. Moreover, no data on mechanical vectors of African trypanosomes is available in most endemic areas of Cameroon. This study was designed to update our knowledge on the cyclical and mechanical vectors of African trypanosomes, and using molecular tools to identify different trypanosome species as well as diminazene aceturate resistant trypanosomes in tsetse flies trapped at Yoko in the Centre region of Cameroon. For this study, traps were used to catch tsetse and mechanical vectors of African trypanosomes. The flies trapped were counted and identified by sex and species. DNA was extracted from tsetse and species-specific primers were used to identify different trypanosome species. PCR-RFLP was used to detect diminazene aceturate resistant strains of Trypanosoma congolense. In all, 454 flies comprising 168 (37%) Tabanus spp., 71 (15.6%) Stomoxys spp. and 215 (47.4%) tsetse fly (i.e. 107 (49.8%) Glossina fusca congolensis, 71 (33%) Glossina fusca fusca and 37 (17.2%) Glossina palpalis palpalis) were trapped. Trypanosome infections were identified in 12.6% (27/215) of tsetse flies: 13 in G. f. congolensis, 6 in G. p. palpalis and 5 in G. f. fusca. From 24 T. congolense positive samples, PCR-RFLP was successful on 37.5% of the samples. Four samples (16.2%) harbored T. congolense strains that were resistant to diminazene aceturate while the remaining samples had drug-sensitive strains. These results show for the first time the applicability of molecular tools for the identification of drug-resistant trypanosomes in tsetse. They revealed the existence of diminazene aceturate resistant strains of T. congolense in the tsetse-infested area of Yoko in the Centre region of Cameroon. Detection of drug-resistant trypanosomes in tsetse may enable scientists to map with accuracy specific areas where these parasites are transmitted. With such mapping, control strategies against African trypanosomiases could be improved by adapting control measures according to drug resistance distribution.
Collapse
Affiliation(s)
- Gustave Simo
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, PO Box 67, Dschang, Cameroon
| | - Eugenie Melaine Kemta Magang
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, PO Box 67, Dschang, Cameroon
| | - Estelle Mezajou Mewamba
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, PO Box 67, Dschang, Cameroon
| | - Oumarou Farikou
- Mission Spéciale d'Eradication des Glossines, Division Régionale tsetse Adamaoua, PO Box 263, Ngaoundéré, Cameroon
| | - Rolin Mitterran Ndeffo Kamga
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, PO Box 67, Dschang, Cameroon
| | - Christopher Tume
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, PO Box 67, Dschang, Cameroon
| | - Philippe Solano
- UMR 177, IRD-CIRAD, CIRAD TA A-17/G, Campus International de Baillarguet, Montpellier Cedex 5, France
| | - Sophie Ravel
- UMR 177, IRD-CIRAD, CIRAD TA A-17/G, Campus International de Baillarguet, Montpellier Cedex 5, France
| |
Collapse
|
27
|
Blood meal sources and bacterial microbiome diversity in wild-caught tsetse flies. Sci Rep 2020; 10:5005. [PMID: 32193415 PMCID: PMC7081217 DOI: 10.1038/s41598-020-61817-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2019] [Accepted: 02/28/2020] [Indexed: 12/02/2022] Open
Abstract
Tsetse flies are the vectors of African trypanosomiasis affecting 36 sub-Saharan countries. Both wild and domestic animals play a crucial role in maintaining the disease-causing parasites (trypanosomes). Thus, the identification of animal reservoirs of trypanosomes is vital for the effective control of African trypanosomiasis. Additionally, the biotic and abiotic factors that drive gut microbiome diversity in tsetse flies are primarily unresolved, especially under natural, field conditions. In this study, we present a comprehensive DNA metabarcoding approach for individual tsetse fly analysis in the identification of mammalian blood meal sources and fly bacterial microbiome composition. We analyzed samples from two endemic foci, Kafue, Zambia collected in June 2017, and Hurungwe, Zimbabwe sampled in April 2014 (pilot study) and detected DNA of various mammals including humans, wild animals, domestic animals and small mammals (rat and bat). The bacterial diversity was relatively similar in flies with different mammalian species DNA, trypanosome infected and uninfected flies, and female and male flies. This study is the first report on bat DNA detection in wild tsetse flies. This study reveals that small mammals such as bats and rats are among the opportunistic blood meal sources for tsetse flies in the wild, and the implication on tsetse biology and ecology needs to be studied.
Collapse
|
28
|
Trappeniers K, Matetovici I, Van Den Abbeele J, De Vooght L. The Tsetse Fly Displays an Attenuated Immune Response to Its Secondary Symbiont, Sodalis glossinidius. Front Microbiol 2019; 10:1650. [PMID: 31396178 PMCID: PMC6668328 DOI: 10.3389/fmicb.2019.01650] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 07/03/2019] [Indexed: 11/13/2022] Open
Abstract
Sodalis glossinidius, a vertically transmitted facultative symbiont of the tsetse fly, is a bacterium in the early/intermediate state of its transition toward symbiosis, representing an important model for investigating how the insect host immune defense response is regulated to allow endosymbionts to establish a chronic infection within their hosts without being eliminated. In this study, we report on the establishment of a tsetse fly line devoid of S. glossinidius only, allowing us to experimentally investigate (i) the complex immunological interactions between a single bacterial species and its host, (ii) how the symbiont population is kept under control, and (iii) the impact of the symbiont on the vector competence of the tsetse fly to transmit the sleeping sickness parasite. Comparative transcriptome analysis showed no difference in the expression of genes involved in innate immune processes between symbiont-harboring (GmmSod+) and S. glossinidius-free (GmmSod–) flies. Re-exposure of (GmmSod–) flies to the endosymbiotic bacterium resulted in a moderate immune response, whereas exposure to pathogenic E. coli or to a close non-insect associated relative of S. glossinidius, i.e., S. praecaptivus, resulted in full immune activation. We also showed that S. glossinidius densities are not affected by experimental activation or suppression of the host immune system, indicating that S. glossinidius is resistant to mounted immune attacks and that the host immune system does not play a major role in controlling S. glossinidius proliferation. Finally, we demonstrate that the absence or presence of S. glossinidius in the tsetse fly does not alter its capacity to mount an immune response to pathogens nor does it affect the fly’s susceptibility toward trypanosome infection.
Collapse
Affiliation(s)
- Katrien Trappeniers
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Irina Matetovici
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Jan Van Den Abbeele
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| | - Linda De Vooght
- Department of Biomedical Sciences, Institute of Tropical Medicine Antwerp, Antwerp, Belgium
| |
Collapse
|
29
|
Abstract
Parasites elicit several physiological changes in their host to enhance transmission. Little is known about the functional association between parasitism and microbiota-provisioned resources typically dedicated to animal hosts and how these goods may be rerouted to optimize parasite development. This study is the first to identify a specific symbiont-generated metabolite that impacts insect vector competence by facilitating parasite establishment and, thus, eventual transmission. Specifically, we demonstrate that the tsetse fly obligate mutualist Wigglesworthia provisions folate (vitamin B9) that pathogenic African trypanosomes exploit in an effort to successfully establish an infection in the vector’s MG. This process is essential for the parasite to complete its life cycle and be transmitted to a new vertebrate host. Disrupting metabolic contributions provided by the microbiota of arthropod disease vectors may fuel future innovative control strategies while also offering minimal nontarget effects. Many symbionts supplement their host’s diet with essential nutrients. However, whether these nutrients also enhance parasitism is unknown. In this study, we investigated whether folate (vitamin B9) production by the tsetse fly (Glossina spp.) essential mutualist, Wigglesworthia, aids auxotrophic African trypanosomes in completing their life cycle within this obligate vector. We show that the expression of Wigglesworthia folate biosynthesis genes changes with the progression of trypanosome infection within tsetse. The disruption of Wigglesworthia folate production caused a reduction in the percentage of flies that housed midgut (MG) trypanosome infections. However, decreased folate did not prevent MG trypanosomes from migrating to and establishing an infection in the fly’s salivary glands, thus suggesting that nutrient requirements vary throughout the trypanosome life cycle. We further substantiated that trypanosomes rely on symbiont-generated folate by feeding this vitamin to Glossina brevipalpis, which exhibits low trypanosome vector competency and houses Wigglesworthia incapable of producing folate. Folate-supplemented G. brevipalpis flies were significantly more susceptible to trypanosome infection, further demonstrating that this vitamin facilitates parasite infection establishment. Our cumulative results provide evidence that Wigglesworthia provides a key metabolite (folate) that is “hijacked” by trypanosomes to enhance their infectivity, thus indirectly impacting tsetse species vector competency. Parasite dependence on symbiont-derived micronutrients, which likely also occurs in other arthropod vectors, represents a relationship that may be exploited to reduce disease transmission.
Collapse
|
30
|
Odeniran PO, Macleod ET, Ademola IO, Welburn SC. Endosymbionts interaction with trypanosomes in Palpalis group of Glossina captured in southwest Nigeria. Parasitol Int 2019; 70:64-69. [DOI: 10.1016/j.parint.2019.01.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2018] [Revised: 01/23/2019] [Accepted: 01/31/2019] [Indexed: 12/31/2022]
|
31
|
Tsagmo Ngoune JM, Reveillaud J, Sempere G, Njiokou F, Melachio TT, Abate L, Tchioffo MT, Geiger A. The composition and abundance of bacterial communities residing in the gut of Glossina palpalis palpalis captured in two sites of southern Cameroon. Parasit Vectors 2019; 12:151. [PMID: 30940213 PMCID: PMC6444424 DOI: 10.1186/s13071-019-3402-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 03/20/2019] [Indexed: 01/10/2023] Open
Abstract
Background A number of reports have demonstrated the role of insect bacterial flora on their host’s physiology and metabolism. The tsetse host and vector of trypanosomes responsible for human sleeping sickness (human African trypanosomiasis, HAT) and nagana in animals (African animal trypanosomiasis, AAT) carry bacteria that influence its diet and immune processes. However, the mechanisms involved in these processes remain poorly documented. This underscores the need for increased research into the bacterial flora composition and structure of tsetse flies. The aim of this study was to identify the diversity and relative abundance of bacterial genera in Glossina palpalis palpalis flies collected in two trypanosomiasis foci in Cameroon. Methods Samples of G. p. palpalis which were either negative or naturally trypanosome-positive were collected in two foci located in southern Cameroon (Campo and Bipindi). Using the V3V4 and V4 variable regions of the small subunit of the 16S ribosomal RNA gene, we analyzed the respective bacteriome of the flies’ midguts. Results We identified ten bacterial genera. In addition, we observed that the relative abundance of the obligate endosymbiont Wigglesworthia was highly prominent (around 99%), regardless of the analyzed region. The remaining genera represented approximately 1% of the bacterial flora, and were composed of Salmonella, Spiroplasma, Sphingomonas, Methylobacterium, Acidibacter, Tsukamurella, Serratia, Kluyvera and an unidentified bacterium. The genus Sodalis was present but with a very low abundance. Globally, no statistically significant difference was found between the bacterial compositions of flies from the two foci, and between positive and trypanosome-negative flies. However, Salmonella and Serratia were only described in trypanosome-negative flies, suggesting a potential role for these two bacteria in fly refractoriness to trypanosome infection. In addition, our study showed the V4 region of the small subunit of the 16S ribosomal RNA gene was more efficient than the V3V4 region at describing the totality of the bacterial diversity. Conclusions A very large diversity of bacteria was identified with the discovering of species reported to secrete anti-parasitic compounds or to modulate vector competence in other insects. For future studies, the analyses should be enlarged with larger sampling including foci from several countries. Electronic supplementary material The online version of this article (10.1186/s13071-019-3402-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jean Marc Tsagmo Ngoune
- INTERTRYP, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France.,Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Julie Reveillaud
- ASTRE, INRA, CIRAD, University of Montpellier, Montpellier, France
| | - Guilhem Sempere
- INTERTRYP, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France
| | - Flobert Njiokou
- Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Trésor T Melachio
- Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| | - Luc Abate
- UMR Maladies Infectieuses Et Vecteurs Écologie, Génétique, Évolution Et Contrôle, IRD 224-Centre National de la Recherche Scientifique, 5290-UM1-UM2, Montpellier, France
| | - Majoline T Tchioffo
- UMR Maladies Infectieuses Et Vecteurs Écologie, Génétique, Évolution Et Contrôle, IRD 224-Centre National de la Recherche Scientifique, 5290-UM1-UM2, Montpellier, France
| | - Anne Geiger
- INTERTRYP, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France. .,Center for Research on Filariasis and other Tropical Diseases (CRFilMT), P.O. Box 5797, Yaoundé, Cameroon. .,Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon.
| |
Collapse
|
32
|
Simo G, Kanté ST, Madinga J, Kame G, Farikou O, Ilombe G, Geiger A, Lutumba P, Njiokou F. Molecular identification of Wolbachia and Sodalis glossinidius in the midgut of Glossina fuscipes quanzensis from the Democratic Republic of Congo. ACTA ACUST UNITED AC 2019; 26:5. [PMID: 30729921 PMCID: PMC6366345 DOI: 10.1051/parasite/2019005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Accepted: 01/23/2019] [Indexed: 11/20/2022]
Abstract
During the last 30 years, investigations on the microbiome of different tsetse species have generated substantial data on the bacterial flora of these cyclical vectors of African trypanosomes, with the overarching goal of improving the control of trypanosomiases. It is in this context that the presence of Wolbachia and Sodalis glossinidius was studied in wild populations of Glossina fuscipes quanzensis from the Democratic Republic of Congo. Tsetse flies were captured with pyramidal traps. Of the 700 Glossina f. quanzensis captured, 360 were dissected and their midguts collected and analyzed. Sodalis glossinidius and Wolbachia were identified by PCR. The Wolbachia-positive samples were genetically characterized with five molecular markers. PCR revealed 84.78% and 15.55% midguts infected by Wolbachia and S. glossinidius, respectively. The infection rates varied according to capture sites. Of the five molecular markers used to characterize Wolbachia, only the fructose bis-phosphate aldolase gene was amplified for about 60% of midguts previously found with Wolbachia infections. The sequencing results confirmed the presence of Wolbachia and revealed the presence of S. glossinidius in the midgut of Glossina f. quanzensis. A low level of midguts were naturally co-infected by both bacteria. The data generated in this study open a framework for investigations aimed at understanding the contribution of these symbiotic microorganisms to the vectorial competence of Glossina fuscipes quanzensis.
Collapse
Affiliation(s)
- Gustave Simo
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, PO Box 67, Dschang, Cameroon
| | - Sartrien Tagueu Kanté
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, PO Box 67, Dschang, Cameroon
| | - Joule Madinga
- Institute of Health and Society, Université Catholique de Louvain, Clos Chapelle-aux-Champs 30, 1200 Woluwe-Saint-Lambert, Brussels, Belgium - Department of Biomedical Sciences, Institute of Tropical Medicine, Nationalestraat 155, 2000, Antwerp, Belgium
| | - Ginette Kame
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, PO Box 812 Yaoundé, Cameroon
| | - Oumarou Farikou
- Mission Spéciale d'Eradication des Glossines, Division Régionale Tsé-Tsé Adamaoua, PO Box 263 Ngaoundéré, Cameroon
| | - Gillon Ilombe
- Institut national de recherche biomédicale Kinshasa, Avenue de la démocratie N°5345, Gombe, Kinshasa, Democratic Republic of Congo
| | - Anne Geiger
- UMR 177, IRD-CIRAD, CIRAD TA A-17/G, Campus International de Baillarguet, Montpellier Cedex 5, France - Center for Research on Filariasis and other Tropical Diseases (CRFILMT), PO Box 5797 Yaoundé, Cameroon - University of Yaoundé I, Faculty of Science, PO Box 812, Yaoundé, Cameroon
| | - Pascal Lutumba
- Institut national de recherche biomédicale Kinshasa, Avenue de la démocratie N°5345, Gombe, Kinshasa, Democratic Republic of Congo - Department of Tropical Medicine, University of Kinshasa, B.P. 127 Kinshasa XI, Democratic Republic of Congo
| | - Flobert Njiokou
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, PO Box 812 Yaoundé, Cameroon
| |
Collapse
|
33
|
Weiss BL, Maltz MA, Vigneron A, Wu Y, Walter KS, O'Neill MB, Wang J, Aksoy S. Colonization of the tsetse fly midgut with commensal Kosakonia cowanii Zambiae inhibits trypanosome infection establishment. PLoS Pathog 2019; 15:e1007470. [PMID: 30817773 PMCID: PMC6394900 DOI: 10.1371/journal.ppat.1007470] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 12/27/2018] [Indexed: 11/18/2022] Open
Abstract
Tsetse flies (Glossina spp.) vector pathogenic trypanosomes (Trypanosoma spp.) in sub-Saharan Africa. These parasites cause human and animal African trypanosomiases, which are debilitating diseases that inflict an enormous socio-economic burden on inhabitants of endemic regions. Current disease control strategies rely primarily on treating infected animals and reducing tsetse population densities. However, relevant programs are costly, labor intensive and difficult to sustain. As such, novel strategies aimed at reducing tsetse vector competence require development. Herein we investigated whether Kosakonia cowanii Zambiae (Kco_Z), which confers Anopheles gambiae with resistance to Plasmodium, is able to colonize tsetse and induce a trypanosome refractory phenotype in the fly. Kco_Z established stable infections in tsetse's gut and exhibited no adverse effect on the fly's survival. Flies with established Kco_Z infections in their gut were significantly more refractory to infection with two distinct trypanosome species (T. congolense, 6% infection; T. brucei, 32% infection) than were age-matched flies that did not house the exogenous bacterium (T. congolense, 36% infected; T. brucei, 70% infected). Additionally, 52% of Kco_Z colonized tsetse survived infection with entomopathogenic Serratia marcescens, compared with only 9% of their wild-type counterparts. These parasite and pathogen refractory phenotypes result from the fact that Kco_Z acidifies tsetse's midgut environment, which inhibits trypanosome and Serratia growth and thus infection establishment. Finally, we determined that Kco_Z infection does not impact the fecundity of male or female tsetse, nor the ability of male flies to compete with their wild-type counterparts for mates. We propose that Kco_Z could be used as one component of an integrated strategy aimed at reducing the ability of tsetse to transmit pathogenic trypanosomes.
Collapse
Affiliation(s)
- Brian L Weiss
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Michele A Maltz
- Southern Connecticut State University, New Haven, Connecticut, United States of America
| | - Aurélien Vigneron
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Yineng Wu
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Katharine S Walter
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Michelle B O'Neill
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Jingwen Wang
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| | - Serap Aksoy
- Yale School of Public Health, Department of Epidemiology of Microbial Diseases, New Haven, Connecticut, United States of America
| |
Collapse
|
34
|
Kanté ST, Melachio T, Ofon E, Njiokou F, Simo G. Detection of Wolbachia and different trypanosome species in Glossina palpalis palpalis populations from three sleeping sickness foci of southern Cameroon. Parasit Vectors 2018; 11:630. [PMID: 30541614 PMCID: PMC6292098 DOI: 10.1186/s13071-018-3229-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 11/23/2018] [Indexed: 12/02/2022] Open
Abstract
BACKGROUND African trypanosomiases are caused by trypanosomes that are cyclically transmitted by tsetse. Investigations aiming to generate knowledge on the bacterial fauna of tsetse have revealed distinct symbiotic microorganisms. Furthermore, studies addressing the tripartite association between trypanosomes-tsetse-symbionts relationship have so far been contradictory. Most studies included Sodalis glossinudius and, consequently, the association involving Wolbachia is poorly understood. Understanding the vectorial competence of tsetse requires decrypting these tripartite associations. In this study, we identified Wolbachia and trypanosomes in Glossina palpalis palpalis from three human African trypanosomiasis (HAT) foci in southern Cameroon. METHODS Tsetse flies were captured with pyramidal traps in the Bipindi, Campo and Fontem HAT foci. After morphological identification, DNA was extracted from whole tsetse flies and Wolbachia and trypanosomes were identified by PCR using different trypanosome-specific primers and two Wolbachia-specific primers (Wolbachia surface protein and 16S rRNA genes). Statistical analyses were performed to compare the trypanosome and Wolbachia infection rates between villages and different foci and to look for an association between these microorganisms. RESULTS From a total of 2122 tsetse flies, 790 G. p. palpalis were analyzed. About 25.32% of flies hosted Wolbachia and 31.84% of non-teneral flies were infected by at least one trypanosome species. There was no significant difference between the global Wolbachia prevalence revealed by the two markers while some differences were observed between HAT foci. From 248 G. p. palpalis with trypanosome infections, 62.90% were with T. vivax, 34.68% with T. congolense forest, 16.13% with T. brucei (s.l.) and 2.42% with T. congolense savannah. Of all trypanosome-infected flies, 29.84% hosted Wolbachia and no association was observed between Wolbachia and trypanosome co-infections. CONCLUSIONS This study revealed differences in the prevalence of Wolbachia and trypanosomes in G. p. palpalis according to HAT foci. The use of only one marker has underestimated the prevalence of Wolbachia, thus more markers in subsequent studies may improve its detection. The presence of Wolbachia seems to have no impact on the establishment of trypanosomes in G. p. palpalis. The tripartite association between tsetse, Wolbachia and trypanosomes varies according to studied areas. Studies aiming to evaluate the genetic polymorphism of Wolbachia and its density in tsetse flies could help to better understand this association.
Collapse
Affiliation(s)
- Sartrien Tagueu Kanté
- Molecular Parasitology and Entomology Unit (MPEU), Department of Biochemistry, Faculty of Science, University of Dschang, PO Box 67, Dschang, Cameroon
| | - Trésor Melachio
- Laboratory of Parasitology and Ecology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Elvis Ofon
- Molecular Parasitology and Entomology Unit (MPEU), Department of Biochemistry, Faculty of Science, University of Dschang, PO Box 67, Dschang, Cameroon
| | - Flobert Njiokou
- Laboratory of Parasitology and Ecology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Gustave Simo
- Molecular Parasitology and Entomology Unit (MPEU), Department of Biochemistry, Faculty of Science, University of Dschang, PO Box 67, Dschang, Cameroon
| |
Collapse
|
35
|
Channumsin M, Ciosi M, Masiga D, Turner CMR, Mable BK. Sodalis glossinidius presence in wild tsetse is only associated with presence of trypanosomes in complex interactions with other tsetse-specific factors. BMC Microbiol 2018; 18:163. [PMID: 30470184 PMCID: PMC6251152 DOI: 10.1186/s12866-018-1285-6] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Background Susceptibility of tsetse flies (Glossina spp.) to trypanosomes of both humans and animals has been associated with the presence of the endosymbiont Sodalis glossinidius. However, intrinsic biological characteristics of the flies and environmental factors can influence the presence of both S. glossinidius and the parasites. It thus remains unclear whether it is the S. glossinidius or other attributes of the flies that explains the apparent association. The objective of this study was to test whether the presence of Trypanosoma vivax, T. congolense and T. brucei are related to the presence of S. glossinidius in tsetse flies when other factors are accounted for: geographic location, species of Glossina, sex or age of the host flies. Results Flies (n = 1090) were trapped from four sites in the Shimba Hills and Nguruman regions in Kenya. Sex and species of tsetse (G. austeni, G. brevipalpis, G. longipennis and G. pallidipes) were determined based on external morphological characters and age was estimated by a wing fray score method. The presence of trypanosomes and S. glossinidius was detected using PCR targeting the internal transcribed spacer region 1 and the haemolysin gene, respectively. Sequencing was used to confirm species identification. Generalised Linear Models (GLMs) and Multiple Correspondence Analysis (MCA) were applied to investigate multivariable associations. The overall prevalence of trypanosomes was 42.1%, but GLMs revealed complex patterns of associations: the presence of S. glossinidius was associated with trypanosome presence but only in interactions with other factors and only in some species of trypanosomes. The strongest association was found for T. congolense, and no association was found for T. vivax. The MCA also suggested only a weak association between the presence of trypanosomes and S. glossinidius. Trypanosome-positive status showed strong associations with sex and age while S. glossinidius-positive status showed a strong association with geographic location and species of fly. Conclusions We suggest that previous conclusions about the presence of endosymbionts increasing probability of trypanosome presence in tsetse flies may have been confounded by other factors, such as community composition of the tsetse flies and the specific trypanosomes found in different regions. Electronic supplementary material The online version of this article (10.1186/s12866-018-1285-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Manun Channumsin
- Institute of Biodiversity, Animal Health and Comparative Medicine (BAHCM), Graham Kerr Building, University of Glasgow, University Place, Glasgow, G12 8QQ, UK. .,Faculty of Veterinary Medicine, Rajamangala University of Technology Tawan-Ok, Chonburi, 20110, Thailand.
| | - Marc Ciosi
- Institute of Biodiversity, Animal Health and Comparative Medicine (BAHCM), Graham Kerr Building, University of Glasgow, University Place, Glasgow, G12 8QQ, UK. .,International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, 00100, Kenya.
| | - Dan Masiga
- International Centre of Insect Physiology and Ecology (ICIPE), P.O. Box 30772, Nairobi, 00100, Kenya
| | - C Michael R Turner
- Institute of Infection, Immunity and Inflammation, Sir Graeme Davis Building, University of Glasgow, University Place, Glasgow, G12 0PT, UK
| | - Barbara K Mable
- Institute of Biodiversity, Animal Health and Comparative Medicine (BAHCM), Graham Kerr Building, University of Glasgow, University Place, Glasgow, G12 8QQ, UK
| |
Collapse
|
36
|
Abstract
Background Microbiota plays an important role in the biology, ecology and evolution of insects including tsetse flies. The bacterial profile of 3 Glossina palpalis gambiensis laboratory colonies was examined using 16S rRNA gene amplicon sequencing to evaluate the dynamics of the bacterial diversity within and between each G. p. gambiensis colony. Results The three G. p. gambiensis laboratory colonies displayed similar bacterial diversity indices and OTU distribution. Larval guts displayed a higher diversity when compared with the gastrointestinal tract of adults while no statistically significant differences were observed between testes and ovaries. Wigglesworthia and Sodalis were the most dominant taxa. In more detail, the gastrointestinal tract of adults was more enriched by Wigglesworthia while Sodalis were prominent in gonads. Interestingly, in larval guts a balanced co-existence between Wigglesworthia and Sodalis was observed. Sequences assigned to Wolbachia, Propionibacterium, and Providencia were also detected but to a much lesser degree. Clustering analysis indicated that the bacterial profile in G. p. gambiensis exhibits tissue tropism, hence distinguishing the gut bacterial profile from that present in reproductive organs. Conclusions Our results indicated that age, gender and the origin of the laboratory colonies did not significantly influence the formation of the bacterial profile, once these populations were kept under the same rearing conditions. Within the laboratory populations a tissue tropism was observed between the gut and gonadal bacterial profile. Electronic supplementary material The online version of this article (10.1186/s12866-018-1290-9) contains supplementary material, which is available to authorized users.
Collapse
|
37
|
Demirbas-Uzel G, De Vooght L, Parker AG, Vreysen MJB, Mach RL, Van Den Abbeele J, Abd-Alla AMM. Combining paratransgenesis with SIT: impact of ionizing radiation on the DNA copy number of Sodalis glossinidius in tsetse flies. BMC Microbiol 2018; 18:160. [PMID: 30470179 PMCID: PMC6251162 DOI: 10.1186/s12866-018-1283-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Background Tsetse flies (Diptera: Glossinidae) are the cyclical vectors of the causative agents of African Trypanosomosis, which has been identified as a neglected tropical disease in both humans and animals in many regions of sub-Saharan Africa. The sterile insect technique (SIT) has shown to be a powerful method to manage tsetse fly populations when used in the frame of an area-wide integrated pest management (AW-IPM) program. To date, the release of sterile males to manage tsetse fly populations has only been implemented in areas to reduce transmission of animal African Trypanosomosis (AAT). The implementation of the SIT in areas with Human African Trypanosomosis (HAT) would require additional measures to eliminate the potential risk associated with the release of sterile males that require blood meals to survive and hence, might contribute to disease transmission. Paratransgenesis offers the potential to develop tsetse flies that are refractory to trypanosome infection by modifying their associated bacteria (Sodalis glossinidius) here after referred to as Sodalis. Here we assessed the feasibility of combining the paratransgenesis approach with SIT by analyzing the impact of ionizing radiation on the copy number of Sodalis and the vectorial capacity of sterilized tsetse males. Results Adult Glossina morsitans morsitans that emerged from puparia irradiated on day 22 post larviposition did not show a significant decline in Sodalis copy number as compared with non-irradiated flies. Conversely, the Sodalis copy number was significantly reduced in adults that emerged from puparia irradiated on day 29 post larviposition and in adults irradiated on day 7 post emergence. Moreover, irradiating 22-day old puparia reduced the copy number of Wolbachia and Wigglesworthia in emerged adults as compared with non-irradiated controls, but the radiation treatment had no significant impact on the vectorial competence of the flies. Conclusion Although the radiation treatment significantly reduced the copy number of some tsetse fly symbionts, the copy number of Sodalis recovered with time in flies irradiated as 22-day old puparia. This recovery offers the opportunity to combine a paratransgenesis approach – using modified Sodalis to produce males refractory to trypanosome infection – with the release of sterile males to minimize the risk of disease transmission, especially in HAT endemic areas. Moreover, irradiation did not increase the vector competence of the flies for trypanosomes. Electronic supplementary material The online version of this article (10.1186/s12866-018-1283-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Güler Demirbas-Uzel
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria.,Institute of Chemical, Environmental, and Biological Engineering, Research Area Biochemical Technology, Vienna University of Technology, Gumpendorfer Straße 1a, 1060, Vienna, Austria
| | - Linda De Vooght
- Department of Biomedical Sciences, Unit of Veterinary Protozoology, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium
| | - Andrew G Parker
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Marc J B Vreysen
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria
| | - Robert L Mach
- Department of Biomedical Sciences, Unit of Veterinary Protozoology, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium
| | - Jan Van Den Abbeele
- Department of Biomedical Sciences, Unit of Veterinary Protozoology, Institute of Tropical Medicine Antwerp (ITM), Antwerp, Belgium
| | - Adly M M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna International Centre, P.O. Box 100, 1400, Vienna, Austria.
| |
Collapse
|
38
|
Kame-Ngasse GI, Njiokou F, Melachio-Tanekou TT, Farikou O, Simo G, Geiger A. Prevalence of symbionts and trypanosome infections in tsetse flies of two villages of the "Faro and Déo" division of the Adamawa region of Cameroon. BMC Microbiol 2018; 18:159. [PMID: 30470177 PMCID: PMC6251084 DOI: 10.1186/s12866-018-1286-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Background Tsetse flies are vectors of human and animal African trypanosomiasis. In spite of many decades of chemotherapy and vector control, the disease has not been eradicated. Other methods like the transformation of tsetse fly symbionts to render the fly refractory to trypanosome infection are being evaluated. The aim of the present study was to evaluate the association between trypanosome infections and the presence of symbionts in these tsetse species. Tsetse flies were trapped in two villages of the “Faro and Déo” Division of the Adamawa region of Cameroon. In the field, tsetse fly species were identified and their infection by trypanosomes was checked by microscopy. In the laboratory, DNA was extracted from their midguts and the presence of symbionts (Sodalis glossinidius and Wolbachia sp.) and trypanosomes was checked by PCR. Symbionts/trypanosomes association tests were performed. Results Three tsetse fly species including Glossina tachinoides (90.1%), Glossina morsitans submorsitans (9.4%) and Glossina fuscipes fuscipes (0.5%) were caught. In all the population we obtained an occurrence rate of 37.2% for Sodalis glossinidius and 67.6% for Wolbachia irrespective to tsetse flies species. S. glossinidius and Wolbachia sp. occurrence rates were respectively 37 and 68% for G. tachinoides and 28.6 and 59.5% for G. m. submorsitans. Between Golde Bourle and Mayo Dagoum significant differences were observed in the prevalence of symbionts. Prevalence of trypanosomes were 34.8% for Glossina tachinoides and 40.5% for Glossina morsitans submorsitans. In G. tachinoides, the trypanosome infection rates were 11, 2.6 and 13.7%, respectively, for T. brucei s.l., T. congolense forest type and T. congolense savannah type. In G. m. submorsitans, these infection rates were 16.7, 9.5 and, 2.4% respectively, for T. brucei s.l., T. congolense forest type and T. congolense savannah type. Conclusions The rate of tsetse fly infection by trypanosomes was low compared to those obtained in HAT foci of south Cameroon, and this rate was not statistically linked to the rate of symbiont occurrence. This study allowed to show for the first time the presence of Wolbachia sp. in the tsetse fly sub-species Glossina morsitans submorsitans and Glossina tachinoides.
Collapse
Affiliation(s)
- Ginette Irma Kame-Ngasse
- Laboratory of Parasitology and Ecology, Faculty of Science, Department of Animal Biology and Physiology, University of Yaoundé 1, Yaoundé, Cameroon.
| | - Flobert Njiokou
- Laboratory of Parasitology and Ecology, Faculty of Science, Department of Animal Biology and Physiology, University of Yaoundé 1, Yaoundé, Cameroon.
| | - Tito Trésor Melachio-Tanekou
- Laboratory of Parasitology and Ecology, Faculty of Science, Department of Animal Biology and Physiology, University of Yaoundé 1, Yaoundé, Cameroon
| | - Oumarou Farikou
- Ministry of livestock, Fisheries and Animal Industries, Special Mission for Tsetse Eradication (MSEG), Ngaoundéré, Cameroon
| | - Gustave Simo
- Molecular Parasitology and Entomology Unit, Faculty of Science, Department of Biochemistry, University of Dschang, Dschang, Cameroon
| | - Anne Geiger
- Institut de Recherche pour le Développement (IRD)-CIRAD, UMR 177, Montpellier, France
| |
Collapse
|
39
|
What can a weevil teach a fly, and reciprocally? Interaction of host immune systems with endosymbionts in Glossina and Sitophilus. BMC Microbiol 2018; 18:150. [PMID: 30470176 PMCID: PMC6251153 DOI: 10.1186/s12866-018-1278-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
The tsetse fly (Glossina genus) is the main vector of African trypanosomes, which are protozoan parasites that cause human and animal African trypanosomiases in Sub-Saharan Africa. In the frame of the IAEA/FAO program ‘Enhancing Vector Refractoriness to Trypanosome Infection’, in addition to the tsetse, the cereal weevil Sitophilus has been introduced as a comparative system with regards to immune interactions with endosymbionts. The cereal weevil is an agricultural pest that destroys a significant proportion of cereal stocks worldwide. Tsetse flies are associated with three symbiotic bacteria, the multifunctional obligate Wigglesworthia glossinidia, the facultative commensal Sodalis glossinidius and the parasitic Wolbachia. Cereal weevils house an obligatory nutritional symbiosis with the bacterium Sodalis pierantonius, and occasionally Wolbachia. Studying insect host-symbiont interactions is highly relevant both for understanding the evolution of symbiosis and for envisioning novel pest control strategies. In both insects, the long co-evolution between host and endosymbiont has led to a stringent integration of the host-bacteria partnership. These associations were facilitated by the development of specialized host traits, including symbiont-housing cells called bacteriocytes and specific immune features that enable both tolerance and control of the bacteria. In this review, we compare the tsetse and weevil model systems and compile the latest research findings regarding their biological and ecological similarities, how the immune system controls endosymbiont load and location, and how host-symbiont interactions impact developmental features including cuticle synthesis and immune system maturation. We focus mainly on the interactions between the obligate symbionts and their host’s immune systems, a central theme in both model systems. Finally, we highlight how parallel studies on cereal weevils and tsetse flies led to mutual discoveries and stimulated research on each model, creating a pivotal example of scientific improvement through comparison between relatively distant models.
Collapse
|
40
|
Griffith BC, Weiss BL, Aksoy E, Mireji PO, Auma JE, Wamwiri FN, Echodu R, Murilla G, Aksoy S. Analysis of the gut-specific microbiome from field-captured tsetse flies, and its potential relevance to host trypanosome vector competence. BMC Microbiol 2018; 18:146. [PMID: 30470178 PMCID: PMC6251097 DOI: 10.1186/s12866-018-1284-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Background The tsetse fly (Glossina sp.) midgut is colonized by maternally transmitted and environmentally acquired bacteria. Additionally, the midgut serves as a niche in which pathogenic African trypanosomes reside within infected flies. Tsetse’s bacterial microbiota impacts many aspects of the fly’s physiology. However, little is known about the structure of tsetse’s midgut-associated bacterial communities as they relate to geographically distinct fly habitats in east Africa and their contributions to parasite infection outcomes. We utilized culture dependent and independent methods to characterize the taxonomic structure and density of bacterial communities that reside within the midgut of tsetse flies collected at geographically distinct locations in Kenya and Uganda. Results Using culture dependent methods, we isolated 34 strains of bacteria from four different tsetse species (G. pallidipes, G. brevipalpis, G. fuscipes and G. fuscipleuris) captured at three distinct locations in Kenya. To increase the depth of this study, we deep sequenced midguts from individual uninfected and trypanosome infected G. pallidipes captured at two distinct locations in Kenya and one in Uganda. We found that tsetse’s obligate endosymbiont, Wigglesworthia, was the most abundant bacterium present in the midgut of G. pallidipes, and the density of this bacterium remained largely consistent regardless of whether or not its tsetse host was infected with trypanosomes. These fly populations also housed the commensal symbiont Sodalis, which was found at significantly higher densities in trypanosome infected compared to uninfected flies. Finally, midguts of field-captured G. pallidipes were colonized with distinct, low density communities of environmentally acquired microbes that differed in taxonomic structure depending on parasite infection status and the geographic location from which the flies were collected. Conclusions The results of this study will enhance our understanding of the tripartite relationship between tsetse, its microbiota and trypanosome vector competence. This information may be useful for developing novel disease control strategies or enhancing the efficacy of those already in use. Electronic supplementary material The online version of this article (10.1186/s12866-018-1284-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Bridget C Griffith
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.,Present Address: Division of Epidemiology and Community Health, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| | - Emre Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.,Present Address: Department of Entomology, University of California Riverside, Riverside, CA, USA
| | - Paul O Mireji
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Joana E Auma
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Florence N Wamwiri
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Richard Echodu
- Department of Biology, Faculty of Science, Gulu University, Gulu, Uganda
| | - Grace Murilla
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA.
| |
Collapse
|
41
|
Kariithi HM, Meki IK, Schneider DI, De Vooght L, Khamis FM, Geiger A, Demirbaş-Uzel G, Vlak JM, iNCE IA, Kelm S, Njiokou F, Wamwiri FN, Malele II, Weiss BL, Abd-Alla AMM. Enhancing vector refractoriness to trypanosome infection: achievements, challenges and perspectives. BMC Microbiol 2018; 18:179. [PMID: 30470182 PMCID: PMC6251094 DOI: 10.1186/s12866-018-1280-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
With the absence of effective prophylactic vaccines and drugs against African trypanosomosis, control of this group of zoonotic neglected tropical diseases depends the control of the tsetse fly vector. When applied in an area-wide insect pest management approach, the sterile insect technique (SIT) is effective in eliminating single tsetse species from isolated populations. The need to enhance the effectiveness of SIT led to the concept of investigating tsetse-trypanosome interactions by a consortium of researchers in a five-year (2013-2018) Coordinated Research Project (CRP) organized by the Joint Division of FAO/IAEA. The goal of this CRP was to elucidate tsetse-symbiome-pathogen molecular interactions to improve SIT and SIT-compatible interventions for trypanosomoses control by enhancing vector refractoriness. This would allow extension of SIT into areas with potential disease transmission. This paper highlights the CRP's major achievements and discusses the science-based perspectives for successful mitigation or eradication of African trypanosomosis.
Collapse
Affiliation(s)
- Henry M Kariithi
- Biotechnology Research Institute, Kenya Agricultural & Livestock Research Organization, P.O Box 57811, 00200, Kaptagat Rd, Loresho, Nairobi, Kenya
| | - Irene K Meki
- Insect Pest Control Laboratory, FAO/IAEA Agriculture & Biotechnology Laboratory, IAEA Laboratories Seibersdorf, A-2444 Seibersdorf, Austria
- Laboratory of Virology, Wageningen University and Research, Wageningen, 6708 PB The Netherlands
| | - Daniela I Schneider
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT 06510 USA
| | - Linda De Vooght
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Fathiya M Khamis
- International Centre of Insect Physiology and Ecology, P.O. Box 30772, 00100, Nairobi, Kenya
| | - Anne Geiger
- INTERTRYP, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France
| | - Guler Demirbaş-Uzel
- Insect Pest Control Laboratory, FAO/IAEA Agriculture & Biotechnology Laboratory, IAEA Laboratories Seibersdorf, A-2444 Seibersdorf, Austria
| | - Just M Vlak
- Laboratory of Virology, Wageningen University and Research, Wageningen, 6708 PB The Netherlands
| | - ikbal Agah iNCE
- Institute of Chemical, Environmental & Biological Engineering, Research Area Biochemical Technology, Vienna University of Technology, Gumpendorfer Straße 1a, 1060 Vienna, Austria
| | - Sorge Kelm
- Department of Medical Microbiology, Acıbadem Mehmet Ali Aydınlar University, School of Medicine, 34752, Ataşehir, Istanbul, Turkey
| | - Flobert Njiokou
- Centre for Biomolecular Interactions Bremen, Faculty for Biology & Chemistry, Universität Bremen, Bibliothekstraße 1, 28359 Bremen, Germany
| | - Florence N Wamwiri
- Laboratory of Parasitology and Ecology, Faculty of Sciences, Department of Animal Biology and Physiology, University of Yaoundé 1, Yaoundé, BP 812 Cameroon
| | - Imna I Malele
- Trypanosomiasis Research Centre, Kenya Agricultural & Livestock Research Organization, P.O. Box 362-00902, Kikuyu, Kenya
| | - Brian L Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, 60 College Street, New Haven, CT 06510 USA
| | - Adly M M Abd-Alla
- Molecular Department, Vector and Vector Borne Diseases Institute, Tanzania Veterinary Laboratory Agency, Majani Mapana, Off Korogwe Road, Box, 1026 Tanga, Tanzania
- Insect Pest Control Laboratory, FAO/IAEA Agriculture & Biotechnology Laboratory, IAEA Laboratories Seibersdorf, A-2444 Seibersdorf, Austria
| |
Collapse
|
42
|
Geiger A, Malele I, Abd-Alla AM, Njiokou F. Blood feeding tsetse flies as hosts and vectors of mammals-pre-adapted African Trypanosoma: current and expected research directions. BMC Microbiol 2018; 18:162. [PMID: 30470183 PMCID: PMC6251083 DOI: 10.1186/s12866-018-1281-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Research on the zoo-anthropophilic blood feeding tsetse flies' biology conducted, by different teams, in laboratory settings and at the level of the ecosystems- where also co-perpetuate African Trypanosoma- has allowed to unveil and characterize key features of tsetse flies' bacterial symbionts on which rely both (a) the perpetuation of the tsetse fly populations and (b) the completion of the developmental program of the African Trypanosoma. Transcriptomic analyses have already provided much information on tsetse fly genes as well as on genes of the fly symbiotic partners Sodalis glossinidius and Wigglesworthia, which account for the successful onset or not of the African Trypanosoma developmental program. In parallel, identification of the non- symbiotic bacterial communities hosted in the tsetse fly gut has recently been initiated: are briefly introduced those bacteria genera and species common to tsetse flies collected from distinct ecosystems, that could be further studied as potential biologicals preventing the onset of the African Trypanosoma developmental program. Finally, future work will need to concentrate on how to render tsetse flies refractory, and the best means to disseminate them in the field in order to establish an overall refractory fly population.
Collapse
Affiliation(s)
- Anne Geiger
- INTERTRYP, Institut de Recherche pour le Développement, University of Montpellier, Montpellier, France
| | - Imna Malele
- Vector and Vector Borne Diseases Institute, Majani Mapana, Off Korogwe Road, Box, 1026 Tanga, Tanzania
| | - Adly M Abd-Alla
- Insect Pest Control Laboratory, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Vienna, Austria
| | - Flobert Njiokou
- Faculty of Science, University of Yaoundé I, P.O. Box 812, Yaoundé, Cameroon
| |
Collapse
|
43
|
Jiménez-Cortés JG, García-Contreras R, Bucio-Torres MI, Cabrera-Bravo M, Córdoba-Aguilar A, Benelli G, Salazar-Schettino PM. Bacterial symbionts in human blood-feeding arthropods: Patterns, general mechanisms and effects of global ecological changes. Acta Trop 2018; 186:69-101. [PMID: 30003907 DOI: 10.1016/j.actatropica.2018.07.005] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 07/02/2018] [Accepted: 07/04/2018] [Indexed: 12/12/2022]
Abstract
Due to their high impact on public health, human blood-feeding arthropods are one of the most relevant animal groups. Bacterial symbionts have been long known to play a role in the metabolism, and reproduction of these arthropod vectors. Nowadays, we have a more complete picture of their functions, acknowledging the wide influence of bacterial symbionts on processes ranging from the immune response of the arthropod host to the possible establishment of pathogens and parasites. One or two primary symbiont species have been found to co-evolve along with their host in each taxon (being ticks an exception), leading to various kinds of symbiosis, mostly mutualistic in nature. Moreover, several secondary symbiont species are shared by all arthropod groups. With respect to gut microbiota, several bacterial symbionts genera are hosted in common, indicating that these bacterial groups are prone to invade several hematophagous arthropod species feeding on humans. The main mechanisms underlying bacterium-arthropod symbiosis are discussed, highlighting that even primary symbionts elicit an immune response from the host. Bacterial groups in the gut microbiota play a key role in immune homeostasis, and in some cases symbiont bacteria could be competing directly or indirectly with pathogens and parasites. Finally, the effects climate change, great human migrations, and the increasingly frequent interactions of wild and domestic animal species are analyzed, along with their implications on microbiota alteration and their possible impacts on public health and the control of pathogens and parasites harbored in arthropod vectors of human parasites and pathogens.
Collapse
Affiliation(s)
- J Guillermo Jiménez-Cortés
- Laboratorio de Biología de Parásitos, Facultad de Medicina, Universidad Nacional Autónoma de México, México.
| | - Rodolfo García-Contreras
- Laboratorio de Bacteriología, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - Martha I Bucio-Torres
- Laboratorio de Biología de Parásitos, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - Margarita Cabrera-Bravo
- Laboratorio de Biología de Parásitos, Facultad de Medicina, Universidad Nacional Autónoma de México, México
| | - Alex Córdoba-Aguilar
- Laboratorio de Ecología de la Conducta de Artrópodos, Instituto de Ecología, Universidad Nacional Autónoma de México, México
| | - Giovanni Benelli
- Department of Agriculture, Food and Environment, University of Pisa, via del Borghetto 80, 56124 Pisa, Italy; The BioRobotics Institute, Sant'Anna School of Advanced Studies, viale Rinaldo Piaggio 34, 56025 Pontedera, Pisa, Italy
| | - Paz M Salazar-Schettino
- Laboratorio de Biología de Parásitos, Facultad de Medicina, Universidad Nacional Autónoma de México, México.
| |
Collapse
|
44
|
Kanté Tagueu S, Farikou O, Njiokou F, Simo G. Prevalence of Sodalis glossinidius and different trypanosome species in Glossina palpalis palpalis caught in the Fontem sleeping sickness focus of the southern Cameroon. ACTA ACUST UNITED AC 2018; 25:44. [PMID: 30117802 PMCID: PMC6097038 DOI: 10.1051/parasite/2018044] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 07/21/2018] [Indexed: 01/30/2023]
Abstract
Tsetse flies are the cyclical vector of human and animal African trypanosomiasis. To improve vector control in order to achieve the elimination of human African trypanosomiasis (HAT) and boost the control of animal diseases, investigations have been undertaken on the tripartite association between tsetse, trypanosome, and symbionts. It is in this light that Sodalis glossinidius and different trypanosomes were identified in Glossina palpalis palpalis caught in Fontem in southern Cameroon. For this study, DNA was extracted from whole flies, and S. glossinidius and different trypanosome species were identified by polymerase chain reaction (PCR). Statistical analyses were performed to compare the trypanosome and S. glossinidius infection rates and to look for an association between these microorganisms. Of the 274 G. p. palpalis caught, 3.3% (9/274) were teneral. About 35% (96/274) of these flies harbored S. glossinidius. Of the 265 non-teneral flies, 37.7% were infected by trypanosomes. The infection rates of Trypanosoma congolense “forest type” and Trypanosoma vivax were 26.04% and 18.11%, respectively. About 6.41% of tsetse harbored mixed infections of T. congolense and T. vivax. Of the 69 tsetse with T. congolense infections, 33.33% (23/69) harbored S. glossinidius while 71.86% (69/96) of flies harboring S. glossinidius were not infected by trypanosomes. No association was observed between S. glossinidius and trypanosome infections. Some wild tsetse harbor S. glossinidius and trypanosomes, while others have no infection or are infected by only one of these microorganisms. We conclude that the presence of S. glossinidius does not favor trypanosome infections in G. p. palpalis of the Fontem focus.
Collapse
Affiliation(s)
- Sartrien Kanté Tagueu
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Oumarou Farikou
- Mission Spéciale d'Éradication des Glossines, Division Régionale Tsé-Tsé Adamaoua, B.P. 263 Ngaoundéré, Cameroon
| | - Flobert Njiokou
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Gustave Simo
- Molecular Parasitology and Entomology Unit, Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| |
Collapse
|
45
|
Krafsur ES, Maudlin I. Tsetse fly evolution, genetics and the trypanosomiases - A review. INFECTION GENETICS AND EVOLUTION 2018; 64:185-206. [PMID: 29885477 DOI: 10.1016/j.meegid.2018.05.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/30/2018] [Accepted: 05/31/2018] [Indexed: 01/27/2023]
Abstract
This reviews work published since 2007. Relative efforts devoted to the agents of African trypanosomiasis and their tsetse fly vectors are given by the numbers of PubMed accessions. In the last 10 years PubMed citations number 3457 for Trypanosoma brucei and 769 for Glossina. The development of simple sequence repeats and single nucleotide polymorphisms afford much higher resolution of Glossina and Trypanosoma population structures than heretofore. Even greater resolution is offered by partial and whole genome sequencing. Reproduction in T. brucei sensu lato is principally clonal although genetic recombination in tsetse salivary glands has been demonstrated in T. b. brucei and T. b. rhodesiense but not in T. b. gambiense. In the past decade most genetic attention was given to the chief human African trypanosomiasis vectors in subgenus Nemorhina e.g., Glossina f. fuscipes, G. p. palpalis, and G. p. gambiense. The chief interest in Nemorhina population genetics seemed to be finding vector populations sufficiently isolated to enable efficient and long-lasting suppression. To this end estimates were made of gene flow, derived from FST and its analogues, and Ne, the size of a hypothetical population equivalent to that under study. Genetic drift was greater, gene flow and Ne typically lesser in savannah inhabiting tsetse (subgenus Glossina) than in riverine forms (Nemorhina). Population stabilities were examined by sequential sampling and genotypic analysis of nuclear and mitochondrial genomes in both groups and found to be stable. Gene frequencies estimated in sequential samplings differed by drift and allowed estimates of effective population numbers that were greater for Nemorhina spp than Glossina spp. Prospects are examined of genetic methods of vector control. The tsetse long generation time (c. 50 d) is a major contraindication to any suggested genetic method of tsetse population manipulation. Ecological and modelling research convincingly show that conventional methods of targeted insecticide applications and traps/targets can achieve cost-effective reduction in tsetse densities.
Collapse
Affiliation(s)
- E S Krafsur
- Department of Entomology, Iowa State University, Ames, IA 50011, USA.
| | - Ian Maudlin
- School of Biomedical Sciences, The University of Edinburgh, Scotland, UK
| |
Collapse
|
46
|
Ngomtcho SCH, Weber JS, Ngo Bum E, Gbem TT, Kelm S, Achukwi MD. Molecular screening of tsetse flies and cattle reveal different Trypanosoma species including T. grayi and T. theileri in northern Cameroon. Parasit Vectors 2017; 10:631. [PMID: 29287598 PMCID: PMC5747950 DOI: 10.1186/s13071-017-2540-7] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 11/15/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND African trypanosomes are mainly transmitted through the bite of tsetse flies (Glossina spp.). The present study investigated the occurrence of pathogenic trypanosomes in tsetse flies and cattle in tsetse fly-infested areas of Northern Cameroon. RESULTS Trypanosomes were identified using nested polymerase chain reaction (PCR) analysis of internal transcribed spacer 1 (ITS1) region, both by size estimation and sequencing of PCR products. Apparent density indices recorded in Gamba and Dodeo were 3.1 and 3.6 tsetse flies per trap and day, respectively. Trypanosoma prevalence infection rate for the tsetse fly gut (40%) and proboscis (19%) were recorded. Among the flies where trypanosomes were detected in the gut, 41.7% were positive for T. congolense and 14.6% for T. brucei ssp., whereas in the proboscis 36% harboured T. congolense and 62% contained T. vivax. T. grayi was highly prevalent in tsetse fly gut (58%). The most common mixed infections were the combination of T. congolense and T. grayi. Trypanosome prevalence rate in cattle blood was 6%. Among these, T. vivax represented 26%, T. congolense 35%, T. brucei ssp. 17% and T. theileri 17% of the infections. Surprisingly, in one case T. grayi was found in cattle. The mean packed cell volume (PCV) of cattle positive for trypanosomes was significantly lower (24.1 ± 5.6%; P < 0.05) than that of cattle in which trypanosomes were not detected (27.1 ± 4.9%). Interestingly, the occurrence of T. theileri or T. grayi DNA in cattle also correlated with low PCV at pathological levels. CONCLUSION This molecular epidemiological study of Trypanosoma species in Northern Cameroon revealed active foci of trypanosomes in Dodeo and Gamba. These findings are relevant in assessing the status of trypanosomosis in these regions and will serve as a guide for setting the priorities of the government in the control of the disease.
Collapse
Affiliation(s)
- Sen Claudine Henriette Ngomtcho
- Department of Biological Sciences, University Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon
- Ministry of Public Health, Regional Hospital of Ngaoundéré, Ngaoundéré, Cameroon
- Centre for Biomolecular Interactions Bremen, Department of Biology and Chemistry, University Bremen, 28334 Bremen, Germany
| | - Judith Sophie Weber
- Centre for Biomolecular Interactions Bremen, Department of Biology and Chemistry, University Bremen, 28334 Bremen, Germany
| | - Elisabeth Ngo Bum
- Department of Biological Sciences, University Ngaoundéré, P.O. Box 454, Ngaoundéré, Cameroon
| | - Thaddeus Terlumun Gbem
- Africa Centre of Excellence for Neglected Tropical Diseases and Forensic Biotechnology, Ahmadu Bello University, Zaria, Nigeria
- Department of Biology, Ahmadu Bello University, Zaria, Nigeria
| | - Sørge Kelm
- Centre for Biomolecular Interactions Bremen, Department of Biology and Chemistry, University Bremen, 28334 Bremen, Germany
| | | |
Collapse
|
47
|
Bateta R, Wang J, Wu Y, Weiss BL, Warren WC, Murilla GA, Aksoy S, Mireji PO. Tsetse fly (Glossina pallidipes) midgut responses to Trypanosoma brucei challenge. Parasit Vectors 2017; 10:614. [PMID: 29258576 PMCID: PMC5738168 DOI: 10.1186/s13071-017-2569-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 12/04/2017] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Tsetse flies (Glossina spp.) are the prominent vector of African trypanosome parasites (Trypanosoma spp.) in sub-Saharan Africa, and Glossina pallidipes is the most widely distributed species in Kenya. This species displays strong resistance to infection by parasites, which are typically eliminated in the midgut shortly after acquisition from the mammalian host. Although extensive molecular information on immunity for the related species Glossina morsitans morsitans exists, similar information is scarce for G. pallidipes. METHODS To determine temporal transcriptional responses of G. pallidipes to Trypanosoma brucei brucei challenge, we conducted Illumina based RNA-seq on midgut organ and carcass from teneral females G. pallidipes at 24 and 48 h post-challenge (hpc) with T. b. brucei relative to their respective controls that received normal blood meals (without the parasite). We used a suite of bioinformatics tools to determine differentially expressed and enriched transcripts between and among tissues, and to identify expanded transcripts in G. pallidipes relative to their orthologs G. m. morsitans. RESULTS Midgut transcripts induced at 24 hpc encoded proteins were associated with lipid remodelling, proteolysis, collagen metabolism, apoptosis, and cell growth. Midgut transcripts induced at 48 hpc encoded proteins linked to embryonic growth and development, serine endopeptidases and proteosomal degradation of the target protein, mRNA translation and neuronal development. Temporal expression of immune responsive transcripts at 48 relative to 24 hpc was pronounced, indicative of a gradual induction of host immune responses the following challenge. We also searched for G. m. morsitans orthologous groups that may have experienced expansions in the G. pallidipes genome. We identified ten expanded groups in G. pallidipes with putative immunity-related functions, which may play a role in the higher refractoriness exhibited by this species. CONCLUSIONS There appears to be a lack of strong immune responses elicited by gut epithelia of teneral adults. This in combination with a compromised peritrophic matrix at this stage during the initial phase of T. b. brucei challenge may facilitate the increased parasite infection establishment noted in teneral flies relative to older adults. Although teneral flies are more susceptible than older adults, the majority of tenerals are still able to eliminate parasite infections. Hence, robust responses elicited at a later time point, such as 72 hpc, may clear parasite infections from the majority of flies. The expanded G. m. morsitans orthologous groups in G. pallidipes may also be functionally associated with the enhanced refractoriness to trypanosome infections reported in G. pallidipes relative to G. m. morsitans.
Collapse
Affiliation(s)
- Rosemary Bateta
- Department of Biochemistry, Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 362, Kikuyu, Kenya
- Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Njoro, Kenya
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT USA
| | - Jingwen Wang
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT USA
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, 200433 China
- Ministry of Education Key Laboratory of Contemporary Anthropology, School of Life Sciences, Fudan University, Shanghai, 200433 China
| | - Yineng Wu
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT USA
| | - Brian L. Weiss
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT USA
| | - Wesley C. Warren
- McDonnell Genome Institute, Washington University School of Medicine, 4444 Forest Park Ave., Campus Box 8501, St Louis, MO 63108 USA
| | - Grace A. Murilla
- Department of Biochemistry, Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 362, Kikuyu, Kenya
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT USA
| | - Serap Aksoy
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT USA
| | - Paul O. Mireji
- Department of Biochemistry, Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, P.O. Box 362, Kikuyu, Kenya
- Department of Biochemistry and Molecular Biology, Egerton University, P.O. Box 536, Njoro, Kenya
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT USA
- Centre for Geographic Medicine Research - Coast, Kenya Medical Research Institute, P. O. Box 428-80108, Kilifi, Kenya
| |
Collapse
|
48
|
Jacob F, Melachio TT, Njitchouang GR, Gimonneau G, Njiokou F, Abate L, Christen R, Reveillaud J, Geiger A. Intestinal Bacterial Communities of Trypanosome-Infected and Uninfected Glossina palpalis palpalis from Three Human African Trypanomiasis Foci in Cameroon. Front Microbiol 2017; 8:1464. [PMID: 28824591 PMCID: PMC5541443 DOI: 10.3389/fmicb.2017.01464] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 07/20/2017] [Indexed: 11/27/2022] Open
Abstract
Glossina sp. the tsetse fly that transmits trypanosomes causing the Human or the Animal African Trypanosomiasis (HAT or AAT) can harbor symbiotic bacteria that are known to play a crucial role in the fly's vector competence. We hypothesized that other bacteria could be present, and that some of them could also influence the fly's vector competence. In this context the objectives of our work were: (a) to characterize the bacteria that compose the G. palpalis palpalis midgut bacteriome, (b) to evidence possible bacterial community differences between trypanosome-infected and non-infected fly individuals from a given AAT and HAT focus or from different foci using barcoded Illumina sequencing of the hypervariable V3-V4 region of the 16S rRNA gene. Forty G. p. palpalis flies, either infected by Trypanosoma congolense or uninfected were sampled from three trypanosomiasis foci in Cameroon. A total of 143 OTUs were detected in the midgut samples. Most taxa were identified at the genus level, nearly 50% at the species level; they belonged to 83 genera principally within the phyla Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria. Prominent representatives included Wigglesworthia (the fly's obligate symbiont), Serratia, and Enterobacter hormaechei. Wolbachia was identified for the first time in G. p. palpalis. The average number of bacterial species per tsetse sample was not significantly different regarding the fly infection status, and the hierarchical analysis based on the differences in bacterial community structure did not provide a clear clustering between infected and non-infected flies. Finally, the most important result was the evidence of the overall very large diversity of intestinal bacteria which, except for Wigglesworthia, were unevenly distributed over the sampled flies regardless of their geographic origin and their trypanosome infection status.
Collapse
Affiliation(s)
- Franck Jacob
- UMR INTERTRYP, Institut de Recherche pour le Développement-CIRAD, CIRAD TA A-17/GMontpellier, France
| | - Trésor T Melachio
- Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde 1Yaounde, Cameroon
| | - Guy R Njitchouang
- Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde 1Yaounde, Cameroon
| | - Geoffrey Gimonneau
- UMR INTERTRYP, Institut de Recherche pour le Développement-CIRAD, CIRAD TA A-17/GMontpellier, France
| | - Flobert Njiokou
- Parasitology and Ecology Laboratory, Department of Animal Biology and Physiology, Faculty of Science, University of Yaounde 1Yaounde, Cameroon
| | - Luc Abate
- UMR MIVEGEC, Institut de Recherche pour le Développement 224-Centre National de la Recherche Scientifique 5290Montpellier, France
| | - Richard Christen
- UMR 7138, Systématique Adaptation Evolution, Université de Nice-Sophia AntipolisNice, France
| | - Julie Reveillaud
- Institut National de la Recherche Agronomique, UMR 1309 ASTREMontpellier, France.,CIRAD, UMR ASTREMontpellier, France
| | - Anne Geiger
- UMR INTERTRYP, Institut de Recherche pour le Développement-CIRAD, CIRAD TA A-17/GMontpellier, France
| |
Collapse
|
49
|
Tsagmo Ngoune JM, Njiokou F, Loriod B, Kame-Ngasse G, Fernandez-Nunez N, Rioualen C, van Helden J, Geiger A. Transcriptional Profiling of Midguts Prepared from Trypanosoma/T. congolense-Positive Glossina palpalis palpalis Collected from Two Distinct Cameroonian Foci: Coordinated Signatures of the Midguts' Remodeling As T. congolense-Supportive Niches. Front Immunol 2017; 8:876. [PMID: 28804485 PMCID: PMC5532377 DOI: 10.3389/fimmu.2017.00876] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022] Open
Abstract
Our previous transcriptomic analysis of Glossina palpalis gambiensis experimentally infected or not with Trypanosoma brucei gambiense aimed to detect differentially expressed genes (DEGs) associated with infection. Specifically, we selected candidate genes governing tsetse fly vector competence that could be used in the context of an anti-vector strategy, to control human and/or animal trypanosomiasis. The present study aimed to verify whether gene expression in field tsetse flies (G. p. palpalis) is modified in response to natural infection by trypanosomes (T. congolense), as reported when insectary-raised flies (G. p. gambiensis) are experimentally infected with T. b. gambiense. This was achieved using the RNA-seq approach, which identified 524 DEGs in infected vs. non-infected tsetse flies, including 285 downregulated genes and 239 upregulated genes (identified using DESeq2). Several of these genes were highly differentially expressed, with log2 fold change values in the vicinity of either +40 or −40. Downregulated genes were primarily involved in transcription/translation processes, whereas encoded upregulated genes governed amino acid and nucleotide biosynthesis pathways. The BioCyc metabolic pathways associated with infection also revealed that downregulated genes were mainly involved in fly immunity processes. Importantly, our study demonstrates that data on the molecular cross-talk between the host and the parasite (as well as the always present fly microbiome) recorded from an experimental biological model has a counterpart in field flies, which in turn validates the use of experimental host/parasite couples.
Collapse
Affiliation(s)
- Jean M Tsagmo Ngoune
- Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon.,UMR 177, IRD-CIRAD, CIRAD TA A-17/G, Campus International de Baillarguet, Montpellier, France
| | - Flobert Njiokou
- Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Béatrice Loriod
- Aix-Marseille University, INSERM, TAGC, Technological Advances for Genomics and Clinics, UMR S 1090, Marseille, France
| | | | - Nicolas Fernandez-Nunez
- Aix-Marseille University, INSERM, TAGC, Technological Advances for Genomics and Clinics, UMR S 1090, Marseille, France
| | - Claire Rioualen
- Aix-Marseille University, INSERM, TAGC, Technological Advances for Genomics and Clinics, UMR S 1090, Marseille, France
| | - Jacques van Helden
- Aix-Marseille University, INSERM, TAGC, Technological Advances for Genomics and Clinics, UMR S 1090, Marseille, France
| | - Anne Geiger
- UMR 177, IRD-CIRAD, CIRAD TA A-17/G, Campus International de Baillarguet, Montpellier, France
| |
Collapse
|
50
|
Challenging the Wigglesworthia, Sodalis, Wolbachia symbiosis dogma in tsetse flies: Spiroplasma is present in both laboratory and natural populations. Sci Rep 2017; 7:4699. [PMID: 28680117 PMCID: PMC5498494 DOI: 10.1038/s41598-017-04740-3] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 05/23/2017] [Indexed: 01/09/2023] Open
Abstract
Profiling of wild and laboratory tsetse populations using 16S rRNA gene amplicon sequencing allowed us to examine whether the "Wigglesworthia-Sodalis-Wolbachia dogma" operates across species and populations. The most abundant taxa, in wild and laboratory populations, were Wigglesworthia (the primary endosymbiont), Sodalis and Wolbachia as previously characterized. The species richness of the microbiota was greater in wild than laboratory populations. Spiroplasma was identified as a new symbiont exclusively in Glossina fuscipes fuscipes and G. tachinoides, members of the palpalis sub-group, and the infection prevalence in several laboratory and natural populations was surveyed. Multi locus sequencing typing (MLST) analysis identified two strains of tsetse-associated Spiroplasma, present in G. f. fuscipes and G. tachinoides. Spiroplasma density in G. f. fuscipes larva guts was significantly higher than in guts from teneral and 15-day old male and female adults. In gonads of teneral and 15-day old insects, Spiroplasma density was higher in testes than ovaries, and was significantly higher density in live versus prematurely deceased females indicating a potentially mutualistic association. Higher Spiroplasma density in testes than in ovaries was also detected by fluorescent in situ hybridization in G. f. fuscipes.
Collapse
|