1
|
Pazmiño FA, Parra-Muñoz M, Saavedra CH, Muvdi-Arenas S, Ovalle-Bracho C, Echeverry MC. Mucosal leishmaniasis is associated with the Leishmania RNA virus and inappropriate cutaneous leishmaniasis treatment. PLoS One 2025; 20:e0317221. [PMID: 39854299 PMCID: PMC11759362 DOI: 10.1371/journal.pone.0317221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/23/2024] [Indexed: 01/26/2025] Open
Abstract
BACKGROUND Mucosal leishmaniasis (ML) is a severe clinical form of leishmaniasis that is characterized by the destruction of the nasal and/or the oral mucosae and appears as a late complication in 5% to 10% of cutaneous leishmaniasis (CL) cases produced by species belonging to Leishmania (Viannia) subgenus. Some strains of Leishmania spp. carry an RNA virus known as Leishmania RNA virus (LRV) that may contribute to the appearance of ML. METHODS To examine the role of LRV type 1 (LRV1) as a risk factor associated with ML, a retrospective case-control study involving 103 patients was conducted. Cases were defined as patients with ML (n = 33), and controls corresponded to patients with CL and without mucosal lesions (n = 70). Clinical data were recorded from the patient's medical records. Cryopreserved biopsies were used to detect LRV1 and identify Leishmania species. RESULTS The frequency of LRV1 in the 103 patients was 16.5% (95% CI,10.4-25.12) being higher in samples from cases [33.33% (95% CI,18.89-51.76) than from controls [8.57% (95% CI, 3.82-18.10)]. L. (V.) braziliensis was identified in 63.6% of cases and 55.7% of the controls. Multivariate logistic regression indicated that infection with Leishmania spp. carrying LRV1 (OR = 6.30; 95% CI,1.52-26.10, p = 0.011) acts as risk factors for ML occurrence, while the completed treatment for the cutaneous event decreases the risk of ML (OR = 0.039; 95% CI, 0.01-0.12, p < 0.0001). CONCLUSIONS Our data support the association between LRV1 and ML occurrence and emphasize the effect of completed treatment for CL in preventing ML.
Collapse
Affiliation(s)
- Fredy A. Pazmiño
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Marcela Parra-Muñoz
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Carlos H. Saavedra
- Departamento de Medicina, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Sandra Muvdi-Arenas
- Hospital Universitario Centro Dermatológico Federico Lleras Acosta, Bogotá, Colombia
| | | | - María C. Echeverry
- Departamento de Salud Pública, Facultad de Medicina, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
2
|
Bento GA, Cardoso MS, Rodrigues-Ferreira B, Rodrigues-Luiz GF, Rodrigues TDS, Gontijo CMF, Sant'Anna MRV, Valdivia HO, Mesquita SG, Bartholomeu DC. Development of species-specific multiplex PCR for Leishmania identification. Acta Trop 2024; 260:107440. [PMID: 39447953 DOI: 10.1016/j.actatropica.2024.107440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 10/18/2024] [Accepted: 10/21/2024] [Indexed: 10/26/2024]
Abstract
Leishmaniasis is a diverse group of clinical diseases caused by protozoan parasites of the Leishmania genus. Species-specific identification of Leishmania spp. is challenging due to the high number of different pathogenic species that sometimes co-circulate in the same foci, hampering efforts to effectively control the disease. Multiplex PCR is an attractive alternative for rapid differentiation of Leishmania species with high sensitivity and specificity. We aimed to generate a panel of primers optimized for a multiplex PCR assay capable of identifying different Leishmania species in a single reaction. Species-specific primers were designed based on genomic data using the TipMT tooL. Potential non-specific amplifications of other trypanosomatids as well as human, dog, and sandfly hosts were first evaluated in silico using the Primer-Blast tooL. Species-specific primers for Leishmania amazonensis, Leishmania braziliensis, Leishmania donovani, Leishmania infantum, Leishmania mexicana and for the Leishmania guyanensis complex were tested in vitro. The primers have a limit of detection ranging from 1 to 0.01 ng of parasite gDNA using the same annealing temperature of 66 °C. The primers were specific for their targets when tested against 13 species of Leishmania, six trypanosomatids, and Babesia sp., and to detect the target species in a prepared pool with gDNA of six pathogenic Leishmania species. The designed primers were optimized for multiplex PCR, enabling species-specific identification of all five Leishmania species and one species complex. This new primer set could allow for efficient, fast, and reliable identification of Leishmania parasites.
Collapse
Affiliation(s)
- Gabrielle A Bento
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brasil
| | - Mariana S Cardoso
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brasil
| | - Beatriz Rodrigues-Ferreira
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brasil
| | - Gabriela F Rodrigues-Luiz
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brasil
| | - Thiago de S Rodrigues
- Departamento de Computação, Centro Federal de Educação Tecnológica de Minas Gerais, Belo Horizonte, Minas Gerais, Brasil
| | - Célia M F Gontijo
- Instituto René Rachou /IRR- Fiocruz Minas, Belo Horizonte, Minas Gerais 30190-002, Brasil
| | - Maurício Roberto Viana Sant'Anna
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brasil
| | - Hugo O Valdivia
- Department of Parasitology, U.S. Naval Medical Research Unit SOUTH (NAMRU SOUTH), Lima, Peru
| | - Silvia Gonçalves Mesquita
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brasil
| | - Daniella C Bartholomeu
- Departamento de Parasitologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brasil.
| |
Collapse
|
3
|
de Melo LV, Vasconcelos Dos Santos T, Ramos PK, Lima LV, Campos MB, Silveira FT. Antigenic reactivity of Leishmania (Viannia) lainsoni axenic amastigote proved to be a suitable alternative for optimizing Montenegro skin test. Parasit Vectors 2024; 17:402. [PMID: 39334233 PMCID: PMC11438107 DOI: 10.1186/s13071-024-06486-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 09/04/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND Laboratory diagnosis of American cutaneous leishmaniasis (ACL) requires a tool amenable to the epidemiological status of ACL in Brazil. Montenegro skin test (MST), an efficient immunological tool used for laboratory diagnosis of ACL, induces delayed-type hypersensitivity (DTH) response to the promastigote antigens of Leishmania; however, human immune responses against infection are modulated by the amastigote of the parasite. Leishmania (V.) lainsoni induces strong cellular immunity in humans; therefore, the antigenic reactivity of its axenic amastigote (AMA antigen) to MST was evaluated for the laboratory diagnosis of ACL. METHODS Among 70 individuals examined, 60 had a laboratory-confirmed diagnosis of ACL; 53 had localized cutaneous leishmaniasis (LCL), and 7 had mucosal leishmaniasis (ML). Patients were treated at the Evandro Chagas Institute's leishmaniasis clinic, Pará State, Brazil. Ten healthy individuals with no history of ACL (control group) were also examined. Leishmania (V.) braziliensis promastigote antigen (PRO) was used to compare the reactivity with that of AMA antigen. Paired Student's t-test, kappa agreement, and Spearman test were used to evaluate the reactivity of AMA and PRO. RESULTS The mean reactivity of AMA in ACL patients was 19.4 mm ± 13.3, which was higher (P < 0.001) than that of PRO: 12.1 mm ± 8.1. MST reactivity according to the clinical forms revealed that AMA reactivity in LCL and ML, 18.8 mm ± 13.3 and 24.3 mm ± 13.7, was higher (P < 0.001) than that of PRO, 11.8 mm ± 8.2 and 14.6 mm ± 8.4, respectively. CONCLUSION AMA reactivity was higher than that of PRO, indicating that AMA is a promising alternative for optimizing MST in the laboratory diagnosis of ACL.
Collapse
Affiliation(s)
- Leonardo Viana de Melo
- Parasitology Department, Evandro Chagas Institute (Surveillance Secretary of Health and Environment, Ministry of Health), Ananindeua, Pará, Brazil
| | - Thiago Vasconcelos Dos Santos
- Parasitology Department, Evandro Chagas Institute (Surveillance Secretary of Health and Environment, Ministry of Health), Ananindeua, Pará, Brazil
| | - Patrícia Karla Ramos
- Parasitology Department, Evandro Chagas Institute (Surveillance Secretary of Health and Environment, Ministry of Health), Ananindeua, Pará, Brazil
| | - Luciana Vieira Lima
- Parasitology Department, Evandro Chagas Institute (Surveillance Secretary of Health and Environment, Ministry of Health), Ananindeua, Pará, Brazil
| | - Marliane Batista Campos
- Parasitology Department, Evandro Chagas Institute (Surveillance Secretary of Health and Environment, Ministry of Health), Ananindeua, Pará, Brazil
| | - Fernando Tobias Silveira
- Parasitology Department, Evandro Chagas Institute (Surveillance Secretary of Health and Environment, Ministry of Health), Ananindeua, Pará, Brazil.
- Tropical Medicine Nucleus, Federal University of Pará, Belém, Pará, Brazil.
| |
Collapse
|
4
|
Xiong Y, Li D, Liu T, Xiong Y, Yu Q, Lei X, Zhao J, Yan L, Ma X. Extensive transcriptome data providing great efficacy in genetic research and adaptive gene discovery: a case study of Elymus sibiricus L. (Poaceae, Triticeae). FRONTIERS IN PLANT SCIENCE 2024; 15:1457980. [PMID: 39363927 PMCID: PMC11447521 DOI: 10.3389/fpls.2024.1457980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 09/02/2024] [Indexed: 10/05/2024]
Abstract
Genetic markers play a central role in understanding genetic diversity, speciation, evolutionary processes, and how species respond to environmental stresses. However, conventional molecular markers are less effective when studying polyploid species with large genomes. In this study, we compared gene expression levels in 101 accessions of Elymus sibiricus, a widely distributed allotetraploid forage species across the Eurasian continent. A total of 20,273 high quality transcriptomic SNPs were identified. In addition, 72,344 evolutionary information loci of these accessions of E. sibiricus were identified using genome skimming data in conjunction with the assembled composite genome. The population structure results suggest that transcriptome SNPs were more effective than SNPs derived from genome skimming data in revealing the population structure of E. sibiricus from different locations, and also outperformed gene expression levels. Compared with transcriptome SNPs, the investigation of population-specifically-expressed genes (PSEGs) using expression levels revealed a larger number of locally adapted genes mainly involved in the ion response process in the Sichuan, Inner Mongolia, and Xizang geographical groups. Furthermore, we performed the weighted gene co-expression network analysis (WGCNA) and successfully identified potential regulators of PSEGs. Therefore, for species lacking genomic information, the use of transcriptome SNPs is an efficient approach to perform population structure analysis. In addition, analyzing genes under selection through nucleotide diversity and genetic differentiation index analysis based on transcriptome SNPs, and exploring PSEG through expression levels is an effective method for analyzing locally adaptive genes.
Collapse
Affiliation(s)
- Yanli Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Daxu Li
- Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, China
| | - Tianqi Liu
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Yi Xiong
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Qingqing Yu
- Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, China
| | - Xiong Lei
- Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, China
| | - Junming Zhao
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| | - Lijun Yan
- Sichuan Academy of Grassland Sciences, Chengdu, Sichuan, China
| | - Xiao Ma
- College of Grassland Science and Technology, Sichuan Agricultural University, Chengdu, Sichuan, China
| |
Collapse
|
5
|
Promrangsee C, Sriswasdi S, Sunantaraporn S, Savigamin C, Pataradool T, Sricharoensuk C, Boonserm R, Ampol R, Pruenglampoo P, Mungthin M, Schmidt-Chanasit J, Siriyasatien P, Preativatanyou K. Seasonal dynamics, Leishmania diversity, and nanopore-based metabarcoding of blood meal origins in Culicoides spp. in the newly emerging focus of leishmaniasis in Northern Thailand. Parasit Vectors 2024; 17:400. [PMID: 39300564 DOI: 10.1186/s13071-024-06487-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Accepted: 09/04/2024] [Indexed: 09/22/2024] Open
Abstract
BACKGROUND Clinical cases of leishmaniasis caused by Leishmania (Mundinia) parasites have been increasingly reported in Southeast Asia, particularly Thailand. Recent evidence has shown that Leishmania (Mundinia) parasites successfully developed into infective metacyclic promastigotes in Culicoides biting midges, strongly supporting their putative role in disease transmission. However, Culicoides diversity, host preference, and Leishmania prevalence in endemic areas remain largely unknown. METHODS We investigated the seasonal dynamics, infection prevalence, and blood meal identification of Culicoides collected from the emerging focus of visceral leishmaniasis in Lampang Province, Northern Thailand, during 2021-2023. Midge samples were molecularly screened for Leishmania using SSU rRNA-qPCR and ITS1-PCR, followed by Sanger plasmid sequencing, and parasite haplotype diversity was analyzed. Host blood meal origins were comparatively identified using host-specific Cytb-PCRs and a nanopore-based metabarcoding approach. RESULTS A total of 501 parous and gravid females and 46 blood-engorged ones belonging to at least 17 species of five subgenera (Remmia, Trithecoides, Avaritia, Hoffmania, and Meijerehelea) and two species groups (Shortti and Calvipalpis) were collected with temporal differences in abundance. Leishmania was detected by SSU rRNA-qPCR in 31 samples of at least 11 midge species, consisting of Culicoides oxystoma, C. guttifer, C. orientalis, C. mahasarakhamense, C (Trithecoides) spp., C. innoxius, C. shortti, C. arakawae, C. sumatrae, C. actoni, and C. fulvus, with the overall infection prevalence of 5.7%. The latter six species represent the new records as putative leishmaniasis vectors in Northern Thailand. The ITS1-PCR and plasmid sequencing revealed that Leishmania martiniquensis was predominantly identified in all qPCR-positive species, whereas L. orientalis was identified only in three C. oxystoma samples. The most dominant haplotype of L. martiniquensis in Thailand was genetically intermixed with those from other geographical regions, confirming its globalization. Neutrality test statistics were also significantly negative on regional and country-wide scales, suggesting rapid population expansion or selective sweeps. Nanopore-based blood meal analysis revealed that most Culicoides species are mammalophilic, with peridomestic and wild mammals (cow, pig, deer, and goat-like species) and humans as hosts, while C. guttifer and C. mahasarakhamense fed preferentially on chickens. CONCLUSIONS This study revealed seasonal dynamics and sympatric circulation of L. martiniquensis and L. orientalis in different species of Culicoides. Evidence of human blood feeding was also demonstrated, implicating Culicoides as putative vectors of human leishmaniasis in endemic areas. Further research is therefore urgently needed to develop vector control strategies and assess the infection status of their reservoir hosts to effectively minimize disease transmission.
Collapse
Affiliation(s)
- Chulaluk Promrangsee
- Interdisciplinary Program of Biomedical Sciences, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Sira Sriswasdi
- Center of Excellence in Computational Molecular Biology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center for Artificial Intelligence in Medicine, Research Affairs, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Department of Integrated Biosciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Sakone Sunantaraporn
- Center of Excellence in Vector Biology and Vector-Borne Disease, Chulalongkorn University, Bangkok, Thailand
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Chatuthanai Savigamin
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Thanapat Pataradool
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | | | - Rungfar Boonserm
- Center of Excellence in Vector Biology and Vector-Borne Disease, Chulalongkorn University, Bangkok, Thailand
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Rinnara Ampol
- Center of Excellence in Vector Biology and Vector-Borne Disease, Chulalongkorn University, Bangkok, Thailand
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pitchayaporn Pruenglampoo
- Division of Medical Technical and Academic Affairs, Department of Medical Services, Ministry of Public Health, Nonthaburi, Thailand
| | - Mathirut Mungthin
- Department of Parasitology, Phramongkutklao College of Medicine, Bangkok, Thailand
| | - Jonas Schmidt-Chanasit
- Bernhard-Nocht-Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, Hamburg, Germany
- Faculty of Mathematics, Informatics and Natural Sciences, Universität Hamburg, Hamburg, Germany
| | - Padet Siriyasatien
- Center of Excellence in Vector Biology and Vector-Borne Disease, Chulalongkorn University, Bangkok, Thailand
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Kanok Preativatanyou
- Center of Excellence in Vector Biology and Vector-Borne Disease, Chulalongkorn University, Bangkok, Thailand.
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
6
|
Naz S, Nalcaci M, Hayat O, Toz S, Minhas A, Waseem S, Ozbel Y. Genetic diversity and epidemiological insights into cutaneous leishmaniasis in Pakistan: a comprehensive study on clinical manifestations and molecular characterization of Leishmania species. Parasitol Res 2024; 123:320. [PMID: 39254766 DOI: 10.1007/s00436-024-08344-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 09/03/2024] [Indexed: 09/11/2024]
Abstract
Cutaneous leishmaniasis (CL) stands out as a significant vector-borne endemic in Pakistan. Despite the rising incidence of CL, the genetic diversity of Leishmania species in the country's endemic regions remains insufficiently explored. This study aims to uncover the genetic diversity and molecular characteristics of Leishmania species in CL-endemic areas of Baluchistan, Khyber Pakhtunkhwa (KPK), and Punjab in Pakistan. Clinical samples from 300 CL patients were put to microscopic examination, real-time ITS-1 PCR, and sequencing. Predominantly affecting males between 16 to 30 years of age, with lesions primarily on hands and faces, the majority presented with nodular and plaque types. Microscopic analysis revealed a positivity rate of 67.8%, while real-time PCR identified 60.98% positive cases, mainly L. tropica, followed by L. infantum and L. major. Leishmania major (p = 0.009) showed substantially greater variation in nucleotide sequences than L. tropica (p = 0.07) and L. infantum (p = 0.03). Nucleotide diversity analysis indicated higher diversity in L. major and L. infantum compared to L. tropica. This study enhances our understanding of CL epidemiology in Pakistan, stressing the crucial role of molecular techniques in accurate species identification. The foundational data provided here emphasizes the necessity for future research to investigate deeper into genetic diversity and its implications for CL control at both individual and community levels.
Collapse
Affiliation(s)
- Shumaila Naz
- Department of Biological Sciences, National University of Medical Sciences, Rawalpindi, Pakistan.
| | - Muhammed Nalcaci
- Department of Parasitology, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey
| | - Obaid Hayat
- Department of Biotechnology, Faculty of Chemical and Life Sciences, Abdul Wali Khan University, Mardan, 23200, Pakistan
| | - Seray Toz
- Department of Parasitology, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey
| | - Azhar Minhas
- Department of Dermatology, Combined Military Hospital (CMH), Quetta, 87300, Pakistan
| | | | - Yusuf Ozbel
- Department of Parasitology, Faculty of Medicine, Ege University, Bornova, Izmir, Turkey
| |
Collapse
|
7
|
Tullume-Vergara PO, Caicedo KYO, Tantalean JFC, Serrano MG, Buck GA, Teixeira MMG, Shaw JJ, Alves JMP. Genomes of Endotrypanum monterogeii from Panama and Zelonia costaricensis from Brazil: Expansion of Multigene Families in Leishmaniinae Parasites That Are Close Relatives of Leishmania spp. Pathogens 2023; 12:1409. [PMID: 38133293 PMCID: PMC10747355 DOI: 10.3390/pathogens12121409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 11/10/2023] [Accepted: 11/24/2023] [Indexed: 12/23/2023] Open
Abstract
The Leishmaniinae subfamily of the Trypanosomatidae contains both genus Zelonia (monoxenous) and Endotrypanum (dixenous). They are amongst the nearest known relatives of Leishmania, which comprises many human pathogens widespread in the developing world. These closely related lineages are models for the genomic biology of monoxenous and dixenous parasites. Herein, we used comparative genomics to identify the orthologous groups (OGs) shared among 26 Leishmaniinae species to investigate gene family expansion/contraction and applied two phylogenomic approaches to confirm relationships within the subfamily. The Endotrypanum monterogeii and Zelonia costaricensis genomes were assembled, with sizes of 29.9 Mb and 38.0 Mb and 9.711 and 12.201 predicted protein-coding genes, respectively. The genome of E. monterogeii displayed a higher number of multicopy cell surface protein families, including glycoprotein 63 and glycoprotein 46, compared to Leishmania spp. The genome of Z. costaricensis presents expansions of BT1 and amino acid transporters and proteins containing leucine-rich repeat domains, as well as a loss of ABC-type transporters. In total, 415 and 85 lineage-specific OGs were identified in Z. costaricensis and E. monterogeii. The evolutionary relationships within the subfamily were confirmed using the supermatrix (3384 protein-coding genes) and supertree methods. Overall, this study showed new expansions of multigene families in monoxenous and dixenous parasites of the subfamily Leishmaniinae.
Collapse
Affiliation(s)
- Percy O. Tullume-Vergara
- Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, Sao Paulo 05508-000, SP, Brazil; (P.O.T.-V.); (K.Y.O.C.); (J.F.C.T.); (M.M.G.T.); (J.J.S.)
| | - Kelly Y. O. Caicedo
- Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, Sao Paulo 05508-000, SP, Brazil; (P.O.T.-V.); (K.Y.O.C.); (J.F.C.T.); (M.M.G.T.); (J.J.S.)
| | - Jose F. C. Tantalean
- Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, Sao Paulo 05508-000, SP, Brazil; (P.O.T.-V.); (K.Y.O.C.); (J.F.C.T.); (M.M.G.T.); (J.J.S.)
| | - Myrna G. Serrano
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, 1101 E Marshall St., Richmond, VA 23298, USA; (M.G.S.); (G.A.B.)
| | - Gregory A. Buck
- Department of Microbiology and Immunology, Virginia Commonwealth University School of Medicine, 1101 E Marshall St., Richmond, VA 23298, USA; (M.G.S.); (G.A.B.)
| | - Marta M. G. Teixeira
- Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, Sao Paulo 05508-000, SP, Brazil; (P.O.T.-V.); (K.Y.O.C.); (J.F.C.T.); (M.M.G.T.); (J.J.S.)
| | - Jeffrey J. Shaw
- Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, Sao Paulo 05508-000, SP, Brazil; (P.O.T.-V.); (K.Y.O.C.); (J.F.C.T.); (M.M.G.T.); (J.J.S.)
| | - Joao M. P. Alves
- Department of Parasitology, Institute for Biomedical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes, 1374, Sao Paulo 05508-000, SP, Brazil; (P.O.T.-V.); (K.Y.O.C.); (J.F.C.T.); (M.M.G.T.); (J.J.S.)
| |
Collapse
|
8
|
Riyal H, Ferreira TR, Paun A, Ghosh K, Samaranayake N, Sacks DL, Karunaweera ND. First evidence of experimental genetic hybridization between cutaneous and visceral strains of Leishmania donovani within its natural vector Phlebotomus argentipes. Acta Trop 2023; 245:106979. [PMID: 37391025 PMCID: PMC11332911 DOI: 10.1016/j.actatropica.2023.106979] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/25/2023] [Accepted: 06/26/2023] [Indexed: 07/02/2023]
Abstract
Leishmaniasis is a neglected tropical disease caused by protozoan parasites of genus Leishmania, and transmitted by different species of Phlebotomine sand flies. More than 20 species of Leishmania are known to cause disease in humans and other animals. Leishmania donovani species complex is known to have a vast diversity of clinical manifestations in humans, but underlying mechanisms for such diversity are yet unknown. Long believed to be strictly asexual, Leishmania have been shown to undergo a cryptic sexual cycle inside its sandfly vector. Natural populations of hybrid parasites have been associated with the rise of atypical clinical outcomes in the Indian subcontinent (ISC). However, formal demonstration of genetic crossing in the major endemic sandfly species in the ISC remain unexplored. Here, we investigated the ability of two distinct variants of L. donovani associated with strikingly different forms of the disease to undergo genetic exchange inside its natural vector, Phlebotomus argentipes. Clinical isolates of L. donovani either from a Sri Lankan cutaneous leishmaniasis (CL) patient or an Indian visceral leishmaniasis (VL) patient were genetically engineered to express different fluorescent proteins and drug-resistance markers and subsequently used as parental strains in experimental sandfly co-infection. After 8 days of infection, sand flies were dissected and midgut promastigotes were transferred into double drug-selective media. Two double drug-resistant, dual fluorescent hybrid cell lines were recovered, which after cloning and whole genome sequencing, were shown to be full genomic hybrids. This study provides the first evidence of L. donovani hybridization within its natural vector Ph. argentipes.
Collapse
Affiliation(s)
- Hasna Riyal
- Department of Parasitology, Faculty of Medicine, University of Colombo, Sri Lanka
| | - Tiago R Ferreira
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Andrea Paun
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kashinath Ghosh
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA
| | | | - David L Sacks
- Laboratory of Parasitic Diseases, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, MD, USA.
| | - Nadira D Karunaweera
- Department of Parasitology, Faculty of Medicine, University of Colombo, Sri Lanka.
| |
Collapse
|
9
|
Kwakye-Nuako G, Mosore MT, Boakye D, Bates PA. DESCRIPTION, BIOLOGY, AND MEDICAL SIGNIFICANCE OF LEISHMANIA (MUNDINIA) CHANCEI N. SP. (KINETOPLASTEA: TRYPANOSOMATIDAE) FROM GHANA AND LEISHMANIA (MUNDINIA) PROCAVIENSIS N. SP. (KINETOPLASTEA: TRYPANOSOMATIDAE) FROM NAMIBIA. J Parasitol 2023; 109:43-50. [PMID: 36848641 DOI: 10.1645/22-53] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2023] Open
Abstract
Genetic and phylogenetic analysis was performed on 2 isolates of Leishmania using DNA sequence data from the RNA polymerase II large subunit gene and the ribosomal protein L23a intergenic sequence. This showed the isolates to represent 2 new species within the subgenus Leishmania (Mundinia). The addition of Leishmania (Mundinia) chancei and Leishmania (Mundinia) procaviensis creates a total of 6 named species to date within this recently described subgenus of parasitic protozoa, containing both human pathogens and nonpathogens. Their widespread geographical distribution, basal phylogenetic position within the genus Leishmania, and probable non-sand fly vectors make these L. (Mundinia) species of significant medical and biological interest.
Collapse
Affiliation(s)
- Godwin Kwakye-Nuako
- Department of Biomedical Sciences, University of Cape Coast, Cape Coast, Ghana
| | | | - Daniel Boakye
- Noguchi Memorial Institute for Medical Research, University of Ghana, Accra, Ghana
| | - Paul A Bates
- Division of Biomedical and Life Sciences, Lancaster University, Lancaster, LA1 4YW, U.K
| |
Collapse
|
10
|
Comparative Genomic Analyses of New and Old World Viscerotropic Leishmanine Parasites: Further Insights into the Origins of Visceral Leishmaniasis Agents. Microorganisms 2022; 11:microorganisms11010025. [PMID: 36677318 PMCID: PMC9865424 DOI: 10.3390/microorganisms11010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/05/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Visceral leishmaniasis (VL), also known as kala-azar, is an anthropozoonotic disease affecting human populations on five continents. Aetiologic agents belong to the Leishmania (L.) donovani complex. Until the 1990s, three leishmanine parasites comprised this complex: L. (L.) donovani Laveran & Mesnil 1903, L. (L.) infantum Nicolle 1908, and L. (L.) chagasi Lainson & Shaw 1987 (=L. chagasi Cunha & Chagas 1937). The VL causal agent in the New World (NW) was previously identified as L. (L.) chagasi. After the development of molecular characterization, however, comparisons between L. (L.) chagasi and L. (L.) infantum showed high similarity, and L. (L.) chagasi was then regarded as synonymous with L. (L.) infantum. It was, therefore, suggested that L. (L.) chagasi was not native to the NW but had been introduced from the Old World by Iberian colonizers. However, in light of ecological evidence from the NW parasite’s enzootic cycle involving a wild phlebotomine vector (Lutzomyia longipalpis) and a wild mammal reservoir (the fox, Cerdocyon thous), we have recently analyzed by molecular clock comparisons of the DNA polymerase alpha subunit gene the whole-genome sequence of L. (L.) infantum chagasi of the most prevalent clinical form, atypical dermal leishmaniasis (ADL), from Honduras (Central America) with that of the same parasite from Brazil (South America), as well as those of L. (L.) donovani (India) and L. (L.) infantum (Europe), which revealed that the Honduran parasite is older ancestry (382,800 ya) than the parasite from Brazil (143,300 ya), L. (L.) donovani (33,776 ya), or L. (L.) infantum (13,000 ya). In the present work, we have now amplified the genomic comparisons among these leishmanine parasites, exploring mainly the variations in the genome for each chromosome, and the number of genomic SNPs for each chromosome. Although the results of this new analysis have confirmed a high genomic similarity (~99%) among these parasites [except L. (L.) donovani], the Honduran parasite revealed a single structural variation on chromosome 17, and the highest frequency of genomic SNPs (more than twice the number seen in the Brazilian one), which together to its extraordinary ancestry (382,800 ya) represent strong evidence that L. (L.) chagasi/L. (L.) infantum chagasi is, in fact, native to the NW, and therefore with valid taxonomic status. Furthermore, the Honduran parasite, the most ancestral viscerotropic leishmanine parasite, showed genomic and clinical taxonomic characteristics compatible with a new Leishmania species causing ADL in Central America.
Collapse
|
11
|
Mendoza‐Roldan JA, Votýpka J, Bandi C, Epis S, Modrý D, Tichá L, Volf P, Otranto D. Leishmania tarentolae: A new frontier in the epidemiology and control of the leishmaniases. Transbound Emerg Dis 2022; 69:e1326-e1337. [PMID: 35839512 PMCID: PMC9804434 DOI: 10.1111/tbed.14660] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 06/22/2022] [Accepted: 07/11/2022] [Indexed: 01/05/2023]
Abstract
Leishmaniasis (or the leishmaniases), classified as a neglected tropical parasitic disease, is found in parts of the tropics, subtropics and southern Europe. Leishmania parasites are transmitted by the bite of phlebotomine sand flies and million cases of human infection occur annually. Leishmania tarentolae has been historically considered a non-pathogenic protozoan of reptiles, which has been studied mainly for its potential biotechnological applications. However, some strains of L. tarentolae appear to be transiently infective to mammals. In areas where leishmaniasis is endemic, recent molecular diagnostics and serological positivity to L. tarentolae in humans and dogs have spurred interest in the interactions between these mammalian hosts, reptiles and Leishmania infantum, the main aetiologic agent of human and canine leishmaniasis. In this review, we discuss the systematics and biology of L. tarentolae in the insect vectors and the vertebrate hosts and address questions about evolution of reptilian leishmaniae. Furthermore, we discuss the possible usefulness of L. tarentolae for new vaccination strategies.
Collapse
Affiliation(s)
| | - Jan Votýpka
- Department of Parasitology, Faculty of ScienceCharles UniversityPragueCzech Republic,Biology Centre, Institute of ParasitologyCzech Academy of SciencesČeské BudějoviceCzech Republic
| | - Claudio Bandi
- Department of Biosciences and Pediatric CRC “Romeo ed Enrica Invernizzi”University of MilanMilanItaly
| | - Sara Epis
- Department of Biosciences and Pediatric CRC “Romeo ed Enrica Invernizzi”University of MilanMilanItaly
| | - David Modrý
- Biology Centre, Institute of ParasitologyCzech Academy of SciencesČeské BudějoviceCzech Republic,Department of Botany and Zoology, Faculty of ScienceMasaryk UniversityBrnoCzech Republic,Department of Veterinary Sciences, Faculty of Agrobiology, Food and Natural ResourcesCzech University of Life SciencesPragueCzech Republic
| | - Lucie Tichá
- Department of Parasitology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Domenico Otranto
- Department of Veterinary MedicineUniversity of BariValenzanoItaly,Department of Pathobiology, Faculty of Veterinary ScienceBu‐Ali Sina UniversityHamedanIran
| |
Collapse
|
12
|
Zakharova A, Albanaz ATS, Opperdoes FR, Škodová-Sveráková I, Zagirova D, Saura A, Chmelová L, Gerasimov ES, Leštinová T, Bečvář T, Sádlová J, Volf P, Lukeš J, Horváth A, Butenko A, Yurchenko V. Leishmania guyanensis M4147 as a new LRV1-bearing model parasite: Phosphatidate phosphatase 2-like protein controls cell cycle progression and intracellular lipid content. PLoS Negl Trop Dis 2022; 16:e0010510. [PMID: 35749562 PMCID: PMC9232130 DOI: 10.1371/journal.pntd.0010510] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
Leishmaniasis is a parasitic vector-borne disease caused by the protistan flagellates of the genus Leishmania. Leishmania (Viannia) guyanensis is one of the most common causative agents of the American tegumentary leishmaniasis. It has previously been shown that L. guyanensis strains that carry the endosymbiotic Leishmania RNA virus 1 (LRV1) cause more severe form of the disease in a mouse model than those that do not. The presence of the virus was implicated into the parasite's replication and spreading. In this respect, studying the molecular mechanisms of cellular control of viral infection is of great medical importance. Here, we report ~30.5 Mb high-quality genome assembly of the LRV1-positive L. guyanensis M4147. This strain was turned into a model by establishing the CRISPR-Cas9 system and ablating the gene encoding phosphatidate phosphatase 2-like (PAP2L) protein. The orthologue of this gene is conspicuously absent from the genome of an unusual member of the family Trypanosomatidae, Vickermania ingenoplastis, a species with mostly bi-flagellated cells. Our analysis of the PAP2L-null L. guyanensis showed an increase in the number of cells strikingly resembling the bi-flagellated V. ingenoplastis, likely as a result of the disruption of the cell cycle, significant accumulation of phosphatidic acid, and increased virulence compared to the wild type cells.
Collapse
Affiliation(s)
- Alexandra Zakharova
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Amanda T. S. Albanaz
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Fred R. Opperdoes
- De Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Ingrid Škodová-Sveráková
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
| | - Diana Zagirova
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Andreu Saura
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Lˇubomíra Chmelová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Evgeny S. Gerasimov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Tereza Leštinová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tomáš Bečvář
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Jovana Sádlová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Anton Horváth
- Faculty of Natural Sciences, Comenius University, Bratislava, Slovakia
| | - Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, České Budějovice (Budweis), Czech Republic
- Faculty of Science, University of South Bohemia, České Budějovice (Budweis), Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
13
|
Sádlová J, Podešvová L, Bečvář T, Bianchi C, Gerasimov ES, Saura A, Glanzová K, Leštinová T, Matveeva NS, Chmelová Ľ, Mlacovská D, Spitzová T, Vojtková B, Volf P, Yurchenko V, Kraeva N. Catalase impairs Leishmania mexicana development and virulence. Virulence 2021; 12:852-867. [PMID: 33724149 PMCID: PMC7971327 DOI: 10.1080/21505594.2021.1896830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Revised: 02/19/2021] [Accepted: 02/24/2021] [Indexed: 12/22/2022] Open
Abstract
Catalase is one of the most abundant enzymes on Earth. It decomposes hydrogen peroxide, thus protecting cells from dangerous reactive oxygen species. The catalase-encoding gene is conspicuously absent from the genome of most representatives of the family Trypanosomatidae. Here, we expressed this protein from the Leishmania mexicana Β-TUBULIN locus using a novel bicistronic expression system, which relies on the 2A peptide of Teschovirus A. We demonstrated that catalase-expressing parasites are severely compromised in their ability to develop in insects, to be transmitted and to infect mice, and to cause clinical manifestation in their mammalian host. Taken together, our data support the hypothesis that the presence of catalase is not compatible with the dixenous life cycle of Leishmania, resulting in loss of this gene from the genome during the evolution of these parasites.
Collapse
Affiliation(s)
- Jovana Sádlová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lucie Podešvová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Tomáš Bečvář
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Claretta Bianchi
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | | | - Andreu Saura
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Kristýna Glanzová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Tereza Leštinová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Nadezhda S. Matveeva
- Faculty of Biology, M. V. Lomonosov Moscow State University, Moscow, Russia
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Ľubomíra Chmelová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Denisa Mlacovská
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Tatiana Spitzová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Barbora Vojtková
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Natalya Kraeva
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
14
|
Analyses of Leishmania-LRV Co-Phylogenetic Patterns and Evolutionary Variability of Viral Proteins. Viruses 2021; 13:v13112305. [PMID: 34835111 PMCID: PMC8624691 DOI: 10.3390/v13112305] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 11/09/2021] [Indexed: 01/07/2023] Open
Abstract
Leishmania spp. are important pathogens causing a vector-borne disease with a broad range of clinical manifestations from self-healing ulcers to the life-threatening visceral forms. Presence of Leishmania RNA virus (LRV) confers survival advantage to these parasites by suppressing anti-leishmanial immunity in the vertebrate host. The two viral species, LRV1 and LRV2 infect species of the subgenera Viannia and Leishmania, respectively. In this work we investigated co-phylogenetic patterns of leishmaniae and their viruses on a small scale (LRV2 in L. major) and demonstrated their predominant coevolution, occasionally broken by intraspecific host switches. Our analysis of the two viral genes, encoding the capsid and RNA-dependent RNA polymerase (RDRP), revealed them to be under the pressure of purifying selection, which was considerably stronger for the former gene across the whole tree. The selective pressure also differs between the LRV clades and correlates with the frequency of interspecific host switches. In addition, using experimental (capsid) and predicted (RDRP) models we demonstrated that the evolutionary variability across the structure is strikingly different in these two viral proteins.
Collapse
|
15
|
Genomics of Trypanosomatidae: Where We Stand and What Needs to Be Done? Pathogens 2021; 10:pathogens10091124. [PMID: 34578156 PMCID: PMC8472099 DOI: 10.3390/pathogens10091124] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2021] [Revised: 08/26/2021] [Accepted: 08/31/2021] [Indexed: 01/18/2023] Open
Abstract
Trypanosomatids are easy to cultivate and they are (in many cases) amenable to genetic manipulation. Genome sequencing has become a standard tool routinely used in the study of these flagellates. In this review, we summarize the current state of the field and our vision of what needs to be done in order to achieve a more comprehensive picture of trypanosomatid evolution. This will also help to illuminate the lineage-specific proteins and pathways, which can be used as potential targets in treating diseases caused by these parasites.
Collapse
|
16
|
The Maze Pathway of Coevolution: A Critical Review over the Leishmania and Its Endosymbiotic History. Genes (Basel) 2021; 12:genes12050657. [PMID: 33925663 PMCID: PMC8146029 DOI: 10.3390/genes12050657] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 01/10/2023] Open
Abstract
The description of the genus Leishmania as the causative agent of leishmaniasis occurred in the modern age. However, evolutionary studies suggest that the origin of Leishmania can be traced back to the Mesozoic era. Subsequently, during its evolutionary process, it achieved worldwide dispersion predating the breakup of the Gondwana supercontinent. It is assumed that this parasite evolved from monoxenic Trypanosomatidae. Phylogenetic studies locate dixenous Leishmania in a well-supported clade, in the recently named subfamily Leishmaniinae, which also includes monoxenous trypanosomatids. Virus-like particles have been reported in many species of this family. To date, several Leishmania species have been reported to be infected by Leishmania RNA virus (LRV) and Leishbunyavirus (LBV). Since the first descriptions of LRVs decades ago, differences in their genomic structures have been highlighted, leading to the designation of LRV1 in L. (Viannia) species and LRV2 in L. (Leishmania) species. There are strong indications that viruses that infect Leishmania spp. have the ability to enhance parasitic survival in humans as well as in experimental infections, through highly complex and specialized mechanisms. Phylogenetic analyses of these viruses have shown that their genomic differences correlate with the parasite species infected, suggesting a coevolutionary process. Herein, we will explore what has been described in the literature regarding the relationship between Leishmania and endosymbiotic Leishmania viruses and what is known about this association that could contribute to discussions about the worldwide dispersion of Leishmania.
Collapse
|
17
|
Genome Analysis of Endotrypanum and Porcisia spp., Closest Phylogenetic Relatives of Leishmania, Highlights the Role of Amastins in Shaping Pathogenicity. Genes (Basel) 2021; 12:genes12030444. [PMID: 33804709 PMCID: PMC8004069 DOI: 10.3390/genes12030444] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/15/2021] [Accepted: 03/18/2021] [Indexed: 02/07/2023] Open
Abstract
While numerous genomes of Leishmania spp. have been sequenced and analyzed, an understanding of the evolutionary history of these organisms remains limited due to the unavailability of the sequence data for their closest known relatives, Endotrypanum and Porcisia spp., infecting sloths and porcupines. We have sequenced and analyzed genomes of three members of this clade in order to fill this gap. Their comparative analyses revealed only minute differences from Leishmaniamajor genome in terms of metabolic capacities. We also documented that the number of genes under positive selection on the Endotrypanum/Porcisia branch is rather small, with the flagellum-related group of genes being over-represented. Most significantly, the analysis of gene family evolution revealed a substantially reduced repertoire of surface proteins, such as amastins and biopterin transporters BT1 in the Endotrypanum/Porcisia species when compared to amastigote-dwelling Leishmania. This reduction was especially pronounced for δ-amastins, a subfamily of cell surface proteins crucial in the propagation of Leishmania amastigotes inside vertebrate macrophages and, apparently, dispensable for Endotrypanum/Porcisia, which do not infect such cells.
Collapse
|
18
|
Mello B, Tao Q, Barba-Montoya J, Kumar S. Molecular dating for phylogenies containing a mix of populations and species by using Bayesian and RelTime approaches. Mol Ecol Resour 2020; 21:122-136. [PMID: 32881388 DOI: 10.1111/1755-0998.13249] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 08/14/2020] [Accepted: 08/19/2020] [Indexed: 12/11/2022]
Abstract
Simultaneous molecular dating of population and species divergences is essential in many biological investigations, including phylogeography, phylodynamics and species delimitation studies. In these investigations, multiple sequence alignments consist of both intra- and interspecies samples (mixed samples). As a result, the phylogenetic trees contain interspecies, interpopulation and within-population divergences. Bayesian relaxed clock methods are often employed in these analyses, but they assume the same tree prior for both inter- and intraspecies branching processes and require specification of a clock model for branch rates (independent vs. autocorrelated rates models). We evaluated the impact of a single tree prior on Bayesian divergence time estimates by analysing computer-simulated data sets. We also examined the effect of the assumption of independence of evolutionary rate variation among branches when the branch rates are autocorrelated. Bayesian approach with coalescent tree priors generally produced excellent molecular dates and highest posterior densities with high coverage probabilities. We also evaluated the performance of a non-Bayesian method, RelTime, which does not require the specification of a tree prior or a clock model. RelTime's performance was similar to that of the Bayesian approach, suggesting that it is also suitable to analyse data sets containing both populations and species variation when its computational efficiency is needed.
Collapse
Affiliation(s)
- Beatriz Mello
- Department of Genetics, Federal University of Rio de Janeiro, Brazil.,Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA
| | - Qiqing Tao
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA.,Center for Excellence in Genome Medicine and Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jose Barba-Montoya
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA.,Center for Excellence in Genome Medicine and Research, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Sudhir Kumar
- Institute for Genomics and Evolutionary Medicine, Temple University, Philadelphia, PA, USA.,Center for Excellence in Genome Medicine and Research, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
19
|
Kaufer A, Stark D, Ellis J. A review of the systematics, species identification and diagnostics of the Trypanosomatidae using the maxicircle kinetoplast DNA: from past to present. Int J Parasitol 2020; 50:449-460. [PMID: 32333942 DOI: 10.1016/j.ijpara.2020.03.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2019] [Revised: 02/28/2020] [Accepted: 03/09/2020] [Indexed: 11/25/2022]
Abstract
The Trypanosomatid family are a diverse and widespread group of protozoan parasites that belong to the higher order class Kinetoplastida. Containing predominantly monoxenous species (i.e. those having only a single host) that are confined to invertebrate hosts, this class is primarily known for its pathogenic dixenous species (i.e. those that have two hosts), serving as the aetiological agents of the important neglected tropical diseases including leishmaniasis, American trypanosomiasis (Chagas disease) and human African trypanosomiasis. Over the past few decades, a multitude of studies have investigated the diversity, classification and evolutionary history of the trypanosomatid family using different approaches and molecular targets. The mitochondrial-like DNA of the trypanosomatid parasites, also known as the kinetoplast, has emerged as a unique taxonomic and diagnostic target for exploring the evolution of this diverse group of parasitic eukaryotes. This review discusses recent advancements and important developments that have made a significant impact in the field of trypanosomatid systematics and diagnostics in recent years.
Collapse
Affiliation(s)
- Alexa Kaufer
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia.
| | - Damien Stark
- Department of Microbiology, St Vincent's Hospital Sydney, Darlinghurst, NSW 2010, Australia
| | - John Ellis
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
20
|
Azevedo LG, de Queiroz ATL, Barral A, Santos LA, Ramos PIP. Proteins involved in the biosynthesis of lipophosphoglycan in Leishmania: a comparative genomic and evolutionary analysis. Parasit Vectors 2020; 13:44. [PMID: 32000835 PMCID: PMC6993435 DOI: 10.1186/s13071-020-3914-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2019] [Accepted: 01/24/2020] [Indexed: 01/01/2023] Open
Abstract
BACKGROUND Leishmania spp. are digenetic parasites capable of infecting humans and causing a range of diseases collectively known as leishmaniasis. The main mechanisms involved in the development and permanence of this pathology are linked to evasion of the immune response. Crosstalk between the immune system and particularities of each pathogenic species is associated with diverse disease manifestations. Lipophosphoglycan (LPG), one of the most important molecules present on the surface of Leishmania parasites, is divided into four regions with high molecular variability. Although LPG plays an important role in host-pathogen and vector-parasite interactions, the distribution and phylogenetic relatedness of the genes responsible for its synthesis remain poorly explored. The recent availability of full genomes and transcriptomes of Leishmania parasites offers an opportunity to leverage insight on how LPG-related genes are distributed and expressed by these pathogens. RESULTS Using a phylogenomics-based framework, we identified a catalog of genes involved in LPG biosynthesis across 22 species of Leishmania from the subgenera Viannia and Leishmania, as well as 5 non-Leishmania trypanosomatids. The evolutionary relationships of these genes across species were also evaluated. Nine genes related to the production of the glycosylphosphatidylinositol (GPI)-anchor were highly conserved among compared species, whereas 22 genes related to the synthesis of the repeat unit presented variable conservation. Extensive gain/loss events were verified, particularly in genes SCG1-4 and SCA1-2. These genes act, respectively, on the synthesis of the side chain attached to phosphoglycans and in the transfer of arabinose residues. Phylogenetic analyses disclosed evolutionary patterns reflective of differences in host specialization, geographic origin and disease manifestation. CONCLUSIONS The multiple gene gain/loss events identified by genomic data mining help to explain some of the observed intra- and interspecies variation in LPG structure. Collectively, our results provide a comprehensive catalog that details how LPG-related genes evolved in the Leishmania parasite specialization process.
Collapse
Affiliation(s)
- Lucas Gentil Azevedo
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia Brazil
- Post-graduate Program in Biotechnology and Investigative Medicine, Instituto Gonçalo Moniz, Salvador, Bahia Brazil
| | - Artur Trancoso Lopo de Queiroz
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
- Post-graduate Program in Biotechnology and Investigative Medicine, Instituto Gonçalo Moniz, Salvador, Bahia Brazil
| | - Aldina Barral
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
- Universidade Federal da Bahia, Salvador, Bahia Brazil
- Instituto de Investigação em Imunologia (iii-INCT), São Paulo, São Paulo Brazil
| | - Luciane Amorim Santos
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
- Escola Bahiana de Medicina e Saúde Pública, Salvador, Bahia Brazil
| | - Pablo Ivan Pereira Ramos
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Salvador, Bahia, Brazil
- Post-graduate Program in Biotechnology and Investigative Medicine, Instituto Gonçalo Moniz, Salvador, Bahia Brazil
| |
Collapse
|
21
|
Fernandes PM, Kinkead J, McNae IW, Vásquez-Valdivieso M, Wear MA, Michels PAM, Walkinshaw MD. Kinetic and structural studies of Trypanosoma and Leishmania phosphofructokinases show evolutionary divergence and identify AMP as a switch regulating glycolysis versus gluconeogenesis. FEBS J 2020; 287:2847-2861. [PMID: 31838765 PMCID: PMC7383607 DOI: 10.1111/febs.15177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2019] [Revised: 11/13/2019] [Accepted: 12/12/2019] [Indexed: 11/30/2022]
Abstract
Trypanosomatids possess glycosome organelles that contain much of the glycolytic machinery, including phosphofructokinase (PFK). We present kinetic and structural data for PFK from three human pathogenic trypanosomatids, illustrating intriguing differences that may reflect evolutionary adaptations to differing ecological niches. The activity of Leishmania PFK – to a much larger extent than Trypanosoma PFK – is reliant on AMP for activity regulation, with 1 mm AMP increasing the L. infantum PFK (LiPFK) kcat/K0.5F6P value by 10‐fold, compared to only a 1.3‐ and 1.4‐fold increase for T. cruzi and T. brucei PFK, respectively. We also show that Leishmania PFK melts at a significantly lower (> 15 °C) temperature than Trypanosoma PFKs and that addition of either AMP or ATP results in a marked stabilization of the protein. Sequence comparisons of Trypanosoma spp. and Leishmania spp. show that divergence of the two genera involved amino acid substitutions that occur in the enzyme’s ‘reaching arms’ and ‘embracing arms’ that determine tetramer stability. The dramatic effects of AMP on Leishmania activity compared with the Trypanosoma PFKs may be explained by differences between the T‐to‐R equilibria for the two families, with the low‐melting Leishmania PFK favouring the flexible inactive T‐state in the absence of AMP. Sequence comparisons along with the enzymatic and structural data presented here also suggest there was a loss of AMP‐dependent regulation in Trypanosoma species rather than gain of this characteristic in Leishmania species and that AMP acts as a key regulator in Leishmania governing the balance between glycolysis and gluconeogenesis.
Collapse
Affiliation(s)
- Peter M Fernandes
- Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - James Kinkead
- Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Iain W McNae
- Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Monserrat Vásquez-Valdivieso
- Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Martin A Wear
- Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Paul A M Michels
- Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| | - Malcolm D Walkinshaw
- Centre for Translational and Chemical Biology, School of Biological Sciences, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
22
|
Butenko A, Kostygov AY, Sádlová J, Kleschenko Y, Bečvář T, Podešvová L, Macedo DH, Žihala D, Lukeš J, Bates PA, Volf P, Opperdoes FR, Yurchenko V. Comparative genomics of Leishmania (Mundinia). BMC Genomics 2019; 20:726. [PMID: 31601168 PMCID: PMC6787982 DOI: 10.1186/s12864-019-6126-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 09/20/2019] [Indexed: 12/31/2022] Open
Abstract
Background Trypanosomatids of the genus Leishmania are parasites of mammals or reptiles transmitted by bloodsucking dipterans. Many species of these flagellates cause important human diseases with clinical symptoms ranging from skin sores to life-threatening damage of visceral organs. The genus Leishmania contains four subgenera: Leishmania, Sauroleishmania, Viannia, and Mundinia. The last subgenus has been established recently and remains understudied, although Mundinia contains human-infecting species. In addition, it is interesting from the evolutionary viewpoint, representing the earliest branch within the genus and possibly with a different type of vector. Here we analyzed the genomes of L. (M.) martiniquensis, L. (M.) enriettii and L. (M.) macropodum to better understand the biology and evolution of these parasites. Results All three genomes analyzed were approximately of the same size (~ 30 Mb) and similar to that of L. (Sauroleishmania) tarentolae, but smaller than those of the members of subgenera Leishmania and Viannia, or the genus Endotrypanum (~ 32 Mb). This difference was explained by domination of gene losses over gains and contractions over expansions at the Mundinia node, although only a few of these genes could be identified. The analysis predicts significant changes in the Mundinia cell surface architecture, with the most important ones relating to losses of LPG-modifying side chain galactosyltransferases and arabinosyltransferases, as well as β-amastins. Among other important changes were gene family contractions for the oxygen-sensing adenylate cyclases and FYVE zinc finger-containing proteins. Conclusions We suggest that adaptation of Mundinia to different vectors and hosts has led to alternative host-parasite relationships and, thereby, made some proteins redundant. Thus, the evolution of genomes in the genus Leishmania and, in particular, in the subgenus Mundinia was mainly shaped by host (or vector) switches.
Collapse
Affiliation(s)
- Anzhelika Butenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.,Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budejovice (Budweis), Czech Republic
| | - Alexei Y Kostygov
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic.,Zoological Institute of the Russian Academy of Sciences, St Petersburg, Russia
| | - Jovana Sádlová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Yuliya Kleschenko
- Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia
| | - Tomáš Bečvář
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Lucie Podešvová
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Diego H Macedo
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - David Žihala
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budejovice (Budweis), Czech Republic.,Faculty of Sciences, University of South Bohemia, České Budejovice (Budweis), Czech Republic
| | - Paul A Bates
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czech Republic
| | - Fred R Opperdoes
- de Duve Institute, Université Catholique de Louvain, Brussels, Belgium
| | - Vyacheslav Yurchenko
- Life Science Research Centre, Faculty of Science, University of Ostrava, Ostrava, Czech Republic. .,Martsinovsky Institute of Medical Parasitology, Tropical and Vector Borne Diseases, Sechenov University, Moscow, Russia.
| |
Collapse
|
23
|
Evolutionary Insight into the Trypanosomatidae Using Alignment-Free Phylogenomics of the Kinetoplast. Pathogens 2019; 8:pathogens8030157. [PMID: 31540520 PMCID: PMC6789588 DOI: 10.3390/pathogens8030157] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 09/10/2019] [Accepted: 09/13/2019] [Indexed: 12/12/2022] Open
Abstract
Advancements in next-generation sequencing techniques have led to a substantial increase in the genomic information available for analyses in evolutionary biology. As such, this data requires the exponential growth in bioinformatic methods and expertise required to understand such vast quantities of genomic data. Alignment-free phylogenomics offer an alternative approach for large-scale analyses that may have the potential to address these challenges. The evolutionary relationships between various species within the trypanosomatid family, specifically members belonging to the genera Leishmania and Trypanosoma have been extensively studies over the last 30 years. However, there is a need for a more exhaustive analysis of the Trypanosomatidae, summarising the evolutionary patterns amongst the entire family of these important protists. The mitochondrial DNA of the trypanosomatids, better known as the kinetoplast, represents a valuable taxonomic marker given its unique presence across all kinetoplastid protozoans. The aim of this study was to validate the reliability and robustness of alignment-free approaches for phylogenomic analyses and its applicability to reconstruct the evolutionary relationships between the trypanosomatid family. In the present study, alignment-free analyses demonstrated the strength of these methods, particularly when dealing with large datasets compared to the traditional phylogenetic approaches. We present a maxicircle genome phylogeny of 46 species spanning the trypanosomatid family, demonstrating the superiority of the maxicircle for the analysis and taxonomic resolution of the Trypanosomatidae.
Collapse
|
24
|
Ribeiro YC, Robe LJ, Veluza DS, Dos Santos CMB, Lopes ALK, Krieger MA, Ludwig A. Study of VIPER and TATE in kinetoplastids and the evolution of tyrosine recombinase retrotransposons. Mob DNA 2019; 10:34. [PMID: 31391870 PMCID: PMC6681497 DOI: 10.1186/s13100-019-0175-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Accepted: 07/15/2019] [Indexed: 01/04/2023] Open
Abstract
Background Kinetoplastids are a flagellated group of protists, including some parasites, such as Trypanosoma and Leishmania species, that can cause diseases in humans and other animals. The genomes of these species enclose a fraction of retrotransposons including VIPER and TATE, two poorly studied transposable elements that encode a tyrosine recombinase (YR) and were previously classified as DIRS elements. This study investigated the distribution and evolution of VIPER and TATE in kinetoplastids to understand the relationships of these elements with other retrotransposons. Results We observed that VIPER and TATE have a discontinuous distribution among Trypanosomatidae, with several events of loss and degeneration occurring during a vertical transfer evolution. We were able to identify the terminal repeats of these elements for the first time, and we showed that these elements are potentially active in some species, including T. cruzi copies of VIPER. We found that VIPER and TATE are strictly related elements, which were named in this study as VIPER-like. The reverse transcriptase (RT) tree presented a low resolution, and the origin and relationships among YR groups remain uncertain. Conversely, for RH, VIPER-like grouped with Hepadnavirus, whereas for YR, VIPER-like sequences constituted two different clades that are closely allied to Crypton. Distinct topologies among RT, RH and YR trees suggest ancient rearrangements/exchanges in domains and a modular pattern of evolution with putative independent origins for each ORF. Conclusions Due to the presence of both elements in Bodo saltans, a nontrypanosomatid species, we suggested that VIPER and TATE have survived and remained active for more than 400 million years or were reactivated during the evolution of the host species. We did not find clear evidence of independent origins of VIPER-like from the other YR retroelements, supporting the maintenance of the DIRS group of retrotransposons. Nevertheless, according to phylogenetic findings and sequence structure obtained by this study and other works, we proposed separating DIRS elements into four subgroups: DIRS-like, PAT-like, Ngaro-like, and VIPER-like. Electronic supplementary material The online version of this article (10.1186/s13100-019-0175-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Yasmin Carla Ribeiro
- 1Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Paraná, Curitiba, PR Brazil
| | - Lizandra Jaqueline Robe
- 2Departamento de Ecologia e Evolução, Universidade Federal de Santa Maria, Santa Maria, RS Brazil
| | | | | | - Ana Luisa Kalb Lopes
- 1Pós-Graduação em Biologia Celular e Molecular, Universidade Federal do Paraná, Curitiba, PR Brazil
| | | | - Adriana Ludwig
- 4Instituto Carlos Chagas, Fundação Oswaldo Cruz-Fiocruz, Curitiba, PR Brazil
| |
Collapse
|
25
|
Klatt S, Simpson L, Maslov DA, Konthur Z. Leishmania tarentolae: Taxonomic classification and its application as a promising biotechnological expression host. PLoS Negl Trop Dis 2019; 13:e0007424. [PMID: 31344033 PMCID: PMC6657821 DOI: 10.1371/journal.pntd.0007424] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
In this review, we summarize the current knowledge concerning the eukaryotic protozoan parasite Leishmania tarentolae, with a main focus on its potential for biotechnological applications. We will also discuss the genus, subgenus, and species-level classification of this parasite, its life cycle and geographical distribution, and similarities and differences to human-pathogenic species, as these aspects are relevant for the evaluation of biosafety aspects of L. tarentolae as host for recombinant DNA/protein applications. Studies indicate that strain LEM-125 but not strain TARII/UC of L. tarentolae might also be capable of infecting mammals, at least transiently. This could raise the question of whether the current biosafety level of this strain should be reevaluated. In addition, we will summarize the current state of biotechnological research involving L. tarentolae and explain why this eukaryotic parasite is an advantageous and promising human recombinant protein expression host. This summary includes overall biotechnological applications, insights into its protein expression machinery (especially on glycoprotein and antibody fragment expression), available expression vectors, cell culture conditions, and its potential as an immunotherapy agent for human leishmaniasis treatment. Furthermore, we will highlight useful online tools and, finally, discuss possible future applications such as the humanization of the glycosylation profile of L. tarentolae or the expression of mammalian recombinant proteins in amastigote-like cells of this species or in amastigotes of avirulent human-pathogenic Leishmania species.
Collapse
Affiliation(s)
- Stephan Klatt
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- * E-mail: (SK); (ZK)
| | - Larry Simpson
- Department of Microbiology, Immunology and Molecular Genetics, Geffen School of Medicine at UCLA, University of California, Los Angeles, California, United States of America
| | - Dmitri A. Maslov
- Department of Molecular, Cell, and Systems Biology, University of California, Riverside, California, United States of America
| | - Zoltán Konthur
- Max Planck Institute of Colloids and Interfaces, Potsdam, Germany
- * E-mail: (SK); (ZK)
| |
Collapse
|
26
|
Kaufer A, Barratt J, Stark D, Ellis J. The complete coding region of the maxicircle as a superior phylogenetic marker for exploring evolutionary relationships between members of the Leishmaniinae. INFECTION GENETICS AND EVOLUTION 2019; 70:90-100. [DOI: 10.1016/j.meegid.2019.02.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/30/2019] [Accepted: 02/02/2019] [Indexed: 02/05/2023]
|
27
|
Allio R, Scornavacca C, Nabholz B, Clamens AL, Sperling FAH, Condamine FL. Whole Genome Shotgun Phylogenomics Resolves the Pattern and Timing of Swallowtail Butterfly Evolution. Syst Biol 2019; 69:38-60. [DOI: 10.1093/sysbio/syz030] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 01/20/2023] Open
Abstract
Abstract
Evolutionary relationships have remained unresolved in many well-studied groups, even though advances in next-generation sequencing and analysis, using approaches such as transcriptomics, anchored hybrid enrichment, or ultraconserved elements, have brought systematics to the brink of whole genome phylogenomics. Recently, it has become possible to sequence the entire genomes of numerous nonbiological models in parallel at reasonable cost, particularly with shotgun sequencing. Here, we identify orthologous coding sequences from whole-genome shotgun sequences, which we then use to investigate the relevance and power of phylogenomic relationship inference and time-calibrated tree estimation. We study an iconic group of butterflies—swallowtails of the family Papilionidae—that has remained phylogenetically unresolved, with continued debate about the timing of their diversification. Low-coverage whole genomes were obtained using Illumina shotgun sequencing for all genera. Genome assembly coupled to BLAST-based orthology searches allowed extraction of 6621 orthologous protein-coding genes for 45 Papilionidae species and 16 outgroup species (with 32% missing data after cleaning phases). Supermatrix phylogenomic analyses were performed with both maximum-likelihood (IQ-TREE) and Bayesian mixture models (PhyloBayes) for amino acid sequences, which produced a fully resolved phylogeny providing new insights into controversial relationships. Species tree reconstruction from gene trees was performed with ASTRAL and SuperTriplets and recovered the same phylogeny. We estimated gene site concordant factors to complement traditional node-support measures, which strengthens the robustness of inferred phylogenies. Bayesian estimates of divergence times based on a reduced data set (760 orthologs and 12% missing data) indicate a mid-Cretaceous origin of Papilionoidea around 99.2 Ma (95% credibility interval: 68.6–142.7 Ma) and Papilionidae around 71.4 Ma (49.8–103.6 Ma), with subsequent diversification of modern lineages well after the Cretaceous-Paleogene event. These results show that shotgun sequencing of whole genomes, even when highly fragmented, represents a powerful approach to phylogenomics and molecular dating in a group that has previously been refractory to resolution.
Collapse
Affiliation(s)
- Rémi Allio
- Institut des Sciences de l’Evolution de Montpellier (Université de Montpellier
- CNRS
- IRD
- EPHE), Place Eugène Bataillon, 34095 Montpellier, France
| | - Céline Scornavacca
- Institut des Sciences de l’Evolution de Montpellier (Université de Montpellier
- CNRS
- IRD
- EPHE), Place Eugène Bataillon, 34095 Montpellier, France
- Institut de Biologie Computationnelle (IBC), Montpellier, France
| | - Benoit Nabholz
- Institut des Sciences de l’Evolution de Montpellier (Université de Montpellier
- CNRS
- IRD
- EPHE), Place Eugène Bataillon, 34095 Montpellier, France
| | - Anne-Laure Clamens
- INRA, UMR 1062 Centre de Biologie pour la Gestion des Populations (INRA, IRD, CIRAD, Montpellier SupAgro), 755 Avenue du Campus Agropolis, 34988 Montferrier-sur-Lez, France
- Department of Biological Sciences, University of Alberta, Edmonton T6G 2E9, AB, Canada
| | - Felix AH Sperling
- Department of Biological Sciences, University of Alberta, Edmonton T6G 2E9, AB, Canada
| | - Fabien L Condamine
- Institut des Sciences de l’Evolution de Montpellier (Université de Montpellier
- CNRS
- IRD
- EPHE), Place Eugène Bataillon, 34095 Montpellier, France
- Department of Biological Sciences, University of Alberta, Edmonton T6G 2E9, AB, Canada
| |
Collapse
|
28
|
Catanach TA, Sweet AD, Nguyen NPD, Peery RM, Debevec AH, Thomer AK, Owings AC, Boyd BM, Katz AD, Soto-Adames FN, Allen JM. Fully automated sequence alignment methods are comparable to, and much faster than, traditional methods in large data sets: an example with hepatitis B virus. PeerJ 2019; 7:e6142. [PMID: 30627489 PMCID: PMC6321758 DOI: 10.7717/peerj.6142] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 11/14/2018] [Indexed: 01/05/2023] Open
Abstract
Aligning sequences for phylogenetic analysis (multiple sequence alignment; MSA) is an important, but increasingly computationally expensive step with the recent surge in DNA sequence data. Much of this sequence data is publicly available, but can be extremely fragmentary (i.e., a combination of full genomes and genomic fragments), which can compound the computational issues related to MSA. Traditionally, alignments are produced with automated algorithms and then checked and/or corrected "by eye" prior to phylogenetic inference. However, this manual curation is inefficient at the data scales required of modern phylogenetics and results in alignments that are not reproducible. Recently, methods have been developed for fully automating alignments of large data sets, but it is unclear if these methods produce alignments that result in compatible phylogenies when compared to more traditional alignment approaches that combined automated and manual methods. Here we use approximately 33,000 publicly available sequences from the hepatitis B virus (HBV), a globally distributed and rapidly evolving virus, to compare different alignment approaches. Using one data set comprised exclusively of whole genomes and a second that also included sequence fragments, we compared three MSA methods: (1) a purely automated approach using traditional software, (2) an automated approach including by eye manual editing, and (3) more recent fully automated approaches. To understand how these methods affect phylogenetic results, we compared resulting tree topologies based on these different alignment methods using multiple metrics. We further determined if the monophyly of existing HBV genotypes was supported in phylogenies estimated from each alignment type and under different statistical support thresholds. Traditional and fully automated alignments produced similar HBV phylogenies. Although there was variability between branch support thresholds, allowing lower support thresholds tended to result in more differences among trees. Therefore, differences between the trees could be best explained by phylogenetic uncertainty unrelated to the MSA method used. Nevertheless, automated alignment approaches did not require human intervention and were therefore considerably less time-intensive than traditional approaches. Because of this, we conclude that fully automated algorithms for MSA are fully compatible with older methods even in extremely difficult to align data sets. Additionally, we found that most HBV diagnostic genotypes did not correspond to evolutionarily-sound groups, regardless of alignment type and support threshold. This suggests there may be errors in genotype classification in the database or that HBV genotypes may need a revision.
Collapse
Affiliation(s)
- Therese A. Catanach
- Ornithology Department, Academy of Natural Sciences of Drexel University, Philadelphia, PA, United States of America
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL, United States of America
- Department of Wildlife and Fisheries Sciences, Texas A&M University, College Station, TX, United States of America
| | - Andrew D. Sweet
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL, United States of America
- Department of Entomology, Purdue University, West Lafayette, IN, United States of America
| | - Nam-phuong D. Nguyen
- Computer Science and Engineering, University of San Diego, California, La Jolla, CA, United States of America
| | - Rhiannon M. Peery
- Department of Biology, University of Alberta, Edmonton, Alberta, Canada
- Department of Plant Biology, University of Illinois at Urbana-Champaign, Champaign, IL, United States of America
| | - Andrew H. Debevec
- School of Integrative Biology, University of Illinois at Urbana-Champaign, Champaign, IL, United States of America
| | - Andrea K. Thomer
- School of Information, University of Michigan—Ann Arbor, Ann Arbor, MI, United States of America
| | - Amanda C. Owings
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL, United States of America
| | - Bret M. Boyd
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL, United States of America
- Department of Entomology, University of Georga, Athens, GA, United States of America
| | - Aron D. Katz
- Illinois Natural History Survey, University of Illinois at Urbana-Champaign, Champaign, IL, United States of America
- Department of Entomology, University of Illinois at Urbana-Champaign, Champaign, IL, United States of America
| | - Felipe N. Soto-Adames
- Florida State Collection of Arthropods, Florida Department of Agriculture and Consumer Services, Gainesville, FL, United States of America
- Department of Entomology and Nematology, University of Florida, Gainesville, FL, United States of America
| | - Julie M. Allen
- Biology Department, University of Nevada, Reno, Reno, NV, United States of America
| |
Collapse
|
29
|
Abstract
Phylogenetics is an important component of the systems biology approach. Knowledge about evolution of the genus Leishmania is essential to understand various aspects of basic biology of these parasites, such as parasite-host or parasite-vector relationships, biogeography, or epidemiology. Here, we present a comprehensive guideline for performing phylogenetic studies based on DNA sequence data, but with principles that can be adapted to protein sequences or other molecular markers. It is presented as a compilation of the most commonly used genetic targets for phylogenetic studies of Leishmania, including their respective primers for amplification and references, as well as details of PCR assays. Guidelines are, then, presented to choose the best targets in relation to the types of samples under study. Finally, and importantly, instructions are given to obtain optimal sequences, alignments, and datasets for the subsequent data analysis and phylogenetic inference. Different bioinformatics methods and software for phylogenetic inference are presented and explained. This chapter aims to provide a compilation of methods and generic guidelines to conduct phylogenetics of Leishmania for nonspecialists.
Collapse
Affiliation(s)
- Katrin Kuhls
- Molekulare Biotechnologie und Funktionelle Genomik, Technische Hochschule Wildau, Wildau, Germany.
| | - Isabel Mauricio
- Global Health and Tropical Medicine (GHTM), Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa (UNL), Lisbon, Portugal
| |
Collapse
|
30
|
Jariyapan N, Daroontum T, Jaiwong K, Chanmol W, Intakhan N, Sor-suwan S, Siriyasatien P, Somboon P, Bates MD, Bates PA. Leishmania (Mundinia) orientalis n. sp. (Trypanosomatidae), a parasite from Thailand responsible for localised cutaneous leishmaniasis. Parasit Vectors 2018; 11:351. [PMID: 29914526 PMCID: PMC6006788 DOI: 10.1186/s13071-018-2908-3] [Citation(s) in RCA: 60] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Accepted: 05/21/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Leishmaniasis is an emerging disease in Thailand with an unknown incidence or prevalence. Although the number of properly characterized and clinically confirmed cases is about 20, it is suspected that this low number masks a potentially high prevalence, with clinical disease typically manifesting itself against an immunocompromised background, but with a substantial number of subclinical or cured cases of infection. To date leishmaniasis in Thailand has been mainly ascribed to two taxa within the recently erected subgenus Mundinia Shaw, Camargo & Teixeira, 2016, Leishmania (Mundinia) martiniquensis Desbois, Pratlong & Dedet, 2014 and a species that has not been formally described prior to this study. RESULTS A case of simple cutaneous leishmaniasis was diagnosed in a patient from Nan Province, Thailand. Molecular analysis of parasites derived from a biopsy sample revealed this to be a new species of Leishmania Ross, 1908, which has been named as Leishmania (Mundinia) orientalis Bates & Jariyapan n. sp. A formal description is provided, and this new taxon supercedes some isolates from the invalid taxon "Leishmania siamensis". A summary of all known cases of leishmaniasis with a corrected species identification is provided. CONCLUSIONS Three species of parasites are now known to cause leishmaniasis is Thailand, L. martiniquensis and L. orientalis n. sp. in the subgenus Mundinia, which contains the type-species Leishmania enriettii Muniz & Medina, 1948, and a single case of Leishmania infantum Nicolle, 1908. This study now enables epidemiological and other investigations into the biology of these unusual parasites to be conducted. It is recommended that the use of the taxonomically invalid name "L. siamensis" should be discontinued.
Collapse
Affiliation(s)
- Narissara Jariyapan
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Teerada Daroontum
- Department of Pathology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | | | - Wetpisit Chanmol
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Nuchpicha Intakhan
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Sriwatapron Sor-suwan
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Padet Siriyasatien
- Department of Parasitology, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Pradya Somboon
- Department of Parasitology, Faculty of Medicine, Chiang Mai University, Chiang Mai, Thailand
| | - Michelle D. Bates
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| | - Paul A. Bates
- Division of Biomedical and Life Sciences, Faculty of Health and Medicine, Lancaster University, Lancaster, UK
| |
Collapse
|
31
|
Coughlan S, Taylor AS, Feane E, Sanders M, Schonian G, Cotton JA, Downing T. Leishmania naiffi and Leishmania guyanensis reference genomes highlight genome structure and gene evolution in the Viannia subgenus. ROYAL SOCIETY OPEN SCIENCE 2018; 5:172212. [PMID: 29765675 PMCID: PMC5936940 DOI: 10.1098/rsos.172212] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
The unicellular protozoan parasite Leishmania causes the neglected tropical disease leishmaniasis, affecting 12 million people in 98 countries. In South America, where the Viannia subgenus predominates, so far only L. (Viannia) braziliensis and L. (V.) panamensis have been sequenced, assembled and annotated as reference genomes. Addressing this deficit in molecular information can inform species typing, epidemiological monitoring and clinical treatment. Here, L. (V.) naiffi and L. (V.) guyanensis genomic DNA was sequenced to assemble these two genomes as draft references from short sequence reads. The methods used were tested using short sequence reads for L. braziliensis M2904 against its published reference as a comparison. This assembly and annotation pipeline identified 70 additional genes not annotated on the original M2904 reference. Phylogenetic and evolutionary comparisons of L. guyanensis and L. naiffi with 10 other Viannia genomes revealed four traits common to all Viannia: aneuploidy, 22 orthologous groups of genes absent in other Leishmania subgenera, elevated TATE transposon copies and a high NADH-dependent fumarate reductase gene copy number. Within the Viannia, there were limited structural changes in genome architecture specific to individual species: a 45 Kb amplification on chromosome 34 was present in all bar L. lainsoni, L. naiffi had a higher copy number of the virulence factor leishmanolysin, and laboratory isolate L. shawi M8408 had a possible minichromosome derived from the 3' end of chromosome 34. This combination of genome assembly, phylogenetics and comparative analysis across an extended panel of diverse Viannia has uncovered new insights into the origin and evolution of this subgenus and can help improve diagnostics for leishmaniasis surveillance.
Collapse
Affiliation(s)
- Simone Coughlan
- School of Mathematics, Applied Mathematics and Statistics, National University of Ireland, Galway, Republic of Ireland
| | - Ali Shirley Taylor
- School of Biotechnology, Dublin City University, Dublin, Republic of Ireland
| | - Eoghan Feane
- School of Biotechnology, Dublin City University, Dublin, Republic of Ireland
| | | | | | | | - Tim Downing
- School of Mathematics, Applied Mathematics and Statistics, National University of Ireland, Galway, Republic of Ireland
- School of Biotechnology, Dublin City University, Dublin, Republic of Ireland
| |
Collapse
|
32
|
Abstract
Protein abundance differs from a few to millions of copies per cell. Trypanosoma brucei presents an excellent model for studies on codon bias and differential gene expression because transcription is broadly unregulated and uniform across the genome. T. brucei is also a major human and animal protozoal pathogen. Here, an experimental assessment, using synthetic reporter genes, revealed that GC3 codons have a major positive impact on both mRNA and protein abundance. Our estimates of relative expression, based on coding sequences alone (codon usage and sequence length), are within 2-fold of the observed values for the majority of measured cellular mRNAs (n > 7000) and proteins (n > 2000). Our estimates also correspond with expression measures from published transcriptome and proteome datasets from other trypanosomatids. We conclude that codon usage is a key factor affecting global relative mRNA and protein expression in trypanosomatids and that relative abundance can be effectively estimated using only protein coding sequences.
Collapse
Affiliation(s)
- Laura Jeacock
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Joana Faria
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - David Horn
- Wellcome Trust Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
33
|
de Souza DAS, Pavoni DP, Krieger MA, Ludwig A. Evolutionary analyses of myosin genes in trypanosomatids show a history of expansion, secondary losses and neofunctionalization. Sci Rep 2018; 8:1376. [PMID: 29358582 PMCID: PMC5778035 DOI: 10.1038/s41598-017-18865-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Accepted: 12/18/2017] [Indexed: 11/09/2022] Open
Abstract
Myosins are motor proteins that comprise a large and diversified family important for a broad range of functions. Two myosin classes, I and XIII, were previously assigned in Trypanosomatids, based mainly on the studies of Trypanosoma cruzi, T. brucei and Leishmania major, and important human pathogenic species; seven orphan myosins were identified in T. cruzi. Our results show that the great variety of T. cruzi myosins is also present in some closely related species and in Bodo saltans, a member of an early divergent branch of Kinetoplastida. Therefore, these myosins should no longer be considered "orphans". We proposed the classification of a kinetoplastid-specific myosin group into a new class, XXXVI. Moreover, our phylogenetic data suggest that a great repertoire of myosin genes was present in the last common ancestor of trypanosomatids and B. saltans, mainly resulting from several gene duplications. These genes have since been predominantly maintained in synteny in some species, and secondary losses explain the current distribution. We also found two interesting genes that were clearly derived from myosin genes, demonstrating that possible redundant or useless genes, instead of simply being lost, can serve as raw material for the evolution of new genes and functions.
Collapse
Affiliation(s)
- Denise Andréa Silva de Souza
- Laboratório de Genômica Funcional, Instituto Carlos Chagas- ICC/Fiocruz-, PR, Curitiba, 81350-010, Brazil.,Programa de Pós-graduação em Biociências e Biotecnologia - ICC/Fiocruz-, PR, Curitiba, 81350-010, Brazil
| | - Daniela Parada Pavoni
- Laboratório de Genômica Funcional, Instituto Carlos Chagas- ICC/Fiocruz-, PR, Curitiba, 81350-010, Brazil.,Programa de Pós-graduação em Biociências e Biotecnologia - ICC/Fiocruz-, PR, Curitiba, 81350-010, Brazil
| | - Marco Aurélio Krieger
- Laboratório de Genômica Funcional, Instituto Carlos Chagas- ICC/Fiocruz-, PR, Curitiba, 81350-010, Brazil. .,Programa de Pós-graduação em Biociências e Biotecnologia - ICC/Fiocruz-, PR, Curitiba, 81350-010, Brazil. .,Instituto de Biologia Molecular do Paraná, Curitiba, 81350-010, Brazil.
| | - Adriana Ludwig
- Laboratório de Genômica Funcional, Instituto Carlos Chagas- ICC/Fiocruz-, PR, Curitiba, 81350-010, Brazil. .,Instituto de Biologia Molecular do Paraná, Curitiba, 81350-010, Brazil.
| |
Collapse
|
34
|
High-throughput sequencing of kDNA amplicons for the analysis of Leishmania minicircles and identification of Neotropical species. Parasitology 2017; 145:585-594. [PMID: 29144208 DOI: 10.1017/s0031182017002013] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Leishmania kinetoplast DNA contains thousands of small circular molecules referred to as kinetoplast DNA (kDNA) minicercles. kDNA minicircles are the preferred targets for sensitive Leishmania detection, because they are present in high copy number and contain conserved sequence blocks in which polymerase chain reaction (PCR) primers can be designed. On the other hand, the heterogenic nature of minicircle networks has hampered the use of this peculiar genomic region for strain typing. The characterization of Leishmania minicirculomes used to require isolation and cloning steps prior to sequencing. Here, we show that high-throughput sequencing of single minicircle PCR products allows bypassing these laborious laboratory tasks. The 120 bp long minicircle conserved region was amplified by PCR from 18 Leishmania strains representative of the major species complexes found in the Neotropics. High-throughput sequencing of PCR products enabled recovering significant numbers of distinct minicircle sequences from each strain, reflecting minicircle class diversity. Minicircle sequence analysis revealed patterns that are congruent with current hypothesis of Leishmania relationships. Then, we show that a barcoding-like approach based on minicircle sequence comparisons may allow reliable identifications of Leishmania spp. This work opens up promising perspectives for the study of kDNA minicercles and a variety of applications in Leishmania research.
Collapse
|
35
|
A pilot study on fingerprinting Leishmania species from the Old World using Fourier transform infrared spectroscopy. Anal Bioanal Chem 2017; 409:6907-6923. [PMID: 29080902 PMCID: PMC5670197 DOI: 10.1007/s00216-017-0655-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 08/30/2017] [Accepted: 09/19/2017] [Indexed: 12/02/2022]
Abstract
Leishmania species are protozoan parasites and the causative agents of leishmaniasis, a vector borne disease that imposes a large health burden on individuals living mainly in tropical and subtropical regions. Different Leishmania species are responsible for the distinct clinical patterns, such as cutaneous, mucocutaneous, and visceral leishmaniasis, with the latter being potentially fatal if left untreated. For this reason, it is important to perform correct species identification and differentiation. Fourier transform infrared spectroscopy (FTIR) is an analytical spectroscopic technique increasingly being used as a potential tool for identification of microorganisms for diagnostic purposes. By employing mid-infrared (MIR) spectral data, it is not only possible to assess the chemical structures but also to achieve differentiation supported by multivariate statistic analysis. This work comprises a pilot study on differentiation of Leishmania species of the Old World (L. major, L. tropica, L. infantum, and L. donovani) as well as hybrids of distinct species by using vibrational spectroscopic fingerprints. Films of intact Leishmania parasites and their deoxyribonucleic acid (DNA) were characterized comparatively with respect to their biochemical nature and MIR spectral patterns. The strains’ hyperspectral datasets were multivariately examined by means of variance-based principal components analysis (PCA) and distance-based hierarchical cluster analysis (HCA). With the implementation of MIR spectral datasets we show that a phenotypic differentiation of Leishmania at species and intra-species level is feasible. Thus, FTIR spectroscopy can be further exploited for building up spectral databases of Leishmania parasites in view of high-throughput analysis of clinical specimens. For Leishmania species discrimination, sample films of intact parasites and their extracted DNA were analyzed by FTIR micro-spectroscopy. Hyperspectral datasets that comprise mid-infrared fingerprints were submitted to multivariate analysis tools such as principal components analysis (PCA) and hierarchical cluster analysis (HCA). ![]()
Collapse
|
36
|
Revealing the mystery of metabolic adaptations using a genome scale model of Leishmania infantum. Sci Rep 2017; 7:10262. [PMID: 28860532 PMCID: PMC5579285 DOI: 10.1038/s41598-017-10743-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Accepted: 08/14/2017] [Indexed: 11/08/2022] Open
Abstract
Human macrophage phagolysosome and sandfly midgut provide antagonistic ecological niches for Leishmania parasites to survive and proliferate. Parasites optimize their metabolism to utilize the available inadequate resources by adapting to those environments. Lately, a number of metabolomics studies have revived the interest to understand metabolic strategies utilized by the Leishmania parasite for optimal survival within its hosts. For the first time, we propose a reconstructed genome-scale metabolic model for Leishmania infantum JPCM5, the analyses of which not only captures observations reported by metabolomics studies in other Leishmania species but also divulges novel features of the L. infantum metabolome. Our results indicate that Leishmania metabolism is organized in such a way that the parasite can select appropriate alternatives to compensate for limited external substrates. A dynamic non-essential amino acid motif exists within the network that promotes a restricted redistribution of resources to yield required essential metabolites. Further, subcellular compartments regulate this metabolic re-routing by reinforcing the physiological coupling of specific reactions. This unique metabolic organization is robust against accidental errors and provides a wide array of choices for the parasite to achieve optimal survival.
Collapse
|
37
|
Kaufer A, Ellis J, Stark D, Barratt J. The evolution of trypanosomatid taxonomy. Parasit Vectors 2017; 10:287. [PMID: 28595622 PMCID: PMC5463341 DOI: 10.1186/s13071-017-2204-7] [Citation(s) in RCA: 109] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 05/17/2017] [Indexed: 12/20/2022] Open
Abstract
Trypanosomatids are protozoan parasites of the class Kinetoplastida predominately restricted to invertebrate hosts (i.e. possess a monoxenous life-cycle). However, several genera are pathogenic to humans, animals and plants, and have an invertebrate vector that facilitates their transmission (i.e. possess a dixenous life-cycle). Phytomonas is one dixenous genus that includes several plant pathogens transmitted by phytophagous insects. Trypanosoma and Leishmania are dixenous genera that infect vertebrates, including humans, and are transmitted by hematophagous invertebrates. Traditionally, monoxenous trypanosomatids such as Leptomonas were distinguished from morphologically similar dixenous species based on their restriction to an invertebrate host. Nonetheless, this criterion is somewhat flawed as exemplified by Leptomonas seymouri which reportedly infects vertebrates opportunistically. Similarly, Novymonas and Zelonia are presumably monoxenous genera yet sit comfortably in the dixenous clade occupied by Leishmania. The isolation of Leishmania macropodum from a biting midge (Forcipomyia spp.) rather than a phlebotomine sand fly calls into question the exclusivity of the Leishmania-sand fly relationship, and its suitability for defining the Leishmania genus. It is now accepted that classic genus-defining characteristics based on parasite morphology and host range are insufficient to form the sole basis of trypanosomatid taxonomy as this has led to several instances of paraphyly. While improvements have been made, resolution of evolutionary relationships within the Trypanosomatidae is confounded by our incomplete knowledge of its true diversity. The known trypanosomatids probably represent a fraction of those that exist and isolation of new species will help resolve relationships in this group with greater accuracy. This review incites a dialogue on how our understanding of the relationships between certain trypanosomatids has shifted, and discusses new knowledge that informs the present taxonomy of these important parasites.
Collapse
Affiliation(s)
- Alexa Kaufer
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007 Australia
| | - John Ellis
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007 Australia
| | - Damien Stark
- Department of Microbiology, St Vincent’s Hospital Sydney, Darlinghurst, NSW 2010 Australia
| | - Joel Barratt
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW 2007 Australia
| |
Collapse
|
38
|
Sereno D, Akhoundi M, Dorkeld F, Oury B, Momen H, Perrin P. What pre-Columbian mummies could teach us about South American leishmaniases? Pathog Dis 2017; 75:3003283. [PMID: 28423167 DOI: 10.1093/femspd/ftx019] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Accepted: 02/14/2017] [Indexed: 11/13/2022] Open
Abstract
A recent report on the taxonomic profile of the human gut microbiome in pre-Columbian mummies (Santiago-Rodriguez et al. 2016) gives for the first time evidence of the presence of Leishmania DNA (sequences similar to Leishmania donovani according to the authors) that can be reminiscent of visceral leishmaniasis during the pre-Columbian era. It is commonly assumed that Leishmania infantum, the etiological agent of American visceral leishmaniasis (AVL) was introduced into the New World by the Iberian conquest. This finding is really surprising and must be put into perspective with what is known from an AVL epidemiological and historical point of view. Beside L. infantum, there are other species that are occasionally reported to cause AVL in the New World. Among these, L. colombiensis is present in the region of pre-Columbian mummies studied. Other explanations for these findings include a more ancient introduction of a visceral species of Leishmania from the Old World or the existence of a yet unidentified endemic species causing visceral leishmaniasis in South America. Unfortunately, very few molecular data are known about this very long pre-Columbian period concerning the circulating species of Leishmania and their diversity in America.
Collapse
Affiliation(s)
- Denis Sereno
- IRD UMR 177 (IRD, CIRAD), Centre IRD de Montpellier, Montpellier 34394, France.,MIVEGEC/Université de Montpellier CNRS/UMR 5244/IRD 224-Centre IRD, Montpellier 34394, France
| | - Mohammad Akhoundi
- Service de Parasitologie-Mycologie, Hôpital de l'Archet, Centre Hospitalier Universitaire de Nice, Provence-Alpes-Côte d'Azur, Nice 06003, France
| | - Franck Dorkeld
- INRA-UMR 1062 CBGP (INRA, IRD, CIRAD), Montpellier SupAgro, Montferrier-sur-Lez, Languedoc-Roussillon 34988, France
| | - Bruno Oury
- IRD UMR 177 (IRD, CIRAD), Centre IRD de Montpellier, Montpellier 34394, France
| | - Hooman Momen
- Instituto Oswaldo Cruz, Fiocruz, 21040-360 Rio de Janeiro, Brazil
| | - Pascale Perrin
- MIVEGEC/Université de Montpellier CNRS/UMR 5244/IRD 224-Centre IRD, Montpellier 34394, France
| |
Collapse
|
39
|
Coughlan S, Mulhair P, Sanders M, Schonian G, Cotton JA, Downing T. The genome of Leishmania adleri from a mammalian host highlights chromosome fission in Sauroleishmania. Sci Rep 2017; 7:43747. [PMID: 28256610 PMCID: PMC5335649 DOI: 10.1038/srep43747] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 01/26/2017] [Indexed: 12/30/2022] Open
Abstract
Control of pathogens arising from humans, livestock and wild animals can be enhanced by genome-based investigation. Phylogenetically classifying and optimal construction of these genomes using short sequence reads are key to this process. We examined the mammal-infecting unicellular parasite Leishmania adleri belonging to the lizard-infecting Sauroleishmania subgenus. L. adleri has been associated with cutaneous disease in humans, but can be asymptomatic in wild animals. We sequenced, assembled and investigated the L. adleri genome isolated from an asymptomatic Ethiopian rodent (MARV/ET/75/HO174) and verified it as L. adleri by comparison with other Sauroleishmania species. Chromosome-level scaffolding was achieved by combining reference-guided with de novo assembly followed by extensive improvement steps to produce a final draft genome with contiguity comparable with other references. L. tarentolae and L. major genome annotation was transferred and these gene models were manually verified and improved. This first high-quality draft Leishmania adleri reference genome is also the first Sauroleishmania genome from a non-reptilian host. Comparison of the L. adleri HO174 genome with those of L. tarentolae Parrot-TarII and lizard-infecting L. adleri RLAT/KE/1957/SKINK-7 showed extensive gene amplifications, pervasive aneuploidy, and fission of chromosomes 30 and 36. There was little genetic differentiation between L. adleri extracted from mammals and reptiles, highlighting challenges for leishmaniasis surveillance.
Collapse
Affiliation(s)
- Simone Coughlan
- School of Mathematics, Applied Mathematics and Statistics, National University of Ireland, Galway, Ireland
| | - Peter Mulhair
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | | | | | | | - Tim Downing
- School of Mathematics, Applied Mathematics and Statistics, National University of Ireland, Galway, Ireland
- School of Biotechnology, Dublin City University, Dublin, Ireland
| |
Collapse
|
40
|
Abstract
In this review article the history of leishmaniasis is discussed regarding the origin of the genus Leishmania in the Mesozoic era and its subsequent geographical distribution, initial evidence of the disease in ancient times, first accounts of the infection in the Middle Ages, and the discovery of Leishmania parasites as causative agents of leishmaniasis in modern times. With respect to the origin and dispersal of Leishmania parasites, the three currently debated hypotheses (Palaearctic, Neotropical and supercontinental origin, respectively) are presented. Ancient documents and paleoparasitological data indicate that leishmaniasis was already widespread in antiquity. Identification of Leishmania parasites as etiological agents and sand flies as the transmission vectors of leishmaniasis started at the beginning of the 20th century and the discovery of new Leishmania and sand fly species continued well into the 21st century. Lately, the Syrian civil war and refugee crises have shown that leishmaniasis epidemics can happen any time in conflict areas and neighbouring regions where the disease was previously endemic.
Collapse
Affiliation(s)
- Dietmar Steverding
- Bob Champion Research & Education Building, Norwich Medical School, University of East Anglia, Norwich Research Park, James Watson Road, Norwich, NR4 7UQ, UK.
| |
Collapse
|
41
|
Akhoundi M, Downing T, Votýpka J, Kuhls K, Lukeš J, Cannet A, Ravel C, Marty P, Delaunay P, Kasbari M, Granouillac B, Gradoni L, Sereno D. Leishmania infections: Molecular targets and diagnosis. Mol Aspects Med 2017; 57:1-29. [PMID: 28159546 DOI: 10.1016/j.mam.2016.11.012] [Citation(s) in RCA: 212] [Impact Index Per Article: 26.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Revised: 11/08/2016] [Accepted: 11/28/2016] [Indexed: 12/15/2022]
Abstract
Progress in the diagnosis of leishmaniases depends on the development of effective methods and the discovery of suitable biomarkers. We propose firstly an update classification of Leishmania species and their synonymies. We demonstrate a global map highlighting the geography of known endemic Leishmania species pathogenic to humans. We summarize a complete list of techniques currently in use and discuss their advantages and limitations. The available data highlights the benefits of molecular markers in terms of their sensitivity and specificity to quantify variation from the subgeneric level to species complexes, (sub) species within complexes, and individual populations and infection foci. Each DNA-based detection method is supplied with a comprehensive description of markers and primers and proposal for a classification based on the role of each target and primer in the detection, identification and quantification of leishmaniasis infection. We outline a genome-wide map of genes informative for diagnosis that have been used for Leishmania genotyping. Furthermore, we propose a classification method based on the suitability of well-studied molecular markers for typing the 21 known Leishmania species pathogenic to humans. This can be applied to newly discovered species and to hybrid strains originating from inter-species crosses. Developing more effective and sensitive diagnostic methods and biomarkers is vital for enhancing Leishmania infection control programs.
Collapse
Affiliation(s)
- Mohammad Akhoundi
- Service de Parasitologie-Mycologie, Hôpital de l'Archet, Centre Hospitalier Universitaire de Nice, Nice, France; MIVEGEC, UMR CNRS5290-IRD224-Université de Montpellier Centre IRD, Montpellier, France.
| | - Tim Downing
- School of Biotechnology, Dublin City University, Dublin, Ireland
| | - Jan Votýpka
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic; Department of Parasitology, Faculty of Science, Charles University in Prague, Prague, Czech Republic
| | - Katrin Kuhls
- Division of Molecular Biotechnology and Functional Genomics, Technical University of Applied Sciences Wildau, Wildau, Germany
| | - Julius Lukeš
- Biology Centre, Institute of Parasitology, Czech Academy of Sciences, České Budějovice, Czech Republic; Faculty of Sciences, University of South Bohemia, České Budějovice, Czech Republic; Canadian Institute for Advanced Research, Toronto, Canada
| | - Arnaud Cannet
- Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, Université de Nice-Sophia Antipolis, Nice, France
| | - Christophe Ravel
- French National Reference Centre on Leishmaniasis, Montpellier University, Montpellier, France
| | - Pierre Marty
- Service de Parasitologie-Mycologie, Hôpital de l'Archet, Centre Hospitalier Universitaire de Nice, Nice, France; Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, Université de Nice-Sophia Antipolis, Nice, France
| | - Pascal Delaunay
- Service de Parasitologie-Mycologie, Hôpital de l'Archet, Centre Hospitalier Universitaire de Nice, Nice, France; Inserm U1065, Centre Méditerranéen de Médecine Moléculaire, Université de Nice-Sophia Antipolis, Nice, France; MIVEGEC, UMR CNRS5290-IRD224-Université de Montpellier Centre IRD, Montpellier, France
| | - Mohamed Kasbari
- Agence Nationale de Sécurité Sanitaire de l'Alimentation, de l'Environnement et du Travail, ANSES, Laboratoire de Santé Animale, Maisons-Alfort, Cedex, France
| | - Bruno Granouillac
- IRD/UMI 233, INSERM U1175, Montpellier University, Montpellier, France; MIVEGEC, UMR CNRS5290-IRD224-Université de Montpellier Centre IRD, Montpellier, France
| | - Luigi Gradoni
- Unit of Vector-borne Diseases and International Health, Istituto Superiore di Sanità, Rome, Italy
| | - Denis Sereno
- MIVEGEC, UMR CNRS5290-IRD224-Université de Montpellier Centre IRD, Montpellier, France; Intertryp UMR IRD177, Centre IRD de Montpellier, Montpellier, France
| |
Collapse
|
42
|
Comparative genomics of canine-isolated Leishmania (Leishmania) amazonensis from an endemic focus of visceral leishmaniasis in Governador Valadares, southeastern Brazil. Sci Rep 2017; 7:40804. [PMID: 28091623 PMCID: PMC5238499 DOI: 10.1038/srep40804] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2016] [Accepted: 12/12/2016] [Indexed: 01/12/2023] Open
Abstract
Leishmaniasis is a highly diverse group of diseases caused by kinetoplastid of the genus Leishmania. These parasites are taxonomically diverse, with human pathogenic species separated into two subgenera according to their development site inside the alimentary tract of the sand fly insect vector. The disease encompasses a variable spectrum of clinical manifestations with tegumentary or visceral symptoms. Among the causative species in Brazil, Leishmania (Leishmania) amazonensis is an important etiological agent of human cutaneous leishmaniasis that accounts for more than 8% of all cases in endemic regions. L. (L.) amazonensis is generally found in the north and northeast regions of Brazil. Here, we report the first isolation of L. (L.) amazonensis from dogs with clinical manifestations of visceral leishmaniasis in Governador Valadares, an endemic focus in the southeastern Brazilian State of Minas Gerais where L. (L.) infantum is also endemic. These isolates were characterized in terms of SNPs, chromosome and gene copy number variations, confirming that they are closely related to a previously sequenced isolate obtained in 1973 from the typical Northern range of this species. The results presented in this article will increase our knowledge of L. (L.) amazonensis-specific adaptations to infection, parasite survival and the transmission of this Amazonian species in a new endemic area of Brazil.
Collapse
|
43
|
Barratt J, Kaufer A, Peters B, Craig D, Lawrence A, Roberts T, Lee R, McAuliffe G, Stark D, Ellis J. Isolation of Novel Trypanosomatid, Zelonia australiensis sp. nov. (Kinetoplastida: Trypanosomatidae) Provides Support for a Gondwanan Origin of Dixenous Parasitism in the Leishmaniinae. PLoS Negl Trop Dis 2017; 11:e0005215. [PMID: 28081121 PMCID: PMC5230760 DOI: 10.1371/journal.pntd.0005215] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2016] [Accepted: 11/29/2016] [Indexed: 01/28/2023] Open
Abstract
The genus Leishmania includes approximately 53 species, 20 of which cause human leishmaniais; a significant albeit neglected tropical disease. Leishmaniasis has afflicted humans for millennia, but how ancient is Leishmania and where did it arise? These questions have been hotly debated for decades and several theories have been proposed. One theory suggests Leishmania originated in the Palearctic, and dispersed to the New World via the Bering land bridge. Others propose that Leishmania evolved in the Neotropics. The Multiple Origins theory suggests that separation of certain Old World and New World species occurred due to the opening of the Atlantic Ocean. Some suggest that the ancestor of the dixenous genera Leishmania, Endotrypanum and Porcisia evolved on Gondwana between 90 and 140 million years ago. In the present study a detailed molecular and morphological characterisation was performed on a novel Australian trypanosomatid following its isolation in Australia’s tropics from the native black fly, Simulium (Morops) dycei Colbo, 1976. Phylogenetic analyses were conducted and confirmed this parasite as a sibling to Zelonia costaricensis, a close relative of Leishmania previously isolated from a reduviid bug in Costa Rica. Consequently, this parasite was assigned the name Zelonia australiensis sp. nov. Assuming Z. costaricensis and Z. australiensis diverged when Australia and South America became completely separated, their divergence occurred between 36 and 41 million years ago at least. Using this vicariance event as a calibration point for a phylogenetic time tree, the common ancestor of the dixenous genera Leishmania, Endotrypanum and Porcisia appeared in Gondwana approximately 91 million years ago. Ultimately, this study contributes to our understanding of trypanosomatid diversity, and of Leishmania origins by providing support for a Gondwanan origin of dixenous parasitism in the Leishmaniinae. The genus Leishmania includes approximately 53 species, 20 of which cause human leishmaniais, a significant disease that has afflicted humans for millennia. But how ancient is Leishmania and where did it arise? Some suggest Leishmania originated in the Palearctic. Others suggest it appeared in the Neotropics. The Multiple Origins theory proposes that separation of certain Old World and Neotropical species occurred following the opening of the Atlantic. Others suggest that an ancestor to the Euleishmania and Paraleishmania appeared on Gondwana 90 to 140 million years ago (MYA). We performed a detailed molecular and morphological characterisation of a novel Australian trypanosomatid. This parasite is a sibling to the Neotropical Zelonia costaricensis, a close relative of Leishmania, and designated as Zelonia australiensis sp. nov. Assuming Z. costaricensis and Z. australiensis split when Australia and South America separated, their divergence occurred between 36 and 41 MYA. Using this event as a calibration point for a phylogenetic time tree, an ancestor of the dixenous Leishmaniinae appeared in Gondwana ~ 91 MYA. This study contributes to our understanding of trypanosomatid diversity by describing a unique Australian trypanosomatid and to our understanding of Leishmania evolution by inferring a Gondwanan origin for dixenous parasitism in the Leishmaniinae.
Collapse
Affiliation(s)
- Joel Barratt
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
- * E-mail:
| | - Alexa Kaufer
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Bryce Peters
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
- Insect Research Facility, University of Technology Sydney, Sydney, New South Wales, Australia
| | - Douglas Craig
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| | - Andrea Lawrence
- Faculty of Veterinary Science, University of Sydney, Sydney, New South Wales, Australia
- Department of Medical Entomology, University of Sydney & Pathology West - ICPMR, Westmead Hospital, Westmead, New South Wales, Australia
| | - Tamalee Roberts
- St. Vincent's Hospital Sydney, Division of Microbiology, Sydney, New South Wales, Australia
| | - Rogan Lee
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR, Westmead Hospital, Westmead, New South Wales, Australia
| | - Gary McAuliffe
- Microbiology Department, Royal Darwin Hospital, Darwin, Northern Territory, Australia
| | - Damien Stark
- St. Vincent's Hospital Sydney, Division of Microbiology, Sydney, New South Wales, Australia
| | - John Ellis
- School of Life Sciences, University of Technology Sydney, Sydney, New South Wales, Australia
| |
Collapse
|
44
|
An appraisal of the taxonomy and nomenclature of trypanosomatids presently classified as Leishmania and Endotrypanum. Parasitology 2016; 145:430-442. [PMID: 27976601 DOI: 10.1017/s0031182016002092] [Citation(s) in RCA: 116] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
We propose a taxonomic revision of the dixenous trypanosomatids currently classified as Endotrypanum and Leishmania, including parasites that do not fall within the subgenera L. (Leishmania) and L. (Viannia) related to human leishmaniasis or L. (Sauroleishmania) formed by leishmanias of lizards: L. colombiensis, L. equatorensis, L. herreri, L. hertigi, L. deanei, L. enriettii and L. martiniquensis. The comparison of these species with newly characterized isolates from sloths, porcupines and phlebotomines from central and South America unveiled new genera and subgenera supported by past (RNA PolII gene) and present (V7V8 SSU rRNA, Hsp70 and gGAPDH) phylogenetic analyses of the organisms. The genus Endotrypanum is restricted to Central and South America, comprising isolates from sloths and transmitted by phlebotomines that sporadically infect humans. This genus is the closest to the new genus Porcisia proposed to accommodate the Neotropical porcupine parasites originally described as L. hertigi and L. deanei. A new subgenus Leishmania (Mundinia) is created for the L. enriettii complex that includes L. martiniquensis. The new genus Zelonia harbours trypanosomatids from Neotropical hemipterans placed at the edge of the Leishmania-Endotrypanum-Porcisia clade. Finally, attention is drawn to the status of L. siamensis and L. australiensis as nomem nudums.
Collapse
|
45
|
Ludwig A, Krieger MA. Genomic and phylogenetic evidence of VIPER retrotransposon domestication in trypanosomatids. Mem Inst Oswaldo Cruz 2016; 111:765-769. [PMID: 27849219 PMCID: PMC5146736 DOI: 10.1590/0074-02760160224] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2016] [Accepted: 08/25/2016] [Indexed: 12/02/2022] Open
Abstract
Transposable elements are important residents of eukaryotic genomes and eventually
the host can domesticate them to serve cellular functions. We reported here a
possible domestication event of the vestigial interposed retroelement (VIPER) in
trypanosomatids. We found a large gene in a syntenic location in Leishmania
braziliensis, L. panamensis, Leptomanas
pyrrhocoris, and Crithidia fasciculata whose products
share similarity in the C-terminal portion with the third protein of VIPER. No
remnants of other VIPER regions surrounding the gene sequence were found. We
hypothesise that the domestication event occurred more than 50 mya and the
conservation of this gene suggests it might perform some function in the host
species.
Collapse
Affiliation(s)
- Adriana Ludwig
- Fundação Oswaldo Cruz, Instituto Carlos Chagas, Laboratório de Genômica Funcional, Curitiba, PR, Brasil.,Instituto de Biologia Molecular do Paraná, Curitiba, PR, Brasil
| | - Marco Aurelio Krieger
- Fundação Oswaldo Cruz, Instituto Carlos Chagas, Laboratório de Genômica Funcional, Curitiba, PR, Brasil.,Instituto de Biologia Molecular do Paraná, Curitiba, PR, Brasil
| |
Collapse
|
46
|
Abstract
SUMMARYFamous for the discovery of the parasite, Leishmania, named after him, and the invention of Leishman's stain, William Boog Leishman should perhaps be better known for his work in military and public health, particularly the prevention of typhoid. Leishman was a Medical Officer in the British Army from 1887 until his death in 1926. His early research was on diseases affecting troops posted to stations within the British Empire. He saw cases of Leishmaniasis while stationed in India, and was able to identify the causative organism from his detailed records of his observations. Leishman's most important contribution to public health, however, was his work with typhoid, a major cause of morbidity and mortality in the army. Leishman planned experiments and the collection of data to demonstrate the efficacy of anti-typhoid inoculation and, using his considerable political skills, advocated the adoption of the vaccine. He planned for the inoculation of troops in an emergency so, when war broke out in 1914, the vaccine was available to save thousands of lives. Leishman's colleagues and mentors included Ronald Ross and Almroth Wright. Leishman was less outspoken than either Ross or Wright; this paper shows how the different contributions of the three men overlapped.
Collapse
|
47
|
Zhang JR, Guo XG, Liu JL, Zhou TH, Gong X, Chen DL, Chen JP. Molecular detection, identification and phylogenetic inference of Leishmania spp. in some desert lizards from Northwest China by using internal transcribed spacer 1 (ITS1) sequences. Acta Trop 2016; 162:83-94. [PMID: 27338182 DOI: 10.1016/j.actatropica.2016.06.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2016] [Revised: 06/19/2016] [Accepted: 06/19/2016] [Indexed: 10/21/2022]
Abstract
Leishmaniasis caused by Leishmania is still endemic in Northwest China. It has been thought that reptiles could be a reservoir for mammalian leishmaniasis. However, data are still scarce on natural infection of lizards with Leishmania spp. in China. The present study deals with detection, identification and phylogenetic inference of Leishmania parasites at species and intraspecies levels isolated from six desert lizard species from 10 geographical locations in Northwest China using amplification and sequencing of ITS-rDNA. In total, 83 haplotypes were found among 137 ITS1 sequences obtained from up to 64.6% of all captured lizards. Representative sequences of Leishmania available in GenBank were compiled for comparison with the obtained haplotypes. Tree-based species delimitation was achieved by using Bayesian phylogenitc analyses and maximum parsimony approach. Phylogenetic trees congruently supported that the haplotypes were found to belong to three Leishmania species including L. (sauroleishmania) sp., Leishmania tropica and Leishmania donovani complex. A network approach revealed paraphyletic populations of L. (sauroleishmania) sp. and L. tropica at intraspecies level regarding geographical origin and low host specificity. Chinese L. tropica from lizards showed significant heterogeneity as the obtained haplotypes were distributed in different clusters from other countries. Common ancestry was observed between some sequences of L. tropica from lizards and other sequence types from clinical samples from other countries. This may lend support to the potential reservoir role of lizards for human leishmaniasis. Our results appear to be the first molecular evidence for natural infection of lizards in Northwest China with reptilian Leishmania and mammalian Leishmania species. Desert lizards may be considered as putative reservoir hosts for Leishmania in China. Further studies on persistence of the Leishmania parasites in lizards and sandflies are recommended for the better understanding of their epidemiological involvement.
Collapse
|