1
|
Fraser DD, Roy S, Kuruc M, Quintero M, Van Nynatten LR, Cepinskas G, Zheng H, Soherwardy A, Roy D. Functional mass spectrometry indicates anti-protease and complement activity increase with COVID-19 severity. Exp Biol Med (Maywood) 2025; 250:10308. [PMID: 39949890 PMCID: PMC11813650 DOI: 10.3389/ebm.2025.10308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 01/14/2025] [Indexed: 02/16/2025] Open
Abstract
Investigations on some innate immunity proteins can yield misleading information, as investigators often rely on static measurements and assume a direct correlation to function. As protein function is often not directly proportional to protein abundance, and mechanistic pathways are interconnected and under constant feedback regulatory control, functional analysis is required. In this study, we used functional mass spectrometry to measure anti-protease and complement activity in plasma obtained from coronavirus disease 2019 (COVID-19) patients. Our data suggests that within 48 h of hospital admission, COVID-19 patients undergo a protease storm with significantly elevated neutrophil elastase (p < 0.001) and lymphocyte granzyme B (p < 0.01), while, anti-protease activity is significantly increased, including alpha-1 antitrypsin (AAT; p < 0.001) and alpha-1-antichymotrypsin (ACT; p < 0.001). Concurrently, the ratio of C3a to C3beta activity significantly decreased with increasing COVID-19 severity, suggesting more complement activation (Mild COVID-19 p < 0.05; Severe COVID-19 p < 0.001). Activity levels of AAT, ACT and C3a/C3beta remained unchanged over 10 hospital days. Our data suggests that COVID-19 is associated with both a protease storm and complement activation, with the former somewhat balanced with increased anti-protease activity. Evaluation of the AAT/ACT ratio and C3a/C3beta ratio indicated that COVID-19 severity is associated with both neutrophil elastase neutralization and complement activation.
Collapse
Affiliation(s)
- Douglas D. Fraser
- London Health Sciences Centre Research Institute, London, ON, Canada
- Pediatrics, Western University, London, ON, Canada
| | - Swapan Roy
- Biotech Support Group LLC, Monmouth Junction, NJ, United States
| | - Matt Kuruc
- Biotech Support Group LLC, Monmouth Junction, NJ, United States
| | | | | | - Gediminas Cepinskas
- London Health Sciences Centre Research Institute, London, ON, Canada
- Medical Biophysics, Western University, London, ON, Canada
| | - Haiyan Zheng
- Rutgers Center for Integrative Proteomics, Rutgers University, Piscataway, NJ, United States
| | - Amenah Soherwardy
- Rutgers Center for Integrative Proteomics, Rutgers University, Piscataway, NJ, United States
| | - Devjit Roy
- Nathan Littauer Hospital, Gloversville, NY, United States
| |
Collapse
|
2
|
Padín JF, Pérez-Ortiz JM, Redondo-Calvo FJ. Aprotinin (I): Understanding the Role of Host Proteases in COVID-19 and the Importance of Pharmacologically Regulating Their Function. Int J Mol Sci 2024; 25:7553. [PMID: 39062796 PMCID: PMC11277036 DOI: 10.3390/ijms25147553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Revised: 07/06/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
Proteases are produced and released in the mucosal cells of the respiratory tract and have important physiological functions, for example, maintaining airway humidification to allow proper gas exchange. The infectious mechanism of severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2), which causes coronavirus disease 2019 (COVID-19), takes advantage of host proteases in two ways: to change the spatial conformation of the spike (S) protein via endoproteolysis (e.g., transmembrane serine protease type 2 (TMPRSS2)) and as a target to anchor to epithelial cells (e.g., angiotensin-converting enzyme 2 (ACE2)). This infectious process leads to an imbalance in the mucosa between the release and action of proteases versus regulation by anti-proteases, which contributes to the exacerbation of the inflammatory and prothrombotic response in COVID-19. In this article, we describe the most important proteases that are affected in COVID-19, and how their overactivation affects the three main physiological systems in which they participate: the complement system and the kinin-kallikrein system (KKS), which both form part of the contact system of innate immunity, and the renin-angiotensin-aldosterone system (RAAS). We aim to elucidate the pathophysiological bases of COVID-19 in the context of the imbalance between the action of proteases and anti-proteases to understand the mechanism of aprotinin action (a panprotease inhibitor). In a second-part review, titled "Aprotinin (II): Inhalational Administration for the Treatment of COVID-19 and Other Viral Conditions", we explain in depth the pharmacodynamics, pharmacokinetics, toxicity, and use of aprotinin as an antiviral drug.
Collapse
Affiliation(s)
- Juan Fernando Padín
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, 13971 Ciudad Real, Spain;
| | - José Manuel Pérez-Ortiz
- Facultad HM de Ciencias de la Salud, Universidad Camilo José Cela, 28692 Madrid, Spain
- Instituto de Investigación Sanitaria HM Hospitales, 28015 Madrid, Spain
| | - Francisco Javier Redondo-Calvo
- Department of Medical Sciences, School of Medicine at Ciudad Real, University of Castilla-La Mancha, 13971 Ciudad Real, Spain;
- Department of Anaesthesiology and Critical Care Medicine, University General Hospital, 13005 Ciudad Real, Spain
- Translational Research Unit, University General Hospital and Research Institute of Castilla-La Mancha (IDISCAM), 13005 Ciudad Real, Spain
| |
Collapse
|
3
|
Pace E, Di Vincenzo S, Ferraro M, Lanata L, Scaglione F. Role of airway epithelium in viral respiratory infections: Can carbocysteine prevent or mitigate them? Immunology 2024; 172:329-342. [PMID: 38354831 DOI: 10.1111/imm.13762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Accepted: 01/26/2024] [Indexed: 02/16/2024] Open
Abstract
Alterations in airway epithelial homeostasis increase viral respiratory infections risk. Viral infections frequently are associated with chronic obstructive pulmonary disease (COPD) exacerbations, events that dramatically promote disease progression. Mechanism promoting the main respiratory viruses entry and virus-evocated innate and adaptive immune responses have now been elucidated, and an oxidative stress central role in these pathogenic processes has been recognized. Presence of reactive oxygen species in macrophages and other cells allows them to eliminate virus, but its excess alters the balance between innate and adaptive immune responses and proteases/anti-proteases and leads to uncontrolled inflammation, tissue damage, and hypercoagulability. Different upper and lower airway cell types also play a role in viral entry and infection. Carbocysteine is a muco-active drug with anti-oxidant and anti-inflammatory properties used for the management of several chronic respiratory diseases. Although the use of anti-oxidants has been proposed as an effective strategy in COPD exacerbations management, the molecular mechanisms that explain carbocysteine efficacy have not yet been fully clarified. The present review describes the most relevant features of the common respiratory virus pathophysiology with a focus on epithelial cells and oxidative stress role and reports data supporting a putative role of carbocysteine in viral respiratory infections.
Collapse
Affiliation(s)
- Elisabetta Pace
- Istituto di Farmacologia Traslazionale-Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Serena Di Vincenzo
- Istituto di Farmacologia Traslazionale-Consiglio Nazionale delle Ricerche, Palermo, Italy
| | - Maria Ferraro
- Istituto di Farmacologia Traslazionale-Consiglio Nazionale delle Ricerche, Palermo, Italy
| | | | - Francesco Scaglione
- Department of Oncology and Hemato-oncology, University of Milan, Milan, Italy
| |
Collapse
|
4
|
Faraji N, Zeinali T, Joukar F, Aleali MS, Eslami N, Shenagari M, Mansour-Ghanaei F. Mutational dynamics of SARS-CoV-2: Impact on future COVID-19 vaccine strategies. Heliyon 2024; 10:e30208. [PMID: 38707429 PMCID: PMC11066641 DOI: 10.1016/j.heliyon.2024.e30208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 04/18/2024] [Accepted: 04/22/2024] [Indexed: 05/07/2024] Open
Abstract
The rapid emergence of multiple strains of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) has sparked profound concerns regarding the ongoing evolution of the virus and its potential impact on global health. Classified by the World Health Organization (WHO) as variants of concern (VOC), these strains exhibit heightened transmissibility and pathogenicity, posing significant challenges to existing vaccine strategies. Despite widespread vaccination efforts, the continual evolution of SARS-CoV-2 variants presents a formidable obstacle to achieving herd immunity. Of particular concern is the coronavirus spike (S) protein, a pivotal viral surface protein crucial for host cell entry and infectivity. Mutations within the S protein have been shown to enhance transmissibility and confer resistance to antibody-mediated neutralization, undermining the efficacy of traditional vaccine platforms. Moreover, the S protein undergoes rapid molecular evolution under selective immune pressure, leading to the emergence of diverse variants with distinct mutation profiles. This review underscores the urgent need for vigilance and adaptation in vaccine development efforts to combat the evolving landscape of SARS-CoV-2 mutations and ensure the long-term effectiveness of global immunization campaigns.
Collapse
Affiliation(s)
- Niloofar Faraji
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Tahereh Zeinali
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Farahnaz Joukar
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Maryam Sadat Aleali
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Narges Eslami
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| | - Mohammad Shenagari
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
- Department of Microbiology, School of Medicine, Guilan University of Medical Sciences, Rasht, Iran
| | - Fariborz Mansour-Ghanaei
- Gastrointestinal and Liver Diseases Research Center, Guilan University of Medical Sciences, Rasht, Iran
| |
Collapse
|
5
|
Leborgne NG, Devisme C, Kozarac N, Berenguer Veiga I, Ebert N, Godel A, Grau-Roma L, Scherer M, Plattet P, Thiel V, Zimmer G, Taddeo A, Benarafa C. Neutrophil proteases are protective against SARS-CoV-2 by degrading the spike protein and dampening virus-mediated inflammation. JCI Insight 2024; 9:e174133. [PMID: 38470488 PMCID: PMC11128203 DOI: 10.1172/jci.insight.174133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/29/2024] [Indexed: 03/13/2024] Open
Abstract
Studies on severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) have highlighted the crucial role of host proteases for viral replication and the immune response. The serine proteases furin and TMPRSS2 and lysosomal cysteine proteases facilitate viral entry by limited proteolytic processing of the spike (S) protein. While neutrophils are recruited to the lungs during COVID-19 pneumonia, little is known about the role of the neutrophil serine proteases (NSPs) cathepsin G (CatG), elastase (NE), and proteinase 3 (PR3) on SARS-CoV-2 entry and replication. Furthermore, the current paradigm is that NSPs may contribute to the pathogenesis of severe COVID-19. Here, we show that these proteases cleaved the S protein at multiple sites and abrogated viral entry and replication in vitro. In mouse models, CatG significantly inhibited viral replication in the lung. Importantly, lung inflammation and pathology were increased in mice deficient in NE and/or CatG. These results reveal that NSPs contribute to innate defenses against SARS-CoV-2 infection via proteolytic inactivation of the S protein and that NE and CatG limit lung inflammation in vivo. We conclude that therapeutic interventions aiming to reduce the activity of NSPs may interfere with viral clearance and inflammation in COVID-19 patients.
Collapse
Affiliation(s)
- Nathan G.F. Leborgne
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty
| | - Christelle Devisme
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty
| | - Nedim Kozarac
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty
- Graduate School for Cellular and Biomedical Sciences
| | - Inês Berenguer Veiga
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty
| | - Nadine Ebert
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty
| | - Aurélie Godel
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty
| | | | - Melanie Scherer
- Graduate School for Cellular and Biomedical Sciences
- Division of Neurological Sciences, Vetsuisse Faculty, and
| | - Philippe Plattet
- Division of Neurological Sciences, Vetsuisse Faculty, and
- Multidisciplinary Center for Infectious Diseases (MCID), University of Bern, Bern, Switzerland
| | - Volker Thiel
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty
- Multidisciplinary Center for Infectious Diseases (MCID), University of Bern, Bern, Switzerland
| | - Gert Zimmer
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty
| | - Adriano Taddeo
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty
| | - Charaf Benarafa
- Institute of Virology and Immunology, Mittelhäusern, Switzerland
- Department of Infectious Diseases and Pathobiology, Vetsuisse Faculty
- Multidisciplinary Center for Infectious Diseases (MCID), University of Bern, Bern, Switzerland
| |
Collapse
|
6
|
Lotke R, Petersen M, Sauter D. Restriction of Viral Glycoprotein Maturation by Cellular Protease Inhibitors. Viruses 2024; 16:332. [PMID: 38543698 PMCID: PMC10975521 DOI: 10.3390/v16030332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 02/20/2024] [Accepted: 02/20/2024] [Indexed: 05/23/2024] Open
Abstract
The human genome is estimated to encode more than 500 proteases performing a wide range of important physiological functions. They digest proteins in our food, determine the activity of hormones, induce cell death and regulate blood clotting, for example. During viral infection, however, some proteases can switch sides and activate viral glycoproteins, allowing the entry of virions into new target cells and the spread of infection. To reduce unwanted effects, multiple protease inhibitors regulate the proteolytic processing of self and non-self proteins. This review summarizes our current knowledge of endogenous protease inhibitors, which are known to limit viral replication by interfering with the proteolytic activation of viral glycoproteins. We describe the underlying molecular mechanisms and highlight the diverse strategies by which protease inhibitors reduce virion infectivity. We also provide examples of how viruses evade the restriction imposed by protease inhibitors. Finally, we briefly outline how cellular protease inhibitors can be modified and exploited for therapeutic purposes. In summary, this review aims to summarize our current understanding of cellular protease inhibitors as components of our immune response to a variety of viral pathogens.
Collapse
Affiliation(s)
| | | | - Daniel Sauter
- Institute for Medical Virology and Epidemiology of Viral Diseases, University Hospital Tübingen, 72076 Tübingen, Germany
| |
Collapse
|
7
|
Chan ED, King PT, Bai X, Schoffstall AM, Sandhaus RA, Buckle AM. The Inhibition of Serine Proteases by Serpins Is Augmented by Negatively Charged Heparin: A Concise Review of Some Clinically Relevant Interactions. Int J Mol Sci 2024; 25:1804. [PMID: 38339082 PMCID: PMC10855260 DOI: 10.3390/ijms25031804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 01/28/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024] Open
Abstract
Serine proteases are members of a large family of hydrolytic enzymes in which a particular serine residue in the active site performs an essential role as a nucleophile, which is required for their proteolytic cleavage function. The array of functions performed by serine proteases is vast and includes, among others, the following: (i) the ability to fight infections; (ii) the activation of blood coagulation or blood clot lysis systems; (iii) the activation of digestive enzymes; and (iv) reproduction. Serine protease activity is highly regulated by multiple families of protease inhibitors, known collectively as the SERine Protease INhibitor (SERPIN). The serpins use a conformational change mechanism to inhibit proteases in an irreversible way. The unusual conformational change required for serpin function provides an elegant opportunity for allosteric regulation by the binding of cofactors, of which the most well-studied is heparin. The goal of this review is to discuss some of the clinically relevant serine protease-serpin interactions that may be enhanced by heparin or other negatively charged polysaccharides. The paired serine protease-serpin in the framework of heparin that we review includes the following: thrombin-antithrombin III, plasmin-anti-plasmin, C1 esterase/kallikrein-C1 esterase inhibitor, and furin/TMPRSS2 (serine protease Transmembrane Protease 2)-alpha-1-antitrypsin, with the latter in the context of COVID-19 and prostate cancer.
Collapse
Affiliation(s)
- Edward D. Chan
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045, USA
- Department of Academic Affairs, National Jewish Health, Denver, CO 80206, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Paul T. King
- Medicine Monash Health, Monash University, Clayton, VIC 3800, Australia
| | - Xiyuan Bai
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO 80045, USA
- Department of Academic Affairs, National Jewish Health, Denver, CO 80206, USA
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Allen M. Schoffstall
- Department of Chemistry and Biochemistry, University of Colorado, Colorado Springs, CO 80918, USA
| | | | - Ashley M. Buckle
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC 3800, Australia;
- Replay, San Diego, CA 92121, USA
| |
Collapse
|
8
|
Hwang TL, Lin JY, Kuo LM, Kumar Dhandabani G, Hsieh PW. Design and synthesis of sirtinol analogs as human neutrophil elastase inhibitors. Bioorg Med Chem Lett 2024; 97:129544. [PMID: 37939864 DOI: 10.1016/j.bmcl.2023.129544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 09/22/2023] [Accepted: 11/04/2023] [Indexed: 11/10/2023]
Abstract
Human neutrophil elastase (HNE) overexpression has a crucial role in most acute inflammation and alpha1-antitrypsin deficiency syndromes observed in humans, triggering neutrophil invasion and activation of macrophage inflammatory and proteolytic effects, leading to tissue damage. Manipulating HNE level homeostasis could potentially help treat neutrophilic inflammation. Previous studies have shown that sirtinol (1) has a specific influence on HNE and potently attenuates acute lung injury and hepatic injury mediated by lipopolysaccharide or trauma hemorrhage. Therefore, 1 was chosen as the model structure to obtain more potent anti-HNE agents. In the present study, we synthesized a series of sirtinol analogues and determined their inhibitory effects on HNE. Structure-activity relationship (SAR) studies showed that swapping the imine and methyl groups of the sirtinol scaffold with diazene and carboxyl groups, respectively, enhances the HNE inhibiting potency. Compound 29 exhibited the highest potency in the SAR study and showed dual inhibitory effects on HNE and proteinase 3 with IC50 values of 4.91 and 20.69 µM, respectively. Furthermore, 29 was confirmed to have dual impacts on inhibiting O2•- generation and elastase release in cell-based assays with IC50 values of 0.90 and 1.86 µM, respectively. These findings suggest that 29 is a promising candidate for developing HNE inhibitors in the treatment of neutrophilic inflammatory diseases.
Collapse
Affiliation(s)
- Tsong-Long Hwang
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Department of Anesthesiology, Chang Gung Memorial Hospital, Linkou, Taiwan; Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Chinese Herbal Medicine Research Team, Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan.
| | - Jing-Yi Lin
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Liang-Mou Kuo
- Department of General Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan.
| | - Ganesh Kumar Dhandabani
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan.
| | - Pei-Wen Hsieh
- Graduate Institute of Natural Products, School of Traditional Chinese Medicine, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Research Center for Chinese Herbal Medicine, Chang Gung University of Science and Technology, Taoyuan, Taiwan; Department of General Surgery, Chang Gung Memorial Hospital, Chiayi, Taiwan.
| |
Collapse
|
9
|
D’Amato M, Campagnoli M, Iadarola P, Bignami PM, Fumagalli M, Chiarelli LR, Stelitano G, Meloni F, Linciano P, Collina S, Pietrocola G, Vertui V, Aliberti A, Fossali T, Viglio S. Could the Oxidation of α1-Antitrypsin Prevent the Binding of Human Neutrophil Elastase in COVID-19 Patients? Int J Mol Sci 2023; 24:13533. [PMID: 37686340 PMCID: PMC10488172 DOI: 10.3390/ijms241713533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 08/28/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Human neutrophil elastase (HNE) is involved in SARS-CoV-2 virulence and plays a pivotal role in lung infection of patients infected by COVID-19. In healthy individuals, HNE activity is balanced by α1-antitrypsin (AAT). This is a 52 kDa glycoprotein, mainly produced and secreted by hepatocytes, that specifically inhibits HNE by blocking its activity through the formation of a stable complex (HNE-AAT) in which the two proteins are covalently bound. The lack of this complex, together with the detection of HNE activity in BALf/plasma samples of COVID-19 patients, leads us to hypothesize that potential functional deficiencies should necessarily be attributed to possible structural modifications of AAT. These could greatly diminish its ability to inhibit neutrophil elastase, thus reducing lung protection. The aim of this work was to explore the oxidation state of AAT in BALf/plasma samples from these patients so as to understand whether the deficient inhibitory activity of AAT was somehow related to possible conformational changes caused by the presence of abnormally oxidized residues.
Collapse
Affiliation(s)
- Maura D’Amato
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (M.C.); (G.P.); (S.V.)
| | - Monica Campagnoli
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (M.C.); (G.P.); (S.V.)
| | - Paolo Iadarola
- Department of Biology and Biotechnologies “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (P.I.); (P.M.B.); (M.F.); (L.R.C.); (G.S.)
| | - Paola Margherita Bignami
- Department of Biology and Biotechnologies “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (P.I.); (P.M.B.); (M.F.); (L.R.C.); (G.S.)
| | - Marco Fumagalli
- Department of Biology and Biotechnologies “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (P.I.); (P.M.B.); (M.F.); (L.R.C.); (G.S.)
| | - Laurent Roberto Chiarelli
- Department of Biology and Biotechnologies “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (P.I.); (P.M.B.); (M.F.); (L.R.C.); (G.S.)
| | - Giovanni Stelitano
- Department of Biology and Biotechnologies “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (P.I.); (P.M.B.); (M.F.); (L.R.C.); (G.S.)
| | - Federica Meloni
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, 27100 Pavia, Italy; (F.M.); (V.V.)
- Transplant Unit, IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| | - Pasquale Linciano
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (P.L.); (S.C.)
| | - Simona Collina
- Department of Drug Sciences, University of Pavia, 27100 Pavia, Italy; (P.L.); (S.C.)
| | - Giampiero Pietrocola
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (M.C.); (G.P.); (S.V.)
| | - Valentina Vertui
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, 27100 Pavia, Italy; (F.M.); (V.V.)
| | - Anna Aliberti
- Division of Anesthesiology and Intensive Care 1, IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Tommaso Fossali
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, 20157 Milan, Italy;
| | - Simona Viglio
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy; (M.C.); (G.P.); (S.V.)
| |
Collapse
|
10
|
Malicki S, Książek M, Sochaj Gregorczyk A, Kamińska M, Golda A, Chruścicka B, Mizgalska D, Potempa J, Marti HP, Kozieł J, Wieczorek M, Pieczykolan J, Mydel P, Dubin G. Identification and characterization of aptameric inhibitors of human neutrophil elastase. J Biol Chem 2023; 299:104889. [PMID: 37286041 PMCID: PMC10359491 DOI: 10.1016/j.jbc.2023.104889] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 05/17/2023] [Accepted: 06/01/2023] [Indexed: 06/09/2023] Open
Abstract
Human neutrophil elastase (HNE) plays a pivotal role in innate immunity, inflammation, and tissue remodeling. Aberrant proteolytic activity of HNE contributes to organ destruction in various chronic inflammatory diseases including emphysema, asthma, and cystic fibrosis. Therefore, elastase inhibitors could alleviate the progression of these disorders. Here, we used the systematic evolution of ligands by exponential enrichment to develop ssDNA aptamers that specifically target HNE. We determined the specificity of the designed inhibitors and their inhibitory efficacy against HNE using biochemical and in vitro methods, including an assay of neutrophil activity. Our aptamers inhibit the elastinolytic activity of HNE with nanomolar potency and are highly specific for HNE and do not target other tested human proteases. As such, this study provides lead compounds suitable for the evaluation of their tissue-protective potential in animal models.
Collapse
Affiliation(s)
- Stanisław Malicki
- Laboratory of Proteolysis and Post-translational Modification of Proteins, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland.
| | - Mirosław Książek
- Laboratory of Proteolysis and Post-translational Modification of Proteins, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Alicja Sochaj Gregorczyk
- Laboratory of Proteolysis and Post-translational Modification of Proteins, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Marta Kamińska
- Broegelmann Research Laboratory, University of Bergen, Bergen, Norway
| | - Anna Golda
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Barbara Chruścicka
- Laboratory of Proteolysis and Post-translational Modification of Proteins, Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland; Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Danuta Mizgalska
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Jan Potempa
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Department of Oral Immunity and Infectious Diseases, University of Louisville School of Dentistry, Louisville, Kentucky, USA
| | - Hans-Peter Marti
- Department of Clinical Medicine, University of Bergen, Bergen, Norway
| | - Joanna Kozieł
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland
| | - Maciej Wieczorek
- Innovative Drugs R&D Department, Celon Pharma Inc, Lomianki, Poland
| | | | - Piotr Mydel
- Department of Microbiology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Poland; Broegelmann Research Laboratory, University of Bergen, Bergen, Norway
| | - Grzegorz Dubin
- Protein Crystallography Research, Group Malopolska Centre of Biotechnology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
11
|
Bai X, Schountz T, Buckle AM, Talbert JL, Sandhaus RA, Chan ED. Alpha-1-antitrypsin antagonizes COVID-19: a review of the epidemiology, molecular mechanisms, and clinical evidence. Biochem Soc Trans 2023; 51:1361-1375. [PMID: 37294003 PMCID: PMC10317171 DOI: 10.1042/bst20230078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 05/25/2023] [Accepted: 05/26/2023] [Indexed: 06/10/2023]
Abstract
Alpha-1-antitrypsin (AAT), a serine protease inhibitor (serpin), is increasingly recognized to inhibit SARS-CoV-2 infection and counter many of the pathogenic mechanisms of COVID-19. Herein, we reviewed the epidemiologic evidence, the molecular mechanisms, and the clinical evidence that support this paradigm. As background to our discussion, we first examined the basic mechanism of SARS-CoV-2 infection and contend that despite the availability of vaccines and anti-viral agents, COVID-19 remains problematic due to viral evolution. We next underscored that measures to prevent severe COVID-19 currently exists but teeters on a balance and that current treatment for severe COVID-19 remains grossly suboptimal. We then reviewed the epidemiologic and clinical evidence that AAT deficiency increases risk of COVID-19 infection and of more severe disease, and the experimental evidence that AAT inhibits cell surface transmembrane protease 2 (TMPRSS2) - a host serine protease required for SARS-CoV-2 entry into cells - and that this inhibition may be augmented by heparin. We also elaborated on the panoply of other activities of AAT (and heparin) that could mitigate severity of COVID-19. Finally, we evaluated the available clinical evidence for AAT treatment of COVID-19.
Collapse
Affiliation(s)
- Xiyuan Bai
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, U.S.A
- Department of Academic Affairs, National Jewish Health, Denver, CO, U.S.A
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, U.S.A
| | - Tony Schountz
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, U.S.A
| | - Ashley M. Buckle
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
- PTNG Bio, Melbourne, Australia
| | - Janet L. Talbert
- Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN, U.S.A
| | | | - Edward D. Chan
- Department of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO, U.S.A
- Department of Academic Affairs, National Jewish Health, Denver, CO, U.S.A
- Division of Pulmonary Sciences and Critical Care Medicine, University of Colorado School of Medicine, Aurora, CO, U.S.A
| |
Collapse
|
12
|
Halsey G, Sinha D, Dhital S, Wang X, Vyavahare N. Role of elastic fiber degradation in disease pathogenesis. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166706. [PMID: 37001705 PMCID: PMC11659964 DOI: 10.1016/j.bbadis.2023.166706] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 03/22/2023] [Accepted: 03/23/2023] [Indexed: 03/31/2023]
Abstract
Elastin is a crucial extracellular matrix protein that provides structural integrity to tissues. Crosslinked elastin and associated microfibrils, named elastic fiber, contribute to biomechanics by providing the elasticity required for proper function. During aging and disease, elastic fiber can be progressively degraded and since there is little elastin synthesis in adults, degraded elastic fiber is not regenerated. There is substantial evidence linking loss or damage of elastic fibers to the clinical manifestation and pathogenesis of a variety of diseases. Disruption of elastic fiber networks by hereditary mutations, aging, or pathogenic stimuli results in systemic ailments associated with the production of elastin degradation products, inflammatory responses, and abnormal physiology. Due to its longevity, unique mechanical properties, and widespread distribution in the body, elastic fiber plays a central role in homeostasis of various physiological systems. While pathogenesis related to elastic fiber degradation has been more thoroughly studied in elastic fiber rich tissues such as the vasculature and the lungs, even tissues containing relatively small quantities of elastic fibers such as the eyes or joints may be severely impacted by elastin degradation. Elastic fiber degradation is a common observation in certain hereditary, age, and specific risk factor exposure induced diseases representing a converging point of pathological clinical phenotypes which may also help explain the appearance of co-morbidities. In this review, we will first cover the role of elastic fiber degradation in the manifestation of hereditary diseases then individually explore the structural role and degradation effects of elastic fibers in various tissues and organ systems. Overall, stabilizing elastic fiber structures and repairing lost elastin may be effective strategies to reverse the effects of these diseases.
Collapse
Affiliation(s)
- Gregory Halsey
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Dipasha Sinha
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Saphala Dhital
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Xiaoying Wang
- Department of Bioengineering, Clemson University, SC 29634, United States of America
| | - Naren Vyavahare
- Department of Bioengineering, Clemson University, SC 29634, United States of America.
| |
Collapse
|
13
|
Engelmaier A, Prodinger G, Weber A. Selective and sensitive measurement of human neutrophil elastase in clinical samples based on a novel assay principle for protease activity measurement. J Pharm Biomed Anal 2023; 229:115376. [PMID: 37011552 DOI: 10.1016/j.jpba.2023.115376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/27/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023]
Abstract
Imbalances between proteases and protease inhibitors have been associated with several pathological conditions including emphysema as seen in α1-antitrypsin deficiency. For this pathological condition, unimpeded neutrophil elastase activity has been ascribed a pivotal role in the destruction of lung tissue and thus in disease progression. Therefore, low, or non-quantifiable neutrophil elastase (NE) activity levels determined in bronchoalveolar lavage solutions indicate the success of α1-antitrypsin (AAT) augmentation therapy as NE activity will be erased. To overcome the known limitations of available elastase activity assays regarding sensitivity and selectivity, we developed a new elastase activity assay, which fundamentally relies on the highly specific complex formation between AAT and active elastase. Plate-bound AAT captured active elastase from the sample undergoing complex formation, followed by the immunological detection of human NE. This assay principle facilitated the measurement of low pM amounts of active human NE. The data of the assay performance check demonstrated adequate accuracy and precision profiles meeting currently accepted best practices for this activity assay, which can be classified as a ligand-binding assay. Furthermore, spike-recovery studies at low human NE levels, carried out for three human bronchoalveolar samples, resulted in recoveries within the 100 ± 20% range, while good linearity and parallelism of the samples' dilution-response curves was observed. Altogether, complemented by the data of selectivity and robustness studies and the accuracy and precision profile obtained in buffer, this newly developed human NE activity assay was demonstrated to perform accurately and precisely in clinically relevant samples.
Collapse
|
14
|
Singh AK, Laskar R, Banerjee A, Mondal RK, Gupta B, Deb S, Dutta S, Patra S, Ghosh T, Sarkar S, Ghosh S, Bhattacharya S, Roy D, Chakraborty A, Chowdhury M, Mahaptra S, Paul A, Mazumder A, Chowdhury A, Chatterjee SS, Sarkar A, Ray R, Pal K, Jana A, Barik G, Ganguly S, Chatterjee M, Majhi D, Bandopadhyay B, Das S, Maitra A, Biswas NK. Contrasting Distribution of SARS-CoV-2 Lineages across Multiple Rounds of Pandemic Waves in West Bengal, the Gateway of East and North-East States of India. Microbiol Spectr 2022; 10:e0091422. [PMID: 35852336 PMCID: PMC9430150 DOI: 10.1128/spectrum.00914-22] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 06/29/2022] [Indexed: 11/20/2022] Open
Abstract
The evolution of viral variants and their impact on viral transmission have been an area of considerable importance in this pandemic of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). We analyzed the viral variants in different phases of the pandemic in West Bengal, a state in India that is important geographically, and compared the variants with other states like Delhi, Maharashtra, and Karnataka, located in other regions of the country. We have identified 57 pango-lineages in 3,198 SARS-CoV-2 genomes, alteration in their distribution, as well as contrasting profiles of amino acid mutational dynamics across different waves in different states. The evolving characteristics of Delta (B.1.617.2) sublineages and alterations in hydrophobicity profiles of the viral proteins caused by these mutations were also studied. Additionally, implications of predictive host miRNA binding/unbinding to emerging spike or nucleocapsid mutations were highlighted. Our results throw considerable light on interesting aspects of the viral genomic variation and provide valuable information for improved understanding of wave-defining mutations in unfolding the pandemic. IMPORTANCE Multiple waves of infection were observed in many states in India during the coronavirus disease 2019 (COVID19) pandemic. Fine-scale evolution of major SARS-CoV-2 lineages and sublineages during four wave-window categories: Pre-Wave 1, Wave 1, Pre-Wave 2, and Wave 2 in four major states of India: Delhi (North), Maharashtra (West), Karnataka (South), and West Bengal (East) was studied using large-scale virus genome sequencing data. Our comprehensive analysis reveals contrasting molecular profiles of the wave-defining mutations and their implications in host miRNA binding/unbinding of the lineages in the major states of India.
Collapse
Affiliation(s)
- Animesh K. Singh
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | | | - Anindita Banerjee
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | | | - Bishal Gupta
- School of Tropical Medicine, Kolkata, West Bengal, India
| | - Sonia Deb
- School of Tropical Medicine, Kolkata, West Bengal, India
| | - Shreelekha Dutta
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Subrata Patra
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Trinath Ghosh
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Sumanta Sarkar
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Shekhar Ghosh
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | | | - Debojyoti Roy
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | | | - Meghna Chowdhury
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Surajit Mahaptra
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Antara Paul
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Anup Mazumder
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | | | | | | | - Raja Ray
- Institute of Post-Graduate Medical Education and Research, Kolkata, West Bengal, India
| | - Kuhu Pal
- College of Medicine and JNM Hospital, Kalyani, West Bengal, India
| | - Angshuman Jana
- Bankura Sammilani Medical College, Bankura, West Bengal, India
| | - Goutam Barik
- Medical College and Hospital, Kolkata, West Bengal, India
| | - Swagata Ganguly
- Nil Ratan Sircar Medical College and Hospital, Kolkata, West Bengal, India
| | | | - Dipankar Majhi
- Department of Health and Family Welfare, Government of West Bengal, Kolkata, West Bengal, India
| | | | - Saumitra Das
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Arindam Maitra
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| | - Nidhan K. Biswas
- National Institute of Biomedical Genomics, Kalyani, West Bengal, India
| |
Collapse
|
15
|
Rayati Damavandi A, Dowran R, Al Sharif S, Kashanchi F, Jafari R. Molecular variants of SARS-CoV-2: antigenic properties and current vaccine efficacy. Med Microbiol Immunol 2022; 211:79-103. [PMID: 35235048 PMCID: PMC8889515 DOI: 10.1007/s00430-022-00729-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 02/09/2022] [Indexed: 12/30/2022]
Abstract
An ongoing pandemic of newly emerged SARS-CoV-2 has puzzled many scientists and health care policymakers around the globe. The appearance of the virus was accompanied by several distinct antigenic changes, specifically spike protein which is a key element for host cell entry of virus and major target of currently developing vaccines. Some of these mutations enable the virus to attach to receptors more firmly and easily. Moreover, a growing number of trials are demonstrating higher transmissibility and, in some of them, potentially more serious forms of illness related to novel variants. Some of these lineages, especially the Beta variant of concern, were reported to diminish the neutralizing activity of monoclonal and polyclonal antibodies present in both convalescent and vaccine sera. This could imply that these independently emerged variants could make antiviral strategies prone to serious threats. The rapid changes in the mutational profile of new clades, especially escape mutations, suggest the convergent evolution of the virus due to immune pressure. Nevertheless, great international efforts have been dedicated to producing efficacious vaccines with cutting-edge technologies. Despite the partial decrease in vaccines efficacy against worrisome clades, most current vaccines are still effective at preventing mild to severe forms of disease and hospital admission or death due to coronavirus disease 2019 (COVID-19). Here, we summarize existing evidence about newly emerged variants of SARS-CoV-2 and, notably, how well vaccines work against targeting new variants and modifications of highly flexible mRNA vaccines that might be required in the future.
Collapse
Affiliation(s)
- Amirmasoud Rayati Damavandi
- Students’ Scientific Research Center, Exceptional Talents Development Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Razieh Dowran
- Students’ Scientific Research Center, Exceptional Talents Development Center, Tehran University of Medical Sciences, Tehran, Iran
- Department of Virology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sarah Al Sharif
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA USA
| | - Fatah Kashanchi
- Laboratory of Molecular Virology, School of Systems Biology, George Mason University, Manassas, VA USA
| | - Reza Jafari
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
- Hematology, Immune Cell Therapy, and Stem Cell Transplantation Research Center, Clinical Research Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
16
|
Ortiz-Pineda PA, Sierra-Torres CH. Evolutionary Traits and Genomic Surveillance of SARS-CoV-2 in South America. Glob Health Epidemiol Genom 2022; 2022:8551576. [PMID: 35655960 PMCID: PMC9132712 DOI: 10.1155/2022/8551576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/12/2022] [Accepted: 04/24/2022] [Indexed: 11/18/2022] Open
Abstract
Since the zoonotic event from which SARS-CoV-2 started infecting humans late in 2019, the virus has caused more than 5 million deaths and has infected over 500 million people around the world. The pandemic has had a severe impact on social and economic activities, with greater repercussions in low-income countries. South America, with almost 5% of the world's population, has reckoned with almost a fifth of the total people infected and more than 26% (>1/4) of the deceased. Fortunately, the full genome structure and sequence of SARS-CoV-2 have been rapidly obtained and studied thanks to all the scientific efforts and data sharing around the world. Such molecular analysis of SARS-CoV-2 dynamics showed that rates of mutation, similar to other members of the Coronaviridae family, along with natural selection forces, could result in the emergence of new variants; few of them might be of high consequence. However, this is a serious threat to controlling the pandemic and, of course, enduring the process of returning to normalization with the implicit monetary cost of such a contingency. The lack of updated knowledge in South America justifies the need to develop a structured genomic surveillance program of current and emerging SARS-CoV-2 variants. The modeling of the molecular events and microevolution of the virus will contribute to making better decisions on public health management of the pandemic and developing accurate treatments and more efficient vaccines.
Collapse
Affiliation(s)
- Pablo A. Ortiz-Pineda
- Laboratory of Molecular Biology and Genomics, InnovaGen Foundation, Popayán, Colombia
| | - Carlos H. Sierra-Torres
- Laboratory of Molecular Biology and Genomics, InnovaGen Foundation, Popayán, Colombia
- Human Genetics Laboratory, Department of Physiological Sciences, Faculty of Health Sciences, University of Cauca, Popayán, Colombia
| |
Collapse
|
17
|
D’Amato M, Vertui V, Pandolfi L, Bozzini S, Fossali T, Colombo R, Aliberti A, Fumagalli M, Iadarola P, Didò C, Viglio S, Meloni F. Investigating the Link between Alpha-1 Antitrypsin and Human Neutrophil Elastase in Bronchoalveolar Lavage Fluid of COVID-19 Patients. Curr Issues Mol Biol 2022; 44:2122-2138. [PMID: 35678672 PMCID: PMC9164061 DOI: 10.3390/cimb44050143] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 05/04/2022] [Accepted: 05/08/2022] [Indexed: 11/26/2022] Open
Abstract
Neutrophils play a pathogenic role in COVID-19 by releasing Neutrophils Extracellular Traps (NETs) or human neutrophil elastase (HNE). Given that HNE is inhibited by α1-antitrypsin (AAT), we aimed to assess the content of HNE, α1-antitrypsin (AAT) and HNE-AAT complexes (the AAT/HNE balance) in 33 bronchoalveolar lavage fluid (BALf) samples from COVID-19 patients. These samples were submitted for Gel-Electrophoresis, Western Blot and ELISA, and proteins (bound to AAT or HNE) were identified by Liquid Chromatography-Mass Spectrometry. NETs' release was analyzed by confocal microscopy. Both HNE and AAT were clearly detectable in BALf at high levels. Contrary to what was previously observed in other settings, the formation of HNE-AAT complex was not detected in COVID-19. Rather, HNE was found to be bound to acute phase proteins, histones and C3. Due to the relevant role of NETs, we assessed the ability of free AAT to bind to histones. While confirming this binding, AAT was not able to inhibit NET formation. In conclusion, despite the finding of a high burden of free and bound HNE, the lack of the HNE-AAT inhibitory complex in COVID-19 BALf demonstrates that AAT is not able to block HNE activity. Furthermore, while binding to histones, AAT does not prevent NET formation nor their noxious activity.
Collapse
Affiliation(s)
- Maura D’Amato
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Valentina Vertui
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, 27100 Pavia, Italy; (V.V.); (L.P.); (C.D.); (F.M.)
| | - Laura Pandolfi
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, 27100 Pavia, Italy; (V.V.); (L.P.); (C.D.); (F.M.)
| | - Sara Bozzini
- Laboratory of Respiratory Disease, Cell Biology Section, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Tommaso Fossali
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, 20121 Milan, Italy; (T.F.); (R.C.)
| | - Riccardo Colombo
- Department of Anesthesiology and Intensive Care, ASST Fatebenefratelli Sacco, Luigi Sacco Hospital, University of Milan, 20121 Milan, Italy; (T.F.); (R.C.)
| | - Anna Aliberti
- Division of Anesthesiology and Intensive Care 1, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Marco Fumagalli
- Department of Biology and Biotechnologies “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (M.F.); (P.I.)
| | - Paolo Iadarola
- Department of Biology and Biotechnologies “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (M.F.); (P.I.)
| | - Camilla Didò
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, 27100 Pavia, Italy; (V.V.); (L.P.); (C.D.); (F.M.)
| | - Simona Viglio
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
| | - Federica Meloni
- Department of Internal Medicine and Medical Therapeutics, University of Pavia, 27100 Pavia, Italy; (V.V.); (L.P.); (C.D.); (F.M.)
- Transplant Unit, Fondazione IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
18
|
Ghosh D, Ghosh Dastidar D, Roy K, Ghosh A, Mukhopadhyay D, Sikdar N, Biswas NK, Chakrabarti G, Das A. Computational prediction of the molecular mechanism of statin group of drugs against SARS-CoV-2 pathogenesis. Sci Rep 2022; 12:6241. [PMID: 35422113 PMCID: PMC9009757 DOI: 10.1038/s41598-022-09845-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 03/23/2022] [Indexed: 01/18/2023] Open
Abstract
Recently published clinical data from COVID-19 patients indicated that statin therapy is associated with a better clinical outcome and a significant reduction in the risk of mortality. In this study by computational analysis, we have aimed to predict the possible mechanism of the statin group of drugs by which they can inhibit SARS-CoV-2 pathogenesis. Blind docking of the critical structural and functional proteins of SARS-CoV-2 like RNA-dependent RNA polymerase, M-protease of 3-CL-Pro, Helicase, and the Spike proteins ( wild type and mutants from different VOCs) were performed using the Schrodinger docking tool. We observed that fluvastatin and pitavastatin showed fair, binding affinities to RNA polymerase and 3-CL-Pro, whereas fluvastatin showed the strongest binding affinity to the helicase. Fluvastatin also showed the highest affinity for the SpikeDelta and a fair docking score for other spike variants. Additionally, molecular dynamics simulation confirmed the formation of a stable drug-protein complex between Fluvastatin and target proteins. Thus our study shows that of all the statins, fluvastatin can bind to multiple target proteins of SARS-CoV-2, including the spike-mutant proteins. This property might contribute to the potent antiviral efficacy of this drug.
Collapse
Affiliation(s)
- Dipanjan Ghosh
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India
| | - Debabrata Ghosh Dastidar
- Guru Nanak Institute of Pharmaceutical Science and Technology, 157/F Nilgunj Road, Panihati, Kolkata, West Bengal, 700114, India
| | - Kamalesh Roy
- Department of Genetics, Institute of Genetic Engineering, 30, Thakurhat Road, Badu, Madhyamgram, West Bengal, 700128, India
| | - Arnab Ghosh
- National Institute of Biomedical Genomics, PO NSS, Kalyani, West Bengal, 741251, India
| | - Debanjan Mukhopadhyay
- National Institute of Biomedical Genomics, PO NSS, Kalyani, West Bengal, 741251, India
| | - Nilabja Sikdar
- Human Genetics Unit, Kolmogorov Bhaban, Biological Sciences Division, Indian Statistical Institute, 203, BT road, Kolkata, West Bengal, 700108, India.
| | - Nidhan K Biswas
- National Institute of Biomedical Genomics, PO NSS, Kalyani, West Bengal, 741251, India
| | - Gopal Chakrabarti
- Department of Biotechnology, Dr. B. C. Guha Centre for Genetic Engineering and Biotechnology, University of Calcutta, 35 Ballygunge Circular Road, Kolkata, West Bengal, 700019, India.
| | - Amlan Das
- National Institute of Biomedical Genomics, PO NSS, Kalyani, West Bengal, 741251, India.
| |
Collapse
|
19
|
Bai X, Buckle AM, Vladar EK, Janoff EN, Khare R, Ordway D, Beckham D, Fornis LB, Majluf-Cruz A, Fugit RV, Freed BM, Kim S, Sandhaus RA, Chan ED. Enoxaparin augments alpha-1-antitrypsin inhibition of TMPRSS2, a promising drug combination against COVID-19. Sci Rep 2022; 12:5207. [PMID: 35338216 PMCID: PMC8953970 DOI: 10.1038/s41598-022-09133-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 03/09/2022] [Indexed: 02/07/2023] Open
Abstract
The cell surface serine protease Transmembrane Protease 2 (TMPRSS2) is required to cleave the spike protein of SARS-CoV-2 for viral entry into cells. We determined whether negatively-charged heparin enhanced TMPRSS2 inhibition by alpha-1-antitrypsin (AAT). TMPRSS2 activity was determined in HEK293T cells overexpressing TMPRSS2. We quantified infection of primary human airway epithelial cells (hAEc) with human coronavirus 229E (HCoV-229E) by immunostaining for the nucleocapsid protein and by the plaque assay. Detailed molecular modeling was undertaken with the heparin-TMPRSS2-AAT ternary complex. Enoxaparin enhanced AAT inhibition of both TMPRSS2 activity and infection of hAEc with HCoV-229E. Underlying these findings, detailed molecular modeling revealed that: (i) the reactive center loop of AAT adopts an inhibitory-competent conformation compared with the crystal structure of TMPRSS2 bound to an exogenous (nafamostat) or endogenous (HAI-2) TMPRSS2 inhibitor and (ii) negatively-charged heparin bridges adjacent electropositive patches at the TMPRSS2-AAT interface, neutralizing otherwise repulsive forces. In conclusion, enoxaparin enhances AAT inhibition of both TMPRSS2 and coronavirus infection. Such host-directed therapy is less likely to be affected by SARS-CoV-2 mutations. Furthermore, given the known anti-inflammatory activities of both AAT and heparin, this form of treatment may target both the virus and the excessive inflammatory consequences of severe COVID-19.
Collapse
Affiliation(s)
- Xiyuan Bai
- grid.422100.50000 0000 9751 469XDepartment of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO USA ,grid.240341.00000 0004 0396 0728Department of Academic Affairs and Medicine, National Jewish Health, Denver, CO USA ,grid.430503.10000 0001 0703 675XDivision of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA ,grid.240341.00000 0004 0396 0728National Jewish Health, D509, Neustadt Building, 1400 Jackson Street, Denver, CO 80206 USA
| | - Ashley M. Buckle
- grid.1002.30000 0004 1936 7857Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, VIC Australia
| | - Eszter K. Vladar
- grid.430503.10000 0001 0703 675XDivision of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Edward N. Janoff
- grid.422100.50000 0000 9751 469XDepartment of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO USA ,grid.430503.10000 0001 0703 675XDivision of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Reeti Khare
- grid.240341.00000 0004 0396 0728Mycobacteriology Laboratory, Advance Diagnostics, National Jewish Health, Denver, CO USA
| | - Diane Ordway
- grid.47894.360000 0004 1936 8083Department of Microbiology, Immunlogy, and Pathology, Colorado State University, Fort Collins, CO USA
| | - David Beckham
- grid.430503.10000 0001 0703 675XDivision of Infectious Diseases, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Lorelenn B. Fornis
- grid.240341.00000 0004 0396 0728Department of Academic Affairs and Medicine, National Jewish Health, Denver, CO USA
| | - Abraham Majluf-Cruz
- grid.419157.f0000 0001 1091 9430Unidad de Investigacion Medica en Trombosis, Hemostasia y Aterogenesis, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Randolph V. Fugit
- grid.422100.50000 0000 9751 469XDepartment of Pharmacy, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO USA
| | - Brian M. Freed
- grid.430503.10000 0001 0703 675XDepartment of Immunology, University of Colorado Anschutz Medical Campus, Aurora, CO USA
| | - Soohyun Kim
- grid.258676.80000 0004 0532 8339Laboratory of Cytokine Immunology, Department of Biomedical Science and Technology, Konkuk University, Seoul, South Korea ,grid.258676.80000 0004 0532 8339College of Veterinary Medicine, Konkuk University, Seoul, South Korea
| | - Robert A. Sandhaus
- grid.240341.00000 0004 0396 0728Department of Academic Affairs and Medicine, National Jewish Health, Denver, CO USA
| | - Edward D. Chan
- grid.422100.50000 0000 9751 469XDepartment of Medicine, Rocky Mountain Regional Veterans Affairs Medical Center, Aurora, CO USA ,grid.240341.00000 0004 0396 0728Department of Academic Affairs and Medicine, National Jewish Health, Denver, CO USA ,grid.430503.10000 0001 0703 675XDivision of Pulmonary Sciences and Critical Care Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO USA ,grid.240341.00000 0004 0396 0728National Jewish Health, D509, Neustadt Building, 1400 Jackson Street, Denver, CO 80206 USA
| |
Collapse
|
20
|
Alam ASMRU, Islam OK, Hasan MS, Islam MR, Mahmud S, Al‐Emran HM, Jahid IK, Crandall KA, Hossain MA. Dominant clade-featured SARS-CoV-2 co-occurring mutations reveal plausible epistasis: An in silico based hypothetical model. J Med Virol 2022; 94:1035-1049. [PMID: 34676891 PMCID: PMC8661685 DOI: 10.1002/jmv.27416] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 10/15/2021] [Accepted: 10/20/2021] [Indexed: 01/18/2023]
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has evolved into eight fundamental clades with four of these clades (G, GH, GR, and GV) globally prevalent in 2020. To explain plausible epistatic effects of the signature co-occurring mutations of these circulating clades on viral replication and transmission fitness, we proposed a hypothetical model using in silico approach. Molecular docking and dynamics analyses showed the higher infectiousness of a spike mutant through more favorable binding of G614 with the elastase-2. RdRp mutation p.P323L significantly increased genome-wide mutations (p < 0.0001), allowing for more flexible RdRp (mutated)-NSP8 interaction that may accelerate replication. Superior RNA stability and structural variation at NSP3:C241T might impact protein, RNA interactions, or both. Another silent 5'-UTR:C241T mutation might affect translational efficiency and viral packaging. These four G-clade-featured co-occurring mutations might increase viral replication. Sentinel GH-clade ORF3a:p.Q57H variants constricted the ion-channel through intertransmembrane-domain interaction of cysteine(C81)-histidine(H57). The GR-clade N:p.RG203-204KR would stabilize RNA interaction by a more flexible and hypo-phosphorylated SR-rich region. GV-clade viruses seemingly gained the evolutionary advantage of the confounding factors; nevertheless, N:p.A220V might modulate RNA binding with no phenotypic effect. Our hypothetical model needs further retrospective and prospective studies to understand detailed molecular events and their relationship to the fitness of SARS-CoV-2.
Collapse
Affiliation(s)
| | - Ovinu Kibria Islam
- Department of MicrobiologyJashore University of Science and TechnologyJashoreBangladesh
| | - Md. Shazid Hasan
- Department of MicrobiologyJashore University of Science and TechnologyJashoreBangladesh
| | - Mir Raihanul Islam
- Division of Poverty, Health, and NutritionInternational Food Policy Research InstituteBangladesh
| | - Shafi Mahmud
- Department Genetic Engineering and BiotechnologyUniversity of RajshahiRajshahiBangladesh
| | - Hassan M. Al‐Emran
- Department of Biomedical EngineeringJashore University of Science and TechnologyJashoreBangladesh
| | - Iqbal Kabir Jahid
- Department of MicrobiologyJashore University of Science and TechnologyJashoreBangladesh
| | - Keith A. Crandall
- Department of Biostatistics and Bioinformatics, Computational Biology Institute, Milken Institute School of Public HealthThe George Washington UniversityWashington DCUSA
| | - M. Anwar Hossain
- Office of the Vice ChancellorJashore University of Science and TechnologyJashoreBangladesh
- Department of MicrobiologyUniversity of DhakaDhakaBangladesh
| |
Collapse
|
21
|
A Review of Alpha-1 Antitrypsin Binding Partners for Immune Regulation and Potential Therapeutic Application. Int J Mol Sci 2022; 23:ijms23052441. [PMID: 35269582 PMCID: PMC8910375 DOI: 10.3390/ijms23052441] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 02/06/2023] Open
Abstract
Alpha-1 antitrypsin (AAT) is the canonical serine protease inhibitor of neutrophil-derived proteases and can modulate innate immune mechanisms through its anti-inflammatory activities mediated by a broad spectrum of protein, cytokine, and cell surface interactions. AAT contains a reactive methionine residue that is critical for its protease-specific binding capacity, whereby AAT entraps the protease on cleavage of its reactive centre loop, neutralises its activity by key changes in its tertiary structure, and permits removal of the AAT-protease complex from the circulation. Recently, however, the immunomodulatory role of AAT has come increasingly to the fore with several prominent studies focused on lipid or protein-protein interactions that are predominantly mediated through electrostatic, glycan, or hydrophobic potential binding sites. The aim of this review was to investigate the spectrum of AAT molecular interactions, with newer studies supporting a potential therapeutic paradigm for AAT augmentation therapy in disorders in which a chronic immune response is strongly linked.
Collapse
|
22
|
Boraldi F, Lofaro FD, Cossarizza A, Quaglino D. The "Elastic Perspective" of SARS-CoV-2 Infection and the Role of Intrinsic and Extrinsic Factors. Int J Mol Sci 2022; 23:ijms23031559. [PMID: 35163482 PMCID: PMC8835950 DOI: 10.3390/ijms23031559] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 01/20/2022] [Accepted: 01/28/2022] [Indexed: 02/07/2023] Open
Abstract
Elastin represents the structural component of the extracellular matrix providing elastic recoil to tissues such as skin, blood vessels and lungs. Elastogenic cells secrete soluble tropoelastin monomers into the extracellular space where these monomers associate with other matrix proteins (e.g., microfibrils and glycoproteins) and are crosslinked by lysyl oxidase to form insoluble fibres. Once elastic fibres are formed, they are very stable, highly resistant to degradation and have an almost negligible turnover. However, there are circumstances, mainly related to inflammatory conditions, where increased proteolytic degradation of elastic fibres may lead to consequences of major clinical relevance. In severely affected COVID-19 patients, for instance, the massive recruitment and activation of neutrophils is responsible for the profuse release of elastases and other proteolytic enzymes which cause the irreversible degradation of elastic fibres. Within the lungs, destruction of the elastic network may lead to the permanent impairment of pulmonary function, thus suggesting that elastases can be a promising target to preserve the elastic component in COVID-19 patients. Moreover, intrinsic and extrinsic factors additionally contributing to damaging the elastic component and to increasing the spread and severity of SARS-CoV-2 infection are reviewed.
Collapse
Affiliation(s)
- Federica Boraldi
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.B.); (F.D.L.)
| | - Francesco Demetrio Lofaro
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.B.); (F.D.L.)
| | - Andrea Cossarizza
- Department of Medical and Surgical Sciences for Children and Adults, University of Modena and Reggio Emilia, 41125 Modena, Italy;
| | - Daniela Quaglino
- Department of Life Sciences, University of Modena and Reggio Emilia, 41125 Modena, Italy; (F.B.); (F.D.L.)
- Correspondence:
| |
Collapse
|
23
|
Wargodsky R, Dela Cruz P, LaFleur J, Yamane D, Kim JS, Benjenk I, Heinz E, Irondi OO, Farrar K, Toma I, Jordan T, Goldman J, McCaffrey TA. RNA Sequencing in COVID-19 patients identifies neutrophil activation biomarkers as a promising diagnostic platform for infections. PLoS One 2022; 17:e0261679. [PMID: 35081105 PMCID: PMC8791486 DOI: 10.1371/journal.pone.0261679] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/09/2021] [Indexed: 11/19/2022] Open
Abstract
Infection with the SARS-CoV2 virus can vary from asymptomatic, or flu-like with moderate disease, up to critically severe. Severe disease, termed COVID-19, involves acute respiratory deterioration that is frequently fatal. To understand the highly variable presentation, and identify biomarkers for disease severity, blood RNA from COVID-19 patient in an intensive care unit was analyzed by whole transcriptome RNA sequencing. Both SARS-CoV2 infection and the severity of COVID-19 syndrome were associated with up to 25-fold increased expression of neutrophil-related transcripts, such as neutrophil defensin 1 (DEFA1), and 3-5-fold reductions in T cell related transcripts such as the T cell receptor (TCR). The DEFA1 RNA level detected SARS-CoV2 viremia with 95.5% sensitivity, when viremia was measured by ddPCR of whole blood RNA. Purified CD15+ neutrophils from COVID-19 patients were increased in abundance and showed striking increases in nuclear DNA staining by DAPI. Concurrently, they showed >10-fold higher elastase activity than normal controls, and correcting for their increased abundance, still showed 5-fold higher elastase activity per cell. Despite higher CD15+ neutrophil elastase activity, elastase activity was extremely low in plasma from the same patients. Collectively, the data supports the model that increased neutrophil and decreased T cell activity is associated with increased COVID-19 severity, and suggests that blood DEFA1 RNA levels and neutrophil elastase activity, both involved in neutrophil extracellular traps (NETs), may be informative biomarkers of host immune activity after viral infection.
Collapse
Affiliation(s)
- Richard Wargodsky
- Department of Medicine, Division of Genomic Medicine, The George Washington University Medical Center, Washington, DC, United States of America
| | - Philip Dela Cruz
- Department Anesthesiology and Critical Care Medicine, The George Washington University Medical Center, Washington, DC, United States of America
| | - John LaFleur
- Department of Emergency Medicine, The George Washington University Medical Center, Washington, DC, United States of America
| | - David Yamane
- Department Anesthesiology and Critical Care Medicine, The George Washington University Medical Center, Washington, DC, United States of America
- Department of Emergency Medicine, The George Washington University Medical Center, Washington, DC, United States of America
| | - Justin Sungmin Kim
- Department Anesthesiology and Critical Care Medicine, The George Washington University Medical Center, Washington, DC, United States of America
| | - Ivy Benjenk
- Department Anesthesiology and Critical Care Medicine, The George Washington University Medical Center, Washington, DC, United States of America
| | - Eric Heinz
- Department Anesthesiology and Critical Care Medicine, The George Washington University Medical Center, Washington, DC, United States of America
| | - Obinna Ome Irondi
- Department Anesthesiology and Critical Care Medicine, The George Washington University Medical Center, Washington, DC, United States of America
| | - Katherine Farrar
- Department Anesthesiology and Critical Care Medicine, The George Washington University Medical Center, Washington, DC, United States of America
| | - Ian Toma
- Department of Medicine, Division of Genomic Medicine, The George Washington University Medical Center, Washington, DC, United States of America
- Department of Clinical Research and Leadership The George Washington University Medical Center, Washington, DC, United States of America
- True Bearing Diagnostics, Washington, DC, United States of America
| | - Tristan Jordan
- Department of Medicine, Division of Genomic Medicine, The George Washington University Medical Center, Washington, DC, United States of America
| | - Jennifer Goldman
- Department of Medicine, Division of Genomic Medicine, The George Washington University Medical Center, Washington, DC, United States of America
| | - Timothy A. McCaffrey
- Department of Medicine, Division of Genomic Medicine, The George Washington University Medical Center, Washington, DC, United States of America
- Department of Clinical Research and Leadership The George Washington University Medical Center, Washington, DC, United States of America
- True Bearing Diagnostics, Washington, DC, United States of America
- Department of Microbiology, Immunology, and Tropical Medicine, The George Washington University Medical Center, Washington, DC, United States of America
| |
Collapse
|
24
|
Kuba K, Yamaguchi T, Penninger JM. Angiotensin-Converting Enzyme 2 (ACE2) in the Pathogenesis of ARDS in COVID-19. Front Immunol 2022; 12:732690. [PMID: 35003058 PMCID: PMC8727358 DOI: 10.3389/fimmu.2021.732690] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 12/01/2021] [Indexed: 12/20/2022] Open
Abstract
Seventeen years after the epidemic of SARS coronavirus, a novel coronavirus SARS-CoV-2-emerged resulting in an unprecedented pandemic. Angiotensin-converting enzyme 2 (ACE2) is an essential receptor for cell entry of SARS-CoV-2 as well as the SARS coronavirus. Despite many similarities to SARS coronavirus, SARS-CoV-2 exhibits a higher affinity to ACE2 and shows higher infectivity and transmissibility, resulting in explosive increase of infected people and COVID-19 patients. Emergence of the variants harboring mutations in the receptor-binding domain of the Spike protein has drawn critical attention to the interaction between ACE2 and Spike and the efficacies of vaccines and neutralizing antibodies. ACE2 is a carboxypeptidase which degrades angiotensin II, B1-bradykinin, or apelin, and thereby is a critical regulator of cardiovascular physiology and pathology. In addition, the enzymatic activity of ACE2 is protective against acute respiratory distress syndrome (ARDS) caused by viral and non-viral pneumonias, aspiration, or sepsis. Upon infection, both SARS-CoV-2 and SARS coronaviruses downregulates ACE2 expression, likely associated with the pathogenesis of ARDS. Thus, ACE2 is not only the SARS-CoV-2 receptor but might also play an important role in multiple aspects of COVID-19 pathogenesis and possibly post-COVID-19 syndromes. Soluble forms of recombinant ACE2 are currently utilized as a pan-variant decoy to neutralize SARS-CoV-2 and a supplementation of ACE2 carboxypeptidase activity. Here, we review the role of ACE2 in the pathology of ARDS in COVID-19 and the potential application of recombinant ACE2 protein for treating COVID-19.
Collapse
Affiliation(s)
- Keiji Kuba
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, Akita, Japan
| | - Tomokazu Yamaguchi
- Department of Biochemistry and Metabolic Science, Akita University Graduate School of Medicine, Akita, Japan
| | - Josef M Penninger
- Institute of Molecular Biotechnology Austria (IMBA), Vienna, Austria.,Department of Medical Genetics, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
25
|
Dutta AK, Goswami K. Association of Alpha 1 Antitrypsin Deficiency with COVID-19 Mortality: Basis for Clinical Trials. FRONTIERS OF COVID-19 2022:325-336. [DOI: 10.1007/978-3-031-08045-6_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
26
|
Burster T, Mustafa Z, Myrzakhmetova D, Zhanapiya A, Zimecki M. Hindrance of the Proteolytic Activity of Neutrophil-Derived Serine Proteases by Serine Protease Inhibitors as a Management of Cardiovascular Diseases and Chronic Inflammation. Front Chem 2021; 9:784003. [PMID: 34869231 PMCID: PMC8634265 DOI: 10.3389/fchem.2021.784003] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 10/20/2021] [Indexed: 12/23/2022] Open
Abstract
During inflammation neutrophils become activated and segregate neutrophil serine proteases (NSPs) to the surrounding environment in order to support a natural immune defense. However, an excess of proteolytic activity of NSPs can cause many complications, such as cardiovascular diseases and chronic inflammatory disorders, which will be elucidated on a biochemical and immunological level. The application of selective serine protease inhibitors is the logical consequence in the management of the indicated comorbidities and will be summarized in this briefing.
Collapse
Affiliation(s)
- Timo Burster
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Zhadyra Mustafa
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Dinara Myrzakhmetova
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Anuar Zhanapiya
- Department of Biology, School of Sciences and Humanities, Nazarbayev University, Nur-Sultan, Kazakhstan
| | - Michal Zimecki
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| |
Collapse
|
27
|
von Bartheld CS, Hagen MM, Butowt R. The D614G Virus Mutation Enhances Anosmia in COVID-19 Patients: Evidence from a Systematic Review and Meta-analysis of Studies from South Asia. ACS Chem Neurosci 2021; 12:3535-3549. [PMID: 34533304 PMCID: PMC8482322 DOI: 10.1021/acschemneuro.1c00542] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Indexed: 02/08/2023] Open
Abstract
The prevalence of chemosensory dysfunction in patients with COVID-19 varies greatly between populations. It is unclear whether such differences are due to factors at the level of the human host, or at the level of the coronavirus, or both. At the host level, the entry proteins which allow virus binding and entry have variants with distinct properties, and the frequency of such variants differs between ethnicities. At the level of the virus, the D614G mutation enhances virus entry to the host cell. Since the two virus strains (D614 and G614) coexisted in the first six months of the pandemic in most populations, it has been difficult to distinguish between contributions of the virus and contributions of the host for anosmia. To answer this question, we conducted a systematic review and meta-analysis of studies in South Asian populations when either the D614 or the G614 virus was dominant. We show that populations infected predominantly with the G614 virus had a much higher prevalence of anosmia (pooled prevalence of 31.8%) compared with the same ethnic populations infected mostly with the D614 virus strain (pooled anosmia prevalence of 5.3%). We conclude that the D614G mutation is a major contributing factor that increases the prevalence of anosmia in COVID-19, and that this enhanced effect on olfaction constitutes a previously unrecognized phenotype of the D614G mutation. The new virus strains that have additional mutations on the background of the D614G mutation can be expected to cause a similarly increased prevalence of chemosensory dysfunctions.
Collapse
Affiliation(s)
- Christopher S. von Bartheld
- Department of Physiology and Cell Biology, University of Nevada, Reno School of Medicine, Reno, Nevada 89557, USA
| | - Molly M. Hagen
- School of Public Health, University of Nevada, Reno, Nevada 89557, USA
| | - Rafal Butowt
- L. Rydygier Collegium Medicum, Nicolaus Copernicus University, 85-094 Bydgoszcz, Poland
| |
Collapse
|
28
|
Stevens CS, Oguntuyo KY, Lee B. Proteases and variants: context matters for SARS-CoV-2 entry assays. Curr Opin Virol 2021; 50:49-58. [PMID: 34365113 PMCID: PMC8302850 DOI: 10.1016/j.coviro.2021.07.004] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 12/17/2022]
Abstract
Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), like other coronaviruses, relies on a flexible array of entry mechanisms, driven by the spike (S) protein. Entry is dependent on proteolytic priming, activation, and receptor binding; all of which can be variable, dependent on context. Here we review the implications of the complexity of SARS-CoV-2 entry pathways on entry assays that then drive our understanding of humoral immunity, therapeutic efficacy, and tissue restriction. We focus especially on the proteolytic activation of SARS-CoV-2 spike and how this constellation of proteases lends deeper insight to our understanding of arising variants and their putative role transmission or variable pathogenicity in vivo. In this review, we argue for better universal standards to assay virus entry as well as suggest best practices for reporting viral passage number, the cell line used, and proteases present, among other important considerations.
Collapse
Affiliation(s)
- Christian S Stevens
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States
| | - Kasopefoluwa Y Oguntuyo
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States
| | - Benhur Lee
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, United States.
| |
Collapse
|
29
|
Vianello A, Guarnieri G, Braccioni F, Molena B, Lococo S, Achille A, Lionello F, Salviati L, Caminati M, Senna G. Correlation between α1-Antitrypsin Deficiency and SARS-CoV-2 Infection: Epidemiological Data and Pathogenetic Hypotheses. J Clin Med 2021; 10:4493. [PMID: 34640510 PMCID: PMC8509830 DOI: 10.3390/jcm10194493] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/24/2021] [Accepted: 09/26/2021] [Indexed: 12/24/2022] Open
Abstract
The most common hereditary disorder in adults, α1-antitrypsin deficiency (AATD), is characterized by reduced plasma levels or the abnormal functioning of α1-antitrypsin (AAT), a major human blood serine protease inhibitor, which is encoded by the SERine Protein INhibitor-A1 (SERPINA1) gene and produced in the liver. Recently, it has been hypothesized that the geographic differences in COVID-19 infection and fatality rates may be partially explained by ethnic differences in SERPINA1 allele frequencies. In our review, we examined epidemiological data on the correlation between the distribution of AATD, SARS-CoV-2 infection, and COVID-19 mortality rates. Moreover, we described shared pathogenetic pathways that may provide a theoretical basis for our epidemiological findings. We also considered the potential use of AAT augmentation therapy in patients with COVID-19.
Collapse
Affiliation(s)
- Andrea Vianello
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy; (G.G.); (F.B.); (B.M.); (S.L.); (A.A.); (F.L.)
| | - Gabriella Guarnieri
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy; (G.G.); (F.B.); (B.M.); (S.L.); (A.A.); (F.L.)
| | - Fausto Braccioni
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy; (G.G.); (F.B.); (B.M.); (S.L.); (A.A.); (F.L.)
| | - Beatrice Molena
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy; (G.G.); (F.B.); (B.M.); (S.L.); (A.A.); (F.L.)
| | - Sara Lococo
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy; (G.G.); (F.B.); (B.M.); (S.L.); (A.A.); (F.L.)
| | - Alessia Achille
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy; (G.G.); (F.B.); (B.M.); (S.L.); (A.A.); (F.L.)
| | - Federico Lionello
- Department of Cardiac Thoracic Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy; (G.G.); (F.B.); (B.M.); (S.L.); (A.A.); (F.L.)
| | - Leonardo Salviati
- Department of Pediatrics, University of Padova, 35122 Padova, Italy;
| | - Marco Caminati
- Asthma Center and Allergy Unit, University of Verona, 37129 Verona, Italy; (M.C.); (G.S.)
| | - Gianenrico Senna
- Asthma Center and Allergy Unit, University of Verona, 37129 Verona, Italy; (M.C.); (G.S.)
| |
Collapse
|
30
|
Li X, Zhang L, Chen S, Ji W, Li C, Ren L. Recent progress on the mutations of SARS-CoV-2 spike protein and suggestions for prevention and controlling of the pandemic. INFECTION, GENETICS AND EVOLUTION : JOURNAL OF MOLECULAR EPIDEMIOLOGY AND EVOLUTIONARY GENETICS IN INFECTIOUS DISEASES 2021; 93:104971. [PMID: 34146731 PMCID: PMC8213438 DOI: 10.1016/j.meegid.2021.104971] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/09/2021] [Accepted: 06/14/2021] [Indexed: 02/08/2023]
Abstract
Severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) infection has caused a global pandemic in the past year, which poses continuing threat to human beings. To date, more than 3561 mutations in the viral spike protein were identified, including 2434 mutations that cause amino acid changes with 343 amino acids located in the viral receptor-binding domain (RBD). Among these mutations, the most representative ones are substitution mutations such as D614G, N501Y, Y453F, N439K/R, P681H, K417N/T, and E484K, and deletion mutations of ΔH69/V70 and Δ242-244, which confer the virus with enhanced infectivity, transmissibility, and resistance to neutralization. In this review, we discussed the recent findings of SARS-CoV-2 for highlighting mutations and variants on virus transmissibility and pathogenicity. Moreover, several suggestions for prevention and controlling the pandemic are also proposed.
Collapse
Affiliation(s)
- Xue Li
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi' An Road, Changchun 130062, China
| | - Liying Zhang
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi' An Road, Changchun 130062, China
| | - Si Chen
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi' An Road, Changchun 130062, China
| | - Weilong Ji
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi' An Road, Changchun 130062, China
| | - Chang Li
- Research Unit of Key Technologies for Prevention and Control of Virus Zoonoses, Chinese Academy of Medical Sciences, Military Veterinary Institute, Academy of Military Medical Sciences, Changchun 130112, China
| | - Linzhu Ren
- College of Animal Sciences, Key Lab for Zoonoses Research, Ministry of Education, Jilin University, 5333 Xi' An Road, Changchun 130062, China.
| |
Collapse
|
31
|
Yang C, Zhao H. COVID-19 vaccination in patients with α1-antitrypsin deficiency. THE LANCET RESPIRATORY MEDICINE 2021; 9:818-820. [PMID: 34147141 PMCID: PMC8331076 DOI: 10.1016/s2213-2600(21)00271-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 05/31/2021] [Accepted: 06/01/2021] [Indexed: 12/02/2022]
Affiliation(s)
- Chengliang Yang
- Latner Thoracic Surgery Research Laboratories, Toronto General Hospital Research Institute, University Health Network, Toronto, ON M5G 1L7, Canada.
| | - Hedi Zhao
- Faculty of Medicine, McGill University, Montreal, QC, Canada
| |
Collapse
|
32
|
Lee S, Lee MK, Na H, Ahn J, Hong G, Lee Y, Park J, Kim Y, Kim YT, Kim CK, Lim HS, Lee KR. Comparative analysis of mutational hotspots in the spike protein of SARS-CoV-2 isolates from different geographic origins. GENE REPORTS 2021; 23:101100. [PMID: 33778182 PMCID: PMC7985685 DOI: 10.1016/j.genrep.2021.101100] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 03/01/2021] [Accepted: 03/11/2021] [Indexed: 11/27/2022]
Abstract
The spike (S) protein mutations of SARS-CoV-2 are of major concern in terms of viral transmission and pathogenesis. Hence, we developed a PCR-based method to rapidly detect the 6 mutational hotspots (H49Y, G476S, V483A, H519Q, A520S, and D614G) in the S protein and applied this method to analyze the hotspots in the viral isolates from different geographical origins. Here, we identified that there was only the D614G mutation in the viral isolates. As of September 30, 2020, the analysis of 113,381 sequences available from the public repositories revealed that the SARS-CoV-2 variant carrying G614 has become the most prevalent form globally. Our results support recent epidemiological and genomic data demonstrating that the viral infectivity and transmission are enhanced by the S protein D614G mutation.
Collapse
Key Words
- ACE2, angiotensin-converting enzyme-2
- COVID-19, Coronavirus disease
- CT, cycle threshold
- D614G mutation
- Different geographic origins
- E, envelope
- M, membrane
- Mutational hotspots
- N, nucleocapsid
- NGS, next-generation sequencing
- Nsp3, nonstructural protein
- Orf, open reading frame
- RDB, receptor-binding domain
- RT-qPCR, reverse transcriptase-quantitative polymerase chain reaction
- RdRp, RNA-dependent RNA polymerase
- S, Spike
- SARS-CoV-2
- SARS-CoV-2, severe acute respiratory syndrome coronavirus 2
- Spike gene
- Spike protein
- TMPRSS2, transmembrane serine protease2
Collapse
Affiliation(s)
- Sanghoo Lee
- Center for Companion Biomarker, Seoul Clinical Laboratories (SCL) Healthcare Inc., Republic of Korea
| | - Mi-Kyeong Lee
- Department of Molecular Diagnostics, Seoul Clinical Laboratories, Republic of Korea
| | - Hyeongkyun Na
- Center for Companion Biomarker, Seoul Clinical Laboratories (SCL) Healthcare Inc., Republic of Korea
| | - Jinwoo Ahn
- Center for Companion Biomarker, Seoul Clinical Laboratories (SCL) Healthcare Inc., Republic of Korea
| | - Gayeon Hong
- Center for Companion Biomarker, Seoul Clinical Laboratories (SCL) Healthcare Inc., Republic of Korea
| | - Youngkee Lee
- Center for Companion Biomarker, Seoul Clinical Laboratories (SCL) Healthcare Inc., Republic of Korea
| | - Jimyeong Park
- Center for Companion Biomarker, Seoul Clinical Laboratories (SCL) Healthcare Inc., Republic of Korea
| | - Yejin Kim
- Center for Companion Biomarker, Seoul Clinical Laboratories (SCL) Healthcare Inc., Republic of Korea
| | - Yun-Tae Kim
- Center for Technology Innovation, Seoul Clinical Laboratories, Republic of Korea
| | - Chang-Ki Kim
- Center for Clinical Trial, Seoul Clinical Laboratories, Republic of Korea
| | - Hwan-Sub Lim
- Department of Molecular Diagnostics, Seoul Clinical Laboratories, Republic of Korea
| | - Kyoung-Ryul Lee
- Center for Companion Biomarker, Seoul Clinical Laboratories (SCL) Healthcare Inc., Republic of Korea.,Department of Molecular Diagnostics, Seoul Clinical Laboratories, Republic of Korea.,Center for Technology Innovation, Seoul Clinical Laboratories, Republic of Korea.,Center for Clinical Trial, Seoul Clinical Laboratories, Republic of Korea
| |
Collapse
|