1
|
Schimek A, Ng J, Will F, Hubbuch J. Mechanistic modeling of the elution behavior and convective entrapment of vesicular stomatitis virus on an ion exchange chromatography monolith. J Chromatogr A 2025; 1748:465832. [PMID: 40073642 DOI: 10.1016/j.chroma.2025.465832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/14/2025]
Abstract
Developing a downstream purification process for replication-competent enveloped virus particles presents a significant challenge. This is largely due to the highly complex particle structures, as well as complexities of emerging purification modalities for such virus particles. In this study, an unexpected fluid-dynamic effect was observed during the elution of enveloped virus particles from an ion exchange chromatography monolith. This effect led to peak tailing and the separation of virus particle subpopulations. Upon considering possible causes, convective entrapment was identified as a plausible explanation. To investigate this effect, a mechanistic modeling approach representing the electrostatic resin interactions and the convective entrapment effect was implemented. The introduced Langmuir approximation of the convective entrapment showed good alignment with reference data from experiments. The model reproduced the retention effect, and furthermore suggested two virus particle populations due to the stronger retention effect on the tailing subpopulation caused by convective entrapment.
Collapse
Affiliation(s)
- Adrian Schimek
- ViraTherapeutics GmbH, Bundesstraße 27, 6063 Rum, Austria
| | - Judy Ng
- ViraTherapeutics GmbH, Bundesstraße 27, 6063 Rum, Austria.
| | - Federico Will
- Boehringer Ingelheim Pharma GmbH & Co.KG, Birkendorfer Str. 65, 88397 Biberach, Germany
| | - Jürgen Hubbuch
- Karlsruhe Institute of Technology, Institute of Process Engineering in Life Sciences, Section IV Biomolecular Separation Engineering, Fritz-Haber-Weg 2, 76131 Karlsruhe, Germany.
| |
Collapse
|
2
|
Hao X, Horax R, Wickramasinghe SR, Qian X. Separation of full and empty adeno-associated virus particles using a novel multi-modal anion exchange membrane. J Chromatogr B Analyt Technol Biomed Life Sci 2025; 1255:124499. [PMID: 39954487 DOI: 10.1016/j.jchromb.2025.124499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/25/2025] [Accepted: 01/28/2025] [Indexed: 02/17/2025]
Abstract
A novel multi-modal anion exchange (MMAEX) membrane with both electrostatic and hydrophobic interaction moieties was developed for the separation of full and empty AAV2 capsids with only slight differences in surface charge and hydrophobicity. Both gradient and two-step elution have been able to separate the full and empty capsids effectively. During gradient elution with slight increase in conductivity coupled with weakening electrostatic and enhanced hydrophobic interactions between the ligand and the capsids, two distinctive elution peaks representing empty and full capsids were resolved. Full capsid recovery of 94 % at 89 % purity has been achieved with a loading density of ∼1012 virus particles per milliliter of membrane volume. During the two-step elution process, the functionalized membrane can achieve 88 % full capsid recovery at 75 % purity, or 67 % recovery at 89 % purity, or 59 % recovery at 93 % purity at first-step conductivity of 7.0, 7.5 and 8.0 mS/cm respectively and a loading density of ∼1013 particles per milliliter of membrane volume. Our results indicate that our MMAEX membrane coupled with careful modulation of capsid-ligand interaction has superior performance for separating the full and empty AAV capsids.
Collapse
Affiliation(s)
- Xiaolei Hao
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, United States
| | - Ronny Horax
- Ralph E Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, United States
| | - S Ranil Wickramasinghe
- Ralph E Martin Department of Chemical Engineering, University of Arkansas, Fayetteville, AR 72701, United States
| | - Xianghong Qian
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR 72701, United States.
| |
Collapse
|
3
|
Park EY, Minkner R. A systematic approach for scalable purification of virus-like particles. Protein Expr Purif 2025; 228:106664. [PMID: 39828016 DOI: 10.1016/j.pep.2025.106664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 01/13/2025] [Accepted: 01/16/2025] [Indexed: 01/22/2025]
Abstract
Virus-like particles (VLPs) are increasingly recognized as promising vaccine candidates and drug-delivery platforms because they do not contain genetic materials, mimic viral structures, and possess strong antigenic properties. Various hosts, including microorganisms, yeast, and insect cells, are commonly used for VLP expression. Recently, silkworms have emerged as a significant host for producing VLPs, providing a cost-effective and straightforward approach for large-scale expression. Despite the progress in VLP expression technology, purification methods for VLPs are still in their infancy and often rely on unscalable ultracentrifugation techniques. Moreover, VLP purification represents a substantial portion of the overall production cost, highlighting the urgent need for efficient and scalable downstream processing methods to overcome the current challenges in VLP production. Considering their differing structures and properties, this review systematically summarizes the published results of scalable downstream processes for both enveloped and non-enveloped VLPs. Its aim is to provide a comprehensive overview and significantly contribute to developing future VLP production for pharmaceutical applications, thereby guiding and inspiring further research in this field.
Collapse
Affiliation(s)
- Enoch Y Park
- Laboratory of Biotechnology, Faculty of Agriculture, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan; Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| | - Robert Minkner
- Department of Bioscience, Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan.
| |
Collapse
|
4
|
Zhao H, Lin X, Wang L, Yang Y, Zhu H, Li Z, Su Z, Yu R, Zhang S. Pore-blocking steric mass-action model for adsorption of bioparticles. J Chromatogr A 2024; 1726:464968. [PMID: 38723492 DOI: 10.1016/j.chroma.2024.464968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/01/2024] [Accepted: 05/04/2024] [Indexed: 05/23/2024]
Abstract
The steric mass-action (SMA) model has been widely reported to describe the adsorption of proteins in different types of chromatographic adsorbents. Here in the present work, a pore-blocking steric mass-action model (PB-SMA) was developed for the adsorption of large-size bioparticles, which usually exhibit the unique pore-blocking characteristic on the adsorbent and thus lead to a fraction of ligands in the deep channels physically inaccessible to bioparticles adsorption, instead of being shielded due to steric hindrance by adsorbed bioparticles. This unique phenomenon was taken into account by introducing an additional parameter, Lin, which is defined as the inaccessible ligand densities in the physically blocked pore area, into the PB-SMA model. This fraction of ligand densities (Lin) will be deducted from the total ligand (Lt) for model development, thus the steric factor (σ) in the proposed PB-SMA will reflect the steric shielding effect on binding sites by adsorbed bioparticles more accurately than the conventional SMA model, which assumes that all ligands on the adsorbent have the same accessibility to the bioparticles. Based on a series of model assumptions, a PB-SMA model was firstly developed for inactivated foot-and-mouth disease virus (iFMDV) adsorption on immobilized metal affinity chromatography (IMAC) adsorbents. Model parameters for static adsorption including equilibrium constant (K), characteristic number of binding sites (n), and steric factor (σ) were determined. Compared with those derived from the conventional SMA model, the σ values derived from the PB-SMA model were dozens of times smaller and much closer to the theoretical maximum number of ligands shielded by a single adsorbed iFMDV, indicating the modified model was more accurate for bioparticles adsorption. The applicability of the PB-SMA model was further validated by the adsorption of hepatitis B surface antigen virus-like particles (HBsAg VLPs) on an ion exchange adsorbent with reasonably improved accuracy. Thus, it is considered that the PB-SMA model would be more accurate in describing the adsorption of bioparticles on different types of chromatographic adsorbents.
Collapse
Affiliation(s)
- Hanying Zhao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China; State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery (CAS), Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Xuan Lin
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery (CAS), Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Liuyang Wang
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery (CAS), Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Yanli Yang
- Tecon Pharmaceutical Co., Ltd., Suzhou, 215000, China
| | - Hongyu Zhu
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery (CAS), Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China; Division of Molecular Science, Graduate School of Science and Technology, Gunma University, Kiryu, 376-8515, Japan
| | - Zhengjun Li
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery (CAS), Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhiguo Su
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery (CAS), Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China
| | - Rong Yu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Ministry of Education, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China.
| | - Songping Zhang
- State Key Laboratory of Biochemical Engineering, Key Laboratory of Biopharmaceutical Preparation and Delivery (CAS), Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China.
| |
Collapse
|
5
|
Röcker D, Dietmann K, Nägler L, Su X, Fraga-García P, Schwaminger SP, Berensmeier S. Design and characterization of an electrochemically-modulated membrane chromatography device. J Chromatogr A 2024; 1718:464733. [PMID: 38364620 DOI: 10.1016/j.chroma.2024.464733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 02/07/2024] [Accepted: 02/09/2024] [Indexed: 02/18/2024]
Abstract
Membrane separations offer a compelling alternative to traditional chromatographic methods by overcoming mass transport limitations. We introduce an additional degree of freedom in modulating membrane chromatography by using metalized membranes in a potential-driven process. Investigating the impact of a gold coating on membrane characteristics, the sputtered gold layer enhances the surface conductivity with stable electrochemical behavior. However, this comes at the expense of reduced permeability, wettability, and static binding capacity (∼ 474 µg g-1 of maleic acid). The designed device displayed a homogenous flow distribution, and the membrane electrodes exhibit predominantly capacitive behavior during potential application. Modulating the electrical potential during the adsorption and desorption phase strongly influenced the binding and elution behavior of anion-exchange membranes. Switching potentials between ±1.0 V vs. Ag/AgCl induces desorption, confirming the process principle. Elution efficiency reaches up to 58 % at -1.0 V vs. Ag/AgCl in the desorption phase without any alteration of the mobile phase. Increasing the potential perturbation ranging from +1.0 V to -1.0 V vs. Ag/AgCl resulted in reduced peak width and improved elution behavior, demonstrating the feasibility of electrochemically-modulated membrane chromatography. The developed process has great potential as a gentle and sustainable separation step in the biotechnological and chemical industry.
Collapse
Affiliation(s)
- Dennis Röcker
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, Garching 85748, Germany; Munich Institute for Integrated Materials, Energy and Process Engineering, Technical University of Munich, Lichtenbergstraße 4a, Garching 85748, Germany
| | - Katharina Dietmann
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, Garching 85748, Germany
| | - Larissa Nägler
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, Garching 85748, Germany
| | - Xiao Su
- Department of Chemical and Biomolecular Engineering, University of Illinois Urbana-Champaign, Urbana, IL 61801, United States
| | - Paula Fraga-García
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, Garching 85748, Germany
| | - Sebastian P Schwaminger
- Division of Medicinal Chemistry, Otto-Loewi Research Center, Medical University of Graz, Neue Stiftingtalstraße 6, Graz 8010, Austria; BioTechMed-Graz, Mozartgasse 12/II, Graz 8010, Austria.
| | - Sonja Berensmeier
- Chair of Bioseparation Engineering, TUM School of Engineering and Design, Technical University of Munich, Boltzmannstraße 15, Garching 85748, Germany; Munich Institute for Integrated Materials, Energy and Process Engineering, Technical University of Munich, Lichtenbergstraße 4a, Garching 85748, Germany.
| |
Collapse
|
6
|
Abstract
The development and adoption of digital twins (DT) for Quality-by-Design (QbD)-based processes with flexible operating points within a proven acceptable range (PAR) and automation through Advanced Process Control (APC) with Process Analytical Technology (PAT) instead of conventional process execution based on offline analytics and inflexible process set points is one of the great challenges in modern biotechnology. Virus-like particles (VLPs) are part of a line of innovative drug substances (DS). VLPs, especially those based on human immunodeficiency virus (HIV), HIV-1 Gag VLPs, have very high potential as a versatile vaccination platform, allowing for pseudotyping with heterologous envelope proteins, e.g., the S protein of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). As enveloped VLPs, optimal process control with minimal hold times is essential. This study demonstrates, for the first time, the use of a digital twin for the overall production process of HIV-1 Gag VLPs from cultivation, clarification, and purification to lyophilization. The accuracy of the digital twins is in the range of 0.8 to 1.4% in depth filtration (DF) and 4.6 to 5.2% in ultrafiltration/diafiltration (UFDF). The uncertainty due to variability in the model parameter determination is less than 4.5% (DF) and less than 3.8% (UFDF). In the DF, a prediction of the final filter capacity was demonstrated from as low as 5.8% (9mbar) of the final transmembrane pressure (TMP). The scale-up based on DT in chromatography shows optimization potential in productivity up to a factor of 2. The schedule based on DT and PAT for APC has been compared to conventional process control, and hold-time and process duration reductions by a factor of 2 have been achieved. This work lays the foundation for the short-term validation of the DT and PAT for APC in an automated S7 process environment and the conversion from batch to continuous production.
Collapse
|
7
|
Yang X, Merenda A, AL-Attabi R, Dumée LF, Zhang X, Thang SH, Pham H, Kong L. Towards next generation high throughput ion exchange membranes for downstream bioprocessing: A review. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.120325] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
8
|
Highly Efficient Purification of Recombinant VSV-∆G-Spike Vaccine against SARS-CoV-2 by Flow-Through Chromatography. BIOTECH 2021; 10:biotech10040022. [PMID: 35822796 PMCID: PMC9245476 DOI: 10.3390/biotech10040022] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/07/2021] [Accepted: 10/08/2021] [Indexed: 01/10/2023] Open
Abstract
This study reports a highly efficient, rapid one-step purification process for the production of the recombinant vesicular stomatitis virus-based vaccine, rVSV-∆G-spike (rVSV-S), recently developed by the Israel Institute for Biological Research (IIBR) for the prevention of COVID-19. Several purification strategies are evaluated using a variety of chromatography methods, including membrane adsorbers and packed-bed ion-exchange chromatography. Cell harvest is initially treated with endonuclease, clarified, and further concentrated by ultrafiltration before chromatography purification. The use of anion-exchange chromatography in all forms results in strong binding of the virus to the media, necessitating a high salt concentration for elution. The large virus and spike protein binds very strongly to the high surface area of the membrane adsorbents, resulting in poor virus recovery (<15%), while the use of packed-bed chromatography, where the surface area is smaller, achieves better recovery (up to 33%). Finally, a highly efficient chromatography purification process with CaptoTM Core 700 resin, which does not require binding and the elution of the virus, is described. rVSV-S cannot enter the inner pores of the resin and is collected in the flow-through eluent. Purification of the rVSV-S virus with CaptoTM Core 700 resulted in viral infectivity above 85% for this step, with the efficient removal of host cell proteins, consistent with regulatory requirements. Similar results were obtained without an initial ultrafiltration step.
Collapse
|
9
|
Hester JF, Lu X, Calhoun JD, Hochstein RA, Olson EJ. Orthogonal pre-use and post-use efficiency testing for single-use anion exchange chromatography. J Chromatogr A 2021; 1654:462445. [PMID: 34407471 DOI: 10.1016/j.chroma.2021.462445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 07/12/2021] [Accepted: 07/22/2021] [Indexed: 11/28/2022]
Abstract
Three efficiency tests for single-use AEX chromatography devices have been developed and applied to six capsule formats of a new, salt tolerant, single-use AEX product. All the tests have been designed to be performed with simple equipment and common reagents. By performing each of the three tests on undamaged capsules and capsules intentionally damaged with small defects, in tandem with Phi-X174 challenges in a high-salt buffer, relationships between test results and viral clearance have been obtained. A pre-use pressure-based installation verification test is simply performed during equilibration of the device and effective at identifying gross bypass defects, for example, due to internal seal breakage. Passing outcomes of a post-use installation validation bubble point test are associated with ≥ 5 log reduction value (LRV) of viral clearance. A new, non-destructive, pre-use AEX capacity test involves challenging the device with chloride ions and is orthogonal to the other two tests in that it can detect chemical defects, as well as mechanical ones. Passing outcomes of this test correspond to > 2 LRV viral clearance and provide in situ assurance of the expected AEX dynamic capacity prior to use. Selection of a pair of pre-use and post-use tests can provide robust risk reduction with respect to viral clearance by single-use AEX devices in biopharmaceutical purifications.
Collapse
Affiliation(s)
- Jonathan F Hester
- 3M Separation and Purification Sciences Division, 3M Center 236-1C-14, St. Paul, MN 55144-1000, United States.
| | - Xinran Lu
- 3M Separation and Purification Sciences Division, 3M Center 236-1C-14, St. Paul, MN 55144-1000, United States
| | - Jacob D Calhoun
- 3M Separation and Purification Sciences Division, 3M Center 236-1C-14, St. Paul, MN 55144-1000, United States
| | - Rebecca A Hochstein
- 3M Separation and Purification Sciences Division, 3M Center 236-1C-14, St. Paul, MN 55144-1000, United States
| | - Eric J Olson
- 3M Corporate Research Analytical Laboratory, 3M Center 201-BS-03, St. Paul, MN 55144-1000, United States
| |
Collapse
|
10
|
Hamidi A, Hoeksema F, Velthof P, Lemckert A, Gillissen G, Luitjens A, Bines JE, Pullagurla SR, Kumar P, Volkin DB, Joshi SB, Havenga M, Bakker WAM, Yallop C. Developing a manufacturing process to deliver a cost effective and stable liquid human rotavirus vaccine. Vaccine 2021; 39:2048-2059. [PMID: 33744044 PMCID: PMC8062787 DOI: 10.1016/j.vaccine.2021.03.033] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/05/2021] [Accepted: 03/06/2021] [Indexed: 11/28/2022]
Abstract
Despite solid evidence of the success of rotavirus vaccines in saving children from fatal gastroenteritis, more than 82 million infants worldwide still lack access to a rotavirus vaccine. The main barriers to global rotavirus vaccine coverage include cost, manufacturing capacity and suboptimal efficacy in low- and lower-middle income countries. One vaccine candidate with the potential to address the latter is based on the novel, naturally attenuated RV3 strain of rotavirus, RV3-BB vaccine administered in a birth dose strategy had a vaccine efficacy against severe rotavirus gastroenteritis of 94% at 12 months of age in infants in Indonesia. To further develop this vaccine candidate, a well-documented and low-cost manufacturing process is required. A target fully loaded cost of goods (COGs) of ≤$3.50 per course of three doses was set based on predicted market requirements. COGs modelling was leveraged to develop a process using Vero cells in cell factories reaching high titers, reducing or replacing expensive reagents and shortening process time to maximise output. Stable candidate liquid formulations were developed allowing two-year storage at 2-8 °C. In addition, the formulation potentially renders needless the pretreatment of vaccinees with antacid to ensure adequate gastric acid neutralization for routine oral vaccination. As a result, the formulation allows small volume dosing and reduction of supply chain costs. A dose ranging study is currently underway in Malawi that will inform the final clinical dose required. At a clinical dose of ≤6.3 log10 FFU, the COGs target of ≤$3.50 per three dose course was met. At a clinical dose of 6.5 log10 FFU, the final manufacturing process resulted in a COGs that is substantially lower than the current average market price, 2.44 USD per dose. The manufacturing and formulation processes were transferred to BioFarma in Indonesia to enable future RV3-BB vaccine production.
Collapse
Affiliation(s)
- Ahd Hamidi
- Batavia Biosciences BV, Zernikedreef 16, 2333CL Leiden, the Netherlands
| | - Femke Hoeksema
- Batavia Biosciences BV, Zernikedreef 16, 2333CL Leiden, the Netherlands
| | - Pim Velthof
- Batavia Biosciences BV, Zernikedreef 16, 2333CL Leiden, the Netherlands
| | | | - Gert Gillissen
- Batavia Biosciences BV, Zernikedreef 16, 2333CL Leiden, the Netherlands
| | - Alfred Luitjens
- Batavia Biosciences BV, Zernikedreef 16, 2333CL Leiden, the Netherlands
| | - Julie E Bines
- Murdoch Children's Research Institute, Department of Paediatrics, University of Melbourne, Department of Gastroenterology and Clinical Nutrition, Royal Children's Hospital, Parkville, Victoria 3052, Australia
| | - Swathi R Pullagurla
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Prashant Kumar
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - David B Volkin
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Sangeeta B Joshi
- Department of Pharmaceutical Chemistry, Vaccine Analytics and Formulation Center, University of Kansas, Lawrence, KS 66047, USA
| | - Menzo Havenga
- Batavia Biosciences BV, Zernikedreef 16, 2333CL Leiden, the Netherlands
| | | | - Christopher Yallop
- Batavia Biosciences BV, Zernikedreef 16, 2333CL Leiden, the Netherlands.
| |
Collapse
|
11
|
Cherepushkin SA, Tsibezov VV, Yuzhakov AG, Latyshev OE, Alekseev KP, Altayeva EG, Khametova KM, Vorkunova GK, Yuzhakova KA, Grebennikova TV. [Synthesis and characterization of human rotavirus A ( Reoviridae: Sedoreovirinae: Rotavirus: Rotavirus A) virus-like particles]. Vopr Virusol 2021; 66:55-64. [PMID: 33683066 DOI: 10.36233/0507-4088-27] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 03/07/2021] [Indexed: 11/05/2022]
Abstract
INTRODUCTION Rotavirus infection is the leading cause of acute gastroenteritis among infants. The development of new vaccines against rotavirus A is urgent because the virus has many genotypes, some of which have regional prevalence. Virus-like particles (VLP) is a promising way to create effective and safe vaccine preparations.The purpose of the study is to develop the technology for the production of VLP, containing VP2, VP4, VP6 and VP7 of viral genotypes prevalent on the territory of the Russian Federation, and to give its molecular genetic and virological characteristics. MATERIAL AND METHODS The virulent strain Wa G1P[8] of human RV A adapted to MARC-145 cell culture has been used. It was cultured and purified according to the method described by the authors earlier. Standard molecular genetic and cytological methods were used: gene synthesis; cloning into transfer plasmids; recombinant baculoviruses production in Bac-to-Bac expression system; VLP production in the insect cells; centrifugation in sucrose solution; enzyme-linked immunosorbent assay (ELISA); electron microscopy (EM); polyacrylamide gel electrophoresis (SDS-PAGE) and western blot analysis. RESULTS VP4 and VP7 of the six most represented in Russia genotypes: G1, G2, G4, G9, P4, P8, as well as VP2 and VP6 were selected for VLP production. Recombinant baculoviruses were obtained with codon frequencies optimized for insect cells. Cabbage loopper (Trichoplusia ni) cell culture was coinfected with different combinations of baculoviruses, and VLP consisting of 2-4 proteins were produced. VLP were purified by centrifugation. The size and morphology of the particles matched the rotavirus A virion (by EM). The presence of rotavirus A proteins in VLP was confirmed by the ELISA, SDS-PAGE and western blot analysis. CONCLUSION The technology for the synthesis of three-layer VLP consisting of VP2, VP4, VP6 and VP7 has been developed and optimized. The resulting VLP composition represents 6 serotypes of VP4 and VP7, which are most represented on the territory of Russia, and can be used for vaccine development.
Collapse
Affiliation(s)
- S A Cherepushkin
- FSBI National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya
| | - V V Tsibezov
- FSBI National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya
| | - A G Yuzhakov
- FSBI National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya
| | - O E Latyshev
- FSBI National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya
| | - K P Alekseev
- FSBI National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya
| | | | - K M Khametova
- FSBI National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya
| | - G K Vorkunova
- FSBI National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya
| | - K A Yuzhakova
- FSBI National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya
| | - T V Grebennikova
- FSBI National Research Center for Epidemiology and Microbiology named after Honorary Academician N.F. Gamaleya
| |
Collapse
|
12
|
Nonwoven Ion-Exchange Membranes with High Protein Binding Capacity for Bioseparations. MEMBRANES 2021; 11:membranes11030181. [PMID: 33800791 PMCID: PMC8001514 DOI: 10.3390/membranes11030181] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/02/2021] [Accepted: 03/03/2021] [Indexed: 11/16/2022]
Abstract
This study presents the preparation and characterization of UV-grafted polybutylene terepthalate (PBT) ion exchange nonwoven membranes for chromatographic purification of biomolecules. The PBT nonwoven was functionalized with sulfonate and secondary amine for cation and anion exchange (CEX and AEX), respectively. The anion exchange membrane showed an equilibrium static binding capacity of 1300 mg BSA/g of membrane, while the cationic membranes achieved a maximum equilibrium binding capacity of over 700 mg hIgG/g of membrane. The CEX and AEX membranes resulted in dynamic binding capacities under flow conditions, with a residence time of 0.1 min, of 200 mg hIgG/mL of membrane and 55 mg BSA/mL of membrane, respectively. The selectivity of the PBT-CEX membranes was demonstrated by purifying antibodies and antibody fragments (hIgG and scFv) from CHO cell culture supernatants in a bind-an-elute mode. The purity of the eluted samples exceeded 97%, with good log removal values (LRV) for both host cell proteins (HCPs) and DNA. The PBT-AEX nonwoven membranes exhibited a DNA LRV of 2.6 from hIgG solutions in a flow-through mode with little loss of product. These results indicate that these membranes have significant potential for use in downstream purification of biologics.
Collapse
|
13
|
Junter GA, Lebrun L. Polysaccharide-based chromatographic adsorbents for virus purification and viral clearance. J Pharm Anal 2020; 10:291-312. [PMID: 32292625 PMCID: PMC7104128 DOI: 10.1016/j.jpha.2020.01.002] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 01/10/2020] [Accepted: 01/11/2020] [Indexed: 12/20/2022] Open
Abstract
Viruses still pose a significant threat to human and animal health worldwide. In the fight against viral infections, high-purity viral stocks are needed for manufacture of safer vaccines. It is also a priority to ensure the viral safety of biopharmaceuticals such as blood products. Chromatography techniques are widely implemented at both academic and industrial levels in the purification of viral particles, whole viruses and virus-like particles to remove viral contaminants from biopharmaceutical products. This paper focuses on polysaccharide adsorbents, particulate resins and membrane adsorbers, used in virus purification/removal chromatography processes. Different chromatographic modes are surveyed, with particular attention to ion exchange and affinity/pseudo-affinity adsorbents among which commercially available agarose-based resins (Sepharose®) and cellulose-based membrane adsorbers (Sartobind®) occupy a dominant position. Mainly built on the development of new ligands coupled to conventional agarose/cellulose matrices, the development perspectives of polysaccharide-based chromatography media in this antiviral area are stressed in the conclusive part.
Collapse
Affiliation(s)
- Guy-Alain Junter
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000, Rouen, France
| | - Laurent Lebrun
- Normandie Univ, UNIROUEN, INSA Rouen, CNRS, PBS, 76000, Rouen, France
| |
Collapse
|
14
|
A systematic and methodical approach for the efficient purification of recombinant protein from silkworm larval hemolymph. J Chromatogr B Analyt Technol Biomed Life Sci 2020; 1138:121964. [DOI: 10.1016/j.jchromb.2019.121964] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 12/25/2019] [Accepted: 12/30/2019] [Indexed: 01/16/2023]
|
15
|
Moleirinho MG, Silva RJS, Alves PM, Carrondo MJT, Peixoto C. Current challenges in biotherapeutic particles manufacturing. Expert Opin Biol Ther 2019; 20:451-465. [PMID: 31773998 DOI: 10.1080/14712598.2020.1693541] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: The development of novel complex biotherapeutics led to new challenges in biopharmaceutical industry. The potential of these particles has been demonstrated by the approval of several products, in the different fields of gene therapy, oncolytic therapy, and tumor vaccines. However, their manufacturing still presents challenges related to the high dosages and purity required.Areas covered: The main challenges that biopharmaceutical industry faces today and the most recent developments in the manufacturing of different biotherapeutic particles are reported here. Several unit operations and downstream trains to purify virus, virus-like particles and extracellular vesicles are described. Innovations on the different purification steps are also highlighted with an eye on the implementation of continuous and integrated processes.Expert opinion: Manufacturing platforms that consist of a low number of unit operations, with higher-yielding processes and reduced costs will be highly appreciated by the industry. The pipeline of complex therapeutic particles is expanding and there is a clear need for advanced tools and manufacturing capacity. The use of single-use technologies, as well as continuous integrated operations, are gaining ground in the biopharmaceutical industry and should be supported by more accurate and faster analytical methods.
Collapse
Affiliation(s)
- Mafalda G Moleirinho
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado, Oeiras, Portugal.,ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Ricardo J S Silva
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado, Oeiras, Portugal
| | - Paula M Alves
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado, Oeiras, Portugal.,ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| | - Manuel J T Carrondo
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado, Oeiras, Portugal
| | - Cristina Peixoto
- IBET, Instituto de Biologia Experimental e Tecnológica, Apartado, Oeiras, Portugal.,ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, Oeiras, Portugal
| |
Collapse
|
16
|
Zhao M, Vandersluis M, Stout J, Haupts U, Sanders M, Jacquemart R. Affinity chromatography for vaccines manufacturing: Finally ready for prime time? Vaccine 2019; 37:5491-5503. [DOI: 10.1016/j.vaccine.2018.02.090] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Revised: 01/22/2018] [Accepted: 02/22/2018] [Indexed: 01/15/2023]
|
17
|
Lima TM, Souza MO, Castilho LR. Purification of flavivirus VLPs by a two-step chomatographic process. Vaccine 2019; 37:7061-7069. [PMID: 31201056 DOI: 10.1016/j.vaccine.2019.05.066] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 05/01/2019] [Accepted: 05/22/2019] [Indexed: 12/16/2022]
Abstract
Flaviviruses are enveloped viruses with positive-sense, single-stranded RNA, which are most commonly transmitted by infected mosquitoes. Zika virus (ZIKV) and yellow fever virus (YFV) are flaviviruses that have caused significant outbreaks in the last few years. Since there is no approved vaccine against ZIKV, and since the existing YF attenuated vaccine presents disadvantages related to limited supply and to rare, but fatal adverse effects, there is an urgent need for new vaccines to control these diseases. Virus-like particles (VLPs) represent a recombinant platform to produce safe and immunogenic vaccines. Thus, based on our experience of expressing in recombinant mammalian cells VLPs of most flaviviruses circulating in the Americas, this work focused on the evaluation of chromatographic purification processes for zika and yellow-fever VLPs. The clarified cell culture supernatant was processed by a membrane-based anion-exchange chromatography and then a multimodal chromatographic step. With this process, it was possible to obtain the purified VLPs with a yield (including the clarification step) of 66.4% for zika and 68.1% for yellow fever. DNA clearance was in the range of 99.8-99.9%, providing VLP preparations that meet the WHO limit for this critical contaminant. Correct size and morphology of the purified VLPs were confirmed by dynamic light scattering (DLS) and transmission electron microscopy (TEM). The promising results obtained for both zika and yellow fever VLPs indicate that this process could be potentially applied also to VLPs of other flaviviruses.
Collapse
Affiliation(s)
- Túlio M Lima
- Federal University of Rio de Janeiro (UFRJ), COPPE, Cell Culture Engineering Laboratory, Av. Horácio Macedo, 2030 sl. G115, 21941-598, Cidade Universitária, Brazil; Federal University of Rio de Janeiro (UFRJ), EQ, EPQB Graduate Program, Av. Horácio Macedo, 2030 sl. E206, 21941-598, Cidade Universitária, Brazil
| | - Matheus O Souza
- Federal University of Rio de Janeiro (UFRJ), COPPE, Cell Culture Engineering Laboratory, Av. Horácio Macedo, 2030 sl. G115, 21941-598, Cidade Universitária, Brazil
| | - Leda R Castilho
- Federal University of Rio de Janeiro (UFRJ), COPPE, Cell Culture Engineering Laboratory, Av. Horácio Macedo, 2030 sl. G115, 21941-598, Cidade Universitária, Brazil.
| |
Collapse
|
18
|
Pato TP, Souza MC, Mattos DA, Caride E, Ferreira DF, Gaspar LP, Freire MS, Castilho LR. Purification of yellow fever virus produced in Vero cells for inactivated vaccine manufacture. Vaccine 2019; 37:3214-3220. [DOI: 10.1016/j.vaccine.2019.04.077] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 04/19/2019] [Accepted: 04/24/2019] [Indexed: 11/16/2022]
|
19
|
Velali E, Stute B, Leuthold M, von Lieres E. Model-based performance analysis and scale-up of membrane adsorbers with a cassettes format designed for parallel operation. Chem Eng Sci 2018. [DOI: 10.1016/j.ces.2018.07.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
|
20
|
Madadkar P, Yu Z, Wildfong J, Ghosh R. Comparison of membrane chromatography devices in laboratory-scale preparative flow-through separation of a recombinant protein. SEP SCI TECHNOL 2018. [DOI: 10.1080/01496395.2018.1481090] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Pedram Madadkar
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
| | - Zhou Yu
- Bioprocess Research and Development, Sanofi Pasteur, Toronto, Ontario, Canada
| | - Jenny Wildfong
- Bioprocess Research and Development, Sanofi Pasteur, Toronto, Ontario, Canada
| | - Raja Ghosh
- Department of Chemical Engineering, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
21
|
Ciejka J, Wolski K, Nowakowska M, Pyrc K, Szczubiałka K. Biopolymeric nano/microspheres for selective and reversible adsorption of coronaviruses. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 76:735-742. [PMID: 28482585 PMCID: PMC7126271 DOI: 10.1016/j.msec.2017.03.047] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 02/09/2017] [Accepted: 03/04/2017] [Indexed: 11/18/2022]
Abstract
A novel biopolymeric material in the form of nano/microspheres was developed which was capable of adsorbing coronaviruses. The biopolymer was obtained by crosslinking of chitosan (CHIT) with genipin, a nontoxic compound of plant origin, in inverted emulsion and reacting the chitosan nano/microspheres obtained (CHIT-NS/MS) with glycidyltrimethyl-ammonium chloride (GTMAC). As a result the nano/microspheres of N-(2-hydroxypropyl)-3-trimethyl chitosan (HTCC-NS/MS) were obtained. HTCC-NS/MS were studied as the adsorbents of human coronavirus NL63 (HCoV-NL63), mouse hepatitis virus (MHV), and human coronavirus HCoV-OC43 particles in aqueous virus suspensions. By studying cytopathic effect (CPE) caused by these viruses and performing PCR analyses it was found HTCC-NS/MS strongly adsorb the particles of HCoV-NL63 virus, moderately adsorb mouse hepatitis virus (MHV) particles, but do not adsorb HCoV-OC43 coronavirus. The adsorption capacity of HTCC-NS/MS well correlated with the antiviral activity of soluble HTCC against a given virus. Importantly, it was shown that HCoV-NL63 particles could be desorbed from the HTCC-NS/MS surface with a salt solution of high ionic strength with retention of virus virulence. The obtained material may be applied for the removal of coronaviruses, purification and concentration of virus samples obtained from biological matrices and for purification of water from pathogenic coronaviruses.
Collapse
Affiliation(s)
- Justyna Ciejka
- Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland; Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Karol Wolski
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Maria Nowakowska
- Faculty of Chemistry, Jagiellonian University, Ingardena 3, 30-060 Krakow, Poland
| | - Krzysztof Pyrc
- Laboratory of Virology, Malopolska Centre of Biotechnology, Jagiellonian University, Gronostajowa 7a, 30-387 Krakow, Poland; Microbiology Department, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| | | |
Collapse
|
22
|
Abstract
Although viruses are simple biological systems, they are capable of evolving highly efficient techniques for infecting cells, expressing their genomes, and generating new copies of themselves. It is possible to genetically manipulate most of the different classes of known viruses in order to produce recombinant viruses that express foreign proteins. Recombinant viruses have been used in gene therapy to deliver selected genes into higher organisms, in vaccinology and immunotherapy, and as important research tools to study the structure and function of these proteins. Virus-like particles (VLPs) are multiprotein structures that mimic the organization and conformation of authentic native viruses but lack the viral genome. They have been applied not only as prophylactic and therapeutic vaccines but also as vehicles in drug and gene delivery and, more recently, as tools in nanobiotechnology. In this chapter, basic and advanced features of viruses and VLPs are presented and their major applications are discussed. The different production platforms based on animal cell technology are explained, and their main challenges and future perspectives are explored. The implications of large-scale production of viruses and VLPs are discussed in the context of process control, monitoring, and optimization. The main upstream and downstream technical challenges are identified and discussed accordingly.
Collapse
|
23
|
Winderl J, Hahn T, Hubbuch J. A mechanistic model of ion-exchange chromatography on polymer fiber stationary phases. J Chromatogr A 2016; 1475:18-30. [DOI: 10.1016/j.chroma.2016.10.057] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2016] [Revised: 10/17/2016] [Accepted: 10/24/2016] [Indexed: 02/06/2023]
|
24
|
Steppert P, Burgstaller D, Klausberger M, Berger E, Aguilar PP, Schneider TA, Kramberger P, Tover A, Nöbauer K, Razzazi-Fazeli E, Jungbauer A. Purification of HIV-1 gag virus-like particles and separation of other extracellular particles. J Chromatogr A 2016; 1455:93-101. [DOI: 10.1016/j.chroma.2016.05.053] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 05/04/2016] [Accepted: 05/13/2016] [Indexed: 12/31/2022]
|
25
|
Baumann P, Hubbuch J. Downstream process development strategies for effective bioprocesses: Trends, progress, and combinatorial approaches. Eng Life Sci 2016; 17:1142-1158. [PMID: 32624742 DOI: 10.1002/elsc.201600033] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2016] [Revised: 03/09/2016] [Accepted: 04/07/2016] [Indexed: 12/26/2022] Open
Abstract
The biopharmaceutical industry is at a turning point moving toward a more customized and patient-oriented medicine (precision medicine). Straightforward routines such as the antibody platform process are extended to production processes for a new portfolio of molecules. As a consequence, individual and tailored productions require generic approaches for a fast and dedicated purification process development. In this article, different effective strategies in biopharmaceutical purification process development are reviewed that can analogously be used for the new generation of antibodies. Conventional approaches based on heuristics and high-throughput process development are discussed and compared to modern technologies such as multivariate calibration and mechanistic modeling tools. Such approaches constitute a good foundation for fast and effective process development for new products and processes, but their full potential becomes obvious in a correlated combination. Thus, different combinatorial approaches are presented, which might become future directions in the biopharmaceutical industry.
Collapse
Affiliation(s)
- Pascal Baumann
- Biomolecular Separation Engineering Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| | - Jürgen Hubbuch
- Biomolecular Separation Engineering Karlsruhe Institute of Technology (KIT) Karlsruhe Germany
| |
Collapse
|
26
|
Lee MFX, Chan ES, Tan WS, Tam KC, Tey BT. Negative chromatography of hepatitis B virus-like particle: Comparative study of different adsorbent designs. J Chromatogr A 2016; 1445:1-9. [DOI: 10.1016/j.chroma.2016.03.066] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 03/09/2016] [Accepted: 03/22/2016] [Indexed: 02/06/2023]
|
27
|
Ladd Effio C, Hahn T, Seiler J, Oelmeier SA, Asen I, Silberer C, Villain L, Hubbuch J. Modeling and simulation of anion-exchange membrane chromatography for purification of Sf9 insect cell-derived virus-like particles. J Chromatogr A 2015; 1429:142-54. [PMID: 26718185 DOI: 10.1016/j.chroma.2015.12.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 12/01/2015] [Accepted: 12/03/2015] [Indexed: 11/25/2022]
Abstract
Recombinant protein-based virus-like particles (VLPs) are steadily gaining in importance as innovative vaccines against cancer and infectious diseases. Multiple VLPs are currently evaluated in clinical phases requiring a straightforward and rational process design. To date, there is no generic platform process available for the purification of VLPs. In order to accelerate and simplify VLP downstream processing, there is a demand for novel development approaches, technologies, and purification tools. Membrane adsorbers have been identified as promising stationary phases for the processing of bionanoparticles due to their large pore sizes. In this work, we present the potential of two strategies for designing VLP processes following the basic tenet of 'quality by design': High-throughput experimentation and process modeling of an anion-exchange membrane capture step. Automated membrane screenings allowed the identification of optimal VLP binding conditions yielding a dynamic binding capacity of 5.7 mg/mL for human B19 parvovirus-like particles derived from Spodoptera frugiperda Sf9 insect cells. A mechanistic approach was implemented for radial ion-exchange membrane chromatography using the lumped-rate model and stoichiometric displacement model for the in silico optimization of a VLP capture step. For the first time, process modeling enabled the in silico design of a selective, robust and scalable process with minimal experimental effort for a complex VLP feedstock. The optimized anion-exchange membrane chromatography process resulted in a protein purity of 81.5%, a DNA clearance of 99.2%, and a VLP recovery of 59%.
Collapse
Affiliation(s)
- Christopher Ladd Effio
- Karlsruhe Institute of Technology, Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe, Germany
| | - Tobias Hahn
- Karlsruhe Institute of Technology, Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe, Germany
| | - Julia Seiler
- Karlsruhe Institute of Technology, Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe, Germany
| | - Stefan A Oelmeier
- Karlsruhe Institute of Technology, Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe, Germany; Boehringer Ingelheim Pharma GmbH & Co. KG, Germany
| | | | | | | | - Jürgen Hubbuch
- Karlsruhe Institute of Technology, Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe, Germany.
| |
Collapse
|
28
|
Improving the downstream processing of vaccine and gene therapy vectors with continuous chromatography. ACTA ACUST UNITED AC 2015. [DOI: 10.4155/pbp.15.29] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
29
|
Lin SY, Chiu HY, Chiang BL, Hu YC. Development of EV71 virus-like particle purification processes. Vaccine 2015; 33:5966-73. [DOI: 10.1016/j.vaccine.2015.04.077] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2015] [Revised: 04/11/2015] [Accepted: 04/16/2015] [Indexed: 12/20/2022]
|
30
|
Liu H, Gurgel PV, Carbonell RG. Preparation and characterization of anion exchange adsorptive nonwoven membranes with high protein binding capacity. J Memb Sci 2015. [DOI: 10.1016/j.memsci.2015.06.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
31
|
Effio CL, Hubbuch J. Next generation vaccines and vectors: Designing downstream processes for recombinant protein-based virus-like particles. Biotechnol J 2015; 10:715-27. [PMID: 25880158 DOI: 10.1002/biot.201400392] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Revised: 02/11/2015] [Accepted: 03/19/2015] [Indexed: 12/28/2022]
Abstract
In recent years, the development of novel recombinant virus-like particles (VLPs) has been generating new perspectives for the prevention of untreated and arising infectious diseases. However, cost-reduction and acceleration of manufacturing processes for VLP-based vaccines or vectors are key challenges for the global health system. In particular, the design of rapid and cost-efficient purification processes is a critical bottleneck. In this review, we describe and evaluate new concepts, development strategies and unit operations for the downstream processing of VLPs. A special focus is placed on purity requirements and current trends, as well as chances and limitations of novel technologies. The discussed methods and case studies demonstrate the advances and remaining challenges in both rational process development and purification tools for large biomolecules. The potential of a new era of VLP-based products is highlighted by the progress of various VLPs in clinical phases.
Collapse
Affiliation(s)
- Christopher Ladd Effio
- Karlsruhe Institute of Technology, Institute of Process Engineering in Life Sciences, Section IV: Biomolecular Separation Engineering, Karlsruhe, Germany
| | | |
Collapse
|
32
|
Nestola P, Peixoto C, Silva RRJS, Alves PM, Mota JPB, Carrondo MJT. Improved virus purification processes for vaccines and gene therapy. Biotechnol Bioeng 2015; 112:843-57. [PMID: 25677990 DOI: 10.1002/bit.25545] [Citation(s) in RCA: 95] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2014] [Revised: 01/05/2015] [Accepted: 01/13/2015] [Indexed: 01/10/2023]
Abstract
The downstream processing of virus particles for vaccination or gene therapy is becoming a critical bottleneck as upstream titers keep improving. Moreover, the growing pressure to develop cost-efficient processes has brought forward new downstream trains. This review aims at analyzing the state-of-the-art in viral downstream purification processes, encompassing the classical unit operations and their recent developments. Emphasis is given to novel strategies for process intensification, such as continuous or semi-continuous systems based on multicolumn technology, opening up process efficiency. Process understanding in the light of the pharmaceutical quality by design (QbD) initiative is also discussed. Finally, an outlook of the upcoming breakthrough technologies is presented.
Collapse
Affiliation(s)
- Piergiuseppe Nestola
- Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901, Oeiras, Portugal; Instituto de Tecnologia Química e Biológica, Universidade Nova de Lisboa, 2780-157, Oeiras, Portugal
| | | | | | | | | | | |
Collapse
|
33
|
Dimartino S, Boi C, Sarti GC. Scale-up of affinity membrane modules: comparison between lumped and physical models. J Mol Recognit 2015; 28:180-90. [DOI: 10.1002/jmr.2406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Revised: 02/18/2014] [Accepted: 06/21/2014] [Indexed: 11/06/2022]
Affiliation(s)
- Simone Dimartino
- Department of Chemical and Process Engineering and Biomolecular Interaction Centre (BIC); University of Canterbury; Christchurch New Zealand
| | - Cristiana Boi
- DICAM-Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali; Alma Mater Studiorum-Università di Bologna; via Terracini 28 40131 Bologna Italy
| | - Giulio C. Sarti
- DICAM-Dipartimento di Ingegneria Civile, Chimica, Ambientale e dei Materiali; Alma Mater Studiorum-Università di Bologna; via Terracini 28 40131 Bologna Italy
| |
Collapse
|
34
|
|
35
|
Kramberger P, Urbas L, Štrancar A. Downstream processing and chromatography based analytical methods for production of vaccines, gene therapy vectors, and bacteriophages. Hum Vaccin Immunother 2015; 11:1010-21. [PMID: 25751122 PMCID: PMC4514237 DOI: 10.1080/21645515.2015.1009817] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2014] [Accepted: 12/25/2014] [Indexed: 10/23/2022] Open
Abstract
Downstream processing of nanoplexes (viruses, virus-like particles, bacteriophages) is characterized by complexity of the starting material, number of purification methods to choose from, regulations that are setting the frame for the final product and analytical methods for upstream and downstream monitoring. This review gives an overview on the nanoplex downstream challenges and chromatography based analytical methods for efficient monitoring of the nanoplex production.
Collapse
|
36
|
Contreras-Gómez A, Sánchez-Mirón A, García-Camacho F, Molina-Grima E, Chisti Y. Protein production using the baculovirus-insect cell expression system. Biotechnol Prog 2014; 30:1-18. [PMID: 24265112 DOI: 10.1002/btpr.1842] [Citation(s) in RCA: 102] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Revised: 11/12/2013] [Accepted: 11/12/2013] [Indexed: 12/21/2022]
Abstract
The baculovirus-insect cell expression system is widely used in producing recombinant proteins. This review is focused on the use of this expression system in developing bioprocesses for producing proteins of interest. The issues addressed include: the baculovirus biology and genetic manipulation to improve protein expression and quality; the suppression of proteolysis associated with the viral enzymes; the engineering of the insect cell lines for improved capability in glycosylation and folding of the expressed proteins; the impact of baculovirus on the host cell and its implications for protein production; the effects of the growth medium on metabolism of the host cell; the bioreactors and the associated operational aspects; and downstream processing of the product. All these factors strongly affect the production of recombinant proteins. The current state of knowledge is reviewed.
Collapse
|
37
|
Development of a membrane adsorber based capture step for the purification of yellow fever virus. Vaccine 2014; 32:2789-93. [DOI: 10.1016/j.vaccine.2014.02.036] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
38
|
Banjac M, Roethl E, Gelhart F, Kramberger P, Jarc BL, Jarc M, Štrancar A, Muster T, Peterka M. Purification of Vero cell derived live replication deficient influenza A and B virus by ion exchange monolith chromatography. Vaccine 2014; 32:2487-92. [DOI: 10.1016/j.vaccine.2014.02.086] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2013] [Revised: 02/06/2014] [Accepted: 02/25/2014] [Indexed: 12/31/2022]
|
39
|
Raksha S, Tan WS, Hamid M, Ramanan RN, Tey BT. A Single-Step Purification of the Glycoprotein of Nipah Virus Produced in Insect Cells using an Anion Exchange Chromatography Method. SEP SCI TECHNOL 2014. [DOI: 10.1080/01496395.2013.838265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
40
|
Mönster A, Villain L, Scheper T, Beutel S. One-step-purification of penicillin G amidase from cell lysate using ion-exchange membrane adsorbers. J Memb Sci 2013. [DOI: 10.1016/j.memsci.2013.05.054] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
41
|
Orr V, Zhong L, Moo-Young M, Chou CP. Recent advances in bioprocessing application of membrane chromatography. Biotechnol Adv 2013; 31:450-65. [DOI: 10.1016/j.biotechadv.2013.01.007] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Accepted: 01/20/2013] [Indexed: 01/03/2023]
|
42
|
van Beijeren P, Kreis P, Zeiner T. Development of a generic process model for membrane adsorption. Comput Chem Eng 2013. [DOI: 10.1016/j.compchemeng.2013.03.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
|
43
|
Chen Q, Lai H. Plant-derived virus-like particles as vaccines. Hum Vaccin Immunother 2013; 9:26-49. [PMID: 22995837 PMCID: PMC3667944 DOI: 10.4161/hv.22218] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2012] [Revised: 09/06/2012] [Accepted: 09/13/2012] [Indexed: 02/07/2023] Open
Abstract
Virus-like particles (VLPs) are self-assembled structures derived from viral antigens that mimic the native architecture of viruses but lack the viral genome. VLPs have emerged as a premier vaccine platform due to their advantages in safety, immunogenicity, and manufacturing. The particulate nature and high-density presentation of viral structure proteins on their surface also render VLPs as attractive carriers for displaying foreign epitopes. Consequently, several VLP-based vaccines have been licensed for human use and achieved significant clinical and economical success. The major challenge, however, is to develop novel production platforms that can deliver VLP-based vaccines while significantly reducing production times and costs. Therefore, this review focuses on the essential role of plants as a novel, speedy and economical production platform for VLP-based vaccines. The advantages of plant expression systems are discussed in light of their distinctive posttranslational modifications, cost-effectiveness, production speed, and scalability. Recent achievements in the expression and assembly of VLPs and their chimeric derivatives in plant systems as well as their immunogenicity in animal models are presented. Results of human clinical trials demonstrating the safety and efficacy of plant-derived VLPs are also detailed. Moreover, the promising implications of the recent creation of "humanized" glycosylation plant lines as well as the very recent approval of the first plant-made biologics by the U. S. Food and Drug Administration (FDA) for plant production and commercialization of VLP-based vaccines are discussed. It is speculated that the combined potential of plant expression systems and VLP technology will lead to the emergence of successful vaccines and novel applications of VLPs in the near future.
Collapse
Affiliation(s)
- Qiang Chen
- Center for Infectious Diseases and Vaccinology, Biodesign Institute at Arizona State University, Tempe, AZ USA.
| | | |
Collapse
|
44
|
Huhti L, Tamminen K, Vesikari T, Blazevic V. Characterization and immunogenicity of norovirus capsid-derived virus-like particles purified by anion exchange chromatography. Arch Virol 2012; 158:933-42. [PMID: 23229011 PMCID: PMC7087179 DOI: 10.1007/s00705-012-1565-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2012] [Accepted: 10/25/2012] [Indexed: 12/01/2022]
Abstract
Recombinant baculovirus (BV) expression systems are widely applied in the production of viral capsid proteins and virus-like particles (VLPs) for use as immunogens and vaccine candidates. Traditional density gradient purification of VLPs does not enable complete elimination of BV-derived impurities, including live viruses, envelope glycoprotein gp64 and baculoviral DNA. We used an additional purification system based on ionic strength to purify norovirus (NoV) GII-4 capsid-derived VLPs. The anion exchange chromatography purification led to highly purified VLPs free from BV impurities with intact morphology. In addition, highly purified VLPs induced strong NoV-specific antibody responses in BALB/c mice. Here, we describe a method for NoV VLP purification and several methods for determining their purity, including quantitative PCR for BV DNA detection.
Collapse
Affiliation(s)
- L Huhti
- Vaccine Research Center, University of Tampere Medical School, Biokatu 10, 33520 Tampere, Finland.
| | | | | | | |
Collapse
|
45
|
Ghosh P, Vahedipour K, Lin M, Vogel JH, Haynes CA, von Lieres E. Zonal rate model for axial and radial flow membrane chromatography. Part I: knowledge transfer across operating conditions and scales. Biotechnol Bioeng 2012; 110:1129-41. [PMID: 23097218 PMCID: PMC3594972 DOI: 10.1002/bit.24771] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2012] [Revised: 10/08/2012] [Accepted: 10/15/2012] [Indexed: 11/07/2022]
Abstract
The zonal rate model (ZRM) has previously been applied for analyzing the performance of axial flow membrane chromatography capsules by independently determining the impacts of flow and binding related non-idealities on measured breakthrough curves. In the present study, the ZRM is extended to radial flow configurations, which are commonly used at larger scales. The axial flow XT5 capsule and the radial flow XT140 capsule from Pall are rigorously analyzed under binding and non-binding conditions with bovine serum albumin (BSA) as test molecule. The binding data of this molecule is much better reproduced by the spreading model, which hypothesizes different binding orientations, than by the well-known Langmuir model. Moreover, a revised cleaning protocol with NaCl instead of NaOH and minimizing the storage time has been identified as most critical for quantitatively reproducing the measured breakthrough curves. The internal geometry of both capsules is visualized by magnetic resonance imaging (MRI). The flow in the external hold-up volumes of the XT140 capsule was found to be more homogeneous as in the previously studied XT5 capsule. An attempt for model-based scale-up was apparently impeded by irregular pleat structures in the used XT140 capsule, which might lead to local variations in the linear velocity through the membrane stack. However, the presented approach is universal and can be applied to different capsules. The ZRM is shown to potentially help save valuable material and time, as the experiments required for model calibration are much cheaper than the predicted large-scale experiment at binding conditions.
Collapse
Affiliation(s)
- Pranay Ghosh
- IBG1: Biotechnology, Forschungszentrum Jülich, Wilhelm-Johnen-Strasse 1, 52425 Jülich, Germany
| | | | | | | | | | | |
Collapse
|
46
|
Vicente T, Roldão A, Peixoto C, Carrondo MJT, Alves PM. Large-scale production and purification of VLP-based vaccines. J Invertebr Pathol 2011; 107 Suppl:S42-8. [PMID: 21784230 PMCID: PMC7094596 DOI: 10.1016/j.jip.2011.05.004] [Citation(s) in RCA: 189] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Accepted: 02/25/2011] [Indexed: 12/29/2022]
Abstract
Virus-like particles (VLPs) hold tremendous potential as vaccine candidates. These innovative biopharmaceuticals present the remarkable advantages of closely mimicking the three-dimensional nature of an actual virus while lacking the virus genome packaged inside its capsid. As a result, an equally efficient but safer prophylaxis is anticipated as compared to inactivated or live attenuated viral vaccines. With the advent of successful cases of approved VLP-based vaccines, pharmaceutical companies are indeed redirecting their resources to the development of such products. This paper reviews the current choices and trends of large-scale production and purification of VLP-based vaccines generated through the baculovirus expression vector system using insect cells.
Collapse
Affiliation(s)
- Tiago Vicente
- Animal Cell Technology Unit, IBET, Apartado 12, P-2781-901 Oeiras, Portugal
| | | | | | | | | |
Collapse
|
47
|
Vicente T, Mota JP, Peixoto C, Alves PM, Carrondo MJ. Rational design and optimization of downstream processes of virus particles for biopharmaceutical applications: Current advances. Biotechnol Adv 2011; 29:869-78. [DOI: 10.1016/j.biotechadv.2011.07.004] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2010] [Revised: 07/07/2011] [Accepted: 07/11/2011] [Indexed: 12/11/2022]
|
48
|
Recovery of B19 virus-like particles by aqueous two-phase systems. FOOD AND BIOPRODUCTS PROCESSING 2011. [DOI: 10.1016/j.fbp.2010.10.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
49
|
Abstract
Manufacturing of cell culture-derived virus particles for vaccination and gene therapy is a rapidly growing field in the biopharmaceutical industry. The process involves a number of complex tasks and unit operations ranging from selection of host cells and virus strains for the cultivation in bioreactors to the purification and formulation of the final product. For the majority of cell culture-derived products, efforts focused on maximization of bioreactor yields, whereas design and optimization of downstream processes were often neglected. Owing to this biased focus, downstream procedures today often constitute a bottleneck in various manufacturing processes and account for the majority of the overall production costs. For efficient production methods, particularly in sight of constantly increasing economic pressure within human healthcare systems, highly productive downstream schemes have to be developed. Here, we discuss unit operations and downstream trains to purify virus particles for use as vaccines and vectors for gene therapy.
Collapse
Affiliation(s)
- Michael W Wolf
- Bioprocess Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106 Magdeburg, Germany.
| | | |
Collapse
|
50
|
Zonal rate model for stacked membrane chromatography. I: Characterizing solute dispersion under flow-through conditions. J Chromatogr A 2011; 1218:5071-8. [DOI: 10.1016/j.chroma.2011.05.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2010] [Revised: 02/21/2011] [Accepted: 05/09/2011] [Indexed: 11/22/2022]
|