1
|
You Y, Xing H, Li K, Xie Y, Ye M, Lu Y, Xue J. Bioinspired Carbon-Silver Sulfide Scaffold with Synergistic Enhanced Light Capture and Anti-Biofouling Property for Stable Solar Steam Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024:e2402544. [PMID: 39718254 DOI: 10.1002/smll.202402544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Indexed: 12/25/2024]
Abstract
Carbon material is a hot topic in solar evaporation. Due to the widely distributed microorganisms in natural water, biofouling has limited the actual application of solar evaporation material. Although carbon material lacks of nutrition for microbe, it is still vulnerable to biofouling because of the efficient pollutant adsorption property. However, current anti-biofouling design focuses on microbial control, neglects its influence on evaporators light absorption, that is usually a trade-off with evaporation efficiency. Herein, a bioinspired aligned carbon-Ag2S scaffold is introduced with synergistical enhanced light absorption (increased to 98.0% from 97.4%) and anti-biofouling property. The bioinspired aligned carbon-Ag2S scaffold exhibits a 1.87 kg m-2 h-1 evaporation rate under one sun, superior to pure carbon scaffold (1.78 kg m-2 h-1). It also maintains efficient light capture (-97.2%) and evaporation rate (1.73 kg m-2 h-1) after bacterial interference, avoiding sharp decline in light absorption (reduced to 83.3-87.6%) and evaporation performance (reduced to 1.24-1.28 kg m-2 h-1) which occurs in carbon scaffold due to biofouling. The carbon-Ag2S scaffold shows solid advantage in balancing light captures and biofouling control, compared to carbon-ZnO scaffold with conventional anti-biofouling design, which inhibits biofouling sacrificing light absorption (reduced to 89.8%) and evaporation performance (reduced to 1.41 kg m-2 h-1).
Collapse
Affiliation(s)
- Yang You
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hanye Xing
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Kangkang Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yuqing Xie
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Meiqi Ye
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yang Lu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jingzhe Xue
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
- Anhui Institute of Quality and Standardization, Hefei, 230001, China
| |
Collapse
|
2
|
Dong X, Zheng Y, Deng H, Pang X, Wu T, Zhu S, Zhang R, Jiang Z. Bubble Drainage Assisted Fabrication of Polyamide Membranes with Crater-like Structures for Efficient Desalination. NANO LETTERS 2024; 24:14389-14397. [PMID: 39498839 DOI: 10.1021/acs.nanolett.4c04175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/07/2024]
Abstract
Bubble drainage (BD) occurs in various natural phenomena and industrial activities, in which bubbles rise toward the water surface and create a progressively thinned two-sided liquid film, called a lamella. Surfactant, as an important regulator in the BD process, not only assembles on both sides of the lamellae, generating a configuration of lamellae sandwiched by monolayers of surfactants (lamellae/MS), but also induces interfacial deformation by lowering interfacial tension. Herein, we developed a strategy of BD assisted interfacial polymerization for the fabrication of polyamide (PA) membranes. The regulated interfacial deformation at the water-oil interface produced a membrane with crater-like structures, which greatly increased the surface area of the PA membrane. Moreover, the lamellae/MS configuration served as a reservoir to spontaneously enrich amine monomers and thus modulate the diffusion-reaction kinetics. The resulting PA membranes exhibited superior separation performance with a water permeance of 44.7 L m-2 h-1 bar-1 and a Na2SO4 rejection of 99.2%.
Collapse
Affiliation(s)
- Xu Dong
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Yu Zheng
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Hao Deng
- Department Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Xiao Pang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Tao Wu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Shiyi Zhu
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Runnan Zhang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
| | - Zhongyi Jiang
- Key Laboratory for Green Chemical Technology of Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
- Zhejiang Institute of Tianjin University, Ningbo, Zhejiang 315201, China
- Haihe Laboratory of Sustainable Chemical Transformations, Tianjin 300192, China
- Department Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou 350207, China
| |
Collapse
|
3
|
Zhang JX, Li YS, Du WJ, Tian T, Xuan L, Yu HQ. Driving force shapes the biocake characteristics in membrane-based bioreactors. WATER RESEARCH 2024; 268:122592. [PMID: 39418803 DOI: 10.1016/j.watres.2024.122592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/04/2024] [Accepted: 10/06/2024] [Indexed: 10/19/2024]
Abstract
The operation of membrane-based reactors is inevitably challenged by fouling. The driving force in these reactors is not only critical for water passage through membranes but also significantly influences fouling, such as biocake formation. This study investigated the differences between biocakes formed under transmembrane pressure (TMP) and forward osmosis (FO) conditions, specifically focusing on their components, spatial structures, and microbial communities. The findings reveal that the MF-biocake, formed under TMP conditions, contained a greater diversity of foulants, microbes, and metabolic products compared to the FO-biocake. Clustering and correlation analyses indicated that MF-biocake formation was predominantly influenced by dead cells, extracellular polymeric substances, and physicochemical parameters, whereas FO-biocake formation was mainly affected by live cells and adhesion forces. Particle image velocimetry tests further highlighted nonselective foulant adsorption in MF-biocake formation versus selective adhesion in FO-biocake formation. These insights enhance our understanding of the distinct characteristics of biocakes formed under TMP- and FO-driven conditions, aiding in the development of more targeted strategies to control biocake formation based on the driving forces.
Collapse
Affiliation(s)
- Jing-Xiao Zhang
- School of Life Sciences, University of Science and Technology of China, Hefei, 230026, China
| | - Yu-Sheng Li
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Wen-Jie Du
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China
| | - Tian Tian
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China; Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian, 116024, China.
| | - Liang Xuan
- East China Engineering Science and Technology Co., Ltd., Hefei, 230026, China
| | - Han-Qing Yu
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Environmental Science and Engineering, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
4
|
Gopalakrishnan V, Saxena P, Thakur P, Lipatov A, Sani RK. Impact of Graphene Layers on Genetic Expression and Regulation within Sulfate-Reducing Biofilms. Microorganisms 2024; 12:1759. [PMID: 39338434 PMCID: PMC11433944 DOI: 10.3390/microorganisms12091759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/21/2024] [Accepted: 08/22/2024] [Indexed: 09/30/2024] Open
Abstract
Bacterial adhesion and biofilm maturation is significantly influenced by surface properties, encompassing both bare surfaces and single or multi-layered coatings. Hence, there is an utmost interest in exploring the intricacies of gene regulation in sulfate-reducing bacteria (SRB) on copper and graphene-coated copper surfaces. In this study, Oleidesulfovibrio alaskensis G20 was used as the model SRB to elucidate the pathways that govern pivotal roles during biofilm formation on the graphene layers. Employing a potent reporter green fluorescent protein (GFP) tagged to O. alaskensis G20, the spatial structure of O. alaskensis G20 biofilm on copper foil (CuF), single-layer graphene-coated copper (Cu-GrI), and double-layer graphene-coated copper (Cu-GrII) surfaces was investigated. Biofilm formation on CuF, Cu-GrI, and Cu-GrII surfaces was quantified using CLSM z-stack images within COMSTAT v2 software. The results revealed that CuF, Cu-GrI, and Cu-GrII did not affect the formation of the GFP-tagged O. alaskensis G20 biofilm architecture. qPCR expression showed insignificant fold changes for outer membrane components regulating the quorum-sensing system, and global regulatory proteins between the uncoated and coated surfaces. Notably, a significant expression was observed within the sulfate reduction pathway confined to dissimilatory sulfite reductases on the Cu-GrII surface compared to the CuF and Cu-GrI surfaces.
Collapse
Affiliation(s)
- Vinoj Gopalakrishnan
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Priya Saxena
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Payal Thakur
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Alexey Lipatov
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| | - Rajesh K Sani
- Department of Chemical and Biological Engineering, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- Data Driven Material Discovery Center for Bioengineering Innovation, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
- 2-Dimensional Materials for Biofilm Engineering, Science and Technology, South Dakota School of Mines and Technology, Rapid City, SD 57701, USA
| |
Collapse
|
5
|
Yan S, Ye Q, Wu J, Yao W, Chen B, Zhu X. Enhancing biofouling resistance in microfiltration membranes through capsaicin-derivative functionalization. J Mater Chem B 2024; 12:4208-4216. [PMID: 38595308 DOI: 10.1039/d4tb00033a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
The primary focal point in the fabrication of microfiltration membranes revolves around mitigating issues of low permeability stemming from the initial design as well as countering biofouling tendencies. This work aimed to address these issues by synthesizing an antibacterial capsaicin derivative (CD), which was then grafted to the poly(vinylidene fluoride-co-chlorotrifluoroethylene)-g-polymethacrylic acid (P(VDF-CTFE)-g-PMAA) matrix polymer, resulting in an antibacterial polymer (PD). Notably, both CD and PD demonstrated low cytotoxicities. Utilizing PD, a microfiltration membrane (MA) was successfully prepared through non-solvent-induced phase inversion. The pore sizes of the MA membrane were mainly concentrated at around 436 nm, while the pure water flux of MA reached an impressive value of 62 ± 0.17 Lm-2 h-1 at 0.01 MPa. MA exhibited remarkable efficacy in eradicating both Gram-negative (E. coli) and Gram-positive bacteria (Bacillus subtilis) from its surface. Compared with M1 prepared from P(VDF-CTFE), MA exhibited a lower flux decay rate (41.00% vs. 76.03%) and a higher flux recovery rate (84.95% vs. 46.54%) after three cycles. Overall, this research represents a significant step towards the development of a microfiltration membrane with inherent stable anti-biofouling capability to enhance filtration.
Collapse
Affiliation(s)
- Saitao Yan
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Qisheng Ye
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Jiayi Wu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Wangli Yao
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| | - Xiaoying Zhu
- Department of Environmental Science, Zhejiang University, Hangzhou, Zhejiang 310058, China.
- Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing, Zhejiang 314100, China
| |
Collapse
|
6
|
Sun Y, Yong Z, Xie X, Ma X, Xu C, Hu B, He J, Guo Y, Bai B. Improving antifouling performance of FO membrane by surface immobilization of silver nanoparticles based on a tannic acid: diethylenetriamine precursor layer for municipal wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:30988-31000. [PMID: 38622420 DOI: 10.1007/s11356-024-33312-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024]
Abstract
In this study, a facile method for multifunctional surface modification on forward osmosis (FO) membrane was constructed by surface immobilization of AgNPs based on tannic acid (TA)/diethylenetriamine (DETA) precursor layer. The cellulose triacetate (CTA) FO membranes modified by TA and DETA with different co-deposition time (6 h, 12 h, 24 h) were investigated. Results indicated that the TA/DETA (24)-Ag CTA membrane with a TA/DETA co-deposition time of 24 h was identified to be optimal, which attained more hydrophilic. And it had the bacterial mortality of Escherichia coli and Staphylococcus aureus reaching 98.23% and 99.83% respectively and possessed excellent physical and chemical binding stability. Meanwhile, the coating layer resulted in the antifouling ability without damaging the membrane intrinsic transport characteristics. As for synthetic municipal wastewater treatment, the water flux of CTA FO membrane decreased approximately 49% of the initial flux after running for 14 days. In contrast, the flux decline rate of TA/DETA (24)-Ag CTA membrane was about 37%. Furthermore, less foulant deposition and higher recovery rate of water flux was observed for TA/DETA (24)-Ag CTA membrane, implying that the modified membrane effectively alleviated membrane fouling and processed a lower flux decline during municipal wastewater treatment. It was attributed to the enhanced surface hydrophilicity and antibacterial property of the coating layer, which improved antifouling property.
Collapse
Affiliation(s)
- Yan Sun
- School of Civil Engineering, Chang'an University, Xi'an, 710061, China.
| | - ZiXin Yong
- China Northwest Architecture Design and Research Institute Co., Ltd., Xi'an, 710018, China
| | - Xiaoyang Xie
- School of Civil Engineering, Chang'an University, Xi'an, 710061, China
| | - Xiangdong Ma
- School of Civil Engineering, Chang'an University, Xi'an, 710061, China
| | - Changhao Xu
- School of Civil Engineering, Chang'an University, Xi'an, 710061, China
| | - Bo Hu
- School of Civil Engineering, Chang'an University, Xi'an, 710061, China
| | - JiaoJie He
- School of Civil Engineering, Chang'an University, Xi'an, 710061, China
| | - Yuanqing Guo
- School of Civil Engineering, Chang'an University, Xi'an, 710061, China
| | - Bo Bai
- School of Water and Environment, Chang'an University, Xi'an, 710061, China
| |
Collapse
|
7
|
Fei WQ, Guan J, Wan ZH, Zhang CM, Sun XF. Easily scale 3D conductive gradient fiber membrane for contaminants removal and fouling mitigation under electrochemical assistance. CHEMOSPHERE 2024; 353:141358. [PMID: 38311042 DOI: 10.1016/j.chemosphere.2024.141358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/30/2024] [Accepted: 01/31/2024] [Indexed: 02/06/2024]
Abstract
An electrochemical membrane filtration system provides an innovative approach to enhance contaminant removal and mitigate membrane fouling. There is an urgent need to develop portable, versatile, and efficient electrochemical membranes for affordable wastewater treatment. Here, a 3D conductive gradient fiber membrane (CC/PVDF) with a gradient porous structure was prepared using a two-step phase inversion method. Methyl orange (MO) was utilized as model organic substance to investigate the electrochemical performance of the CC/PVDF membrane. At applied potentials of +2 V, +3 V, -2 V and -3 V, the removal efficiency of MO was 5.1, 5.3, 4.8, and 5.1 times higher than at 0 V. A dramatic flux loss of 35.02% occurred on the membrane without electrochemistry, interestingly, whereas the flux losses were only 23.59%-10.24% in the applied potential after 30 min of filtration, which were approximately 1.18, 1.28, 1.29 and 1.38 times as high as that without electrochemistry, respectively. The enhanced removal and anti-fouling performances of the membranes were attributed to the functions of electrochemical degradation, electrostatic repulsion, and electrically enhanced wettability. Electrochemical generation of Hydrogen peroxide, along with HO• radicals, was detected and direct electron transfer and HO• were proved to be the dominant oxidants responsible for MO degradation. The intermediate oxidation products were identified by mass spectrometry, and an electrochemical degradation pathway of MO was proposed based on bond-breaking oxidation, ring-opening reactions, and complete oxidation. All the findings emphasize that the ECMF system possesses superior efficiency and creative potential for water purification applications.
Collapse
Affiliation(s)
- Wen-Qing Fei
- School of Environmental Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Jing Guan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, 266237, China
| | - Zhang-Hong Wan
- School of Environmental Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Chun-Miao Zhang
- School of Environmental Science and Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Xue-Fei Sun
- School of Environmental Science and Engineering, Hefei University of Technology, Hefei, 230009, China.
| |
Collapse
|
8
|
Diepenbroek E, Mehta S, Borneman Z, Hempenius MA, Kooij ES, Nijmeijer K, de Beer S. Advances in Membrane Separation for Biomaterial Dewatering. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:4545-4566. [PMID: 38386509 PMCID: PMC10919095 DOI: 10.1021/acs.langmuir.3c03439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/05/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024]
Abstract
Biomaterials often contain large quantities of water (50-98%), and with the current transition to a more biobased economy, drying these materials will become increasingly important. Contrary to the standard, thermodynamically inefficient chemical and thermal drying methods, dewatering by membrane separation will provide a sustainable and efficient alternative. However, biomaterials can easily foul membrane surfaces, which is detrimental to the performance of current membrane separations. Improving the antifouling properties of such membranes is a key challenge. Other recent research has been dedicated to enhancing the permeate flux and selectivity. In this review, we present a comprehensive overview of the design requirements for and recent advances in dewatering of biomaterials using membranes. These recent developments offer a viable solution to the challenges of fouling and suboptimal performances. We focus on two emerging development strategies, which are the use of electric-field-assisted dewatering and surface functionalizations, in particular with hydrogels. Our overview concludes with a critical mention of the remaining challenges and possible research directions within these subfields.
Collapse
Affiliation(s)
- Esli Diepenbroek
- Department
of Molecules & Materials, MESA+ Institute, University of Twente, 7500 AE Enschede, The Netherlands
| | - Sarthak Mehta
- Membrane
Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Zandrie Borneman
- Membrane
Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Mark A. Hempenius
- Department
of Molecules & Materials, MESA+ Institute, University of Twente, 7500 AE Enschede, The Netherlands
| | - E. Stefan Kooij
- Physics
of Interfaces and Nanomaterials, MESA+ Institute, University of Twente, 7500
AE Enschede, The
Netherlands
| | - Kitty Nijmeijer
- Membrane
Materials and Processes, Department of Chemical Engineering and Chemistry, Eindhoven University of Technology, 5600 MB Eindhoven, The Netherlands
| | - Sissi de Beer
- Department
of Molecules & Materials, MESA+ Institute, University of Twente, 7500 AE Enschede, The Netherlands
| |
Collapse
|
9
|
Karami P, Aghapour Aktij S, Moradi K, Rastgar M, Khorshidi B, Mohammadtabar F, Peichel J, McGregor M, Rahimpour A, Soares JBP, Sadrzadeh M. Comprehensive Characterization of Commercial Reverse Osmosis Membranes through High-Temperature Cross-Flow Filtration. ACS OMEGA 2024; 9:1990-1999. [PMID: 38222588 PMCID: PMC10785276 DOI: 10.1021/acsomega.3c09331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 12/01/2023] [Accepted: 12/06/2023] [Indexed: 01/16/2024]
Abstract
Developing thermally stable reverse osmosis membranes is a potential game-changer in high-temperature water treatment. In this work, the performance of three commercial reverse osmosis membranes was evaluated with a series of high-temperature filtrations. The membranes were tested with different filtration methodologies: long-term operation, cyclic tests, controlled stepwise temperature increment, and permeability tests. The morphological and physiochemical characterizations were performed to study the impact of high-temperature filtration on the membranes' chemical composition and morphological characteristics. An increase in the temperature deteriorated the membrane performance in terms of water flux and salt rejection. Flux decline at high temperatures was recognized as the primary concern for high-temperature filtrations, restricting the applications of commercial membranes for long-term operations. This research provides valuable insights for researchers aiming to thoroughly characterize reverse osmosis membranes at high temperatures.
Collapse
Affiliation(s)
- Pooria Karami
- Department
of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering,
Advanced Water Research Lab (AWRL), University
of Alberta, Edmonton, Alberta T6G 1H9, Canada
- Department
of Chemical & Materials Engineering, 12-263 Donadeo Innovation
Centre for Engineering, Group of Applied Macromolecular Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Sadegh Aghapour Aktij
- Department
of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering,
Advanced Water Research Lab (AWRL), University
of Alberta, Edmonton, Alberta T6G 1H9, Canada
- Department
of Chemical & Materials Engineering, 12-263 Donadeo Innovation
Centre for Engineering, Group of Applied Macromolecular Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Kazem Moradi
- Department
of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering,
Advanced Water Research Lab (AWRL), University
of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Masoud Rastgar
- Department
of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering,
Advanced Water Research Lab (AWRL), University
of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Behnam Khorshidi
- Department
of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, Ontario M5S 3E5, Canada
| | - Farshad Mohammadtabar
- Department
of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering,
Advanced Water Research Lab (AWRL), University
of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - John Peichel
- Veolia
Water Technologies & Solutions, 5951 Clearwater Drive, Minnetonka, Minnesota 55343, United States
| | - Michael McGregor
- Suncor
Energy Inc., P.O. Box 2844, 150-Sixth Ave. SW, Calgary, Alberta T2P 3E3, Canada
| | - Ahmad Rahimpour
- Department
of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering,
Advanced Water Research Lab (AWRL), University
of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Joao B. P. Soares
- Department
of Chemical & Materials Engineering, 12-263 Donadeo Innovation
Centre for Engineering, Group of Applied Macromolecular Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Mohtada Sadrzadeh
- Department
of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering,
Advanced Water Research Lab (AWRL), University
of Alberta, Edmonton, Alberta T6G 1H9, Canada
| |
Collapse
|
10
|
James A, Velayudhaperumal Chellam P. Recent Advances in the Development of Sustainable Composite Materials used as Membranes in Microbial Fuel Cells. CHEM REC 2024; 24:e202300227. [PMID: 37650319 DOI: 10.1002/tcr.202300227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/16/2023] [Indexed: 09/01/2023]
Abstract
MFC can have dual functions; they can generate electricity from industrial and domestic effluents while purifying wastewater. Most MFC designs comprise a membrane which physically separates the cathode and anode compartments while keeping them electrically connected, playing a significant role in its efficiency. Popular commercial membranes such as Nafion, Hyflon and Zifron have excellent ionic conductivity, but have several drawbacks, mainly their prohibitive cost and non-biodegradability, preventing the large-scale application of MFC. Fabrication of composite materials that can function better at a much lower cost while also being environment-friendly has been the endeavor of few researchers over the past years. The current review aims to apprise readers of the latest trends of the past decade in fabricating composite membranes (CM) for MFC. For emphasis on environmental-friendly CM, the review begins with biopolymers, moving on to the carbon-polymer, polymer-polymer, and metal-polymer CM. Lastly, critical analysis towards technology-oriented propositions and realistic future directives in terms of strengths, weakness, opportunities, challenges (SWOC analysis) of the application of CM in MFC have been discussed for their possible large-scale use. The focus of this review is the development of hybrid materials as membranes for fuel cells, while underscoring the need for environment-friendly composites and processes.
Collapse
Affiliation(s)
- Anina James
- Department of Zoology, Deen Dayal Upadhyaya College, University of Delhi, 110078, Delhi, India
| | | |
Collapse
|
11
|
Abadikhah M, Liu M, Persson F, Wilén BM, Farewell A, Sun J, Modin O. Effect of anode material and dispersal limitation on the performance and biofilm community in microbial electrolysis cells. Biofilm 2023; 6:100161. [PMID: 37859795 PMCID: PMC10582064 DOI: 10.1016/j.bioflm.2023.100161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/05/2023] [Accepted: 10/08/2023] [Indexed: 10/21/2023] Open
Abstract
In a microbial electrolysis cell (MEC), the oxidization of organic compounds is facilitated by an electrogenic biofilm on the anode surface. The biofilm community composition determines the function of the system. Both deterministic and stochastic factors affect the community, but the relative importance of different factors is poorly understood. Anode material is a deterministic factor as materials with different properties may select for different microorganisms. Ecological drift is a stochastic factor, which is amplified by dispersal limitation between communities. Here, we compared the effects of three anode materials (graphene, carbon cloth, and nickel) with the effect of dispersal limitation on the function and biofilm community assembly. Twelve MECs were operated for 56 days in four hydraulically connected loops and shotgun metagenomic sequencing was used to analyse the microbial community composition on the anode surfaces at the end of the experiment. The anode material was the most important factor affecting the performance of the MECs, explaining 54-80 % of the variance observed in peak current density, total electric charge generation, and start-up lag time, while dispersal limitation explained 10-16 % of the variance. Carbon cloth anodes had the highest current generation and shortest lag time. However, dispersal limitation was the most important factor affecting microbial community structure, explaining 61-98 % of the variance in community diversity, evenness, and the relative abundance of the most abundant taxa, while anode material explained 0-20 % of the variance. The biofilms contained nine Desulfobacterota metagenome-assembled genomes (MAGs), which made up 64-89 % of the communities and were likely responsible for electricity generation in the MECs. Different MAGs dominated in different MECs. Particularly two different genotypes related to Geobacter benzoatilyticus competed for dominance on the anodes and reached relative abundances up to 83 %. The winning genotype was the same in all MECs that were hydraulically connected irrespective of anode material used.
Collapse
Affiliation(s)
- Marie Abadikhah
- Water Environment Technology, Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ming Liu
- Key Laboratory of Optoelectronics Technology, Beijing University of Technology, Beijing, 100124, China
| | - Frank Persson
- Water Environment Technology, Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Britt-Marie Wilén
- Water Environment Technology, Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Anne Farewell
- Chemistry and Molecular Biology, University of Gothenburg, Sweden
| | - Jie Sun
- College of Physics and Information Engineering, Fuzhou University, and Fujian Science and Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, 350100, China
- Microtechnology and Nanoscience, Chalmers University of Technology, Gothenburg, Sweden
| | - Oskar Modin
- Water Environment Technology, Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
12
|
Yao Y, Mu J, Li Y, Ma Y, Xu J, Shi Y, Liao J, Shen Z, Shen J. Rechargeable Multifunctional Anti-Bacterial AEMs for Electrodialysis: Improving Anti-Biological Performance via Synergistic Antibacterial Mechanism. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303588. [PMID: 37697634 PMCID: PMC10602572 DOI: 10.1002/advs.202303588] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/20/2023] [Indexed: 09/13/2023]
Abstract
Constructing a functional layer on the surface of commercial membrane (as a substrate) to inhibit the formation of biofilms is an efficient strategy to prepare an antibacterial anion exchange membrane (AEM). Herein, a rechargeable multifunctional anti-biological system is reported by utilizing the mussel-inspired L-dopa connection function on commercial AEMs. Cobalt nanoparticles (Co NPs) and N-chloramine compounds are deposited on the AEM surface by a two-step modification procedure. The anti-biofouling abilities of the membranes are qualitatively and quantitatively analyzed by adopting common Gram-negative (E. coli) and Gram-positive (S. aureus & Bacillus) bacteria as model biofouling organisms. The optimized membrane exhibits a high stability concerning the NaCl solution separation performance within 240 min. Meantime, the mechanism of the anti-adhesion is un-veiled at an atomic level and molecular dynamics (MD) simulation are conducted to measure the interaction, adsorption energy and average loading by using lipopolysaccharide (LPS) of E. coli. In view of the superior performance of antibacterial surfaces, it is believed that this work could provide a valuable guideline for the design of membrane materials with resistance to biological contamination.
Collapse
Affiliation(s)
- Yuyang Yao
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014China
| | - Junjie Mu
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014China
| | - Yuan Li
- Information Materials and Intelligent Sensing Laboratory of Anhui ProvinceInstitutes of Physical Science and Information TechnologyAnhui UniversityHefei230601China
| | - Yanjing Ma
- Information Materials and Intelligent Sensing Laboratory of Anhui ProvinceInstitutes of Physical Science and Information TechnologyAnhui UniversityHefei230601China
| | - Jingwen Xu
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014China
| | - Yuna Shi
- College of Biotechnology and BioengineeringZhejiang University of TechnologyHangzhou310014China
| | - Junbin Liao
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014China
| | - Zhenlu Shen
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014China
| | - Jiangnan Shen
- College of Chemical EngineeringZhejiang University of TechnologyHangzhou310014China
| |
Collapse
|
13
|
Samal S, Misra M, Rangarajan V, Chattopadhyay S. Antimicrobial Nanoparticles Mediated Prevention and Control of Membrane Biofouling in Water and Wastewater Treatment: Current Trends and Future Perspectives. Appl Biochem Biotechnol 2023; 195:5458-5477. [PMID: 37093532 DOI: 10.1007/s12010-023-04497-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Global water scarcity and water pollution necessitate wastewater reclamation for further use. As an alternative to conventional techniques, membrane technology is extensively used as an advanced method for water purification and wastewater treatment due to its selectivity, permeability, and efficient removal of pollutants. However, microbial biofouling is a major threat that deteriorates membrane performance and imparts operational challenges. It is a natural phenomenon caused by the undesirable colonization of microbes on membrane surfaces. The economic penalties associated with this menace are enormous. The traditional preventive measures are dominated by biocides, toxic chemicals, cleaners and antifouling surfaces, which are costly and often cause secondary pollution. Recent focus is thus being directed to promote inputs from nanotechnology to control and mitigate this major threat. Different anti-microbial nanomaterials can be effectively used to prevent the adhesion of microbes onto the membrane surfaces and eliminate microbial biofilms, to provide an economical and eco-friendly solution to biofouling. This review addresses the formation of microbial biofilms and biofouling in membrane operations. The potential of nanocomposite membranes in alleviating this problem and the challenges in commercialization are discussed. The antifouling mechanisms are also highlighted, which are not widely elucidated.
Collapse
Affiliation(s)
- Subhranshu Samal
- Department of Chemical Engineering, BITS Pilani, K K Birla Goa Campus, Goa, India
| | - Modhurima Misra
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, West Bengal, India
| | - Vivek Rangarajan
- Department of Chemical Engineering, BITS Pilani, K K Birla Goa Campus, Goa, India
| | - Soham Chattopadhyay
- Department of Bioengineering and Biotechnology, Birla Institute of Technology, Mesra, Ranchi, Jharkhand, India.
| |
Collapse
|
14
|
Chen Y, Yu W, Cao H. Arginine-Functionalized Thin Film Composite Forward Osmosis Membrane Integrating Antifouling and Antibacterial Effects. MEMBRANES 2023; 13:760. [PMID: 37755182 PMCID: PMC10534298 DOI: 10.3390/membranes13090760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/16/2023] [Accepted: 08/20/2023] [Indexed: 09/28/2023]
Abstract
Membrane fouling is an inevitable obstacle of polyamide composite forward osmosis (FO) membranes in oily wastewater treatment. In this study, zwitterionic arginine (Arg) is grafted onto nascent self-made FO polyamide poly(ether sulfone) (PA-PES) membrane, imparting superior hydrophilic, antifouling, and antibacterial properties to the membrane. Detailed characterizations revealed that the Arg-modified (Arg-PES) membrane presented obviously surface positively charged and unique morphology. Results showed that our strategy endowed the optimized membrane, the water flux increased by 113.2% compared to the pristine membrane, respectively, meanwhile keeping high NaCl rejection > 93.9% (with DI water as feed solution and 0.5 M NaCl as draw solution, FO mode). The dynamic fouling tests indicated that the Arg-PES membranes exhibited much improved antifouling performance towards oily wastewater treatment. The flux recovery ratios of the membrane were as high as 92.0% for cationic emulsified oil (cetyl pyridinium chloride, CPC), 87.0% for neutral emulsified oil (Tween-80), and 86.0% for anionic emulsified oil (sodium dodecyl sulfate, SDS) after washing, respectively. Meanwhile, the Arg-PES membranes assembled with guanidine cationic groups exhibited an enhanced antibacterial property against E. coli, which exhibited a high antibacterial efficiency of approximately 96%. Consequently, the newly arginine functionalized FO membrane possesses impressive antifouling performance, while simultaneously resisting bacterial invasion, thus rendering it an ideal alternative for oily wastewater treatment in the FO process.
Collapse
Affiliation(s)
- Yichen Chen
- School of Environment, Renmin University of China, Beijing 100872, China;
| | - Wenmeng Yu
- Rural Energy & Environment Agency, Ministry of Agriculture and Rural Affairs of the People’s Republic of China, Beijing 100125, China
| | - Hu Cao
- School of Environment, Renmin University of China, Beijing 100872, China;
| |
Collapse
|
15
|
Xing H, Song Y, Xu H, Chen S, Li K, Dong L, Wang B, Xue J, Lu Y. A Magneto-Heated Silk Fibroin Scaffold for Anti-Biofouling Solar Steam Generation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2206189. [PMID: 36720800 DOI: 10.1002/smll.202206189] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/29/2022] [Indexed: 05/04/2023]
Abstract
Macroscopic 3D porous materials are ideal solar evaporators for water purification. However, the limited sunlight intensity and penetrating depth during solar-driven evaporation cannot prevent the biofouling formation by photothermal effect, thus leading to the deterioration of evaporation rate. Herein, a magnetic heating strategy is reported for anti-biofouling solar steam generation based on a magnetic silk fibroin (SF) scaffold with bi-heating property. Under one sun, the solar-heated top surface of magnetic SF scaffolds accelerates water evaporation at 2.03 kg m-2 h-1 , while the unheated inner channels suffer from the formation of biofilm. When exposed to alternating magnetic field (AMF), the magnetic SF scaffold can be integrally heated, leading to an efficient inner temperature to prevent biofouling in channels for water transportation. Accordingly, magneto-heated scaffolds show steady water evaporation rates after exposure to S. aureus and E. coli, which maintained 93.6-94.6% of original performance. In contrast, the evaporation rates of the scaffolds without AMF treatment are reduced to 1.31 (S. aureus) and 1.32 (E. coli) kg m-2 h-1 , decreased by 35.5% and 35.0%, respectively. In addition, the magneto-heated scaffold inhibits biofouling formation in natural lake water, maintaining 99.5% original performance.
Collapse
Affiliation(s)
- Hanye Xing
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yonghong Song
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Hao Xu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Sheng Chen
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Kangkang Li
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Liang Dong
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, 310022, China
| | - Bao Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing, 100190, P. R. China
| | - Jingzhe Xue
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Yang Lu
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei, 230009, China
| |
Collapse
|
16
|
Ahmed MA, Amin S, Mohamed AA. Fouling in reverse osmosis membranes: monitoring, characterization, mitigation strategies and future directions. Heliyon 2023; 9:e14908. [PMID: 37064488 PMCID: PMC10102236 DOI: 10.1016/j.heliyon.2023.e14908] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 03/16/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Water scarcity has been a global challenge for many countries over the past decades, and as a result, reverse osmosis (RO) has emerged as a promising and cost-effective tool for water desalination and wastewater remediation. Currently, RO accounts for >65% of the worldwide desalination capacity; however, membrane fouling is a major issue in RO processes. Fouling reduces the membrane's lifespan and permeability, while also increases the operating pressure and chemical cleaning frequency. Overall, fouling reduces the quality and quantity of desalinated water, and thus hinders the sustainable application of RO membranes by disturbing its efficacy and economic aspects. Fouling arises from various physicochemical interactions between water pollutants and membrane materials leading to foulants' accumulation onto the membrane surfaces and/or inside the membrane pores. The current review illustrates the main types of particulates, organic, inorganic and biological foulants, along with the major factors affecting its formation and development. Moreover, the currently used monitoring methods, characterization techniques and the potential mitigation strategies of membrane fouling are reviewed. Further, the still-faced challenges and the future research on RO membrane fouling are addressed.
Collapse
Affiliation(s)
- Mahmoud A. Ahmed
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Sherif Amin
- Chemistry Department, Faculty of Science, Al Azhar University, Cairo, Egypt
| | - Ashraf A. Mohamed
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| |
Collapse
|
17
|
Synergistically enhancing the antibacterial and antibiofilm activities of anion exchange membrane by chemically assembling gentamicin and N-chloramine layers. J Memb Sci 2023. [DOI: 10.1016/j.memsci.2023.121530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/05/2023]
|
18
|
Varol HS, Seeger S. Droplet Size-Assisted Polysiloxane Architecting. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:377-388. [PMID: 36527409 DOI: 10.1021/acs.langmuir.2c02607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
(Super)antiwetting shielding around engineering materials and protecting them against harsh environmental conditions have been achieved via growing various geometry polysiloxane (or silicone) patterns around them by using a droplet-assisted growth method, where the polymerization takes place inside of the water droplets acting as reaction vessels. The size and distribution of these reaction vessels are the main factors in making different geometry silicone patterns; however, very little is known about the fate of these droplets throughout the polymerization. Here, we propose keeping the relative humidity (% RH) inside the reactor stable throughout the polymerization as a new coating parameter to force the size of the reaction vessel water droplets to be the same for building simply shaped silicone rods with controlled geometry and distribution. In this manner, we grew simple geometry cylindric microrods on surfaces and could tune their length, diameter, inter-rod spacing, and thus the (super)hydrophobicity. Here, we also demonstrate that with changes in the amplitude and stability of the % RH, it is possible to fabricate different (super)hydrophobic nanograsses, conical silicone microrods, and isotropic silicone nanofilaments. The proposed new way of tuning initial and in situ reaction vessel droplet size can be used as a single factor to formulate different geometry silicone patterns with tunable dimensions, leading to different roughness and hydrophobicity. To a certain extent, the droplet size-assisted silicone shaping in this work provides a new way to control the length, diameter, morphology, inter-rod spacing, and thus the (super)hydrophobicity of the silicone patterns, especially those in the shape of simple cylindrical microrods. This control over silicone architecting will help to prepare new (super)hydrophobic coatings with more controlled morphology and thus wettability; on the contrary, it will support surface scientists modeling the connection between surface geometry and (super)antiwetting of such irregular pillared surfaces that remain elusive.
Collapse
Affiliation(s)
- H Samet Varol
- Department of Chemistry, Universität Zürich, ZürichCH 8057, Switzerland
- Ernst-Berl Institut für Technische und Makromolekulare Chemie, Technische Universität Darmstadt, DarmstadtD-64287, Germany
| | - Stefan Seeger
- Department of Chemistry, Universität Zürich, ZürichCH 8057, Switzerland
| |
Collapse
|
19
|
Singh SK, Maiti A, Pandey A, Jain N, Sharma C. Fouling limitations of osmotic pressure‐driven processes and its remedial strategies: A review. J Appl Polym Sci 2023. [DOI: 10.1002/app.53295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Satish Kumar Singh
- Department of Paper Technology Indian Institute of Technology Roorkee Saharanpur India
| | - Abhijit Maiti
- Department of Polymer and Process Engineering Indian Institute of Technology Roorkee Saharanpur India
| | - Aaditya Pandey
- Department of Polymer and Process Engineering Indian Institute of Technology Roorkee Saharanpur India
| | - Nishant Jain
- Department of Polymer and Process Engineering Indian Institute of Technology Roorkee Saharanpur India
| | - Chhaya Sharma
- Department of Paper Technology Indian Institute of Technology Roorkee Saharanpur India
| |
Collapse
|
20
|
Abriyanto H, Susanto H, Maharani T, Filardli AMI, Desiriani R, Aryanti N. Synergistic Effect of Chitosan and Metal Oxide Additives on Improving the Organic and Biofouling Resistance of Polyethersulfone Ultrafiltration Membranes. ACS OMEGA 2022; 7:46066-46078. [PMID: 36570250 PMCID: PMC9773804 DOI: 10.1021/acsomega.2c03685] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Accepted: 11/21/2022] [Indexed: 06/17/2023]
Abstract
The combination of chitosan and metal oxides was utilized as an addition to improve the fouling resistance of polyethersulfone (PES) ultrafiltration membranes. Pure water flux, membrane hydrophilicity by the contact angle, scanning electron micrographs, and Fourier-transform infrared spectra were used to characterize the membranes. With the addition of metal oxides, the modified membrane's water flux increased. The PES membrane with 0.25% wt chitosan and 2.0% wt AgNO3 had the highest flux and antibacterial activity among the membranes tested. Because of its potential to improve membrane hydrophilicity, the water flux increased with the addition of chitosan and AgNO3. Because of the improved hydrophilicity, the contact angle reduced as chitosan and Ag loading was increased. The PES-chitosan-Ag2O (from AgNO3 2.0% wt) membrane had high antibacterial activity against Escherichia coli and Staphylococcus aureus, whereas the PES-2.0% wt Ag membrane did not show the same result. Finally, the addition of chitosan in the PES-Ag membrane increased the membrane's antibacterial activity substantially.
Collapse
Affiliation(s)
- Herlambang Abriyanto
- Department
of Chemical Engineering, Faculty of Engineering, Diponegoro University, No. 1 Prof Soedarto, SH Road, Tembalang-Semarang50275, Indonesia
- Membrane
Research Center (Mer-C), PUI Membrane Central Laboratory for Research
and Service, Diponegoro University, Semarang50275, Indonesia
| | - Heru Susanto
- Department
of Chemical Engineering, Faculty of Engineering, Diponegoro University, No. 1 Prof Soedarto, SH Road, Tembalang-Semarang50275, Indonesia
- Membrane
Research Center (Mer-C), PUI Membrane Central Laboratory for Research
and Service, Diponegoro University, Semarang50275, Indonesia
| | - Talita Maharani
- Department
of Chemical Engineering, Faculty of Engineering, Diponegoro University, No. 1 Prof Soedarto, SH Road, Tembalang-Semarang50275, Indonesia
| | - Abdullah M. I. Filardli
- Department
of Chemical Engineering, Faculty of Engineering, Diponegoro University, No. 1 Prof Soedarto, SH Road, Tembalang-Semarang50275, Indonesia
- Membrane
Research Center (Mer-C), PUI Membrane Central Laboratory for Research
and Service, Diponegoro University, Semarang50275, Indonesia
| | - Ria Desiriani
- Department
of Chemical Engineering, Faculty of Engineering, Diponegoro University, No. 1 Prof Soedarto, SH Road, Tembalang-Semarang50275, Indonesia
- Membrane
Research Center (Mer-C), PUI Membrane Central Laboratory for Research
and Service, Diponegoro University, Semarang50275, Indonesia
| | - Nita Aryanti
- Department
of Chemical Engineering, Faculty of Engineering, Diponegoro University, No. 1 Prof Soedarto, SH Road, Tembalang-Semarang50275, Indonesia
- Membrane
Research Center (Mer-C), PUI Membrane Central Laboratory for Research
and Service, Diponegoro University, Semarang50275, Indonesia
| |
Collapse
|
21
|
AlSawaftah N, Abuwatfa W, Darwish N, Husseini GA. A Review on Membrane Biofouling: Prediction, Characterization, and Mitigation. MEMBRANES 2022; 12:membranes12121271. [PMID: 36557178 PMCID: PMC9787789 DOI: 10.3390/membranes12121271] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/06/2022] [Accepted: 12/10/2022] [Indexed: 05/12/2023]
Abstract
Water scarcity is an increasing problem on every continent, which instigated the search for novel ways to provide clean water suitable for human use; one such way is desalination. Desalination refers to the process of purifying salts and contaminants to produce water suitable for domestic and industrial applications. Due to the high costs and energy consumption associated with some desalination techniques, membrane-based technologies have emerged as a promising alternative water treatment, due to their high energy efficiency, operational simplicity, and lower cost. However, membrane fouling is a major challenge to membrane-based separation as it has detrimental effects on the membrane's performance and integrity. Based on the type of accumulated foulants, fouling can be classified into particulate, organic, inorganic, and biofouling. Biofouling is considered the most problematic among the four fouling categories. Therefore, proper characterization and prediction of biofouling are essential for creating efficient control and mitigation strategies to minimize the damage associated with biofouling. Moreover, the use of artificial intelligence (AI) in predicting membrane fouling has garnered a great deal of attention due to its adaptive capability and prediction accuracy. This paper presents an overview of the membrane biofouling mechanisms, characterization techniques, and predictive methods with a focus on AI-based techniques, and mitigation strategies.
Collapse
Affiliation(s)
- Nour AlSawaftah
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Waad Abuwatfa
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Naif Darwish
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
| | - Ghaleb A. Husseini
- Department of Chemical and Biological Engineering, College of Engineering, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Materials Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, Sharjah P.O. Box 26666, United Arab Emirates
- Correspondence:
| |
Collapse
|
22
|
Wang Q, Miao Q, Wang X, Wang T, Xu Q. Role of surface physicochemical properties of pipe materials on bio-clogging in leachate collection systems from a thermodynamic perspective. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 851:158263. [PMID: 36030876 DOI: 10.1016/j.scitotenv.2022.158263] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/16/2022] [Accepted: 08/20/2022] [Indexed: 06/15/2023]
Abstract
Bio-clogging in pipes poses a significant threat to the operation of leachate collection systems. Bio-clogging formation is influenced by the pipe materials. However, the relationship between bio-clogging and the physicochemical properties of different pipe materials has not been clarified yet, especially from a thermodynamic aspect. In this study, the dynamic bio-clogging processes in pipes of different materials (high-density polyethylene (HDPE), polyvinyl chloride (PVC), polypropylene (PP), and polyethylene (PE)) were compared, and their correlation with the physicochemical properties was investigated. Results showed that the bio-clogging in HDPE and PVC pipes was more severe than that in PP and PE pipes. In bio-clogging development, the predominant factor changed from the surface roughness to the electron donator parameter (γ-). In the initial phase, the most severe bio-clogging was observed in the HDPE pipe, which exhibited the highest roughness (432 ± 76 nm). In the later phase, the highest γ- (2.2 mJ/m2) and protein content (2623.1 ± 33.2 μg/cm2) were observed in the PVC simultaneously. Moreover, the interaction energy indicated that the bacteria could irreversibly and reversibly adhere to the HDPE, whereas irreversible adhesion was observed in the PVC, PP, and PE cases. The findings clarify the thermodynamic mechanism underlying bio-clogging behaviors and provide novel insights into the bio-clogging behaviors in pipes of different materials, which can facilitate the development of effective bio-clogging control strategies.
Collapse
Affiliation(s)
- Qian Wang
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Qianming Miao
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Xinwei Wang
- School of Advanced Materials, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Tong Wang
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Qiyong Xu
- School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China.
| |
Collapse
|
23
|
Saleem H, Goh PS, Saud A, Khan MAW, Munira N, Ismail AF, Zaidi SJ. Graphene Quantum Dot-Added Thin-Film Composite Membrane with Advanced Nanofibrous Support for Forward Osmosis. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:nano12234154. [PMID: 36500777 PMCID: PMC9735732 DOI: 10.3390/nano12234154] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 05/17/2023]
Abstract
Forward osmosis (FO) technology for desalination has been extensively studied due to its immense benefits over conventionally used reverse osmosis. However, there are some challenges in this process such as a high reverse solute flux (RSF), low water flux, and poor chlorine resistance that must be properly addressed. These challenges in the FO process can be resolved through proper membrane design. This study describes the fabrication of thin-film composite (TFC) membranes with polyethersulfone solution blown-spun (SBS) nanofiber support and an incorporated selective layer of graphene quantum dots (GQDs). This is the first study to sustainably develop GQDs from banyan tree leaves for water treatment and to examine the chlorine resistance of a TFC FO membrane with SBS nanofiber support. Successful GQD formation was confirmed with different characterizations. The performance of the GQD-TFC-FO membrane was studied in terms of flux, long-term stability, and chlorine resistance. It was observed that the membrane with 0.05 wt.% of B-GQDs exhibited increased surface smoothness, hydrophilicity, water flux, salt rejection, and chlorine resistance, along with a low RSF and reduced solute flux compared with that of neat TFC membranes. The improvement can be attributed to the presence of GQDs in the polyamide layer and the utilization of SBS nanofibrous support in the TFC membrane. A simulation study was also carried out to validate the experimental data. The developed membrane has great potential in desalination and water treatment applications.
Collapse
Affiliation(s)
- Haleema Saleem
- UNESCO Chair on Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Pei Sean Goh
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Asif Saud
- UNESCO Chair on Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Mohammad Aquib Wakeel Khan
- UNESCO Chair on Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Nazmin Munira
- UNESCO Chair on Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
| | - Ahmad Fauzi Ismail
- Advanced Membrane Technology Research Centre, School of Chemical and Energy Engineering, Universiti Teknologi Malaysia, Johor Bahru 81310, Malaysia
| | - Syed Javaid Zaidi
- UNESCO Chair on Desalination and Water Treatment, Center for Advanced Materials (CAM), Qatar University, Doha P.O. Box 2713, Qatar
- Correspondence: ; Tel.: +974-4403-7723
| |
Collapse
|
24
|
Pushpalatha C, Sowmya SV, Augustine D, Kumar C, Gayathri VS, Shakir A, Prabhu TN, Sandhya KV, Patil S. Antibacterial Nanozymes: An Emerging Innovative Approach to Oral Health Management. Top Catal 2022. [DOI: 10.1007/s11244-022-01731-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
25
|
Ee LY, Tan RPW, Li SFY. Facile electrospray fabrication of ultralow biofouling cellulose acetate desalination membrane with nanocellulose/UiO66-NH2 fillers. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
26
|
Taghipour A, Rahimpour A, Rastgar M, Sadrzadeh M. Ultrasonically synthesized MOFs for modification of polymeric membranes: A critical review. ULTRASONICS SONOCHEMISTRY 2022; 90:106202. [PMID: 36274415 PMCID: PMC9593890 DOI: 10.1016/j.ultsonch.2022.106202] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/05/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
Metal-organic framework (MOF) membranes hold the promise for energy-efficient separation processes. These nanocrystalline compounds can effectively separate materials with different sizes and shapes at a molecular level. Furthermore, MOFs are excellent candidates for improving membrane permeability and/or selectivity due to their unique properties, such as high specific area and special wettability. Generally, MOFs can be used as fillers in mixed matrix membranes (MMMs) or incorporated onto the membrane surface to modify the top layer. Characteristics of the MOFs, and correspondingly, the properties of the MOF-based membranes, are majorly affected by their production technique. This critical review discusses the sonication technique for MOF production and the opportunities and challenges of using MOF for making membranes. Effective parameters on the characteristics of the synthesized MOFs, such as sonication time and power, were discussed in detail. Although the ultrasonically synthesized MOFs have shown great potential in the fabrication/modification of membranes for gas and liquid separation/purification, so far, no comprehensive and critical review has been published to clarify such accomplishments and technological gaps for the future research direction. This paper aims to review the most recent research conducted on ultrasonically synthesized MOF for the modification of polymeric membranes. Recommendations are provided with the intent of identifying the potential future works to explore the influential sonication parameters.
Collapse
Affiliation(s)
- Amirhossein Taghipour
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton AB T6G 1H9, Canada
| | - Ahmad Rahimpour
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton AB T6G 1H9, Canada.
| | - Masoud Rastgar
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton AB T6G 1H9, Canada
| | - Mohtada Sadrzadeh
- Department of Mechanical Engineering, 10-367 Donadeo Innovation Center for Engineering, Advanced Water Research Lab (AWRL), University of Alberta, Edmonton AB T6G 1H9, Canada.
| |
Collapse
|
27
|
Tian M, Ma T, Goh K, Pei Z, Chong JY, Wang YN. Forward Osmosis Membranes: The Significant Roles of Selective Layer. MEMBRANES 2022; 12:membranes12100955. [PMID: 36295714 PMCID: PMC9607867 DOI: 10.3390/membranes12100955] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/17/2022] [Accepted: 09/22/2022] [Indexed: 06/02/2023]
Abstract
Forward osmosis (FO) is a promising separation technology to overcome the challenges of pressure-driven membrane processes. The FO process has demonstrated profound advantages in treating feeds with high salinity and viscosity in applications such as brine treatment and food processing. This review discusses the advancement of FO membranes and the key membrane properties that are important in real applications. The membrane substrates have been the focus of the majority of FO membrane studies to reduce internal concentration polarization. However, the separation layer is critical in selecting the suitable FO membranes as the feed solute rejection and draw solute back diffusion are important considerations in designing large-scale FO processes. In this review, emphasis is placed on developing FO membrane selective layers with a high selectivity. The effects of porous FO substrates in synthesizing high-performance polyamide selective layer and strategies to overcome the substrate constraints are discussed. The role of interlayer in selective layer synthesis and the benefits of nanomaterial incorporation will also be reviewed.
Collapse
Affiliation(s)
- Miao Tian
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Tao Ma
- School of Ecology and Environment, Northwestern Polytechnical University, Xi’an 710072, China
| | - Kunli Goh
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Zhiqiang Pei
- Beijing Origin Water Membrane Technology Co., Ltd., Beijing 101417, China
| | - Jeng Yi Chong
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yi-Ning Wang
- Singapore Membrane Technology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| |
Collapse
|
28
|
Berdimurodov E, Eliboyev I, Berdimuradov K, Kholikov A, Akbarov K, Dagdag O, Rbaa M, El Ibrahimi B, Verma DK, Haldhar R, Arrousse N. Green β-cyclodextrin-based corrosion inhibitors: Recent developments, innovations and future opportunities. Carbohydr Polym 2022; 292:119719. [PMID: 35725191 DOI: 10.1016/j.carbpol.2022.119719] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 05/22/2022] [Accepted: 06/06/2022] [Indexed: 11/26/2022]
Abstract
β-Cyclodextrin-based compounds are used to develop and innovate materials that protect against corrosion due to their sustainability, low cost, environmental friendliness, excellent water solubility and high inhibition efficiency. However, corrosion potentials of β-CD-based compounds were not reviewed with the modern trends. The essence of the problem is that a deep understanding of the development and innovation of β-CD-based compounds as corrosion inhibitors is very important in creating next-generation materials for corrosion protection. In this review, the fundamental behaviour, importance, developments and innovations of β-CD modified with natural and synthetic polymers, β-CD grafted with the organic compounds, β-CD-based supramolecular (host-guest) systems with organic molecules, polymer β-CD-based supramolecular (host-guest) systems, β-CD-based graphene oxide materials, β-CD-based nanoparticle materials and β-CD-based nanocarriers as corrosion inhibitors for various metals were reviewed and discussed with recent research works as examples. In addition, the corrosion inhibition of β-CD-based compounds for biocorrosion, microbial corrosion and biofouling was reviewed. It was found that (i) these compounds are sustainable, inexpensive, environmentally friendly, and highly water-soluble and have high inhibition efficiency; (ii) the molecular structure of β-CD makes it an excellent molecular container for corrosion inhibitors compounds; (iii) the β-CD is excellent core to develop the next generation of corrosion inhibitors. It is recommended that (i) β-CD compounds would be synthesized by green methods, such as using biological sustainable catalysts and green solvents, green methods include irradiation or heating, energy-efficient microwave irradiation, mechanochemical mixing, solid-state reactions, hydrothermal reactions and multicomponent reactions; (ii) this review will be helpful in creating, enhancing and innovating the next green and efficient materials for future corrosion protection in high-impact industries.
Collapse
Affiliation(s)
- Elyor Berdimurodov
- Faculty of Chemistry, National University of Uzbekistan, Tashkent 100034, Uzbekistan.
| | - Ilyos Eliboyev
- Faculty of Chemistry, National University of Uzbekistan, Tashkent 100034, Uzbekistan
| | - Khasan Berdimuradov
- Faculty of Industrial Viticulture and Food Production Technology, Shahrisabz branch of Tashkent Institute of Chemical Technology, Shahrisabz 181306, Uzbekistan
| | - Abduvali Kholikov
- Faculty of Chemistry, National University of Uzbekistan, Tashkent 100034, Uzbekistan
| | - Khamdam Akbarov
- Faculty of Chemistry, National University of Uzbekistan, Tashkent 100034, Uzbekistan
| | - Omar Dagdag
- Institute of Nanotechnology and Water Sustainability, College of Science, Engineering and Technology, University of South Africa, Johannesburg, South Africa
| | - Mohamed Rbaa
- Laboratory of Organic Chemistry, Catalysis and Environment, Faculty of Sciences, Ibn Tofail University, PO Box 133, 14000 Kenitra, Morocco
| | - Brahim El Ibrahimi
- Department of Applied Chemistry, Faculty of Applied Sciences, Ibn Zohr University, 86153, Morocco
| | - Dakeshwar Kumar Verma
- Department of Chemistry, Government Digvijay Autonomous Postgraduate College, Rajnandgaon, Chhattisgarh 491441, India
| | - Rajesh Haldhar
- School of Chemical Engineering, Yeungnam University, Gyeongsan 712749, South Korea
| | - Nadia Arrousse
- Laboratory of Engineering, Electrochemistry, Modeling and Environment (LIEME), Faculty of Sciences, University Sidi Mohamed Ben Abdellah, Fez, Morocco
| |
Collapse
|
29
|
Zhou Y, Jiang Y, Zhang Y, Tan L. Improvement of Antibacterial and Antifouling Properties of a Cellulose Acetate Membrane by Surface Grafting Quaternary Ammonium Salt. ACS APPLIED MATERIALS & INTERFACES 2022; 14:38358-38369. [PMID: 35950600 DOI: 10.1021/acsami.2c09963] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Through etherification reaction, epoxy propyl dimethyl dodecyl ammonium chloride (EPDMDAC) was grafted onto the surface of a cellulose acetate (CA) membrane to prepare a stable nonleaching antibacterial antifouling membrane (QCA-X). The results showed that with the extension of grafting reaction time, the quaternary ammonium salt groups on the membrane surface increased and the hydrophilicity was enhanced. Compared with those of the CA membrane, the filtration capacity and antifouling performance of the QCA-X membrane are improved. When the grafting time is 4 h, the water permeability and flux recovery rate of the QCA-4 membrane are increased by 139 and 21.5%, respectively. The QCA-X membrane showed excellent antibacterial performance, and the sterilization rate against S. aureus and E. coli was more than 99.99%. After four repeated antibacterial cycles, the bactericidal rates against S. aureus and E. coli were maintained at about 99.69 ± 0.02 and 99.98 ± 0.02%, respectively, with good antibacterial persistence. Moreover, the QCA-X membrane can effectively inhibit bacterial adhesion. Mild and simple EPDMDAC grafting modifications improve the antibacterial, antifouling, and antibioadhesion properties of the CA membrane, showing its application potential in long-term water treatment, especially in biofouling water treatment.
Collapse
Affiliation(s)
- Yuan Zhou
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- Research Center for Fiber Science and Engineering Technology, Yibin Institute of Industrial Technology/Sichuan University, Yibin Park, Yibin 64460, China
| | - Yuanzhang Jiang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- Research Center for Fiber Science and Engineering Technology, Yibin Institute of Industrial Technology/Sichuan University, Yibin Park, Yibin 64460, China
| | - Yong Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- Research Center for Fiber Science and Engineering Technology, Yibin Institute of Industrial Technology/Sichuan University, Yibin Park, Yibin 64460, China
| | - Lin Tan
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
- Research Center for Fiber Science and Engineering Technology, Yibin Institute of Industrial Technology/Sichuan University, Yibin Park, Yibin 64460, China
- State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu 610065, China
| |
Collapse
|
30
|
Song J, Yan M, Ye J, Zheng S, Ee LY, Wang Z, Li J, Huang M. Research progress in external field intensification of forward osmosis process for water treatment: A critical review. WATER RESEARCH 2022; 222:118943. [PMID: 35952439 DOI: 10.1016/j.watres.2022.118943] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 07/30/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Forward osmosis (FO) is an emerging permeation-driven membrane technology that manifests advantages of low energy consumption, low operating pressure, and uncomplicated engineering compared to conventional membrane processes. The key issues that need to be addressed in FO are membrane fouling, concentration polarization (CP) and reverse solute diffusion (RSD). They can lead to problems about loss of draw solutes and reduced membrane lifetime, which not only affect the water treatment effectiveness of FO membranes, but also increase the economic cost. Current research has focused on FO membrane preparation and modification strategies, as well as on the selection of draw solutions. Unfortunately, these intrinsic solutions had limited success in unraveling these phenomena. In this paper, we provide a brief review of the current state of research on existing external field-assisted FO systems (including electric-, pressure-, magnetic-, ultrasonic-, light- and flow-assisted FO system), analyze their mitigation mechanisms for the above key problems, and explore potential research directions to aid in the further development of FO systems. This review aims to reveal the feasibility of the development of external field-assisted FO technology to achieve a more economical and efficient FO treatment process.
Collapse
Affiliation(s)
- Jialing Song
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China; Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Mengying Yan
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Jingling Ye
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Shengyang Zheng
- College of Environmental Science and Engineering, Yangzhou University, Yangzhou, Jiangsu 225127, China
| | - Liang Ying Ee
- Department of Chemistry, National University of Singapore, 3 Science Drive 3, Singapore 117543, Singapore
| | - Zhiwei Wang
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jun Li
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China
| | - Manhong Huang
- College of Environmental Science and Engineering, Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Donghua University, Shanghai 201620, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, Shanghai 201620, China.
| |
Collapse
|
31
|
Torres-Valenzuela PG, Álvarez-Sánchez J, Dévora-Isiordia GE, Armendáriz-Ontiveros MM, del Rosario Martínez-Macias M, Pérez-Sicairos S, Sánchez-Duarte RG, Fimbres Weihs GA. Modification and characterization of TFC membranes with Ag nanoparticles: application in seawater desalination. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-022-04360-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
|
32
|
Effects of Ethyl Lauroyl Arginate (LAE) on Biofilm Detachment: Shear Rate, Concentration, and Dosing Time. WATER 2022. [DOI: 10.3390/w14142158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Biofilm formation is one of the main obstacles in membrane treatment. The non-oxidizing biocide ethyl lauroyl arginate (LAE) is promising for mitigating biofilm development on membrane surfaces. However, the operating conditions of LAE and their impact on biofilm detachment are not comprehensively understood. In this study, a real-time in vitro flow cell system was utilized to observe biofilm dispersal caused by the shear rate, concentration, and treatment time of LAE. This confirmed that the biofilm was significantly reduced to 68.2% at a shear rate of 3.42 s−1 due to the increased physical lifting force. LAE exhibited two different mechanisms for bacterial inactivation and biofilm dispersal. Biofilms treated with LAE at sub-growth inhibitory concentrations for a longer time could effectively detach the biofilm formed on the surface of the glass slides, which can be attributed to the increased motility of microorganisms. However, a high concentration (i.e., bactericidal concentration) of LAE should be seriously considered because of the inactivated sessile bacteria and their residual debris remaining on the surface. This study sheds light on the effect of LAE on biofilm detachment and provides insights into biofouling mitigation during the membrane process.
Collapse
|
33
|
Xu Y, Zhu Y, Chen Z, Zhu J, Chen G. A Comprehensive Review on Forward Osmosis Water Treatment: Recent Advances and Prospects of Membranes and Draw Solutes. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19138215. [PMID: 35805879 PMCID: PMC9266909 DOI: 10.3390/ijerph19138215] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/25/2022] [Accepted: 07/02/2022] [Indexed: 02/06/2023]
Abstract
Forward osmosis (FO) is an evolving membrane separation technology for water treatment and reclamation. However, FO water treatment technology is limited by factors such as concentration polarization, membrane fouling, and reverse solute flux. Therefore, it is of a great importance to prepare an efficient high-density porous membrane and to select an appropriate draw solute to reduce concentration polarization, membrane fouling, and reverse solute flux. This review aims to present a thorough evaluation of the advancement of different draw solutes and membranes with their effects on FO performance. NaCl is still widely used in a large number of studies, and several general draw solutes, such as organic-based and inorganic-based, are selected based on their osmotic pressure and water solubility. The selection criteria for reusable solutes, such as heat-recovered gaseous draw, magnetic field-recovered MNPs, and electrically or thermally-responsive hydrogel are primarily based on their industrial efficiency and energy requirements. CA membranes are resistant to chlorine degradation and are hydrophilic, while TFC/TFN exhibit a high inhibition of bio-adhesion and hydrolysis. AQPs are emerging membranes, due to proteins with complete retention capacity. Moreover, the development of the hybrid system combining FO with other energy or water treatment technologies is crucial to the sustainability of FO.
Collapse
|
34
|
Xu H, Xing H, Chen S, Wang Q, Dong L, Hu KD, Wang B, Xue J, Lu Y. Oak-inspired anti-biofouling shape-memory unidirectional scaffolds with stable solar water evaporation performance. NANOSCALE 2022; 14:7493-7501. [PMID: 35438102 DOI: 10.1039/d2nr00671e] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Biomimetic porous materials have contributed to the enhancement of solar-driven evaporation rate in interfacial desalination and clean water production. However, due to the presence of numerous microbes in water environment, biofouling should occur inside porous materials to clog the channels for water transfer, resulting in obvious inhibition of the solar-driven evaporation efficacy in long-term use. To prevent and control biofouling in porous materials for solar-driven evaporation, a facile and environment-friendly design is required in real application. Oak wood possesses vertically aligned channels for transpiration and polyphenol compounds with antimicrobial activity. In this work, inspired by the oak wood, we developed an anti-biofouling shape-memory chitosan scaffold with unidirectional channels and tannic acid coating (oak-inspired scaffold). The shape-memory property facilitated rapid decoration with oak-inspired photothermal and anti-biofouling coating inside the scaffold, respectively, which also promotes the material durability by avoiding the external force-induced permanent structure failure. More importantly, the oak-inspired tannic acid coating not only prevented bacterial adhesion and colonization, but also inhibited fungal interference. They were subjected to a microbe-rich environment, and after 3 days, the evaporation rates of the untreated chitosan scaffolds were obviously decreased to 1.24, 1.16 and 1.19 kg m-2 h-1 for C. albicans, S. aureus and E. coli, respectively, which were only 65.6, 61.4 and 63.0% of original performance (1.89 kg m-2 h-1). In comparison, the oak-inspired scaffold exhibited a high solar-driven water evaporation rate after incubation in microbial suspensions (1.80, 1.70 and 1.75 kg m-2 h-1 for C. albicans, S. aureus and E. coli after 3 days) and lake water (1.74 kg m-2 h-1 after one month). The bioinspired anti-biofouling scaffolds maintain as high as 86.7-91.8% of the solar-driven water evaporation ability after exposure to a microbe-rich environment, which is conducive to develop a biomimetic long-term durable structure in water treatment.
Collapse
Affiliation(s)
- Hao Xu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Hanye Xing
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Sheng Chen
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Qian Wang
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Liang Dong
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Kang-Di Hu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Bao Wang
- State Key Laboratory of Biochemical Engineering, Institute of Process Engineering, Chinese Academy of Science, Beijing, 100190, P. R. China
| | - Jingzhe Xue
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| | - Yang Lu
- School of Chemistry and Chemical Engineering, Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Food and Biological Engineering, Hefei University of Technology, Hefei, Anhui 230009, P. R. China.
| |
Collapse
|
35
|
Lau HS, Lau SK, Soh LS, Hong SU, Gok XY, Yi S, Yong WF. State-of-the-Art Organic- and Inorganic-Based Hollow Fiber Membranes in Liquid and Gas Applications: Looking Back and Beyond. MEMBRANES 2022; 12:539. [PMID: 35629866 PMCID: PMC9144028 DOI: 10.3390/membranes12050539] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/19/2022] [Accepted: 05/20/2022] [Indexed: 11/16/2022]
Abstract
The aggravation of environmental problems such as water scarcity and air pollution has called upon the need for a sustainable solution globally. Membrane technology, owing to its simplicity, sustainability, and cost-effectiveness, has emerged as one of the favorable technologies for water and air purification. Among all of the membrane configurations, hollow fiber membranes hold promise due to their outstanding packing density and ease of module assembly. Herein, this review systematically outlines the fundamentals of hollow fiber membranes, which comprise the structural analyses and phase inversion mechanism. Furthermore, illustrations of the latest advances in the fabrication of organic, inorganic, and composite hollow fiber membranes are presented. Key findings on the utilization of hollow fiber membranes in microfiltration (MF), nanofiltration (NF), reverse osmosis (RO), forward osmosis (FO), pervaporation, gas and vapor separation, membrane distillation, and membrane contactor are also reported. Moreover, the applications in nuclear waste treatment and biomedical fields such as hemodialysis and drug delivery are emphasized. Subsequently, the emerging R&D areas, precisely on green fabrication and modification techniques as well as sustainable materials for hollow fiber membranes, are highlighted. Last but not least, this review offers invigorating perspectives on the future directions for the design of next-generation hollow fiber membranes for various applications. As such, the comprehensive and critical insights gained in this review are anticipated to provide a new research doorway to stimulate the future development and optimization of hollow fiber membranes.
Collapse
Affiliation(s)
- Hui Shen Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Siew Kei Lau
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Leong Sing Soh
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Seang Uyin Hong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Xie Yuen Gok
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
| | - Shouliang Yi
- U.S. Department of Energy, National Energy Technology Laboratory, 626 Cochrans Mill Rd, Pittsburgh, PA 15236, USA;
| | - Wai Fen Yong
- School of Energy and Chemical Engineering, Xiamen University Malaysia, Sepang 43900, Selangor, Malaysia; (H.S.L.); (S.K.L.); (L.S.S.); (S.U.H.); (X.Y.G.)
- College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China
| |
Collapse
|
36
|
Imparting antibacterial adhesion property to anion exchange membrane by constructing negatively charged functional layer. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
37
|
Preparation and Properties of Thin-Film Composite Forward Osmosis Membranes Supported by Cellulose Triacetate Porous Substrate via a Nonsolvent-Thermally Induced Phase Separation Process. MEMBRANES 2022; 12:membranes12040412. [PMID: 35448382 PMCID: PMC9025079 DOI: 10.3390/membranes12040412] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 02/05/2023]
Abstract
A porous substrate plays an important role in constructing a thin-film composite forward osmosis (TFC-FO) membrane. To date, the morphology and performance of TFC-FO membranes are greatly limited by porous substrates, which are commonly fabricated by non-solvent induced phase separation (NIPS) or thermally induced phase separation (TIPS) processes. Herein, a novel TFC-FO membrane has been successfully fabricated by using cellulose triacetate (CTA) porous substrates, which are prepared using a nonsolvent-thermally induced phase separation (N-TIPS) process. The pore structure, permeability, and mechanical properties of CTA porous substrate are carefully investigated via N-TIPS process (CTAN-TIPS). As compared with those via NIPS and TIPS processes, the CTAN-TIPS substrate shows a smooth surface and a cross section combining interconnected pores and finger-like macropores, resulting in the largest water flux and best mechanical property. After interfacial polymerization, the obtained TFC-FO membranes are characterized in terms of their morphology and intrinsic transport properties. It is found that the TFC-FO membrane supported by CTAN-TIPS substrate presents a thin polyamide film full of nodular and worm-like structure, which endows the FO membrane with high water permeability and selectivity. Moreover, the TFC-FO membrane supported by CTAN-TIPS substrate displays a low internal concentration polarization effect. This work proposes a new insight into preparing TFC-FO membrane with good overall performance.
Collapse
|
38
|
Attia MS, Youssef AO, Abou-Omar MN, Mohamed EH, Boukherroub R, Khan A, Altalhi T, Amin MA. Emerging advances and current applications of nanoMOF-based membranes for water treatment. CHEMOSPHERE 2022; 292:133369. [PMID: 34953879 DOI: 10.1016/j.chemosphere.2021.133369] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 11/28/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
Metal-organic frameworks (MOFs) are significantly tunable materials that can be exploited in a wide range of applications. In recent years, a large number of studies have been focused on synthesizing nano-scale MOFs (nanoMOFs), thus taking advantage of these unique materials in various applications, especially those that are only possible at nano-scale. One of the technologies where nanoMOF materials occupy a central role is the membrane technology as one of the most efficient separation techniques. Therefore, numerous reports can be found on the enhancement of the physicochemical properties of polymeric membranes by using nanoMOFs, leading to remarkably improved performance. One of the most considerable applications of these nanoMOF-based membranes is in water treatment systems, because freshwater scarcity is now an undeniable crisis facing humanity. In this in-depth review, the most prominent synthesis and post-synthesis methods for the fabrication of nanoMOFs are initially discussed. Afterwards, different nanoMOF-based composite membranes such as thin-film nanocomposites (TFN) and mixed-matrix membranes (MMM) and their various fabrication methods are reviewed and compared. Then, the impacts of using MOFs-based membranes for water purification through growing metal-organic frameworks crystals on the support materials and utilization of metal-organic frameworks as fillers in mixed matrix membrane (MMM) are highlighted. Finally, a summary of pros and cons of using nanoMOFs in membrane technology for water treatment purposes and clear future prospects and research potentials are presented.
Collapse
Affiliation(s)
- M S Attia
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt.
| | - A O Youssef
- Chemistry Department, Faculty of Science, Ain Shams University, Cairo, 11566, Egypt
| | - Mona N Abou-Omar
- Department of Chemistry, Faculty of Women for Arts, Science and Education, Ain Shams University, Cairo, Egypt
| | - Ekram H Mohamed
- Pharmaceutical Analytical, Chemistry Department, Faculty of Pharmacy, The British University in Egypt, 11837, El Sherouk City, Cairo, Egypt
| | - Rabah Boukherroub
- Univ. Lille, CNRS, Centrale Lille, Univ. Polytechnique Hauts-de-France, UMR 8520, IEMN, F-59000, Lille, France
| | - Afrasyab Khan
- Institute of Engineering and Technology, Department of Hydraulics and Hydraulic and Pneumatic Systems, South Ural State University, Lenin Prospect 76, Chelyabinsk, 454080, Russian Federation
| | - Tariq Altalhi
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Mohammed A Amin
- Department of Chemistry, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
| |
Collapse
|
39
|
Jeevadason AW, Padmini S, Bharatiraja C, Kabeel AE. A review on diverse combinations and Energy-Exergy-Economics (3E) of hybrid solar still desalination. DESALINATION 2022; 527:115587. [DOI: 10.1016/j.desal.2022.115587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
40
|
Wen H, Soyekwo F, Liu C. Highly permeable forward osmosis membrane with selective layer “hooked” to a hydrophilic Cu-Alginate intermediate layer for efficient heavy metal rejection and sludge thickening. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2021.120247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
41
|
Zhang X, Zhao M, Yu H, Wang J, Sun W, Li Q, Cao X, Zhang P. Robust In Situ Fouling Control toward Thin-Film Composite Reverse Osmosis Membrane via One-Step Deposition of a Ternary Homogeneous Metal-Organic Hybrid Layer. ACS APPLIED MATERIALS & INTERFACES 2022; 14:7208-7220. [PMID: 35089006 DOI: 10.1021/acsami.1c19931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Membrane fouling is one of the persistent headaches for water desalination because of the significant detriment to membrane performance and operating cost control. It is a great challenge to overcome such crisis in a facile and robust manner. This work was dedicated to customizing an antifouling thin-film composite (TFC) reverse osmosis (RO) membrane with a polydopamine (PDA)/β-alanine (βAla)/Cu2+ ternary homogeneous metal-organic hybrid coating. The metal ions were evenly distributed in a continuous organic network via polydentate coordination. The incorporation of βAla enabled a substantial promotion of the Cu2+ loading capacity on the membrane surface. The involved one-step codeposition protocol made the surface engineering practically accessible. The deposition time was optimized to afford an uncompromising permselectivity of the membrane. This novel trinity was a smart blend of anti-adhesive and bactericidal factors, and each component in the all-in-one layer performed its own function. The hydrophilic PDA/βAla phase induced weak deposition propensity of organic foulant and bacteria onto the modified membrane, as elucidated by water flux variation, foulants adhesion profile, and interfacial interaction energy. Meanwhile, the Cu2+-loaded surface strongly inactivated the attached bacteria to further alleviate biofouling. Excellent sustainability and stability implied the reliable performance of such trinity-coated membrane in practical service. Given the simplicity and robustness, this work opened a promising avenue for in situ fouling control of TFC RO membranes during water desalination.
Collapse
Affiliation(s)
- Xiaotai Zhang
- The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources (Tianjin), Tianjin 300192, China
| | - Man Zhao
- The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources (Tianjin), Tianjin 300192, China
| | - Hui Yu
- The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources (Tianjin), Tianjin 300192, China
| | - Jian Wang
- The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources (Tianjin), Tianjin 300192, China
| | - Wei Sun
- The Institute of Seawater Desalination and Multipurpose Utilization, Ministry of Natural Resources (Tianjin), Tianjin 300192, China
| | - Qiang Li
- Shandong Key Laboratory of Biophysics, Institute of Biophysics, Dezhou University, Dezhou 253023, China
| | - Xingzhong Cao
- Multi-discipline Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| | - Peng Zhang
- Multi-discipline Research Division, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
42
|
Functionalized polyamide membranes yield suppression of biofilm and planktonic bacteria while retaining flux and selectivity. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.119981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
43
|
Jin P, Mattelaer V, Yuan S, Bassyouni M, Simoens K, Zhang X, Ceyssens F, Bernaerts K, Dewil R, Van der Bruggen B. Hydrogel supported positively charged ultrathin polyamide layer with antimicrobial properties via Ag modification. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2021.120295] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
44
|
Liu S, Tang J, Ji F, Lin W, Chen S. Recent Advances in Zwitterionic Hydrogels: Preparation, Property, and Biomedical Application. Gels 2022; 8:46. [PMID: 35049581 PMCID: PMC8775195 DOI: 10.3390/gels8010046] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 01/04/2022] [Accepted: 01/05/2022] [Indexed: 01/27/2023] Open
Abstract
Nonspecific protein adsorption impedes the sustainability of materials in biologically related applications. Such adsorption activates the immune system by quick identification of allogeneic materials and triggers a rejection, resulting in the rapid failure of implant materials and drugs. Antifouling materials have been rapidly developed in the past 20 years, from natural polysaccharides (such as dextran) to synthetic polymers (such as polyethylene glycol, PEG). However, recent studies have shown that traditional antifouling materials, including PEG, still fail to overcome the challenges of a complex human environment. Zwitterionic materials are a class of materials that contain both cationic and anionic groups, with their overall charge being neutral. Compared with PEG materials, zwitterionic materials have much stronger hydration, which is considered the most important factor for antifouling. Among zwitterionic materials, zwitterionic hydrogels have excellent structural stability and controllable regulation capabilities for various biomedical scenarios. Here, we first describe the mechanism and structure of zwitterionic materials. Following the preparation and property of zwitterionic hydrogels, recent advances in zwitterionic hydrogels in various biomedical applications are reviewed.
Collapse
Affiliation(s)
- Sihang Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; (S.L.); (J.T.); (F.J.)
- State Key Laboratory of Advanced Optical Communication Systems and Networks, Key Laboratory for Thin Film and Microfabrication of the Ministry of Education, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Jingyi Tang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; (S.L.); (J.T.); (F.J.)
- Zhejiang Development & Planning Institute, Hangzhou 310030, China
| | - Fangqin Ji
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; (S.L.); (J.T.); (F.J.)
- Taizhou Technician College, Taizhou 318000, China
| | - Weifeng Lin
- Department of Molecular Chemistry and Materials Science, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Shengfu Chen
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; (S.L.); (J.T.); (F.J.)
- Key Laboratory of Biomedical Materials, College of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210046, China
| |
Collapse
|
45
|
Miao W, Zou WS, Zhao Q, Wang Y, Chen X, Wu S, Liu Z, Xu T. Coupling room-temperature phosphorescence carbon dots onto active layer for highly efficient photodynamic antibacterial chemotherapy and enhanced membrane properties. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
46
|
Recycle of ceramic substrate of PDMS/ceramic composite membranes towards alcohol-permselective pervaporation. J Memb Sci 2021. [DOI: 10.1016/j.memsci.2021.119835] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
47
|
Mokarizadeh H, Moayedfard S, Maleh MS, Mohamed SIGP, Nejati S, Esfahani MR. The role of support layer properties on the fabrication and performance of thin-film composite membranes: The significance of selective layer-support layer connectivity. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119451] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
48
|
Zhao Y, Qiu Y, Mamrol N, Ren L, Li X, Shao J, Yang X, van der Bruggen B. Membrane bioreactors for hospital wastewater treatment: recent advancements in membranes and processes. Front Chem Sci Eng 2021; 16:634-660. [PMID: 34849268 PMCID: PMC8617552 DOI: 10.1007/s11705-021-2107-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/15/2021] [Indexed: 11/26/2022]
Abstract
Discharged hospital wastewater contains various pathogenic microorganisms, antibiotic groups, toxic organic compounds, radioactive elements, and ionic pollutants. These contaminants harm the environment and human health causing the spread of disease. Thus, effective treatment of hospital wastewater is an urgent task for sustainable development. Membranes, with controllable porous and nonporous structures, have been rapidly developed for molecular separations. In particular, membrane bioreactor (MBR) technology demonstrated high removal efficiency toward organic compounds and low waste sludge production. To further enhance the separation efficiency and achieve material recovery from hospital waste streams, novel concepts of MBRs and their applications are rapidly evolved through hybridizing novel membranes (non hydrophilic ultrafiltration/microfiltration) into the MBR units (hybrid MBRs) or the MBR as a pretreatment step and integrating other membrane processes as subsequent secondary purification step (integrated MBR-membrane systems). However, there is a lack of reviews on the latest advancement in MBR technologies for hospital wastewater treatment, and analysis on its major challenges and future trends. This review started with an overview of main pollutants in common hospital waste-water, followed by an understanding on the key performance indicators/criteria in MBR membranes (i.e., solute selectivity) and processes (e.g., fouling). Then, an in-depth analysis was provided into the recent development of hybrid MBR and integrated MBR-membrane system concepts, and applications correlated with wastewater sources, with a particular focus on hospital wastewaters. It is anticipated that this review will shed light on the knowledge gaps in the field, highlighting the potential contribution of hybrid MBRs and integrated MBR-membrane systems toward global epidemic prevention.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Chemical Engineering, KU Leuven, B-3001 Leuven, Belgium
| | - Yangbo Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Natalie Mamrol
- Department of Materials Science and Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139 USA
| | - Longfei Ren
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Xin Li
- Department of Chemical Engineering, KU Leuven, B-3001 Leuven, Belgium
| | - Jiahui Shao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Xing Yang
- Department of Chemical Engineering, KU Leuven, B-3001 Leuven, Belgium
| | | |
Collapse
|
49
|
Hydrophilic modification of poly(aryl sulfone) membrane materials toward highly-efficient environmental remediation. Front Chem Sci Eng 2021. [DOI: 10.1007/s11705-021-2115-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
50
|
Abstract
Activities and/or processes in different segments of the petroleum industry, including upstream and downstream, generate aqueous waste streams containing oil and various contaminants that require treatment/purification before release/reuse. Nanofiltration (NF) technology has been approved as an efficient technology for treating wastewater streams from the petroleum industry. The primary critical issues in an NF treatment process can be listed as mitigation of membrane fouling; selection of appropriate pre-treatment process; and selection of a suitable, cost-effective, non-hazardous cleaning strategy. In this study, NF separation mechanisms, membrane fabrication/modification, effective factors on NF performance, and fouling are briefly reviewed. Then, a summary of recent NF treatment studies on various petroleum wastewaters and performance evaluation is presented. Finally, based on the gaps identified in the field, the conclusions and future perspectives are discussed.
Collapse
|