1
|
Wang J, Luo Y, Wu Y, Du F, Shi S, Duan Y, Chen A, Zhang J, Yu S. Single-cell Raman spectroscopy as a novel platform for unveiling the heterogeneity of mesenchymal stem cells. Talanta 2025; 292:127933. [PMID: 40081243 DOI: 10.1016/j.talanta.2025.127933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/15/2025]
Abstract
Despite the significant potential of mesenchymal stem cells (MSC) therapy in clinical settings, challenges persist regarding the efficient detection of consistency and uniformity of MSC populations. Raman spectroscopy is a fast, convenient, and nondestructive technique to acquire molecular properties of biomolecules across laboratory and mass-production settings. Here we utilized Raman spectroscopy to evaluate the heterogeneity of primary MSC from varying donors, passages, and distinct culture conditions, and compared its effectiveness with conventional techniques such as flow cytometry. Although these MSC exhibited insignificant differences in morphology and surface markers in flow cytometry analysis, they could be distinctly clustered into different populations by Raman spectroscopy and the subsequent machine learning using linear discriminant analysis. Principal component analysis demonstrated limited efficiency in clustering Raman data from diverse sources, which could be enhanced through combination with support vector machine or deterministic finite automation. These findings highlight the sensitivity of Raman spectroscopy in detecting subtle differences. Moreover, the analysis of characteristic Raman peaks attributed to cellular biomolecules in MSC from passages 2 (P2) to P10 revealed a gradual decrease in the levels of nucleic acids, lipids, and proteins with increasing passages, and a significant increase in carotenoids from P8. These results suggest the potential use of Raman spectroscopy to assess cellular biochemical characteristics such as aging, with carotenoids emerging as a potential marker of cell aging. In conclusion, Raman spectroscopy demonstrates the ability to rapidly and non-invasively detect cellular heterogeneity and biochemical status, offering significant potential for quality control in stem cell therapy.
Collapse
Affiliation(s)
- Jingwen Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Yanjun Luo
- Shanghai D-Band Medical Technology Co., LTD, Shanghai, 201802, China
| | - Yue Wu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Fangzhou Du
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China
| | - Shuaiguang Shi
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yuhan Duan
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Aoying Chen
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Jingzhong Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China; Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| | - Shuang Yu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, 215163, China; Xuzhou Medical University, Xuzhou, Jiangsu, 221004, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230026, China.
| |
Collapse
|
2
|
Wu C, Liu B, Wen Q, Zhai Q. A carbon nanotube/pyrrolidonecarboxylic acid zinc sponge for programmed management of diabetic wounds: Hemostatic, antibacterial, anti-inflammatory, and healing properties. Mater Today Bio 2025; 32:101769. [PMID: 40290885 PMCID: PMC12033991 DOI: 10.1016/j.mtbio.2025.101769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 03/24/2025] [Accepted: 04/11/2025] [Indexed: 04/30/2025] Open
Abstract
Wound healing in patients with diabetes is challenging because of chronic inflammation, inadequate vascularization, and susceptibility to infection. Current wound dressings often target specific stages of healing and lack comprehensive therapeutic approaches. This study introduces a novel approach using a photodetachable sponge scaffold incorporating carbon nanotubes (CNTs), known for their high photothermal conversion efficiency, electrical conductivity, and water absorption properties. The scaffold incorporated pyrrolidonecarboxylic acid zinc (PC1Z2), a compound with anti-inflammatory and moisturizing properties, which was cross-linked within a network of CNTs and a decellularized dermal matrix. The resulting shape-memory sponge scaffold actively interfaces with endogenous electric fields, facilitating electrical signal transmission to skin cells and accelerating tissue repair. Upon exposure to near-infrared (NIR) light, the PC1Z2 scaffold enhanced antibacterial efficacy (98 %) through photothermal conversion, promoting tissue metabolism at the wound site. Notably, the scaffold absorbed wound exudates and gradually released Zn2+, effectively reducing chronic inflammation in the mice. In a diabetic rat wound model, the PC1Z2 scaffold absorbed exudates, reduced inflammation, and accelerated granulation tissue formation, wound angiogenesis, and re-epithelialization. This innovative PC1Z2 sponge dressing shows promise for enhancing the healing of diabetic wounds.
Collapse
Affiliation(s)
- Chenwei Wu
- Department of Urology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, 341000, China
| | - Bo Liu
- Department of Burns and Plastics Surgery, Liuzhou Worker's Hospital, Fourth Affiliated Hospital of Guangxi Medical University, Liuzhou, Guangxi, 545000, China
| | - Qiulan Wen
- Department of Orthopaedic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong Province, 510515, China
| | - Qiliang Zhai
- Department of Urology, Ganzhou Hospital-Nanfang Hospital, Southern Medical University, Ganzhou, Jiangxi, 341000, China
| |
Collapse
|
3
|
Kananivand M, Nouri F, Yousefi MH, Pajouhi A, Ghorbani H, Afkhami H, Razavi ZS. Mesenchymal stem cells and their exosomes: a novel approach to skin regeneration via signaling pathways activation. J Mol Histol 2025; 56:132. [PMID: 40208456 DOI: 10.1007/s10735-025-10394-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Accepted: 03/06/2025] [Indexed: 04/11/2025]
Abstract
Accelerating wound healing is a crucial objective in surgical and regenerative medicine. The wound healing process involves three key stages: inflammation, cell proliferation, and tissue repair. Mesenchymal stem cells (MSCs) have demonstrated significant therapeutic potential in promoting tissue regeneration, particularly by enhancing epidermal cell migration and proliferation. However, the precise molecular mechanisms underlying MSC-mediated wound healing remain unclear. This review highlights the pivotal role of MSCs and their exosomes in wound repair, with a specific focus on critical signaling pathways, including PI3K/Akt, WNT/β-catenin, Notch, and MAPK. These pathways regulate essential cellular processes such as proliferation, differentiation, and angiogenesis. Moreover, in vitro and in vivo studies reveal that MSCs accelerate wound closure, enhance collagen deposition, and modulate immune responses, contributing to improved tissue regeneration. Understanding these mechanisms provides valuable insights into MSC-based therapeutic strategies for enhancing wound healing.
Collapse
Affiliation(s)
- Maryam Kananivand
- Medical Department, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Nouri
- Department of Biology, School of Basic Sciences, Science and Research Branch, Islamic Azad University (SRBIAU), Tehran, Iran
| | - Mohammad Hasan Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran
| | - Ali Pajouhi
- Student Research Committee, USERN Office, Lorestan University of Medical Sciences, Khorramabad, Iran
| | - Hakimeah Ghorbani
- Department of Sciences, Faculty of Biological Sciences, Tabriz University of Sciences, Tabriz, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran.
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran.
- Student Research Committee, Qom University of Medical Sciences, Qom, Iran.
| | - Zahra Sadat Razavi
- Physiology Research Center, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Deng Q, Du F, Pan S, Xia Y, Zhu Y, Zhang J, Li C, Yu S. Activation of angiopoietin-1 signaling with engineering mesenchymal stem cells promoted efficient angiogenesis in diabetic wound healing. Stem Cell Res Ther 2025; 16:75. [PMID: 39985096 PMCID: PMC11846275 DOI: 10.1186/s13287-025-04207-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 01/29/2025] [Indexed: 02/24/2025] Open
Abstract
BACKGROUND Vascular insufficiency is associated with the pathogenesis and therapeutic outcomes of diabetic foot ulcers (DFU). While mesenchymal stem cells (MSCs) hold potential for DFU treatment, further enhancement in promoting angiogenesis in the challenging DFU wounds is imperative. METHODS The differential expression of pro- and anti-angiogenic factors during both normal and diabetic wound healing was compared using quantitative PCR. MSCs derived from the umbilical cord was prepared, and the engineered MSC (MSCANG1) overexpressing both the candidate pro-angiogenic gene, angiopoietin-1 (ANG1), and green fluorescent protein (GFP) was constructed using a lentiviral system. The pro-vascular stabilizing effects of MSCANG1 were assessed in primary endothelial cell cultures. Subsequently, MSCANG1 was transplanted into streptozotocin (STZ)-induced diabetic wound models to evaluate therapeutic effects on angiogenesis and wound healing. The underlying mechanisms were further examined both in vitro and in vivo. RESULTS The comprehensive analysis of the temporal expression of pro- and anti-angiogenic factors revealed a consistent impairment in ANG1 expression throughout diabetic wound healing. MSCANG1 exhibited robust EGFP expression in 80% of cells, with overexpression and secretion of the ANG1 protein. MSCANG1 notably enhanced the survival and tubulogenesis of endothelial cells and promoted the expression of junction proteins, facilitating the establishment of functional vasculature with improved vascular leakage. Although MSCANG1 did not enhance the survival of engrafted MSCs in diabetic wounds, it significantly promoted angiogenesis in diabetic wound healing, fostering the establishment of stable vasculature during the healing process. Activation of the protein kinase B (Akt) pathway and suppression of proto-oncogene tyrosine kinase Src (Src) activity in MSCANG1-treated diabetic wounds confirmed efficient angiogenesis process. Consequently, epidermal and dermal reconstruction, as well as skin appendage regeneration were markedly accelerated in MSCANG1-treated diabetic wounds compared to MSC-treated wounds. CONCLUSION Treatment with MSCs alone promotes angiogenesis and DFU healing, while the engineering of MSCs with ANG1 provides substantial additional benefits to this therapeutic process. The engineering of MSCs with ANG1 presents a promising avenue for developing innovative strategies in managing DFU.
Collapse
Affiliation(s)
- Qiong Deng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Fangzhou Du
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
| | - Shenzhen Pan
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Yuchen Xia
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Yuxin Zhu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Jingzhong Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China.
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Xuzhou Medical University, Xuzhou, Jiangsu, China.
| | - Chenglong Li
- Department of Vascular Surgery, The Second Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China.
| | - Shuang Yu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu, China.
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China.
- Xuzhou Medical University, Xuzhou, Jiangsu, China.
| |
Collapse
|
5
|
Jin W, Li Y, Yu M, Ren D, Han C, Guo S. Advances of exosomes in diabetic wound healing. BURNS & TRAUMA 2025; 13:tkae078. [PMID: 39980588 PMCID: PMC11836438 DOI: 10.1093/burnst/tkae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 06/11/2024] [Accepted: 11/09/2024] [Indexed: 02/22/2025]
Abstract
Poor wound healing is a refractory process that places an enormous medical and financial burden on diabetic patients. Exosomes have recently been recognized as crucial players in the healing of diabetic lesions. They have excellent stability, homing effects, biocompatibility, and reduced immunogenicity as novel cell-free therapies. In addition to transporting cargos to target cells to enhance intercellular communication, exosomes are beneficial in nearly every phase of diabetic wound healing. They participate in modulating the inflammatory response, accelerating proliferation and reepithelization, increasing angiogenesis, and regulating extracellular matrix remodeling. Accumulating evidence indicates that hydrogels or dressings in conjunction with exosomes can prolong the duration of exosome residency in diabetic wounds. This review provides an overview of the mechanisms, delivery, clinical application, engineering, and existing challenges of the use of exosomes in diabetic wound repair. We also propose future directions for biomaterials incorporating exosomes: 2D or 3D scaffolds, biomaterials loaded with wound healing-promoting gases, intelligent biomaterials, and the prospect of systematic application of exosomes. These findings may might shed light on future treatments and enlighten some studies to improve quality of life among diabetes patients.
Collapse
Affiliation(s)
- Weixue Jin
- Department of Plastic Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 1511 Jiang Hong Road, Binjiang District, Hangzhou 310009, Zhejiang, China
| | - Yi Li
- Department of Plastic Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 1511 Jiang Hong Road, Binjiang District, Hangzhou 310009, Zhejiang, China
| | - Meirong Yu
- Center for Basic and Translational Research, Second Affiliated Hospital Zhejiang University School of Medicine, 88 Jie Fang Road, Shangcheng District, Hangzhou 310009, Zhejiang, China
| | - Danyang Ren
- Department of Plastic Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 1511 Jiang Hong Road, Binjiang District, Hangzhou 310009, Zhejiang, China
| | - Chunmao Han
- Department of Burns and Wound Repair, Second Affiliated Hospital Zhejiang University School of Medicine, 88 Jie Fang Road, Shangcheng District, Hangzhou 310009, Zhejiang, China
- Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, 88 Jie Fang Road, Shangcheng District, Hangzhou 310009, Zhejiang, China
| | - Songxue Guo
- Department of Plastic Surgery, Second Affiliated Hospital of Zhejiang University School of Medicine, 1511 Jiang Hong Road, Binjiang District, Hangzhou 310009, Zhejiang, China
- Zhejiang Key Laboratory of Trauma, Burn, and Medical Rescue, 88 Jie Fang Road, Shangcheng District, Hangzhou 310009, Zhejiang, China
| |
Collapse
|
6
|
Cheng N, Luo Q, Yang Y, Shao N, Nie T, Deng X, Chen J, Zhang S, Huang Y, Hu K, Luo L, Xiao Z. Injectable pH Responsive Conductive Hydrogel for Intelligent Delivery of Metformin and Exosomes to Enhance Cardiac Repair after Myocardial Ischemia-Reperfusion Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2410590. [PMID: 39965141 DOI: 10.1002/advs.202410590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/23/2024] [Indexed: 02/20/2025]
Abstract
Myocardial ischemia-reperfusion injury (MIRI) is a leading cause of complications and high mortality associated with acute myocardial infarction. Injectable hydrogel emerges as a promising biomaterial for myocardial repair due to their ability to mimic the mechanical and electrophysiological properties of heart tissue. In this study, an injectable conductive hydrogel is developed that responds to the weakly acidic microenvironment of ischemic injury, enabling the intelligent release of metformin and exosomes to enhance cardiac repair following MIRI. This multifunctional hydrogel demonstrates self-healing properties, shear-thinning injectability, electrical conductivity, and an elastic modulus comparable to natural myocardium, alongside excellent biocompatibility. At the cellular level, the hydrogel system exhibits significant antioxidant, anti-apoptotic, improvement of electrophysiological characteristics, mitochondrial protection and angiogenic effects, with transcriptome sequencing revealing the effective activation of the PI3K/AKT, VEGF, and AMPK signaling pathways. In vivo studies further confirm that the hydrogel treatment reduces infarct size, cardiac fibrosis and incidence of arrhythmia, while improving ventricular ejection fraction and facilitating the restoration of cardiac function after MIRI. In conclusion, an injectable pH-responsive conductive hydrogel is presented that enables the intelligent delivery of metformin and exosomes, offering a promising and novel therapeutic approach for enhancing cardiac repair and treating MIRI.
Collapse
Affiliation(s)
- Nianlan Cheng
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Qiao Luo
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Yongqing Yang
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Ni Shao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Tianqi Nie
- Central laboratory, Guangzhou Twelfth People's Hospital, Guangzhou, 510620, China
| | - Xiujiao Deng
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Jifeng Chen
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| | - Siqi Zhang
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Yanyu Huang
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Kuan Hu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, 100050, China
| | - Liangping Luo
- Department of Radiology and Nuclear Medicine, The Fifth Affiliated Hospital of Jinan University (Shenhe People's Hospital), Heyuan, 517000, China
| | - Zeyu Xiao
- The Guangzhou Key Laboratory of Molecular and Functional Imaging for Clinical Translation, Department of Radiology and Nuclear Medicine, The First Affiliated Hospital of Jinan University, Guangzhou, 510630, China
| |
Collapse
|
7
|
Huang J, Deng Q, Tsang LL, Chang G, Guo J, Ruan YC, Wang CC, Li G, Chan HF, Zhang X, Jiang X. Mesenchymal stem cells from perinatal tissues promote diabetic wound healing via PI3K/AKT activation. Stem Cell Res Ther 2025; 16:59. [PMID: 39923118 PMCID: PMC11807333 DOI: 10.1186/s13287-025-04141-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 01/13/2025] [Indexed: 02/10/2025] Open
Abstract
BACKGROUND Diabetic foot ulcers (DFUs) represent a major complication of diabetes, often leading to poor healing outcomes with conventional treatments. Mesenchymal stem cell (MSC) therapies have emerged as a promising alternative, given their potential to modulate various pathways involved in wound healing. This study evaluates and compares the therapeutic potential of MSCs derived from perinatal tissues-human umbilical cord MSCs (hUCMSCs), human chorionic villi MSCs (hCVMSCs), and human decidua basalis MSCs (hDCMSCs)-in a diabetic wound healing model. METHODS We performed in vitro and in vivo studies to compare the efficacy of hUCMSCs, hCVMSCs, and hDCMSCs. Mass spectrometry was used to analyze the secreted proteins of the MSCs. We incorporated the MSCs into a polyethylene glycol diacrylate (PEGDA) and sodium alginate (SA) hydrogel matrix with collagen I (Col-I) to evaluate their effects on wound healing. RESULTS All three types of MSCs promoted wound healing, with hUCMSCs and hCVMSCs showing stronger effects compared to hDCMSCs. Both hUCMSCs and hCVMSCs demonstrated robust wound healing kinetics, with enhanced keratinocyte proliferation (KRT14+/Ki67+ cells), maturation (KRT10/KRT14 ratio), and angiogenesis. In vitro studies demonstrated that the MSC-derived secretome enhanced keratinocyte proliferation and migration, endothelial cell function and stem cell recruitment, indicating robust paracrine effects. Mass spectrometry revealed a conserved set of proteins including THBS1 (thrombospondin 1), SERPINE1 (serpin family E member 1), ANXA1 (annexin A1), LOX (lysyl oxidase), and ITGB1 (integrin beta-1) which are involved in extracellular matrix (ECM) organization and wound healing, with the PI3K/AKT signaling pathway playing a central role. The PEGDA/SA/Col-I hydrogel demonstrated a unique balance of mechanical and biological properties and an optimal environment for MSC viability and function. Application of either hUCMSC- or hCVMSC-laden hydrogels resulted in accelerated wound closure, improved re-epithelialization, increased collagen deposition, and enhanced vascularization in vivo. CONCLUSIONS MSCs From perinatal tissues particularly hUCMSCs and hCVMSCs significantly enhance diabetic wound healing through PI3K/AKT pathway activation while hDCMSCs exhibited weaker efficacy. The PEGDA/SA/Col-I hydrogel supports MSC viability and function offering a promising scaffold for DFU treatment. These findings underscore the potential of specific perinatal MSCs and optimized hydrogel formulations in advancing diabetic wound care.
Collapse
Affiliation(s)
- Jiawei Huang
- School of Biomedical Sciences, Faculty of Medicine; CUHK-GIBH CAS Joint Research Laboratory On Stem Cell and Regenerative Medicine; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Qingwen Deng
- School of Biomedical Sciences, Faculty of Medicine; CUHK-GIBH CAS Joint Research Laboratory On Stem Cell and Regenerative Medicine; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Lai Ling Tsang
- School of Biomedical Sciences, Faculty of Medicine; CUHK-GIBH CAS Joint Research Laboratory On Stem Cell and Regenerative Medicine; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Guozhu Chang
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Jinghui Guo
- School of Medicine, The Chinese University of Hong Kong, Shenzhen, 518172, Guangdong, China
| | - Ye Chun Ruan
- Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Chi Chiu Wang
- Department of Obstetrics and Gynaecology, Faculty of Medicine, The Chinese University of Hong Kong; Reproduction and Development, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Gang Li
- Department of Orthopaedics & Traumatology, Faculty of Medicine, The Chinese University of Hong Kong, Prince of Wales Hospital, Shatin, Hong Kong SAR, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, The Chinese University of Hong Kong, Hong Kong SAR, China
| | - Xiaohu Zhang
- Sichuan University-The Chinese University of Hong Kong Joint Laboratory for Reproductive Medicine, West China Second University Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
| | - Xiaohua Jiang
- School of Biomedical Sciences, Faculty of Medicine; CUHK-GIBH CAS Joint Research Laboratory On Stem Cell and Regenerative Medicine; Key Laboratory for Regenerative Medicine of the Ministry of Education of China, The Chinese University of Hong Kong, Hong Kong SAR, China.
- The Chinese University of Hong Kong, Shenzhen Research Institute, Shenzhen, 518000, China.
| |
Collapse
|
8
|
Liu Z, Cao Y, Liao XL, Ou ZJ, Mo ZW, Liu YF, Chen YT, Liu ZL, Gao JJ, Ning DS, Peng YM, Sorci-Thomas MG, Ou JS, Li Y. Apolipoprotein A-I Mimetic Peptide Restores VEGF-induced Angiogenesis in Hypercholesterolemic Ischemic Heart by Reducing HDL Proinflammatory Properties. J Cardiovasc Transl Res 2025; 18:58-69. [PMID: 39412642 PMCID: PMC11885385 DOI: 10.1007/s12265-024-10568-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Accepted: 10/02/2024] [Indexed: 02/01/2025]
Abstract
VEGF-induced angiogenesis is impaired in hypercholesterolemia. Previous studies showed that an apolipoprotein A-I(ApoA-I) mimetic peptide, D-4F, is able to reduce HDL proinflammatory index in hypercholesterolemia. Whether D-4F promotes angiogenesis in hypercholesterolemia remains unclear. Low-density lipoprotein receptor null (LDLr-/-) mice and LDLr-/-/ApoA-I-/- mice were fed with high-fat diet with or without D-4F (1mg/kg·d). C57BL/6 mice fed with normal diet served as control. The myocardial infarction was induced by ligation coronary artery, and the VEGFA-AAV 9 was injected in heart. The plasma HDL proinflammatory index, cardiac function, infarct size, and angiogenesis related signaling pathways were examined. The HDL proinflammatory index increases in hypercholesterolemic mice. VEGFA stimulates angiogenesis and improves cardiac function in ischemic heart of C57BL/6 mice, but not in hypercholesterolemic mice. D-4F reduces HDL proinflammatory index. D-4F combined with VEGFA stimulates the expression of CD31 and eNOS, activates ERK1/2, reduces infarct size, and improves cardiac function in ischemic heart in hypercholesterolemic LDLr-/- mice but not in hypercholesterolemic LDLr-/-/ApoA-I-/- mice. D-4F restores the VEGF-induced angiogenesis by reducing HDL proinflammatory properties in hypercholesterolemic ischemic heart.
Collapse
Affiliation(s)
- Zui Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-Sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, 510080, China
- Division of Thoracic Surgery, The Sixth Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510655, China
| | - Yang Cao
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-Sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, 510080, China
| | - Xiao-Long Liao
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-Sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, 510080, China
| | - Zhi-Jun Ou
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-Sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, 510080, China
- Division of Hypertension and Vascular Diseases, Department of Cardiology, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhi-Wei Mo
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-Sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, 510080, China
| | - Yi-Fang Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-Sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, 510080, China
| | - Ya-Ting Chen
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-Sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, 510080, China
| | - Ze-Long Liu
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-Sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, 510080, China
| | - Jian-Jun Gao
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-Sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, 510080, China
| | - Da-Sheng Ning
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-Sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, 510080, China
| | - Yue-Ming Peng
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-Sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, 510080, China
| | - Mary G Sorci-Thomas
- Cardiovascular Center, Medical College of Wisconsin, 8701 Watertown Plank Rd, Milwaukee, WI, 53226, USA.
| | - Jing-Song Ou
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-Sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080, China.
| | - Yan Li
- Division of Cardiac Surgery, Cardiovascular Diseases Institute, The First Affiliated Hospital, Sun Yat-Sen University, 58 Zhong Shan Er Road, Guangzhou, 510080, China.
- National-Guangdong Joint Engineering Laboratory for Diagnosis and Treatment of Vascular Diseases, NHC Key Laboratory of Assisted Circulation and Vascular Diseases (Sun Yat-Sen University), Key Laboratory of Assisted Circulation and Vascular Diseases, Guangdong Provincial Engineering and Technology Center for Diagnosis and Treatment of Vascular Diseases, Chinese Academy of Medical Sciences, Guangzhou, 510080, China.
| |
Collapse
|
9
|
Zhang C, Ji J, Du X, Zhang L, Song Y, Wang Y, Jiang Y, Li K, Chang T. Atg5-deficient mesenchymal stem cells protect against non-alcoholic fatty liver by accelerating hepatocyte growth factor secretion. Cell Commun Signal 2024; 22:579. [PMID: 39627775 PMCID: PMC11613616 DOI: 10.1186/s12964-024-01950-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/17/2024] [Indexed: 12/08/2024] Open
Abstract
BACKGROUND/AIMS Mesenchymal stem cells (MSCs) have shown promising therapeutic potential in treating liver diseases, such as non-alcoholic fatty liver disease (NAFLD). Genetic modification has been employed to enhance the characteristics of MSCs for more effective disease treatment. Here, we present findings on human adipose-derived MSCs with Atg5 deficiency, investigating their therapeutic impact and the associated mechanisms in NAFLD. METHODS In vitro, lentiviral transduction was employed to downregulate Atg5 or HGF in human adipose-derived MSCs using short hairpin RNA (shRNA). Subsequently, experiments were conducted to evaluate cell senescence, proliferation, cell cycle, apoptosis, and other pertinent aspects. In vivo, a non-alcoholic fatty liver mouse model was established by feeding them a high-fat diet (HFD), and the effects of MSCs transplantation were assessed through serological, biochemical, and pathological analyses. RESULTS Our research findings indicate that Atg5-deficient MSCs display heightened proliferative activity. Subsequent co-culturing of MSCs with hepatocytes and the transplantation of Atg5-deficient MSCs into NAFLD mouse models demonstrated their ability to effectively reduce lipid accumulation in the NAFLD disease model by modulating the AMPKα/mTOR/S6K/Srebp1 pathway. Furthermore, we observed that Atg5 deficiency enhances the secretion of hepatocyte growth factor (HGF) by promoting recycling endosome (RE) production. Lastly, our study revealed that 3-MA-primed MSCs can improve the characteristics of NAFLD by boosting the secretion of HGF. CONCLUSIONS Our research findings suggest that Atg5-deficient MSCs protect against NAFLD by accelerating HGF secretion. This indicates that Atg5 gene-modified MSCs may represent a promising strategy for treating NAFLD.
Collapse
Affiliation(s)
- Caifeng Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China.
| | - Juanjuan Ji
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang , Henan, 453003, China
| | - Xuefang Du
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang , Henan, 453003, China
| | - Lanfang Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang , Henan, 453003, China
| | - Yaxuan Song
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang , Henan, 453003, China
| | - Yuyu Wang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang , Henan, 453003, China
| | - Yanan Jiang
- Department of Pathophysiology, School of Basic Medical Sciences, College of Medicine, Zhengzhou University, Zhengzhou , Henan, 450000, China
| | - Ke Li
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang , Henan, 453003, China
| | - Tingmin Chang
- Department of Gastroenterology, The First Affiliated Hospital of Xinxiang Medical University, Xinxiang, Henan Province, China.
- First College for Clinical Medicine, Xinxiang Medical University, Xinxiang , Henan, 453003, China.
| |
Collapse
|
10
|
Sharma Y, Ghatak S, Sen CK, Mohanty S. Emerging technologies in regenerative medicine: The future of wound care and therapy. J Mol Med (Berl) 2024; 102:1425-1450. [PMID: 39358606 DOI: 10.1007/s00109-024-02493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 09/10/2024] [Accepted: 09/23/2024] [Indexed: 10/04/2024]
Abstract
Wound healing, an intricate biological process, comprises orderly phases of simple biological processed including hemostasis, inflammation, angiogenesis, cell proliferation, and ECM remodeling. The regulation of the shift in these phases can be influenced by systemic or environmental conditions. Any untimely transitions between these phases can lead to chronic wounds and scarring, imposing a significant socio-economic burden on patients. Current treatment modalities are largely supportive in nature and primarily involve the prevention of infection and controlling inflammation. This often results in delayed healing and wound complications. Recent strides in regenerative medicine and tissue engineering offer innovative and patient-specific solutions. Mesenchymal stem cells (MSCs) and their secretome have gained specific prominence in this regard. Additionally, technologies like tissue nano-transfection enable in situ gene editing, a need-specific approach without the requirement of complex laboratory procedures. Innovating approaches like 3D bioprinting and ECM bioscaffolds also hold the potential to address wounds at the molecular and cellular levels. These regenerative approaches target common healing obstacles, such as hyper-inflammation thereby promoting self-recovery through crucial signaling pathway stimulation. The rationale of this review is to examine the benefits and limitations of both current and emerging technologies in wound care and to offer insights into potential advancements in the field. The shift towards such patient-centric therapies reflects a paradigmatic change in wound care strategies.
Collapse
Affiliation(s)
- Yashvi Sharma
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India
| | - Subhadip Ghatak
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA
- McGowan Institute of Regenerative Medicine, Department of Surgery, University of Pittsburgh, 419 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA
| | - Chandan K Sen
- Indiana Center for Regenerative Medicine and Engineering, Indiana University Health Comprehensive Wound Center, Department of Surgery, Indiana University School of Medicine, Indianapolis, IN, 46202, USA.
- McGowan Institute of Regenerative Medicine, Department of Surgery, University of Pittsburgh, 419 Bridgeside Point II, 450 Technology Drive, Pittsburgh, PA, 15219, USA.
| | - Sujata Mohanty
- Stem Cell Facility (DBT-Centre of Excellence for Stem Cell Research), All India Institute of Medical Sciences, New Delhi, Delhi, 110029, India.
| |
Collapse
|
11
|
Zhu JY, Guo L. Exercise-regulated lipolysis: Its role and mechanism in health and diseases. J Adv Res 2024:S2090-1232(24)00550-2. [PMID: 39613256 DOI: 10.1016/j.jare.2024.11.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/24/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024] Open
Abstract
Exercise has received considerable attention because of its importance not just in regulating physiological function, but also in ameliorating multiple pathological processes. Among these processes, lipolysis may play an important role in exercise-induced benefits. It is generally accepted that active lipolysis contributes to breakdown of fats, leading to the release of free fatty acids (FFAs) that serve as an energy source for muscles and other tissues during exercise. However, the significance of lipolysis in the context of exercise has not been fully understood. This review comprehensively outlines the potential regulatory mechanisms by which exercise stimulates lipolysis. The potential roles of exercise-mediated lipolysis in various physiological and pathological processes are also summarized. Additionally, we also discussed the potential non-classical effects of key lipolytic effectors induced by exercise. This will enhance our understanding of how exercise improves lipolytic function to bring about beneficial effects, offering new insights into potential therapeutic avenues for promoting health and alleviating diseases.
Collapse
Affiliation(s)
- Jie-Ying Zhu
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China 200438; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China 200438; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China 200438
| | - Liang Guo
- School of Exercise and Health and Collaborative Innovation Center for Sports and Public Health, Shanghai University of Sport, Shanghai, China 200438; Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, Shanghai University of Sport, Shanghai, China 200438; Key Laboratory of Exercise and Health Sciences of the Ministry of Education, Shanghai University of Sport, Shanghai, China 200438.
| |
Collapse
|
12
|
Du F, Zhang S, Li S, Zhou S, Zeng D, Zhang J, Yu S. Controlled release of mesenchymal stem cell-derived nanovesicles through glucose- and reactive oxygen species-responsive hydrogels accelerates diabetic wound healing. J Control Release 2024; 376:985-998. [PMID: 39505216 DOI: 10.1016/j.jconrel.2024.11.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2024] [Revised: 10/31/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
Wound healing is often impaired in patients with diabetes. Mesenchymal stem cells (MSCs) and MSCs-derived nanovesicles (MNVs) hold promise as therapeutic agents for managing diabetic wounds. However, efficient delivery and controlled release of MNVs within these wounds are essential for maximizing therapeutic effectiveness. In this study, we developed a dual-responsive hydrogel designed to respond to elevated levels of glucose and reactive oxygen species. This hydrogel combines polyvinyl alcohol with phenylboronic acid-grafted chitosan, referred to as PBA-CP, while MNVs were produced by shearing MSCs through membranes with varying pore sizes. The composite PBA-CP/MNVs hydrogel significantly accelerated wound healing in a diabetic wound model by promoting epithelialization, dermal reconstruction, hair follicle formation, and angiogenesis. MNVs were readily taken up by keratinocytes, fibroblasts, and endothelial cells, stimulating their proliferation and migration. Altogether, the chitosan-based PBA-CP/MNVs composite hydrogel presents a promising therapeutic strategy for diabetic wound treatment.
Collapse
Affiliation(s)
- Fangzhou Du
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Shumang Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China
| | - Shikai Li
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Shaocong Zhou
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Dongao Zeng
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Jingzhong Zhang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China; Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| | - Shuang Yu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, Jiangsu 215163, China; School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230026, China; Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
13
|
Scafidi A, Lind-Holm Mogensen F, Campus E, Pailas A, Neumann K, Legrave N, Bernardin F, Pereira SL, Antony PM, Nicot N, Mittelbronn M, Grünewald A, Nazarov PV, Poli A, Van Dyck E, Michelucci A. Metformin impacts the differentiation of mouse bone marrow cells into macrophages affecting tumour immunity. Heliyon 2024; 10:e37792. [PMID: 39315158 PMCID: PMC11417223 DOI: 10.1016/j.heliyon.2024.e37792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 09/04/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024] Open
Abstract
Background Epidemiological studies suggest that metformin reduces the risk of developing several types of cancer, including gliomas, and improves the overall survival in cancer patients. Nevertheless, while the effect of metformin on cancer cells has been extensively studied, its impact on other components of the tumour microenvironment, such as macrophages, is less understood. Results Metformin-treated mouse bone marrow cells differentiate into spindle-shaped macrophages exhibiting increased phagocytic activity and tumour cell cytotoxicity coupled with modulated expression of co-stimulatory molecules displaying reduced sensitivity to inflammatory cues compared with untreated cells. Transcriptional analyses of metformin-treated mouse bone marrow-derived macrophages show decreased expression levels of pro-tumour genes, including Tgfbi and Il1β, related to enhanced mTOR/HIF1α signalling and metabolic rewiring towards glycolysis. Significance Our study provides novel insights into the immunomodulatory properties of metformin in macrophages and its potential application in preventing tumour onset and in cancer immunotherapy.
Collapse
Affiliation(s)
- Andrea Scafidi
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Frida Lind-Holm Mogensen
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Eleonora Campus
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
| | - Alexandros Pailas
- Faculty of Science, Technology and Medicine, University of Luxembourg, L-4365 Esch-sur-Alzette, Luxembourg
- DNA Repair and Chemoresistance, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Katrin Neumann
- DNA Repair and Chemoresistance, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Nathalie Legrave
- Metabolomics Platform, Department of Cancer Research, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - François Bernardin
- Metabolomics Platform, Department of Cancer Research, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Sandro L. Pereira
- Molecular and Functional Neurobiology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Paul M.A. Antony
- Bioimaging Platform, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Nathalie Nicot
- LuxGen Genome Center, Luxembourg Institute of Health & Laboratoire National de Santé, L-3555 Dudelange, Luxembourg
| | - Michel Mittelbronn
- Department of Life Sciences and Medicine, Faculty of Science, Technology and Medicine, University of Luxembourg, L-4367 Belvaux, Luxembourg
- Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
- Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
- Luxembourg Center of Neuropathology, Laboratoire National de Santé, L-3555 Dudelange, Luxembourg
- National Center of Pathology, Laboratoire National de Santé, L-3555 Dudelange, Luxembourg
| | - Anne Grünewald
- Molecular and Functional Neurobiology Group, Luxembourg Centre for Systems Biomedicine, University of Luxembourg, L-4362 Esch-sur-Alzette, Luxembourg
| | - Petr V. Nazarov
- Bioinformatics and AI unit, Department of Medical Informatics, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
- Multiomics Data Science Group, Department of Cancer Research, Luxembourg Institute of Health, L-1445 Strassen, Luxembourg
| | - Aurélie Poli
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Eric Van Dyck
- DNA Repair and Chemoresistance, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| | - Alessandro Michelucci
- Neuro-Immunology Group, Department of Cancer Research, Luxembourg Institute of Health, L-1210 Luxembourg, Luxembourg
| |
Collapse
|
14
|
Peng H, Du F, Wang J, Wu Y, Wei Q, Chen A, Duan Y, Shi S, Zhang J, Yu S. Adipose-Derived Stem-Cell-Membrane-Coated PLGA-PEI Nanoparticles Promote Wound Healing via Efficient Delivery of miR-21. Pharmaceutics 2024; 16:1113. [PMID: 39339150 PMCID: PMC11434648 DOI: 10.3390/pharmaceutics16091113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 07/31/2024] [Accepted: 08/21/2024] [Indexed: 09/30/2024] Open
Abstract
miRNAs have been shown to be involved in the regulation of a variety of physiological and pathological processes, but their use in the treatment of diseases is still limited due to their instability. Biomimetic nanomaterials combine nanomaterials with cellular components that are readily modifiable and biocompatible, making them an emerging miRNA delivery vehicle. In this study, adipose-derived MSC membranes were wrapped around PLGA-PEI loaded with miR-21 through co-extrusion and later transplanted into C57BL/6 mice wounds. The wound-healing rate, epithelialization, angiogenesis, and collagen deposition were assessed after treatment and corroborated in vitro. Our study demonstrated that m/NP/miR-21 can promote wound healing in terms of epithelialization, dermal reconstruction, and neovascularization, and it can regulate the corresponding functions of keratinocytes, fibroblasts, and vascular endothelial cells. m/NP/miR-21 can inhibit the expression of PTEN, a gene downstream of miR-21, and increase the phosphorylation activation of AKT, which can then regulate the functions of fibroblasts. In conclusion, this provides a new approach to therapy for skin wounds using microRNA transporters and biomimetic nanoparticles.
Collapse
Affiliation(s)
- Huiyu Peng
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Fangzhou Du
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Jingwen Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yue Wu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Qian Wei
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Aoying Chen
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yuhan Duan
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Shuaiguang Shi
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Jingzhong Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Shuang Yu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
15
|
Liu X, Li Z, Liu L, Zhang P, Wang Y, Ding G. Metformin-mediated effects on mesenchymal stem cells and mechanisms: proliferation, differentiation and aging. Front Pharmacol 2024; 15:1465697. [PMID: 39193338 PMCID: PMC11347424 DOI: 10.3389/fphar.2024.1465697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 08/01/2024] [Indexed: 08/29/2024] Open
Abstract
Mesenchymal stem cells (MSCs) are a type of pluripotent adult stem cell with strong self-renewal and multi-differentiation abilities. Their excellent biological traits, minimal immunogenicity, and abundant availability have made them the perfect seed cells for treating a wide range of diseases. After more than 60 years of clinical practice, metformin is currently one of the most commonly used hypoglycaemic drugs for type 2 diabetes in clinical practice. In addition, metformin has shown great potential in the treatment of various systemic diseases except for type 2 diabetes in recent years, and the mechanisms are involved with antioxidant stress, anti-inflammatory, and induced autophagy, etc. This article reviews the effects and the underlying mechanisms of metformin on the biological properties, including proliferation, multi-differentiation, and aging, of MSCs in vitro and in vivo with the aim of providing theoretical support for in-depth scientific research and clinical applications in MSCs-mediated disease treatment.
Collapse
Affiliation(s)
| | | | | | | | | | - Gang Ding
- School of Stomatology, Shandong Second Medical University, Weifang, Shandong, China
| |
Collapse
|
16
|
Zhang S, Zhang S, Bai X, Wang Y, Liu Y, Liu W. Thonningianin A ameliorated renal interstitial fibrosis in diabetic nephropathy mice by modulating gut microbiota dysbiosis and repressing inflammation. Front Pharmacol 2024; 15:1389654. [PMID: 39193336 PMCID: PMC11347433 DOI: 10.3389/fphar.2024.1389654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/25/2024] [Indexed: 08/29/2024] Open
Abstract
Objectives This study was conducted to examine the potential health benefits of thonningianin A (TA) on renal injury and interstitial fibrosis in diabetic nephropathy (DN) mice. Methods In this study, a DN mice model was established using male C57BL/6 mice injected with streptozotocin (STZ, 50 mg/kg) intraperitoneally and treated with TA for 12 weeks. Firstly, the therapeutic and anti-fibrotic effects of TA on DN were evaluated. Secondly, the effect of TA on renal inflammation was evaluated and Western blot was used to detect the changes of NLRP3/ASC/Caspase-1 pathway-related protein expressions in kidney. Furthermore, the effect of TA on impairments in the intestinal mucosa barrier was evaluated and the changes of lipopolysaccharide (LPS) levels in feces and serum were detected by ELISA. Finally, 16S rRNA sequencing was used to detect alteration of gut microbiota diversity and abundance in mice after TA treatment. Results The results showed that TA markedly mitigated blood glucose (Glu), decreased 24-h urinary total protein (24hUTP), improved renal dysfunction and kidney index (KI) in DN mice. Furthermore, TA significantly alleviated renal injury and interstitial fibrosis, repressing renal inflammation. Western blot results showed that the NLRP3/ASC/Caspase-1 signaling pathway-related proteins decreased after TA treatment. In addition, TA also ameliorated impairments in the intestinal mucosa barrier and restored the expressions of intestinal tight junction proteins (Claudin-1, Occludin and ZO-1). Subsequently, it reduced LPS levels of DN mice in fecal and serum. Furthermore, 16S rRNA high-throughput sequencing showed that TA modulated gut microbiota dysbiosis and decreased the abundance of Gram-negative bacteria (Proteobacteria and Escherichia-Shigella). Conclusion This study suggested that TA might exert a beneficial effect on renal interstitial fibrosis in DN mice by modulating gut microbiota dysbiosis, ameliorating impairments in the intestinal mucosa barrier, reducing the production and release of LPS, inhibiting the activation of NLRP3/ASC/Caspase-1 signaling pathway, and repressing renal inflammatory.
Collapse
Affiliation(s)
- Shujiao Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Shuaixing Zhang
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Xuehui Bai
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
| | - Yaoxian Wang
- Henan University of Chinese Medicine, Zhengzhou, China
| | - Yuning Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Weijing Liu
- Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory of Chinese Internal Medicine of Ministry of Education, Beijing Dongzhimen Hospital, Beijing University of Chinese Medicine, Beijing, China
- Renal Research Institution of Beijing University of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
17
|
Ahmadieh-Yazdi A, Karimi M, Afkhami E, Hajizadeh-Tafti F, Kuchakzadeh F, Yang P, Sheykhhasan M. Unveiling therapeutic potential: Adipose tissue-derived mesenchymal stem cells and their exosomes in the management of diabetes mellitus, wound healing, and chronic ulcers. Biochem Pharmacol 2024; 226:116399. [PMID: 38944396 DOI: 10.1016/j.bcp.2024.116399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 05/30/2024] [Accepted: 06/26/2024] [Indexed: 07/01/2024]
Abstract
Diabetes mellitus (DM) is a pervasive global health issue with substantial morbidity and mortality, often resulting in secondary complications, including diabetic wounds (DWs). These wounds, arising from hyperglycemia, diabetic neuropathy, anemia, and ischemia, afflict approximately 15% of diabetic patients, with a considerable 25% at risk of lower limb amputations. The conventional approaches for chronic and diabetic wounds management involves utilizing various therapeutic substances and techniques, encompassing growth factors, skin substitutes and wound dressings. In parallel, emerging cell therapy approaches, notably involving adipose tissue-derived mesenchymal stem cells (ADMSCs), have demonstrated significant promise in addressing diabetes mellitus and its complications. ADMSCs play a pivotal role in wound repair, and their derived exosomes have garnered attention for their therapeutic potential. This review aimed to unravel the potential mechanisms and provide an updated overview of the role of ADMSCs and their exosomes in diabetes mellitus and its associated complications, with a specific focus on wound healing.
Collapse
Affiliation(s)
- Amirhossein Ahmadieh-Yazdi
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Mahdieh Karimi
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Elham Afkhami
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Anatomical Sciences, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Fatemeh Hajizadeh-Tafti
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fatemeh Kuchakzadeh
- Stem Cell Biology Research Center, Yazd Reproductive Sciences Institute, Shahid Sadoughi University of Medical Sciences, Yazd, Iran; Department of Tissue Engineering, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Piao Yang
- Department of Molecular Genetics, College of Arts and Sciences, The Ohio State University, Columbus, OH 43210, USA
| | - Mohsen Sheykhhasan
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran.
| |
Collapse
|
18
|
Zeng J, Pan Y, Chaker SC, Torres-Guzman R, Lineaweaver WC, Qi F. Neural and Inflammatory Interactions in Wound Healing. Ann Plast Surg 2024; 93:S91-S97. [PMID: 39101856 DOI: 10.1097/sap.0000000000003933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
ABSTRACT The skin is an intricate network of both neurons and immunocytes, where emerging evidence has indicated that the regulation of neural-inflammatory processes may play a crucial role in mediating wound healing. Disease associated abnormal immunological dysfunction and peripheral neuropathy are implicated in the pathogenesis of wound healing impairment. However, the mechanisms through which neural-inflammatory interactions modulate wound healing remain ambiguous. Understanding the underlying mechanisms may provide novel insights to develop therapeutic devices, which could manipulate neural-inflammatory crosstalk to aid wound healing. This review aims to comprehensively illustrate the neural-inflammatory interactions during different stages of the repair process. Numerous mediators including neuropeptides secreted by the sensory and autonomic nerve fibers and cytokines produced by immunocytes play an essential part during the distinct phases of wound healing.
Collapse
Affiliation(s)
- Junhao Zeng
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuyan Pan
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Sara C Chaker
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Ricardo Torres-Guzman
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - William C Lineaweaver
- Department of Plastic Surgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Fazhi Qi
- From the Department of Plastic Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
19
|
Chen R, Wang P, Xie J, Tang Z, Fu J, Ning Y, Zhong Q, Wang D, Lei M, Mai H, Li H, Shi Z, Wang J, Cheng H. A multifunctional injectable, self-healing, and adhesive hydrogel-based wound dressing stimulated diabetic wound healing with combined reactive oxygen species scavenging, hyperglycemia reducing, and bacteria-killing abilities. J Nanobiotechnology 2024; 22:444. [PMID: 39068417 PMCID: PMC11283728 DOI: 10.1186/s12951-024-02687-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
The proficient handling of diabetic wounds, a rising issue coinciding with the global escalation of diabetes cases, poses significant clinical difficulties. A range of biofunctional dressings have been engineered and produced to expedite the healing process of diabetic wounds. This study proposes a multifunctional hydrogel dressing for diabetic wound healing, which is composed of Polyvinyl Alcohol (PVA) and N1-(4-boronobenzyl)-N3-(4-boronophenyl)-N1, N1, N3, N3-teramethylpropane-1, 3-diaminium (TSPBA), and a dual-drug loaded Gelatin methacryloyl (GM) microgel. The GM microgel is loaded with sodium fusidate (SF) and nanoliposomes (LP) that contain metformin hydrochloride (MH). Notably, adhesive and self-healing properties the hydrogel enhance their therapeutic potential and ease of application. In vitro assessments indicate that SF-infused hydrogel can eliminate more than 98% of bacteria within 24 h and maintain a sustained release over 15 days. Additionally, MH incorporated within the hydrogel has demonstrated effective glucose level regulation for a duration exceeding 15 days. The hydrogel demonstrates a sustained ability to neutralize ROS throughout the entire healing process, predominantly by electron donation and sequestration. This multifunctional hydrogel dressing, which integrated biological functions of efficient bactericidal activity against both MSSA and MRSA strains, blood glucose modulation, and control of active oxygen levels, has successfully promoted the healing of diabetic wounds in rats in 14 days. The hydrogel dressing exhibited significant effectiveness in facilitating the healing process of diabetic wounds, highlighting its considerable promise for clinical translation.
Collapse
Affiliation(s)
- Rong Chen
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Pinkai Wang
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Jiajun Xie
- Department of Orthopedics, The Second Affiliated Hospital of Nanchang University, Jiangxi Medical College, Nanchang University, Nanchang, 330006, China
| | - Zinan Tang
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Jinlang Fu
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yanhong Ning
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Qiang Zhong
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Ding Wang
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Mingyuan Lei
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Huaming Mai
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Hao Li
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhanjun Shi
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Jian Wang
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Hao Cheng
- Department of Orthopedic, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
20
|
Kamal R, Awasthi A, Pundir M, Thakur S. Healing the diabetic wound: Unlocking the secrets of genes and pathways. Eur J Pharmacol 2024; 975:176645. [PMID: 38759707 DOI: 10.1016/j.ejphar.2024.176645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 05/03/2024] [Accepted: 05/13/2024] [Indexed: 05/19/2024]
Abstract
Diabetic wounds (DWs) are open sores that can occur anywhere on a diabetic patient's body. They are often complicated by infections, hypoxia, oxidative stress, hyperglycemia, and reduced growth factors and nucleic acids. The healing process involves four phases: homeostasis, inflammation, proliferation, and remodeling, regulated by various cellular and molecular events. Numerous genes and signaling pathways such as VEGF, TGF-β, NF-κB, PPAR-γ, MMPs, IGF, FGF, PDGF, EGF, NOX, TLR, JAK-STAT, PI3K-Akt, MAPK, ERK, JNK, p38, Wnt/β-catenin, Hedgehog, Notch, Hippo, FAK, Integrin, and Src pathways are involved in these events. These pathways and genes are often dysregulated in DWs leading to impaired healing. The present review sheds light on the pathogenesis, healing process, signaling pathways, and genes involved in DW. Further, various therapeutic strategies that target these pathways and genes via nanotechnology are also discussed. Additionally, clinical trials on DW related to gene therapy are also covered in the present review.
Collapse
Affiliation(s)
- Raj Kamal
- Department of Quality Assurance, ISF College of Pharmacy, Moga, Punjab, 142001, India
| | - Ankit Awasthi
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India.
| | - Mandeep Pundir
- School of Pharmaceutical Sciences, RIMT University, Punjab, 142001, India; Chitkara College of Pharmacy, Chitkara University, Punjab, 142001, India
| | - Shubham Thakur
- Department of Pharmaceutics, ISF College of Pharmacy, Moga, Punjab, 142001, India
| |
Collapse
|
21
|
Wang Y, Wu J, Feng J, Xu B, Niu Y, Zheng Y. From Bone Remodeling to Wound Healing: An miR-146a-5p-Loaded Nanocarrier Targets Endothelial Cells to Promote Angiogenesis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:32992-33004. [PMID: 38887990 DOI: 10.1021/acsami.4c03598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Wound healing is a complex challenge that demands urgent attention in the clinical realm. Efficient angiogenesis is a pivotal factor in promoting wound healing. microRNA-146a (miR-146a) inhibitor has angiogenic potential in the periodontal ligament. However, free microRNAs (miRNAs) are poorly delivered into cells due to their limited tissue specificity and low intracellular delivery efficiency. To address this hurdle, we developed a nanocarrier for targeted delivery of the miR-146a inhibitor into endothelial cells. It is composed of a polyethylenimine (PEI)-modified mesoporous silica nanoparticle (MSN) core and a pentapeptide (YIGSR) layer that recognizes endothelial cells. In vitro, we defined that the miR-146a inhibitor and adiponectin (ADP) can modulate angiogenesis and the remodeling of periodontal tissues by activating the ERK and Akt signaling pathways. Then, we confirm the specificity of YIGSR to endothelial cells, and importantly, the nanocarrier effectively delivers the miR-146a inhibitor into endothelial cells, promoting angiogenesis. In a C57 mouse skin wound model, the miR-146a inhibitor is successfully delivered into endothelial cells at the wound site using the nanocarrier, resulting in the formation of new blood vessels with strong CD31 expression. Additionally, no significant differences are found in the expression levels of inflammatory markers interleukin-6 and tumor necrosis factor-α. This outcome not only brings new strategies for angiogenesis but also exhibits broader implications for bone remodeling and wound healing. The breakthrough holds significance for future research and clinical interventions.
Collapse
Affiliation(s)
- Yue Wang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, P. R. China
- Department of Dental Medical Center, China-Japan Friendship Hospital, Beijing 100029, P. R. China
| | - Jinjin Wu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, P. R. China
| | - Jingjing Feng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, P. R. China
| | - Baohua Xu
- Department of Dental Medical Center, China-Japan Friendship Hospital, Beijing 100029, P. R. China
| | - Yuting Niu
- Central Laboratory, Peking University School and Hospital of Stomatology, Beijing 100081, P. R. China
| | - Yunfei Zheng
- Department of Orthodontics, Peking University School and Hospital of Stomatology, National Center of Stomatology, National Clinical Research Center for Oral Diseases, National Engineering Laboratory for Digital and Material Technology of Stomatology, 22 Zhongguancun South Avenue, Haidian District, Beijing 100081, P. R. China
| |
Collapse
|
22
|
Li H, Mao B, Zhong J, Li X, Sang H. Localized delivery of metformin via 3D printed GelMA-Nanoclay hydrogel scaffold for enhanced treatment of diabetic bone defects. J Orthop Translat 2024; 47:249-260. [PMID: 39070239 PMCID: PMC11282943 DOI: 10.1016/j.jot.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/28/2024] [Accepted: 06/20/2024] [Indexed: 07/30/2024] Open
Abstract
Background Diabetic bone defects present significant challenges for individuals with diabetes. While metformin has been explored for bone regeneration via local delivery, its application in treating diabetic bone defects remains under-explored. In this study, we aim to leverage 3D printing technology to fabricate a GelMA-Nanoclay hydrogel scaffold loaded with metformin specifically for this purpose. The objective is to assess whether the in situ release of metformin can effectively enhance osteogenesis, angiogenesis, and immunomodulation in the context of diabetic bone defects. Materials and methods Utilizing 3D printing technology, we constructed a GelMA-Nanoclay-Metformin hydrogel scaffold with optimal physical properties and biocompatibility. The osteogenic, angiogenic, and immunomodulatory characteristics of the hydrogel scaffold were thoroughly investigated through both in vitro and in vivo experiments. Results GelMA10%-Nanoclay8%-Metformin5mg/mL was selected as the bioink for 3D printing due to its favorable swelling rate, degradation rate, mechanical strength, and drug release rate. Through in vitro investigations, the hydrogel scaffold extract, enriched with metformin, demonstrated a substantial enhancement in the proliferation and migration of BMSCs within a high-glucose microenvironment. It effectively enhances osteogenesis, angiogenesis, and immunomodulation. In vivo experimental outcomes further underscored the efficacy of the metformin-loaded GelMA-Nanoclay hydrogel scaffold in promoting superior bone regeneration within diabetic bone defects. Conclusions In conclusion, while previous studies have explored local delivery of metformin for bone regeneration, our research is pioneering in its application to diabetic bone defects using a 3D printed GelMA-Nanoclay hydrogel scaffold. This localized delivery approach demonstrates significant potential for enhancing bone regeneration in diabetic patients, offering a novel approach for treating diabetic bone defects. The translational potential of this article Our study demonstrates, for the first time, the successful loading of the systemic antidiabetic drug metformin onto a hydrogel scaffold for localized delivery. This approach exhibits significant efficacy in mending diabetic bone defects, presenting a promising new avenue for the treatment of such conditions.
Collapse
Affiliation(s)
- Hetong Li
- Corresponding author. No.1333 Xinhu Street, Shenzhen, Guangdong, 518000, China.
| | | | - Jintao Zhong
- Department of Orthopedic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Xiuwang Li
- Department of Orthopedic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| | - Hongxun Sang
- Department of Orthopedic Surgery, Shenzhen Hospital, Southern Medical University, Shenzhen, Guangdong, China
| |
Collapse
|
23
|
Xu X, Ding X, Wang Z, Ye S, Xu J, Liang Z, Luo R, Xu J, Li X, Ren Z. GBP2 inhibits pathological angiogenesis in the retina via the AKT/mTOR/VEGFA axis. Microvasc Res 2024; 154:104689. [PMID: 38636926 DOI: 10.1016/j.mvr.2024.104689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 03/29/2024] [Accepted: 04/14/2024] [Indexed: 04/20/2024]
Abstract
Pathological retinal angiogenesis is not only the hallmark of retinopathies, but also a major cause of blindness. Guanylate binding protein 2 (GBP2) has been reported to be associated with retinal diseases such as diabetic retinopathy and hypoxic retinopathy. However, GBP2-mediated pathological retinal angiogenesis remains largely unknown. The present study aimed to investigate the role of GBP2 in pathological retinal angiogenesis and its underlying molecular mechanism. In this study, we established oxygen-induced retinopathy (OIR) mice model for in vivo study and hypoxia-induced angiogenesis in ARPE-19 cells for in vitro study. We demonstrated that GBP2 expression was markedly downregulated in the retina of mice with OIR and ARPE-19 cells treated with hypoxia, which was associated with pathological retinal angiogenesis. The regulatory mechanism of GBP2 in ARPE-19 cells was studied by GBP2 silencing and overexpression. The regulatory mechanism of GBP2 in the retina was investigated by overexpressing GBP2 in the retina of OIR mice. Mechanistically, GBP2 downregulated the expression and secretion of vascular endothelial growth factor (VEGFA) in ARPE-19 cells and retina of OIR mice. Interestingly, overexpression of GBP2 significantly inhibited neovascularization in OIR mice, conditioned medium of GBP2 overexpressing ARPE-19 cells inhibited angiogenesis in human umbilical vein endothelial cells (HUVECs). Furthermore, we confirmed that GBP2 downregulated VEGFA expression and angiogenesis by inhibiting the AKT/mTOR signaling pathway. Taken together, we concluded that GBP2 inhibited pathological retinal angiogenesis via the AKT/mTOR/VEGFA axis, thereby suggesting that GBP2 may be a therapeutic target for pathological retinal angiogenesis.
Collapse
Affiliation(s)
- Xiaoxiang Xu
- Department of Anatomy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xihui Ding
- Department of Anatomy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Zizhuo Wang
- Department of Anatomy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Shujiang Ye
- Department of Urology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230012, China; Anhui Public Health Clinical Center, Hefei, Anhui 230012, China
| | - Jianguang Xu
- College and Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui 230032, China
| | - Zugang Liang
- Hefei Huaxia Mingren Eye Hospital, Hefei, Anhui 230032, China
| | - Renfei Luo
- Department of Anatomy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jinyong Xu
- Department of Anatomy, Anhui Medical University, Hefei, Anhui 230032, China
| | - Xiaohui Li
- Department of Anatomy, Anhui Medical University, Hefei, Anhui 230032, China.
| | - Zhenhua Ren
- Department of Anatomy, Anhui Medical University, Hefei, Anhui 230032, China; College and Hospital of Stomatology, Key Lab. of Oral Diseases Research of Anhui Province, Anhui Medical University, Hefei, Anhui 230032, China.
| |
Collapse
|
24
|
Bajaj G, Singh V, Sagar P, Gupta R, Singhal NK. Phosphoenolpyruvate carboxykinase-1 targeted siRNA promotes wound healing in type 2 diabetic mice by restoring glucose homeostasis. Int J Biol Macromol 2024; 270:132504. [PMID: 38772464 DOI: 10.1016/j.ijbiomac.2024.132504] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 05/02/2024] [Accepted: 05/17/2024] [Indexed: 05/23/2024]
Abstract
It is well-accepted that the liver plays a vital role in the metabolism of glucose and its homeostasis. Dysregulated hepatic glucose production and utilization, leads to type 2 diabetes (T2DM). In the current study, RNA sequencing and qRT-PCR analysis of nanoformulation-treated T2DM mice (TGthr group) revealed beneficial crosstalk of PCK-1 silencing with other pathways involved in T2DM. The comparison of precise genetic expression profiles of the different experimental groups showed significantly improved hepatic glucose, fatty acid metabolism and several other T2DM-associated crucial markers after the nanoformulation treatment. As a result of these improvements, we observed a significant acceleration in wound healing and improved insulin signaling in vascular endothelial cells in the TGthr group as compared to the T2DM group. Enhanced phosphorylation of PI3K/Akt pathway proteins in the TGthr group resulted in increased angiogenesis as observed by the increased expression of endothelial cell markers (CD31, CD34) thereby improving endothelial dysfunctions in the TGthr group. Additionally, therapeutic nanoformulation has been observed to improve the inflammatory cytokine profile in the TGthr group. Overall, our results demonstrated that the synthesized therapeutic nanoformulation referred to as GPR8:PCK-1siRNA holds the potential in ameliorating hyperglycemia-associated complications such as delayed wound healing in diabetes.
Collapse
Affiliation(s)
- Geetika Bajaj
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali 140306, Punjab, India; Department of Biotechnology, Panjab University, Sector 25, Chandigarh 160014, India
| | - Vishal Singh
- National Institute for Implementation Research on Non-Communicable Diseases, Jodhpur 342005, India
| | - Poonam Sagar
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali 140306, Punjab, India
| | - Ritika Gupta
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali 140306, Punjab, India
| | - Nitin Kumar Singhal
- National Agri-Food Biotechnology Institute (NABI), Sector-81, S.A.S Nagar, Mohali 140306, Punjab, India.
| |
Collapse
|
25
|
Kang J, Tong Y. Investigating the attenuating effects of metformin-loaded selenium nanoparticles coupled with Myrtus communis L. flower extract on CaOx deposition in male Sprague Dawley rat kidneys via regulating MAPK signaling pathway. Regen Ther 2024; 26:14-26. [PMID: 39691916 PMCID: PMC11652069 DOI: 10.1016/j.reth.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 12/19/2024] Open
Abstract
Kidney stones are a foremost clinical concern in urology with CaOx crystals accounting for roughly 80% of these renal formations. This research endeavor seeks to ascertain the protective effects of Metformin-encapsulated selenium nanoparticles (M@Se NPs), combined with a 55% hydroethanolic flower extract from Myrtus communis L. (MCL) in countering the formation of kidney stones in Male Sprague Dawley rats. The particle's diameter was measured to be 39 nm and 13.8 nm from DLS and HR-TEM analysis. Rat groups administered with the MCL-M@Se NPs (1:1.5:1) exhibited reduced renal stone formation in urine and serum analysis compared to the negative control group. Histological evaluations of kidney samples using H&E, and MTS staining indicated a subdued presence of ECM deposition in contrast to other rat groups. Conclusively, the protective mechanism of MCL-M@Se NPs against CaOx stone damage can be confidently attributed to the obstruction of the MAPK signaling pathway.
Collapse
Affiliation(s)
- Jian Kang
- School of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun 130021, China
| | - Yanqing Tong
- Department of Nephrology, The Affiliated Hospital to Changchun University of Chinese Medicine, Changchun 130021, China
| |
Collapse
|
26
|
Xiang P, Jiang M, Chen X, Chen L, Cheng Y, Luo X, Zhou H, Zheng Y. Targeting Grancalcin Accelerates Wound Healing by Improving Angiogenesis in Diabetes. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305856. [PMID: 38308197 PMCID: PMC11005700 DOI: 10.1002/advs.202305856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 11/19/2023] [Indexed: 02/04/2024]
Abstract
Chronic diabetic wounds are a serious complication of diabetes and often result in limb amputations and confer high mortality rates. The proinflammatory secretome in the wound perpetuates defective neovascularization and contributes to dysregulated tissue repair. This study aims to design a gelatin methacrylamide (GelMA) hydrogel to sustained the release of grancalcin-neutralizing antibody (GCA-NAb) and evaluate it as a potential scaffold to promote diabetic wound healing. Results show that the expression of grancalcin(GCA), a protein secreted by bone marrow-derived immune cells, is elevated in the wound sites of individuals and animals with diabetic ulcers. Genetic inhibition of grancalcin expression accelerates vascularization and healing in an animal model. Mechanistic studies show that grancalcin binds to transient receptor potential melastatin 8(TRPM8) and partially inactivates its downstream signaling pathways, thereby impairing angiogenesis in vitro and ex vivo. Systemic or topical administration of a GCA-NAb accelerate wound repair in mice with diabetes. The data suggest that GCA is a potential therapeutic target for the treatment of diabetic ulcers.
Collapse
Affiliation(s)
- Peng Xiang
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008China
| | - Meng Jiang
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008China
| | - Xin Chen
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008China
| | - Linyun Chen
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008China
| | - Yalun Cheng
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008China
| | - Xianghang Luo
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008China
| | - Haiyan Zhou
- Department of EndocrinologyEndocrinology Research CenterXiangya Hospital of Central South UniversityChangshaHunan410008China
- National Clinical Research Center for Geriatric DisordersXiangya HospitalChangshaHunan410008China
| | - Yongjun Zheng
- Department of Burn Surgerythe First Affiliated Hospital of Naval Medical UniversityShanghai200433China
| |
Collapse
|
27
|
Feng Y, Xu Z, Jin H, Chen Y, Fu C, Zhang Y, Yin Y, Wang H, Cheng W. Metformin ameliorates mitochondrial damage induced by C9orf72 poly(GR) via upregulating AKT phosphorylation. J Cell Biochem 2024; 125:e30526. [PMID: 38229533 DOI: 10.1002/jcb.30526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 12/25/2023] [Accepted: 01/04/2024] [Indexed: 01/18/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are devastating neurodegenerative diseases with no effective cure. GGGGCC repeat expansion in C9orf72 is the most common genetic cause of both ALS and FTD. A key pathological feature of C9orf72 related ALS/FTD is the presence of abnormal dipeptide repeat proteins translated from GGGGCC repeat expansion, including poly Glycine-Arginine (GR). In this study, we observed that (GR)50 conferred significant mitochondria damage and cytotoxicity. Metformin, the most widely used clinical drug, successfully relieved (GR)50 induced mitochondrial damage and inhibited (GR)50 related cytotoxicity. Further research revealed metformin effectively restored mitochondrial function by upregulating AKT phosphorylation in (GR)50 expressed cells. Taken together, our results indicated restoring mitochondrial function with metformin may be a rational therapeutic strategy to reduce poly(GR) toxicity in C9orf72 ALS/FTD patients.
Collapse
Affiliation(s)
- Yiyuan Feng
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Radiology, Fujian Provincial Hospital, Fuzhou, Fujian, China
| | - Zhongyun Xu
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Radiology, Shanghai East Hospital Affiliated to Tongji University, Shanghai, China
| | - Hongfu Jin
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuanyuan Chen
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chenglai Fu
- Institute for Developmental and Regenerative Cardiovascular Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yu Zhang
- Department of Neurology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yafu Yin
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hui Wang
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Weiwei Cheng
- Department of Nuclear Medicine, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
28
|
Yadav JP, Singh AK, Grishina M, Pathak P, Verma A, Kumar V, Kumar P, Patel DK. Insights into the mechanisms of diabetic wounds: pathophysiology, molecular targets, and treatment strategies through conventional and alternative therapies. Inflammopharmacology 2024; 32:149-228. [PMID: 38212535 DOI: 10.1007/s10787-023-01407-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 11/27/2023] [Indexed: 01/13/2024]
Abstract
Diabetes mellitus is a prevalent cause of mortality worldwide and can lead to several secondary issues, including DWs, which are caused by hyperglycemia, diabetic neuropathy, anemia, and ischemia. Roughly 15% of diabetic patient's experience complications related to DWs, with 25% at risk of lower limb amputations. A conventional management protocol is currently used for treating diabetic foot syndrome, which involves therapy using various substances, such as bFGF, pDGF, VEGF, EGF, IGF-I, TGF-β, skin substitutes, cytokine stimulators, cytokine inhibitors, MMPs inhibitors, gene and stem cell therapies, ECM, and angiogenesis stimulators. The protocol also includes wound cleaning, laser therapy, antibiotics, skin substitutes, HOTC therapy, and removing dead tissue. It has been observed that treatment with numerous plants and their active constituents, including Globularia Arabica, Rhus coriaria L., Neolamarckia cadamba, Olea europaea, Salvia kronenburgii, Moringa oleifera, Syzygium aromaticum, Combretum molle, and Myrtus communis, has been found to promote wound healing, reduce inflammation, stimulate angiogenesis, and cytokines production, increase growth factors production, promote keratinocyte production, and encourage fibroblast proliferation. These therapies may also reduce the need for amputations. However, there is still limited information on how to prevent and manage DWs, and further research is needed to fully understand the role of alternative treatments in managing complications of DWs. The conventional management protocol for treating diabetic foot syndrome can be expensive and may cause adverse side effects. Alternative therapies, such as medicinal plants and green synthesis of nano-formulations, may provide efficient and affordable treatments for DWs.
Collapse
Affiliation(s)
- Jagat Pal Yadav
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
- Pharmacology Research Laboratory, Faculty of Pharmaceutical Sciences, Rama University, Kanpur, 209217, India.
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University, Chelyabinsk, 454008, Russia
| | - Prateek Pathak
- Department of Pharmaceutical Analysis, Quality Assurance, and Pharmaceutical Chemistry, School of Pharmacy, GITAM (Deemed to Be University), Hyderabad, 502329, India
| | - Amita Verma
- Bioorganic and Medicinal Chemistry Research Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Vikas Kumar
- Natural Product Drug Discovery Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab, Bathinda, 151401, India
| | - Dinesh Kumar Patel
- Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, 211007, India.
| |
Collapse
|
29
|
Yang J, Shuai J, Siow L, Lu J, Sun M, An W, Yu M, Wang B, Chen Q. MicroRNA-146a-loaded magnesium silicate nanospheres promote bone regeneration in an inflammatory microenvironment. Bone Res 2024; 12:2. [PMID: 38221522 PMCID: PMC10788347 DOI: 10.1038/s41413-023-00299-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 09/25/2023] [Accepted: 10/02/2023] [Indexed: 01/16/2024] Open
Abstract
Reconstruction of irregular oral-maxillofacial bone defects with an inflammatory microenvironment remains a challenge, as chronic local inflammation can largely impair bone healing. Here, we used magnesium silicate nanospheres (MSNs) to load microRNA-146a-5p (miR-146a) to fabricate a nanobiomaterial, MSN+miR-146a, which showed synergistic promoting effects on the osteogenic differentiation of human dental pulp stem cells (hDPSCs). In addition, miR-146a exhibited an anti-inflammatory effect on mouse bone marrow-derived macrophages (BMMs) under lipopolysaccharide (LPS) stimulation by inhibiting the NF-κB pathway via targeting tumor necrosis factor receptor-associated factor 6 (TRAF6), and MSNs could simultaneously promote M2 polarization of BMMs. MiR-146a was also found to inhibit osteoclast formation. Finally, the dual osteogenic-promoting and immunoregulatory effects of MSN+miR-146a were further validated in a stimulated infected mouse mandibular bone defect model via delivery by a photocuring hydrogel. Collectively, the MSN+miR-146a complex revealed good potential in treating inflammatory irregular oral-maxillofacial bone defects.
Collapse
Affiliation(s)
- Jiakang Yang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Jing Shuai
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Lixuen Siow
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Jingyi Lu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Miao Sun
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Wenyue An
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Mengfei Yu
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Baixiang Wang
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China.
| | - Qianming Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, 310000, China.
| |
Collapse
|
30
|
Shi Z, Yao C, Shui Y, Li S, Yan H. Research progress on the mechanism of angiogenesis in wound repair and regeneration. Front Physiol 2023; 14:1284981. [PMID: 38089479 PMCID: PMC10711283 DOI: 10.3389/fphys.2023.1284981] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/13/2023] [Indexed: 12/10/2024] Open
Abstract
Poor wound healing and pathological healing have been pressing issues in recent years, as they impact human quality of life and pose risks of long-term complications. The study of neovascularization has emerged as a prominent research focus to address these problems. During the process of repair and regeneration, the establishment of a new vascular system is an indispensable stage for complete healing. It provides favorable conditions for nutrient delivery, oxygen supply, and creates an inflammatory environment. Moreover, it is a key manifestation of the proliferative phase of wound healing, bridging the inflammatory and remodeling phases. These three stages are closely interconnected and inseparable. This paper comprehensively integrates the regulatory mechanisms of new blood vessel formation in wound healing, focusing on the proliferation and migration of endothelial cells and the release of angiogenesis-related factors under different healing outcomes. Additionally, the hidden link between the inflammatory environment and angiogenesis in wound healing is explored.
Collapse
Affiliation(s)
- Zhuojun Shi
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan, China
| | - Chong Yao
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan, China
| | - Yujie Shui
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan, China
| | - Site Li
- Department of Plastic and Burns Surgery, The Affiliated Hospital of Southwest Medical University, National Key Clinical Construction Specialty, Wound Repair and Regeneration Laboratory, Luzhou, Sichuan, China
| | - Hong Yan
- Laboratory of Plastic Surgery, Department of Plastic Surgery and Reconstruction, Second Hospital of West China, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
31
|
Hu Y, Li J, Li X, Wang D, Xiang R, Liu W, Hou S, Zhao Q, Yu X, Xu M, Zhao D, Li T, Chi Y, Yang J. Hepatocyte-secreted FAM3D ameliorates hepatic steatosis by activating FPR1-hnRNP U-GR-SCAD pathway to enhance lipid oxidation. Metabolism 2023:155661. [PMID: 37454871 DOI: 10.1016/j.metabol.2023.155661] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Revised: 07/10/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is the most common chronic liver disease worldwide; however, the underlying mechanisms remain poorly understood. FAM3D is a member of the FAM3 family; however, its role in hepatic glycolipid metabolism remains unknown. Serum FAM3D levels are positively correlated with fasting blood glucose levels in patients with diabetes. Hepatocytes express and secrete FAM3D, and its expression is increased in steatotic human and mouse livers. Hepatic FAM3D overexpression ameliorated hyperglycemia and steatosis in obese mice, whereas FAM3D-deficient mice exhibited exaggerated hyperglycemia and steatosis after high-fat diet (HFD)-feeding. In cultured hepatocytes, FAM3D overexpression or recombinant FAM3D protein (rFAM3D) treatment reduced gluconeogenesis and lipid deposition, which were blocked by anti-FAM3D antibodies or inhibition of its receptor, formyl peptide receptor 1 (FPR1). FPR1 overexpression suppressed gluconeogenesis and reduced lipid deposition in wild hepatocytes but not in FAM3D-deficient hepatocytes. The addition of rFAM3D restored FPR1's inhibitory effects on gluconeogenesis and lipid deposition in FAM3D-deficient hepatocytes. Hepatic FPR1 overexpression ameliorated hyperglycemia and steatosis in obese mice. RNA sequencing and DNA pull-down revealed that the FAM3D-FPR1 axis upregulated the expression of heterogeneous nuclear ribonucleoprotein U (hnRNP U), which recruits the glucocorticoid receptor (GR) to the promoter region of the short-chain acyl-CoA dehydrogenase (SCAD) gene, promoting its transcription to enhance lipid oxidation. Moreover, FAM3D-FPR1 axis also activates calmodulin-Akt pathway to suppress gluconeogenesis in hepatocytes. In conclusion, hepatocyte-secreted FAM3D activated the FPR1-hnRNP U-GR-SCAD pathway to enhance lipid oxidation in hepatocytes. Under obesity conditions, increased hepatic FAM3D expression is a compensatory mechanism against dysregulated glucose and lipid metabolism.
Collapse
Affiliation(s)
- Yuntao Hu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Jing Li
- Department of Endocrinology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing 100027, China
| | - Xin Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Di Wang
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China
| | - Rui Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Wenjun Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Song Hou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Qinghe Zhao
- Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China
| | - Xiaoxing Yu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China
| | - Ming Xu
- Department of Cardiology, Institute of Vascular Medicine, Peking University Third Hospital, Key Laboratory of Molecular Cardiovascular Science of the Ministry of Education, Beijing 100191, China
| | - Dong Zhao
- Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing 101100, China
| | - Tao Li
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing 100044, China
| | - Yujing Chi
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Peking University People's Hospital, Beijing 100044, China; Department of Gastroenterology, Peking University People's Hospital, Beijing 100044, China.
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing 100191, China; Department of Cardiology, Peking University Third Hospital, Beijing 100191, China.
| |
Collapse
|
32
|
Ji X, Zhou S, Wang N, Wang J, Wu Y, Duan Y, Ni P, Zhang J, Yu S. Cerebral-Organoid-Derived Exosomes Alleviate Oxidative Stress and Promote LMX1A-Dependent Dopaminergic Differentiation. Int J Mol Sci 2023; 24:11048. [PMID: 37446226 DOI: 10.3390/ijms241311048] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/27/2023] [Accepted: 06/29/2023] [Indexed: 07/15/2023] Open
Abstract
The remarkable advancements related to cerebral organoids have provided unprecedented opportunities to model human brain development and diseases. However, despite their potential significance in neurodegenerative diseases such as Parkinson's disease (PD), the role of exosomes from cerebral organoids (OExo) has been largely unknown. In this study, we compared the effects of OExo to those of mesenchymal stem cell (MSC)-derived exosomes (CExo) and found that OExo shared similar neuroprotective effects to CExo. Our findings showed that OExo mitigated H2O2-induced oxidative stress and apoptosis in rat midbrain astrocytes by reducing excess ROS production, antioxidant depletion, lipid peroxidation, mitochondrial dysfunction, and the expression of pro-apoptotic genes. Notably, OExo demonstrated superiority over CExo in promoting the differentiation of human-induced pluripotent stem cells (iPSCs) into dopaminergic (DA) neurons. This was attributed to the higher abundance of neurotrophic factors, including neurotrophin-4 (NT-4) and glial-cell-derived neurotrophic factor (GDNF), in OExo, which facilitated the iPSCs' differentiation into DA neurons in an LIM homeobox transcription factor 1 alpha (LMX1A)-dependent manner. Our study provides novel insight into the biological properties of cerebral organoids and highlights the potential of OExo in the treatment of neurodegenerative diseases such as PD.
Collapse
Affiliation(s)
- Xingrui Ji
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Shaocong Zhou
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Nana Wang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Jingwen Wang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yue Wu
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Yuhan Duan
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Penghao Ni
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
| | - Jingzhong Zhang
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| | - Shuang Yu
- School of Biomedical Engineering (Suzhou), Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, China
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, China
- School of Medical Imaging, Xuzhou Medical University, Xuzhou 221004, China
| |
Collapse
|
33
|
Xu Y, Hu Q, Wei Z, Ou Y, Cao Y, Zhou H, Wang M, Yu K, Liang B. Advanced polymer hydrogels that promote diabetic ulcer healing: mechanisms, classifications, and medical applications. Biomater Res 2023; 27:36. [PMID: 37101201 PMCID: PMC10134570 DOI: 10.1186/s40824-023-00379-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 04/14/2023] [Indexed: 04/28/2023] Open
Abstract
Diabetic ulcers (DUs) are one of the most serious complications of diabetes mellitus. The application of a functional dressing is a crucial step in DU treatment and is associated with the patient's recovery and prognosis. However, traditional dressings with a simple structure and a single function cannot meet clinical requirements. Therefore, researchers have turned their attention to advanced polymer dressings and hydrogels to solve the therapeutic bottleneck of DU treatment. Hydrogels are a class of gels with a three-dimensional network structure that have good moisturizing properties and permeability and promote autolytic debridement and material exchange. Moreover, hydrogels mimic the natural environment of the extracellular matrix, providing suitable surroundings for cell proliferation. Thus, hydrogels with different mechanical strengths and biological properties have been extensively explored as DU dressing platforms. In this review, we define different types of hydrogels and elaborate the mechanisms by which they repair DUs. Moreover, we summarize the pathological process of DUs and review various additives used for their treatment. Finally, we examine the limitations and obstacles that exist in the development of the clinically relevant applications of these appealing technologies. This review defines different types of hydrogels and carefully elaborate the mechanisms by which they repair diabetic ulcers (DUs), summarizes the pathological process of DUs, and reviews various bioactivators used for their treatment.
Collapse
Affiliation(s)
- Yamei Xu
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Qiyuan Hu
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Zongyun Wei
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Yi Ou
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Youde Cao
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong Distinct, Chongqing, 400042, P.R. China
| | - Hang Zhou
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Mengna Wang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China
| | - Kexiao Yu
- Department of Orthopedics, Chongqing Traditional Chinese Medicine Hospital, No. 6 Panxi Seventh Branch Road, Jiangbei District, Chongqing, 400021, P.R. China.
- Institute of Ultrasound Imaging of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China.
| | - Bing Liang
- Department of Pathology, College of Basic Medicine, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China.
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, 1 Yixueyuan Road, Yuzhong Distinct, Chongqing, 400016, P.R. China.
- Department of Pathology, the First Affiliated Hospital of Chongqing Medical University, 1 Youyi Road, Yuzhong Distinct, Chongqing, 400042, P.R. China.
| |
Collapse
|