1
|
Gritti T, Chicharro C, Carrillo E, Solana JC, Moreno J, Carra E, Ortalli M, Morselli S, Gaspari V, Zanazzi M, Lazzarotto T, Rugna G, Varani S. Combination of Cpb-Hsp70 typing methods reveals genetic divergence between Leishmania infantum strains causing human tegumentary leishmaniasis in northern Italy and central Spain: a retrospective study. Infect Dis Poverty 2025; 14:41. [PMID: 40420215 DOI: 10.1186/s40249-025-01309-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 04/25/2025] [Indexed: 05/28/2025] Open
Abstract
BACKGROUND Tegumentary leishmaniasis (TL) caused by Leishmania infantum is an overlooked yet re-emerging disease endemic in Mediterranean Europe. Currently, no standardized molecular surveillance of circulating Leishmania strains is performed in European endemic areas, despite the potential public health implications of parasite biodiversity. This study aims to characterize parasite population haplogroups causing TL in two active endemic areas in southern Europe, i.e. Bologna (northern Italy) and Fuenlabrada (central Spain). METHODS In this retrospective study, we typed 87 L. infantum samples from TL cases in the areas of Bologna and Fuenlabrada; these areas hosted the main European foci of human TL occurring in the last 15 years. Two Leishmania genomic typing targets were used: the heat shock protein 70 (Hsp70) and the cysteine peptidase b (Cpb). Simpson's index was used to calculate the discriminatory power of the used typing methods. RESULTS Typing results depicted the presence of a heterogeneous parasite population circulating in Bologna with two main haplogroups, i.e. Hsp70(A)_Cpb(F) (n = 7, 30.4%) and Hsp70(G)_Cpb(E/F) (n = 7, 30.4%), differing from the reference L. infantum strain JPCM5 haplogroup and partially overlapping with L. donovani lineages. Among the samples from Fuenlabrada, n = 19 samples were typed by both targets, revealing a homogeneous population expressing Hsp70(A) and Cpb(E), matching the JPCM5 reference strain haplogroup. Overall, the Cpb typing method exhibited higher discrimination power as compared to the Hsp70 method (Simpson's index of diversity, P-value < 0.05). CONCLUSIONS Our findings show differences among L. infantum populations causing TL in two southern European epidemiological foci of human leishmaniasis and support the recent discovery of L. infantum/L.donovani hybrid strains circulating in northern Italy. These results underscore the critical need to identify the circulating Leishmania strains in endemic areas and assess their potential public health implications in active foci.
Collapse
Affiliation(s)
- Tommaso Gritti
- Department of Medical and Surgical Sciences, University of Bologna, 40138, Bologna, Italy
| | - Carmen Chicharro
- WHO Collaborating Centre for Leishmaniasis, National Centre for Microbiology, Instituto de Salud Carlos III, 28220, Majadahonda, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Eugenia Carrillo
- WHO Collaborating Centre for Leishmaniasis, National Centre for Microbiology, Instituto de Salud Carlos III, 28220, Majadahonda, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Jose Carlos Solana
- WHO Collaborating Centre for Leishmaniasis, National Centre for Microbiology, Instituto de Salud Carlos III, 28220, Majadahonda, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Javier Moreno
- WHO Collaborating Centre for Leishmaniasis, National Centre for Microbiology, Instituto de Salud Carlos III, 28220, Majadahonda, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Elena Carra
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, 25124, Brescia, Italy
| | - Margherita Ortalli
- Department of Medical and Surgical Sciences, University of Bologna, 40138, Bologna, Italy
- Unit of Microbiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Sara Morselli
- Department of Medical and Surgical Sciences, University of Bologna, 40138, Bologna, Italy
| | - Valeria Gaspari
- Unit of Dermatology, Head and Neck Department, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Margherita Zanazzi
- Department of Medical and Surgical Sciences, University of Bologna, 40138, Bologna, Italy
| | - Tiziana Lazzarotto
- Department of Medical and Surgical Sciences, University of Bologna, 40138, Bologna, Italy
- Unit of Microbiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138, Bologna, Italy
| | - Gianluca Rugna
- Istituto Zooprofilattico Sperimentale della Lombardia e dell'Emilia Romagna, 25124, Brescia, Italy
| | - Stefania Varani
- Department of Medical and Surgical Sciences, University of Bologna, 40138, Bologna, Italy.
| |
Collapse
|
2
|
de Oliveira Rios É, Albino SL, Olimpio de Moura R, Nascimento IJDS. Targeting cysteine protease B to discover antileishmanial drugs: Directions and advances. Eur J Med Chem 2025; 289:117500. [PMID: 40085977 DOI: 10.1016/j.ejmech.2025.117500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/27/2025] [Accepted: 03/09/2025] [Indexed: 03/16/2025]
Abstract
Leishmaniasis is a severe disease and results in high mortality rates. Despite this, there are few drugs to treat and with various limitations such as toxicity and resistance, which justifies the search for new drugs. Thus, cysteine protease B (CPB) is a promising target against leishmania due to its immunomodulatory function related to the parasite's virulence and its interaction with the host. Thus, this perspective showed the potential of CPB in drug design and the main insights that can be used in subsequent drug design works. In fact, the aziridine analogs are the most explored against CPB due to the promising results and provide several insights into drug design. Also, it is noteworthy that one of the biggest challenges is target selectivity. Knowledge about substrate binding and other factors, such as the reversibility of inhibitors, is also needed. In addition, exploring target selectivity patterns is critical to developing CP inhibitors for clinical use to combat this threatening agent.
Collapse
Affiliation(s)
| | - Sonaly Lima Albino
- Postgraduate Program of Pharmaceutical Sciences, Pharmacy Department, State University of Paraíba, Campina Grande, PB, Brazil; Laboratory of Synthesis and Drug Delivery, Department of Biological Sciences, State University of Paraiba, João Pessoa, Brazil
| | - Ricardo Olimpio de Moura
- Postgraduate Program of Pharmaceutical Sciences, Pharmacy Department, State University of Paraíba, Campina Grande, PB, Brazil; Laboratory of Synthesis and Drug Delivery, Department of Biological Sciences, State University of Paraiba, João Pessoa, Brazil
| | - Igor José Dos Santos Nascimento
- Cesmac University Center, Pharmacy Department, Maceió, Brazil; Postgraduate Program of Pharmaceutical Sciences, Pharmacy Department, State University of Paraíba, Campina Grande, PB, Brazil; Laboratory of Synthesis and Drug Delivery, Department of Biological Sciences, State University of Paraiba, João Pessoa, Brazil.
| |
Collapse
|
3
|
Sabeti S, Koosha M, Kazemirad E, Mirabedini Z, Mohebali M, Saberi R, Fakhar M, Hajjaran H. Transcriptional alterations of virulence factors in Leishmania major clinical isolates harboring Leishmania RNA virus 2 (LRV2). BMC Infect Dis 2025; 25:319. [PMID: 40050765 PMCID: PMC11884114 DOI: 10.1186/s12879-025-10717-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/25/2025] [Indexed: 03/10/2025] Open
Abstract
BACKGROUND Leishmaniasis is a parasitic disease caused by an intracellular protozoan, Leishmania. Various factors, including host immunity and the Leishmania species, influence the manifestation and severity of the disease. Recent investigations have shed light on the potentially significant role of Leishmania RNA virus (LRV) in the clinical prognosis of leishmaniasis. This study aims to investigate the influence of LRV2 + on various pathogenic genes of Leishmania. MATERIALS AND METHODS In this study, 35 Leishmania isolates were obtained from patients diagnosed with cutaneous leishmaniasis (CL). Leishmania species and the presence of LRV2 + were identified with the PCR-RFLP and semi-nested PCR methods, respectively. Additionally, the RNA expression levels of cysteine protease (CP), heat shock protein 70 (HSP70), heat shock protein 83 (HSP83), glycoprotein 63 (GP63), and mannose phosphate isomerase (MPI) were assessed in LRV2 + and LRV2- Leishmania clinical isolates using RT-qPCR. RESULTS Out of the 35 isolates, 20 were selected from CL patients, all confirmed as Leishmania major. These isolates were divided into two groups, LRV2 + and LRV2-, with 10 isolates in each group. RT-qPCR analysis revealed that HSP83, MPI, and GP63 gene expression levels were statistically upregulated in LRV2 + isolates compared to LRV2- isolates (P < 0.05). Although HSP70 and CP genes showed slight up-regulation in LRV2 + isolates, it was not statistically significant compared to LRV2- isolates. CONCLUSION The notable increase in gene expression levels, particularly for GP63, HSP83, and MPI genes, suggests that the presence of LRV2 + may significantly influence the expression of these factors in L. major clinical isolates. CLINICAL TRIAL NUMBER Not applicable.
Collapse
Affiliation(s)
- Sara Sabeti
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mona Koosha
- Department of Vector Biology and Control of Diseases, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Elham Kazemirad
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Mirabedini
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehdi Mohebali
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Reza Saberi
- Toxoplasmosis Research Center, Communicable Disease Institute, Department of Parasitology, School of Medicine, Mazandaran University of Medical Science, Sari, Iran
| | - Mahdi Fakhar
- Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran.
- Department of Medical Microbiology and Immunology, School of Medicine, Qom University of Medical Sciences, Qom, Iran.
| | - Homa Hajjaran
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
4
|
Mohanty A, Vekariya V, Yadav S, Agrawal-Rajput R. Natural phytochemicals reverting M2 to M1 macrophages: A novel alternative leishmaniasis therapy. Microb Pathog 2025; 200:107311. [PMID: 39863089 DOI: 10.1016/j.micpath.2025.107311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/29/2024] [Accepted: 01/18/2025] [Indexed: 01/27/2025]
Abstract
INTRODUCTION Leishmaniasis is a tropical parasitic disease caused by the protozoan Leishmania which remains a significant global health concern with diverse clinical manifestations. Transmitted through the bite of an infected sandfly, its progression depends on the interplay between the host immune response and the parasite. The disease outcome is linked to macrophage polarisation into M1 and M2 phenotypes. M1 macrophages are pro-inflammatory and promote parasite clearance, while M2 macrophages support tissue repair and parasite survival by facilitating promastigote entry and intracellular amastigote proliferation. PURPOSE The review focuses on discovering novel phytochemicals that exploit the immunomodulatory properties of macrophages, which can serve as an alternative antileishmanial treatments due to their diverse chemical structures and ability to modulate immune responses. It examines the immunomodulatory effects of phytochemicals that directly or indirectly promote antileishmanial activity by influencing macrophage polarisation and cytokine secretion. They can induce M1 macrophage polarisation to directly combat leishmaniasis or suppress M2 macrophages, thereby exerting indirect antileishmanial activity by influencing the release of M1-and M2-related cytokines. RESULTS & DISCUSSION Phytochemicals demonstrate antileishmanial effects through ROS production, M1 activation, and cytokine modulation. They regulate M1/M2-related cytokines and macrophage activity, influencing immune responses. Although their effects may be non-specific, targeted delivery strategies could overcome current therapeutic limitations, positioning phytochemicals as promising candidates for leishmaniasis treatment to counter the limitations of current medications.
Collapse
Affiliation(s)
- Aditya Mohanty
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Vasu Vekariya
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Shivani Yadav
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India
| | - Reena Agrawal-Rajput
- Immunology Lab, Biotechnology & Bioengineering, Indian Institute of Advanced Research, Gandhinagar, Gujarat, 382426, India.
| |
Collapse
|
5
|
de Souza JVM, Costa NCS, Brasil MCOA, dos Anjos LR, de Menezes RPB, Zampieri EH, de Lima JS, Velasquez AMA, Scotti L, Scotti MT, Graminha MAS, Gonzalez ERP, Cilli EM. Guanidines Conjugated with Cell-Penetrating Peptides: A New Approach for the Development of Antileishmanial Molecules. Molecules 2025; 30:264. [PMID: 39860134 PMCID: PMC11768059 DOI: 10.3390/molecules30020264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/07/2025] [Accepted: 01/09/2025] [Indexed: 01/27/2025] Open
Abstract
Leishmaniasis is a neglected tropical disease caused by a protozoan of the genus Leishmania, which has visceral and cutaneous forms. The symptoms of leishmaniasis include high fever and weakness, and the cutaneous infection also causes lesions under the skin. The drugs used to treat leishmaniasis have become less effective due to the resistance mechanisms of the protozoa. In addition, the current compounds have low selectivity for the pathogen, leading to various side effects, which results in lower adherence to treatment. Various strategies were developed to solve this problem. The bioconjugation between natural compounds with antimicrobial activity and cell-penetrating peptides could alleviate the resistance and toxicity of current treatments. This work aims to conjugate the cell penetration peptide TAT to the guanidine GVL1. The GVL1-TAT bioconjugate exhibited leishmanicidal activity against Leishmania amazonensis and Leishmania infantum with a high selectivity index. In addition, the bioconjugate was more active against the intracellular enzyme CPP than the individual compounds. This target is very important for the viability and virulence of the parasite within the host cell. Docking studies confirmed the higher interaction of the conjugate with CPP and suggested that other proteins, such as trypanothione reductase, could be targeted. Thus, the data indicated that guanidines conjugated with cell-penetrating peptides could be a good approach for developing antileishmanial molecules.
Collapse
Affiliation(s)
- João Victor Marcelino de Souza
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil
| | - Natalia C. S. Costa
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (N.C.S.C.)
| | - Maria C. O. Arruda Brasil
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil
| | - Luana Ribeiro dos Anjos
- Fine Organic Chemistry Lab, School of Sciences and Technology, São Paulo State University (UNESP), Presidente Prudente 19060-080, SP, Brazil; (L.R.d.A.)
| | - Renata Priscila Barros de Menezes
- Natural Products and Synthetic Bioactives Postgraduation Program, Federal Paraiba University (UFPB), João Pessoa 58051-900, PB, Brazil
| | - Eduardo Henrique Zampieri
- Fine Organic Chemistry Lab, School of Sciences and Technology, São Paulo State University (UNESP), Presidente Prudente 19060-080, SP, Brazil; (L.R.d.A.)
| | - Jhonatan Santos de Lima
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (N.C.S.C.)
| | | | - Luciana Scotti
- Natural Products and Synthetic Bioactives Postgraduation Program, Federal Paraiba University (UFPB), João Pessoa 58051-900, PB, Brazil
| | - Marcus Tullius Scotti
- Natural Products and Synthetic Bioactives Postgraduation Program, Federal Paraiba University (UFPB), João Pessoa 58051-900, PB, Brazil
| | - Marcia A. S. Graminha
- School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (N.C.S.C.)
| | - Eduardo R. Pérez Gonzalez
- Fine Organic Chemistry Lab, School of Sciences and Technology, São Paulo State University (UNESP), Presidente Prudente 19060-080, SP, Brazil; (L.R.d.A.)
| | - Eduardo Maffud Cilli
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil
| |
Collapse
|
6
|
Gini ALR, João EE, Lopes JR, Da Cunha PST, Velasquez AMA, Graminha MAS, Dos Santos JL, Scarim CB. Advances in Cysteine Protease B Inhibitors for Leishmaniasis Treatment. Curr Drug Targets 2025; 26:88-108. [PMID: 39350405 DOI: 10.2174/0113894501324437240919064715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 02/27/2025]
Abstract
The expression and release of cysteine proteases by Leishmania spp. and their virulence factors significantly influence the modulation of host immune responses and metabolism, rendering cysteine proteases intriguing targets for drug development. This review article explores the substantial role of cysteine protease B (CPB) in medicinal chemistry from 2001 to 2024, particularly concerning combatting Leishmania parasites. We delve into contemporary advancements and potential prospects associated with targeting cysteine proteases for therapeutic interventions against leishmaniasis, emphasizing drug discovery in this context. Computational analysis using the pkCSM tool assessed the physicochemical properties of compounds, providing valuable insights into their molecular characteristics and drug-like potential, enriching our understanding of the pharmacological profiles, and aiding rational inhibitor design. Our investigation highlights that while nonpeptidic compounds constitute the majority (69.2%, 36 compounds) of the dataset, peptidomimetic- based derivatives (30.8%, 16 compounds) also hold promise in medicinal chemistry. Evaluating the most promising compounds based on dissociation constant (Ki) and half maximal inhibitory concentration (IC50) values revealed notable potency, with 41.7% and 80.0% of nonpeptidic compounds exhibiting values < 1 μM, respectively. On the other hand, all peptidic compounds evaluated for Ki (43.8%) and IC50 (31.3%) obtained values < 1 μM, respectively. Further analysis identified specific compounds within both categories (nonpeptidic: 1, 2, and 4; peptidic: 48-52) as particularly promising, warranting deeper investigation into their structure-activity relationships. These findings underscore the diverse landscape of inhibitors in medicinal chemistry and highlight the potential of both nonpeptidic and peptide-based compounds as valuable assets in therapeutic development against leishmaniasis.
Collapse
Affiliation(s)
- Ana Luisa Rodriguez Gini
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Emilio Emilio João
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Juliana Romano Lopes
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Pamela Souza Tada Da Cunha
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Angela Maria Arenas Velasquez
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Marcia Aparecida Silva Graminha
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Jean Leandro Dos Santos
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, SP, Brazil
| | - Caue Benito Scarim
- Department of Drugs and Medicines, School of Pharmaceutical Sciences, Sao Paulo State University (UNESP), Araraquara, SP, Brazil
| |
Collapse
|
7
|
Coelho NCS, Portuondo DLF, Lima J, Velásquez AMA, Valente V, Carlos IZ, Cilli EM, Graminha MAS. Peptide Dimerization as a Strategy for the Development of Antileishmanial Compounds. Molecules 2024; 29:5170. [PMID: 39519812 PMCID: PMC11547375 DOI: 10.3390/molecules29215170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Leishmaniasis is recognized as a serious public health problem in Brazil and around the world. The limited availability of drugs for treatment, added to the diversity of side effects and the emergence of resistant strains, shows the importance of research focused on the development of new molecules, thus contributing to treatments. Therefore, this work aimed to identify leishmanicidal compounds using a peptide dimerization strategy, as well as to understand their mechanisms of action. Herein, it was demonstrated that the dimerization of the peptide TSHa, (TSHa)2K, presented higher potency and selectivity than its monomeric form when evaluated against Leishmania mexicana and Leishmania amazonensis. Furthermore, these compounds are capable of inhibiting the parasite cysteine protease, an important target explored for the development of antileishmanial compounds, as well as to selectively interact with the parasite membranes, as demonstrated by flow cytometry, permeabilization, and fluorescence microscopy experiments. Based on this, the identified molecules are candidates for use in in vivo studies with animal models to combat leishmaniasis.
Collapse
Affiliation(s)
- Natália C. S. Coelho
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (N.C.S.C.); (D.L.F.P.); (J.L.); (A.M.A.V.); (V.V.); (I.Z.C.)
| | - Deivys L. F. Portuondo
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (N.C.S.C.); (D.L.F.P.); (J.L.); (A.M.A.V.); (V.V.); (I.Z.C.)
| | - Jhonatan Lima
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (N.C.S.C.); (D.L.F.P.); (J.L.); (A.M.A.V.); (V.V.); (I.Z.C.)
| | - Angela M. A. Velásquez
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (N.C.S.C.); (D.L.F.P.); (J.L.); (A.M.A.V.); (V.V.); (I.Z.C.)
| | - Valéria Valente
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (N.C.S.C.); (D.L.F.P.); (J.L.); (A.M.A.V.); (V.V.); (I.Z.C.)
| | - Iracilda Z. Carlos
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (N.C.S.C.); (D.L.F.P.); (J.L.); (A.M.A.V.); (V.V.); (I.Z.C.)
| | - Eduardo M. Cilli
- Department of Biochemistry and Organic Chemistry, Institute of Chemistry, São Paulo State University (UNESP), Araraquara 14800-060, SP, Brazil
| | - Márcia A. S. Graminha
- Department of Clinical Analysis, School of Pharmaceutical Sciences, São Paulo State University (UNESP), Araraquara 14800-903, SP, Brazil; (N.C.S.C.); (D.L.F.P.); (J.L.); (A.M.A.V.); (V.V.); (I.Z.C.)
| |
Collapse
|
8
|
Palomino-Cano C, Moreno E, Irache JM, Espuelas S. Targeting and activation of macrophages in leishmaniasis. A focus on iron oxide nanoparticles. Front Immunol 2024; 15:1437430. [PMID: 39211053 PMCID: PMC11357945 DOI: 10.3389/fimmu.2024.1437430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 07/16/2024] [Indexed: 09/04/2024] Open
Abstract
Macrophages play a pivotal role as host cells for Leishmania parasites, displaying a notable functional adaptability ranging from the proinflammatory, leishmanicidal M1 phenotype to the anti-inflammatory, parasite-permissive M2 phenotype. While macrophages can potentially eradicate amastigotes through appropriate activation, Leishmania employs diverse strategies to thwart this activation and redirect macrophages toward an M2 phenotype, facilitating its survival and replication. Additionally, a competition for iron between the two entities exits, as iron is vital for both and is also implicated in macrophage defensive oxidative mechanisms and modulation of their phenotype. This review explores the intricate interplay between macrophages, Leishmania, and iron. We focus the attention on the potential of iron oxide nanoparticles (IONPs) as a sort of immunotherapy to treat some leishmaniasis forms by reprogramming Leishmania-permissive M2 macrophages into antimicrobial M1 macrophages. Through the specific targeting of iron in macrophages, the use of IONPs emerges as a promising strategy to finely tune the parasite-host interaction, endowing macrophages with an augmented antimicrobial arsenal capable of efficiently eliminating these intrusive microbes.
Collapse
Affiliation(s)
- Carmen Palomino-Cano
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Esther Moreno
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
| | - Juan M. Irache
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Medical Research Institute (IdiSNA), Pamplona, Spain
| | - Socorro Espuelas
- Department of Pharmaceutical Sciences, School of Pharmacy and Nutrition, University of Navarra, Pamplona, Spain
- Navarra Medical Research Institute (IdiSNA), Pamplona, Spain
| |
Collapse
|
9
|
Hiltunen Thorén M, Onuț-Brännström I, Alfjorden A, Pecková H, Swords F, Hooper C, Holzer AS, Bass D, Burki F. Comparative genomics of Ascetosporea gives new insight into the evolutionary basis for animal parasitism in Rhizaria. BMC Biol 2024; 22:103. [PMID: 38702750 PMCID: PMC11069148 DOI: 10.1186/s12915-024-01898-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 04/22/2024] [Indexed: 05/06/2024] Open
Abstract
BACKGROUND Ascetosporea (Endomyxa, Rhizaria) is a group of unicellular parasites infecting aquatic invertebrates. They are increasingly being recognized as widespread and important in marine environments, causing large annual losses in invertebrate aquaculture. Despite their importance, little molecular data of Ascetosporea exist, with only two genome assemblies published to date. Accordingly, the evolutionary origin of these parasites is unclear, including their phylogenetic position and the genomic adaptations that accompanied the transition from a free-living lifestyle to parasitism. Here, we sequenced and assembled three new ascetosporean genomes, as well as the genome of a closely related amphizoic species, to investigate the phylogeny, origin, and genomic adaptations to parasitism in Ascetosporea. RESULTS Using a phylogenomic approach, we confirm the monophyly of Ascetosporea and show that Paramyxida group with Mikrocytida, with Haplosporida being sister to both groups. We report that the genomes of these parasites are relatively small (12-36 Mb) and gene-sparse (~ 2300-5200 genes), while containing surprisingly high amounts of non-coding sequence (~ 70-90% of the genomes). Performing gene-tree aware ancestral reconstruction of gene families, we demonstrate extensive gene losses at the origin of parasitism in Ascetosporea, primarily of metabolic functions, and little gene gain except on terminal branches. Finally, we highlight some functional gene classes that have undergone expansions during evolution of the group. CONCLUSIONS We present important new genomic information from a lineage of enigmatic but important parasites of invertebrates and illuminate some of the genomic innovations accompanying the evolutionary transition to parasitism in this lineage. Our results and data provide a genetic basis for the development of control measures against these parasites.
Collapse
Affiliation(s)
- Markus Hiltunen Thorén
- Department of Organismal Biology, Uppsala University, Norbyv. 18D, Uppsala, SE-752 36, Sweden.
- Present Address: Department of Ecology, Environment and Plant Sciences, Stockholm University, Svante Arrhenius V. 20 A, Stockholm, SE-114 18, Sweden.
- Present Address: The Royal Swedish Academy of Sciences, Stockholm, SE-114 18, Sweden.
| | - Ioana Onuț-Brännström
- Present Address: Department of Ecology and Genetics, Uppsala University, Norbyv. 18D, Uppsala, SE-752 36, Sweden
- Present Address: Natural History Museum, Oslo University, Oslo, 0562, Norway
| | - Anders Alfjorden
- Department of Organismal Biology, Uppsala University, Norbyv. 18D, Uppsala, SE-752 36, Sweden
| | - Hana Pecková
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice, 370 05, Czech Republic
| | - Fiona Swords
- Marine Institute, Rinville, Oranmore, H91R673, Ireland
| | - Chantelle Hooper
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset, DT4 8UB, UK
- Sustainable Aquaculture Futures, Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
| | - Astrid S Holzer
- Institute of Parasitology, Biology Centre of the Czech Academy of Sciences, Branišovská 31, České Budějovice, 370 05, Czech Republic
- Division of Fish Health, University of Veterinary Medicine, Veterinärplatz 1, Vienna, 1210, Austria
| | - David Bass
- Centre for Environment, Fisheries and Aquaculture Science (Cefas), Weymouth Laboratory, Weymouth, Dorset, DT4 8UB, UK
- Sustainable Aquaculture Futures, Biosciences, University of Exeter, Stocker Road, Exeter, EX4 4QD, UK
- Natural History Museum (NHM), Science, London, SW7 5BD, UK
| | - Fabien Burki
- Department of Organismal Biology, Uppsala University, Norbyv. 18D, Uppsala, SE-752 36, Sweden.
- Science for Life Laboratory, Uppsala University, Uppsala, Sweden.
| |
Collapse
|
10
|
Carvalho AM, Costa RS, Lago A, Bacellar O, Beiting DP, Scott P, Carvalho LP, Carvalho EM. In Situ versus Systemic Immune Response in the Pathogenesis of Cutaneous Leishmaniasis. Pathogens 2024; 13:199. [PMID: 38535542 PMCID: PMC10975199 DOI: 10.3390/pathogens13030199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/19/2024] [Accepted: 02/21/2024] [Indexed: 04/01/2024] Open
Abstract
The role of the immune response in the pathogenesis of cutaneous leishmaniasis (CL) due to Leishmania (Viannia) braziliensis is predominantly carried out via blood cells. Here, we evaluate whether cytokine production by peripheral blood mononuclear cells (PBMCs) reflects what has been documented at the lesion site. The participants included 22 CL patients diagnosed with a positive PCR. PBMCs were stimulated for 72 h with a soluble leishmania antigen (SLA). Biopsies obtained from the edge of the ulcers were incubated for the same period. Cytokines in supernatants were assessed via ELISA. TNF, IL-1β, IL-6, IL-17, and granzyme B (GzmB) were higher in the supernatants of biopsies than in PBMCs, but IFN-γ was higher in the supernatants of PBMCs than in biopsies. There was a positive correlation between IFN-γ and TNF in PBMCs, and an inverse correlation between TNF and IL-10 in the cells from the lesion site. A strong correlation between IL-1β, IL-17, and GzmB was observed in the biopsies, and a positive correlation was detected between these cytokines and the lesion size. Our results indicate that the immune response in L. braziliensis lesions is different from that observed in peripheral blood, and our data suggest that in addition to IL-1β and GzmB, IL-17 participates in the pathology of CL.
Collapse
Affiliation(s)
- Augusto M. Carvalho
- Gonçalo Moniz Institute (IGM), Fiocruz, Salvador 40296-710, BA, Brazil; (A.M.C.); (R.S.C.); (L.P.C.)
- Immunology Service, Professor Edgard Santos University Hospital Complex, Federal University of Bahia, Salvador 40110-160, BA, Brazil; (A.L.); (O.B.)
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Ministério da Ciência e Tecnologia e Inovação (MCTI), CNPq, Salvador 40110-160, BA, Brazil
| | - Rúbia S. Costa
- Gonçalo Moniz Institute (IGM), Fiocruz, Salvador 40296-710, BA, Brazil; (A.M.C.); (R.S.C.); (L.P.C.)
- Immunology Service, Professor Edgard Santos University Hospital Complex, Federal University of Bahia, Salvador 40110-160, BA, Brazil; (A.L.); (O.B.)
| | - Alexsandro Lago
- Immunology Service, Professor Edgard Santos University Hospital Complex, Federal University of Bahia, Salvador 40110-160, BA, Brazil; (A.L.); (O.B.)
| | - Olívia Bacellar
- Immunology Service, Professor Edgard Santos University Hospital Complex, Federal University of Bahia, Salvador 40110-160, BA, Brazil; (A.L.); (O.B.)
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Ministério da Ciência e Tecnologia e Inovação (MCTI), CNPq, Salvador 40110-160, BA, Brazil
| | - Daniel P. Beiting
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-4539, USA; (D.P.B.); (P.S.)
| | - Phillip Scott
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104-4539, USA; (D.P.B.); (P.S.)
| | - Lucas P. Carvalho
- Gonçalo Moniz Institute (IGM), Fiocruz, Salvador 40296-710, BA, Brazil; (A.M.C.); (R.S.C.); (L.P.C.)
- Immunology Service, Professor Edgard Santos University Hospital Complex, Federal University of Bahia, Salvador 40110-160, BA, Brazil; (A.L.); (O.B.)
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Ministério da Ciência e Tecnologia e Inovação (MCTI), CNPq, Salvador 40110-160, BA, Brazil
| | - Edgar M. Carvalho
- Gonçalo Moniz Institute (IGM), Fiocruz, Salvador 40296-710, BA, Brazil; (A.M.C.); (R.S.C.); (L.P.C.)
- Immunology Service, Professor Edgard Santos University Hospital Complex, Federal University of Bahia, Salvador 40110-160, BA, Brazil; (A.L.); (O.B.)
- Instituto Nacional de Ciência e Tecnologia em Doenças Tropicais (INCT-DT), Ministério da Ciência e Tecnologia e Inovação (MCTI), CNPq, Salvador 40110-160, BA, Brazil
| |
Collapse
|
11
|
Francesconi V, Rizzo M, Schenone S, Carbone A, Tonelli M. State-of-the-art Review on the Antiparasitic Activity of Benzimidazolebased Derivatives: Facing Malaria, Leishmaniasis, and Trypanosomiasis. Curr Med Chem 2024; 31:1955-1982. [PMID: 37718524 PMCID: PMC11071657 DOI: 10.2174/0929867331666230915093928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/19/2023] [Accepted: 08/27/2023] [Indexed: 09/19/2023]
Abstract
Protozoan parasites represent a significant risk for public health worldwide, afflicting particularly people in more vulnerable categories and cause large morbidity and heavy economic impact. Traditional drugs are limited by their toxicity, low efficacy, route of administration, and cost, reflecting their low priority in global health management. Moreover, the drug resistance phenomenon threatens the positive therapy outcome. This scenario claims the need of addressing more adequate therapies. Among the diverse strategies implemented, the medicinal chemistry efforts have also focused their attention on the benzimidazole nucleus as a promising pharmacophore for the generation of new drug candidates. Hence, the present review provides a global insight into recent progress in benzimidazole-based derivatives drug discovery against important protozoan diseases, such as malaria, leishmaniasis and trypanosomiasis. The more relevant chemical features and structure-activity relationship studies of these molecules are discussed for the purpose of paving the way towards the development of more viable drugs for the treatment of these parasitic infections.
Collapse
Affiliation(s)
- Valeria Francesconi
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, Genoa, 16132, Italy
| | - Marco Rizzo
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, Genoa, 16132, Italy
| | - Silvia Schenone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, Genoa, 16132, Italy
| | - Anna Carbone
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, Genoa, 16132, Italy
| | - Michele Tonelli
- Department of Pharmacy, University of Genoa, Viale Benedetto XV, 3, Genoa, 16132, Italy
| |
Collapse
|
12
|
Lourenço EMG, da Silva F, das Neves AR, Bonfá IS, Ferreira AMT, Menezes ACG, da Silva MEC, Dos Santos JT, Martines MAU, Perdomo RT, Toffoli-Kadri MC, G Barbosa E, Saba S, Beatriz A, Rafique J, de Arruda CCP, de Lima DP. Investigation of the Potential Targets behind the Promising and Highly Selective Antileishmanial Action of Synthetic Flavonoid Derivatives. ACS Infect Dis 2023; 9:2048-2061. [PMID: 37772925 DOI: 10.1021/acsinfecdis.3c00336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/30/2023]
Abstract
Leishmaniases are among the neglected tropical diseases that still cause devastating health, social, and economic consequences to more than 350 million people worldwide. Despite efforts to combat these vector-borne diseases, their incidence does not decrease. Meanwhile, current antileishmanial drugs are old and highly toxic, and safer presentations are unaffordable to the most severely affected human populations. In a previous study by our research group, we synthesized 17 flavonoid derivatives that demonstrated impressive inhibition capacity against rCPB2.8, rCPB3, and rH84Y. These cysteine proteases are highly expressed in the amastigote stage, the target form of the parasite. However, although these compounds have been already described in the literature, until now, the amastigote effect of any of these molecules has not been proven. In this work, we aimed to deeply analyze the antileishmanial action of this set of synthetic flavonoid derivatives by correlating their ability to inhibit cysteine proteases with the action against the parasite. Among all the synthesized flavonoid derivatives, 11 of them showed high activity against amastigotes of Leishmania amazonensis, also providing safety to mammalian host cells. Furthermore, the high production of nitric oxide by infected cells treated with the most active cysteine protease B (CPB) inhibitors confirms a potential immunomodulatory response of macrophages. Besides, considering flavonoids as multitarget drugs, we also investigated other potential antileishmanial mechanisms. The most active compounds were selected to investigate another potential biological pathway behind their antileishmanial action using flow cytometry analysis. The results confirmed an oxidative stress after 48 h of treatment. These data represent an important step toward the validation of CPB as an antileishmanial target, as well as aiding in new drug discovery studies based on this protease.
Collapse
Affiliation(s)
- Estela M G Lourenço
- Laboratório de Síntese e Transformação de Moléculas Orgânicas -SINTMOL, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, Campo Grande, 79074-460 MS, Brazil
| | - Fernanda da Silva
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79070-900, MS, Brazil
| | - Amarith R das Neves
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79070-900, MS, Brazil
| | - Iluska S Bonfá
- Laboratório de Farmacologia e Inflamação, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79074-460 MS, Brazil
| | - Alda Maria T Ferreira
- Laboratório de Imunologia, Biologia Molecular e Bioensaios Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79070-900 MS, Brazil
| | - Adriana C G Menezes
- Biotério Central, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79070-900 MS, Brazil
| | - Maria E C da Silva
- Laboratório de Síntese e Transformação de Moléculas Orgânicas -SINTMOL, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, Campo Grande, 79074-460 MS, Brazil
| | - Jéssica T Dos Santos
- Laboratório de Síntese e Transformação de Moléculas Orgânicas -SINTMOL, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, Campo Grande, 79074-460 MS, Brazil
| | - Marco A U Martines
- Instituto de Química, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, Campo Grande, 79074-460 MS, Brazil
| | - Renata T Perdomo
- Laboratório de Biologia Molecular e Cultura de Células, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79070-900 MS, Brazil
| | - Mônica C Toffoli-Kadri
- Laboratório de Farmacologia e Inflamação, Faculdade de Ciências Farmacêuticas, Alimentos e Nutrição, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79074-460 MS, Brazil
| | - Euzébio G Barbosa
- Laboratório de Química Farmacêutica Computacional, Departamento de Farmácia, Universidade Federal do Rio Grande do Norte, Natal, 59012-570, RN, Brazil
| | - Sumbal Saba
- Laboratório de Síntese Sustentável e Organocalcogênio - LabSO, Instituto de Química, Universidade Federal de Goiás-UFG, Goiânia, 74690-900 GO, Brazil
| | - Adilson Beatriz
- Laboratório de Síntese e Transformação de Moléculas Orgânicas -SINTMOL, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, Campo Grande, 79074-460 MS, Brazil
| | - Jamal Rafique
- Laboratório de Síntese e Transformação de Moléculas Orgânicas -SINTMOL, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, Campo Grande, 79074-460 MS, Brazil
- Laboratório de Síntese Sustentável e Organocalcogênio - LabSO, Instituto de Química, Universidade Federal de Goiás-UFG, Goiânia, 74690-900 GO, Brazil
| | - Carla C P de Arruda
- Laboratório de Parasitologia Humana, Instituto de Biociências, Universidade Federal de Mato Grosso do Sul, Campo Grande, 79070-900, MS, Brazil
| | - Dênis P de Lima
- Laboratório de Síntese e Transformação de Moléculas Orgânicas -SINTMOL, Instituto de Química, Universidade Federal de Mato Grosso do Sul, Av. Senador Filinto Muller, Campo Grande, 79074-460 MS, Brazil
| |
Collapse
|
13
|
Das K, Nozaki T. Non-Vesicular Lipid Transport Machinery in Leishmania donovani: Functional Implications in Host-Parasite Interaction. Int J Mol Sci 2023; 24:10637. [PMID: 37445815 DOI: 10.3390/ijms241310637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 05/21/2023] [Accepted: 05/22/2023] [Indexed: 07/15/2023] Open
Abstract
Eukaryotic cells have distinct membrane-enclosed organelles, each with a unique biochemical signature and specialized function. The unique identity of each organelle is greatly governed by the asymmetric distribution and regulated intracellular movement of two important biomolecules, lipids, and proteins. Non-vesicular lipid transport mediated by lipid-transfer proteins (LTPs) plays essential roles in intra-cellular lipid trafficking and cellular lipid homeostasis, while vesicular transport regulates protein trafficking. A comparative analysis of non-vesicular lipid transport machinery in protists could enhance our understanding of parasitism and basis of eukaryotic evolution. Leishmania donovani, the trypanosomatid parasite, greatly depends on receptor-ligand mediated signalling pathways for cellular differentiation, nutrient uptake, secretion of virulence factors, and pathogenesis. Lipids, despite being important signalling molecules, have intracellular transport mechanisms that are largely unexplored in L. donovani. We have identified a repertoire of sixteen (16) potential lipid transfer protein (LTP) homologs based on a domain-based search on TriTrypDB coupled with bioinformatics analyses, which signifies the presence of well-organized lipid transport machinery in this parasite. We emphasized here their evolutionary uniqueness and conservation and discussed their potential implications for parasite biology with regards to future therapeutic targets against visceral leishmaniasis.
Collapse
Affiliation(s)
- Koushik Das
- Department of Allied Health Sciences, School of Health Sciences and Technology, University of Petroleum and Energy Studies, Dehradun 248007, India
| | - Tomoyoshi Nozaki
- Department of Biomedical Chemistry, Graduate School of Medicine, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
14
|
Sreedharan V, Rao KB. Protease inhibitors as a potential agent against visceral Leishmaniasis: A review to inspire future study. Braz J Infect Dis 2023; 27:102739. [PMID: 36603827 PMCID: PMC9871078 DOI: 10.1016/j.bjid.2022.102739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 11/21/2022] [Accepted: 12/16/2022] [Indexed: 01/04/2023] Open
Abstract
Leishmaniasis is transmitted by sandfly which carries the intracellular protozoa in their midgut. Among visceral, cutaneous and mucocutaneous leishmaniasis, visceral type that is caused by Leishmania donovani is the most lethal one. Findings of leishmanial structure and species took place in 19th century and was initiated by Donovan. Leishmaniasis is still a major concern of health issues in many endemic countries in Asia, Africa, the Americas, and the Mediterranean region. Worldwide1.5-2 million new cases of cutaneous leishmaniasis and 500,000 cases of visceral leishmaniasis are reported each year. Leishmaniasis is endemic in nearly 90 countries worldwide and close to 12 million new cases of leishmaniasis are reported worldwide annually. Studies on antileishmanial drug development is of major concern as leishmaniasis are the second largest parasitic killer in the world and the available drugs are either toxic or costly. The major surface GP63 protease, also known as Zinc- metalloproteases present on the surface of leishmanial promastigotes, can be targeted for drug development. Protease inhibitors targeting such surface proteases show promising results. Different protease inhibitors have been isolated from marine actinobacteria against many infectious diseases. Metabolites produced by these actinobacteria may have greater importance for the discovery and development of new antileishmanial drugs. Hence, this review discusses the background, current situation, treatment, and protease inhibitors from marine actinobacteria for drug development against GP63 molecules.
Collapse
Affiliation(s)
| | - K.V. Bhaskara Rao
- Corresponding author at: Department of Biomedical Sciences, School of BioSciences and Technology, VIT University, Vellore, Tamil Nadu, 632 014, India.
| |
Collapse
|
15
|
Nemati Haravani T, Parvizi P, Hejazi SH, Sedaghat MM, Eskandarian A, Nateghi Rostami M. Evaluation of expression variations in virulence-related genes of Leishmania major after several culture passages compared with Phlebotomus papatasi isolated promastigotes. PLoS One 2023; 18:e0284240. [PMID: 37053214 PMCID: PMC10101501 DOI: 10.1371/journal.pone.0284240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 03/27/2023] [Indexed: 04/14/2023] Open
Abstract
Cutaneous leishmaniasis (CL) is a prevalent infectious disease with considerable morbidity annually. Here, we aimed to investigate the likely variations in gene expression of glycoprotein63 (gp63), heat shock protein 70 (HSP70), histone, arginase, cysteine protease B (CPB), Leishmania homologue of receptors for activated C kinase (LACK), small hydrophilic endoplasmic reticulum-associated protein (SHERP) in metacyclic promastigotes of L. major isolated from Phlebotomus papatasi sand flies and promastigotes excessively cultured in culture medium. The parasites were collected from suspected CL cases in Pasteur Institute of Iran, cultured and inoculated into the female BALB/c mice (2×106 promastigotes). Sand flies were trapped in Qom province, fed with the blood of euthanized infected mice and subsequently dissected in order to isolate the midgut including stomodeal valve. The metacyclic promastigotes were isolated from Ph. papatasi (Pro-Ppap) using peanut agglutinin test (PNA), then continuously cultured in RPMI-1640 medium enriched with fetal bovine serum, penicillin (100 U/ml) and streptomycin (100 mg/ml) to reach stationary phase (Pro-Stat). The gene expression was evaluated in both parasitic stages (Pro-Ppap and Pro-Stat) using qRT-PCR. Out results showed a significant increased gene expression at Pro-Ppap stage for gp63 (P = 0.002), SHERP (P = 0.001) and histone (P = 0.026) genes, in comparison with Pro-Stat stage. Noticeably, significant changes were, also, demonstrated in 10th to 15th passages [gp63 (P = 0.041), arginase (P = 0.016), LACK (P = 0.025)] and in 5th to 20th passage (SHERP) (P = 0.029). In conclusion, the findings of the present study seem to be essential in designing Leishmania studies, in particular regarding host-parasite interaction, immunization and infectivity studies.
Collapse
Affiliation(s)
- Taher Nemati Haravani
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Parviz Parvizi
- Molecular Systematics Laboratory, Parasitology Department, Pasteur Institute of Iran, Tehran, Iran
| | - Seyed Hossein Hejazi
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Mohammad Mehdi Sedaghat
- Department of Medical Parasitology and Mycology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Abbasali Eskandarian
- Department of Parasitology and Mycology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | | |
Collapse
|
16
|
Okuda K, Silva Costa Franco MM, Yasunaga A, Gazzinelli R, Rabinovitch M, Cherry S, Silverman N. Leishmania amazonensis sabotages host cell SUMOylation for intracellular survival. iScience 2022; 25:104909. [PMID: 36060064 PMCID: PMC9436752 DOI: 10.1016/j.isci.2022.104909] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/29/2022] [Accepted: 08/05/2022] [Indexed: 11/23/2022] Open
Abstract
Leishmania parasites use elaborate virulence mechanisms to invade and thrive in macrophages. These virulence mechanisms inhibit host cell defense responses and generate a specialized replicative niche, the parasitophorous vacuole. In this work, we performed a genome-wide RNAi screen in Drosophila macrophage-like cells to identify the host factors necessary for Leishmania amazonensis infection. This screen identified 52 conserved genes required specifically for parasite entry, including several components of the SUMOylation machinery. Further studies in mammalian macrophages found that L. amazonensis infection inhibited SUMOylation within infected macrophages and this inhibition enhanced parasitophorous vacuole growth and parasite proliferation through modulation of multiple genes especially ATP6V0D2, which in turn affects CD36 expression and cholesterol levels. Together, these data suggest that parasites actively sabotage host SUMOylation and alter host transcription to improve their intracellular niche and enhance their replication.
Collapse
Affiliation(s)
- Kendi Okuda
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, USA
| | - Miriam Maria Silva Costa Franco
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, USA
| | - Ari Yasunaga
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Ricardo Gazzinelli
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, USA
- Centro de Tecnologia de Vacinas, Universidade Federal of Minas Gerais, Belo Horizonte, MG 31270, Brazil
- Fundação Oswaldo Cruz - Minas, Belo Horizonte, MG 30190, Brazil
| | - Michel Rabinovitch
- Department of Microbiology, Immunology and Parasitology, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, Brazil
| | - Sara Cherry
- Department of Microbiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Neal Silverman
- Division of Infectious Diseases and Immunology, Department of Medicine, University of Massachusetts Medical School, Worcester, USA
| |
Collapse
|
17
|
Rath CT, Vivarini ÁC, dos Santos JV, Medina JM, Saliba AM, Mottram JC, Lima APCA, Calegari-Silva TC, Pereira RM, Lopes UG. Toll-Like Receptor 3 (TLR3) Is Engaged in the Intracellular Survival of the Protozoan Parasite Leishmania (Leishmania) amazonensis. Infect Immun 2022; 90:e0032422. [PMID: 35993771 PMCID: PMC9476911 DOI: 10.1128/iai.00324-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/20/2022] Open
Abstract
The protozoan parasite Leishmania (L.) amazonensis infects and replicates inside host macrophages due to subversion of the innate host cell response. In the present study, we demonstrate that TLR3 is required for the intracellular growth of L. (L.) amazonensis. We observed restricted intracellular infection of TLR3-/- mouse macrophages, reduced levels of IFN1β and IL-10, and increased levels of IL-12 upon L. (L.) amazonensis infection, compared with their wild-type counterparts. Accordingly, in vivo infection of TLR3-/- mice with L. (L.) amazonensis displayed a significant reduction in lesion size. Leishmania (L.) amazonensis infection induced TLR3 proteolytic cleavage, which is a process required for TLR3 signaling. The chemical inhibition of TLR3 cleavage or infection by CPB-deficient mutant L. (L.) mexicana resulted in reduced parasite load and restricted the expression of IFN1β and IL-10. Furthermore, we show that the dsRNA sensor molecule PKR (dsRNA-activated protein kinase) cooperates with TLR3 signaling to potentiate the expression of IL-10 and IFN1β and parasite survival. Altogether, our results show that TLR3 signaling is engaged during L. (L.) amazonensis infection and this component of innate immunity modulates the host cell response.
Collapse
Affiliation(s)
- Carolina T. Rath
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Áislan C. Vivarini
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Vitorino dos Santos
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jorge M. Medina
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandra M. Saliba
- Departmento de Microbiologia e Imunologia, Faculdade de Ciências Médicas, Universidade Estadual do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Jeremy C. Mottram
- York Biomedical Research Institute, Department of Biology, University of York, Heslington, York, United Kingdom
| | - Ana Paula C. A. Lima
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Renata M. Pereira
- Instituto de Microbiologia Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Ulisses G. Lopes
- Instituto de Biofísica Carlos Chagas Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| |
Collapse
|
18
|
Barbosa GR, Marana SR, Stolf BS. Characterization of Leishmania ( L.) amazonensis oligopeptidase B and its role in macrophage infection. Parasitology 2022; 149:1411-1418. [PMID: 35703092 PMCID: PMC11010554 DOI: 10.1017/s0031182022000816] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/09/2022] [Accepted: 05/30/2022] [Indexed: 11/07/2022]
Abstract
Leishmania spp. are parasitic protozoa that cause leishmaniasis, a disease endemic in 98 countries. Leishmania promastigotes are transmitted by the vector and differentiate into amastigotes within phagocytic cells of the vertebrate host. To survive in multiple and hostile environments, the parasite has several virulence factors. Oligopeptidase B (OPB) is a serine peptidase present in prokaryotes, some eukaryotes and some higher plants. It has been considered a virulence factor in trypanosomatids, but only a few studies, performed with Old World species, analysed its role in Leishmania virulence or infectivity.L. (L.) amazonensis is an important agent of cutaneous leishmaniasis in Brazil. The L. (L.) amazonensis OPB encoding gene has been sequenced and analysed in silico but has never been expressed. In this work, we produced recombinant L. (L.) amazonensis OPB and showed that its pH preferences, Km and inhibition patterns are similar to those reported for L. (L.) major and L. (L.) donovani OPBs. Since Leishmania is known to secrete OPB, we performed in vitro infection assays using the recombinant enzyme. Our results showed that active OPB increased in vitro infection by L. (L.) amazonensis when present before and throughout infection. Our findings suggest that OPB is relevant to L. (L.) amazonensis infection, and that potential drugs acting through OPB will probably be effective for Old and New World Leishmania species. OPB inhibitors may eventually be explored for leishmaniasis chemotherapy.
Collapse
Affiliation(s)
- Gustavo Rolim Barbosa
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Sandro Roberto Marana
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, SP, Brazil
| | - Beatriz Simonsen Stolf
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| |
Collapse
|
19
|
Kumari D, Mahajan S, Kour P, Singh K. Virulence factors of Leishmania parasite: Their paramount importance in unraveling novel vaccine candidates and therapeutic targets. Life Sci 2022; 306:120829. [PMID: 35872004 DOI: 10.1016/j.lfs.2022.120829] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 07/15/2022] [Accepted: 07/17/2022] [Indexed: 12/30/2022]
Abstract
Leishmaniasis is a neglected tropical disease and remains a global concern for healthcare. It is caused by an opportunistic protozoan parasite belonging to the genus Leishmania and affects millions worldwide. This disease is mainly prevalent in tropical and subtropical regions and is associated with a high risk of public morbidity and mortality if left untreated. Transmission of this deadly disease is aggravated by the bite of female sand-fly vectors (Phlebotomus and Lutzomyia). With time, significant advancement in leishmaniasis-related research has been carried out to cope with the disease burden. Still, the Leishmania parasite has also co-evolved with its host and adapted successfully within the host's lethal milieu/environment. Thus, understanding and knowledge of various leishmanial virulence factors responsible for the parasitic infection are essential for exploring drug targets and vaccine candidates. The present review elucidates the importance of virulence factors in pathogenesis and summarizes the major leishmanial virulence molecules contributing to the parasitic infection during host-pathogen interaction. Furthermore, we have also elaborated on the potential contribution of leishmanial virulence proteins in developing vaccine candidates and exploring novel therapeutics against this parasitic disease. We aim to represent a clearer picture of parasite pathogenesis within the human host that can further aid in unraveling new strategies to fight against the deadly infection of leishmaniasis.
Collapse
Affiliation(s)
- Diksha Kumari
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Shavi Mahajan
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Parampreet Kour
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Kuljit Singh
- Infectious Diseases Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
20
|
Ramirez Merlano JA, Almeida DV. Heterologous Production and Evaluation of the Biological Activity of Cystatin-B From the Red Piranha Pygocentrus nattereri. Front Genet 2022; 13:812971. [PMID: 35719393 PMCID: PMC9203827 DOI: 10.3389/fgene.2022.812971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 04/21/2022] [Indexed: 11/13/2022] Open
Abstract
Cystatin proteins are known to form a superfamily of cysteine protease inhibitors, which play a key role in protein degradation and are related to different physiological processes, such as development and immunity. Currently, numerous immunoregulatory proteins, such as cystatins, are being used in the control and prevention of diseases in aquaculture. Thus, the objective of this study was to produce recombinant cystatin (rCYST-B) from the red piranha Pygocentrus nattereri and to evaluate its effect on bacterial growth. The gene that encodes cystatin-B was isolated from the spleen of P. nattereri and cloned in an expression system. The protein was produced via a heterologous system involving the yeast Pichia pastoris X-33. The inhibitory activity of purified cystatin-B was evaluated on papain using different concentrations (0–80.0 μg/μL) of rCYST-B. The bacteriostatic action of the protein was evaluated using the Kirby-Bauer method on the growth of Escherichia coli and Bacillus subtilis. rCYST-B showed 100% inhibition at a concentration of 60 μg/μL. Moreover, the bacteriostatic activity of E. coli and B. subtilis showed inhibition of 40.36 and 49.08% compared to the negative control (phosphate buffer), respectively. These results suggest that recombinant CYST-B has biotechnological potential for use in aquaculture.
Collapse
Affiliation(s)
| | - Daniela Volcan Almeida
- Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Rio Grande, Rio Grande, Brazil
- *Correspondence: Daniela Volcan Almeida,
| |
Collapse
|
21
|
Mukkala AN, Kariyawasam R, Lau R, Valencia BM, Llanos-Cuentas A, Boggild AK. Elevated baseline expression of seven virulence factor RNA transcripts in visceralizing species of Leishmania: a preliminary quantitative PCR study. Ther Adv Infect Dis 2022; 9:20499361221102665. [PMID: 35663431 PMCID: PMC9158425 DOI: 10.1177/20499361221102665] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/04/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction: Leishmaniasis is a neglected tropical disease that manifests as three major disease phenotypes: cutaneous, mucocutaneous, and visceral. In this preliminary study, we quantified virulence factor (VF) RNA transcript expression in Leishmania species, stratified by geographic origin and propensity for specific disease phenotypes. Methods: Cultured promastigotes of 19 Leishmania clinical and ATCC isolates were extracted for total cellular RNA, cDNA was reverse transcribed, and qPCR assays were performed to quantify VF RNA transcript expression for hsp23, hsp70, hsp83, hsp100, mpi, cpb, and gp63. Results: Comparison of visceralizing species (Leishmania donovani, Leishmania chagasi, and Leishmania infantum) versus non-visceralizing species [Leishmania (Viannia) spp., Leishmania tropica, Leishmania major, Leishmania mexicana, and Leishmania amazonensis] revealed a significantly greater pooled transcript expression for visceralizing species (p = 0.0032). Similarly, Old World species demonstrated significantly higher VF RNA transcript expression than New World species (p = 0.0015). On a per-gene basis, species with a propensity to visceralize ubiquitously expressed higher levels of gp63 (p = 0.005), cpb (p = 0.0032), mpi (p = 0.0032), hsp23 (p = 0.0039), hsp70 (p = 0.0032), hsp83 (p = 0.0032), and hsp100 (p = 0.0032). Conclusion: Here, we provide quantitative, preliminary evidence of elevated VF RNA transcript expression driven largely by the visceralizing causative species of Leishmania. This work highlights the extensive heterogeneity in pathogenicity mechanisms between Leishmania species, which may partly underpin the fatal progression of visceral leishmaniasis.
Collapse
Affiliation(s)
| | - Ruwandi Kariyawasam
- Division of Diagnostic and Applied Microbiology, University of Alberta, Edmonton, AB, Canada
- Alberta Precision Laboratories-Public Health Laboratory (ProvLab), Edmonton, AB, Canada
| | - Rachel Lau
- Public Health Ontario Laboratory, Toronto, ON, Canada
| | - Braulio M. Valencia
- Viral Immunology Systems Program, Kirby Institute, University of New South Wales, Kensington, NSW, Australia
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical Alexander von Humboldt, Universidad Peruana Cayetano Heredia, Lima, Peru
- Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Andrea K. Boggild
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto, Toronto, ON, Canada
- Tropical Disease Unit, Toronto General Hospital, Room 13EN-218, 200 Elizabeth Street, Toronto, ON M5G 2C4, Canada
| |
Collapse
|
22
|
do Socorro Silva da Veiga A, Silveira FT, da Silva EO, Júnior JAPD, Araújo SC, Campos MB, do Rosário Marinho AM, Brandão GC, Vale VV, Percário S, Dolabela MF. Activity of alkaloids from Aspidosperma nitidum against Leishmania (Leishmania) amazonensis. Sci Rep 2022; 12:8662. [PMID: 35606396 PMCID: PMC9126982 DOI: 10.1038/s41598-022-12396-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Accepted: 03/02/2022] [Indexed: 12/03/2022] Open
Abstract
This study evaluated the morphological changes caused by fractions and subfractions, obtained from barks of Aspidosperna nitidum, against L. (L.) amazonensis promastigotes. The ethanolic extract (EE) obtained through the maceration of trunk barks was subjected to an acid-base partition, resulting the neutral (FN) and the alkaloid (FA) fractions, and fractionation under reflux, yielded hexane (FrHEX), dichloromethane (FrDCL), ethyl acetate (FrACoET), and methanol (FrMEOH) fractions. The FA was fractionated and three subfractions (SF5-6, SF8, and SF9) were obtained and analyzed by HPLC-DAD and 1H NMR. The antipromastigote activity of all samples was evaluated by MTT, after that, scanning electron microscopy (SEM) and transmission electron microscopy (TEM) for the active fractions were performed. Chromatographic analyzes suggest the presence of alkaloids in EE, FN, FA, and FrDCL. The fractionation of FA led to the isolation of the indole alkaloid dihydrocorynantheol (SF8 fractions). The SF5-6, dihydrocorynantheol and SF-9 samples were active against promastigotes, while FrDCL was moderately active. The SEM analysis revealed cell rounding and changes in the flagellum of the parasites. In the TEM analysis, the treated promastigotes showed changes in flagellar pocket and kinetoplast, and presence of lipid inclusions. These results suggest that alkaloids isolated from A. nitidum are promising as leishmanicidal.
Collapse
Affiliation(s)
| | | | - Edilene Oliveira da Silva
- Postgraduate Program in Biology of Infectious and Parasitic Agents, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
- Postgraduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | | | | | | | - Andrey Moacir do Rosário Marinho
- Postgraduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | | | - Valdicley Vieira Vale
- Postgraduate Program in Pharmaceutical Innovation, Institute of Health Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Sandro Percário
- Postgraduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
- Oxidative Stress Research Laboratory, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil
| | - Maria Fâni Dolabela
- Postgraduate Program in Pharmaceutical Innovation, Institute of Health Sciences, Federal University of Pará, Belém, PA, Brazil.
- Postgraduate Program in Biodiversity and Biotechnology of the BIONORTE Network, Institute of Biological Sciences, Federal University of Pará, Belém, PA, Brazil.
| |
Collapse
|
23
|
Prava J, Pan A. In silico analysis of Leishmania proteomes and protein-protein interaction network: Prioritizing therapeutic targets and drugs for repurposing to treat leishmaniasis. Acta Trop 2022; 229:106337. [PMID: 35134348 DOI: 10.1016/j.actatropica.2022.106337] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 01/07/2022] [Accepted: 01/29/2022] [Indexed: 01/31/2023]
Abstract
Leishmaniasis is a serious world health problem and its current therapies have several limitations demanding to develop novel therapeutics for this disease. The present study aims to prioritize novel broad-spectrum targets using proteomics and protein-protein interaction network (PPIN) data for 11 Leishmania species. Proteome comparison and host non-homology analysis resulted in 3605 pathogen-specific conserved core proteins. Gene ontology analysis indicated their involvement in major molecular functions like DNA binding, transportation, dioxygenase, and catalytic activity. PPIN analysis of these core proteins identified eight hub proteins (viz., vesicle-trafficking protein (LBRM2903_190011800), ribosomal proteins S17 (LBRM2903_34004790) and L2 (LBRM2903_080008100), eukaryotic translation initiation factor 3 (LBRM2903_350086700), replication factor A (LBRM2903_150008000), U3 small nucleolar RNA-associated protein (LBRM2903_340025600), exonuclease (LBRM2903_200021800), and mitochondrial RNA ligase (LBRM2903_200074100)). Among the hub proteins, six were classified as drug targets and two as vaccine candidates. Further, druggability analysis indicated three hub proteins, namely eukaryotic translation initiation factor 3, ribosomal proteins S17 and L2 as druggable. Their three-dimensional structures were modelled and docked with the identified ligands (2-methylthio-N6-isopentenyl-adenosine-5'-monophosphate, artenimol and omacetaxine mepesuccinate). These ligands could be experimentally validated (in vitro and in vivo) and repurposed for the development of novel antileishmanial agents.
Collapse
|
24
|
BARRETO ANNAL, ALONSO ARIADNEN, MORAES DANIELCDE, CURVELO JOSÉA, MIRANDA KILDARE, PORTELA MARISTELAB, FERREIRA-PEREIRA ANTÔNIO, SOUTO-PADRÓN THAIS, SOARES ROSANGELAMARIADEA. Anti-Leishmania amazonensis activity of the marine sponge Dercitus (Stoeba) latex (Porifera) from São Pedro and São Paulo Archipelago, Pernambuco, Brazil. AN ACAD BRAS CIENC 2022; 94:e20211090. [DOI: 10.1590/0001-3765202220211090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 11/19/2021] [Indexed: 11/21/2022] Open
Affiliation(s)
- ANNA L.S. BARRETO
- Universidade Federal do Rio de Janeiro, Brazil; Instituto Brasileiro de Medicina de Reabilitação (IBMR), Brazil
| | - ARIADNE N. ALONSO
- Universidade Federal do Rio de Janeiro, Brazil; Laboratório Richet Medicina Diagnóstica, Brazil
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Illa O, Ospina J, Sánchez-Aparicio JE, Pulido X, Abengozar MÁ, Gaztelumendi N, Carbajo D, Nogués C, Rivas L, Maréchal JD, Royo M, Ortuño RM. Hybrid Cyclobutane/Proline-Containing Peptidomimetics: The Conformational Constraint Influences Their Cell-Penetration Ability. Int J Mol Sci 2021; 22:ijms22105092. [PMID: 34065025 PMCID: PMC8151717 DOI: 10.3390/ijms22105092] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 05/06/2021] [Accepted: 05/07/2021] [Indexed: 01/22/2023] Open
Abstract
A new family of hybrid β,γ-peptidomimetics consisting of a repetitive unit formed by a chiral cyclobutane-containing trans-β-amino acid plus a Nα-functionalized trans-γ-amino-l-proline joined in alternation were synthesized and evaluated as cell penetrating peptides (CPP). They lack toxicity on the human tumoral cell line HeLa, with an almost negligible cell uptake. The dodecapeptide showed a substantial microbicidal activity on Leishmania parasites at 50 µM but with a modest intracellular accumulation. Their previously published γ,γ-homologues, with a cyclobutane γ-amino acid, showed a well-defined secondary structure with an average inter-guanidinium distance of 8–10 Å, a higher leishmanicidal activity as well as a significant intracellular accumulation. The presence of a very rigid cyclobutane β-amino acid in the peptide backbone precludes the acquisition of a defined conformation suitable for their cell uptake ability. Our results unveiled the preorganized charge-display as a relevant parameter, additional to the separation among the charged groups as previously described. The data herein reinforce the relevance of these descriptors in the design of CPPs with improved properties.
Collapse
Affiliation(s)
- Ona Illa
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (J.O.); (J.-E.S.-A.); (J.-D.M.)
- Correspondence: (O.I.); (M.R.); (R.M.O.)
| | - Jimena Ospina
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (J.O.); (J.-E.S.-A.); (J.-D.M.)
| | - José-Emilio Sánchez-Aparicio
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (J.O.); (J.-E.S.-A.); (J.-D.M.)
| | - Ximena Pulido
- Institut de Recerca Biomèdica, c/Baldiri Reixac 10, 08028 Barcelona, Spain;
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), c/ Jordi Girona 18–26, 08034 Barcelona, Spain
- Departamento de Química, Universidad del Tolima, Santa Helena Parte Alta, Ibagué 730006299, Tolima, Colombia
| | - María Ángeles Abengozar
- Centro de Investigaciones Biológicas Margarita Salas, c/ Ramiro de Maeztu 9, CSIC, 28040 Madrid, Spain; (M.Á.A.); (L.R.)
| | - Nerea Gaztelumendi
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (N.G.); (C.N.)
| | - Daniel Carbajo
- Institut de Química Avançada de Catalunya (IQAC-CSIC), c/ Jordi Girona, 18-26, 08034 Barcelona, Spain;
| | - Carme Nogués
- Departament de Biologia Cellular, Fisiologia i Immunologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (N.G.); (C.N.)
| | - Luis Rivas
- Centro de Investigaciones Biológicas Margarita Salas, c/ Ramiro de Maeztu 9, CSIC, 28040 Madrid, Spain; (M.Á.A.); (L.R.)
| | - Jean-Didier Maréchal
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (J.O.); (J.-E.S.-A.); (J.-D.M.)
| | - Miriam Royo
- Centro de Investigación Biomédica en Red Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), c/ Jordi Girona 18–26, 08034 Barcelona, Spain
- Institut de Química Avançada de Catalunya (IQAC-CSIC), c/ Jordi Girona, 18-26, 08034 Barcelona, Spain;
- Correspondence: (O.I.); (M.R.); (R.M.O.)
| | - Rosa M. Ortuño
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Spain; (J.O.); (J.-E.S.-A.); (J.-D.M.)
- Correspondence: (O.I.); (M.R.); (R.M.O.)
| |
Collapse
|
26
|
Elmahallawy EK, Alkhaldi AAM. Insights into Leishmania Molecules and Their Potential Contribution to the Virulence of the Parasite. Vet Sci 2021; 8:vetsci8020033. [PMID: 33672776 PMCID: PMC7924612 DOI: 10.3390/vetsci8020033] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/11/2021] [Accepted: 02/14/2021] [Indexed: 12/12/2022] Open
Abstract
Neglected parasitic diseases affect millions of people worldwide, resulting in high morbidity and mortality. Among other parasitic diseases, leishmaniasis remains an important public health problem caused by the protozoa of the genus Leishmania, transmitted by the bite of the female sand fly. The disease has also been linked to tropical and subtropical regions, in addition to being an endemic disease in many areas around the world, including the Mediterranean basin and South America. Although recent years have witnessed marked advances in Leishmania-related research in various directions, many issues have yet to be elucidated. The intention of the present review is to give an overview of the major virulence factors contributing to the pathogenicity of the parasite. We aimed to provide a concise picture of the factors influencing the reaction of the parasite in its host that might help to develop novel chemotherapeutic and vaccine strategies.
Collapse
Affiliation(s)
- Ehab Kotb Elmahallawy
- Department of Zoonoses, Faculty of Veterinary Medicine, Sohag University, Sohag 82524, Egypt
- Correspondence: (E.K.E.); (A.A.M.A.)
| | - Abdulsalam A. M. Alkhaldi
- Biology Department, College of Science, Jouf University, Sakaka, Aljouf 2014, Saudi Arabia
- Correspondence: (E.K.E.); (A.A.M.A.)
| |
Collapse
|
27
|
Detection of Metalloproteases and Cysteine Proteases RNA Transcripts of Leishmania (Leishmania) infantum in Ear Edge Skin of Naturally Infected Dogs. BIOMED RESEARCH INTERNATIONAL 2020; 2020:2615787. [PMID: 32685457 PMCID: PMC7333044 DOI: 10.1155/2020/2615787] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/12/2020] [Accepted: 05/26/2020] [Indexed: 12/03/2022]
Abstract
Leishmania spp. proteases have been proposed as virulence factors contributing to adaptive success these parasites to the mammalian hosts. Since these enzymes are poorly studied in naturally infected dogs, this work aims to show the differences in metalloprotease and cysteine proteases gene expression in ear edge skin of dogs naturally infected by Leishmania (Leishmania) infantum. A cohort of dogs (n = 20) naturally infected by L. (L.) infantum was clinically classified as asymptomatic, oligosymptomatic, and polysymptomatic and the parasite load range estimated. The analysis of proteases expression by RT-PCR in the ear edge skin was also assessed, suggesting more transcripts of proteases in cDNA samples from polysymptomatic dogs than oligosymptomatic and asymptomatic ones. Metalloprotease RT-PCR assays yielded products (202 bp) in all assessed cDNA dog samples. In contrast, cysteine proteases transcripts (227 bp) had shown to be better detected in cDNA samples of polysymptomatic dogs, compared with cDNA samples from asymptomatic and oligosymptomatic dogs. Predictive in silico assays suggested that secondary structures of metalloproteasee mRNAs can be more stable than cysteine proteases at the skin temperature of dogs. Evidence is presented that during natural infection of dogs by L. (L.) infantum, this parasite produces transcripts of metalloprotease and cysteine protease RNA in the skin from asymptomatic, oligosymptomatic, and polysymptomatic dogs.
Collapse
|
28
|
Costa CA, Lopes RM, Ferraz LS, Esteves GN, Di Iorio JF, Souza AA, de Oliveira IM, Manarin F, Judice WA, Stefani HA, Rodrigues T. Cytotoxicity of 4-substituted quinoline derivatives: Anticancer and antileishmanial potential. Bioorg Med Chem 2020; 28:115511. [DOI: 10.1016/j.bmc.2020.115511] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Revised: 04/08/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022]
|
29
|
de Oliveira VVG, Aranda de Souza MA, Cavalcanti RRM, de Oliveira Cardoso MV, Leite ACL, da Silva Junior VA, de Figueiredo RCBQ. Study of in vitro biological activity of thiazoles on Leishmania (Leishmania) infantum. J Glob Antimicrob Resist 2020; 22:414-421. [PMID: 32165288 DOI: 10.1016/j.jgar.2020.02.028] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 12/18/2019] [Accepted: 02/22/2020] [Indexed: 01/13/2023] Open
Abstract
OBJECTIVES In the prospection of possible agents against neglected diseases, thiazole compounds are presented as promising candidates and are known to have activity against trypanosomatid parasites. Thus, this work aimed to evaluate the effects of thiazole compounds on Leishmania infantum, the aetiological agent of visceral leishmaniasis. METHODS Thiazole compounds (five thiazoacetylpyridines [TAPs-01, -04, -05, -06, -09) and five thiazopyridines [TPs-01, -04, -05, -06, -09]) were tested regarding their leishmanicidal activity on both promastigote and amastigote forms of L. infantum. Cytotoxicity was tested using peritoneal macrophages of BALB/c mice. Ultrastructural analyses were performed to identify possible intracellular targets of the most effective compound on promastigote forms. To observe routes that can clarify the possible mechanism of action of the compounds on the intracellular amastigote forms, the nitrite dosage was performed. RESULTS All compounds inhibited the growth of promastigote and presented low cytotoxicity, being more selective to the parasite than to mammalian cells. All compounds tested were able to decrease macrophage infection. There was a significant decrease in the survival rate of the amastigote when compared with the untreated cells, with TAP-04 presenting the best index. TAP-04 induced ultrastructural changes that are related to cell death by apoptosis. None of the macrophage groups infected with L. infantum and subsequently treated showed increased nitrite release. CONCLUSIONS The low toxicity to mammalian cells and the leishmanicidal activity observed demonstrate that the synthesis of drugs based in thiosemicarbazone nucleus, thiazole and pyridine derivatives are promising for the treatment of visceral leishmaniasis.
Collapse
Affiliation(s)
- Vinícius Vasconcelos Gomes de Oliveira
- Departamento de Morfologia e Fisiologia Animal, Universidade Federal Rural de Pernambuco (UFRPE), Recife, Brazil; Centro Acadêmico de Vitória, Universidade Federal de Pernambuco (UFPE), Vitória de Santo Antão, Brazil.
| | - Mary Angela Aranda de Souza
- Departamento de Microbiologia, Centro de Pesquisas Aggeu Magalhães, Universidade Federal de Pernambuco (UFPE), Recife, Brazil
| | | | | | - Ana Cristina Lima Leite
- Departamento de Ciências Farmacêuticas, Centro de Ciências da Saúde, Universidade Federal de Pernambuco, Recife, Brazil
| | | | | |
Collapse
|
30
|
Ribeiro PAF, Vale DL, Dias DS, Lage DP, Mendonça DVC, Ramos FF, Carvalho LM, Carvalho AMRS, Steiner BT, Roque MC, Oliveira-da-Silva JA, Oliveira JS, Tavares GSV, Galvani NC, Martins VT, Chávez-Fumagalli MA, Roatt BM, Moreira RLF, Menezes-Souza D, Oliveira MC, Machado-de-Ávila RA, Teixeira AL, Coelho EAF. Leishmania infantum amastin protein incorporated in distinct adjuvant systems induces protection against visceral leishmaniasis. Cytokine 2020; 129:155031. [PMID: 32062145 DOI: 10.1016/j.cyto.2020.155031] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 01/21/2020] [Accepted: 02/06/2020] [Indexed: 12/31/2022]
Abstract
The control measures against visceral leishmaniasis (VL) include a precise diagnosis of disease, the treatment of human cases, and reservoir and vector controls. However, these are insufficient to avoid the spread of the disease in specific countries worldwide. As a consequence, prophylactic vaccination could be interesting, although no effective candidate against human disease is available. In the present study, the Leishmania infantum amastin protein was evaluated regarding its immunogenicity and protective efficacy against experimental VL. BALB/c mice immunized with subcutaneous injections of the recombinant protein with or without liposome/saponin (Lip/Sap) as an adjuvant. After immunization, half of the animals per group were euthanized and immunological evaluations were performed, while the others were challenged with L. infantum promastigotes. Forty-five days after infection, the animals were euthanized and parasitological and immunological evaluations were performed. Results showed the development of a Th1-type immune response in rAmastin-Lip and rAmastin-Sap/vaccinated mice, before and after infection, which was based on the production of protein and parasite-specific IFN-γ, IL-12, GM-CSF, and nitrite, as well as the IgG2a isotype antibody. CD4+ T cells were mainly responsible for IFN-γ production in vaccinated mice, which also presented significant reductions in parasitism in their liver, spleen, draining lymph nodes, and bone marrow. In addition, PBMC cultures of treated VL patients and healthy subjects stimulated with rAmastin showed lymphoproliferation and higher IFN-γ production. In conclusion, the present study shows the first case of an L. infantum amastin protein associated with distinct delivery systems inducing protection against L. infantum infection and demonstrates an immunogenic effect of this protein in human cells.
Collapse
Affiliation(s)
- Patrícia A F Ribeiro
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Danniele L Vale
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniel S Dias
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Daniela P Lage
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Débora V C Mendonça
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Fernanda F Ramos
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Lívia M Carvalho
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Ana Maria R S Carvalho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bethina T Steiner
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Santa Catarina, Brazil
| | - Marjorie C Roque
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - João A Oliveira-da-Silva
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Jamil S Oliveira
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Grasiele S V Tavares
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Nathália C Galvani
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Vívian T Martins
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Miguel A Chávez-Fumagalli
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil
| | - Bruno M Roatt
- Laboratório de Imunopatologia, Núcleo de Pesquisas em Ciências Biológicas/NUPEB, Departamento de Ciências Biológicas, Insituto de Ciências Exatas e Biológicas, Universidade Federal de Ouro Preto, Ouro Preto, Minas Gerais, Brazil
| | - Ricardo L F Moreira
- Fundação Hospitalar do Estado de Minas Gerais, Hospital Eduardo de Menezes, Belo Horizonte 30622-020, Minas Gerais, Brazil
| | - Daniel Menezes-Souza
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Mônica C Oliveira
- Departamento de Produtos Farmacêuticos, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil
| | - Ricardo A Machado-de-Ávila
- Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, Criciúma 88806-000, Santa Catarina, Brazil
| | - Antônio L Teixeira
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Neuropsychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Eduardo A F Coelho
- Programa de Pós-Graduação em Ciências da Saúde: Infectologia e Medicina Tropical, Faculdade de Medicina, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Departamento de Patologia Clínica, COLTEC, Universidade Federal de Minas Gerais, Av. Antônio Carlos, 6627, 31270-901 Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
31
|
Grewal JS, Catta-Preta CM, Brown E, Anand J, Mottram JC. Evaluation of clan CD C11 peptidase PNT1 and other Leishmania mexicana cysteine peptidases as potential drug targets. Biochimie 2019; 166:150-160. [DOI: 10.1016/j.biochi.2019.08.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 08/26/2019] [Indexed: 10/26/2022]
|
32
|
da Silva RE, Sampaio BM, Tonhosolo R, da Costa APR, da Silva Costa LE, Nieri-Bastos FA, Sperança MA, Marcili A. Exploring Leishmania infantum cathepsin as a new molecular marker for phylogenetic relationships and visceral leishmaniasis diagnosis. BMC Infect Dis 2019; 19:895. [PMID: 31660874 PMCID: PMC6819481 DOI: 10.1186/s12879-019-4463-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 09/11/2019] [Indexed: 12/22/2022] Open
Abstract
Background Leishmania infantum, the etiological agent of visceral leishmaniasis, is a neglected zoonosis that requires validation and standardization of satisfactory diagnostic methodologies. Thus, the aim of the present study was to evaluate the effectiveness of cathepsin L-like protease as a target for making molecular diagnoses and as a phylogenetic marker enabling to understand the intraspecies variations and evolutionary history of L. infantum in Brazil. Methods We used 44 isolates of L. infantum. The cathepsin L-like gene fragments were amplified, sequenced, manually aligned and analyzed using inference methods. The sequences generated were used to search and design oligonucleotide primers to be used in reactions specific to the target parasite. Results The cathepsin L-like gene did not show any intraspecies variability among the isolates analyzed. The pair of primers proposed amplified the target deoxyribonucleic acid (DNA) of L. infantum isolates and were effective for DNA amplification at concentrations of as low as 10− 11 ng/μl. The proposed marker did not present cross-reactions with other hemoparasites. When used for making the diagnosis in a panel of clinical samples from dogs, a positivity rate of 49.03% (102/208) was obtained, versus 14.42% (30/208) for a ribosomal internal transcribed spacer (ITS) marker. In samples from sandflies, the rate was 6.25% and from humans, 14.28%. Conclusions The results described in this work allow us to infer that CatLeish-PCR is a sensitive and specific marker for use in diagnostic trials of L. infantum and in clinical and epidemiological surveys.
Collapse
Affiliation(s)
- Ryan Emiliano da Silva
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, SP, 05508-270, Brazil
| | - Bruna Matarucco Sampaio
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, SP, 05508-270, Brazil
| | - Renata Tonhosolo
- Faculdade de Medicina, Universidade Santo Amaro, São Paulo, SP, Brazil
| | | | - Luiz Eduardo da Silva Costa
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, SP, 05508-270, Brazil
| | - Fernanda Ap Nieri-Bastos
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, SP, 05508-270, Brazil
| | - Márcia Aparecida Sperança
- Ciência Animal, Universidade Estadual do Maranhão, São Luís, MA, Brazil.,Centro de Ciências Naturais e Humanas, Universidade Federal do ABC, São Bernardo do Campo, SP, Brazil
| | - Arlei Marcili
- Departamento de Medicina Veterinária Preventiva e Saúde Animal, Faculdade de Medicina Veterinária e Zootecnia, Universidade de São Paulo, Av. Prof. Dr. Orlando Marques de Paiva, 87, São Paulo, SP, 05508-270, Brazil. .,Medicina Veterinária e Bem estar animal, Universidade Santo Amaro, São Paulo, SP, Brazil.
| |
Collapse
|
33
|
Kazemirad E, Reisi Nafchi H, Latifi A, Raoofian R, Mohebali M, Hajjaran H. Comparison of Cysteine Protease B Gene Expression between Clinical Isolates of Leishmania tropica, Leishmania major and Leishmania infantum. JOURNAL OF MEDICAL MICROBIOLOGY AND INFECTIOUS DISEASES 2019. [DOI: 10.29252/jommid.7.3.72] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
34
|
Abstract
Background Leishmania development in the sand fly gut leads to highly infective forms called metacyclic promastigotes. This process can be routinely mimicked in culture. Gene expression–profiling studies by transcriptome analysis have been performed with the aim of studying promastigote forms in the sand fly gut, as well as differences between sand fly–and culture-derived promastigotes. Findings Transcriptome analysis has revealed the crucial role of the microenvironment in parasite development within the sand fly gut because substantial differences and moderate correlation between the transcriptomes of cultured and sand fly–derived promastigotes have been found. Sand fly–derived metacyclics are more infective than metacyclics in culture. Therefore, some caution should be exercised when using cultured promastigotes, depending on the experimental design. The most remarkable examples are the hydrophilic acidic surface protein/small endoplasmic reticulum protein (HASP/SHERP) cluster, the glycoprotein 63 (gp63), and autophagy genes, which are up-regulated in sand fly–derived promastigotes compared with cultured promastigotes. Because HASP/SHERP genes are up-regulated in nectomonad and metacyclic promastigotes in the sand fly, the encoded proteins are not metacyclic specific. Metacyclic promastigotes are distinguished by morphology and high infectivity. Isolating them from the sand fly gut is not exempt from technical difficulty, because other promastigote forms remain in the gut even 15 days after infection. Leishmania major procyclic promastigotes within the sand fly gut up-regulate genes involved in cell cycle regulation and glucose catabolism, whereas metacyclics increase transcript levels of fatty acid biosynthesis and ATP-coupled proton transport genes. Most parasite's signal transduction pathways remain uncharacterized. Future elucidation may improve understanding of parasite development, particularly signaling molecule-encoding genes in sand fly versus culture and between promastigote forms in the sand fly gut. Conclusions Transcriptome analysis has been demonstrated to be technically efficacious to study differential gene expression in sand fly gut promastigote forms. Transcript and protein levels are not well correlated in these organisms (approximately 25% quantitative coincidences), especially under stress situations and at differentiation processes. However, transcript and protein levels behave similarly in approximately 60% of cases from a qualitative point of view (increase, decrease, or no variation). Changes in translational efficiency observed in other trypanosomatids strongly suggest that the differences are due to translational regulation and regulation of the steady-state protein levels. The lack of low-input sample strategies does not allow translatome and proteome analysis of sand fly–derived promastigotes so far.
Collapse
|
35
|
Kariyawasam R, Mukkala AN, Lau R, Valencia BM, Llanos-Cuentas A, Boggild AK. Virulence factor RNA transcript expression in the Leishmania Viannia subgenus: influence of species, isolate source, and Leishmania RNA virus-1. Trop Med Health 2019; 47:25. [PMID: 31007536 PMCID: PMC6458769 DOI: 10.1186/s41182-019-0153-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Leishmania RNA virus-1 (LRV1) is a double-stranded RNA virus identified in 20-25% of Viannia-species endemic to Latin America, and is believed to accelerate cutaneous to mucosal leishmaniasis over time. Our objective was to quantify known virulence factor (VF) RNA transcript expression according to LRV1 status, causative species, and isolate source. METHODS Eight cultured isolates of Leishmania were used, four of which were LRV1-positive (Leishmania Viannia braziliensis [n = 1], L. (V.) guyanensis [n = 1], L. (V.) panamensis [n = 2]), and four were LRV1-negative (L. (V.) panamensis [n = 3], L. (V.) braziliensis [n = 1]). Promastigotes were inoculated into macrophage cultures, and harvested at 24 and 48 h. RNA transcript expression of hsp23, hsp70, hsp90, hsp100, mpi, cpb, and gp63 were quantified by qPCR. RESULTS RNA transcript expression of hsp100 (p = 0.012), cpb (p = 0.016), and mpi (p = 0.022) showed significant increases from baseline pure culture expression to 24- and 48-h post-macrophage infection, whereas hsp70 (p = 0.004) was significantly decreased. A trend toward increased transcript expression of hsp100 at baseline in isolates of L. (V.) panamensis was noted. Pooled VF RNA transcript expression by L. (V.) panamensis isolates was lower than that of L. (V.) braziliensis and L. (V.) guyananesis at 24 h (p = 0.03). VF RNA transcript expression did not differ by LRV1 status, or source of cultured isolate at baseline, 24, or 48 h; however, a trend toward increased VF RNA transcript expression of 2.71- and 1.93-fold change of mpi (p = 0.11) and hsp90 (p = 0.11), respectively, in LRV1 negative isolates was noted. Similarly, a trend toward lower levels of overall VF RNA transcript expression in clinical isolates (1.15-fold change) compared to ATCC® strains at 24 h was noted (p = 0.07). CONCLUSIONS Our findings suggest that known VF RNA transcript expression may be affected by the process of macrophage infection. We were unable to demonstrate definitively that LRV-1 presence affected VF RNA transcript expression in the species and isolates studied. L. (V.) guyanensis and L. (V.) braziliensis demonstrated higher pooled VF RNA transcript expression than L. (V.) panamensis; however, further analyses of protein expression to corroborate this finding are warranted.
Collapse
Affiliation(s)
| | - Avinash N. Mukkala
- Institute of Medical Sciences, University of Toronto, Toronto, ON Canada
| | - Rachel Lau
- Public Health Ontario Laboratory, Toronto, ON Canada
| | - Braulio M. Valencia
- Instituto de Medicina Tropical “Alejandro von Humboldt”, Lima, Peru
- Viral Immunology Systems Program, Kirby Institute, University of New South Wales, Sydney, Australia
| | - Alejandro Llanos-Cuentas
- Instituto de Medicina Tropical “Alejandro von Humboldt”, Lima, Peru
- Facultad de Salud Pública y Administración, Universidad Peruana Cayetano Heredia, Lima, Peru
| | - Andrea K. Boggild
- Institute of Medical Sciences, University of Toronto, Toronto, ON Canada
- Public Health Ontario Laboratory, Toronto, ON Canada
- Department of Medicine, University of Toronto, Toronto, ON Canada
- Tropical Disease Unit, Toronto General Hospital, 200 Elizabeth Street, 13EN-218, Toronto, ON M5G 2C4 Canada
| |
Collapse
|
36
|
Furanchalcone–biphenyl hybrids: synthesis, in silico studies, antitrypanosomal and cytotoxic activities. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02323-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
37
|
Christensen SM, Belew AT, El-Sayed NM, Tafuri WL, Silveira FT, Mosser DM. Host and parasite responses in human diffuse cutaneous leishmaniasis caused by L. amazonensis. PLoS Negl Trop Dis 2019; 13:e0007152. [PMID: 30845223 PMCID: PMC6405045 DOI: 10.1371/journal.pntd.0007152] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 01/11/2019] [Indexed: 02/01/2023] Open
Abstract
Diffuse cutaneous leishmaniasis (DCL) is a rare form of leishmaniasis where parasites grow uncontrolled in diffuse lesions across the skin. Meta-transcriptomic analysis of biopsies from DCL patients infected with Leishmania amazonensis demonstrated an infiltration of atypical B cells producing a surprising preponderance of the IgG4 isotype. DCL lesions contained minimal CD8+ T cell transcripts and no evidence of persistent TH2 responses. Whereas localized disease exhibited activated (so-called M1) macrophage presence, transcripts in DCL suggested a regulatory macrophage (R-Mϕ) phenotype with higher levels of ABCB5, DCSTAMP, SPP1, SLAMF9, PPARG, MMPs, and TM4SF19. The high levels of parasite transcripts in DCL and the remarkable uniformity among patients afforded a unique opportunity to study parasite gene expression in this disease. Patterns of parasite gene expression in DCL more closely resembled in vitro parasite growth in resting macrophages, in the absence of T cells. In contrast, parasite gene expression in LCL revealed 336 parasite genes that were differently upregulated, relative to DCL and in vitro macrophage growth, and these transcripts may represent transcripts that are produced by the parasite in response to host immune pressure.
Collapse
Affiliation(s)
- Stephen M. Christensen
- Department of Cell Biology and Molecular Genetics and the Maryland Pathogen Research Institute, University of Maryland, College Park, MD United States of America
| | - Ashton T. Belew
- Department of Cell Biology and Molecular Genetics and the Maryland Pathogen Research Institute, University of Maryland, College Park, MD United States of America
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD United States of America
| | - Najib M. El-Sayed
- Department of Cell Biology and Molecular Genetics and the Maryland Pathogen Research Institute, University of Maryland, College Park, MD United States of America
- Center for Bioinformatics and Computational Biology, University of Maryland, College Park, MD United States of America
| | - Wagner L. Tafuri
- Departamento de Patologia Geral, Universidade Federal de Minas Geras, Belo Horizonte, Brazil
| | - Fernando T. Silveira
- Evandro Chagas Institute, Tropical Medicine Nucleus, Federal University of Pará, Belém, PA Brazil
| | - David M. Mosser
- Department of Cell Biology and Molecular Genetics and the Maryland Pathogen Research Institute, University of Maryland, College Park, MD United States of America
| |
Collapse
|
38
|
Shadab M, Das S, Banerjee A, Sinha R, Asad M, Kamran M, Maji M, Jha B, Deepthi M, Kumar M, Tripathi A, Kumar B, Chakrabarti S, Ali N. RNA-Seq Revealed Expression of Many Novel Genes Associated With Leishmania donovani Persistence and Clearance in the Host Macrophage. Front Cell Infect Microbiol 2019; 9:17. [PMID: 30805314 PMCID: PMC6370631 DOI: 10.3389/fcimb.2019.00017] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Accepted: 01/17/2019] [Indexed: 12/14/2022] Open
Abstract
Host- as well as parasite-specific factors are equally crucial in allowing either the Leishmania parasites to dominate, or host macrophages to resist infection. To identify such factors, we infected murine peritoneal macrophages with either the virulent (vAG83) or the non-virulent (nvAG83) parasites of L. donovani. Then, through dual RNA-seq, we simultaneously elucidated the transcriptomic changes occurring both in the host and the parasites. Through Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis of the differentially expressed (DE) genes, we showed that the vAG83-infected macrophages exhibit biased anti-inflammatory responses compared to the macrophages infected with the nvAG83. Moreover, the vAG83-infected macrophages displayed suppression of many important cellular processes, including protein synthesis. Further, through protein-protein interaction study, we showed significant downregulation in the expression of many hubs and hub-bottleneck genes in macrophages infected with vAG83 as compared to nvAG83. Cell signaling study showed that these two parasites activated the MAPK and PI3K-AKT signaling pathways differentially in the host cells. Through gene ontology analyses of the parasite-specific genes, we discovered that the genes for virulent factors and parasite survival were significantly upregulated in the intracellular amastigotes of vAG83. In contrast, genes involved in the immune stimulations, and those involved in negative regulation of the cell cycle and transcriptional regulation, were upregulated in the nvAG83. Collectively, these results depicted a differential regulation in the host and the parasite-specific molecules during in vitro persistence and clearance of the parasites.
Collapse
Affiliation(s)
- Mohammad Shadab
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Sonali Das
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Anindyajit Banerjee
- Structural Biology and Bio-Informatics Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Roma Sinha
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Mohammad Asad
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Mohd Kamran
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Mithun Maji
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Baijayanti Jha
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Makaraju Deepthi
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| | | | | | - Bipin Kumar
- Nucleome Informatics Pvt. Ltd., Hyderabad, India
| | - Saikat Chakrabarti
- Structural Biology and Bio-Informatics Division, Indian Institute of Chemical Biology, Kolkata, India
| | - Nahid Ali
- Infectious Diseases and Immunology Division, Indian Institute of Chemical Biology, Kolkata, India
| |
Collapse
|
39
|
Halliday C, Billington K, Wang Z, Madden R, Dean S, Sunter JD, Wheeler RJ. Cellular landmarks of Trypanosoma brucei and Leishmania mexicana. Mol Biochem Parasitol 2018; 230:24-36. [PMID: 30550896 PMCID: PMC6529878 DOI: 10.1016/j.molbiopara.2018.12.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Revised: 12/08/2018] [Accepted: 12/10/2018] [Indexed: 11/29/2022]
Abstract
Trypanosoma and Leishmania are single cell eukaryotic parasites. The cell organisation of these human pathogens is complex and highly structured. This describes an inventory of reliable reference markers for 32 cell structures. These light microscopy landmarks are a valuable resource for researchers.
The kinetoplastids Trypanosoma brucei and Leishmania mexicana are eukaryotes with a highly structured cellular organisation that is reproduced with great fidelity in each generation. The pattern of signal from a fluorescently tagged protein can define the specific structure/organelle that this protein localises to, and can be extremely informative in phenotype analysis in experimental perturbations, life cycle tracking, post-genomic assays and functional analysis of organelles. Using the vast coverage of protein subcellular localisations provided by the TrypTag project, an ongoing project to determine the localisation of every protein encoded in the T. brucei genome, we have generated an inventory of reliable reference organelle markers for both parasites that combines epifluorescence images with a detailed description of the key features of each localisation. We believe this will be a useful comparative resource that will enable researchers to quickly and accurately pinpoint the localisation of their proteins of interest and will provide cellular markers for many types of cell biology studies. We see this as another important step in the post-genomic era analyses of these parasites, in which ever expanding datasets generate numerous candidates to analyse. Adoption of these reference proteins by the community is likely to enhance research studies and enable better comparison of data.
Collapse
Affiliation(s)
- Clare Halliday
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK; Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK
| | - Karen Billington
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Ziyin Wang
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Ross Madden
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | - Samuel Dean
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK.
| | - Jack Daniel Sunter
- Department of Biological and Medical Sciences, Oxford Brookes University, Gipsy Lane, Oxford, OX3 0BP, UK.
| | - Richard John Wheeler
- The Peter Medawar Building for Pathogen Research, University of Oxford, South Parks Road, Oxford, OX1 3SY, UK.
| |
Collapse
|
40
|
Siqueira-Neto JL, Debnath A, McCall LI, Bernatchez JA, Ndao M, Reed SL, Rosenthal PJ. Cysteine proteases in protozoan parasites. PLoS Negl Trop Dis 2018; 12:e0006512. [PMID: 30138453 PMCID: PMC6107107 DOI: 10.1371/journal.pntd.0006512] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Cysteine proteases (CPs) play key roles in the pathogenesis of protozoan parasites, including cell/tissue penetration, hydrolysis of host or parasite proteins, autophagy, and evasion or modulation of the host immune response, making them attractive chemotherapeutic and vaccine targets. This review highlights current knowledge on clan CA cysteine proteases, the best-characterized group of cysteine proteases, from 7 protozoan organisms causing human diseases with significant impact: Entamoeba histolytica, Leishmania species (sp.), Trypanosoma brucei, T. cruzi, Cryptosporidium sp., Plasmodium sp., and Toxoplasma gondii. Clan CA proteases from three organisms (T. brucei, T. cruzi, and Plasmodium sp.) are well characterized as druggable targets based on in vitro and in vivo models. A number of candidate inhibitors are under development. CPs from these organisms and from other protozoan parasites should be further characterized to improve our understanding of their biological functions and identify novel targets for chemotherapy.
Collapse
Affiliation(s)
- Jair L. Siqueira-Neto
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| | - Anjan Debnath
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Laura-Isobel McCall
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Jean A. Bernatchez
- Center for Discovery and Innovation in Parasitic Diseases, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, California, United States of America
| | - Momar Ndao
- National Reference Centre for Parasitology, The Research Institute of the McGill University Health Center, Montreal, Canada
- Program in Infectious Diseases and Immunity in Global Health, The Research Institute of the McGill University Health Centre, Montreal, Quebec, Canada
| | - Sharon L. Reed
- Departments of Pathology and Medicine, University of California San Diego School of Medicine, La Jolla, California, United States of America
| | - Philip J. Rosenthal
- Department of Medicine, University of California, San Francisco, San Francisco, California, United States of America
| |
Collapse
|
41
|
Kelner A, Tinti M, Guther MLS, Foth BJ, Chappell L, Berriman M, Cowling VH, Ferguson MAJ. The mRNA cap methyltransferase gene TbCMT1 is not essential in vitro but is a virulence factor in vivo for bloodstream form Trypanosoma brucei. PLoS One 2018; 13:e0201263. [PMID: 30040830 PMCID: PMC6057678 DOI: 10.1371/journal.pone.0201263] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/11/2018] [Indexed: 01/16/2023] Open
Abstract
Messenger RNA is modified by the addition of a 5' methylated cap structure, which protects the transcript and recruits protein complexes that mediate RNA processing and/or the initiation of translation. Two genes encoding mRNA cap methyltransferases have been identified in T. brucei: TbCMT1 and TbCGM1. Here we analysed the impact of TbCMT1 gene deletion on bloodstream form T. brucei cells. TbCMT1 was dispensable for parasite proliferation in in vitro culture. However, significantly decreased parasitemia was observed in mice inoculated with TbCMT1 null and conditional null cell lines. Using RNA-Seq, we observed that several cysteine peptidase mRNAs were downregulated in TbCMT1 null cells lines. The cysteine peptidase Cathepsin-L was also shown to be reduced at the protein level in TbCMT1 null cell lines. Our data suggest that TbCMT1 is not essential to bloodstream form T. brucei growth in vitro or in vivo but that it contributes significantly to parasite virulence in vivo.
Collapse
Affiliation(s)
- Anna Kelner
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michele Tinti
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Maria Lucia S. Guther
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | | | - Lia Chappell
- The Wellcome Trust Sanger Institute, Hinxton, United Kingdom
| | | | - Victoria Haigh Cowling
- Centre for Gene Regulation and Expression, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Michael A. J. Ferguson
- Wellcome Centre for Anti-Infectives Research, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
42
|
Organometallic compounds in the discovery of new agents against kinetoplastid-caused diseases. Eur J Med Chem 2018; 155:459-482. [PMID: 29908440 DOI: 10.1016/j.ejmech.2018.05.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Revised: 04/21/2018] [Accepted: 05/28/2018] [Indexed: 12/16/2022]
Abstract
The development of safe and affordable antiparasitic agents effective against neglected tropical diseases is a big challenge of the drug discovery. The drugs currently employed have limitations such as poor efficacy, drug resistance or side effects. Thus, the search for new promising drugs is more and more crucial. Metal complexes and, in particular, organometallic compounds may expand the list of the drug candidates due to the peculiar attributes that the presence of the metal core add to the organic fragment (e.g., redox and structural features, ability to interact with DNA or protein targets, etc.). To date, most organometallic compounds tested as anti-neglected tropical diseases are based on similarities or activity of the organic ligands against other diseases or parasites and/or consist in modification of existing drugs combining the features of the metal moiety and the organic ligands. This review focuses on recent studies (2012-2017) on organometallic compounds in treating kinetoplastid-caused diseases such as Human African trypanosomiasis, Chagas disease and leishmaniasis. This field of research, however, still lacks exhaustive studies to identify of parasitic targets and quantitative structure-activity relationships for a rational drug design.
Collapse
|
43
|
Mao F, Lin Y, He Z, Li J, Xiang Z, Zhang Y, Yu Z. Dual roles of cystatin A in the immune defense of the pacific oyster, Crassostrea gigas. FISH & SHELLFISH IMMUNOLOGY 2018; 75:190-197. [PMID: 29407615 DOI: 10.1016/j.fsi.2018.01.041] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2017] [Revised: 01/12/2018] [Accepted: 01/25/2018] [Indexed: 06/07/2023]
Abstract
Cystatins are a large family of the proteins that function as reversible and tight-binding inhibitors of cysteine proteases, which consequently regulate multiple physiological activities including apoptosis and innate immunity. In the present study, we cloned a gene from Crassostrea gigas encoding cystatin, which is related to cystatin A superfamily. CgCytA was comprised of a cystatin-like domain with two conserved glycine residues (GG) near the N-terminal and a highly conserved glutamine-valine-glycine (Q-X-V-X-G) motif in the form of QVVAG loop. Transcription analysis of CgCytA indicated its constitutive expression in all tissues including mantle, gill, digestive tract, hemocytes, heart, adductor muscle, and gonads. Immune challenge with Vibrio alginolyticus, resulted in significant down-regulation of CgCytA expression at the initial stages of infection (till 12 h post infection) and the expression of cystatin increased 48 h post infection. Protease assay demonstrated the concentration of cystatin needed to inhibit half of the maximum biological response of cysteine protease is 14.4 μg/L (IC50). Furthermore, RNAi of CgCytA resulted in increase of apoptotic cell population in hemocytes of C. gigas, suggesting protection role of CgCytA from hemocytes apoptosis. Unexpectedly, knockdown of CgCytA leaded to enhancement of bacterial clearance in vivo, implying that CgCytA may negatively regulate immune defense by suppressing endogenous cysteine protease. Therefore, CgCytA plays dual roles in protection of host hemocytes from apoptosis and control of bacterial clearance, which may server as one of key endogenous balancer between apoptosis and innate immunity in oyster.
Collapse
Affiliation(s)
- Fan Mao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yue Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhiying He
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jun Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, China
| | - Zhiming Xiang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, China
| | - Yang Zhang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, China.
| | - Ziniu Yu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Science, Guangzhou 510301, China.
| |
Collapse
|
44
|
de Rezende E, Kawahara R, Peña MS, Palmisano G, Stolf BS. Quantitative proteomic analysis of amastigotes from Leishmania (L.) amazonensis LV79 and PH8 strains reveals molecular traits associated with the virulence phenotype. PLoS Negl Trop Dis 2017; 11:e0006090. [PMID: 29176891 PMCID: PMC5720813 DOI: 10.1371/journal.pntd.0006090] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2017] [Revised: 12/07/2017] [Accepted: 11/01/2017] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND Leishmaniasis is an antropozoonosis caused by Leishmania parasites that affects around 12 million people in 98 different countries. The disease has different clinical forms, which depend mainly on the parasite genetics and on the immunologic status of the host. The promastigote form of the parasite is transmitted by an infected female phlebotomine sand fly, is internalized by phagocytic cells, mainly macrophages, and converts into amastigotes which replicate inside these cells. Macrophages are important cells of the immune system, capable of efficiently killing intracellular pathogens. However, Leishmania can evade these mechanisms due to expression of virulence factors. Different strains of the same Leishmania species may have different infectivity and metastatic phenotypes in vivo, and we have previously shown that analysis of amastigote proteome can give important information on parasite infectivity. Differential abundance of virulence factors probably accounts for the higher virulence of PH8 strain parasites shown in this work. In order to test this hypothesis, we have quantitatively compared the proteomes of PH8 and LV79 lesion-derived amastigotes using a label-free proteomic approach. METHODOLOGY/PRINCIPAL FINDINGS In the present work, we have compared lesion development by L. (L.) amazonensis PH8 and LV79 strains in mice, showing that they have different virulence in vivo. Viability and numbers of lesion-derived amastigotes were accordingly significantly different. Proteome profiles can discriminate parasites from the two strains and several proteins were differentially expressed. CONCLUSIONS/SIGNIFICANCE This work shows that PH8 strain is more virulent in mice, and that lesion-derived parasites from this strain are more viable and more infective in vitro. Amastigote proteome comparison identified GP63 as highly expressed in PH8 strain, and Superoxide Dismutase, Tryparedoxin Peroxidase and Heat Shock Protein 70 as more abundant in LV79 strain. The expression profile of all proteins and of the differential ones precisely classified PH8 and LV79 samples, indicating that the two strains have proteins with different abundances and that proteome profiles correlate with their phenotypes.
Collapse
Affiliation(s)
- Eloiza de Rezende
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Rebeca Kawahara
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Mauricio S. Peña
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Giuseppe Palmisano
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Beatriz S. Stolf
- Department of Parasitology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- * E-mail:
| |
Collapse
|
45
|
Agbowuro AA, Huston WM, Gamble AB, Tyndall JDA. Proteases and protease inhibitors in infectious diseases. Med Res Rev 2017; 38:1295-1331. [PMID: 29149530 DOI: 10.1002/med.21475] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2017] [Revised: 09/10/2017] [Accepted: 10/17/2017] [Indexed: 12/31/2022]
Abstract
There are numerous proteases of pathogenic organisms that are currently targeted for therapeutic intervention along with many that are seen as potential drug targets. This review discusses the chemical and biological makeup of some key druggable proteases expressed by the five major classes of disease causing agents, namely bacteria, viruses, fungi, eukaryotes, and prions. While a few of these enzymes including HIV protease and HCV NS3-4A protease have been targeted to a clinically useful level, a number are yet to yield any clinical outcomes in terms of antimicrobial therapy. A significant aspect of this review discusses the chemical and pharmacological characteristics of inhibitors of the various proteases discussed. A total of 25 inhibitors have been considered potent and safe enough to be trialed in humans and are at different levels of clinical application. We assess the mechanism of action and clinical performance of the protease inhibitors against infectious agents with their developmental strategies and look to the next frontiers in the use of protease inhibitors as anti-infective agents.
Collapse
Affiliation(s)
| | - Wilhelmina M Huston
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, Australia
| | - Allan B Gamble
- School of Pharmacy, University of Otago, Dunedin, New Zealand
| | | |
Collapse
|
46
|
Bomfim LGS, Magalhães LS, Santos-Filho MAA, Peres NTA, Corrêa CB, Tanajura DM, Silva AM, Lipscomb MW, Borges VM, Jesus AR, Almeida RP, de Moura TR. Leishmania infantum Induces the Release of sTREM-1 in Visceral Leishmaniasis. Front Microbiol 2017; 8:2265. [PMID: 29201022 PMCID: PMC5696592 DOI: 10.3389/fmicb.2017.02265] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2017] [Accepted: 11/02/2017] [Indexed: 01/01/2023] Open
Abstract
Visceral leishmaniasis (VL) is a systemic transmissible disease that remains to be a major global health problem. The inflammatory response during VL is characterized by the release of several cytokines and other pro-inflammatory mediators. Triggering Receptor Expressed on Myeloid Cells (TREM) are a group of evolutionarily conserved membrane-bound surface receptors expressed on neutrophils and monocytes. Engagement of TREM-1 directs intracellular signaling events that drive cytokine production, degranulation, and phagocytosis. In certain inflammatory-associated diseases, TREM-1 can also be found as a soluble form (sTREM-1), which can negatively regulate TREM-1 receptor signaling. In these studies, we now find that high levels of circulating sTREM-1 correlate directly with VL disease severity. In particular, high levels of sTREM-1 were observed in non-survivor VL patients. Furthermore, these levels of sTREM-1 positively correlated with liver size and negatively correlated with leukocyte counts and hemoglobin concentration. Moreover, we found that neutrophils exposure in vitro to Leishmania infantum modulates TREM-1, DAP12, and IL-8 gene expression, while also increasing release of sTREM-1. Finally, results revealed that higher sTREM-1 levels are associated with increasing parasite ratio. Taken together, these studies suggest that L. infantum may modulate TREM-1 in neutrophils and high levels of this molecule is associated with severe VL.
Collapse
Affiliation(s)
- Lays G S Bomfim
- Laboratório de Biologia Molecular-Hospital Universitário, Universidade Federal de Sergipe-Aracaju, Sergipe, Brazil
| | - Lucas S Magalhães
- Laboratório de Biologia Molecular-Hospital Universitário, Universidade Federal de Sergipe-Aracaju, Sergipe, Brazil
| | - Marcello A A Santos-Filho
- Laboratório de Biologia Molecular-Hospital Universitário, Universidade Federal de Sergipe-Aracaju, Sergipe, Brazil
| | - Nalu T A Peres
- Laboratório de Biologia Molecular-Hospital Universitário, Universidade Federal de Sergipe-Aracaju, Sergipe, Brazil
| | - Cristiane B Corrêa
- Laboratório de Biologia Molecular-Hospital Universitário, Universidade Federal de Sergipe-Aracaju, Sergipe, Brazil
| | - Diego M Tanajura
- Laboratório de Biologia Molecular-Hospital Universitário, Universidade Federal de Sergipe-Aracaju, Sergipe, Brazil
| | - Angela M Silva
- Laboratório de Biologia Molecular-Hospital Universitário, Universidade Federal de Sergipe-Aracaju, Sergipe, Brazil
| | | | - Valéria M Borges
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz, Salvador, Brazil
| | - Amélia R Jesus
- Laboratório de Biologia Molecular-Hospital Universitário, Universidade Federal de Sergipe-Aracaju, Sergipe, Brazil
| | - Roque P Almeida
- Laboratório de Biologia Molecular-Hospital Universitário, Universidade Federal de Sergipe-Aracaju, Sergipe, Brazil
| | - Tatiana R de Moura
- Laboratório de Biologia Molecular-Hospital Universitário, Universidade Federal de Sergipe-Aracaju, Sergipe, Brazil
| |
Collapse
|
47
|
Aoki JI, Muxel SM, Zampieri RA, Laranjeira-Silva MF, Müller KE, Nerland AH, Floeter-Winter LM. RNA-seq transcriptional profiling of Leishmania amazonensis reveals an arginase-dependent gene expression regulation. PLoS Negl Trop Dis 2017; 11:e0006026. [PMID: 29077741 PMCID: PMC5678721 DOI: 10.1371/journal.pntd.0006026] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 11/08/2017] [Accepted: 10/10/2017] [Indexed: 01/01/2023] Open
Abstract
Background Leishmania is a protozoan parasite that alternates its life cycle between the sand-fly vector and the mammalian host. This alternation involves environmental changes and leads the parasite to dynamic modifications in morphology, metabolism, cellular signaling and regulation of gene expression to allow for a rapid adaptation to new conditions. The L-arginine pathway in L. amazonensis is important during the parasite life cycle and interferes in the establishment and maintenance of the infection in mammalian macrophages. Host arginase is an immune-regulatory enzyme that can reduce the production of nitric oxide by activated macrophages, directing the availability of L-arginine to the polyamine pathway, resulting in parasite replication. In this work, we performed transcriptional profiling to identify differentially expressed genes in L. amazonensis wild-type (La-WT) versus L. amazonensis arginase knockout (La-arg-) promastigotes and axenic amastigotes. Methodology/Principal findings A total of 8253 transcripts were identified in La-WT and La-arg- promastigotes and axenic amastigotes, about 60% of them codifying hypothetical proteins and 443 novel transcripts, which did not match any previously annotated genes. Our RNA-seq data revealed that 85% of genes were constitutively expressed. The comparison of transcriptome and metabolome data showed lower levels of arginase and higher levels of glutamate-5-kinase in La-WT axenic amastigotes compared to promastigotes. The absence of arginase activity in promastigotes increased the levels of pyrroline 5-carboxylate reductase, but decreased the levels of arginosuccinate synthase, pyrroline 5-carboxylate dehydrogenase, acetylornithine deacetylase and spermidine synthase transcripts levels. These observations can explain previous metabolomic data pointing to the increase of L-arginine, citrulline and L-glutamate and reduction of aspartate, proline, ornithine and putrescine. Altogether, these results indicate that arginase activity is important in Leishmania gene expression modulation during differentiation and adaptation to environmental changes. Here, we confirmed this hypothesis with the identification of differential gene expression of the enzymes involved in biosynthesis of amino acids, arginine and proline metabolism and arginine biosynthesis. Conclusions/Significance All data provided information about the transcriptomic profiling and the expression levels of La-WT and La-arg- promastigotes and axenic amastigotes. These findings revealed the importance of arginase in parasite survival and differentiation, and indicated the existence of a coordinated response in the absence of arginase activity related to arginine and polyamine pathways. Leishmania are auxotrophic for many essential nutrients, including amino acids. In this way, the parasite needs to uptake the amino acids from the environment. The uptake of amino acids is mediated by amino acid transporters that are unique for Leishmania. As part of polyamine pathway, the arginase converts L-arginine to ornithine and furthermore to putrescine, products which are essential for parasite growth. On the other hand, the absence of arginase activity could alter the metabolism of the parasite to surpass the external signals during the life cycle and the fate of infection. The transcriptional profiling of La-WT and La-arg- promastigotes and axenic amastigotes revealed 8253 transcripts, 60% encoding hypothetical proteins and 443 novel transcripts. In addition, our data revealed that 85% of the genes were constitutively expressed. Among the 15% (1268 genes) of the differentially expressed genes, we identified genes up- and down-regulated comparing the transcript abundance from different life cycle stages of the parasite and in the presence or absence of arginase. We also combined the transcriptional with metabolic profile that revealed a proportional correlation between enzyme and metabolites in the polyamine pathway. The differentiation of promastigotes to amastigotes alters the expression of enzymes from polyamines biosynthesis, which modulates ornithine, L-glutamate, proline and putrescine levels. In addition, the absence of arginase activity increased the levels of L-arginine, citrulline and L-glutamate and decreased the levels of aspartate, proline, ornithine and putrescine in promastigotes by differential modulation of genes involved in its metabolism. Altogether these data provided additional insights into how Leishmania is able to modulate its biological functions in the presence or absence of arginase activity to survive during environmental changes.
Collapse
Affiliation(s)
- Juliana Ide Aoki
- Department of Physiology, Institute of Bioscience, University of Sao Paulo, Sao Paulo, Brazil
- * E-mail: (JIA); (LMFW)
| | - Sandra Marcia Muxel
- Department of Physiology, Institute of Bioscience, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | - Karl Erik Müller
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | | | - Lucile Maria Floeter-Winter
- Department of Physiology, Institute of Bioscience, University of Sao Paulo, Sao Paulo, Brazil
- * E-mail: (JIA); (LMFW)
| |
Collapse
|
48
|
Leishmania donovani serine protease encapsulated in liposome elicits protective immunity in experimental visceral leishmaniasis. Microbes Infect 2017; 20:37-47. [PMID: 28970116 DOI: 10.1016/j.micinf.2017.09.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2017] [Revised: 08/22/2017] [Accepted: 09/21/2017] [Indexed: 12/14/2022]
Abstract
This study is aimed to evaluate the protective effect of L. donovani intracellular serine protease (SP-Ld) in combination with Freund's adjuvant and liposomal formulations against experimental visceral leishmaniasis (VL). The animals were immunized with SP-Ld in combination with adjuvant and evaluated for its immunogenicity and protective efficacy against Leishmania donovani. The infection was initially assessed by microscopic examination. Immunogenicity of SP-Ld was measured by detecting protease specific-IgG, IgG1 and IgG2a levels by ELISA. Cytokines levels were measured by ELISA and Reverse Transcription Polymerase Chain Reaction (RT-PCR). The vaccine efficacy of SP-Ld was also evaluated by measuring antibody response and survival potency in hamster model. SP-Ld vaccinated Balb/c mice resulted significant reduction of parasite burden with increased levels of IgG2a and decreased levels of IgG1. SP-Ld vaccination also induced Th1 type immune response with the rise of IL-12, IFN-γ and TNF-α with decreased levels of IL-10 and TGF-β. Importantly, liposomal incorporated SP-Ld exerted better protection rather than in combination with Freund's adjuvant. Additionally, liposome encapsulated SP-Ld vaccinated hamsters continued to survive beyond 8 months against virulent L. donovani post challenge. Overall, these findings demonstrated SP-Ld as an effective immunogen which opens a new perspective for the generation of potential vaccine candidate against leishmaniasis.
Collapse
|
49
|
Otero E, García E, Palacios G, Yepes LM, Carda M, Agut R, Vélez ID, Cardona WI, Robledo SM. Triclosan-caffeic acid hybrids: Synthesis, leishmanicidal, trypanocidal and cytotoxic activities. Eur J Med Chem 2017; 141:73-83. [PMID: 29028533 DOI: 10.1016/j.ejmech.2017.09.064] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 09/27/2017] [Accepted: 09/28/2017] [Indexed: 01/02/2023]
Abstract
The synthesis, cytotoxicity, anti-leishmanial and anti-trypanosomal activities of twelve triclosan-caffeic acid hybrids are described herein. The structure of the synthesized products was elucidated by a combination of spectrometric analyses. The synthesized compounds were evaluated against amastigotes forms of L. (V) panamensis, which is the most prevalent Leishmania species in Colombia, and against Trypanosoma cruzi, which is the pathogenic species to humans. Cytotoxicity was evaluated against human U-937 macrophages. Eight compounds were active against L. (V) panamensis (18-23, 26 and 30) and eight of them against T. cruzi (19-22, 24 and 28-30) with EC50 values lower than 40 μM. Compounds 19-22, 24 and 28-30 showed higher activities than benznidazole (BNZ). Esters 19 and 21 were the most active compounds for both L. (V) panamensis and T. cruzi with 3.82 and 11.65 μM and 8.25 and 8.69 μM, respectively. Compounds 19-22, 24 and 28-30 showed higher activities than benznidazole (BNZ). Most of the compounds showed antiprotozoal activity and with exception of 18, 26 and 28, the remaining compounds were toxic for mammalian cells, yet they have potential to be considered as candidates for anti-trypanosomal and anti-leishmanial drug development. The activity is dependent on the length of the alkyl linker with compound 19, bearing a four-carbon alkyl chain, the most performing hybrid. In general, hydroxyl groups increase both activity and cytotoxicity and the presence of the double bond in the side chain is not decisive for cytotoxicity and anti-protozoal activity.
Collapse
Affiliation(s)
- Elver Otero
- Chemistry of Colombian Plants, Institute of Chemistry, Exact and Natural Sciences School, Universidad de Antioquia-UdeA, Calle 70, No. 52-21, A.A 1226, Medellín, Colombia
| | - Elisa García
- Chemistry of Colombian Plants, Institute of Chemistry, Exact and Natural Sciences School, Universidad de Antioquia-UdeA, Calle 70, No. 52-21, A.A 1226, Medellín, Colombia
| | - Genesis Palacios
- PECET-Medical Research Institute, School of Medicine, Universidad de Antioquia-UdeA, Calle 70, No. 52-21, A.A 1226 Medellín, Colombia
| | - Lina M Yepes
- PECET-Medical Research Institute, School of Medicine, Universidad de Antioquia-UdeA, Calle 70, No. 52-21, A.A 1226 Medellín, Colombia
| | - Miguel Carda
- Department of Inorganic and Organic Chemistry, Jaume I University, E-12071 Castellón, Spain
| | - Raúl Agut
- Department of Inorganic and Organic Chemistry, Jaume I University, E-12071 Castellón, Spain
| | - Iván D Vélez
- PECET-Medical Research Institute, School of Medicine, Universidad de Antioquia-UdeA, Calle 70, No. 52-21, A.A 1226 Medellín, Colombia
| | - Wilson I Cardona
- Chemistry of Colombian Plants, Institute of Chemistry, Exact and Natural Sciences School, Universidad de Antioquia-UdeA, Calle 70, No. 52-21, A.A 1226, Medellín, Colombia.
| | - Sara M Robledo
- PECET-Medical Research Institute, School of Medicine, Universidad de Antioquia-UdeA, Calle 70, No. 52-21, A.A 1226 Medellín, Colombia.
| |
Collapse
|
50
|
García E, Coa JC, Otero E, Carda M, Vélez ID, Robledo SM, Cardona WI. Synthesis and antiprotozoal activity of furanchalcone–quinoline, furanchalcone–chromone and furanchalcone–imidazole hybrids. Med Chem Res 2017. [DOI: 10.1007/s00044-017-2076-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|