1
|
Laganenka L, Schubert C, Sichert A, Kalita I, Barthel M, Nguyen BD, Näf J, Lobriglio T, Sauer U, Hardt WD. Interplay between chemotaxis, quorum sensing, and metabolism regulates Escherichia coli-Salmonella Typhimurium interactions in vivo. PLoS Pathog 2025; 21:e1013156. [PMID: 40315408 PMCID: PMC12074654 DOI: 10.1371/journal.ppat.1013156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 05/13/2025] [Accepted: 04/22/2025] [Indexed: 05/04/2025] Open
Abstract
Motile bacteria use chemotaxis to navigate complex environments like the mammalian gut. These bacteria sense a range of chemoeffector molecules, which can either be of nutritional value or provide a cue for the niche best suited for their survival and growth. One such cue molecule is the intra- and interspecies quorum sensing signaling molecule, autoinducer-2 (AI-2). Apart from controlling collective behavior of Escherichia coli, chemotaxis towards AI-2 contributes to its ability to colonize the murine gut. However, the impact of AI-2-dependent niche occupation by E. coli on interspecies interactions in vivo is not fully understood. Using the C57BL/6J mouse infection model, we show that chemotaxis towards AI-2 contributes to nutrient competition and thereby affects colonization resistance conferred by E. coli against the enteric pathogen Salmonella enterica serovar Typhimurium (S. Tm). Like E. coli, S. Tm also relies on chemotaxis, albeit not towards AI-2, to compete against residing E. coli in a gut inflammation-dependent manner. Finally, utilizing a barcoded S. Tm mutant pool, we investigated the impact of AI-2 signaling in E. coli on carbohydrate utilization and central metabolism of S. Tm. Interestingly, AI-2-dependent niche colonization by E. coli was highly specific, impacting only a limited number of S. Tm mutants at distinct time points during infection. Notably, it significantly altered the fitness of mutants deficient in mannose utilization (ΔmanA, early stage infection) and, to a lesser extent, fumarate respiration (ΔdcuABC, late stage infection). The role of quorum sensing and chemotaxis in metabolic competition among bacteria remains largely unexplored. Here, we provide initial evidence that AI-2-dependent nutrient competition occurs between S. Tm and E. coli at specific time points during infection. These findings represent a crucial step toward understanding how bacteria navigate the gastrointestinal tract and engage in targeted nutrient competition within this complex three-dimensional environment.
Collapse
Affiliation(s)
- Leanid Laganenka
- Institute of Microbiology, D-BIOL, ETH Zurich, Zurich, Switzerland
| | | | - Andreas Sichert
- Institute of Molecular Systems Biology, D-BIOL, ETH Zurich, Zurich, Switzerland
| | - Irina Kalita
- Max Planck Institute for Terrestrial Microbiology and Center for Synthetic Microbiology, Marburg, Germany
| | - Manja Barthel
- Institute of Microbiology, D-BIOL, ETH Zurich, Zurich, Switzerland
| | - Bidong D. Nguyen
- Institute of Microbiology, D-BIOL, ETH Zurich, Zurich, Switzerland
| | - Jana Näf
- Institute of Microbiology, D-BIOL, ETH Zurich, Zurich, Switzerland
| | - Thomas Lobriglio
- Institute of Microbiology, D-BIOL, ETH Zurich, Zurich, Switzerland
| | - Uwe Sauer
- Institute of Molecular Systems Biology, D-BIOL, ETH Zurich, Zurich, Switzerland
| | | |
Collapse
|
2
|
Komikawa T, Okochi M, Tanaka M. Exploration and analytical techniques for membrane curvature-sensing proteins in bacteria. J Bacteriol 2025; 207:e0048224. [PMID: 40135904 PMCID: PMC12004969 DOI: 10.1128/jb.00482-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2025] Open
Abstract
The mechanism by which cells regulate protein localization is an important topic in the field of bacterial biology. In certain instances, the morphology of the biological membrane has been demonstrated to function as a spatial cue for the subcellular localization of proteins. These proteins are capable of sensing membrane curvature and are involved in a number of physiological functions such as cytokinesis and the formation of membrane-bound organelles. This review presents recent advances in the in vitro evaluation of curvature-sensing properties using artificially controlled membranes and purified proteins, as well as microscopic live cell assays. However, these evaluation methodologies often require sophisticated experiments, and the number of identified curvature sensors remains limited. Thus, we present a comprehensive exploration of recently reported curvature-sensing proteins. Subsequently, we summarize the known curvature-sensing proteins in bacteria, in conjunction with the analytical methodologies employed in this field. Finally, future prospects and further requirements in the study of curvature-sensing proteins are discussed.
Collapse
Affiliation(s)
- Takumi Komikawa
- School of Materials and Chemical Technology, Institute of Science Tokyo, Yokohama, Kanagawa, Japan
| | - Mina Okochi
- School of Materials and Chemical Technology, Institute of Science Tokyo, Meguro, Tokyo, Japan
| | - Masayoshi Tanaka
- School of Materials and Chemical Technology, Institute of Science Tokyo, Yokohama, Kanagawa, Japan
| |
Collapse
|
3
|
Albocher-Kedem N, Heidenreich M, Fadel A, Sirotkin E, Goldberger O, Nussbaum-Shochat A, Levy ED, Schueler-Furman O, Schuldiner M, Amster-Choder O. Uncovering the mechanism for polar sequestration of the major bacterial sugar regulator by high-throughput screens and 3D interaction modeling. Cell Rep 2025; 44:115436. [PMID: 40100851 PMCID: PMC11937232 DOI: 10.1016/j.celrep.2025.115436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 12/12/2024] [Accepted: 02/25/2025] [Indexed: 03/20/2025] Open
Abstract
The poles of rod-shaped bacteria emerge as regulatory hubs. We have shown that enzyme I (EI), the major bacterial sugar metabolism regulator, is sequestered when not needed in TmaR phase-separated condensates in Escherichia coli cell poles. Here, we combined genetic and automated microscopy screens to identify residues in EI and TmaR that are important for their interaction and colocalization. Mutating these residues affects EI-TmaR interaction in bacteria and impairs co-phase separation in yeast. The results were used to generate an EI-TmaR interaction model, which agrees with coevolution data and is supported by conservation of the interacting residues and EI-TmaR colocalization in other species. Mutating residues predicted to interact electrostatically further supports our model. The model explains how TmaR controls EI activity and its interaction with the phosphoprotein HPr and, hence, sugar uptake. Our study highlights the importance of sugar metabolism spatial regulation during evolution and presents a way to unravel protein-protein interactions.
Collapse
Affiliation(s)
- Nitsan Albocher-Kedem
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Meta Heidenreich
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Amir Fadel
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Elizabeta Sirotkin
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Omer Goldberger
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Anat Nussbaum-Shochat
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Emmanuel D Levy
- Department of Chemical and Structural Biology, The Weizmann Institute of Science, Rehovot 7610001, Israel; Department of Molecular and Cellular Biology, University of Geneva, Geneva, Switzerland
| | - Ora Schueler-Furman
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel
| | - Maya Schuldiner
- Department of Molecular Genetics, The Weizmann Institute of Science, Rehovot 7610001, Israel
| | - Orna Amster-Choder
- Department of Microbiology and Molecular Genetics, IMRIC, The Hebrew University Faculty of Medicine, Jerusalem 91120, Israel.
| |
Collapse
|
4
|
Munar-Palmer M, Santamaría-Hernando S, Liedtke J, Ortega DR, López-Torrejón G, Rodríguez-Herva JJ, Briegel A, López-Solanilla E. Chemosensory systems interact to shape relevant traits for bacterial plant pathogenesis. mBio 2024; 15:e0087124. [PMID: 38899869 PMCID: PMC11253619 DOI: 10.1128/mbio.00871-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/01/2024] [Indexed: 06/21/2024] Open
Abstract
Chemosensory systems allow bacteria to respond and adapt to environmental conditions. Many bacteria contain more than one chemosensory system, but knowledge of their specific roles in regulating different functions remains scarce. Here, we address this issue by analyzing the function of the F6, F8, and alternative (non-motility) cellular functions (ACF) chemosensory systems of the model plant pathogen Pseudomonas syringae pv. tomato. In this work, we assign PsPto chemoreceptors to each chemosensory system, and we visualize for the first time the F6 and F8 chemosensory systems of PsPto using cryo-electron tomography. We confirm that chemotaxis and swimming motility are controlled by the F6 system, and we demonstrate how different components from the F8 and ACF systems also modulate swimming motility. We also determine how the kinase and response regulators from the F6 and F8 chemosensory systems do not work together in the regulation of biofilm, whereas both components from the ACF system contribute together to regulate these traits. Furthermore, we show how the F6, F8, and ACF kinases interact with the ACF response regulator WspR, supporting crosstalk among chemosensory systems. Finally, we reveal how all chemosensory systems play a role in regulating virulence. IMPORTANCE Chemoperception through chemosensory systems is an essential feature for bacterial survival, as it allows bacterial interaction with its surrounding environment. In the case of plant pathogens, it is especially relevant to enter the host and achieve full virulence. Multiple chemosensory systems allow bacteria to display a wider plasticity in their response to external signals. Here, we perform a deep characterization of the F6, F8, and alternative (non-motility) cellular functions chemosensory systems in the model plant pathogen Pseudomonas syringae pv. tomato DC3000. These chemosensory systems regulate key virulence-related traits, like motility and biofilm formation. Furthermore, we unveil an unexpected crosstalk among these chemosensory systems at the level of the interaction between kinases and response regulators. This work shows novel results that contribute to the knowledge of chemosensory systems and their role in functions alternative to chemotaxis.
Collapse
Affiliation(s)
- Martí Munar-Palmer
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Saray Santamaría-Hernando
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
| | - Janine Liedtke
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Davi R. Ortega
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Gema López-Torrejón
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - José Juan Rodríguez-Herva
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| | - Ariane Briegel
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Emilia López-Solanilla
- Centro de Biotecnología y Genómica de Plantas, Universidad Politécnica de Madrid (UPM)–Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA-CSIC), Madrid, Spain
- Departamento de Biotecnología-Biología Vegetal, Escuela Técnica Superior de Ingeniería Agronómica, Alimentaria y de Biosistemas, Universidad Politécnica de Madrid (UPM), Madrid, Spain
| |
Collapse
|
5
|
Wang Y, Li X, Zhang G, Bi J, Hou H. Transcriptome Reveals Regulation of Quorum Sensing of Hafnia alvei H4 on the Coculture System of Hafnia alvei H4 and Pseudomonas fluorescens ATCC13525. Foods 2024; 13:336. [PMID: 38275703 PMCID: PMC10815324 DOI: 10.3390/foods13020336] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/16/2024] [Accepted: 01/19/2024] [Indexed: 01/27/2024] Open
Abstract
In the food industry, foodborne spoilage bacteria often live in mixed species and attach to each other, leading to changes in spoilage characteristics. Quorum sensing (QS) has been reported to be a regulating mechanism for food spoiling by certain kinds of bacteria. Here, the contents of biofilm, extracellular polysaccharides, and biogenic amines in the coculture system of Hafnia alvei H4 and Pseudomonas fluorescens ATCC13525 were significantly reduced when the QS element of H. alvei H4 was deleted, confirming that QS of H. alvei H4 is involved in the dual-species interactions. Then, transcriptomics was used to explore the regulatory mechanism at the mRNA molecular level. The deletion of the QS element decreased the transcript levels of genes related to chemotaxis, flagellar assembly, and the two-component system pathway of H. alvei H4 in the coculture system. Furthermore, a total of 732 DEGs of P. fluorescens ATCC13525 were regulated in the dual species, which were primarily concerned with biofilm formation, ATP-binding cassette transporters, and amino acid metabolism. Taken together, the absence of the QS element of H. alvei H4 weakened the mutual cooperation of the two bacteria in the coculture system, making it a good target for managing infection with H. alvei and P. fluorescens.
Collapse
Affiliation(s)
- Yanan Wang
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.W.); (X.L.); (G.Z.); (J.B.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China
| | - Xue Li
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.W.); (X.L.); (G.Z.); (J.B.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China
| | - Gongliang Zhang
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.W.); (X.L.); (G.Z.); (J.B.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China
| | - Jingran Bi
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.W.); (X.L.); (G.Z.); (J.B.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China
| | - Hongman Hou
- School of Food Science and Technology, Dalian Polytechnic University, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China; (Y.W.); (X.L.); (G.Z.); (J.B.)
- Liaoning Key Lab for Aquatic Processing Quality and Safety, No. 1 Qinggongyuan, Ganjingzi District, Dalian 116034, China
| |
Collapse
|
6
|
Muljadi M, Fu YC, Cheng CM. Understanding the Cell's Response to Chemical Signals: Utilisation of Microfluidic Technology in Studies of Cellular and Dictyostelium discoideum Chemotaxis. MICROMACHINES 2022; 13:1737. [PMID: 36296089 PMCID: PMC9611482 DOI: 10.3390/mi13101737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/11/2022] [Accepted: 10/11/2022] [Indexed: 06/16/2023]
Abstract
Cellular chemotaxis has been the subject of a variety of studies due to its relevance in physiological processes, disease pathogenesis, and systems biology, among others. The migration of cells towards a chemical source remains a closely studied topic, with the Boyden chamber being one of the earlier techniques that has successfully studied cell chemotaxis. Despite its success, diffusion chambers such as these presented a number of problems, such as the quantification of many aspects of cell behaviour, the reproducibility of procedures, and measurement accuracy. The advent of microfluidic technology prompted more advanced studies of cell chemotaxis, usually involving the social amoeba Dictyostelium discoideum (D. discoideum) as a model organism because of its tendency to aggregate towards chemotactic agents and its similarities to higher eukaryotes. Microfluidic technology has made it possible for studies to look at chemotactic properties that would have been difficult to observe using classic diffusion chambers. Its flexibility and its ability to generate consistent concentration gradients remain some of its defining aspects, which will surely lead to an even better understanding of cell migratory behaviour and therefore many of its related biological processes. This paper first dives into a brief introduction of D. discoideum as a social organism and classical chemotaxis studies. It then moves to discuss early microfluidic devices, before diving into more recent and advanced microfluidic devices and their use with D. discoideum. The paper then closes with brief opinions about research progress in the field and where it will possibly lead in the future.
Collapse
Affiliation(s)
- Michael Muljadi
- International Intercollegiate Ph.D. Program, National Tsing Hua University, Hsinchu 30013, Taiwan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Yi-Chen Fu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| | - Chao-Min Cheng
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu 300, Taiwan
| |
Collapse
|
7
|
Yang W, Briegel A. Diversity of Bacterial Chemosensory Arrays. Trends Microbiol 2019; 28:68-80. [PMID: 31473052 DOI: 10.1016/j.tim.2019.08.002] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Revised: 07/15/2019] [Accepted: 08/01/2019] [Indexed: 02/01/2023]
Abstract
Chemotaxis is crucial for the survival of bacteria, and the signaling systems associated with it exhibit a high level of evolutionary conservation. The architecture of the chemosensory array and the signal transduction mechanisms have been extensively studied in Escherichia coli. More recent studies have revealed a vast diversity of the chemosensory system among bacteria. Unlike E. coli, some bacteria assemble more than one chemosensory array and respond to a broader spectrum of environmental and internal stimuli. These chemosensory arrays exhibit a great variability in terms of protein composition, cellular localization, and functional variability. Here, we present recent findings that emphasize the extent of diversity in chemosensory arrays and highlight the importance of studying chemosensory arrays in bacteria other than the common model organisms.
Collapse
Affiliation(s)
- Wen Yang
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Ariane Briegel
- Institute of Biology, Leiden University, Leiden, The Netherlands.
| |
Collapse
|
8
|
Huang YT, Cheng JF, Wu ZY, Tung KC, Chen YJ, Hong YK, Chen SY, Liu PY. Genomic and phylogenetic characterization of Shewanella xiamenensis isolated from giant grouper (Epinephelus lanceolatus) in Taiwan. Zoonoses Public Health 2019; 66:679-685. [PMID: 30977595 DOI: 10.1111/zph.12580] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 02/16/2019] [Accepted: 03/24/2019] [Indexed: 11/30/2022]
Abstract
Shewanella xiamenensis is an emerging pathogen causing intra-abdominal infection and intestinal colonization. Epidemiologic clues suggest its role as a potential food-borne zoonotic agent. To date, four genome sequences of S. xiamenensis have been made publicly available. All of them were isolated from water samples. In this study, we characterized the genome of a S. xiamenensis strain isolated from a giant grouper in Taiwan. The genome of S. xiamenensis ZYW1 is 4,827,717 bp in length and encodes 4,239 open reading frames. Its genomic sequence shares high homology with other S. xiamenensis strains. blaOXA-416 was identified. This is the first detection of S. xiamenensis in Taiwan. These genomic data and analyses contribute to our understanding of S. xiamenensis and may help to elucidate disease-causing mechanisms in future studies.
Collapse
Affiliation(s)
- Yao-Ting Huang
- Department of Computer Science and Information Engineering, National Chung Cheng University, Chia-Yi, Taiwan
| | - Jan-Fang Cheng
- Department of Energy, Joint Genome Institute, Walnut Creek, California
| | - Zong-Yen Wu
- Department of Energy, Joint Genome Institute, Walnut Creek, California.,Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Kwong-Chung Tung
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Ying-Ju Chen
- Department of Food and Nutrition, Providence University, Taichung, Taiwan
| | - Yu-Kai Hong
- Department of Computer Science and Information Engineering, National Chung Cheng University, Chia-Yi, Taiwan
| | - Shi-Yu Chen
- Department of Computer Science and Information Engineering, National Chung Cheng University, Chia-Yi, Taiwan
| | - Po-Yu Liu
- Department of Optometry, Shu-Zen Junior College of Medicine and Management, Kaohsiung City, Taiwan.,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan.,Ph.D. Program in Translational Medicine, National Chung Hsing University, Taichung, Taiwan.,Division of Infectious Diseases, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung, Taiwan
| |
Collapse
|
9
|
Wu ZY, Ho SP, Cheng JF, Tung KC, Hong YK, Chen SY, Menzer A, Chen YJ, Huang YT, Liu PY. Whole-genome characterization of Shewanella algae strain SYT3 isolated from seawater reveals insight into hemolysis. Future Microbiol 2018; 13:1709-1717. [PMID: 30477345 DOI: 10.2217/fmb-2018-0267] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIM To describe the genomic characteristics of seawater-borne hemolytic Shewanella algae and its resistance genes. MATERIALS & METHODS Whole genome sequence of S. algae SYT3 was determined using llumina MiSeq platform. Multiple-database-based analysis was performed to identify the genetic background of its hemolytic activity and the antibiotic resistance genes. RESULTS S. algae SYT3 possesses a homolog of the hly operon involved in the synthesis of hemolysin. We also identified candidate genes associated with resistance to β-lactam antibiotics (bla OXA-55) and fluoroquinolone (qnrA3). CONCLUSION The study provides an insight into the hemolytic activity of S. algae. Our findings also suggested S. algae as a potential reservoir of antimicrobial resistance determinants.
Collapse
Affiliation(s)
- Zong-Yen Wu
- Department of Energy, Joint Genome Institute, CA 94598, USA.,Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Shu-Peng Ho
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Jan-Fang Cheng
- Department of Energy, Joint Genome Institute, CA 94598, USA
| | - Kwong-Chung Tung
- Department of Veterinary Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Yu-Kai Hong
- Department of Computer Science & Information Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan
| | - Shi-Yu Chen
- Department of Computer Science & Information Engineering, National Chung Cheng University, Chia-Yi 62102, Taiwan
| | - Alexander Menzer
- Department of Hygiene & Infection Prevention, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Ying-Ju Chen
- Department of Food & Nutrition, Providence University, Taichung 43301, Taiwan
| | - Yao-Ting Huang
- Department of Hygiene & Infection Prevention, University Medical Center of the Johannes Gutenberg University Mainz, Mainz 55131, Germany
| | - Po-Yu Liu
- Department of Physical Therapy, Shu-Zen Junior College of Medicine & Management, Kaohsiung City 82144, Taiwan.,Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan.,PhD Program in Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan.,Department of Internal Medicine, Division of Infectious Diseases, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| |
Collapse
|
10
|
Merz GE, Borbat PP, Muok AR, Srivastava M, Bunck DN, Freed JH, Crane BR. Site-Specific Incorporation of a Cu 2+ Spin Label into Proteins for Measuring Distances by Pulsed Dipolar Electron Spin Resonance Spectroscopy. J Phys Chem B 2018; 122:9443-9451. [PMID: 30222354 DOI: 10.1021/acs.jpcb.8b05619] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Pulsed dipolar electron spin resonance spectroscopy (PDS) is a powerful tool for measuring distances in solution-state macromolecules. Paramagnetic metal ions, such as Cu2+, are used as spin probes because they can report on metalloprotein features and can be spectroscopically distinguished from traditional nitroxide (NO)-based labels. Here, we demonstrate site-specific incorporation of Cu2+ into non-metalloproteins through the use of a genetically encodable non-natural amino acid, 3-pyrazolyltyrosine (PyTyr). We first incorporate PyTyr in cyan fluorescent protein to measure Cu2+-to-NO distances and examine the effects of solvent conditions on Cu2+ binding and protein aggregation. We then apply the method to characterize the complex formed by the histidine kinase CheA and its target response regulator CheY. The X-ray structure of CheY-PyTyr confirms Cu labeling at PyTyr but also reveals a secondary Cu site. Cu2+-to-NO and Cu2+-to-Cu2+ PDS measurements of CheY-PyTyr with nitroxide-labeled CheA provide new insights into the conformational landscape of the phosphotransfer complex and have implications for kinase regulation.
Collapse
Affiliation(s)
- Gregory E Merz
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Peter P Borbat
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Alise R Muok
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Madhur Srivastava
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - David N Bunck
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Jack H Freed
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| | - Brian R Crane
- Department of Chemistry and Chemical Biology , Cornell University , Ithaca , New York 14853 , United States
| |
Collapse
|
11
|
Lai RZ, Han XS, Dahlquist FW, Parkinson JS. Paradoxical enhancement of chemoreceptor detection sensitivity by a sensory adaptation enzyme. Proc Natl Acad Sci U S A 2017; 114:E7583-E7591. [PMID: 28827352 PMCID: PMC5594695 DOI: 10.1073/pnas.1709075114] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A sensory adaptation system that tunes chemoreceptor sensitivity enables motile Escherichia coli cells to track chemical gradients with high sensitivity over a wide dynamic range. Sensory adaptation involves feedback control of covalent receptor modifications by two enzymes: CheR, a methyltransferase, and CheB, a methylesterase. This study describes a CheR function that opposes the signaling consequences of its catalytic activity. In the presence of CheR, a variety of mutant serine chemoreceptors displayed up to 40-fold enhanced detection sensitivity to chemoeffector stimuli. This response enhancement effect did not require the known catalytic activity of CheR, but did involve a binding interaction between CheR and receptor molecules. Response enhancement was maximal at low CheR:receptor stoichiometry and quantitative analyses argued against a reversible binding interaction that simply shifts the ON-OFF equilibrium of receptor signaling complexes. Rather, a short-lived CheR binding interaction appears to promote a long-lasting change in receptor molecules, either a covalent modification or conformation that enhances their response to attractant ligands.
Collapse
Affiliation(s)
- Run-Zhi Lai
- Biology Department, University of Utah, Salt Lake City, UT 84112
| | - Xue-Sheng Han
- Biology Department, University of Utah, Salt Lake City, UT 84112
| | - Frederick W Dahlquist
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, CA 93106
| | - John S Parkinson
- Biology Department, University of Utah, Salt Lake City, UT 84112;
| |
Collapse
|
12
|
Neeli-Venkata R, Startceva S, Annila T, Ribeiro AS. Polar Localization of the Serine Chemoreceptor of Escherichia coli Is Nucleoid Exclusion-Dependent. Biophys J 2017; 111:2512-2522. [PMID: 27926852 DOI: 10.1016/j.bpj.2016.10.024] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/28/2016] [Accepted: 10/19/2016] [Indexed: 11/17/2022] Open
Abstract
We studied whether nucleoid exclusion contributes to the segregation and retention of Tsr chemoreceptor clusters at the cell poles. Using live time-lapse, single-cell microscopy measurements, we show that the single-cell spatial distributions of Tsr clusters have heterogeneities and asymmetries that are consistent with nucleoid exclusion and cannot be explained by the diffusion-and-capture mechanism supported by Tol-Pal complexes at the poles. Also, in cells subjected to ampicillin, which enhances relative nucleoid lengths, Tsr clusters locate relatively closer to the cell extremities, whereas in anucleated cells (deletion mutants for mukB), the Tsr clusters are closer to midcell. In addition, we find that the fraction of Tsr clusters at the poles is smaller in deletion mutants for Tol-Pal than in wild-type cells, although it is still larger than would be expected by chance. Also in deletion mutants, the distribution of Tsr clusters differs widely between cells with relatively small and large nucleoids, in a manner consistent with nucleoid exclusion from midcell. This comparison further showed that diffusion-and-capture by Tol-Pal complexes and nucleoid exclusion from the midcell have complementary effects. Subsequently, we subjected deletion mutants to suboptimal temperatures that are known to enhance cytoplasm viscosity, which hampers nucleoid exclusion effects. As the temperature was lowered, the fraction of clusters at the poles decreased linearly. Finally, a stochastic model including nucleoid exclusion at midcell and diffusion-and-capture due to Tol-Pal at the poles is shown to exhibit a cluster dynamics that is consistent with the empirical data. We conclude that nucleoid exclusion also contributes to the preference of Tsr clusters for polar localization.
Collapse
Affiliation(s)
- Ramakanth Neeli-Venkata
- Laboratory of Biosystem Dynamics, Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Sofia Startceva
- Laboratory of Biosystem Dynamics, Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Teppo Annila
- Laboratory of Biosystem Dynamics, Department of Signal Processing, Tampere University of Technology, Tampere, Finland
| | - Andre S Ribeiro
- Laboratory of Biosystem Dynamics, Department of Signal Processing, Tampere University of Technology, Tampere, Finland.
| |
Collapse
|
13
|
Distinct Domains of CheA Confer Unique Functions in Chemotaxis and Cell Length in Azospirillum brasilense Sp7. J Bacteriol 2017; 199:JB.00189-17. [PMID: 28416707 DOI: 10.1128/jb.00189-17] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Accepted: 04/11/2017] [Indexed: 01/15/2023] Open
Abstract
Chemotaxis is the movement of cells in response to gradients of diverse chemical cues. Motile bacteria utilize a conserved chemotaxis signal transduction system to bias their motility and navigate through a gradient. A central regulator of chemotaxis is the histidine kinase CheA. This cytoplasmic protein interacts with membrane-bound receptors, which assemble into large polar arrays, to propagate the signal. In the alphaproteobacterium Azospirillum brasilense, Che1 controls transient increases in swimming speed during chemotaxis, but it also biases the cell length at division. However, the exact underlying molecular mechanisms for Che1-dependent control of multiple cellular behaviors are not known. Here, we identify specific domains of the CheA1 histidine kinase implicated in modulating each of these functions. We show that CheA1 is produced in two isoforms: a membrane-anchored isoform produced as a fusion with a conserved seven-transmembrane domain of unknown function (TMX) at the N terminus and a soluble isoform similar to prototypical CheA. Site-directed and deletion mutagenesis combined with behavioral assays confirm the role of CheA1 in chemotaxis and implicate the TMX domain in mediating changes in cell length. Fluorescence microscopy further reveals that the membrane-anchored isoform is distributed around the cell surface while the soluble isoform localizes at the cell poles. Together, the data provide a mechanism for the role of Che1 in controlling multiple unrelated cellular behaviors via acquisition of a new domain in CheA1 and production of distinct functional isoforms.IMPORTANCE Chemotaxis provides a significant competitive advantage to bacteria in the environment, and this function has been transferred laterally multiple times, with evidence of functional divergence in different genomic contexts. The molecular principles that underlie functional diversification of chemotaxis in various genomic contexts are unknown. Here, we provide a molecular mechanism by which a single CheA protein controls two unrelated functions: chemotaxis and cell length. Acquisition of this multifunctionality is seemingly a recent evolutionary event. The findings illustrate a mechanism by which chemotaxis function may be co-opted to regulate additional cellular functions.
Collapse
|
14
|
Li Z, Cai Q, Zhang X, Si G, Ouyang Q, Luo C, Tu Y. Barrier Crossing in Escherichia coli Chemotaxis. PHYSICAL REVIEW LETTERS 2017; 118:098101. [PMID: 28306307 PMCID: PMC5529051 DOI: 10.1103/physrevlett.118.098101] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2016] [Indexed: 05/03/2023]
Abstract
We study cell navigation in spatiotemporally complex environments by developing a microfluidic racetrack device that creates a traveling wave with multiple peaks and a tunable wave speed. We find that while the population-averaged chemotaxis drift speed increases with wave speed for low wave speed, it decreases sharply for high wave speed. This reversed dependence of population-averaged chemotaxis drift speed on wave speed is caused by a "barrier-crossing" phenomenon, where a cell hops backwards from one peak attractant location to the peak behind by crossing an unfavorable (barrier) region with low attractant concentrations. By using a coarse-grained model of chemotaxis, we map bacterial motility in an attractant field to the random motion of an overdamped particle in an effective potential. The observed barrier-crossing phenomenon of living cells and its dependence on the spatiotemporal profile of attractant concentration are explained quantitatively by Kramers reaction rate theory.
Collapse
Affiliation(s)
- Zhaojun Li
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Qiuxian Cai
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Xuanqi Zhang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Guangwei Si
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Qi Ouyang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- Center for Quantitative Biology, Peking-Tsinghua Center for Life Science, Peking University, Beijing 100871, China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Chunxiong Luo
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- The State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing 100871, China
| | - Yuhai Tu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
- IBM T. J. Watson Research Center, Yorktown Heights, New York 10598, USA
| |
Collapse
|
15
|
Cooperation of two distinct coupling proteins creates chemosensory network connections. Proc Natl Acad Sci U S A 2017; 114:2970-2975. [PMID: 28242706 DOI: 10.1073/pnas.1618227114] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although it is appreciated that bacterial chemotaxis systems rely on coupling, also called scaffold, proteins to both connect input receptors with output kinases and build interkinase connections that allow signal amplification, it is not yet clear why many systems use more than one coupling protein. We examined the distinct functions for multiple coupling proteins in the bacterial chemotaxis system of Helicobacter pylori, which requires two nonredundant coupling proteins for chemotaxis: CheW and CheV1, a hybrid of a CheW and a phosphorylatable receiver domain. We report that CheV1 and CheW have largely redundant abilities to interact with chemoreceptors and the CheA kinase, and both similarly activated CheA's kinase activity. We discovered, however, that they are not redundant for formation of the higher order chemoreceptor arrays that are known to form via CheA-CheW interactions. In support of this possibility, we found that CheW and CheV1 interact with each other and with CheA independent of the chemoreceptors. Therefore, it seems that some microbes have modified array formation to require CheW and CheV1. Our data suggest that multiple coupling proteins may be used to provide flexibility in the chemoreceptor array formation.
Collapse
|
16
|
Fundamental constraints on the abundances of chemotaxis proteins. Biophys J 2016; 108:1293-305. [PMID: 25762341 DOI: 10.1016/j.bpj.2015.01.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 01/25/2015] [Accepted: 01/28/2015] [Indexed: 01/01/2023] Open
Abstract
Flagellated bacteria, such as Escherichia coli, perform directed motion in gradients of concentration of attractants and repellents in a process called chemotaxis. The E. coli chemotaxis signaling pathway is a model for signal transduction, but it has unique features. We demonstrate that the need for fast signaling necessitates high abundances of the proteins involved in this pathway. We show that further constraints on the abundances of chemotaxis proteins arise from the requirements of self-assembly both of flagellar motors and of chemoreceptor arrays. All these constraints are specific to chemotaxis, and published data confirm that chemotaxis proteins tend to be more highly expressed than their homologs in other pathways. Employing a chemotaxis pathway model, we show that the gain of the pathway at the level of the response regulator CheY increases with overall chemotaxis protein abundances. This may explain why, at least in one E. coli strain, the abundance of all chemotaxis proteins is higher in media with lower nutrient content. We also demonstrate that the E. coli chemotaxis pathway is particularly robust to abundance variations of the motor protein FliM.
Collapse
|
17
|
Scheu PD, Steinmetz PA, Dempwolff F, Graumann PL, Unden G. Polar localization of a tripartite complex of the two-component system DcuS/DcuR and the transporter DctA in Escherichia coli depends on the sensor kinase DcuS. PLoS One 2014; 9:e115534. [PMID: 25549248 PMCID: PMC4280142 DOI: 10.1371/journal.pone.0115534] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 11/25/2014] [Indexed: 11/18/2022] Open
Abstract
The C4-dicarboxylate responsive sensor kinase DcuS of the DcuS/DcuR two-component system of E. coli is membrane-bound and reveals a polar localization. DcuS uses the C4-dicarboxylate transporter DctA as a co-regulator forming DctA/DcuS sensor units. Here it is shown by fluorescence microscopy with fusion proteins that DcuS has a dynamic and preferential polar localization, even at very low expression levels. Single assemblies of DcuS had high mobility in fast time lapse acquisitions, and fast recovery in FRAP experiments, excluding polar accumulation due to aggregation. DctA and DcuR fused to derivatives of the YFP protein are dispersed in the membrane or in the cytosol, respectively, when expressed without DcuS, but co-localize with DcuS when co-expressed at appropriate levels. Thus, DcuS is required for location of DctA and DcuR at the poles and formation of tripartite DctA/DcuS/DcuR sensor/regulator complexes. Vice versa, DctA, DcuR and the alternative succinate transporter DauA were not essential for polar localization of DcuS, suggesting that the polar trapping occurs by DcuS. Cardiolipin, the high curvature at the cell poles, and the cytoskeletal protein MreB were not required for polar localization. In contrast, polar localization of DcuS required the presence of the cytoplasmic PAS(C) and the kinase domains of DcuS.
Collapse
Affiliation(s)
- Patrick D. Scheu
- Institute for Microbiology and Wine Research, University of Mainz, Mainz, Germany
| | - Philipp A. Steinmetz
- Institute for Microbiology and Wine Research, University of Mainz, Mainz, Germany
| | - Felix Dempwolff
- Microbiology, Faculty for Biology, University of Freiburg, Freiburg, Germany
| | - Peter L. Graumann
- Microbiology, Faculty for Biology, University of Freiburg, Freiburg, Germany
| | - Gottfried Unden
- Institute for Microbiology and Wine Research, University of Mainz, Mainz, Germany
- * E-mail:
| |
Collapse
|
18
|
Amster-Choder O. The compartmentalized vessel: The bacterial cell as a model for subcellular organization (a tale of two studies). CELLULAR LOGISTICS 2014; 1:77-81. [PMID: 21686257 DOI: 10.4161/cl.1.2.16152] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2011] [Revised: 04/26/2011] [Accepted: 04/26/2011] [Indexed: 12/22/2022]
Abstract
The traditional view of bacterial cells as non-compartmentalized, which is based on the lack of membrane-engulfed organelles, is currently being reassessed. Many studies in recent years led to the realization that bacteria have an intricate internal organization that is vital for various cellular processes. Specifically, various machineries were shown to localize to the poles of rod-shaped bacteria. We have recently shown that the control center of the PTS system, which governs carbon uptake and metabolism, localizes to the poles of E. coli cells. Notably, the machinery that controls bacterial taxis along chemical gradients (chemotaxis) has a similar localization pattern. The fact that the two systems need to communicate in order to generate an optimal metabolic response suggests that their similar spatial organization is not a coincidence. Rather, due to their special characteristics, the poles may function as hubs for signaling systems to allow for efficient crosstalk between different pathways in order to improve coordination of their actions.The regulatory mechanisms that underlie the spatial and temporal organization of microbial cells are largely unknown. Thus far, these mechanisms were believed to rely on embedded features of the localized proteins. In another study, we have recently shown that mRNAs are capable of migrating to particular domains in the bacterial cell where their protein products are required. In contrast to the view that transcription and translation are coupled in bacteria, localization of bacterial transcripts may occur in a translation-independent manner. Hence, it seems that the mechanistic basis for separating transcription and translation is more primitive than assumed up until now. We propose that bacteria synthesize proteins either by a transcription-translation coupled mechanism or by transporting mRNAs away from the transcription apparatus. Obviously, eukaryotic cells rely on the latter mechanism. Hence, the capacity of prokaryotic cells to adopt the division between transcription and translation was a crucial step in the evolution of nucleus-containing cells from the prokaryotic origin. Summarily, the line that separates cells with nucleus and cells without is fading, leading to the realization that bacteria are suitable model organisms for studying universal mechanisms that underlie spatial regulation of cellular processes.
Collapse
Affiliation(s)
- Orna Amster-Choder
- Department of Microbiology and Molecular Genetics; IMRIC; Hadassah Medical School; The Hebrew University; Jerusalem, Israel
| |
Collapse
|
19
|
Briegel A, Ladinsky MS, Oikonomou C, Jones CW, Harris MJ, Fowler DJ, Chang YW, Thompson LK, Armitage JP, Jensen GJ. Structure of bacterial cytoplasmic chemoreceptor arrays and implications for chemotactic signaling. eLife 2014; 3:e02151. [PMID: 24668172 PMCID: PMC3964821 DOI: 10.7554/elife.02151] [Citation(s) in RCA: 77] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Most motile bacteria sense and respond to their environment through a transmembrane chemoreceptor array whose structure and function have been well-studied, but many species also contain an additional cluster of chemoreceptors in their cytoplasm. Although the cytoplasmic cluster is essential for normal chemotaxis in some organisms, its structure and function remain unknown. Here we use electron cryotomography to image the cytoplasmic chemoreceptor cluster in Rhodobacter sphaeroides and Vibrio cholerae. We show that just like transmembrane arrays, cytoplasmic clusters contain trimers-of-receptor-dimers organized in 12-nm hexagonal arrays. In contrast to transmembrane arrays, however, cytoplasmic clusters comprise two CheA/CheW baseplates sandwiching two opposed receptor arrays. We further show that cytoplasmic fragments of normally transmembrane E. coli chemoreceptors form similar sandwiched structures in the presence of molecular crowding agents. Together these results suggest that the 12-nm hexagonal architecture is fundamentally important and that sandwiching and crowding can replace the stabilizing effect of the membrane. DOI:http://dx.doi.org/10.7554/eLife.02151.001 Many bacteria swim through water by rotating tiny hair-like structures called flagella. In E. coli, if all the flagella on the surface of a bacterium rotate in a counterclockwise fashion, then it will swim in a particular direction, but if the flagella all rotate in an clockwise fashion, then the bacterium will stop swimming and start to tumble. Bacteria use a combination of swimming and tumbling in order to move towards or away from certain chemicals. For example, a bacterium is able to move towards a source of nutrients because it is constantly evaluating its environment and will swim forward for longer periods of time when it recognizes the concentration of the nutrient is increasing. And if it senses that the nutrient concentration is decreasing, it will tumble in an effort to move in a different direction. Many bacteria, such as E. coli, rely on proteins in their cell membrane called chemoreceptors to sense specific chemicals and then send signals that tell the flagella how to rotate. These transmembrane receptors and their role in chemotaxis—that is, movement towards or away from specific chemicals in the environment—have been widely studied. However, other bacteria also have chemoreceptors in the cytoplasm inside the bacterial cell, and much less is known about these. Now, Briegel et al. have examined the cytoplasmic chemoreceptors of two unrelated bacteria, R. sphaeroides and V. cholera, and found that the cytoplasmic chemoreceptors arrange themselves in hexagonal arrays, similar to the way that transmembrane chemoreceptors are arranged. However, the cytoplasmic chemoreceptors arrange themselves in a two-layer sandwich-like structure, whereas the transmembrane chemoreceptors are arranged in just one layer. The next step is to understand how chemical binding causes these arrays to send their signals to the motor. A complete understanding of this signaling system may ultimately allow scientists to re-engineer it to draw bacteria to targets of medical or environmental interest, such as cancer cells or contaminated soils. DOI:http://dx.doi.org/10.7554/eLife.02151.002
Collapse
Affiliation(s)
- Ariane Briegel
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
The general phosphotransferase system proteins localize to sites of strong negative curvature in bacterial cells. mBio 2013; 4:e00443-13. [PMID: 24129255 PMCID: PMC3812706 DOI: 10.1128/mbio.00443-13] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The bacterial cell poles are emerging as subdomains where many cellular activities take place, but the mechanisms for polar localization are just beginning to unravel. The general phosphotransferase system (PTS) proteins, enzyme I (EI) and HPr, which control preferential use of carbon sources in bacteria, were recently shown to localize near the Escherichia coli cell poles. Here, we show that EI localization does not depend on known polar constituents, such as anionic lipids or the chemotaxis receptors, and on the cell division machinery, nor can it be explained by nucleoid occlusion or localized translation. Detection of the general PTS proteins at the budding sites of endocytotic-like membrane invaginations in spherical cells and their colocalization with the negative curvature sensor protein DivIVA suggest that geometric cues underlie localization of the PTS system. Notably, the kinetics of glucose uptake by spherical and rod-shaped E. coli cells are comparable, implying that negatively curved “pole-like” sites support not only the localization but also the proper functioning of the PTS system in cells with different shapes. Consistent with the curvature-mediated localization model, we observed the EI protein from Bacillus subtilis at strongly curved sites in both B. subtilis and E. coli. Taken together, we propose that changes in cell architecture correlate with dynamic survival strategies that localize central metabolic systems like the PTS to subcellular domains where they remain active, thus maintaining cell viability and metabolic alertness. Despite their tiny size and the scarcity of membrane-bounded organelles, bacteria are capable of sorting macromolecules to distinct subcellular domains, thus optimizing functionality of vital processes. Understanding the cues that organize bacterial cells should provide novel insights into the complex organization of higher organisms. Previously, we have shown that the general proteins of the phosphotransferase system (PTS) signaling system, which governs utilization of carbon sources in bacteria, localize to the poles of Escherichia coli cells. Here, we show that geometric cues, i.e., strong negative membrane curvature, mediate positioning of the PTS proteins. Furthermore, localization to negatively curved regions seems to support the PTS functionality.
Collapse
|
21
|
Piasta KN, Ulliman CJ, Slivka PF, Crane BR, Falke JJ. Defining a key receptor-CheA kinase contact and elucidating its function in the membrane-bound bacterial chemosensory array: a disulfide mapping and TAM-IDS Study. Biochemistry 2013; 52:3866-80. [PMID: 23668882 DOI: 10.1021/bi400385c] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The three core components of the ubiquitous bacterial chemosensory array - the transmembrane chemoreceptor, the histidine kinase CheA, and the adaptor protein CheW - assemble to form a membrane-bound, hexagonal lattice in which receptor transmembrane signals regulate kinase activity. Both the regulatory domain of the kinase and the adaptor protein bind to overlapping sites on the cytoplasmic tip of the receptor (termed the protein interaction region). Notably, the kinase regulatory domain and the adaptor protein share the same fold constructed of two SH3-like domains. The present study focuses on the structural interface between the receptor and the kinase regulatory domain. Two models have been proposed for this interface: Model 1 is based on the crystal structure of a homologous Thermotoga complex between a receptor fragment and the CheW adaptor protein. This model has been used in current models of chemosensory array architecture to build the receptor-CheA kinase interface. Model 2 is based on a newly determined crystal structure of a homologous Thermotoga complex between a receptor fragment and the CheA kinase regulatory domain. Both models present unique strengths and weaknesses, and current evidence is unable to resolve which model best describes contacts in the native chemosensory arrays of Escherichia coli, Salmonella typhimurium, and other bacteria. Here we employ disulfide mapping and tryptophan and alanine mutation to identify docking sites (TAM-IDS) to test Models 1 and 2 in well-characterized membrane-bound arrays formed from E. coli and S. typhimurium components. The results reveal that the native array interface between the receptor protein interaction region and the kinase regulatory domain is accurately described by Model 2, but not by Model 1. In addition, the results show that the interface possesses both a structural function that contributes to stable CheA kinase binding in the array and a regulatory function central to transmission of the activation signal from receptor to CheA kinase. On-off switching alters the disulfide formation rates of specific Cys pairs at the interface, but not most Cys pairs, indicating that signaling perturbs localized regions of the interface. The findings suggest a simple model for the rearrangement of the interface triggered by the attractant signal and for longer range transmission of the signal in the chemosensory array.
Collapse
Affiliation(s)
- Kene N Piasta
- Department of Chemistry and Biochemistry and the Molecular Biophysics Program, University of Colorado , Boulder, Colorado 80309-0215, United States
| | | | | | | | | |
Collapse
|
22
|
Bhatnagar J, Sircar R, Borbat PP, Freed JH, Crane BR. Self-association of the histidine kinase CheA as studied by pulsed dipolar ESR spectroscopy. Biophys J 2012; 102:2192-201. [PMID: 22824284 DOI: 10.1016/j.bpj.2012.03.038] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2011] [Revised: 02/29/2012] [Accepted: 03/12/2012] [Indexed: 11/26/2022] Open
Abstract
Biologically important protein complexes often involve molecular interactions that are low affinity or transient. We apply pulsed dipolar electron spin resonance spectroscopy and site-directed spin labeling in what to our knowledge is a new approach to study aggregation and to identify regions on protein surfaces that participate in weak, but specific molecular interactions. As a test case, we have probed the self-association of the chemotaxis kinase CheA, which forms signaling clusters with chemoreceptors and the coupling protein CheW at the poles of bacterial cells. By measuring the intermolecular dipolar interactions sensed by spin-labels distributed over the protein surface, we show that the soluble CheA kinase aggregates to a small extent through interactions mediated by its regulatory (P5) domain. Direct dipolar distance measurements confirm that a hydrophobic surface at the periphery of P5 subdomain 2 associates CheA dimers in solution. This result is further supported by differential disulfide cross-linking from engineered cysteine reporter sites. We suggest that the periphery of P5 is an interaction site on CheA for other similar hydrophobic surfaces and plays an important role in structuring the signaling particle.
Collapse
Affiliation(s)
- Jaya Bhatnagar
- Advanced Center for ESR Studies (ACERT), Cornell University, Ithaca, NY, USA
| | | | | | | | | |
Collapse
|
23
|
Schlesner M, Miller A, Besir H, Aivaliotis M, Streif J, Scheffer B, Siedler F, Oesterhelt D. The protein interaction network of a taxis signal transduction system in a halophilic archaeon. BMC Microbiol 2012; 12:272. [PMID: 23171228 PMCID: PMC3579733 DOI: 10.1186/1471-2180-12-272] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 10/20/2012] [Indexed: 11/28/2022] Open
Abstract
Background The taxis signaling system of the extreme halophilic archaeon Halobacterium (Hbt.) salinarum differs in several aspects from its model bacterial counterparts Escherichia coli and Bacillus subtilis. We studied the protein interactions in the Hbt. salinarum taxis signaling system to gain an understanding of its structure, to gain knowledge about its known components and to search for new members. Results The interaction analysis revealed that the core signaling proteins are involved in different protein complexes and our data provide evidence for dynamic interchanges between them. Fifteen of the eighteen taxis receptors (halobacterial transducers, Htrs) can be assigned to four different groups depending on their interactions with the core signaling proteins. Only one of these groups, which contains six of the eight Htrs with known signals, shows the composition expected for signaling complexes (receptor, kinase CheA, adaptor CheW, response regulator CheY). From the two Hbt. salinarum CheW proteins, only CheW1 is engaged in signaling complexes with Htrs and CheA, whereas CheW2 interacts with Htrs but not with CheA. CheY connects the core signaling structure to a subnetwork consisting of the two CheF proteins (which build a link to the flagellar apparatus), CheD (the hub of the subnetwork), two CheC complexes and the receptor methylesterase CheB. Conclusions Based on our findings, we propose two hypotheses. First, Hbt. salinarum might have the capability to dynamically adjust the impact of certain Htrs or Htr clusters depending on its current needs or environmental conditions. Secondly, we propose a hypothetical feedback loop from the response regulator to Htr methylation made from the CheC proteins, CheD and CheB, which might contribute to adaptation analogous to the CheC/CheD system of B. subtilis.
Collapse
Affiliation(s)
- Matthias Schlesner
- Department of Membrane Biochemistry, Max Planck Institute of Biochemistry, Martinsried, Germany.
| | | | | | | | | | | | | | | |
Collapse
|
24
|
Bacterial chemoreceptor arrays are hexagonally packed trimers of receptor dimers networked by rings of kinase and coupling proteins. Proc Natl Acad Sci U S A 2012; 109:3766-71. [PMID: 22355139 DOI: 10.1073/pnas.1115719109] [Citation(s) in RCA: 199] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Chemoreceptor arrays are supramolecular transmembrane machines of unknown structure that allow bacteria to sense their surroundings and respond by chemotaxis. We have combined X-ray crystallography of purified proteins with electron cryotomography of native arrays inside cells to reveal the arrangement of the component transmembrane receptors, histidine kinases (CheA) and CheW coupling proteins. Trimers of receptor dimers lie at the vertices of a hexagonal lattice in a "two-facing-two" configuration surrounding a ring of alternating CheA regulatory domains (P5) and CheW couplers. Whereas the CheA kinase domains (P4) project downward below the ring, the CheA dimerization domains (P3) link neighboring rings to form an extended, stable array. This highly interconnected protein architecture underlies the remarkable sensitivity and cooperative nature of transmembrane signaling in bacterial chemotaxis.
Collapse
|
25
|
Zarbiv G, Li H, Wolf A, Cecchini G, Caplan SR, Sourjik V, Eisenbach M. Energy complexes are apparently associated with the switch-motor complex of bacterial flagella. J Mol Biol 2011; 416:192-207. [PMID: 22210351 DOI: 10.1016/j.jmb.2011.12.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2011] [Revised: 12/12/2011] [Accepted: 12/13/2011] [Indexed: 01/27/2023]
Abstract
Recently, the switch-motor complex of bacterial flagella was found to be associated with a number of non-flagellar proteins, which, in spite of not being known as belonging to the chemotaxis system, affect the function of the flagella. The observation that one of these proteins, fumarate reductase, is essentially involved in electron transport under anaerobic conditions raised the question of whether other energy-linked enzymes are associated with the switch-motor complex as well. Here, we identified two additional such enzymes in Escherichia coli. Employing fluorescence resonance energy transfer in vivo and pull-down assays invitro, we provided evidence for the interaction of F(0)F(1) ATP synthase via its β subunit with the flagellar switch protein FliG and for the interaction of NADH-ubiquinone oxidoreductase with FliG, FliM, and possibly FliN. Furthermore, we measured higher rates of ATP synthesis, ATP hydrolysis, and electron transport from NADH to oxygen in membrane areas adjacent to the flagellar motor than in other membrane areas. All these observations suggest the association of energy complexes with the flagellar switch-motor complex. Finding that deletion of the β subunit in vivo affected the direction of flagellar rotation and switching frequency further implied that the interaction of F(0)F(1) ATP synthase with FliG is important for the function of the switch of bacterial flagella.
Collapse
Affiliation(s)
- Gabriel Zarbiv
- Department of Biological Chemistry, The Weizmann Institute of Science, 76100 Rehovot, Israel
| | | | | | | | | | | | | |
Collapse
|
26
|
Gomez-Valero L, Rusniok C, Cazalet C, Buchrieser C. Comparative and functional genomics of legionella identified eukaryotic like proteins as key players in host-pathogen interactions. Front Microbiol 2011; 2:208. [PMID: 22059087 PMCID: PMC3203374 DOI: 10.3389/fmicb.2011.00208] [Citation(s) in RCA: 121] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 09/23/2011] [Indexed: 11/20/2022] Open
Abstract
Although best known for its ability to cause severe pneumonia in people whose immune defenses are weakened, Legionella pneumophila and Legionella longbeachae are two species of a large genus of bacteria that are ubiquitous in nature, where they parasitize protozoa. Adaptation to the host environment and exploitation of host cell functions are critical for the success of these intracellular pathogens. The establishment and publication of the complete genome sequences of L. pneumophila and L. longbeachae isolates paved the way for major breakthroughs in understanding the biology of these organisms. In this review we present the knowledge gained from the analyses and comparison of the complete genome sequences of different L. pneumophila and L. longbeachae strains. Emphasis is given on putative virulence and Legionella life cycle related functions, such as the identification of an extended array of eukaryotic like proteins, many of which have been shown to modulate host cell functions to the pathogen’s advantage. Surprisingly, many of the eukaryotic domain proteins identified in L. pneumophila as well as many substrates of the Dot/Icm type IV secretion system essential for intracellular replication are different between these two species, although they cause the same disease. Finally, evolutionary aspects regarding the eukaryotic like proteins in Legionella are discussed.
Collapse
Affiliation(s)
- Laura Gomez-Valero
- Institut Pasteur, Unité de Biologie des Bactéries Intracellulaires Paris, France
| | | | | | | |
Collapse
|
27
|
Mutational analysis of N381, a key trimer contact residue in Tsr, the Escherichia coli serine chemoreceptor. J Bacteriol 2011; 193:6452-60. [PMID: 21965562 DOI: 10.1128/jb.05887-11] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Chemoreceptors such as Tsr, the serine receptor, function in trimer-of-dimer associations to mediate chemotactic behavior in Escherichia coli. The two subunits of each receptor homodimer occupy different positions in the trimer, one at its central axis and the other at the trimer periphery. Residue N381 of Tsr contributes to trimer stability through interactions with its counterparts in a central cavity surrounded by hydrophobic residues at the trimer axis. To assess the functional role of N381, we created and characterized a full set of amino acid replacements at this Tsr residue. We found that every amino acid replacement at N381 destroyed Tsr function, and all but one (N381G) of the mutant receptors also blocked signaling by Tar, the aspartate chemoreceptor. Tar jamming reflects the formation of signaling-defective mixed trimers of dimers, and in vivo assays with a trifunctional cross-linking reagent demonstrated trimer-based interactions between Tar and Tsr-N381 mutants. Mutant Tsr molecules with a charged amino acid or proline replacement exhibited the most severe trimer formation defects. These trimer-defective receptors, as well as most of the trimer-competent mutant receptors, were unable to form ternary signaling complexes with the CheA kinase and with CheW, which couples CheA to receptor control. Some of the trimer-competent mutant receptors, particularly those with a hydrophobic amino acid replacement, may not bind CheW/CheA because they form conformationally frozen or distorted trimers. These findings indicate that trimer dynamics probably are important for ternary complex assembly and that N381 may not be a direct binding determinant for CheW/CheA at the trimer periphery.
Collapse
|
28
|
Dwane S, Kiely PA. Tools used to study how protein complexes are assembled in signaling cascades. Bioeng Bugs 2011; 2:247-59. [PMID: 22002082 PMCID: PMC3225741 DOI: 10.4161/bbug.2.5.17844] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2011] [Revised: 08/19/2011] [Accepted: 08/24/2011] [Indexed: 01/08/2023] Open
Abstract
Most proteins do not function on their own but as part of large signaling complexes that are arranged in every living cell in response to specific environmental cues. Proteins interact with each other either constitutively or transiently and do so with different affinity. When identifying the role played by a protein inside a cell, it is essential to define its particular cohort of binding partners so that the researcher can predict what signaling pathways the protein is engaged in. Once identified and confirmed, the information might allow the interaction to be manipulated by pharmacological inhibitors to help fight disease. In this review, we discuss protein-protein interactions and how they are essential to propagate signals in signaling pathways. We examine some of the high-throughput screening methods and focus on the methods used to confirm specific protein-protein interactions including; affinity tagging, co-immunoprecipitation, peptide array technology and fluorescence microscopy.
Collapse
Affiliation(s)
- Susan Dwane
- Department of Life Sciences, and Materials and Surface Science Institute, University of Limerick, Limerick, Ireland
| | | |
Collapse
|
29
|
González D, Lokhande N, Vadde S, Zhao Q, Cassill A, Renthal R. Luminescence resonance energy transfer in the cytoplasm of live Escherichia coli cells. Biochemistry 2011; 50:6789-96. [PMID: 21739954 DOI: 10.1021/bi200779u] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Luminescence resonance energy transfer (LRET) offers many advantages for accurate measurements of distances between specific sites in living cells, but progress in developing a methodology for implementing this technique has been limited. We report here the design, expression, and characterization of a test protein for development of a LRET methodology. The protein, which we call DAL, contains the following domains (from the N-terminus): Escherichia coli dihydrofolate reductase (DHFR), the third and fourth ankyrin repeats of p16(INK4a), a lanthanide-binding tag (LBT), and a hexahistidine tag. LBT binds Tb(3+) with a submicromolar dissociation constant. LRET was measured from the Tb(3+) site on LBT to transition metals bound to the hexa-His tag and to fluorescein methotrexate bound to DHFR. The measured distances were consistent with a molecular model constructed from the known crystal structures of the constituent domains of DAL. The results indicate that the two C-terminal ankyrin domains of p16(INK4a) are stably folded when combined with other protein domains. We found that Tb(3+) binds to DAL in the cytoplasm of live E. coli cells, and thus, DAL is useful as an indicator for studies of metal transport. We also used DAL to measure LRET from Tb(3+) to Cu(2+) in the cytoplasm of live E. coli cells. The rates of Tb(3+) and Cu(2+) transport were not affected by a proton uncoupler or an ATP synthase inhibitor. Reversal of the membrane potential had a small inhibitory effect, and removal of lipopolysaccharide had a small accelerating effect on transport. Changing the external pH from 7 to 5 strongly inhibited the Tb(3+) signal, suggesting that the Tb(3+)-LBT interaction is useful as a cytoplasmic pH indicator in the range of approximately pH 5-6.
Collapse
Affiliation(s)
- Daniel González
- Department of Biology, University of Texas at San Antonio, San Antonio, Texas 78249, United States
| | | | | | | | | | | |
Collapse
|
30
|
Griffiths KK, Zhang J, Cowan AE, Yu J, Setlow P. Germination proteins in the inner membrane of dormant Bacillus subtilis spores colocalize in a discrete cluster. Mol Microbiol 2011; 81:1061-77. [PMID: 21696470 DOI: 10.1111/j.1365-2958.2011.07753.x] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Dormant bacterial spores are extraordinarily resistant to environmental insults and are vectors of various illnesses. However, spores cannot cause disease unless they germinate and become vegetative cells. The molecular details of initiation of germination are not understood, but proteins essential in early stages of germination, such as nutrient germinant receptors (GRs) and GerD, are located in the spore inner membrane. In this study, we examine how these germination proteins are organized in dormant Bacillus subtilis spores by expressing fluorescent protein fusions that were at least partially functional and observing spores by fluorescence microscopy. We show that GRs and GerD colocalize primarily to a single cluster in dormant spores, reminiscent of the organization of chemoreceptor signalling complexes in Escherichia coli. GRs require all their subunits as well as GerD for clustering, and also require diacylglycerol addition to GerD and GRs' C protein subunits. However, different GRs cluster independently of each other, and GerD forms clusters in the absence of all the GRs. We predict that the clusters represent a functional germination unit or 'germinosome' in the spore inner membrane that is necessary for rapid and cooperative response to nutrients, as conditions known to block nutrient germination also disrupt the protein clusters.
Collapse
Affiliation(s)
- Keren K Griffiths
- Department of Molecular, Microbial and Structural Biology Center for Cell Analysis and Modeling, University of Connecticut Health Center, Farmington, CT 06030-3305, USA
| | | | | | | | | |
Collapse
|
31
|
Abstract
Bacterial chemoreceptors, histidine kinase CheA, and coupling protein CheW form clusters of chemotaxis signaling complexes. In signaling complexes kinase activity is enhanced several hundredfold and placed under receptor control. Activation is necessary to poise enzyme activity such that receptor control has physiologically relevant effects. Thus kinase activation can be considered the underlying core activity of signaling complexes. We defined the minimal physical unit that generates this activity using chemoreceptor Tar from Escherichia coli rendered water soluble by insertion into nanodiscs to (i) measure saturable binding of CheA and CheW to the smallest kinase-activating groups of receptor dimers and (ii) purify and characterize core units of signaling complexes. Purified complexes activated kinase almost as well as signaling complexes formed on arrays of receptors in isolated native membrane. Purified complexes contained two receptor trimers of dimers and two CheW for each CheA dimer, consistent with the approximately 1:1 CheACheW ratio determined by binding measurements. The 2:2:1 stoichiometry implied that CheA dimers, the enzymatically active form, connect two chemoreceptor trimers of dimers by interaction of one CheA protomer and a CheW with each trimer, an organization for which specific molecular interactions have previously been identified. The core unit associates six receptor dimers with a CheA dimer, providing sufficient capacity to account for much of the cooperativity and interdimer influence observed experimentally. We conclude that the 221 organization is the core structural and functional unit of chemotaxis signaling complexes and postulate that hexagonal arrays characteristic of signaling complexes are built from this unit.
Collapse
|
32
|
Lateral density of receptor arrays in the membrane plane influences sensitivity of the E. coli chemotaxis response. EMBO J 2011; 30:1719-29. [PMID: 21441899 DOI: 10.1038/emboj.2011.77] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2010] [Accepted: 02/23/2011] [Indexed: 11/08/2022] Open
Abstract
In chemotactic bacteria, transmembrane chemoreceptors, CheA and CheW form the core signalling complex of the chemotaxis sensory apparatus. These complexes are organized in extended arrays in the cytoplasmic membrane that allow bacteria to respond to changes in concentration of extracellular ligands via a cooperative, allosteric response that leads to substantial amplification of the signal induced by ligand binding. Here, we have combined cryo-electron tomographic studies of the 3D spatial architecture of chemoreceptor arrays in intact E. coli cells with computational modelling to develop a predictive model for the cooperativity and sensitivity of the chemotaxis response. The predictions were tested experimentally using fluorescence resonance energy transfer (FRET) microscopy. Our results demonstrate that changes in lateral packing densities of the partially ordered, spatially extended chemoreceptor arrays can modulate the bacterial chemotaxis response, and that information about the molecular organization of the arrays derived by cryo-electron tomography of intact cells can be translated into testable, predictive computational models of the chemotaxis response.
Collapse
|
33
|
Chemoreceptors and flagellar motors are subterminally located in close proximity at the two cell poles in spirochetes. J Bacteriol 2011; 193:2652-6. [PMID: 21441520 DOI: 10.1128/jb.01530-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Green fluorescent protein (GFP) fusions, immunofluorescence microscopy, and cryo-electron tomography revealed that the chemoreceptors of the Lyme disease spirochete Borrelia burgdorferi form long, thin arrays near both cell poles. These arrays are in close proximity to the flagellar motors. This information provides a basis for further understanding motility, chemotaxis, and protein localization in spirochetes.
Collapse
|
34
|
Sensing and adhesion are adaptive functions in the plant pathogenic xanthomonads. BMC Evol Biol 2011; 11:67. [PMID: 21396107 PMCID: PMC3063832 DOI: 10.1186/1471-2148-11-67] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2011] [Accepted: 03/11/2011] [Indexed: 11/26/2022] Open
Abstract
Background Bacterial plant pathogens belonging to the Xanthomonas genus are tightly adapted to their host plants and are not known to colonise other environments. The host range of each strain is usually restricted to a few host plant species. Bacterial strains responsible for the same type of symptoms on the same host range cluster in a pathovar. The phyllosphere is a highly stressful environment, but it provides a selective habitat and a source of substrates for these bacteria. Xanthomonads colonise host phylloplane before entering leaf tissues and engaging in an invasive pathogenic phase. Hence, these bacteria are likely to have evolved strategies to adapt to life in this environment. We hypothesised that determinants responsible for bacterial host adaptation are expressed starting from the establishment of chemotactic attraction and adhesion on host tissue. Results We established the distribution of 70 genes coding sensors and adhesins in a large collection of xanthomonad strains. These 173 strains belong to different pathovars of Xanthomonas spp and display different host ranges. Candidate genes are involved in chemotactic attraction (25 genes), chemical environment sensing (35 genes), and adhesion (10 genes). Our study revealed that candidate gene repertoires comprised core and variable gene suites that likely have distinct roles in host adaptation. Most pathovars were characterized by unique repertoires of candidate genes, highlighting a correspondence between pathovar clustering and repertoires of sensors and adhesins. To further challenge our hypothesis, we tested for molecular signatures of selection on candidate genes extracted from sequenced genomes of strains belonging to different pathovars. We found strong evidence of adaptive divergence acting on most candidate genes. Conclusions These data provide insight into the potential role played by sensors and adhesins in the adaptation of xanthomonads to their host plants. The correspondence between repertoires of sensor and adhesin genes and pathovars and the rapid evolution of sensors and adhesins shows that, for plant pathogenic xanthomonads, events leading to host specificity may occur as early as chemotactic attraction by host and adhesion to tissues.
Collapse
|
35
|
A Ferritin-Based Label for Cellular Electron Cryotomography. Structure 2011; 19:147-54. [DOI: 10.1016/j.str.2010.12.002] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 12/06/2010] [Accepted: 12/10/2010] [Indexed: 11/17/2022]
|
36
|
Massazza DA, Parkinson JS, Studdert CA. Cross-linking evidence for motional constraints within chemoreceptor trimers of dimers. Biochemistry 2011; 50:820-7. [PMID: 21174433 DOI: 10.1021/bi101483r] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Chemotactic behavior in bacteria relies on the sensing ability of large chemoreceptor clusters that are usually located at the cell pole. In Escherichia coli, chemoreceptors exhibit higher-order interactions within those clusters based on a trimer-of-dimers organization. This architecture is conserved in a variety of other bacteria and archaea, implying that receptors in many microorganisms form trimer-of-dimer signaling teams. To gain further insight into the assembly and dynamic behavior of receptor trimers of dimers, we used in vivo cross-linking targeted to cysteine residues at various positions that define six different levels along the cytoplasmic signaling domains of the aspartate and serine chemoreceptors, Tar and Tsr, respectively. We found that the cytoplasmic domains of these receptors are close to each other near the trimer contact region at the cytoplasmic tip and lie farther apart as the receptor dimers approach the cytoplasmic membrane. Tar and Tsr reporter sites within the same or closely adjacent levels readily formed mixed cross-links, whereas reporters located different distances from the tip did not. These findings indicate that there are no significant vertical displacements of one dimer with respect to the others within the trimer unit. Attractant stimuli had no discernible effect on the cross-linking efficiency of any of the reporters tested, but a strong osmotic stimulus reproducibly enhanced cross-linking at most of the reporter sites, indicating that individual dimers may move closer together under this condition.
Collapse
Affiliation(s)
- Diego A Massazza
- Instituto de Investigaciones Biológicas, Universidad Nacional de Mar del Plata, Mar del Plata, Buenos Aires, Argentina
| | | | | |
Collapse
|
37
|
Jefferys SR, Giddings MC. Automated data integration and determination of posttranslational modifications with the protein inference engine. Methods Mol Biol 2011; 694:255-90. [PMID: 21082440 DOI: 10.1007/978-1-60761-977-2_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
This chapter describes using the Protein Inference Engine (PIE) to integrate various types of data--especially top down and bottom up mass spectrometer (MS) data--to describe a protein's posttranslational modifications (PTMs). PTMs include cleavage events such as the n-terminal loss of methionine and residue modifications like phosphorylation. Modifications are key elements in many biological processes, but are difficult to study as no single, general method adequately characterizes a protein's PTMs; manually integrating data from several MS experiments is usually required. The PIE is designed to automate this process using a guess and refine process similar to how an expert manually integrates data. The PIE repeatedly "imagines" a possible modification set, evaluates it using available data, and then tries to improve on it. After many rounds of refinement, the resulting modification set is proposed as a candidate answer. Multiple candidate answers are generated to obtain both best and near-best answers. Near-best answers are crucial in allowing for proteins with more than one supported modification pattern (isoforms) and obtaining robust results given incomplete and inconsistent data.The goal of this chapter is to walk the reader through installing and using the downloadable version of PIE, both in general and by means of a specific, detailed example. The example integrates several types of experimental and background (prior) data. It is not a "perfect-world" scenario, but has been designed to illustrate several real-world difficulties that may be encountered when trying to analyze imperfect data.
Collapse
Affiliation(s)
- Stuart R Jefferys
- Department of Bioinformatics & Computational Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | |
Collapse
|
38
|
Wu K, Walukiewicz HE, Glekas GD, Ordal GW, Rao CV. Attractant binding induces distinct structural changes to the polar and lateral signaling clusters in Bacillus subtilis chemotaxis. J Biol Chem 2010; 286:2587-95. [PMID: 21098025 DOI: 10.1074/jbc.m110.188664] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bacteria employ a modified two-component system for chemotaxis, where the receptors form ternary complexes with CheA histidine kinases and CheW adaptor proteins. These complexes are arranged in semi-ordered arrays clustered predominantly at the cell poles. The prevailing models assume that these arrays are static and reorganize only locally in response to attractant binding. Recent studies have shown, however, that these structures may in fact be much more fluid. We investigated the localization of the chemotaxis signaling arrays in Bacillus subtilis using immunofluorescence and live cell fluorescence microscopy. We found that the receptors were localized in clusters at the poles in most cells. However, when the cells were exposed to attractant, the number exhibiting polar clusters was reduced roughly 2-fold, whereas the number exhibiting lateral clusters distinct from the poles increased significantly. These changes in receptor clustering were reversible as polar localization was reestablished in adapted cells. We also investigated the dynamic localization of CheV, a hybrid protein consisting of an N-terminal CheW-like adaptor domain and a C-terminal response regulator domain that is known to be phosphorylated by CheA, using immunofluorescence. Interestingly, we found that CheV was localized predominantly at lateral clusters in unstimulated cells. However, upon exposure to attractant, CheV was found to be predominantly localized to the cell poles. Moreover, changes in CheV localization are phosphorylation-dependent. Collectively, these results suggest that the chemotaxis signaling arrays in B. subtilis are dynamic structures and that feedback loops involving phosphorylation may regulate the positioning of individual proteins.
Collapse
Affiliation(s)
- Kang Wu
- Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
| | | | | | | | | |
Collapse
|
39
|
Kentner D, Sourjik V. Use of Fluorescence Microscopy to Study Intracellular Signaling in Bacteria. Annu Rev Microbiol 2010; 64:373-90. [DOI: 10.1146/annurev.micro.112408.134205] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- David Kentner
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany;
| | - Victor Sourjik
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, D-69120 Heidelberg, Germany;
| |
Collapse
|
40
|
Spatial and temporal organization of the E. coli PTS components. EMBO J 2010; 29:3630-45. [PMID: 20924357 DOI: 10.1038/emboj.2010.240] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2010] [Accepted: 09/06/2010] [Indexed: 01/25/2023] Open
Abstract
The phosphotransferase system (PTS) controls preferential use of sugars in bacteria. It comprises of two general proteins, enzyme I (EI) and HPr, and various sugar-specific permeases. Using fluorescence microscopy, we show here that EI and HPr localize near the Escherichia coli cell poles. Polar localization of each protein occurs independently, but HPr is released from the poles in an EI- and sugar-dependent manner. Conversely, the β-glucoside-specific permease, BglF, localizes to the cell membrane. EI, HPr and BglF control the β-glucoside utilization (bgl) operon by modulating the activity of the BglG transcription factor; BglF inactivates BglG by membrane sequestration and phosphorylation, whereas EI and HPr activate it by an unknown mechanism in response to β-glucosides availability. Using biochemical, genetic and imaging methodologies, we show that EI and HPr interact with BglG and affect its subcellular localization in a phosphorylation-independent manner. Upon sugar stimulation, BglG migrates from the cell periphery to the cytoplasm through the poles. Hence, the PTS components appear to control bgl operon expression by ushering BglG between the cellular compartments. Our results reinforce the notion that signal transduction in bacteria involves dynamic localization of proteins.
Collapse
|
41
|
Spatial organization of transmembrane receptor signalling. EMBO J 2010; 29:2677-88. [PMID: 20717138 DOI: 10.1038/emboj.2010.175] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2010] [Accepted: 07/07/2010] [Indexed: 12/28/2022] Open
Abstract
The spatial organization of transmembrane receptors is a critical step in signal transduction and receptor trafficking in cells. Transmembrane receptors engage in lateral homotypic and heterotypic cis-interactions as well as intercellular trans-interactions that result in the formation of signalling foci for the initiation of different signalling networks. Several aspects of ligand-induced receptor clustering and association with signalling proteins are also influenced by the lipid composition of membranes. Thus, lipid microdomains have a function in tuning the activity of many transmembrane receptors by positively or negatively affecting receptor clustering and signal transduction. We review the current knowledge about the functions of clustering of transmembrane receptors and lipid-protein interactions important for the spatial organization of signalling at the membrane.
Collapse
|
42
|
Bhatnagar J, Borbat PP, Pollard AM, Bilwes AM, Freed JH, Crane BR. Structure of the ternary complex formed by a chemotaxis receptor signaling domain, the CheA histidine kinase, and the coupling protein CheW as determined by pulsed dipolar ESR spectroscopy. Biochemistry 2010; 49:3824-41. [PMID: 20355710 DOI: 10.1021/bi100055m] [Citation(s) in RCA: 66] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The signaling apparatus that controls bacterial chemotaxis is composed of a core complex containing chemoreceptors, the histidine autokinase CheA, and the coupling protein CheW. Site-specific spin labeling and pulsed dipolar ESR spectroscopy (PDS) have been applied to investigate the structure of a soluble ternary complex formed by Thermotoga maritima CheA (TmCheA), CheW, and receptor signaling domains. Thirty-five symmetric spin-label sites (SLSs) were engineered into the five domains of the CheA dimer and CheW to provide distance restraints within the CheA:CheW complex in the absence and presence of a soluble receptor that inhibits kinase activity (Tm14). Additional PDS restraints among spin-labeled CheA, CheW, and an engineered single-chain receptor labeled at six different sites allow docking of the receptor structure relative to the CheA:CheW complex. Disulfide cross-linking between selectively incorporated Cys residues finds two pairs of positions that provide further constraints within the ternary complex: one involving Tm14 and CheW and another involving Tm14 and CheA. The derived structure of the ternary complex indicates a primary site of interaction between CheW and Tm14 that agrees well with previous biochemical and genetic data for transmembrane chemoreceptors. The PDS distance distributions are most consistent with only one CheW directly engaging one dimeric Tm14. The CheA dimerization domain (P3) aligns roughly antiparallel to the receptor-conserved signaling tip but does not interact strongly with it. The angle of the receptor axis with respect to P3 and the CheW-binding P5 domains is bound by two limits differing by approximately 20 degrees . In one limit, Tm14 aligns roughly along P3 and may interact to some extent with the hinge region near the P3 hairpin loop. In the other limit, Tm14 tilts to interact with the P5 domain of the opposite subunit in an interface that mimics that observed with the P5 homologue CheW. The time domain ESR data can be simulated from the model only if orientational variability is introduced for the P5 and, especially, P3 domains. The Tm14 tip also binds beside one of the CheA kinase domains (P4); however, in both bound and unbound states, P4 samples a broad range of distributions that are only minimally affected by Tm14 binding. The CheA P1 domains that contain the substrate histidine are also broadly distributed in space under all conditions. In the context of the hexagonal lattice formed by trimeric transmembrane chemoreceptors, the PDS structure is best accommodated with the P3 domain in the center of a honeycomb edge.
Collapse
Affiliation(s)
- Jaya Bhatnagar
- Center for Advanced ESR Studies, Cornell University, Ithaca, New York 14853, USA
| | | | | | | | | | | |
Collapse
|
43
|
Miller J, Parker M, Bourret RB, Giddings MC. An agent-based model of signal transduction in bacterial chemotaxis. PLoS One 2010; 5:e9454. [PMID: 20485527 PMCID: PMC2869346 DOI: 10.1371/journal.pone.0009454] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 02/01/2010] [Indexed: 11/17/2022] Open
Abstract
We report the application of agent-based modeling to examine the signal transduction network and receptor arrays for chemotaxis in Escherichia coli, which are responsible for regulating swimming behavior in response to environmental stimuli. Agent-based modeling is a stochastic and bottom-up approach, where individual components of the modeled system are explicitly represented, and bulk properties emerge from their movement and interactions. We present the Chemoscape model: a collection of agents representing both fixed membrane-embedded and mobile cytoplasmic proteins, each governed by a set of rules representing knowledge or hypotheses about their function. When the agents were placed in a simulated cellular space and then allowed to move and interact stochastically, the model exhibited many properties similar to the biological system including adaptation, high signal gain, and wide dynamic range. We found the agent based modeling approach to be both powerful and intuitive for testing hypotheses about biological properties such as self-assembly, the non-linear dynamics that occur through cooperative protein interactions, and non-uniform distributions of proteins in the cell. We applied the model to explore the role of receptor type, geometry and cooperativity in the signal gain and dynamic range of the chemotactic response to environmental stimuli. The model provided substantial qualitative evidence that the dynamic range of chemotactic response can be traced to both the heterogeneity of receptor types present, and the modulation of their cooperativity by their methylation state.
Collapse
Affiliation(s)
- Jameson Miller
- Department of Computer Science, University of North Carolina, Chapel Hill, North Carolina, United States of America
| | | | | | | |
Collapse
|
44
|
Fowler DJ, Weis RM, Thompson LK. Kinase-active signaling complexes of bacterial chemoreceptors do not contain proposed receptor-receptor contacts observed in crystal structures. Biochemistry 2010; 49:1425-34. [PMID: 20088541 DOI: 10.1021/bi901565k] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The receptor dimers that mediate bacterial chemotaxis form high-order signaling complexes with CheW and the kinase CheA. From the packing arrangement in two crystal structures of different receptor cytoplasmic fragments, two different models have been proposed for receptor signaling arrays: the trimers-of-dimers and hedgerow models. Here we identified an interdimer distance that differs substantially in the two models, labeled the atoms defining this distance through isotopic enrichment, and measured it with (19)F-(13)C REDOR. This was done in two types of receptor samples: isolated bacterial membranes containing overexpressed, intact receptor and soluble receptor fragments reconstituted into kinase-active signaling complexes. In both cases, the distance found was not compatible with the receptor dimer-dimer contacts observed in the trimers-of-dimers or in the hedgerow models. Comparisons of simulated and observed REDOR dephasing were used to deduce a closest approach distance at this interface, which provides a constraint for the possible arrangements of receptor assemblies.
Collapse
Affiliation(s)
- Daniel J Fowler
- Department of Chemistry, 710 North Pleasant Street, University of Massachusetts, Amherst, Massachusetts 01003, USA
| | | | | |
Collapse
|
45
|
Streif S, Oesterhelt D, Marwan W. A predictive computational model of the kinetic mechanism of stimulus-induced transducer methylation and feedback regulation through CheY in archaeal phototaxis and chemotaxis. BMC SYSTEMS BIOLOGY 2010; 4:27. [PMID: 20298562 PMCID: PMC2857822 DOI: 10.1186/1752-0509-4-27] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2009] [Accepted: 03/18/2010] [Indexed: 11/10/2022]
Abstract
Background Photo- and chemotaxis of the archaeon Halobacterium salinarum is based on the control of flagellar motor switching through stimulus-specific methyl-accepting transducer proteins that relay the sensory input signal to a two-component system. Certain members of the transducer family function as receptor proteins by directly sensing specific chemical or physical stimuli. Others interact with specific receptor proteins like the phototaxis photoreceptors sensory rhodopsin I and II, or require specific binding proteins as for example some chemotaxis transducers. Receptor activation by light or a change in receptor occupancy by chemical stimuli results in reversible methylation of glutamate residues of the transducer proteins. Both, methylation and demethylation reactions are involved in sensory adaptation and are modulated by the response regulator CheY. Results By mathematical modeling we infer the kinetic mechanisms of stimulus-induced transducer methylation and adaptation. The model (deterministic and in the form of ordinary differential equations) correctly predicts experimentally observed transducer demethylation (as detected by released methanol) in response to attractant and repellent stimuli of wildtype cells, a cheY deletion mutant, and a mutant in which the stimulated transducer species is methylation-deficient. Conclusions We provide a kinetic model for signal processing in photo- and chemotaxis in the archaeon H. salinarum suggesting an essential role of receptor cooperativity, antagonistic reversible methylation, and a CheY-dependent feedback on transducer demethylation.
Collapse
Affiliation(s)
- Stefan Streif
- Max Planck Institute for Dynamics of Complex Technical Systems, Molecular Network Analysis Group, Sandtorstr, 1, Magdeburg, Germany.
| | | | | |
Collapse
|
46
|
Cazalet C, Gomez-Valero L, Rusniok C, Lomma M, Dervins-Ravault D, Newton HJ, Sansom FM, Jarraud S, Zidane N, Ma L, Bouchier C, Etienne J, Hartland EL, Buchrieser C. Analysis of the Legionella longbeachae genome and transcriptome uncovers unique strategies to cause Legionnaires' disease. PLoS Genet 2010; 6:e1000851. [PMID: 20174605 PMCID: PMC2824747 DOI: 10.1371/journal.pgen.1000851] [Citation(s) in RCA: 130] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2009] [Accepted: 01/20/2010] [Indexed: 12/15/2022] Open
Abstract
Legionella pneumophila and L. longbeachae are two species of a large genus of bacteria that are ubiquitous in nature. L. pneumophila is mainly found in natural and artificial water circuits while L. longbeachae is mainly present in soil. Under the appropriate conditions both species are human pathogens, capable of causing a severe form of pneumonia termed Legionnaires' disease. Here we report the sequencing and analysis of four L. longbeachae genomes, one complete genome sequence of L. longbeachae strain NSW150 serogroup (Sg) 1, and three draft genome sequences another belonging to Sg1 and two to Sg2. The genome organization and gene content of the four L. longbeachae genomes are highly conserved, indicating strong pressure for niche adaptation. Analysis and comparison of L. longbeachae strain NSW150 with L. pneumophila revealed common but also unexpected features specific to this pathogen. The interaction with host cells shows distinct features from L. pneumophila, as L. longbeachae possesses a unique repertoire of putative Dot/Icm type IV secretion system substrates, eukaryotic-like and eukaryotic domain proteins, and encodes additional secretion systems. However, analysis of the ability of a dotA mutant of L. longbeachae NSW150 to replicate in the Acanthamoeba castellanii and in a mouse lung infection model showed that the Dot/Icm type IV secretion system is also essential for the virulence of L. longbeachae. In contrast to L. pneumophila, L. longbeachae does not encode flagella, thereby providing a possible explanation for differences in mouse susceptibility to infection between the two pathogens. Furthermore, transcriptome analysis revealed that L. longbeachae has a less pronounced biphasic life cycle as compared to L. pneumophila, and genome analysis and electron microscopy suggested that L. longbeachae is encapsulated. These species-specific differences may account for the different environmental niches and disease epidemiology of these two Legionella species.
Collapse
Affiliation(s)
- Christel Cazalet
- Institut Pasteur, Biologie des Bactéries Intracellulaires, CNRS URA 2171, Paris, France
| | - Laura Gomez-Valero
- Institut Pasteur, Biologie des Bactéries Intracellulaires, CNRS URA 2171, Paris, France
| | - Christophe Rusniok
- Institut Pasteur, Biologie des Bactéries Intracellulaires, CNRS URA 2171, Paris, France
| | - Mariella Lomma
- Institut Pasteur, Biologie des Bactéries Intracellulaires, CNRS URA 2171, Paris, France
| | | | - Hayley J. Newton
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Fiona M. Sansom
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Sophie Jarraud
- Centre National de Référence des Legionella, Université de Lyon, INSERM U851, Faculté de Médecine, IFR 128, Lyon, France
| | - Nora Zidane
- Institut Pasteur, Plate-forme Génomique, Pasteur Génopole Ile de France, Paris, France
| | - Laurence Ma
- Institut Pasteur, Plate-forme Génomique, Pasteur Génopole Ile de France, Paris, France
| | - Christiane Bouchier
- Institut Pasteur, Plate-forme Génomique, Pasteur Génopole Ile de France, Paris, France
| | - Jerôme Etienne
- Centre National de Référence des Legionella, Université de Lyon, INSERM U851, Faculté de Médecine, IFR 128, Lyon, France
| | - Elizabeth L. Hartland
- Department of Microbiology and Immunology, University of Melbourne, Victoria, Australia
| | - Carmen Buchrieser
- Institut Pasteur, Biologie des Bactéries Intracellulaires, CNRS URA 2171, Paris, France
- * E-mail:
| |
Collapse
|
47
|
Hazelbauer GL, Lai WC. Bacterial chemoreceptors: providing enhanced features to two-component signaling. Curr Opin Microbiol 2010; 13:124-32. [PMID: 20122866 DOI: 10.1016/j.mib.2009.12.014] [Citation(s) in RCA: 100] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2009] [Revised: 12/30/2009] [Accepted: 12/31/2009] [Indexed: 11/17/2022]
Abstract
Bacteria perform chemotaxis utilizing core two-component signaling systems to which have been added enhanced features of signal amplification, sensory adaptation, molecular memory and high sensitivity over a wide dynamic range. Chemoreceptors are central to the enhancements. These transmembrane homodimers associate in trimers and in clusters of signaling complexes containing from a few to thousands of receptors. Receptor homodimers couple ligand occupancy and adaptational modification to transmembrane signaling. Trimers activate and control the histidine kinase. Clusters enable signal amplification, high sensitivity and adaptational assistance. Homodimer signaling initiates with helical piston sliding that is converted to modulation of competing packing modes of adjacent segments of an extended helical coiled coil. In trimers, signaling and coupling may involve switching between compact and expanded forms.
Collapse
Affiliation(s)
- Gerald L Hazelbauer
- Department of Biochemistry, University of Missouri-Columbia, Columbia, MO 65211, USA.
| | | |
Collapse
|
48
|
Hamer R, Chen PY, Armitage JP, Reinert G, Deane CM. Deciphering chemotaxis pathways using cross species comparisons. BMC SYSTEMS BIOLOGY 2010; 4:3. [PMID: 20064255 PMCID: PMC2829493 DOI: 10.1186/1752-0509-4-3] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2009] [Accepted: 01/11/2010] [Indexed: 12/29/2022]
Abstract
Background Chemotaxis is the process by which motile bacteria sense their chemical environment and move towards more favourable conditions. Escherichia coli utilises a single sensory pathway, but little is known about signalling pathways in species with more complex systems. Results To investigate whether chemotaxis pathways in other bacteria follow the E. coli paradigm, we analysed 206 species encoding at least 1 homologue of each of the 5 core chemotaxis proteins (CheA, CheB, CheR, CheW and CheY). 61 species encode more than one of all of these 5 proteins, suggesting they have multiple chemotaxis pathways. Operon information is not available for most bacteria, so we developed a novel statistical approach to cluster che genes into putative operons. Using operon-based models, we reconstructed putative chemotaxis pathways for all 206 species. We show that cheA-cheW and cheR-cheB have strong preferences to occur in the same operon as two-gene blocks, which may reflect a functional requirement for co-transcription. However, other che genes, most notably cheY, are more dispersed on the genome. Comparison of our operons with shuffled equivalents demonstrates that specific patterns of genomic location may be a determining factor for the observed in vivo chemotaxis pathways. We then examined the chemotaxis pathways of Rhodobacter sphaeroides. Here, the PpfA protein is known to be critical for correct partitioning of proteins in the cytoplasmically-localised pathway. We found ppfA in che operons of many species, suggesting that partitioning of cytoplasmic Che protein clusters is common. We also examined the apparently non-typical chemotaxis components, CheA3, CheA4 and CheY6. We found that though variants of CheA proteins are rare, the CheY6 variant may be a common type of CheY, with a significantly disordered C-terminal region which may be functionally significant. Conclusions We find that many bacterial species potentially have multiple chemotaxis pathways, with grouping of che genes into operons likely to be a major factor in keeping signalling pathways distinct. Gene order is highly conserved with cheA-cheW and cheR-cheB blocks, perhaps reflecting functional linkage. CheY behaves differently to other Che proteins, both in its genomic location and its putative protein interactions, which should be considered when modelling chemotaxis pathways.
Collapse
Affiliation(s)
- Rebecca Hamer
- Department of Statistics, University of Oxford, Oxford, UK
| | | | | | | | | |
Collapse
|
49
|
Ligand depletion in vivo modulates the dynamic range and cooperativity of signal transduction. PLoS One 2010; 5:e8449. [PMID: 20052284 PMCID: PMC2797075 DOI: 10.1371/journal.pone.0008449] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2009] [Accepted: 11/27/2009] [Indexed: 11/19/2022] Open
Abstract
Biological signal transduction commonly involves cooperative interactions in the binding of ligands to their receptors. In many cases, ligand concentrations in vivo are close to the value of the dissociation constant of their receptors, resulting in the phenomenon of ligand depletion. Using examples based on rotational bias of bacterial flagellar motors and calcium binding to mammalian calmodulin, we show that ligand depletion diminishes cooperativity and broadens the dynamic range of sensitivity to the signaling ligand. As a result, the same signal transducer responds to different ranges of signal with various degrees of cooperativity according to its effective cellular concentration. Hence, results from in vitro dose-response analyses cannot be applied directly to understand signaling in vivo. Moreover, the receptor concentration is revealed to be a key element in controlling signal transduction and we propose that its modulation constitutes a new way of controlling sensitivity to signals. In addition, through an analysis of the allosteric enzyme aspartate transcarbamylase, we demonstrate that the classical Hill coefficient is not appropriate for characterizing the change in conformational state upon ligand binding to an oligomeric protein (equivalent to a dose-response curve), because it ignores the cooperativity of the conformational change for the corresponding equivalent monomers, which are generally characterized by a Hill coefficient . Therefore, we propose a new index of cooperativity based on the comparison of the properties of oligomers and their equivalent monomers.
Collapse
|
50
|
Challenges and Approaches for Assay Development of Membrane and Membrane-Associated Proteins in Drug Discovery. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2010. [DOI: 10.1016/s1877-1173(10)91007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register]
|