1
|
Wang C, Zhang C, Cai H, Zhu Y, Sun J, Liu W, Wang Z, Li Y. Extreme drought shapes the gut microbiota composition and function of common cranes ( Grus grus) wintering in Poyang Lake. Front Microbiol 2024; 15:1489906. [PMID: 39633809 PMCID: PMC11614848 DOI: 10.3389/fmicb.2024.1489906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/05/2024] [Indexed: 12/07/2024] Open
Abstract
Introduction Extreme weather events driven by climate change profoundly affect migratory birds by altering their habitats, food sources, and migration routes. While gut microbiota is believed to play a role in helping birds adapt to environmental changes, research on how extreme weather impacts their gut microbiota and how these microbial communities respond to such conditions has been limited. Methods 16S rRNA gene sequencing was utilized to investigate the gut microbiota of common cranes (Grus grus) wintering at Poyang Lake from 2020 to 2023, with a particular focus on their response to extreme drought conditions on both inter-annual and monthly timescales. Results The results revealed that extreme drought conditions substantially impact gut microbiota, with inter-annual water-level fluctuations exerting a more pronounced impact on microbial community structure than that of inter-monthly fluctuations. Notably, a significant decline in bacterial diversity within the gut microbiota of common cranes was observed in the extreme drought year of 2022 compared with other years. Monthly observations indicated a gradual increase in gut microbial diversity, coinciding with relatively minor water-level changes. Key taxa that responded to drought included the Enterobacteriaceae family and Bifidobacterium and Lactobacillus species. Additionally, functional genes related to carbohydrate metabolism, the phosphotransferase system, and the two-component systems were significantly enriched during the extreme drought year. These functions may represent adaptive mechanisms by which the gut microbiota of common cranes respond to drought stress. Discussion This research provides novel insights into the temporal variability of gut microbiota in wintering waterbirds, underscoring the significant impact of climatic fluctuations on microbial communities. The findings highlight the importance of understanding the ecological and functional responses of gut microbiota to extreme weather events, which is crucial for the conservation and management of migratory bird populations in the face of climate change.
Collapse
Affiliation(s)
- Chaoyang Wang
- College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Chao Zhang
- College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Hao Cai
- College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Yunlong Zhu
- State Key Laboratory of Integrated Management of Pest Insects and Rodents, Institute of Zoology, Chinese Academy of Sciences, Beijing, China
| | - Jiwan Sun
- Office of Poyang Lake Water Control Project Construction of Jiangxi Province, Nanchang, China
| | - Wen Liu
- Office of Poyang Lake Water Control Project Construction of Jiangxi Province, Nanchang, China
| | - Zhenyu Wang
- College of Life Sciences, Jiangxi Normal University, Nanchang, China
| | - Yankuo Li
- College of Life Sciences, Jiangxi Normal University, Nanchang, China
| |
Collapse
|
2
|
Li H, Lv Y, Teng Z, Guo R, Jiang L. Shigella Senses the Environmental Cue Leucine to Promote its Virulence Gene Expression in the Colon. J Mol Biol 2024; 436:168798. [PMID: 39303765 DOI: 10.1016/j.jmb.2024.168798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/22/2024]
Abstract
Shigella is a foodborne enteropathogenic bacteria that causes severe bacillary dysentery in humans. Shigella primarily colonizes the human colon and causes disease via invasion of colon epithelial cells. However, the signal regulatory mechanisms associated with its colonization and pathogenesis in the colon remain poorly defined. Here, we report a leucine-mediated regulatory mechanism that promotes Shigella virulence gene expression and invasion of colon epithelial cells. Shigella in response to leucine, which is highly abundant in the colon, via the leucine-responsive regulator Lrp and the binding of Lrp with leucine induces the expression of a newly identified small RNA SsrV. SsrV then activates the expression of virF and downstream invasion-related virulence genes by increasing the protein level of the LysR-type transcription regulator LrhA, therefore enabling Shigella invasion of colon epithelial cells. Shigella lacking ssrV displays impaired invasion ability. Collectively, these findings suggest that Shigella employs a leucine-responsive environmental activation mechanism to establish colonization and pathogenicity.
Collapse
Affiliation(s)
- Huiying Li
- Department of Biochemistry and Molecular Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China; National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China
| | - Yongyao Lv
- Department of Biochemistry and Molecular Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Zhiqi Teng
- Department of Biochemistry and Molecular Biology, School of Clinical and Basic Medical Sciences, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| | - Rui Guo
- Shandong Center for Food and Drug Evaluation & Inspection, Jinan 250014, China
| | - Lingyan Jiang
- National Key Laboratory of Intelligent Tracking and Forecasting for Infectious Diseases, TEDA Institute of Biological Sciences and Biotechnology, Nankai University, Tianjin 300457, China.
| |
Collapse
|
3
|
Liu Y, Yuan TQ, Zheng JW, Li DW, Jiao YH, Li HY, Li RM, Yang WD. Exposure to okadaic acid could disrupt the colonic microenvironment in rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115376. [PMID: 37597294 DOI: 10.1016/j.ecoenv.2023.115376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/28/2023] [Accepted: 08/13/2023] [Indexed: 08/21/2023]
Abstract
Okadaic acid (OA) is one of the most prevalent marine phycotoxin with complex toxicity, which can lead to toxic symptoms such as diarrhea, vomiting, nausea, abdominal pain, and gastrointestinal discomfort. Studies have shown that the main affected tissue of OA is digestive tract. However, its toxic mechanism is not yet fully understood. In this study, we investigated the changes that occurred in the epithelial microenvironment following OA exposure, including the epithelial barrier and gut bacteria. We found that impaired epithelial cell junctions, mucus layer destruction, cytoskeletal remodeling, and increased bacterial invasion occurred in colon of rats after OA exposure. At the same time, the gut bacteria decreased in the abundance of beneficial bacteria and increased in the abundance of pathogenic bacteria, and there was a significant negative correlation between the abundance of pathogenic bacteria represented by Escherichia/Shigella and animal body weight. Metagenomic analysis inferred that Escherichia coli and Shigella spp. in Escherichia/Shigella may be involved in the process of cytoskeletal remodeling and mucosal layer damage caused by OA. Although more evidence is needed, our results suggest that opportunistic pathogens may be involved in the complex toxicity of OA during OA-induced epithelial barrier damage.
Collapse
Affiliation(s)
- Yang Liu
- Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China; Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Tian-Qing Yuan
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Jian-Wei Zheng
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Da-Wei Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Yu-Hu Jiao
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Hong-Ye Li
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China
| | - Rui-Man Li
- Obstetrics and Gynecology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
| | - Wei-Dong Yang
- Key Laboratory of Aquatic Eutrophication and Control of Harmful Algal Blooms of Guangdong Higher Education Institute, College of Life Science and Technology, Jinan University, Guangzhou 510632, China.
| |
Collapse
|
4
|
Ma X, Li J, Chen B, Li X, Ling Z, Feng S, Cao S, Zuo Z, Deng J, Huang X, Cai D, Wen Y, Zhao Q, Wang Y, Zhong Z, Peng G, Jiang Y, Gu Y. Analysis of microbial diversity in the feces of Arborophila rufipectus. Front Microbiol 2023; 13:1075041. [PMID: 36817108 PMCID: PMC9932278 DOI: 10.3389/fmicb.2022.1075041] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/31/2022] [Indexed: 02/05/2023] Open
Abstract
Introduction Intestinal microbiota composition plays a crucial role in modulating the health of the host. This evaluation indicator is very sensitive and profoundly impacts the protection of endangered species. Currently, information on the gut microbiota of wild birds remains scarce. Therefore, this study aimed to describe the gut microbial community structure and potentially, the pathogen composition of wild Arborophila rufipectus. Methods To guarantee comprehensive data analysis, we collected fecal samples from wild A. rufipectus and Lophura nycthemera in their habitats for two quarters. The 16S rRNA gene was then sequenced using high-throughput sequencing technology to examine the intestinal core microbiota, microbial diversity, and potential pathogens with the aim of determining if the composition of the intestinal microflora varies seasonally. Results and Discussion The gut microbiota of A. rufipectus and L. nycthemera primarily comprised four phyla: Proteobacteria (45.98%), Firmicutes (35.65%), Bacteroidetes (11.77%), and Actinobacteria (3.48%), which accounted for 96.88% of the total microbial composition in all samples. At the genus level, core microorganisms were found, including Shigella (10.38%), Clostridium (6.16%), Pseudomonas (3.03%), and Rickettsiella (1.99%). In these genera, certain microbial species have been shown to be pathogenic. This study provides important indicators for analyzing the health status of A. rufipectus and formulating protective measures.
Collapse
Affiliation(s)
- Xiaoping Ma
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junshu Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Benping Chen
- Authority of Administration, Sichuan Laojunshan National Nature Reserve, Yibin, China
| | - Xinni Li
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhenwen Ling
- Authority of Administration, Sichuan Laojunshan National Nature Reserve, Yibin, China
| | - Shenglin Feng
- Authority of Administration, Sichuan Laojunshan National Nature Reserve, Yibin, China
| | - Sanjie Cao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhicai Zuo
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Junliang Deng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Xiaobo Huang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Dongjie Cai
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yiping Wen
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Qin Zhao
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Ya Wang
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Zhijun Zhong
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Guangneng Peng
- Key Laboratory of Animal Disease and Human Health of Sichuan Province, College of Veterinary Medicine, Sichuan Agricultural University, Chengdu, China
| | - Yaozhang Jiang
- Department of Bioengineering, Sichuan Water Conservancy Vocational College, Chengdu, China,*Correspondence: Yaozhang Jiang, ; Yu Gu,
| | - Yu Gu
- College of Life Sciences, Sichuan Agricultural University, Chengdu, China,*Correspondence: Yaozhang Jiang, ; Yu Gu,
| |
Collapse
|
5
|
Nasser A, Mosadegh M, Azimi T, Shariati A. Molecular mechanisms of Shigella effector proteins: a common pathogen among diarrheic pediatric population. Mol Cell Pediatr 2022; 9:12. [PMID: 35718793 PMCID: PMC9207015 DOI: 10.1186/s40348-022-00145-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Accepted: 05/06/2022] [Indexed: 12/16/2022] Open
Abstract
Different gastrointestinal pathogens cause diarrhea which is a very common problem in children aged under 5 years. Among bacterial pathogens, Shigella is one of the main causes of diarrhea among children, and it accounts for approximately 11% of all deaths among children aged under 5 years. The case-fatality rates for Shigella among the infants and children aged 1 to 4 years are 13.9% and 9.4%, respectively. Shigella uses unique effector proteins to modulate intracellular pathways. Shigella cannot invade epithelial cells on the apical site; therefore, it needs to pass epithelium through other cells rather than the epithelial cell. After passing epithelium, macrophage swallows Shigella, and the latter should prepare itself to exhibit at least two types of responses: (I) escaping phagocyte and (II) mediating invasion of and injury to the recurrent PMN. The presence of PMN and invitation to a greater degree resulted in gut membrane injuries and greater bacterial penetration. Infiltration of Shigella to the basolateral space mediates (A) cell attachment, (B) cell entry, (C) evasion of autophagy recognition, (D) vacuole formation and and vacuole rapture, (E) intracellular life, (F) Shiga toxin, and (G) immune response. In this review, an attempt is made to explain the role of each factor in Shigella infection.
Collapse
Affiliation(s)
- Ahmad Nasser
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Mehrdad Mosadegh
- Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Taher Azimi
- Department of Bacteriology & Virology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.
| | - Aref Shariati
- Molecular and medicine research center, Khomein University of Medical Sciences, Khomein, Iran
| |
Collapse
|
6
|
Li W, Jiang L, Liu X, Guo R, Ma S, Wang J, Ma S, Li S, Li H. YhjC is a novel transcriptional regulator required for Shigella flexneri virulence. Virulence 2021; 12:1661-1671. [PMID: 34152261 PMCID: PMC8218686 DOI: 10.1080/21505594.2021.1936767] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
Shigella is an intracellular pathogen that primarily infects the human colon and causes shigellosis. Shigella virulence relies largely on the type III secretion system (T3SS) and secreted effectors. VirF, the master Shigella virulence regulator, is essential for the expression of T3SS-related genes. In this study, we found that YhjC, a LysR-type transcriptional regulator, is required for Shigella virulence through activating the transcription of virF. Pathogenicity of the yhjC mutant, including colonization in the colons of guinea pigs as well as its ability for host cell adhesion and invasion, was significantly lowered. Expression levels of virF and nearly all VirF-dependent genes were downregulated by yhjC deletion, indicating that YhjC can activate virF transcription. Electrophoretic mobility shift assay analysis demonstrated that YhjC could bind directly to the virF promoter region. Therefore, YhjC is a novel virulence regulator that positively regulates the virF expression and promotes Shigella virulence. Additionally, genome-wide expression analysis identified the presence of other genes in the large virulence plasmid and a genome exhibiting differential expression in response to yhjC deletion, with 169 downregulated and 99 upregulated genes, indicating that YhjC also functioned as a global regulatory factor.
Collapse
Affiliation(s)
- Wanwu Li
- TEDA Institute of Biological Sciences and Biotechnology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China.,Shandong Center for Food and Drug Evaluation & Certification, Jinan, China
| | - Lingyan Jiang
- TEDA Institute of Biological Sciences and Biotechnology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Xiaoqian Liu
- TEDA Institute of Biological Sciences and Biotechnology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Rui Guo
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan 250014, China
| | - Shuai Ma
- TEDA Institute of Biological Sciences and Biotechnology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Jingting Wang
- TEDA Institute of Biological Sciences and Biotechnology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Shuangshuang Ma
- TEDA Institute of Biological Sciences and Biotechnology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Shujie Li
- TEDA Institute of Biological Sciences and Biotechnology, The Key Laboratory of Molecular Microbiology and Technology, Ministry of Education, Nankai University, Tianjin 300457, China
| | - Huiying Li
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine, Jinan 250014, China.,School of Basic Medicine, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250062, China
| |
Collapse
|
7
|
Bianchi F, van den Bogaart G. Vacuolar escape of foodborne bacterial pathogens. J Cell Sci 2020; 134:134/5/jcs247221. [PMID: 32873733 DOI: 10.1242/jcs.247221] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
The intracellular pathogens Listeria monocytogenes, Salmonella enterica, Shigella spp. and Staphylococcus aureus are major causes of foodborne illnesses. Following the ingestion of contaminated food or beverages, pathogens can invade epithelial cells, immune cells and other cell types. Pathogens survive and proliferate intracellularly via two main strategies. First, the pathogens can remain in membrane-bound vacuoles and tailor organellar trafficking to evade host-cell defenses and gain access to nutrients. Second, pathogens can rupture the vacuolar membrane and proliferate within the nutrient-rich cytosol of the host cell. Although this virulence strategy of vacuolar escape is well known for L. monocytogenes and Shigella spp., it has recently become clear that S. aureus and Salmonella spp. also gain access to the cytosol, and that this is important for their survival and growth. In this Review, we discuss the molecular mechanisms of how these intracellular pathogens rupture the vacuolar membrane by secreting a combination of proteins that lyse the membranes or that remodel the lipids of the vacuolar membrane, such as phospholipases. In addition, we also propose that oxidation of the vacuolar membrane also contributes to cytosolic pathogen escape. Understanding these escape mechanisms could aid in the identification of new therapeutic approaches to combat foodborne pathogens.
Collapse
Affiliation(s)
- Frans Bianchi
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9722GR Groningen, The Netherlands
| | - Geert van den Bogaart
- Department of Molecular Immunology and Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9722GR Groningen, The Netherlands .,Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, 9625GA Nijmegen, The Netherlands
| |
Collapse
|
8
|
Bozhokina E, Kever L, Khaitlina S. The Serratia grimesii outer membrane vesicles-associated grimelysin triggers bacterial invasion of eukaryotic cells. Cell Biol Int 2020; 44:2275-2283. [PMID: 32749752 DOI: 10.1002/cbin.11435] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 07/09/2020] [Accepted: 08/01/2020] [Indexed: 11/06/2022]
Abstract
Serratia grimesii are facultative pathogenic bacteria that can penetrate a wide range of host cells and cause infection, especially in immunocompromised patients. Previously, we have found that bacterial metalloprotease grimelysin is a potential virulence determinant of S. grimesii invasion (E. S. Bozhokina et al., (2011). Cell Biology International, 35(2), 111-118). Protease is characterized as an actin-hydrolyzing enzyme with a narrow specificity toward other cell proteins. It is not known, however, whether grimelysin is transported into eukaryotic cells. Here, we show, for the first time, that S. grimesii can generate outer membrane vesicles (OMVs) displayed specific proteolytic activity against actin, characteristic of grimelysin. The presence of grimelysin was also confirmed by the Western blot analysis of S. grimesii OMVs lysate. Furthermore, confocal microscopy analysis revealed that the S. grimesii grimelysin-containing OMVs attached to the host cell membrane. Finally, pretreatment of HeLa cells with S. grimesii OMVs before the cells were infected with bacteria increased the bacterial penetration several times. These data strongly suggest that protease grimelysin promotes S. grimesii internalization by modifying bacterial and/or host molecule(s) when it is delivered as a component of OMVs.
Collapse
Affiliation(s)
- Ekaterina Bozhokina
- Group of Molecular Cytology of Prokaryotes and Bacterial Invasion, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Lyudmila Kever
- Group of Molecular Cytology of Prokaryotes and Bacterial Invasion, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| | - Sofia Khaitlina
- Group of Molecular Cytology of Prokaryotes and Bacterial Invasion, Institute of Cytology, Russian Academy of Sciences, St. Petersburg, Russia
| |
Collapse
|
9
|
Khaitlina S, Bozhokina E, Tsaplina O, Efremova T. Bacterial Actin-Specific Endoproteases Grimelysin and Protealysin as Virulence Factors Contributing to the Invasive Activities of Serratia. Int J Mol Sci 2020; 21:E4025. [PMID: 32512842 PMCID: PMC7311988 DOI: 10.3390/ijms21114025] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/02/2020] [Accepted: 06/02/2020] [Indexed: 12/25/2022] Open
Abstract
The article reviews the discovery, properties and functional activities of new bacterial enzymes, proteases grimelysin (ECP 32) of Serratia grimesii and protealysin of Serratia proteamaculans, characterized by both a highly specific "actinase" activity and their ability to stimulate bacterial invasion. Grimelysin cleaves the only polypeptide bond Gly42-Val43 in actin. This bond is not cleaved by any other proteases and leads to a reversible loss of actin polymerization. Similar properties were characteristic for another bacterial protease, protealysin. These properties made grimelysin and protealysin a unique tool to study the functional properties of actin. Furthermore, bacteria Serratia grimesii and Serratia proteamaculans, producing grimelysin and protealysin, invade eukaryotic cells, and the recombinant Escherichia coli expressing the grimelysin or protealysins gene become invasive. Participation of the cellular c-Src and RhoA/ROCK signaling pathways in the invasion of eukaryotic cells by S. grimesii was shown, and involvement of E-cadherin in the invasion has been suggested. Moreover, membrane vesicles produced by S. grimesii were found to contain grimelysin, penetrate into eukaryotic cells and increase the invasion of bacteria into eukaryotic cells. These data indicate that the protease is a virulence factor, and actin can be a target for the protease upon its translocation into the host cell.
Collapse
Affiliation(s)
- Sofia Khaitlina
- Institute of Cytology, Russian Academy of Sciences, 194064 St. Petersburg, Russia; (E.B.); (O.T.); (T.E.)
| | | | | | | |
Collapse
|
10
|
Sámano-Sánchez H, Gibson TJ. Mimicry of Short Linear Motifs by Bacterial Pathogens: A Drugging Opportunity. Trends Biochem Sci 2020; 45:526-544. [PMID: 32413327 DOI: 10.1016/j.tibs.2020.03.003] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 02/25/2020] [Accepted: 03/03/2020] [Indexed: 12/11/2022]
Abstract
Bacterial pathogens have developed complex strategies to successfully survive and proliferate within their hosts. Throughout the infection cycle, direct interaction with host cells occurs. Many bacteria have been found to secrete proteins, such as effectors and toxins, directly into the host cell with the potential to interfere with cell regulatory processes, either enzymatically or through protein-protein interactions (PPIs). Short linear motifs (SLiMs) are abundant peptide modules in cell signaling proteins. Here, we cover the reported examples of eukaryotic-like SLiM mimicry being used by pathogenic bacteria to hijack host cell machinery and discuss how drugs targeting SLiM-regulated cell signaling networks are being evaluated for interference with bacterial infections. This emerging anti-infective opportunity may become an essential contributor to antibiotic replacement strategies.
Collapse
Affiliation(s)
- Hugo Sámano-Sánchez
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany; Collaboration for Joint PhD Degree between EMBL and Heidelberg University, Faculty of Biosciences, 69120 Heidelberg, Germany
| | - Toby J Gibson
- Structural and Computational Biology Unit, European Molecular Biology Laboratory, Meyerhofstrasse 1, 69117 Heidelberg, Germany.
| |
Collapse
|
11
|
Duperthuy M. Antimicrobial Peptides: Virulence and Resistance Modulation in Gram-Negative Bacteria. Microorganisms 2020; 8:microorganisms8020280. [PMID: 32092866 PMCID: PMC7074834 DOI: 10.3390/microorganisms8020280] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 02/17/2020] [Accepted: 02/17/2020] [Indexed: 02/03/2023] Open
Abstract
Growing resistance to antibiotics is one of the biggest threats to human health. One of the possibilities to overcome this resistance is to use and develop alternative molecules such as antimicrobial peptides (AMPs). However, an increasing number of studies have shown that bacterial resistance to AMPs does exist. Since AMPs are immunity molecules, it is important to ensure that their potential therapeutic use is not harmful in the long term. Recently, several studies have focused on the adaptation of Gram-negative bacteria to subinhibitory concentrations of AMPs. Such concentrations are commonly found in vivo and in the environment. It is therefore necessary to understand how bacteria detect and respond to low concentrations of AMPs. This review focuses on recent findings regarding the impact of subinhibitory concentrations of AMPs on the modulation of virulence and resistance in Gram-negative bacteria.
Collapse
Affiliation(s)
- Marylise Duperthuy
- Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
12
|
In-silico design and production of a novel antigenic chimeric Shigella IpaB fused to C-terminal of Clostridium perfringens enterotoxin. Mol Biol Rep 2019; 46:6105-6115. [PMID: 31473892 DOI: 10.1007/s11033-019-05046-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2019] [Accepted: 08/27/2019] [Indexed: 10/26/2022]
Abstract
The emergence of antibiotic-resistant phenotypes in Shigella serotypes and the high mortality rate, approximately one million dead annually, in affected patients announce a global demand for an effective serotype-independent vaccine against Shigella. This study aims to design, express, and purify a novel chimeric protein, as a serotype-independent vaccine candidate against Shigella containing full-length Shigella invasion plasmid antigen B (IpaB) and a C-terminal fragment (residues 194-319) of Clostridium perfringens enterotoxin (C-CPE) as a mucosal adjuvant. Several online databases and bioinformatics software were utilized to design the chimeric protein and the relative recombinant gene. The recombinant gene encoding IpaB-CPE194-319 was synthesized, cloned into pACYCDuet-1 expression vector, and transferred to E. coli Bl21 (DE3) cells. IpaB-CPE194-319 was then expressed in auto-induction medium, purified and characterized using MALDI-TOF-TOF mass spectrometry. Followed by subcutaneous injection of the purified IpaB-CPE194-319 to BALB/c mice, antigenicity of this chimeric protein was determined through performing dot-blot immunoassay on nitrocellulose membrane using mice sera. The outcomes of this study show the successful design, efficient expression, and purification of IpaB-CPE194-319 divalent chimeric protein under mentioned conditions. The obtained results also demonstrate the intrinsic antigenic property of IpaB-CPE194-319.
Collapse
|
13
|
Abstract
PURPOSE OF REVIEW Diarrhoea is a major global health problem, and recent studies have confirmed Shigella as a major contributor to this burden. Here, we review recent advances in Shigella research; focusing on their epidemiology, pathogenesis, antimicrobial resistance, and the role of the gut microbiome during infection. RECENT FINDINGS Enhanced epidemiological data, combined with new generation diagnostics, has highlighted a greater burden of Shigella disease than was previously estimated, which is not restricted to vulnerable populations in low-middle income countries. As we gain an ever more detailed insight into the orchestrated mechanisms that Shigella exploit to trigger infection, we can also begin to appreciate the complex role of the gut microbiome in preventing and inducing such infections. The use of genomics, in combination with epidemiological data and laboratory investigations, has unravelled the evolution and spread of various species. Such measures have identified resistance to antimicrobials as a key contributor to the success of specific clones. SUMMARY We need to apply novel findings towards sustainable approaches for treating and preventing Shigella infections. Vaccines and alternative treatments are under development and may offer an opportunity to reduce the burden of Shigella disease and restrict the mobility of antimicrobial resistant clones.
Collapse
|
14
|
Abstract
The entry of pathogens into nonphagocytic host cells has received much attention in the past three decades, revealing a vast array of strategies employed by bacteria and viruses. A method of internalization that has been extensively studied in the context of viral infections is the use of the clathrin-mediated pathway. More recently, a role for clathrin in the entry of some intracellular bacterial pathogens was discovered. Classically, clathrin-mediated endocytosis was thought to accommodate internalization only of particles smaller than 150 nm; however, this was challenged upon the discovery that Listeria monocytogenes requires clathrin to enter eukaryotic cells. Now, with discoveries that clathrin is required during other stages of some bacterial infections, another paradigm shift is occurring. There is a more diverse impact of clathrin during infection than previously thought. Much of the recent data describing clathrin utilization in processes such as bacterial attachment, cell-to-cell spread and intracellular growth may be due to newly discovered divergent roles of clathrin in the cell. Not only does clathrin act to facilitate endocytosis from the plasma membrane, but it also participates in budding from endosomes and the Golgi apparatus and in mitosis. Here, the manipulation of clathrin processes by bacterial pathogens, including its traditional role during invasion and alternative ways in which clathrin supports bacterial infection, is discussed. Researching clathrin in the context of bacterial infections will reveal new insights that inform our understanding of host-pathogen interactions and allow researchers to fully appreciate the diverse roles of clathrin in the eukaryotic cell.
Collapse
Affiliation(s)
- Eleanor A Latomanski
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| | - Hayley J Newton
- Department of Microbiology and Immunology, The University of Melbourne at the Peter Doherty Institute for Infection and Immunity, Melbourne, Victoria, Australia
| |
Collapse
|
15
|
Murphy AG, Maloy KJ. Defens-IN! Human α-Defensin 5 Acts as an Unwitting Double Agent to Promote Shigella Infection. Immunity 2019; 48:1070-1072. [PMID: 29924970 DOI: 10.1016/j.immuni.2018.05.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Shigella pathogenesis has confounded researchers for years because of its narrow host selectivity and extraordinary infectious capability. In this issue of Immunity, Xu et al. (2018) identify a cunning mechanism whereby Shigella hijacks human α-defensin 5 to enhance its adhesion and subsequent invasion.
Collapse
Affiliation(s)
- Alison G Murphy
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK
| | - Kevin J Maloy
- Sir William Dunn School of Pathology, University of Oxford, Oxford OX1 3RE, UK.
| |
Collapse
|
16
|
Tawk C, Nigro G, Rodrigues Lopes I, Aguilar C, Lisowski C, Mano M, Sansonetti P, Vogel J, Eulalio A. Stress-induced host membrane remodeling protects from infection by non-motile bacterial pathogens. EMBO J 2018; 37:embj.201798529. [PMID: 30389666 PMCID: PMC6276891 DOI: 10.15252/embj.201798529] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Revised: 10/05/2018] [Accepted: 10/10/2018] [Indexed: 01/01/2023] Open
Abstract
While mucosal inflammation is a major source of stress during enteropathogen infection, it remains to be fully elucidated how the host benefits from this environment to clear the pathogen. Here, we show that host stress induced by different stimuli mimicking inflammatory conditions strongly reduces the binding of Shigella flexneri to epithelial cells. Mechanistically, stress activates acid sphingomyelinase leading to host membrane remodeling. Consequently, knockdown or pharmacological inhibition of the acid sphingomyelinase blunts the stress-dependent inhibition of Shigella binding to host cells. Interestingly, stress caused by intracellular Shigella replication also results in remodeling of the host cell membrane, in vitro and in vivo, which precludes re-infection by this and other non-motile pathogens. In contrast, Salmonella Typhimurium overcomes the shortage of permissive entry sites by gathering effectively at the remaining platforms through its flagellar motility. Overall, our findings reveal host membrane remodeling as a novel stress-responsive cell-autonomous defense mechanism that protects epithelial cells from infection by non-motile bacterial pathogens.
Collapse
Affiliation(s)
- Caroline Tawk
- Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.,RNA Biology Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Giulia Nigro
- Molecular Microbial Pathogenesis Laboratory, Institut Pasteur, Paris, France
| | - Ines Rodrigues Lopes
- Functional Genomics and RNA-based Therapeutics, UC-BIOTECH, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal.,RNA & Infection Group, UC-BIOTECH, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Carmen Aguilar
- Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Clivia Lisowski
- Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany
| | - Miguel Mano
- Functional Genomics and RNA-based Therapeutics, UC-BIOTECH, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| | - Philippe Sansonetti
- Molecular Microbial Pathogenesis Laboratory, Institut Pasteur, Paris, France
| | - Jörg Vogel
- RNA Biology Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany.,Helmholtz Institute for RNA-Based Infection Research (HIRI), Würzburg, Germany
| | - Ana Eulalio
- Host RNA Metabolism Group, Institute for Molecular Infection Biology (IMIB), University of Würzburg, Würzburg, Germany .,RNA & Infection Group, UC-BIOTECH, Center for Neuroscience and Cell Biology (CNC), University of Coimbra, Coimbra, Portugal
| |
Collapse
|
17
|
Xu D, Liao C, Zhang B, Tolbert WD, He W, Dai Z, Zhang W, Yuan W, Pazgier M, Liu J, Yu J, Sansonetti PJ, Bevins CL, Shao Y, Lu W. Human Enteric α-Defensin 5 Promotes Shigella Infection by Enhancing Bacterial Adhesion and Invasion. Immunity 2018; 48:1233-1244.e6. [PMID: 29858013 PMCID: PMC6051418 DOI: 10.1016/j.immuni.2018.04.014] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2017] [Revised: 02/18/2018] [Accepted: 04/13/2018] [Indexed: 01/07/2023]
Abstract
Shigella is a Gram-negative bacterium that causes bacillary dysentery worldwide. It invades the intestinal epithelium to elicit intense inflammation and tissue damage, yet the underlying mechanisms of its host selectivity and low infectious inoculum remain perplexing. Here, we report that Shigella co-opts human α-defensin 5 (HD5), a host defense peptide important for intestinal homeostasis and innate immunity, to enhance its adhesion to and invasion of mucosal tissues. HD5 promoted Shigella infection in vitro in a structure-dependent manner. Shigella, commonly devoid of an effective host-adhesion apparatus, preferentially targeted HD5 to augment its ability to colonize the intestinal epithelium through interactions with multiple bacterial membrane proteins. HD5 exacerbated infectivity and Shigella-induced pathology in a culture of human colorectal tissues and three animal models. Our findings illuminate how Shigella exploits innate immunity by turning HD5 into a virulence factor for infection, unveiling a mechanism of action for this highly proficient human pathogen.
Collapse
Affiliation(s)
- Dan Xu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Center for Translational Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China; Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Chongbing Liao
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Center for Translational Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Bing Zhang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - W David Tolbert
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Wangxiao He
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Center for Translational Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China; Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Zhijun Dai
- Second Affiliated Hospital, Xi'an Jiaotong University School of Medicine, Xi'an, China
| | - Wei Zhang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Weirong Yuan
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Marzena Pazgier
- Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jiankang Liu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China
| | - Jun Yu
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, Scotland, UK
| | | | - Charles L Bevins
- Department of Microbiology and Immunology, School of Medicine, University of California, Davis, Davis, CA, USA
| | - Yongping Shao
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Center for Translational Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China.
| | - Wuyuan Lu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi'an Jiaotong University, Xi'an, China; Center for Translational Medicine, Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, China; Institute of Human Virology and Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
18
|
Belotserkovsky I, Sansonetti PJ. Shigella and Enteroinvasive Escherichia Coli. Curr Top Microbiol Immunol 2018; 416:1-26. [PMID: 30218158 DOI: 10.1007/82_2018_104] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Shigella and enteroinvasive Escherichia coli (EIEC) are gram-negative bacteria responsible for bacillary dysentery (shigellosis) in humans, which is characterized by invasion and inflammatory destruction of the human colonic epithelium. Different EIEC and Shigella subgroups rose independently from commensal E. coli through patho-adaptive evolution that included loss of functional genes interfering with the virulence and/or with the intracellular lifestyle of the bacteria, as well as acquisition of genetic elements harboring virulence genes. Among the latter is the large virulence plasmid encoding for a type three secretion system (T3SS), which enables translocation of virulence proteins (effectors) from the bacterium directly into the host cell cytoplasm. These effectors enable the pathogen to subvert epithelial cell functions, promoting its own uptake, replication in the host cytosol, and dissemination to adjacent cells while concomitantly inhibiting pro-inflammatory cell death. Furthermore, T3SS effectors are directly involved in Shigella manipulation of immune cells causing their dysfunction and promoting cell death. In the current chapter, we first describe the evolution of the enteroinvasive pathovars and then summarize the overall knowledge concerning the pathogenesis of these bacteria, with a particular focus on Shigella flexneri. Subversion of host cell functions in the human gut, both epithelial and immune cells, by different virulence factors is especially highlighted.
Collapse
Affiliation(s)
- Ilia Belotserkovsky
- Unité de Pathogénie Microbienne Moléculaire, Institut Pasteur, 28 Rue Du Dr Roux, 75724 Cedex 15, Paris, France.
| | - Philippe J Sansonetti
- Microbiologie et Maladies Infectieuses, Collège de France, 11 Place Marcelin Berthelot, 75005, Paris, France
| |
Collapse
|
19
|
Arabshahi S, Nayeri Fasaei B, Derakhshandeh A, Novinrooz A. In silico design of a novel chimeric shigella IpaB fused to C terminal of clostridium perfringens enterotoxin as a vaccine candidate. Bioengineered 2017; 9:170-177. [PMID: 29091543 PMCID: PMC5972921 DOI: 10.1080/21655979.2017.1373535] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
This study aimed to design a novel chimeric protein in silico to serve as a serotype-independent vaccine candidate against Shigella. The chimera contains amino acid residues 240–460 of Shigella invasion plasmid antigen B (IpaB) and the C-terminus of Clostridium perfringens enterotoxin (C-CPE). Amino acid sequences of 537 peptide linkers were obtained from two protein linker databases. 3D structures of IpaB-CPE290–319, IpaB-CPE184–319, IpaB-CPE194–319 and 537 newly designed IpaB-linker-CPE290–319 constructs with varying linker regions were predicted. These predicted 3D structures were merged with the 3D structures of native IpaB240–460, CPE194–319, CPE184–319 and CPE290–319 to select the structure most similar to native IpaB and C-CPE. Several in silico tools were used to determine the suitability of the selected IpaB-C-CPE structure as a vaccine candidate. None of the 537 linkers was capable of preserving the native structure of CPE290–319 within the IpaB-linker-CPE290–319 structure. In silico analysis determined that the IpaB-CPE194–319 3D structure was the most similar to the 3D structure of the respective native CPE domain and that it was a stable chimeric protein exposing multiple B-cell epitopes. IpaB-CPE194–319 was designed for its capability to bind to human intestinal epithelial and M cells and to accumulate on these cells. The predicted B-cell epitopes are likely to be capable of inducing a mucosal antibody response in the human intestine against Shigella IpaB. This study also showed that the higher binding affinities of CPE184–319 and CPE194–319 to claudin molecules than those of CPE290–319 is the result of preserving the 3D structures of CPE184–319 and CPE194–319 when they are linked to the C-termini of other proteins.
Collapse
Affiliation(s)
- Sina Arabshahi
- a Department of Pathobiology , School of Veterinary Medicine, Shiraz University , Shiraz , Iran
| | - Bahar Nayeri Fasaei
- b Department of Microbiology and Immunology, Faculty of Veterinary Medicine , University of Tehran , Tehran , Iran
| | - Abdollah Derakhshandeh
- a Department of Pathobiology , School of Veterinary Medicine, Shiraz University , Shiraz , Iran
| | - Aytak Novinrooz
- a Department of Pathobiology , School of Veterinary Medicine, Shiraz University , Shiraz , Iran
| |
Collapse
|
20
|
Marudhupandiyan S, Balamurugan K. Intrinsic JNK-MAPK pathway involvement requires daf-16-mediated immune response during Shigella flexneri infection in C. elegans. Immunol Res 2016; 65:609-621. [DOI: 10.1007/s12026-016-8879-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
21
|
Mahmoud RY, Li W, Eldomany RA, Emara M, Yu J. The Shigella ProU system is required for osmotic tolerance and virulence. Virulence 2016; 8:362-374. [PMID: 27558288 DOI: 10.1080/21505594.2016.1227906] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
To cope with hyperosmotic stress encountered in the environments and in the host, the pathogenic as well as non-pathogenic microbes use diverse transport systems to obtain osmoprotectants. To study the role of Shigella sonnei ProU system in response to hyperosmotic stress and virulence, we constructed deletion and complementation strains of proV and used an RNAi approach to silence the whole ProU operon. We compared the response between wild type and the mutants to the hyperosmotic pressure in vitro, and assessed virulence properties of the mutants using gentamicin protection assay as well as Galleria mellonella moth larvae model. In response to osmotic stress by either NaCl or KCl, S. sonnei highly up-regulates transcription of proVWX genes. Supplementation of betaine greatly elevates the growth of the wild type S. sonnei but not the proV mutants in M9 medium containing 0.2 M NaCl or 0.2 M KCl. The proV mutants are also defective in intracellular growth compared with the wild type. The moth larvae model of G. mellonella shows that either deletion of proV gene or knockdown of proVWX transcripts by RNAi significantly attenuates virulence. ProU system in S. sonnei is required to cope with osmotic stress for survival and multiplication in vitro, and for infection.
Collapse
Affiliation(s)
- Rasha Y Mahmoud
- a Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS) , University of Strathclyde , Glasgow , Scotland , UK.,b Department of Microbiology and Immunology, Faculty of Pharmacy , Helwan University , Cairo , Egypt
| | - Wenqin Li
- a Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS) , University of Strathclyde , Glasgow , Scotland , UK
| | - Ramadan A Eldomany
- c Department of Microbiology and Immunology, Faculty of Pharmacy , Kafr Elsheikh University , Kafr Elsheikh , Egypt
| | - Mohamed Emara
- b Department of Microbiology and Immunology, Faculty of Pharmacy , Helwan University , Cairo , Egypt
| | - Jun Yu
- a Strathclyde Institute of Pharmacy and Biomedical Sciences (SIPBS) , University of Strathclyde , Glasgow , Scotland , UK
| |
Collapse
|
22
|
Xu D, Zhang W, Zhang B, Liao C, Shao Y. Characterization of a biofilm-forming Shigella flexneri phenotype due to deficiency in Hep biosynthesis. PeerJ 2016; 4:e2178. [PMID: 27478696 PMCID: PMC4950558 DOI: 10.7717/peerj.2178] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Accepted: 06/05/2016] [Indexed: 11/20/2022] Open
Abstract
Deficiency in biosynthesis of inner core of lipopolysaccharide (LPS) rendered a characteristic biofilm-forming phenotype in E. coli. The pathological implications of this new phenotype in Shigella flexneri, a highly contagious enteric Gram-negative bacteria that is closely related to E. coli, were investigated in this study. The ΔrfaC (also referred as waaC) mutant, with incomplete inner core of LPS due to deficiency in Hep biosynthesis, was characteristic of strong biofilm formation ability and exhibited much more pronounced adhesiveness and invasiveness to human epithelial cells than the parental strain and other LPS mutants, which also showed distinct pattern of F-actin recruitment. Failure to cause keratoconjunctivitis and colonize in the intestine in guinea pigs revealed that the fitness gain on host adhesion resulted from biofilm formation is not sufficient to offset the loss of fitness on survivability caused by LPS deletion. Our study suggests a clear positive relationship between increased surface hydrophobicity and adhesiveness of Shigella flexneri, which should be put into consideration of virulence of Shigella, especially when therapeutic strategy targeting the core oligosaccharide (OS) is considered an alternative to deal with bacterial antibiotics-resistance.
Collapse
Affiliation(s)
- Dan Xu
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Wei Zhang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Bing Zhang
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Chongbing Liao
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Center for Translational Medicine, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Yongping Shao
- Key Laboratory of Biomedical Information Engineering of the Ministry of Education, School of Life Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- Center for Translational Medicine, Frontier Institute of Science and Technology, Xi’an Jiaotong University, Xi’an, Shaanxi, China
| |
Collapse
|
23
|
Mellouk N, Enninga J. Cytosolic Access of Intracellular Bacterial Pathogens: The Shigella Paradigm. Front Cell Infect Microbiol 2016; 6:35. [PMID: 27092296 PMCID: PMC4820437 DOI: 10.3389/fcimb.2016.00035] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 03/14/2016] [Indexed: 12/20/2022] Open
Abstract
Shigella is a Gram-negative bacterial pathogen, which causes bacillary dysentery in humans. A crucial step of Shigella infection is its invasion of epithelial cells. Using a type III secretion system, Shigella injects several bacterial effectors ultimately leading to bacterial internalization within a vacuole. Then, Shigella escapes rapidly from the vacuole, it replicates within the cytosol and spreads from cell-to-cell. The molecular mechanism of vacuolar rupture used by Shigella has been studied in some detail during the recent years and new paradigms are emerging about the underlying molecular events. For decades, bacterial effector proteins were portrayed as main actors inducing vacuolar rupture. This includes the effector/translocators IpaB and IpaC. More recently, this has been challenged and an implication of the host cell in the process of vacuolar rupture has been put forward. This includes the bacterial subversion of host trafficking regulators, such as the Rab GTPase Rab11. The involvement of the host in determining bacterial vacuolar integrity has also been found for other bacterial pathogens, particularly for Salmonella. Here, we will discuss our current view of host factor and pathogen effector implications during Shigella vacuolar rupture and the steps leading to it.
Collapse
Affiliation(s)
- Nora Mellouk
- Dynamics of Host-Pathogen Interactions Unit, Institut Pasteur Paris, France
| | - Jost Enninga
- Dynamics of Host-Pathogen Interactions Unit, Institut Pasteur Paris, France
| |
Collapse
|
24
|
Campbell-Valois FX, Pontier SM. Implications of Spatiotemporal Regulation of Shigella flexneri Type Three Secretion Activity on Effector Functions: Think Globally, Act Locally. Front Cell Infect Microbiol 2016; 6:28. [PMID: 27014638 PMCID: PMC4783576 DOI: 10.3389/fcimb.2016.00028] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/23/2016] [Indexed: 11/13/2022] Open
Abstract
Shigella spp. are Gram-negative bacterial pathogens that infect human colonic epithelia and cause bacterial dysentery. These bacteria express multiple copies of a syringe-like protein complex, the Type Three Secretion apparatus (T3SA), which is instrumental in the etiology of the disease. The T3SA triggers the plasma membrane (PM) engulfment of the bacteria by host cells during the initial entry process. It then enables bacteria to escape the resulting phagocytic-like vacuole. Freed bacteria form actin comets to move in the cytoplasm, which provokes bacterial collision with the inner leaflet of the PM. This phenomenon culminates in T3SA-dependent secondary uptake and vacuolar rupture in neighboring cells in a process akin to what is observed during entry and named cell-to-cell spread. The activity of the T3SA of Shigella flexneri was recently demonstrated to display an on/off regulation during the infection. While the T3SA is active when bacteria are in contact with PM-derived compartments, it switches to an inactive state when bacteria are released within the cytosol. These observations indicate that effector proteins transiting through the T3SA are therefore translocated in a highly time and space constrained fashion, likely impacting on their cellular distribution. Herein, we present what is currently known about the composition, the assembly and the regulation of the T3SA activity and discuss the consequences of the on/off regulation of T3SA on Shigella effector properties and functions during the infection. Specific examples that will be developed include the role of effectors IcsB and VirA in the escape from LC3/ATG8-positive vacuoles formed during cell-to-cell spread and of IpaJ protease activity against N-miristoylated proteins. The conservation of a similar regulation of T3SA activity in other pathogens such as Salmonella or Enteropathogenic Escherichia coli will also be briefly discussed.
Collapse
Affiliation(s)
- F-X Campbell-Valois
- Department of Chemistry and Biomolecular Sciences, University of Ottawa Ottawa, ON, Canada
| | | |
Collapse
|
25
|
The HC, Thanh DP, Holt KE, Thomson NR, Baker S. The genomic signatures of Shigella evolution, adaptation and geographical spread. Nat Rev Microbiol 2016; 14:235-50. [PMID: 26923111 DOI: 10.1038/nrmicro.2016.10] [Citation(s) in RCA: 114] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Shigella spp. are some of the key pathogens responsible for the global burden of diarrhoeal disease. These facultative intracellular bacteria belong to the family Enterobacteriaceae, together with other intestinal pathogens, such as Escherichia coli and Salmonella spp. The genus Shigella comprises four different species, each consisting of several serogroups, all of which show phenotypic similarity, including invasive pathogenicity. DNA sequencing suggests that this similarity results from the convergent evolution of different Shigella spp. founders. Here, we review the evolutionary relationships between Shigella spp. and E . coli, and we highlight how the genomic plasticity of these bacteria and their acquisition of a distinctive virulence plasmid have enabled the development of such highly specialized pathogens. Furthermore, we discuss the insights that genotyping and whole-genome sequencing have provided into the phylogenetics and intercontinental spread of Shigella spp.
Collapse
Affiliation(s)
- Hao Chung The
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, 764 Vo Van Kiet, Quan 5, Ho Chi Minh City, Vietnam
| | - Duy Pham Thanh
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, 764 Vo Van Kiet, Quan 5, Ho Chi Minh City, Vietnam
| | - Kathryn E Holt
- Centre for Systems Genomics, University of Melbourne.,Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, Victoria 3052, Australia
| | - Nicholas R Thomson
- Bacterial Genomics, The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 1SA, UK.,Centre for Tropical Medicine and Global Health, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, UK
| | - Stephen Baker
- The Hospital for Tropical Diseases, Wellcome Trust Major Overseas Programme, Oxford University Clinical Research Unit, 764 Vo Van Kiet, Quan 5, Ho Chi Minh City, Vietnam.,Centre for Tropical Medicine and Global Health, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7FZ, UK.,Department of Pathogen and Molecular Biology, The London School of Hygiene and Tropical Medicine, Keppel St, London WC1E 7HT, UK
| |
Collapse
|
26
|
Bonnet M, Tran Van Nhieu G. How Shigella Utilizes Ca(2+) Jagged Edge Signals during Invasion of Epithelial Cells. Front Cell Infect Microbiol 2016; 6:16. [PMID: 26904514 PMCID: PMC4748038 DOI: 10.3389/fcimb.2016.00016] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2015] [Accepted: 01/25/2016] [Indexed: 12/20/2022] Open
Abstract
Shigella, the causative agent of bacillary dysentery invades intestinal epithelial cells using a type III secretion system (T3SS). Through the injection of type III effectors, Shigella manipulates the actin cytoskeleton to induce its internalization in epithelial cells. At early invasion stages, Shigella induces atypical Ca(2+) responses confined at entry sites allowing local cytoskeletal remodeling for bacteria engulfment. Global Ca(2+) increase in the cell triggers the opening of connexin hemichannels at the plasma membrane that releases ATP in the extracellular milieu, favoring Shigella invasion and spreading through purinergic receptor signaling. During intracellular replication, Shigella regulates inflammatory and death pathways to disseminate within the epithelium. At later stages of infection, Shigella downregulates hemichannel opening and the release of extracellular ATP to dampen inflammatory signals. To avoid premature cell death, Shigella activates cell survival by upregulating the PI3K/Akt pathway and downregulating the levels of p53. Furthermore, Shigella interferes with pro-apoptotic caspases, and orients infected cells toward a slow necrotic cell death linked to mitochondrial Ca(2+) overload. In this review, we will focus on the role of Ca(2+) responses and their regulation by Shigella during the different stages of bacterial infection.
Collapse
Affiliation(s)
- Mariette Bonnet
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie, Collège de FranceParis, France; Institut National de la Santé et de la Recherche Médicale U1050Paris, France; Centre National de la Recherche Scientifique, UMR7241Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science LettreParis, France
| | - Guy Tran Van Nhieu
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie, Collège de FranceParis, France; Institut National de la Santé et de la Recherche Médicale U1050Paris, France; Centre National de la Recherche Scientifique, UMR7241Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science LettreParis, France
| |
Collapse
|
27
|
Charles-Orszag A, Lemichez E, Tran Van Nhieu G, Duménil G. Microbial pathogenesis meets biomechanics. Curr Opin Cell Biol 2016; 38:31-7. [PMID: 26849533 DOI: 10.1016/j.ceb.2016.01.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Revised: 12/22/2015] [Accepted: 01/11/2016] [Indexed: 01/13/2023]
Abstract
Introducing concepts from soft matter physics and mechanics has largely contributed to our understanding of a variety of biological processes. In this review, we argue that this holds true for bacterial pathogenesis. We base this argument on three examples of bacterial pathogens and their interaction with host cells during infection: (i) Shigella flexneri exploits actin-dependent forces to come into close contact with epithelial cells prior to invasion of the epithelium; (ii) Neisseria meningitidis manipulates endothelial cells to resist shear stress during vascular colonization; (iii) bacterial toxins take advantage of the biophysical properties of the host cell plasma membrane to generate transcellular macroapertures in the vascular wall. Together, these examples show that a multidisciplinary approach integrating physics and biology is more necessary than ever to understand complex infectious phenomena. Moreover, this avenue of research will allow the exploration of general processes in cell biology, highlighted by pathogens, in the context of other non-communicable human diseases.
Collapse
Affiliation(s)
- Arthur Charles-Orszag
- Pathogenesis of vascular infections unit, INSERM, Institut Pasteur, 75015 Paris, France
| | - Emmanuel Lemichez
- INSERM, U1065, Microbial Toxins in Host-Pathogen Interactions, Centre Méditerranéen De Médecine Moléculaire, C3M, 151 Route St Antoine de Ginestière, 06204 Nice, France
| | - Guy Tran Van Nhieu
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, Paris, France; Institut National de la Santé et de la Recherche Médicale U1050, Paris, France; Centre National de la Recherche Scientifique UMR 7241, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre, Paris, France
| | - Guillaume Duménil
- Pathogenesis of vascular infections unit, INSERM, Institut Pasteur, 75015 Paris, France.
| |
Collapse
|
28
|
Ashida H, Sasakawa C. Shigella IpaH Family Effectors as a Versatile Model for Studying Pathogenic Bacteria. Front Cell Infect Microbiol 2016; 5:100. [PMID: 26779450 PMCID: PMC4701945 DOI: 10.3389/fcimb.2015.00100] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Accepted: 12/14/2015] [Indexed: 02/03/2023] Open
Abstract
Shigella spp. are highly adapted human pathogens that cause bacillary dysentery (shigellosis). Via the type III secretion system (T3SS), Shigella deliver a subset of virulence proteins (effectors) that are responsible for pathogenesis, with functions including pyroptosis, invasion of the epithelial cells, intracellular survival, and evasion of host immune responses. Intriguingly, T3SS effector activity and strategies are not unique to Shigella, but are shared by many other bacterial pathogens, including Salmonella, Yersinia, and enteropathogenic Escherichia coli (EPEC). Therefore, studying Shigella T3SS effectors will not only improve our understanding of bacterial infection systems, but also provide a molecular basis for developing live bacterial vaccines and antibacterial drugs. One of Shigella T3SS effectors, IpaH family proteins, which have E3 ubiquitin ligase activity and are widely conserved among other bacterial pathogens, are very relevant because they promote bacterial survival by triggering cell death and modulating the host immune responses. Here, we describe selected examples of Shigella pathogenesis, with particular emphasis on the roles of IpaH family effectors, which shed new light on bacterial survival strategies and provide clues about how to overcome bacterial infections.
Collapse
Affiliation(s)
- Hiroshi Ashida
- Division of Bacterial Infection Biology, Institute of Medical Science, University of Tokyo Tokyo, Japan
| | - Chihiro Sasakawa
- Division of Bacterial Infection Biology, Institute of Medical Science, University of TokyoTokyo, Japan; Nippon Institute for Biological ScienceTokyo, Japan; Medical Mycology Research Center, Chiba UniversityChiba, Japan
| |
Collapse
|
29
|
Thwaites TR, Pedrosa AT, Peacock TP, Carabeo RA. Vinculin Interacts with the Chlamydia Effector TarP Via a Tripartite Vinculin Binding Domain to Mediate Actin Recruitment and Assembly at the Plasma Membrane. Front Cell Infect Microbiol 2015; 5:88. [PMID: 26649283 PMCID: PMC4663276 DOI: 10.3389/fcimb.2015.00088] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2015] [Accepted: 11/16/2015] [Indexed: 12/11/2022] Open
Abstract
The mammalian protein vinculin is often a target of bacterial pathogens to subvert locally host cell actin dynamics. In Chlamydia infection, vinculin has been implicated in RNA interference screens, but the molecular basis for vinculin requirement has not been characterized. In this report, we show that vinculin was involved in the actin recruitment and F-actin assembly at the plasma membrane to facilitate invasion. Vinculin was recruited to the plasma membrane via its interaction with a specific tripartite motif within TarP that resembles the vinculin-binding domain (VBD) found in the Shigella invasion factor IpaA. The TarP-mediated plasma membrane recruitment of vinculin resulted in the localized recruitment of actin. In vitro pulldown assays for protein-protein interaction and imaging-based evaluation of recruitment to the plasma membrane demonstrated the essential role of the vinculin-binding site 1 (VBS1), and the dispensability of VBS2 and VBS3. As further support for the functionality of VBD-vinculin interaction, VBD-mediated actin recruitment required vinculin. Interestingly, while both vinculin and the focal adhesion kinase (FAK) colocalized at the sites of adhesion, the recruitment of one was independent of the other; and the actin recruitment function of the VBD/vinculin signaling axis was independent of the LD/FAK pathway.
Collapse
Affiliation(s)
- Tristan R Thwaites
- Programme in Microbiology, Institute of Medical Sciences, University of Aberdeen Aberdeen, UK ; Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London London, UK
| | - Antonio T Pedrosa
- Programme in Microbiology, Institute of Medical Sciences, University of Aberdeen Aberdeen, UK ; Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London London, UK ; School of Molecular Biosciences, Washington State University Pullman, WA, USA
| | - Thomas P Peacock
- Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London London, UK
| | - Rey A Carabeo
- Programme in Microbiology, Institute of Medical Sciences, University of Aberdeen Aberdeen, UK ; Medical Research Council Centre for Molecular Bacteriology and Infection, Imperial College London London, UK ; School of Molecular Biosciences, Washington State University Pullman, WA, USA
| |
Collapse
|
30
|
The cytoskeleton in cell-autonomous immunity: structural determinants of host defence. Nat Rev Immunol 2015; 15:559-73. [PMID: 26292640 DOI: 10.1038/nri3877] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Host cells use antimicrobial proteins, pathogen-restrictive compartmentalization and cell death in their defence against intracellular pathogens. Recent work has revealed that four components of the cytoskeleton--actin, microtubules, intermediate filaments and septins, which are well known for their roles in cell division, shape and movement--have important functions in innate immunity and cellular self-defence. Investigations using cellular and animal models have shown that these cytoskeletal proteins are crucial for sensing bacteria and for mobilizing effector mechanisms to eliminate them. In this Review, we highlight the emerging roles of the cytoskeleton as a structural determinant of cell-autonomous host defence.
Collapse
|
31
|
Sanchez-Villamil J, Navarro-Garcia F. Role of virulence factors on host inflammatory response induced by diarrheagenic Escherichia coli pathotypes. Future Microbiol 2015; 10:1009-33. [DOI: 10.2217/fmb.15.17] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
ABSTRACT Pathogens are able to breach the intestinal barrier, and different bacterial species can display different abilities to colonize hosts and induce inflammation. Inflammatory response studies induced by enteropathogens as Escherichia coli are interesting since it has acquired diverse genetic mobile elements, leading to different E. coli pathotypes. Diarrheagenic E. coli secrete toxins, effectors and virulence factors that exploit the host cell functions to facilitate the bacterial colonization. Many bacterial proteins are delivered to the host cell for subverting the inflammatory response. Hereby, we have highlighted the specific processes used by E. coli pathotypes, by that subvert the inflammatory pathways. These mechanisms include an arrangement of pro- and anti-inflammatory responses to favor the appropriate environmental niche for the bacterial survival and growth.
Collapse
Affiliation(s)
- Javier Sanchez-Villamil
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Ap. Postal 14–740, 07000, México DF, Mexico
| | - Fernando Navarro-Garcia
- Department of Cell Biology, Centro de Investigación y de Estudios Avanzados del IPN (CINVESTAV-IPN), Ap. Postal 14–740, 07000, México DF, Mexico
| |
Collapse
|
32
|
Ashida H, Mimuro H, Sasakawa C. Shigella manipulates host immune responses by delivering effector proteins with specific roles. Front Immunol 2015; 6:219. [PMID: 25999954 PMCID: PMC4423471 DOI: 10.3389/fimmu.2015.00219] [Citation(s) in RCA: 89] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2015] [Accepted: 04/22/2015] [Indexed: 11/30/2022] Open
Abstract
The intestinal epithelium deploys multiple defense systems against microbial infection to sense bacterial components and danger alarms, as well as to induce intracellular signal transduction cascades that trigger both the innate and the adaptive immune systems, which are pivotal for bacterial elimination. However, many enteric bacterial pathogens, including Shigella, deliver a subset of virulence proteins (effectors) via the type III secretion system (T3SS) that enable bacterial evasion from host immune systems; consequently, these pathogens are able to efficiently colonize the intestinal epithelium. In this review, we present and select recently discovered examples of interactions between Shigella and host immune responses, with particular emphasis on strategies that bacteria use to manipulate inflammatory outputs of host-cell responses such as cell death, membrane trafficking, and innate and adaptive immune responses.
Collapse
Affiliation(s)
- Hiroshi Ashida
- Division of Bacterial Infection Biology, Institute of Medical Science, University of Tokyo , Tokyo , Japan
| | - Hitomi Mimuro
- Division of Bacteriology, Department of Infectious Diseases Control, International Research Center for Infectious Diseases, The Institute of Medical Science, University of Tokyo , Tokyo , Japan
| | - Chihiro Sasakawa
- Division of Bacterial Infection Biology, Institute of Medical Science, University of Tokyo , Tokyo , Japan ; Nippon Institute for Biological Science , Tokyo , Japan ; Medical Mycology Research Center, Chiba University , Chiba , Japan
| |
Collapse
|
33
|
Valencia-Gallardo CM, Carayol N, Tran Van Nhieu G. Cytoskeletal mechanics during Shigella invasion and dissemination in epithelial cells. Cell Microbiol 2015; 17:174-82. [PMID: 25469430 DOI: 10.1111/cmi.12400] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 11/26/2014] [Accepted: 12/01/2014] [Indexed: 02/06/2023]
Abstract
The actin cytoskeleton is key to the barrier function of epithelial cells, by permitting the establishment and maintenance of cell-cell junctions and cell adhesion to the basal matrix. Actin exists under monomeric and polymerized filamentous form and its polymerization following activation of nucleation promoting factors generates pushing forces, required to propel intracellular microorganisms in the host cell cytosol or for the formation of cell extensions that engulf bacteria. Actin filaments can associate with adhesion receptors at the plasma membrane via cytoskeletal linkers. Membrane anchored to actin filaments are then subjected to the retrograde flow that may pull membrane-bound bacteria inside the cell. To induce its internalization by normally non-phagocytic cells, bacteria need to establish adhesive contacts and trick the cell into apply pulling forces, and/or to generate protrusive forces that deform the membrane surrounding its contact site. In this review, we will focus on recent findings on actin cytoskeleton reorganization within epithelial cells during invasion and cell-to-cell spreading by the enteroinvasive pathogen Shigella, the causative agent of bacillary dysentery.
Collapse
Affiliation(s)
- Cesar M Valencia-Gallardo
- Equipe Communication Intercellulaire et Infections Microbiennes, Centre de Recherche Interdisciplinaire en Biologie (CIRB), Collège de France, Paris, France; Institut National de la Santé et de la Recherche Médicale (Inserm) U1050, Paris, France; Centre National de la Recherche Scientifique (CNRS) UMR7241, Paris, France; MEMOLIFE Laboratory of Excellence and Paris Science Lettre, Paris, France; Université Paris Diderot - Paris 7, Paris, France
| | | | | |
Collapse
|
34
|
Abstract
PURPOSE OF REVIEW Shigella spp. are important etiologic agents of diarrhea worldwide. This review summarizes the recent findings on the epidemiology, diagnosis, virulence genes, and pathobiology of Shigella infection. RECENT FINDINGS Shigella flexneri and Shigella sonnei have been identified as the main serogroups circulating in developing and developed countries, respectively. However, a shift in the dominant species from S. flexneri to S. sonnei has been observed in countries that have experienced recent improvements in socioeconomic conditions. Despite the increasing usage of molecular methods in the diagnosis and virulence characterization of Shigella strains, researchers have been unsuccessful in finding a specific target gene for this bacillus. New research has demonstrated the role of proteins whose expressions are temperature-regulated, as well as genes involved in the processes of adhesion, invasion, dissemination, and inflammation, aiding in the clarification of the complex pathobiology of shigellosis. SUMMARY Knowledge about the epidemiologic profile of circulating serogroups of Shigella and an understanding of its pathobiology as well as of the virulence genes is important for the development of preventive measures and interventions to reduce the worldwide spread of shigellosis.
Collapse
|
35
|
Ishida K, Matsuo J, Yamamoto Y, Yamaguchi H. Chlamydia pneumoniae effector chlamydial outer protein N sequesters fructose bisphosphate aldolase A, providing a benefit to bacterial growth. BMC Microbiol 2014; 14:330. [PMID: 25528659 PMCID: PMC4302594 DOI: 10.1186/s12866-014-0330-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2014] [Accepted: 12/16/2014] [Indexed: 01/13/2023] Open
Abstract
Background Pathogenic chlamydiae are obligate intracellular pathogens and have adapted successfully to human cells, causing sexually transmitted diseases or pneumonia. Chlamydial outer protein N (CopN) is likely a critical effector protein secreted by the type III secretion system in chlamydiae, which manipulates host cells. However, the mechanisms of its action remain to be clarified. In this work, we aimed to identify previously unidentified CopN effector target in host cells. Results We first performed a pull-down assay with recombinant glutathione S-transferase (GST) fusion CopN proteins (GST–CpCopN: Chlamydia pneumoniae TW183, GST–CtCopN: Chlamydia trachomatis D/UW-3/CX) as “bait” and soluble lysates obtained from human immortal epithelial HEp-2 cells as “prey”, followed by SDS-PAGE with mass spectroscopy (MS). We found that a host cell protein specifically bound to GST–CpCopN, but not GST–CtCopN. MS revealed the host protein to be fructose bisphosphate aldolase A (aldolase A), which plays a key role in glycolytic metabolism. We also confirmed the role of aldolase A in chlamydia-infected HEp-2 cells by using two distinct experiments for gene knockdown with an siRNA specific to aldolase A transcripts, and for assessment of glycolytic enzyme gene expression levels. As a result, both the numbers of chlamydial inclusion-forming units and RpoD transcripts were increased in the chlamydia-infected aldolase A knockdown cells, as compared with the wild-type HEp-2 cells. Meanwhile, chlamydial infection tended to enhance expression of aldolase A. Conclusions We discovered that one of the C. pneumoniae CopN targets is the glycolytic enzyme aldolase A. Sequestering aldolase A may be beneficial to bacterial growth in infected host cells.
Collapse
Affiliation(s)
- Kasumi Ishida
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan. .,Research Fellow of Japan Society for the Promotion of Science, Tokyo, 102-0083, Japan.
| | - Junji Matsuo
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan.
| | - Yoshimasa Yamamoto
- Department of Biomedical Informatics, Osaka University Graduate School of Medicine, Suita, Osaka, 565-0871, Japan. .,Japan Science and Technology Agency/Japan International Cooperation Agency, Science and Technology Research Partnership for Sustainable Development (JST/JICA, SATREPS), Osaka, Japan. .,Osaka Prefectural Institute of Public Health, Higashinari-ku, Osaka, 537-0025, Japan.
| | - Hiroyuki Yamaguchi
- Department of Medical Laboratory Science, Faculty of Health Sciences, Hokkaido University, Sapporo, Hokkaido, 060-0812, Japan.
| |
Collapse
|
36
|
Tanner K, Brzovic P, Rohde JR. The bacterial pathogen-ubiquitin interface: lessons learned from Shigella. Cell Microbiol 2014; 17:35-44. [PMID: 25355173 DOI: 10.1111/cmi.12390] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Revised: 10/22/2014] [Accepted: 10/28/2014] [Indexed: 02/06/2023]
Abstract
Shigella species are the aetiological agents of shigellosis, a severe diarrhoeal disease that is a significant cause of morbidity and mortality worldwide. Shigellosis causes massive colonic destruction, high fever and bloody diarrhoea. Shigella pathogenesis is tightly linked to the ability of the bacterium to invade and replicate intracellularly within the colonic epithelium. Shigella uses a type 3 secretion system to deliver its effector proteins into the cytosol of infected cells. Among the repertoire of Shigella effectors, many are known to target components of the actin cytoskeleton to promote bacterial entry. An emerging alternate theme for effector function is the targeting of the host ubiquitin system. Ubiquitination is a post-translational modification restricted to eukaryotes and is involved in many essential host processes. By virtue of sheer number of ubiquitin-modulating effector proteins, it is clear that Shigella has invested heavily into subversion of the ubiquitin system. Understanding these host-pathogen interactions will inform us about the strategies used by successful pathogens and may also provide avenues for novel antimicrobial strategies.
Collapse
Affiliation(s)
- Kaitlyn Tanner
- Department of Microbiology and Immunology, Dalhousie University, Halifax, Nova Scotia, Canada
| | | | | |
Collapse
|
37
|
Ashida H, Kim M, Sasakawa C. Manipulation of the host cell death pathway by Shigella. Cell Microbiol 2014; 16:1757-66. [PMID: 25264025 DOI: 10.1111/cmi.12367] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2014] [Revised: 08/11/2014] [Accepted: 08/21/2014] [Indexed: 12/25/2022]
Abstract
Host cells deploy multiple defences against microbial infection. One prominent host defence mechanism, the death of infected cells, plays a pivotal role in clearing damaged cells, eliminating pathogens, removing replicative niches, exposing intracellular bacterial pathogens to extracellular immune surveillance and presenting bacteria-derived antigens to the adaptive immune system. Although cell death can occur under either physiological or pathophysiological conditions, it acts as an innate defence mechanism against bacterial pathogens by limiting their persistent colonization. However, many bacterial pathogens, including Shigella, have evolved mechanisms that manipulate host cell death for their own benefit.
Collapse
Affiliation(s)
- Hiroshi Ashida
- Division of Bacterial Infection Biology, Institute of Medical Science, University of Tokyo, Tokyo, 108-8639, Japan
| | | | | |
Collapse
|
38
|
Abstract
Of the many pathogens that infect humans and animals, a large number use cells of the host organism as protected sites for replication. To reach the relevant intracellular compartments, they take advantage of the endocytosis machinery and exploit the network of endocytic organelles for penetration into the cytosol or as sites of replication. In this review, we discuss the endocytic entry processes used by viruses and bacteria and compare the strategies used by these dissimilar classes of pathogens.
Collapse
Affiliation(s)
- Pascale Cossart
- Institut Pasteur, Unité des Interactions Bactéries-Cellules, Paris F-75015, France; INSERM U604, Paris F-75015, France; and INRA, USC2020, Paris F-75015, France
| | - Ari Helenius
- Institute of Biochemistry, ETH Zurich, 8093 Zurich, Switzerland
| |
Collapse
|
39
|
Ashida H, Kim M, Sasakawa C. Exploitation of the host ubiquitin system by human bacterial pathogens. Nat Rev Microbiol 2014; 12:399-413. [DOI: 10.1038/nrmicro3259] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
40
|
Role of intracellular carbon metabolism pathways in Shigella flexneri virulence. Infect Immun 2014; 82:2746-55. [PMID: 24733092 DOI: 10.1128/iai.01575-13] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Shigella flexneri, which replicates in the cytoplasm of intestinal epithelial cells, can use the Embden-Meyerhof-Parnas, Entner-Doudoroff, or pentose phosphate pathway for glycolytic carbon metabolism. To determine which of these pathways is used by intracellular S. flexneri, mutants were constructed and tested in a plaque assay for the ability to invade, replicate intracellularly, and spread to adjacent epithelial cells. Mutants blocked in the Embden-Meyerhof-Parnas pathway (pfkAB and pykAF mutants) invaded the cells but formed very small plaques. Loss of the Entner-Doudoroff pathway gene eda resulted in small plaques, but the double eda edd mutant formed normal-size plaques. This suggested that the plaque defect of the eda mutant was due to buildup of the toxic intermediate 2-keto-3-deoxy-6-phosphogluconic acid rather than a specific requirement for this pathway. Loss of the pentose phosphate pathway had no effect on plaque formation, indicating that it is not critical for intracellular S. flexneri. Supplementation of the epithelial cell culture medium with pyruvate allowed the glycolysis mutants to form larger plaques than those observed with unsupplemented medium, consistent with data from phenotypic microarrays (Biolog) indicating that pyruvate metabolism was not disrupted in these mutants. Interestingly, the wild-type S. flexneri also formed larger plaques in the presence of supplemental pyruvate or glucose, with pyruvate yielding the largest plaques. Analysis of the metabolites in the cultured cells showed increased intracellular levels of the added compound. Pyruvate increased the growth rate of S. flexneri in vitro, suggesting that it may be a preferred carbon source inside host cells.
Collapse
|
41
|
Mittal R, Grati M, Gerring R, Blackwelder P, Yan D, Li JD, Liu XZ. In vitro interaction of Pseudomonas aeruginosa with human middle ear epithelial cells. PLoS One 2014; 9:e91885. [PMID: 24632826 PMCID: PMC3954863 DOI: 10.1371/journal.pone.0091885] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2013] [Accepted: 02/14/2014] [Indexed: 01/27/2023] Open
Abstract
Background Otitis media (OM) is an inflammation of the middle ear which can be acute or chronic. Acute OM is caused by Streptococcus pneumoniae, Haemophilus influenzae, and Moraxella catarrhalis whereas Pseudomonas aeruginosa is a leading cause of chronic suppurative otitis media (CSOM). CSOM is a chronic inflammatory disorder of the middle ear characterized by infection and discharge. The survivors often suffer from hearing loss and neurological sequelae. However, no information is available regarding the interaction of P. aeruginosa with human middle ear epithelial cells (HMEECs). Methodology and Findings In the present investigation, we demonstrate that P. aeruginosa is able to enter and survive inside HMEECs via an uptake mechanism that is dependent on microtubule and actin microfilaments. The actin microfilament disrupting agent as well as microtubule inhibitors exhibited significant decrease in invasion of HMEECs by P. aeruginosa. Confocal microscopy demonstrated F-actin condensation associated with bacterial entry. This recruitment of F-actin was transient and returned to normal distribution after bacterial internalization. Scanning electron microscopy demonstrated the presence of bacteria on the surface of HMEECs, and transmission electron microscopy confirmed the internalization of P. aeruginosa located in the plasma membrane-bound vacuoles. We observed a significant decrease in cell invasion of OprF mutant compared to the wild-type strain. P. aeruginosa induced cytotoxicity, as demonstrated by the determination of lactate dehydrogenase levels in culture supernatants of infected HMEECs and by a fluorescent dye-based assay. Interestingly, OprF mutant showed little cell damage compared to wild-type P. aeruginosa. Conclusions and Significance This study deciphered the key events in the interaction of P. aeruginosa with HMEECs in vitro and highlighted the role of bacterial outer membrane protein, OprF, in this process. Understanding the molecular mechanisms in the pathogenesis of CSOM will help in identifying novel targets to design effective therapeutic strategies and to prevent hearing loss.
Collapse
Affiliation(s)
- Rahul Mittal
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - M’hamed Grati
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Robert Gerring
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Patricia Blackwelder
- Center for Advanced Microscopy, University of Miami, Coral Gables, Florida, United States of America
- RSMAS, University of Miami, Key Biscayne, Florida, United States of America
| | - Denise Yan
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
| | - Jian-Dong Li
- Center for Inflammation, Immunity, and Infection and Department of Biology, Georgia State University, Atlanta, Georgia, United States of America
| | - Xue Zhong Liu
- Department of Otolaryngology, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- Department of Human Genetics, University of Miami Miller School of Medicine, Miami, Florida, United States of America
- * E-mail:
| |
Collapse
|
42
|
New insights into the crosstalk between Shigella and T lymphocytes. Trends Microbiol 2014; 22:192-8. [PMID: 24613405 DOI: 10.1016/j.tim.2014.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/03/2014] [Accepted: 02/05/2014] [Indexed: 01/22/2023]
Abstract
Subversion of host immune responses is the key infection strategy employed by most, if not all, human pathogens. Modulation of the host innate response by pathogens has been vastly documented. Yet, especially for bacterial infections, it was only recently that cells of the adaptive immune response were recognized as targets of bacterial weapons such as the type III secretion system (T3SS) and its effector proteins. In this review, we focus on the recent advances made in the understanding of how the enteroinvasive bacterium Shigella flexneri interferes with the host adaptive response by targeting T lymphocytes, especially their migration capacities.
Collapse
|
43
|
Croxen MA, Law RJ, Scholz R, Keeney KM, Wlodarska M, Finlay BB. Recent advances in understanding enteric pathogenic Escherichia coli. Clin Microbiol Rev 2013; 26:822-80. [PMID: 24092857 PMCID: PMC3811233 DOI: 10.1128/cmr.00022-13] [Citation(s) in RCA: 895] [Impact Index Per Article: 74.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Although Escherichia coli can be an innocuous resident of the gastrointestinal tract, it also has the pathogenic capacity to cause significant diarrheal and extraintestinal diseases. Pathogenic variants of E. coli (pathovars or pathotypes) cause much morbidity and mortality worldwide. Consequently, pathogenic E. coli is widely studied in humans, animals, food, and the environment. While there are many common features that these pathotypes employ to colonize the intestinal mucosa and cause disease, the course, onset, and complications vary significantly. Outbreaks are common in developed and developing countries, and they sometimes have fatal consequences. Many of these pathotypes are a major public health concern as they have low infectious doses and are transmitted through ubiquitous mediums, including food and water. The seriousness of pathogenic E. coli is exemplified by dedicated national and international surveillance programs that monitor and track outbreaks; unfortunately, this surveillance is often lacking in developing countries. While not all pathotypes carry the same public health profile, they all carry an enormous potential to cause disease and continue to present challenges to human health. This comprehensive review highlights recent advances in our understanding of the intestinal pathotypes of E. coli.
Collapse
|
44
|
Ashida H, Nakano H, Sasakawa C. Shigella IpaH0722 E3 ubiquitin ligase effector targets TRAF2 to inhibit PKC-NF-κB activity in invaded epithelial cells. PLoS Pathog 2013; 9:e1003409. [PMID: 23754945 PMCID: PMC3675035 DOI: 10.1371/journal.ppat.1003409] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 04/23/2013] [Indexed: 12/21/2022] Open
Abstract
NF-κB plays a central role in modulating innate immune responses to bacterial infections. Therefore, many bacterial pathogens deploy multiple mechanisms to counteract NF-κB activation. The invasion of and subsequent replication of Shigella within epithelial cells is recognized by various pathogen recognition receptors as pathogen-associated molecular patterns. These receptors trigger innate defense mechanisms via the activation of the NF-κB signaling pathway. Here, we show the inhibition of the NF-κB activation by the delivery of the IpaH E3 ubiquitin ligase family member IpaH0722 using Shigella's type III secretion system. IpaH0722 dampens the acute inflammatory response by preferentially inhibiting the PKC-mediated activation of NF-κB by ubiquitinating TRAF2, a molecule downstream of PKC, and by promoting its proteasome-dependent degradation. In response to bacterial infection, host cells induce a plethora of innate immune responses to combat the infection. However, many bacterial pathogens have developed sophisticated mechanisms to evade the host's immune system. Because NF-κB is crucial for innate immune responses against bacterial infection, bacterial pathogens deploy multiple countermeasures to inhibit NF-κB activation. The invasion and replication of Shigella within host cells results in cellular damage and the production of bacterial components that trigger NF-κB activation. Here, we show that the Shigella type III secretion system (T3SS) effector IpaH0722, a member of the IpaH E3 ubiquitin ligase family, inhibits NF-κB activation during Shigella infection. IpaH0722 preferentially targets the PKC–NF-κB pathway, which is activated in response to danger signals caused by disruption of the phagosomal membrane during the dissemination of Shigella into the cytoplasm. IpaH0722 inhibits NF-κB activation by targeting TRAF2, which lies downstream of PKC, for ubiquitination and proteasome-dependent degradation.
Collapse
Affiliation(s)
- Hiroshi Ashida
- Division of Bacterial Infection Biology, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
| | - Hiroyasu Nakano
- Department of Immunology, Juntendo University School Graduate School of Medicine, Hongo, Bunkyo-ku, Tokyo, Japan
| | - Chihiro Sasakawa
- Division of Bacterial Infection Biology, Institute of Medical Science, University of Tokyo, Shirokanedai, Minato-ku, Tokyo, Japan
- Nippon Institute for Biological Science, Shinmachi, Ome, Tokyo, Japan
- Medical Mycology Research Center, Chiba University, Inohana, Chuo-ku, Chiba, Japan
- * E-mail:
| |
Collapse
|