1
|
Chen Y, Gu J, Yang B, Yang L, Pang J, Luo Q, Li Y, Li D, Deng Z, Dong C, Dong H, Zhang Z. Structure and activity of the septal peptidoglycan hydrolysis machinery crucial for bacterial cell division. PLoS Biol 2024; 22:e3002628. [PMID: 38814940 PMCID: PMC11139282 DOI: 10.1371/journal.pbio.3002628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 04/14/2024] [Indexed: 06/01/2024] Open
Abstract
The peptidoglycan (PG) layer is a critical component of the bacterial cell wall and serves as an important target for antibiotics in both gram-negative and gram-positive bacteria. The hydrolysis of septal PG (sPG) is a crucial step of bacterial cell division, facilitated by FtsEX through an amidase activation system. In this study, we present the cryo-EM structures of Escherichia coli FtsEX and FtsEX-EnvC in the ATP-bound state at resolutions of 3.05 Å and 3.11 Å, respectively. Our PG degradation assays in E. coli reveal that the ATP-bound conformation of FtsEX activates sPG hydrolysis of EnvC-AmiB, whereas EnvC-AmiB alone exhibits autoinhibition. Structural analyses indicate that ATP binding induces conformational changes in FtsEX-EnvC, leading to significant differences from the apo state. Furthermore, PG degradation assays of AmiB mutants confirm that the regulation of AmiB by FtsEX-EnvC is achieved through the interaction between EnvC-AmiB. These findings not only provide structural insight into the mechanism of sPG hydrolysis and bacterial cell division, but also have implications for the development of novel therapeutics targeting drug-resistant bacteria.
Collapse
Affiliation(s)
- Yatian Chen
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Jiayue Gu
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Biao Yang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Lili Yang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Jie Pang
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Qinghua Luo
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yirong Li
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Danyang Li
- The Cryo-EM Center, Core facility of Wuhan University, Wuhan University, Wuhan, China
| | - Zixin Deng
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Changjiang Dong
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Haohao Dong
- State Key Laboratory of Biotherapy and Cancer Center, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Zhengyu Zhang
- Department of Clinical Laboratory, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Ministry of Education, and School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
2
|
Prasad R, Jenq RR. The SagA of E. faecium. eLife 2024; 13:e97277. [PMID: 38578679 PMCID: PMC10997327 DOI: 10.7554/elife.97277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
An enzyme that remodels the cell wall of Enterococcus faecium helps these gut bacteria to divide and generate peptide fragments that enhance the immune response against cancer.
Collapse
Affiliation(s)
- Rishika Prasad
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, United States
| | - Robert R Jenq
- Department of Genomic Medicine, Division of Cancer Medicine, The University of Texas MD Anderson Cancer Center, Houston, United States
| |
Collapse
|
3
|
Pena MM, Martins TZ, Teper D, Zamuner C, Alves HA, Ferreira H, Wang N, Ferro MIT, Ferro JA. EnvC Homolog Encoded by Xanthomonas citri subsp. citri Is Necessary for Cell Division and Virulence. Microorganisms 2024; 12:691. [PMID: 38674634 PMCID: PMC11051873 DOI: 10.3390/microorganisms12040691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 03/16/2024] [Accepted: 03/21/2024] [Indexed: 04/28/2024] Open
Abstract
Peptidoglycan hydrolases are enzymes responsible for breaking the peptidoglycan present in the bacterial cell wall, facilitating cell growth, cell division and peptidoglycan turnover. Xanthomonas citri subsp. citri (X. citri), the causal agent of citrus canker, encodes an Escherichia coli M23 peptidase EnvC homolog. EnvC is a LytM factor essential for cleaving the septal peptidoglycan, thereby facilitating the separation of daughter cells. In this study, the investigation focused on EnvC contribution to the virulence and cell separation of X. citri. It was observed that disruption of the X. citri envC gene (ΔenvC) led to a reduction in virulence. Upon inoculation into leaves of Rangpur lime (Citrus limonia Osbeck), the X. citri ΔenvC exhibited a delayed onset of citrus canker symptoms compared with the wild-type X. citri. Mutant complementation restored the wild-type phenotype. Sub-cellular localization confirmed that X. citri EnvC is a periplasmic protein. Moreover, the X. citri ΔenvC mutant exhibited elongated cells, indicating a defect in cell division. These findings support the role of EnvC in the regulation of cell wall organization, cell division, and they clarify the role of this peptidase in X. citri virulence.
Collapse
Affiliation(s)
- Michelle M. Pena
- Agricultural and Livestock Microbiology Graduation Program, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (M.M.P.); (T.Z.M.)
| | - Thaisa Z. Martins
- Agricultural and Livestock Microbiology Graduation Program, School of Agricultural and Veterinarian Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (M.M.P.); (T.Z.M.)
| | - Doron Teper
- Department of Plant Pathology and Weed Research, Institute of Plant Protection Agricultural Research Organization (ARO), Volcani Institute, Rishon LeZion 7505101, Israel;
| | - Caio Zamuner
- Biochemistry Building, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro 13506-900, SP, Brazil; (C.Z.); (H.F.)
| | - Helen A. Alves
- Department of Agricultural, Livestock and Environmental Biotechnology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (H.A.A.); (M.I.T.F.)
| | - Henrique Ferreira
- Biochemistry Building, Institute of Biosciences, São Paulo State University (UNESP), Rio Claro 13506-900, SP, Brazil; (C.Z.); (H.F.)
| | - Nian Wang
- Citrus Research and Education Center, Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Lake Alfred, FL 33850, USA;
| | - Maria Inês T. Ferro
- Department of Agricultural, Livestock and Environmental Biotechnology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (H.A.A.); (M.I.T.F.)
| | - Jesus A. Ferro
- Department of Agricultural, Livestock and Environmental Biotechnology, School of Agricultural and Veterinary Sciences, São Paulo State University (UNESP), Jaboticabal 14884-900, SP, Brazil; (H.A.A.); (M.I.T.F.)
| |
Collapse
|
4
|
Gómez-Arrebola C, Hernandez SB, Culp EJ, Wright GD, Solano C, Cava F, Lasa I. Staphylococcus aureus susceptibility to complestatin and corbomycin depends on the VraSR two-component system. Microbiol Spectr 2023; 11:e0037023. [PMID: 37646518 PMCID: PMC10581084 DOI: 10.1128/spectrum.00370-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 06/30/2023] [Indexed: 09/01/2023] Open
Abstract
The overuse of antibiotics in humans and livestock has driven the emergence and spread of antimicrobial resistance and has therefore prompted research on the discovery of novel antibiotics. Complestatin (Cm) and corbomycin (Cb) are glycopeptide antibiotics with an unprecedented mechanism of action that is active even against methicillin-resistant and daptomycin-resistant Staphylococcus aureus. They bind to peptidoglycan and block the activity of peptidoglycan hydrolases required for remodeling the cell wall during growth. Bacterial signaling through two-component transduction systems (TCSs) has been associated with the development of S. aureus antimicrobial resistance. However, the role of TCSs in S. aureus susceptibility to Cm and Cb has not been previously addressed. In this study, we determined that, among all 16 S. aureus TCSs, VraSR is the only one controlling the susceptibility to Cm and Cb. Deletion of vraSR increased bacterial susceptibility to both antibiotics. Epistasis analysis with members of the vraSR regulon revealed that deletion of spdC, which encodes a membrane protein that scaffolds SagB for cleavage of peptidoglycan strands to achieve physiological length, in the vraSR mutant restored Cm and Cb susceptibility to wild-type levels. Moreover, deletion of either spdC or sagB in the wild-type strain increased resistance to both antibiotics. Further analyses revealed a significant rise in the relative amount of peptidoglycan and its total degree of cross-linkage in ΔspdC and ΔsagB mutants compared to the wild-type strain, suggesting that these changes in the cell wall provide resistance to the damaging effect of Cm and Cb. IMPORTANCE Although Staphylococcus aureus is a common colonizer of the skin and digestive tract of humans and many animals, it is also a versatile pathogen responsible for causing a wide variety and number of infections. Treatment of these infections requires the bacteria to be constantly exposed to antibiotic treatment, which facilitates the selection of antibiotic-resistant strains. The development of new antibiotics is, therefore, urgently needed. In this paper, we investigated the role of the sensory system of S. aureus in susceptibility to two new antibiotics: corbomycin and complestatin. The results shed light on the cell-wall synthesis processes that are affected by the presence of the antibiotic and the sensory system responsible for coordinating their activity.
Collapse
Affiliation(s)
- Carmen Gómez-Arrebola
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Sara B. Hernandez
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Elizabeth J. Culp
- Department of Biochemistry and Biomedical Sciences, M. G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Gerard D. Wright
- Department of Biochemistry and Biomedical Sciences, M. G. DeGroote Institute for Infectious Disease Research, David Braley Centre for Antibiotic Discovery, McMaster University, Hamilton, Ontario, Canada
| | - Cristina Solano
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| | - Felipe Cava
- Department of Molecular Biology, Laboratory for Molecular Infection Medicine Sweden, Umeå Centre for Microbial Research, Umeå University, Umeå, Sweden
| | - Iñigo Lasa
- Laboratory of Microbial Pathogenesis, Navarrabiomed, Hospital Universitario de Navarra (HUN), Universidad Pública de Navarra (UPNA), IdiSNA, Pamplona, Spain
| |
Collapse
|
5
|
Specific discrimination and efficient elimination of gram-positive bacteria by an aggregation-induced emission-active ruthenium (II) photosensitizer. Eur J Med Chem 2023; 251:115249. [PMID: 36893623 DOI: 10.1016/j.ejmech.2023.115249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/26/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
The infections caused by Gram-positive bacteria (G+) have seriously endangered public heath due to their high morbidity and mortality. Therefore, it is urgent to develop a multifunctional system for selective recognition, imaging and efficient eradication of G+. Aggregation-induced emission materials have shown great promise for microbial detection and antimicrobial therapy. In this paper, a multifunctional ruthenium (II) polypyridine complex Ru2 with aggregation-induced emission (AIE) characteristic, was developed and used for selective discrimination and efficient extermination of G+ from other bacteria with unique selectivity. The selective G+ recognition benefited from the interaction between lipoteichoic acids (LTA) and Ru2. Accumulation of Ru2 on the G+ membrane turned on its AIE luminescence and allowed specific G+ staining. Meanwhile, Ru2 under light irradiation also possessed robust antibacterial activity for G+in vitro and in vivo antibacterial experiments. To the best of our knowledge, Ru2 is the first Ru-based AIEgen photosensitizer for simultaneous dual applications of G+ detection and treatment, and inspires the development of promising antibacterial agents in the future.
Collapse
|
6
|
Frirdich E, Vermeulen J, Biboy J, Vollmer W, Gaynor EC. Multiple Campylobacter jejuni proteins affecting the peptidoglycan structure and the degree of helical cell curvature. Front Microbiol 2023; 14:1162806. [PMID: 37143542 PMCID: PMC10151779 DOI: 10.3389/fmicb.2023.1162806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 03/10/2023] [Indexed: 05/06/2023] Open
Abstract
Campylobacter jejuni is a Gram-negative helical bacterium. Its helical morphology, maintained by the peptidoglycan (PG) layer, plays a key role in its transmission in the environment, colonization, and pathogenic properties. The previously characterized PG hydrolases Pgp1 and Pgp2 are important for generating C. jejuni helical morphology, with deletion mutants being rod-shaped and showing alterations in their PG muropeptide profiles in comparison to the wild type. Homology searches and bioinformatics were used to identify additional gene products involved in C. jejuni morphogenesis: the putative bactofilin 1104 and the M23 peptidase domain-containing proteins 0166, 1105, and 1228. Deletions in the corresponding genes resulted in varying curved rod morphologies with changes in their PG muropeptide profiles. All changes in the mutants complemented except 1104. Overexpression of 1104 and 1105 also resulted in changes in the morphology and in the muropeptide profiles, suggesting that the dose of these two gene products influences these characteristics. The related helical ε-Proteobacterium Helicobacter pylori has characterized homologs of C. jejuni 1104, 1105, and 1228 proteins, yet deletion of the homologous genes in H. pylori had differing effects on H. pylori PG muropeptide profiles and/or morphology compared to the C. jejuni deletion mutants. It is therefore apparent that even related organisms with similar morphologies and homologous proteins can have diverse PG biosynthetic pathways, highlighting the importance of studying PG biosynthesis in related organisms.
Collapse
Affiliation(s)
- Emilisa Frirdich
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Emilisa Frirdich,
| | - Jenny Vermeulen
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| | - Jacob Biboy
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Waldemar Vollmer
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Erin C. Gaynor
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
7
|
Wang M, Buist G, van Dijl JM. Staphylococcus aureus cell wall maintenance - the multifaceted roles of peptidoglycan hydrolases in bacterial growth, fitness, and virulence. FEMS Microbiol Rev 2022; 46:6604383. [PMID: 35675307 PMCID: PMC9616470 DOI: 10.1093/femsre/fuac025] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/22/2022] [Accepted: 05/25/2022] [Indexed: 01/07/2023] Open
Abstract
Staphylococcus aureus is an important human and livestock pathogen that is well-protected against environmental insults by a thick cell wall. Accordingly, the wall is a major target of present-day antimicrobial therapy. Unfortunately, S. aureus has mastered the art of antimicrobial resistance, as underscored by the global spread of methicillin-resistant S. aureus (MRSA). The major cell wall component is peptidoglycan. Importantly, the peptidoglycan network is not only vital for cell wall function, but it also represents a bacterial Achilles' heel. In particular, this network is continuously opened by no less than 18 different peptidoglycan hydrolases (PGHs) encoded by the S. aureus core genome, which facilitate bacterial growth and division. This focuses attention on the specific functions executed by these enzymes, their subcellular localization, their control at the transcriptional and post-transcriptional levels, their contributions to staphylococcal virulence and their overall importance in bacterial homeostasis. As highlighted in the present review, our understanding of the different aspects of PGH function in S. aureus has been substantially increased over recent years. This is important because it opens up new possibilities to exploit PGHs as innovative targets for next-generation antimicrobials, passive or active immunization strategies, or even to engineer them into effective antimicrobial agents.
Collapse
Affiliation(s)
- Min Wang
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, PO Box 30001, 9700 RB Groningen, the Netherlands
| | | | - Jan Maarten van Dijl
- Corresponding author: Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, P.O. box 30001, HPC EB80, 9700 RB Groningen, the Netherlands, Tel. +31-50-3615187; Fax. +31-50-3619105; E-mail:
| |
Collapse
|
8
|
Induction of AmpC-Mediated β-Lactam Resistance Requires a Single Lytic Transglycosylase in Agrobacterium tumefaciens. Appl Environ Microbiol 2022; 88:e0033322. [PMID: 35638841 PMCID: PMC9238390 DOI: 10.1128/aem.00333-22] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
The remarkable ability of Agrobacterium tumefaciens to transfer DNA to plant cells has allowed the generation of important transgenic crops. One challenge of A. tumefaciens-mediated transformation is eliminating the bacteria after plant transformation to prevent detrimental effects to plants and the release of engineered bacteria to the environment. Here, we use a reverse-genetics approach to identify genes involved in ampicillin resistance, with the goal of utilizing these antibiotic-sensitive strains for plant transformations. We show that treating A. tumefaciens C58 with ampicillin led to increased β-lactamase production, a response dependent on the broad-spectrum β-lactamase AmpC and its transcription factor, AmpR. Loss of the putative ampD orthologue atu2113 led to constitutive production of AmpC-dependent β-lactamase activity and ampicillin resistance. Finally, one cell wall remodeling enzyme, MltB3, was necessary for the AmpC-dependent β-lactamase activity, and its loss elicited ampicillin and carbenicillin sensitivity in the A. tumefaciens C58 and GV3101 strains. Furthermore, GV3101 ΔmltB3 transforms plants with efficiency comparable to that of the wild type but can be cleared with sublethal concentrations of ampicillin. The functional characterization of the genes involved in the inducible ampicillin resistance pathway of A. tumefaciens constitutes a major step forward in efforts to reduce the intrinsic antibiotic resistance of this bacterium. IMPORTANCE Agrobacterium tumefaciens, a significant biotechnological tool for production of transgenic plant lines, is highly resistant to a wide variety of antibiotics, posing challenges for various applications. One challenge is the efficient elimination of A. tumefaciens from transformed plant tissue without using levels of antibiotics that are toxic to the plants. Here, we present the functional characterization of genes involved in β-lactam resistance in A. tumefaciens. Knowledge about proteins that promote or inhibit β-lactam resistance will enable the development of strains to improve the efficiency of Agrobacterium-mediated plant genetic transformations. Effective removal of Agrobacterium from transformed plant tissue has the potential to maximize crop yield and food production, improving the outlook for global food security.
Collapse
|
9
|
Jiang M, Fan X, Jiang Z, Chen H, Liu Y, Yu T, Huang Q, Ma Y. Comparative Proteomic Analysis of Membrane Vesicles from Clinical C. acnes Isolates with Differential Antibiotic Resistance. CLINICAL, COSMETIC AND INVESTIGATIONAL DERMATOLOGY 2022; 15:703-712. [PMID: 35463830 PMCID: PMC9022742 DOI: 10.2147/ccid.s363537] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 04/12/2022] [Indexed: 12/13/2022]
Abstract
Purpose Cutibacterium acnes (C. acnes) is closely associated with the pathogenesis of acne, and antibiotics targeting C. acnes have been widely used for decades. However, antibiotic resistance has been increasing rapidly. Membrane vesicles (MVs) have been found to play important roles in antibiotic resistance in some bacteria. We aimed to explore the mechanism of antibiotic resistance and the virulence components within C. acnes-derived MVs. Materials and Methods We isolated clinical C. acnes strains from the lesions of acne patients who were sensitive or resistant to the antibiotics erythromycin and clindamycin. We analyzed the proteome of MVs from four sensitive C. acnes isolates and three resistant isolates by LC-MS/MS. Results We identified 543 proteins within the MVs of clinical C. acnes strains. Several lipases, NlpC/P60, CAMP factor, and Hta domain protein were detected as virulence factors in the C. acnes-derived MVs. The levels of two lipases and FtsZ were significantly higher in resistant C. acnes-derived MVs compared with sensitive strains (p < 0.05). Conclusion According to the implications of this study, improper antibiotic use might not only increase antibiotic resistance in C. acnes but could also further alter the cutaneous lipid composition and aggravate host inflammation, thus resulting in worse clinical manifestations in acne patients. This study re-emphasizes that the improper use of antibiotics should be treated more seriously in clinical practice. Furthermore, to combat multidrug resistance in C. acnes, this study suggests that FtsZ inhibitors could be useful.
Collapse
Affiliation(s)
- Min Jiang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Xiaoyao Fan
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Ziqi Jiang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Huyan Chen
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Ye Liu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Tianze Yu
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Qiong Huang
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| | - Ying Ma
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, 200040, People's Republic of China
| |
Collapse
|
10
|
Tran TD, Ali MA, Lee D, Félix MA, Luallen RJ. Bacterial filamentation as a mechanism for cell-to-cell spread within an animal host. Nat Commun 2022; 13:693. [PMID: 35121734 PMCID: PMC8816909 DOI: 10.1038/s41467-022-28297-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 01/14/2022] [Indexed: 01/01/2023] Open
Abstract
Intracellular pathogens are challenged with limited space and resources while replicating in a single host cell. Mechanisms for direct invasion of neighboring host cells have been discovered in cell culture, but we lack an understanding of how bacteria directly spread between host cells in vivo. Here, we describe the discovery of intracellular bacteria that use filamentation for spreading between the intestinal epithelial cells of a natural host, the rhabditid nematode Oscheius tipulae. The bacteria, which belong to the new species Bordetella atropi, can infect the nematodes following a fecal-oral route, and reduce host life span and fecundity. Filamentation requires UDP-glucose biosynthesis and sensing, a highly conserved pathway that is used by other bacteria to detect rich conditions and inhibit cell division. Our results indicate that B. atropi uses a pathway that normally regulates bacterial cell size to trigger filamentation inside host cells, thus facilitating cell-to-cell dissemination. Some intracellular pathogens can directly invade neighboring host cells in cell culture, but it is unclear how this happens in vivo. Here, Tran et al. describe an intracellular bacterium that forms filaments to spread between intestinal epithelial cells in its host nematode, in a process regulated by a conserved nutrient-sensing pathway.
Collapse
|
11
|
Fermented Biomass of Arthrospira platensis as a Potential Food Ingredient. Antioxidants (Basel) 2022; 11:antiox11020216. [PMID: 35204099 PMCID: PMC8868207 DOI: 10.3390/antiox11020216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 01/20/2022] [Accepted: 01/21/2022] [Indexed: 02/04/2023] Open
Abstract
Lactic acid fermentation (LAF) is known to improve nutritional properties and functionality and to extend the shelf life of foods. We studied the LAF of Arthrospira platensis as the sole substrate using Lactobacillus plantarum as the starter culture. Fermented (FB) and non-fermented broth (NFB) were analysed by means of pH, lactic acid bacteria (LAB) count, lactic acid concentration, microbiological safety, and nutritional composition. Additionally, water and ethanol extracts were prepared on which total phenolic content, DPPH radical scavenging activity, and cellular antioxidant activity were determined. The maximum increase in LAB count and lactic acid concentration and drop in pH was observed in the first 24 h of fermentation. Total phenolic content and DPPH radical scavinging activity of ethanol extracts increased after fermentation compared with NFB. Ethanol extracts of FB have been shown as a potential source of antioxidants, which efficiently lowered oxidation level in the cells of yeast Saccharomyces cerevisiae, as well as the oxidative damage of lipids. Additionally, the level of non-protein nitrogen increased, indicating higher protein bioavailability, and fat content decreased in comparison with NFB. No presence of pathogenic bacteria and low pH indicate enhancement of FB microbiological stability. Therefore, inclusion of fermented A. platensis into food products could lead to added-value foods based on microalgae.
Collapse
|
12
|
Wang M, van den Berg S, Mora Hernández Y, Visser AH, Vera Murguia E, Koedijk DGAM, Bellink C, Bruggen H, Bakker-Woudenberg IAJM, van Dijl JM, Buist G. Differential binding of human and murine IgGs to catalytic and cell wall binding domains of Staphylococcus aureus peptidoglycan hydrolases. Sci Rep 2021; 11:13865. [PMID: 34226629 PMCID: PMC8257689 DOI: 10.1038/s41598-021-93359-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Accepted: 05/28/2021] [Indexed: 12/27/2022] Open
Abstract
Staphylococcus aureus is an opportunistic pathogen causing high morbidity and mortality. Since multi-drug resistant S. aureus lineages are nowadays omnipresent, alternative tools for preventive or therapeutic interventions, like immunotherapy, are urgently needed. However, there are currently no vaccines against S. aureus. Surface-exposed and secreted proteins are regarded as potential targets for immunization against S. aureus infections. Yet, many potential staphylococcal antigens of this category do not elicit protective immune responses. To obtain a better understanding of this problem, we compared the binding of serum IgGs from healthy human volunteers, highly S. aureus-colonized patients with the genetic blistering disease epidermolysis bullosa (EB), or immunized mice to the purified S. aureus peptidoglycan hydrolases Sle1, Aly and LytM and their different domains. The results show that the most abundant serum IgGs from humans and immunized mice target the cell wall-binding domain of Sle1, and the catalytic domains of Aly and LytM. Interestingly, in a murine infection model, these particular IgGs were not protective against S. aureus bacteremia. In contrast, relatively less abundant IgGs against the catalytic domain of Sle1 and the N-terminal domains of Aly and LytM were almost exclusively detected in sera from EB patients and healthy volunteers. These latter IgGs may contribute to the protection against staphylococcal infections, as previous studies suggest that serum IgGs protect EB patients against severe S. aureus infection. Together, these observations focus attention on the use of particular protein domains for vaccination to direct potentially protective immune responses towards the most promising epitopes within staphylococcal antigens.
Collapse
Affiliation(s)
- Min Wang
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, HPC EB80, P.O. box 30001, 9700 RB, Groningen, the Netherlands
| | - Sanne van den Berg
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Yaremit Mora Hernández
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, HPC EB80, P.O. box 30001, 9700 RB, Groningen, the Netherlands
| | - Aafke Hinke Visser
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, HPC EB80, P.O. box 30001, 9700 RB, Groningen, the Netherlands
| | - Elias Vera Murguia
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, HPC EB80, P.O. box 30001, 9700 RB, Groningen, the Netherlands
| | - Dennis G A M Koedijk
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, HPC EB80, P.O. box 30001, 9700 RB, Groningen, the Netherlands
| | - Channah Bellink
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, HPC EB80, P.O. box 30001, 9700 RB, Groningen, the Netherlands
| | - Hilde Bruggen
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, HPC EB80, P.O. box 30001, 9700 RB, Groningen, the Netherlands
| | - Irma A J M Bakker-Woudenberg
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, HPC EB80, P.O. box 30001, 9700 RB, Groningen, the Netherlands.
| | - Girbe Buist
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Hanzeplein 1, HPC EB80, P.O. box 30001, 9700 RB, Groningen, the Netherlands
| |
Collapse
|
13
|
Salah D, Moghanm FS, Arshad M, Alanazi AA, Latif S, El-Gammal MI, Shimaa EM, Elsayed S. Polymer-Peptide Modified Gold Nanorods to Improve Cell Conjugation and Cell labelling for Stem Cells Photoacoustic Imaging. Diagnostics (Basel) 2021; 11:1196. [PMID: 34209370 PMCID: PMC8305251 DOI: 10.3390/diagnostics11071196] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 06/27/2021] [Accepted: 06/27/2021] [Indexed: 01/04/2023] Open
Abstract
The use of gold nanorods (GNRs) as a contrast agent in bioimaging and cell tracking has numerous advantages, primarily due to the unique optical properties of gold nanorods which allow for the use of infrared regions when imaging. Owing to their unique geometry, Au NRs exhibit surface plasmon modes in the near-infrared wavelength range, which is ideal for carrying out optical measurements in biological fluids and tissue. Gold nanorod functionalization is essential, since the Cetyltrimethyl ammonium bromide CTAB gold nanorods are toxic, and for further in vitro and in vivo experiments the nanorods should be functionalized to become optically stable and biocompatible. In the present study, gold nanorods with an longitudinal surface plasmon resonance (LSPR) position around 800 nm were synthesized in order to be used for photoacoustic imaging applications for stem cell tracking. The gold nanorods were functionalized using both thiolated poly (ethylene glycol) (PEG) to stabilize the gold nanorods surface and a CALNN-TAT peptide sequence. Both ligands were attached to the gold nanorods through an Au-sulfur bond. CALNN-TAT is known as a cell penetrating peptide which ensures endocytosis of the gold nanorods inside the mesenchymal stem cells of mice (MSCD1). Surface modifications of gold nanorods were achieved using optical spectroscopy (UV-VIS), electron microscopy (TEM), zeta-potential, and FTIR. Gold nanorods were incubated in MSCD1 in order to achieve a cellular uptake that was characterized by a transmission electron microscope (TEM). For photoacoustic imaging, Multi-Spectral Optoacoustic Tomography (MSOT) was used. The results demonstrated good cellular uptake for PEG-CALNN-TAT GNRs and the successful use of modified gold nanorods as both a contrast agent in photoacoustic imaging and as a novel tracking bioimaging technique.
Collapse
Affiliation(s)
- Dina Salah
- Biophysics Group, Physics Department, Ain Shams University, Cairo 11566, Egypt
| | - Farahat S. Moghanm
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt; (F.S.M.); (E.M.S.)
| | - Muhammad Arshad
- Department of Chemical Engineering, College of Engineering, King Khalid University, P.O. Box 394, Abha 61321, Saudi Arabia;
| | - Abdulaziz A. Alanazi
- Department of Chemistry, College of Science and Humanities in Al-Kharj, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia;
| | - Salman Latif
- Department of Chemistry, College of Science, University of Hail, P.O. Box 2440, Hail 81451, Saudi Arabia;
| | - Maie I. El-Gammal
- Environmental Science Department, Faculty of Science, Damietta University, Damietta 35511, Egypt;
| | - Elmahdy M. Shimaa
- Soil and Water Department, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt; (F.S.M.); (E.M.S.)
| | - Salah Elsayed
- Agricultural Engineering, Evaluation of Natural Resources Department, Environmental Studies and Research Institute, University of Sadat City, Minufiya 32897, Egypt;
| |
Collapse
|
14
|
Niccolai A, Bažec K, Rodolfi L, Biondi N, Zlatić E, Jamnik P, Tredici MR. Lactic Acid Fermentation of Arthrospira platensis (Spirulina) in a Vegetal Soybean Drink for Developing New Functional Lactose-Free Beverages. Front Microbiol 2020; 11:560684. [PMID: 33193143 PMCID: PMC7649261 DOI: 10.3389/fmicb.2020.560684] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/06/2020] [Indexed: 12/31/2022] Open
Abstract
The main objective of this study was to evaluate the suitability of Arthrospira platensis F&M-C256 (spirulina) biomass in a vegetal soybean drink or in water, as substrate for lactic acid fermentation by the probiotic bacterium Lactiplantibacillus plantarum ATCC 8014 (LAB8014) and to evaluate the fermented products in terms of bacteria content and organic acids content, biochemical composition, total phenolics, and phycocyanin content, in vitro digestibility, in vitro and in vivo antioxidant activity. After 72 h of fermentation, a bacterial concentration of about 10.5 log CFU mL–1 in the broths containing the soybean drink + spirulina + LAB8014 (SD + S + LAB8014) or water + spirulina + LAB8014 (W + S + LAB8014) was found. Lactic acid concentration reached similar values (about 1.7 g L–1) in the two broths, while a different acetic acid concentration between SD + S + LAB8014 and W + S + LAB8014 broths was observed (7.7 and 4.1 g L–1, respectively). A. platensis biomass was shown to be a suitable substrate for LAB8014 growth. After fermentation, both broths contained a high protein content (>50%). In both broths, total phenolics, in vitro and in vivo antioxidant activity increased after fermentation (+35, +20, and +93% on average, respectively), while phycocyanin content decreased (−40% on average). Digestibility of W + S + LAB8014 broth statistically improved after fermentation. This study highlights the potential of A. platensis F&M-C256 biomass as a substrate for the production of new functional lactose-free beverages.
Collapse
Affiliation(s)
- Alberto Niccolai
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy
| | - Kaja Bažec
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Liliana Rodolfi
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy.,Fotosintetica & Microbiologica S.r.l., Florence, Italy
| | - Natascia Biondi
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy
| | - Emil Zlatić
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Polona Jamnik
- Department of Food Science and Technology, Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Mario R Tredici
- Department of Agriculture, Food, Environment and Forestry, University of Florence, Florence, Italy
| |
Collapse
|
15
|
Zhou Y, Liu Y, Luo Y, Zhong H, Huang T, Liang W, Xiao J, Wu W, Li L, Chen M. Large-scale profiling of the proteome and dual transcriptome in Nile tilapia (Oreochromis niloticus) challenged with low- and high-virulence strains of Streptococcus agalactiae. FISH & SHELLFISH IMMUNOLOGY 2020; 100:386-396. [PMID: 32165249 DOI: 10.1016/j.fsi.2020.03.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 06/10/2023]
Abstract
Streptococcus agalactiae is a common pathogen in aquatic animals, especially tilapia, that hinders aquaculture development and leads to serious economic losses. Previously, a S. agalactiae strain named HN016 was identified from infected tilapia, and the attenuated strain YM001 was subsequently obtained by continuous passaging in Tryptic Soy Broth (TSB) medium. YM001 has been demonstrated as a safe vaccine for S. agalactiae infection in tilapia. To understand the molecular bases of the virulence of these two strains, we performed proteomic and transcriptomic analysis to reveal the protein and gene expression changes in the liver and intestine during the infection process. HN016 significantly decreased the contents of white blood cells (WBCs), neutrophils (NEUs), red blood cells (RBCs) and hematocrit (HCT) and increased the levels of total protein (TP), albumin (ALB) and globulin (GLO), while no such significant differences were observed when comparing the control with YM001. During the infection process, pathogenic peptidoglycan hydrolase, CSPA and membrane proteins were significantly differentially expressed between YM001 and HN016. Furthermore, both proteome and transcriptome data showed that the complement and coagulation cascades pathway and the antigen processing and presentation pathway were stimulated in the liver and intestine, respectively, by YM001 infection compared to HN016 infection. The interaction network analysis of key virulence genes from pathogens suggested that CSPA, as a key node, affects the expression of DOLPP1, MIPEP, PA2G4, OCIAD1, G3BP1 and CLIC5 with a positive correlation. The present evidence suggests that during the infection process, CSPA was the key genes contributing to low virulence in YM001.
Collapse
Affiliation(s)
- Yi Zhou
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, 410081, China; Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Yu Liu
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Yongju Luo
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Huan Zhong
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Ting Huang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Wanwen Liang
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Jun Xiao
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China
| | - Wende Wu
- Animal Science and Technology College, Guangxi University, Nanning, 530005, China
| | - Liping Li
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China.
| | - Ming Chen
- Guangxi Key Laboratory of Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, 530021, China.
| |
Collapse
|
16
|
Baidya AK, Rosenshine I, Ben-Yehuda S. Donor-delivered cell wall hydrolases facilitate nanotube penetration into recipient bacteria. Nat Commun 2020; 11:1938. [PMID: 32321911 PMCID: PMC7176660 DOI: 10.1038/s41467-020-15605-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 03/16/2020] [Indexed: 11/09/2022] Open
Abstract
Bacteria can produce membranous nanotubes that mediate contact-dependent exchange of molecules among bacterial cells. However, it is unclear how nanotubes cross the cell wall to emerge from the donor or to penetrate into the recipient cell. Here, we report that Bacillus subtilis utilizes cell wall remodeling enzymes, the LytC amidase and its enhancer LytB, for efficient nanotube extrusion and penetration. Nanotube production is reduced in a lytBC mutant, and the few nanotubes formed appear deficient in penetrating into target cells. Donor-derived LytB molecules localize along nanotubes and on the surface of nanotube-connected neighbouring cells, primarily at sites of nanotube penetration. Furthermore, LytB from donor B. subtilis can activate LytC of recipient bacteria from diverse species, facilitating cell wall hydrolysis to establish nanotube connection. Our data provide a mechanistic view of how intercellular connecting devices can be formed among neighbouring bacteria. Bacteria can produce membranous nanotubes that mediate contact-dependent exchange of molecules between bacterial cells. Here, Baidya et al. show that cell-wall remodelling enzymes from Bacillus subtilis are required for efficient nanotube extrusion and penetration, and can be delivered to other bacterial species via nanotubes.
Collapse
Affiliation(s)
- Amit K Baidya
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, POB 12272, 91120, Jerusalem, Israel
| | - Ilan Rosenshine
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, POB 12272, 91120, Jerusalem, Israel
| | - Sigal Ben-Yehuda
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, The Hebrew University of Jerusalem, POB 12272, 91120, Jerusalem, Israel.
| |
Collapse
|
17
|
Frirdich E, Biboy J, Pryjma M, Lee J, Huynh S, Parker CT, Girardin SE, Vollmer W, Gaynor EC. The Campylobacter jejuni helical to coccoid transition involves changes to peptidoglycan and the ability to elicit an immune response. Mol Microbiol 2019; 112:280-301. [PMID: 31070821 PMCID: PMC6767375 DOI: 10.1111/mmi.14269] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/02/2019] [Indexed: 12/20/2022]
Abstract
Campylobacter jejuni is a prevalent enteric pathogen that changes morphology from helical to coccoid under unfavorable conditions. Bacterial peptidoglycan maintains cell shape. As C. jejuni transformed from helical to coccoid, peptidoglycan dipeptides increased and tri- and tetrapeptides decreased. The DL-carboxypeptidase Pgp1 important for C. jejuni helical morphology and putative N-acetylmuramoyl-L-alanyl amidase AmiA were both involved in the coccoid transition. Mutants in pgp1 and amiA showed reduced coccoid formation, with ∆pgp1∆amiA producing minimal coccoids. Both ∆amiA and ∆amiA∆pgp1 lacked flagella and formed unseparated chains of cells consistent with a role for AmiA in cell separation. All strains accumulated peptidoglycan dipeptides over time, but only strains capable of becoming coccoid displayed tripeptide changes. C. jejuni helical shape and corresponding peptidoglycan structure are important for pathogenesis-related attributes. Concomitantly, changing to a coccoid morphology resulted in differences in pathogenic properties; coccoid C. jejuni were non-motile and non-infectious, with minimal adherence and invasion of epithelial cells and an inability to stimulate IL-8. Coccoid peptidoglycan exhibited reduced activation of innate immune receptors Nod1 and Nod2 versus helical peptidoglycan. C. jejuni also transitioned to coccoid within epithelial cells, so the inability of the immune system to detect coccoid C. jejuni may be significant in its pathogenesis.
Collapse
Affiliation(s)
- Emilisa Frirdich
- Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBCCanada
| | - Jacob Biboy
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular BiosciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Mark Pryjma
- Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBCCanada
| | - Jooeun Lee
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - Steven Huynh
- Produce Safety and Microbiology Unit, Western Region Research CenterUSDAAgricultural Research ServiceAlbanyCAUSA
| | - Craig T. Parker
- Produce Safety and Microbiology Unit, Western Region Research CenterUSDAAgricultural Research ServiceAlbanyCAUSA
| | - Stephen E. Girardin
- Department of Laboratory Medicine and PathobiologyUniversity of TorontoTorontoONCanada
| | - Waldemar Vollmer
- The Centre for Bacterial Cell Biology, Institute for Cell and Molecular BiosciencesNewcastle UniversityNewcastle upon TyneUnited Kingdom
| | - Erin C. Gaynor
- Department of Microbiology and ImmunologyUniversity of British ColumbiaVancouverBCCanada
| |
Collapse
|
18
|
D'Ambrosio EA, Drake WR, Mashayekh S, Ukaegbu OI, Brown AR, Grimes CL. Modulation of the NOD-like receptors NOD1 and NOD2: A chemist's perspective. Bioorg Med Chem Lett 2019; 29:1153-1161. [PMID: 30890292 PMCID: PMC7679954 DOI: 10.1016/j.bmcl.2019.03.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 03/05/2019] [Accepted: 03/07/2019] [Indexed: 12/13/2022]
Abstract
The innate immune system is the body's first defense against invading microorganisms, relying on the recognition of bacterial-derived small molecules by host protein receptors. This recognition event and downstream immune response rely heavily on the specific chemical features of both the innate immune receptors and their bacterial derived ligands. This review presents a chemist's perspective on some of the most crucial and complex components of two receptors (NOD1 and NOD2): starting from the structural and chemical characteristics of bacterial-derived small molecules, to the specific proposed models of molecular recognition of these molecules by immune receptors, to the subsequent post-translational modifications that ultimately dictate downstream immune signaling. Recent advances in the field are discussed, as well as the potential for the development of targeted therapeutics.
Collapse
Affiliation(s)
| | - Walter R Drake
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Siavash Mashayekh
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Ophelia I Ukaegbu
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Ashley R Brown
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA
| | - Catherine L Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, DE 19716, USA.
| |
Collapse
|
19
|
Mallick S, Das J, Verma J, Mathew S, Maiti TK, Ghosh AS. Role of Escherichia coli endopeptidases and dd-carboxypeptidases in infection and regulation of innate immune response. Microbes Infect 2019; 21:464-474. [PMID: 31085336 DOI: 10.1016/j.micinf.2019.04.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Revised: 04/21/2019] [Accepted: 04/23/2019] [Indexed: 01/13/2023]
Abstract
The low-molecular-mass penicillin-binding proteins, involved in peptidoglycan recycling can also produce peptidoglycan fragments capable of activating an innate immune response in host. To investigate how these proteins in Enterobacteriaceae play a role to elicit/evade innate immune responses during infections, we deleted certain endopeptidases and dd-carboxypeptidases from Escherichia coli CS109 and studied the viability of these mutants in macrophages. The ability of infected macrophages to exert oxidative killing, express surface activation markers TLR2, MHC class II and release TNFα, were assessed. Immune responses were elevated in macrophages infected with dd-carboxypeptidase mutants but reduced for endopeptidase mutants. However, the NFκB, iNOS, and TLR2 transcripts remained elevated in macrophages infected with both mutant types. Overall, we have shown, under normal conditions endopeptidases have a tendency to elicit the immune response but their effect is suppressed by the presence of dd-carboxypeptidases. Conversely, DD-carboxypeptidases, normally, tend to reduce immune responses, as their deletions enhanced the same in macrophages. Therefore, we conclude that the roles of endopeptidases and dd-carboxypeptidases are possibly counter-active in wild-type cells where either class of enzymes suppresses each other's immunogenic properties rendering overall maintenance of low immunogenicity that helps E. coli in evading the host immune responses.
Collapse
Affiliation(s)
- Sathi Mallick
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Joyjyoti Das
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Jyoti Verma
- Advanced Technology Development Centre, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Samatha Mathew
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Tapas K Maiti
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India
| | - Anindya S Ghosh
- Department of Biotechnology, Indian Institute of Technology Kharagpur, West Bengal, 721302, India.
| |
Collapse
|
20
|
Soni AS, Lin CSH, Murphy MEP, Tanner ME. Peptides Containing meso-Oxa-Diaminopimelic Acid as Substrates for the Cell-Shape-Determining Proteases Csd6 and Pgp2. Chembiochem 2019; 20:1591-1598. [PMID: 30746833 DOI: 10.1002/cbic.201900011] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Indexed: 12/17/2022]
Abstract
The enzymes Csd6 and Pgp2 are peptidoglycan (PG) proteases found in the pathogenic bacteria Helicobacter pylori and Campylobacter jejuni, respectively. These enzymes are involved in the trimming of non-crosslinked PG sidechains and catalyze the cleavage of the bond between meso-diaminopimelic acid (meso-Dap) and d-alanine, thus converting a PG tetrapeptide into a PG tripeptide. They are known to be cell-shape-determining enzymes, because deletion of the corresponding genes results in mutant strains that have lost the normal helical phenotype and instead possess a straight-rod morphology. In this work, we report two approaches directed towards the synthesis of the tripeptide substrate Ac-iso-d-Glu-meso-oxa-Dap-d-Ala, which serves as a mimic of the terminus of an non-crosslinked PG tetrapeptide substrate. The isosteric analogue meso-oxa-Dap was utilized in place of meso-Dap to simplify the synthetic procedure. The more efficient synthesis involved ring opening of a peptide-embedded aziridine by a serine-based nucleophile. A branched tetrapeptide was also prepared as a mimic of the terminus of a crosslinked PG tetrapeptide. We used MS analysis to demonstrate that the tripeptide serves as a substrate for both Csd6 and Pgp2 and that the branched tetrapeptide serves as a substrate for Pgp2, albeit at a significantly slower rate.
Collapse
Affiliation(s)
- Arvind S Soni
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| | - Chang Sheng-Huei Lin
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Michael E P Murphy
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, V6T 1Z3, Canada
| | - Martin E Tanner
- Department of Chemistry, University of British Columbia, Vancouver, BC, V6T 1Z1, Canada
| |
Collapse
|
21
|
Wang L, Yang LY, Gan YL, Yang F, Liang XL, Li WL, Bo-Le J. Two lytic transglycosylases of Xanthomonas campestris pv. campestris associated with cell separation and type III secretion system, respectively. FEMS Microbiol Lett 2019; 366:5449009. [PMID: 30977795 DOI: 10.1093/femsle/fnz073] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2018] [Accepted: 04/09/2019] [Indexed: 01/13/2023] Open
Abstract
The lytic transglycosylases (LTs) are important enzymes that degrade peptidoglycan of the bacterial cell wall and affect many biological functions. We present here that XC_0706 and XC_3001 are annotated as the LTs in Xanthomonas campestris pv. campestris. XC_0706 is associated with virulence and plays a pivotal role in cell division. Mutation on XC_3001 reduced hypersensitive response induction and the translocation of type III effector, but did not affect the function of the type II secretion system. Further studies showed that multiple LTs genes contribute to efficiency of the type III secretory system in X. campestris pv. campestris.
Collapse
Affiliation(s)
- Lin Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China.,College of Biotechnology, Guilin Medical University, 109 North 2nd Huancheng Road, Guilin, Guangxi 541004, China
| | - Li-Yan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Yong-Liang Gan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Feng Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Xue-Lian Liang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| | - Wan-Lian Li
- College of Biotechnology, Guilin Medical University, 109 North 2nd Huancheng Road, Guilin, Guangxi 541004, China
| | - Jiang Bo-Le
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, 100 Daxue Road, Nanning, Guangxi 530004, China
| |
Collapse
|
22
|
Fontana A, Zacconi C, Morelli L. Genetic Signatures of Dairy Lactobacillus casei Group. Front Microbiol 2018; 9:2611. [PMID: 30425707 PMCID: PMC6218691 DOI: 10.3389/fmicb.2018.02611] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 10/12/2018] [Indexed: 11/25/2022] Open
Abstract
Lactobacillus casei/Lactobacillus paracasei group of species contains strains adapted to a wide range of environments, from dairy products to intestinal tract of animals and fermented vegetables. Understanding the gene acquisitions and losses that induced such different adaptations, implies a comparison between complete genomes, since evolutionary differences spread on the whole sequence. This study compared 12 complete genomes of L. casei/paracasei dairy-niche isolates and 7 genomes of L. casei/paracasei isolated from other habitats (i.e., corn silage, human intestine, sauerkraut, beef, congee). Phylogenetic tree construction and average nucleotide identity (ANI) metric showed a clustering of the two dairy L. casei strains ATCC393 and LC5, indicating a lower genetic relatedness in comparison to the other strains. Genomic analysis revealed a core of 313 genes shared by dairy and non-dairy Lactic Acid bacteria (LAB), within a pan-genome of 9,462 genes. Functional category analyses highlighted the evolutionary genes decay of dairy isolates, particularly considering carbohydrates and amino acids metabolisms. Specifically, dairy L. casei/paracasei strains lost the ability to metabolize myo-inositol and taurine (i.e., iol and tau gene clusters). However, gene acquisitions by dairy strains were also highlighted, mostly related to defense mechanisms and host-pathogen interactions (i.e., yueB, esaA, and sle1). This study aimed to be a preliminary investigation on dairy and non-dairy marker genes that could be further characterized for probiotics or food applications.
Collapse
Affiliation(s)
- Alessandra Fontana
- Department for Sustainable Food Process-DiSTAS, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Carla Zacconi
- Department for Sustainable Food Process-DiSTAS, Università Cattolica del Sacro Cuore, Piacenza, Italy
| | - Lorenzo Morelli
- Department for Sustainable Food Process-DiSTAS, Università Cattolica del Sacro Cuore, Piacenza, Italy
| |
Collapse
|
23
|
Yang L, Gan Y, Yang L, Jiang B, Tang J. Peptidoglycan hydrolysis mediated by the amidase AmiC and its LytM activator NlpD is critical for cell separation and virulence in the phytopathogen Xanthomonas campestris. MOLECULAR PLANT PATHOLOGY 2018; 19:1705-1718. [PMID: 29240286 PMCID: PMC6638016 DOI: 10.1111/mpp.12653] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 11/10/2017] [Accepted: 12/11/2017] [Indexed: 06/07/2023]
Abstract
The essential stages of bacterial cell separation are described as the synthesis and hydrolysis of septal peptidoglycan (PG). The amidase, AmiC, which cleaves the peptide side-chains linked to the glycan strands, contributes critically to this process and has been studied extensively in model strains of Escherichia coli. However, insights into the contribution of this protein to other processes in the bacterial cell have been limited. Xanthomonas campestris pv. campestris (Xcc) is a phytopathogen that causes black rot disease in many economically important plants. We investigated how AmiC and LytM family regulators, NlpD and EnvC, contribute to virulence and cell separation in this organism. Biochemical analyses of purified AmiC demonstrated that it could hydrolyse PG and its activity could be potentiated by the presence of the regulator NlpD. We also established that deletion of the genes encoding amiC1 or nlpD led to a reduction in virulence as well as effects on colony-forming units and cell morphology. Moreover, further genetic and biochemical evidence showed that AmiC1 and NlpD affect the secretion of type III effector XC3176 and hypersensitive response (HR) induction in planta. These findings indicate that, in addition to their well-studied role(s) in cell separation, AmiC and NlpD make an important contribution to the type III secretion (T3S) and virulence regulation in this important plant pathogen.
Collapse
Affiliation(s)
- Li‐Chao Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi UniversityNanningGuangxi 530004China
| | - Yong‐Liang Gan
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi UniversityNanningGuangxi 530004China
| | - Li‐Yan Yang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi UniversityNanningGuangxi 530004China
| | - Bo‐Le Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi UniversityNanningGuangxi 530004China
| | - Ji‐Liang Tang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro‐bioresources, College of Life Science and TechnologyGuangxi UniversityNanningGuangxi 530004China
| |
Collapse
|
24
|
Structure of an Acinetobacter Broad-Range Prophage Endolysin Reveals a C-Terminal α-Helix with the Proposed Role in Activity against Live Bacterial Cells. Viruses 2018; 10:v10060309. [PMID: 29882827 PMCID: PMC6024848 DOI: 10.3390/v10060309] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/28/2018] [Accepted: 05/31/2018] [Indexed: 01/07/2023] Open
Abstract
Proteins that include enzymatic domain degrading the bacterial cell wall and a domain providing transport through the bacterial outer membrane are considered as prospective compounds to combat pathogenic Gram-negative bacteria. This paper presents an isolation and study of an enzyme of this class naturally encoded in the prophage region of Acinetobacter baumannii AB 5075 genome. Recombinant protein expressed in E. coli exhibits an antimicrobial activity with respect to live cultures of Gram-negative bacteria reducing the population of viable bacteria by 1.5⁻2 log colony forming units (CFU)/mL. However the protein becomes rapidly inactivated and enables the bacteria to restore the population. AcLys structure determined by X-ray crystallography reveals a predominantly α—helical fold similar to bacteriophage P22 lysozyme. The С-terminal part of AcLys polypeptide chains forms an α—helix enriched by Lys and Arg residues exposed outside of the protein globule. Presumably this type of structure of the C-terminal α—helix has evolved evolutionally enabling the endolysin to pass the inner membrane during the host lysis or, potentially, to penetrate the outer membrane of the Gram-negative bacteria.
Collapse
|
25
|
Ealand CS, Machowski EE, Kana BD. β-lactam resistance: The role of low molecular weight penicillin binding proteins, β-lactamases and ld-transpeptidases in bacteria associated with respiratory tract infections. IUBMB Life 2018; 70:855-868. [PMID: 29717815 DOI: 10.1002/iub.1761] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Accepted: 04/04/2018] [Indexed: 02/02/2023]
Abstract
Disruption of peptidoglycan (PG) biosynthesis in the bacterial cell wall by β-lactam antibiotics has transformed therapeutic options for bacterial infections. These antibiotics target the transpeptidase domains in penicillin binding proteins (PBPs), which can be classified into high and low molecular weight (LMW) counterparts. While the essentiality of the former has been extensively demonstrated, the physiological roles of LMW PBPs remain poorly understood. Herein, we review the function of LMW PBPs, β-lactamases and ld-transpeptidases (Ldts) in pathogens associated with respiratory tract infections. More specifically, we explore their roles in mediating β-lactam resistance. Using a comparative genomics approach, we identified a high degree of genetic redundancy for LMW PBPs which retain the motifs, SxxN, SxN and KTG required for catalytic activity. Differences in domain architecture suggest distinct physiological roles, possibly related to bacterial cell cycle and/or adaptation to various environmental conditions. Many of the LMW PBPs play an important role in β-lactam resistance either through mutation or variation in abundance. In all of the bacterial genomes assessed, at least one β-lactamase homologue is present, suggesting that enzymatic degradation of β-lactams is a highly conserved resistance mechanism. Furthermore, the presence of Ldt homologues in the majority of species surveyed suggests that alternative PG crosslinking may further mediate β-lactam drug resistance. A deeper understanding of the interplay between these different mechanisms of β-lactam resistance will provide a framework for new therapeutics, which are urgently required given the rapid emergence of antimicrobial resistance. © 2018 IUBMB Life, 70(9):855-868, 2018.
Collapse
Affiliation(s)
- Christopher S Ealand
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Edith E Machowski
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa
| | - Bavesh D Kana
- DST/NRF Centre of Excellence for Biomedical TB Research, School of Pathology, Faculty of Health Sciences, University of the Witwatersrand and the National Health Laboratory Service, Johannesburg, South Africa.,MRC-CAPRISA HIV-TB Pathogenesis and Treatment Research Unit, Centre for the AIDS Programme of Research in South Africa, CAPRISA, Durban, South Africa
| |
Collapse
|
26
|
Schaefer AK, Melnyk JE, He Z, Del Rosario F, Grimes CL. Pathogen- and Microbial- Associated Molecular Patterns (PAMPs/MAMPs) and the Innate Immune Response in Crohn’s Disease. IMMUNITY AND INFLAMMATION IN HEALTH AND DISEASE 2018:175-187. [DOI: 10.1016/b978-0-12-805417-8.00014-7] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
27
|
The CodY-dependent clhAB2 operon is involved in cell shape, chaining and autolysis in Bacillus cereus ATCC 14579. PLoS One 2017; 12:e0184975. [PMID: 28991912 PMCID: PMC5633148 DOI: 10.1371/journal.pone.0184975] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Accepted: 09/05/2017] [Indexed: 11/19/2022] Open
Abstract
The Gram-positive pathogen Bacillus cereus is able to grow in chains of rod-shaped cells, but the regulation of chaining remains largely unknown. Here, we observe that glucose-grown cells of B. cereus ATCC 14579 form longer chains than those grown in the absence of glucose during the late exponential and transition growth phases, and identify that the clhAB2 operon is required for this chain lengthening phenotype. The clhAB2 operon is specific to the B. cereus group (i.e., B. thuringiensis, B. anthracis and B. cereus) and encodes two membrane proteins of unknown function, which are homologous to the Staphylococcus aureus CidA and CidB proteins involved in cell death control within glucose-grown cells. A deletion mutant (ΔclhAB2) was constructed and our quantitative image analyses show that ΔclhAB2 cells formed abnormal short chains regardless of the presence of glucose. We also found that glucose-grown cells of ΔclhAB2 were significantly wider than wild-type cells (1.47 μm ±CI95% 0.04 vs 1.19 μm ±CI95% 0.03, respectively), suggesting an alteration of the bacterial cell wall. Remarkably, ΔclhAB2 cells showed accelerated autolysis under autolysis-inducing conditions, compared to wild-type cells. Overall, our data suggest that the B. cereus clhAB2 operon modulates peptidoglycan hydrolase activity, which is required for proper cell shape and chain length during cell growth, and down-regulates autolysin activity. Lastly, we studied the transcription of clhAB2 using a lacZ transcriptional reporter in wild-type, ccpA and codY deletion-mutant strains. We found that the global transcriptional regulatory protein CodY is required for the basal level of clhAB2 expression under all conditions tested, including the transition growth phase while CcpA, the major global carbon regulator, is needed for the high-level expression of clhAB2 in glucose-grown cells.
Collapse
|
28
|
van Teeseling MCF, de Pedro MA, Cava F. Determinants of Bacterial Morphology: From Fundamentals to Possibilities for Antimicrobial Targeting. Front Microbiol 2017; 8:1264. [PMID: 28740487 PMCID: PMC5502672 DOI: 10.3389/fmicb.2017.01264] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2017] [Accepted: 06/23/2017] [Indexed: 12/11/2022] Open
Abstract
Bacterial morphology is extremely diverse. Specific shapes are the consequence of adaptive pressures optimizing bacterial fitness. Shape affects critical biological functions, including nutrient acquisition, motility, dispersion, stress resistance and interactions with other organisms. Although the characteristic shape of a bacterial species remains unchanged for vast numbers of generations, periodical variations occur throughout the cell (division) and life cycles, and these variations can be influenced by environmental conditions. Bacterial morphology is ultimately dictated by the net-like peptidoglycan (PG) sacculus. The species-specific shape of the PG sacculus at any time in the cell cycle is the product of multiple determinants. Some morphological determinants act as a cytoskeleton to guide biosynthetic complexes spatiotemporally, whereas others modify the PG sacculus after biosynthesis. Accumulating evidence supports critical roles of morphogenetic processes in bacteria-host interactions, including pathogenesis. Here, we review the molecular determinants underlying morphology, discuss the evidence linking bacterial morphology to niche adaptation and pathogenesis, and examine the potential of morphological determinants as antimicrobial targets.
Collapse
Affiliation(s)
- Muriel C F van Teeseling
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden
| | - Miguel A de Pedro
- Centro de Biología Molecular "Severo Ochoa" - Consejo Superior de Investigaciones Científicas, Universidad Autónoma de MadridMadrid, Spain
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå UniversityUmeå, Sweden
| |
Collapse
|
29
|
Frirdich E, Biboy J, Huynh S, Parker CT, Vollmer W, Gaynor EC. Morphology heterogeneity within a Campylobacter jejuni helical population: the use of calcofluor white to generate rod-shaped C. jejuni 81-176 clones and the genetic determinants responsible for differences in morphology within 11168 strains. Mol Microbiol 2017; 104:948-971. [PMID: 28316093 PMCID: PMC5530802 DOI: 10.1111/mmi.13672] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2017] [Indexed: 12/11/2022]
Abstract
Campylobacter jejuni helical shape is important for colonization and host interactions with straight mutants having altered biological properties. Passage on calcofluor white (CFW) resulted in C. jejuni 81‐176 isolates with morphology changes: either a straight morphology from frameshift mutations and single nucleotide polymorphisms in peptidoglycan hydrolase genes pgp1 or pgp2 or a reduction in curvature due a frameshift mutation in cjj81176_1105, a putative peptidoglycan endopeptidase. Shape defects were restored by complementation. Whole genome sequencing of CFW‐passaged strains showed no specific changes correlating to CFW exposure. The cjj81176_1279 (recR; recombinational DNA repair) and cjj81176_1449 (unknown function) genes were highly variable in all 81‐176 strains sequenced. A frameshift mutation in pgp1 of our laboratory isolate of the straight genome sequenced variant of 11168 (11168‐GS) was also identified. The PG muropeptide profile of 11168‐GS was identical to that of Δpgp1 in the original minimally passaged 11168 strain (11168‐O). Introduction of wild type pgp1 into 11168‐GS did not restore helical morphology. The recR gene was also highly variable in 11168 strains. Microbial cell‐to‐cell heterogeneity is proposed as a mechanism of ensuring bacterial survival in sub‐optimal conditions. In certain environments, changes in C. jejuni morphology due to genetic heterogeneity may promote C. jejuni survival.
Collapse
Affiliation(s)
- Emilisa Frirdich
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| | - Jacob Biboy
- Institute for Cell and Molecular Biosciences, The Centre for Bacterial Cell Biology, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK
| | - Steven Huynh
- Agricultural Research Service, U.S. Department of Agriculture, Produce Safety and Microbiology Research Unit, Albany, CA, 94710, USA
| | - Craig T Parker
- Agricultural Research Service, U.S. Department of Agriculture, Produce Safety and Microbiology Research Unit, Albany, CA, 94710, USA
| | - Waldemar Vollmer
- Institute for Cell and Molecular Biosciences, The Centre for Bacterial Cell Biology, Newcastle University, Newcastle Upon Tyne, NE2 4AX, UK
| | - Erin C Gaynor
- Department of Microbiology and Immunology, University of British Columbia, Vancouver, BC, Canada, V6T 1Z3
| |
Collapse
|
30
|
Identification and initial characterisation of a protein involved in Campylobacter jejuni cell shape. Microb Pathog 2017; 104:202-211. [PMID: 28131954 PMCID: PMC5335918 DOI: 10.1016/j.micpath.2017.01.042] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 01/11/2017] [Accepted: 01/24/2017] [Indexed: 12/24/2022]
Abstract
Campylobacter jejuni is the leading cause of bacterial food borne illness. While helical cell shape is considered important for C. jejuni pathogenesis, this bacterium is capable of adopting other morphologies. To better understand how helical-shaped C. jejuni maintain their shape and thus any associated colonisation, pathogenicity or other advantage, it is first important to identify the genes and proteins involved. So far, two peptidoglycan modifying enzymes Pgp1 and Pgp2 have been shown to be required for C. jejuni helical cell shape. We performed a visual screen of ∼2000 transposon mutants of C. jejuni for cell shape mutants. Whole genome sequence data of the mutants with altered cell shape, directed mutants, wild type stocks and isolated helical and rod-shaped ‘wild type’ C. jejuni, identified a number of different mutations in pgp1 and pgp2, which result in a change in helical to rod bacterial cell shape. We also identified an isolate with a loss of curvature. In this study, we have identified the genomic change in this isolate, and found that targeted deletion of the gene with the change resulted in bacteria with loss of curvature. Helical cell shape was restored by supplying the gene in trans. We examined the effect of loss of the gene on bacterial motility, adhesion and invasion of tissue culture cells and chicken colonisation, as well as the effect on the muropeptide profile of the peptidoglycan sacculus. Our work identifies another factor involved in helical cell shape. A C. jejuni isolate with a loss of curvature was identified. A targeted gene deletion of CJJ81176_1105 in 81–176 and CJM1_1064 in M1 were created. Defined gene deletion mutants of CJJ81176_1105 and CJM1_1064 alter C. jejuni motility and interaction with Caco-2 cells. Defined gene deletion mutant of CJM1_1064 does not alter C. jejuni colonisation of chickens.
Collapse
|
31
|
Esson D, Mather AE, Scanlan E, Gupta S, de Vries SPW, Bailey D, Harris SR, McKinley TJ, Méric G, Berry SK, Mastroeni P, Sheppard SK, Christie G, Thomson NR, Parkhill J, Maskell DJ, Grant AJ. Genomic variations leading to alterations in cell morphology of Campylobacter spp. Sci Rep 2016; 6:38303. [PMID: 27910897 PMCID: PMC5133587 DOI: 10.1038/srep38303] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 11/07/2016] [Indexed: 12/14/2022] Open
Abstract
Campylobacter jejuni, the most common cause of bacterial diarrhoeal disease, is normally helical. However, it can also adopt straight rod, elongated helical and coccoid forms. Studying how helical morphology is generated, and how it switches between its different forms, is an important objective for understanding this pathogen. Here, we aimed to determine the genetic factors involved in generating the helical shape of Campylobacter. A C. jejuni transposon (Tn) mutant library was screened for non-helical mutants with inconsistent results. Whole genome sequence variation and morphological trends within this Tn library, and in various C. jejuni wild type strains, were compared and correlated to detect genomic elements associated with helical and rod morphologies. All rod-shaped C. jejuni Tn mutants and all rod-shaped laboratory, clinical and environmental C. jejuni and Campylobacter coli contained genetic changes within the pgp1 or pgp2 genes, which encode peptidoglycan modifying enzymes. We therefore confirm the importance of Pgp1 and Pgp2 in the maintenance of helical shape and extended this to a wide range of C. jejuni and C. coli isolates. Genome sequence analysis revealed variation in the sequence and length of homopolymeric tracts found within these genes, providing a potential mechanism of phase variation of cell shape.
Collapse
Affiliation(s)
- Diane Esson
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Alison E. Mather
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Eoin Scanlan
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Srishti Gupta
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Stefan P. W. de Vries
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - David Bailey
- Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge, UK
| | - Simon R. Harris
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Trevelyan J. McKinley
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Guillaume Méric
- The Milner Centre for Evolution, Department of Biology and Biotechnology, University of Bath, Claverton Down, Bath, UK
| | - Sophia K. Berry
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Pietro Mastroeni
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Samuel K. Sheppard
- The Milner Centre for Evolution, Department of Biology and Biotechnology, University of Bath, Claverton Down, Bath, UK
| | - Graham Christie
- Department of Chemical Engineering and Biotechnology, University of Cambridge, New Museums Site, Pembroke Street, Cambridge, UK
| | - Nicholas R. Thomson
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
- The London School of Hygiene and Tropical Medicine, London, UK
| | - Julian Parkhill
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, UK
| | - Duncan J. Maskell
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| | - Andrew J. Grant
- Department of Veterinary Medicine, University of Cambridge, Madingley Road, Cambridge, UK
| |
Collapse
|
32
|
Independent evolution of shape and motility allows evolutionary flexibility in Firmicutes bacteria. Nat Ecol Evol 2016; 1:9. [PMID: 28812570 DOI: 10.1038/s41559-016-0009] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2016] [Accepted: 09/14/2016] [Indexed: 11/08/2022]
Abstract
Functional morphological adaptation is an implicit assumption across many ecological studies. However, despite a few pioneering attempts to link bacterial form and function, functional morphology is largely unstudied in prokaryotes. One intriguing candidate for analysis is bacterial shape, as multiple lines of theory indicate that cell shape and motility should be strongly correlated. Here we present a large-scale use of modern phylogenetic comparative methods to explore this relationship across 325 species of the phylum Firmicutes. In contrast to clear predictions from theory, we show that cell shape and motility are not coupled, and that transitions to and from flagellar motility are common and strongly associated with lifestyle (free-living or host-associated). We find no association between shape and lifestyle, and contrary to recent evidence, no indication that shape is associated with pathogenicity. Our results suggest that the independent evolution of shape and motility in this group might allow a greater evolutionary flexibility.
Collapse
|
33
|
Ha R, Frirdich E, Sychantha D, Biboy J, Taveirne ME, Johnson JG, DiRita VJ, Vollmer W, Clarke AJ, Gaynor EC. Accumulation of Peptidoglycan O-Acetylation Leads to Altered Cell Wall Biochemistry and Negatively Impacts Pathogenesis Factors of Campylobacter jejuni. J Biol Chem 2016; 291:22686-22702. [PMID: 27474744 PMCID: PMC5077204 DOI: 10.1074/jbc.m116.746404] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Indexed: 12/30/2022] Open
Abstract
Campylobacter jejuni is a leading cause of bacterial gastroenteritis in the developed world. Despite its prevalence, its mechanisms of pathogenesis are poorly understood. Peptidoglycan (PG) is important for helical shape, colonization, and host-pathogen interactions in C. jejuni Therefore, changes in PG greatly impact the physiology of this organism. O-acetylation of peptidoglycan (OAP) is a bacterial phenomenon proposed to be important for proper cell growth, characterized by acetylation of the C6 hydroxyl group of N-acetylmuramic acid in the PG glycan backbone. The OAP gene cluster consists of a PG O-acetyltransferase A (patA) for translocation of acetate into the periplasm, a PG O-acetyltransferase B (patB) for O-acetylation, and an O-acetylpeptidoglycan esterase (ape1) for de-O-acetylation. In this study, reduced OAP in ΔpatA and ΔpatB had minimal impact on C. jejuni growth and fitness under the conditions tested. However, accumulation of OAP in Δape1 resulted in marked differences in PG biochemistry, including O-acetylation, anhydromuropeptide levels, and changes not expected to result directly from Ape1 activity. This suggests that OAP may be a form of substrate level regulation in PG biosynthesis. Ape1 acetylesterase activity was confirmed in vitro using p-nitrophenyl acetate and O-acetylated PG as substrates. In addition, Δape1 exhibited defects in pathogenesis-associated phenotypes, including cell shape, motility, biofilm formation, cell surface hydrophobicity, and sodium deoxycholate sensitivity. Δape1 was also impaired for chick colonization and adhesion, invasion, intracellular survival, and induction of IL-8 production in INT407 cells in vitro The importance of Ape1 in C. jejuni biology makes it a good candidate as an antimicrobial target.
Collapse
Affiliation(s)
- Reuben Ha
- From the Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Emilisa Frirdich
- From the Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - David Sychantha
- the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Jacob Biboy
- the Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, United Kingdom, and
| | - Michael E Taveirne
- the Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Jeremiah G Johnson
- the Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Victor J DiRita
- the Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor, Michigan 48109
| | - Waldemar Vollmer
- the Centre for Bacterial Cell Biology, Institute for Cell and Molecular Biosciences, Newcastle University, Newcastle upon Tyne NE2 4AX, United Kingdom, and
| | - Anthony J Clarke
- the Department of Molecular and Cellular Biology, University of Guelph, Guelph, Ontario N1G 2W1, Canada
| | - Erin C Gaynor
- From the Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada,
| |
Collapse
|
34
|
Sharma AK, Kumar S, K H, Dhakan DB, Sharma VK. Prediction of peptidoglycan hydrolases- a new class of antibacterial proteins. BMC Genomics 2016; 17:411. [PMID: 27229861 PMCID: PMC4882796 DOI: 10.1186/s12864-016-2753-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Accepted: 05/19/2016] [Indexed: 12/21/2022] Open
Abstract
Background The efficacy of antibiotics against bacterial infections is decreasing due to the development of resistance in bacteria, and thus, there is a need to search for potential alternatives to antibiotics. In this scenario, peptidoglycan hydrolases can be used as alternate antibacterial agents due to their unique property of cleaving peptidoglycan cell wall present in both gram-positive and gram-negative bacteria. Along with a role in maintaining overall peptidoglycan turnover in a cell and in daughter cell separation, peptidoglycan hydrolases also play crucial role in bacterial pathophysiology requiring development of a computational tool for the identification and classification of novel peptidoglycan hydrolases from genomic and metagenomic data. Results In this study, the known peptidoglycan hydrolases were divided into multiple classes based on their site of action and were used for the development of a computational tool ‘HyPe’ for identification and classification of novel peptidoglycan hydrolases from genomic and metagenomic data. Various classification models were developed using amino acid and dipeptide composition features by training and optimization of Random Forest and Support Vector Machines. Random Forest multiclass model was selected for the development of HyPe tool as it showed up to 71.12 % sensitivity, 99.98 % specificity, 99.55 % accuracy and 0.80 MCC in four different classes of peptidoglycan hydrolases. The tool was validated on 24 independent genomic datasets and showed up to 100 % sensitivity and 0.94 MCC. The ability of HyPe to identify novel peptidoglycan hydrolases was also demonstrated on 24 metagenomic datasets. Conclusions The present tool helps in the identification and classification of novel peptidoglycan hydrolases from complete genomic or metagenomic ORFs. To our knowledge, this is the only tool available for the prediction of peptidoglycan hydrolases from genomic and metagenomic data. Availability: http://metagenomics.iiserb.ac.in/hype/ and http://metabiosys.iiserb.ac.in/hype/. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2753-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ashok K Sharma
- Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, India
| | - Sanjiv Kumar
- Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, India.,Department of Medicine, University of Connecticut Health Center, Farmington, CT, 06030, USA
| | - Harish K
- Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, India
| | - Darshan B Dhakan
- Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, India
| | - Vineet K Sharma
- Metagenomics and Systems Biology Group, Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, India.
| |
Collapse
|
35
|
Liu Y, Frirdich E, Taylor JA, Chan ACK, Blair KM, Vermeulen J, Ha R, Murphy MEP, Salama NR, Gaynor EC, Tanner ME. A Bacterial Cell Shape-Determining Inhibitor. ACS Chem Biol 2016; 11:981-91. [PMID: 26735022 DOI: 10.1021/acschembio.5b01039] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Helicobacter pylori and Campylobacter jejuni are human pathogens and causative agents of gastric ulcers/cancer and gastroenteritis, respectively. Recent studies have uncovered a series of proteases that are responsible for maintaining the helical shape of these organisms. The H. pylori metalloprotease Csd4 and its C. jejuni homologue Pgp1 cleave the amide bond between meso-diaminopimelate and iso-d-glutamic acid in truncated peptidoglycan side chains. Deletion of either csd4 or pgp1 results in bacteria with a straight rod phenotype, a reduced ability to move in viscous media, and reduced pathogenicity. In this work, a phosphinic acid-based pseudodipeptide inhibitor was designed to act as a tetrahedral intermediate analog against the Csd4 enzyme. The phosphinic acid was shown to inhibit the cleavage of the alternate substrate, Ac-l-Ala-iso-d-Glu-meso-Dap, with a Ki value of 1.5 μM. Structural analysis of the Csd4-inhibitor complex shows that the phosphinic acid displaces the zinc-bound water and chelates the metal in a bidentate fashion. The phosphinate oxygens also interact with the key acid/base residue, Glu222, and the oxyanion-stabilizing residue, Arg86. The results are consistent with the "promoted-water pathway" mechanism for carboxypeptidase A catalysis. Studies on cultured bacteria showed that the inhibitor causes significant cell straightening when incubated with H. pylori at millimolar concentrations. A diminished, yet observable, effect on the morphology of C. jejuni was also apparent. Cell straightening was more pronounced with an acapsular C. jejuni mutant strain compared to the wild type, suggesting that the capsule impaired inhibitor accessibility. These studies demonstrate that a highly polar compound is capable of crossing the outer membrane and altering cell shape, presumably by inhibiting cell shape determinant proteases. Peptidoglycan proteases acting as cell shape determinants represent novel targets for the development of antimicrobials against these human pathogens.
Collapse
Affiliation(s)
- Yanjie Liu
- Contribution
from the Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Emilisa Frirdich
- Department
of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Jennifer A. Taylor
- Division
of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
- Department
of Microbiology, University of Washington School of Medicine, Seattle, Washington 98195, United States
| | - Anson C. K. Chan
- Department
of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Kris M. Blair
- Division
of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
- Program
in Molecular and Cellular Biology, University of Washington, Seattle, Washington 98195, United States
| | - Jenny Vermeulen
- Department
of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Reuben Ha
- Department
of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Michael E. P. Murphy
- Department
of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Nina R. Salama
- Division
of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, United States
- Department
of Microbiology, University of Washington School of Medicine, Seattle, Washington 98195, United States
- Program
in Molecular and Cellular Biology, University of Washington, Seattle, Washington 98195, United States
| | - Erin C. Gaynor
- Department
of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Martin E. Tanner
- Contribution
from the Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| |
Collapse
|
36
|
Lenz JD, Stohl EA, Robertson RM, Hackett KT, Fisher K, Xiong K, Lee M, Hesek D, Mobashery S, Seifert HS, Davies C, Dillard JP. Amidase Activity of AmiC Controls Cell Separation and Stem Peptide Release and Is Enhanced by NlpD in Neisseria gonorrhoeae. J Biol Chem 2016; 291:10916-33. [PMID: 26984407 DOI: 10.1074/jbc.m116.715573] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Indexed: 11/06/2022] Open
Abstract
The human-restricted pathogen Neisseria gonorrhoeae encodes a single N-acetylmuramyl-l-alanine amidase involved in cell separation (AmiC), as compared with three largely redundant cell separation amidases found in Escherichia coli (AmiA, AmiB, and AmiC). Deletion of amiC from N. gonorrhoeae results in severely impaired cell separation and altered peptidoglycan (PG) fragment release, but little else is known about how AmiC functions in gonococci. Here, we demonstrated that gonococcal AmiC can act on macromolecular PG to liberate cross-linked and non-cross-linked peptides indicative of amidase activity, and we provided the first evidence that a cell separation amidase can utilize a small synthetic PG fragment as substrate (GlcNAc-MurNAc(pentapeptide)-GlcNAc-MurNAc(pentapeptide)). An investigation of two residues in the active site of AmiC revealed that Glu-229 is critical for both normal cell separation and the release of PG fragments by gonococci during growth. In contrast, Gln-316 has an autoinhibitory role, and its mutation to lysine resulted in an AmiC with increased enzymatic activity on macromolecular PG and on the synthetic PG derivative. Curiously, the same Q316K mutation that increased AmiC activity also resulted in cell separation and PG fragment release defects, indicating that activation state is not the only factor determining normal AmiC activity. In addition to displaying high basal activity on PG, gonococcal AmiC can utilize metal ions other than the zinc cofactor typically used by cell separation amidases, potentially protecting its ability to function in zinc-limiting environments. Thus gonococcal AmiC has distinct differences from related enzymes, and these studies revealed parameters for how AmiC functions in cell separation and PG fragment release.
Collapse
Affiliation(s)
- Jonathan D Lenz
- From the Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Elizabeth A Stohl
- the Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Rosanna M Robertson
- the Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, and
| | - Kathleen T Hackett
- From the Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Kathryn Fisher
- From the Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Kalia Xiong
- From the Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin 53706
| | - Mijoon Lee
- the Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, Indiana 46556
| | - Dusan Hesek
- the Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, Indiana 46556
| | - Shahriar Mobashery
- the Department of Chemistry and Biochemistry, University of Notre Dame, South Bend, Indiana 46556
| | - H Steven Seifert
- the Department of Microbiology-Immunology, Northwestern University Feinberg School of Medicine, Chicago, Illinois 60611
| | - Christopher Davies
- the Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, South Carolina 29425, and
| | - Joseph P Dillard
- From the Department of Medical Microbiology and Immunology, University of Wisconsin-Madison, Madison, Wisconsin 53706,
| |
Collapse
|
37
|
Minimal Peptidoglycan (PG) Turnover in Wild-Type and PG Hydrolase and Cell Division Mutants of Streptococcus pneumoniae D39 Growing Planktonically and in Host-Relevant Biofilms. J Bacteriol 2015; 197:3472-85. [PMID: 26303829 DOI: 10.1128/jb.00541-15] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 08/15/2015] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED We determined whether there is turnover of the peptidoglycan (PG) cell wall of the ovococcus bacterial pathogen Streptococcus pneumoniae (pneumococcus). Pulse-chase experiments on serotype 2 strain D39 radiolabeled with N-acetylglucosamine revealed little turnover and release of PG breakdown products during growth compared to published reports of PG turnover in Bacillus subtilis. PG dynamics were visualized directly by long-pulse-chase-new-labeling experiments using two colors of fluorescent d-amino acid (FDAA) probes to microscopically detect regions of new PG synthesis. Consistent with minimal PG turnover, hemispherical regions of stable "old" PG persisted in D39 and TIGR4 (serotype 4) cells grown in rich brain heart infusion broth, in D39 cells grown in chemically defined medium containing glucose or galactose as the carbon source, and in D39 cells grown as biofilms on a layer of fixed human epithelial cells. In contrast, B. subtilis exhibited rapid sidewall PG turnover in similar FDAA-labeling experiments. High-performance liquid chromatography (HPLC) analysis of biochemically released peptides from S. pneumoniae PG validated that FDAAs incorporated at low levels into pentamer PG peptides and did not change the overall composition of PG peptides. PG dynamics were also visualized in mutants lacking PG hydrolases that mediate PG remodeling, cell separation, or autolysis and in cells lacking the MapZ and DivIVA division regulators. In all cases, hemispheres of stable old PG were maintained. In PG hydrolase mutants exhibiting aberrant division plane placement, FDAA labeling revealed patches of inert PG at turns and bulge points. We conclude that growing S. pneumoniae cells exhibit minimal PG turnover compared to the PG turnover in rod-shaped cells. IMPORTANCE PG cell walls are unique to eubacteria, and many bacterial species turn over and recycle their PG during growth, stress, colonization, and virulence. Consequently, PG breakdown products serve as signals for bacteria to induce antibiotic resistance and as activators of innate immune responses. S. pneumoniae is a commensal bacterium that colonizes the human nasopharynx and opportunistically causes serious respiratory and invasive diseases. The results presented here demonstrate a distinct demarcation between regions of old PG and regions of new PG synthesis and minimal turnover of PG in S. pneumoniae cells growing in culture or in host-relevant biofilms. These findings suggest that S. pneumoniae minimizes the release of PG breakdown products by turnover, which may contribute to evasion of the innate immune system.
Collapse
|
38
|
Randich AM, Brun YV. Molecular mechanisms for the evolution of bacterial morphologies and growth modes. Front Microbiol 2015; 6:580. [PMID: 26106381 PMCID: PMC4460556 DOI: 10.3389/fmicb.2015.00580] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 05/26/2015] [Indexed: 12/13/2022] Open
Abstract
Bacteria exhibit a rich diversity of morphologies. Within this diversity, there is a uniformity of shape for each species that is replicated faithfully each generation, suggesting that bacterial shape is as selectable as any other biochemical adaptation. We describe the spatiotemporal mechanisms that target peptidoglycan synthesis to different subcellular zones to generate the rod-shape of model organisms Escherichia coli and Bacillus subtilis. We then demonstrate, using the related genera Caulobacter and Asticcacaulis as examples, how the modularity of the core components of the peptidoglycan synthesis machinery permits repositioning of the machinery to achieve different growth modes and morphologies. Finally, we highlight cases in which the mechanisms that underlie morphological evolution are beginning to be understood, and how they depend upon the expansion and diversification of the core components of the peptidoglycan synthesis machinery.
Collapse
Affiliation(s)
- Amelia M Randich
- Department of Biology, Indiana University , Bloomington, IN, USA
| | - Yves V Brun
- Department of Biology, Indiana University , Bloomington, IN, USA
| |
Collapse
|
39
|
Host lysozyme-mediated lysis of Lactococcus lactis facilitates delivery of colitis-attenuating superoxide dismutase to inflamed colons. Proc Natl Acad Sci U S A 2015; 112:7803-8. [PMID: 26056274 DOI: 10.1073/pnas.1501897112] [Citation(s) in RCA: 78] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Beneficial microbes that target molecules and pathways, such as oxidative stress, which can negatively affect both host and microbiota, may hold promise as an inflammatory bowel disease therapy. Prior work showed that a five-strain fermented milk product (FMP) improved colitis in T-bet(-/-) Rag2(-/-) mice. By varying the number of strains used in the FMP, we found that Lactococcus lactis I-1631 was sufficient to ameliorate colitis. Using comparative genomic analyses, we identified genes unique to L. lactis I-1631 involved in oxygen respiration. Respiration of oxygen results in reactive oxygen species (ROS) generation. Also, ROS are produced at high levels during intestinal inflammation and cause tissue damage. L. lactis I-1631 possesses genes encoding enzymes that detoxify ROS, such as superoxide dismutase (SodA). Thus, we hypothesized that lactococcal SodA played a role in attenuating colitis. Inactivation of the sodA gene abolished L. lactis I-1631's beneficial effect in the T-bet(-/-) Rag2(-/-) model. Similar effects were obtained in two additional colonic inflammation models, Il10(-/-) mice and dextran sulfate sodium-treated mice. Efforts to understand how a lipophobic superoxide anion (O2 (-)) can be detoxified by cytoplasmic lactoccocal SodA led to the finding that host antimicrobial-mediated lysis is a prerequisite for SodA release and SodA's extracytoplasmic O2 (-) scavenging. L. lactis I-1631 may represent a promising vehicle to deliver antioxidant, colitis-attenuating SodA to the inflamed intestinal mucosa, and host antimicrobials may play a critical role in mediating SodA's bioaccessibility.
Collapse
|
40
|
Siegrist MS, Aditham AK, Espaillat A, Cameron TA, Whiteside SA, Cava F, Portnoy DA, Bertozzi CR. Host actin polymerization tunes the cell division cycle of an intracellular pathogen. Cell Rep 2015; 11:499-507. [PMID: 25892235 DOI: 10.1016/j.celrep.2015.03.046] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2014] [Revised: 02/23/2015] [Accepted: 03/22/2015] [Indexed: 02/02/2023] Open
Abstract
Growth and division are two of the most fundamental capabilities of a bacterial cell. While they are well described for model organisms growing in broth culture, very little is known about the cell division cycle of bacteria replicating in more complex environments. Using a D-alanine reporter strategy, we found that intracellular Listeria monocytogenes (Lm) spend a smaller proportion of their cell cycle dividing compared to Lm growing in broth culture. This alteration to the cell division cycle is independent of bacterial doubling time. Instead, polymerization of host-derived actin at the bacterial cell surface extends the non-dividing elongation period and compresses the division period. By decreasing the relative proportion of dividing Lm, actin polymerization biases the population toward cells with the highest propensity to form actin tails. Thus, there is a positive-feedback loop between the Lm cell division cycle and a physical interaction with the host cytoskeleton.
Collapse
Affiliation(s)
- M Sloan Siegrist
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Arjun K Aditham
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Akbar Espaillat
- Department of Molecular Biology, Umeå University, Umeå 901 87, Sweden; Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå 901 87, Sweden
| | - Todd A Cameron
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Sarah A Whiteside
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Felipe Cava
- Department of Molecular Biology, Umeå University, Umeå 901 87, Sweden; Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå 901 87, Sweden
| | - Daniel A Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, University of California, Berkeley, Berkeley, CA 94720, USA; Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA; Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
41
|
Siegrist MS, Swarts BM, Fox DM, Lim SA, Bertozzi CR. Illumination of growth, division and secretion by metabolic labeling of the bacterial cell surface. FEMS Microbiol Rev 2015; 39:184-202. [PMID: 25725012 DOI: 10.1093/femsre/fuu012] [Citation(s) in RCA: 100] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The cell surface is the essential interface between a bacterium and its surroundings. Composed primarily of molecules that are not directly genetically encoded, this highly dynamic structure accommodates the basic cellular processes of growth and division as well as the transport of molecules between the cytoplasm and the extracellular milieu. In this review, we describe aspects of bacterial growth, division and secretion that have recently been uncovered by metabolic labeling of the cell envelope. Metabolite derivatives can be used to label a variety of macromolecules, from proteins to non-genetically-encoded glycans and lipids. The embedded metabolite enables precise tracking in time and space, and the versatility of newer chemoselective detection methods offers the ability to execute multiple experiments concurrently. In addition to reviewing the discoveries enabled by metabolic labeling of the bacterial cell envelope, we also discuss the potential of these techniques for translational applications. Finally, we offer some guidelines for implementing this emerging technology.
Collapse
Affiliation(s)
- M Sloan Siegrist
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Benjamin M Swarts
- Department of Chemistry, Central Michigan University, Mount Pleasant, MI 48859, USA
| | - Douglas M Fox
- Department of Chemistry, University of California, Berkeley, CA 94720, USA
| | - Shion An Lim
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA
| | - Carolyn R Bertozzi
- Department of Chemistry, University of California, Berkeley, CA 94720, USA Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
42
|
Die for the community: an overview of programmed cell death in bacteria. Cell Death Dis 2015; 6:e1609. [PMID: 25611384 PMCID: PMC4669768 DOI: 10.1038/cddis.2014.570] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2014] [Revised: 11/25/2014] [Accepted: 12/01/2014] [Indexed: 02/07/2023]
Abstract
Programmed cell death is a process known to have a crucial role in many aspects of eukaryotes physiology and is clearly essential to their life. As a consequence, the underlying molecular mechanisms have been extensively studied in eukaryotes and we now know that different signalling pathways leading to functionally and morphologically different forms of death exist in these organisms. Similarly, mono-cellular organism can activate signalling pathways leading to death of a number of cells within a colony. The reason why a single-cell organism would activate a program leading to its death is apparently counterintuitive and probably for this reason cell death in prokaryotes has received a lot less attention in the past years. However, as summarized in this review there are many reasons leading to prokaryotic cell death, for the benefit of the colony. Indeed, single-celled organism can greatly benefit from multicellular organization. Within this forms of organization, regulation of death becomes an important issue, contributing to important processes such as: stress response, development, genetic transformation, and biofilm formation.
Collapse
|
43
|
Pentacyclic triterpene derivatives possessing polyhydroxyl ring A inhibit gram-positive bacteria growth by regulating metabolism and virulence genes expression. Eur J Med Chem 2015; 95:64-75. [PMID: 25794790 DOI: 10.1016/j.ejmech.2015.01.015] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 01/06/2015] [Accepted: 01/08/2015] [Indexed: 11/21/2022]
Abstract
The hydroxyl group in ring A of pentacyclic triterpene is essential for antibacterial activity. Pentacyclic triterpenes bearing three hydroxyl groups in ring A were mainly found in plants and displayed significant antibacterial activity. However, no study reported how to obtain this type of compounds by chemical modification. In this study, twenty-five new pentacyclic triterpenes bearing polyhydroxyl ring A were synthesized from parental compounds ursolic acid (UA) and oleanolic acid (OA). Here, we showed that most of these derivatives displayed a significantly increased activity against Gram-positive bacteria compared to parental compounds in vitro. Some of these compounds exhibited minimum inhibitory concentration values of 1-3-fold more potent than the positive controls. The structure-activity relationship studies demonstrated that introducing two hydroxyl groups at positions C-1 and C-2 together with a small alkyl ester group at C-17 of UA and OA strongly enhanced growth-inhibiting activity against Gram-positive bacteria. The antibacterial mechanism of the active derivatives was shown to be involved in regulating the expression of genes associated with peptidoglycan and respiratory metabolisms, as well as virulence factor in bacteria. The enhanced potency and unique mechanism of action of these new pentacyclic triterpenes make them a promising antibacterial agent for further studies.
Collapse
|
44
|
Liu S, Rich JO, Anderson A. Antibacterial activity of a cell wall hydrolase from Lactobacillus paracasei NRRL B-50314 produced by recombinant Bacillus megaterium. J Ind Microbiol Biotechnol 2014; 42:229-35. [PMID: 25533632 DOI: 10.1007/s10295-014-1557-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 11/22/2014] [Indexed: 02/04/2023]
Abstract
The cell-free supernatant (CFS) from Lactobacillus paracasei NRRL B-50314 culture has been previously reported as containing antibacterial activity against a wide variety of Gram-positive bacteria. The CFS protein gel slice corresponding to antibacterial activities was subjected to trypsin digestion and ion trap MASS (Gel/LC-MS/MS) analysis. BlastP search of the resulted IQAVISIAEQQIGKP sequence led to a hypothetical cell-wall associated hydrolase (designated as CWH here) from Lactobacillus paracasei ATCC 25302. Further analyses of CWH revealed that the IQAVISIAEQQIGKP belongs to a highly conserved region of the NlpC/P60 superfamily. The L. paracasei NRRL B-50314 CWH gene, cloned in pStrepHIS1525CWH477, was introduced into Bacillus megaterium MS 941. The production of CWH477 protein was induced by xylose. The CWH477 protein was purified by using NiNTA column, and elution fraction E2 showed highest antibacterial activity. This study and bioinformatics analyses suggested that the antibacterial activity of CWH could originate from its cell wall degrading enzymatic function.
Collapse
Affiliation(s)
- Siqing Liu
- RPT Research Unit, National Center for Agricultural Utilization Research, Agricultural Research Service, United States Department of Agriculture, 1815 N. University St, Peoria, IL, 61604, USA,
| | | | | |
Collapse
|
45
|
Chan ACK, Blair KM, Liu Y, Frirdich E, Gaynor EC, Tanner ME, Salama NR, Murphy MEP. Helical shape of Helicobacter pylori requires an atypical glutamine as a zinc ligand in the carboxypeptidase Csd4. J Biol Chem 2014; 290:3622-38. [PMID: 25505267 DOI: 10.1074/jbc.m114.624734] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Peptidoglycan modifying carboxypeptidases (CPs) are important determinants of bacterial cell shape. Here, we report crystal structures of Csd4, a three-domain protein from the human gastric pathogen Helicobacter pylori. The catalytic zinc in Csd4 is coordinated by a rare His-Glu-Gln configuration that is conserved among most Csd4 homologs, which form a distinct subfamily of CPs. Substitution of the glutamine to histidine, the residue found in prototypical zinc carboxypeptidases, resulted in decreased enzyme activity and inhibition by phosphate. Expression of the histidine variant at the native locus in a H. pylori csd4 deletion strain did not restore the wild-type helical morphology. Biochemical assays show that Csd4 can cleave a tripeptide peptidoglycan substrate analog to release m-DAP. Structures of Csd4 with this substrate analog or product bound at the active site reveal determinants of peptidoglycan specificity and the mechanism to cleave an isopeptide bond to release m-DAP. Our data suggest that Csd4 is the archetype of a new CP subfamily with a domain scheme that differs from this large family of peptide-cleaving enzymes.
Collapse
Affiliation(s)
- Anson C K Chan
- From the Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Kris M Blair
- the Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, the Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington 98195, and
| | - Yanjie Liu
- the Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Emilisa Frirdich
- From the Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Erin C Gaynor
- From the Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Martin E Tanner
- the Department of Chemistry, University of British Columbia, Vancouver, British Columbia V6T 1Z1, Canada
| | - Nina R Salama
- the Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, Washington 98109, the Program in Molecular and Cellular Biology, University of Washington, Seattle, Washington 98195, and
| | - Michael E P Murphy
- From the Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia V6T 1Z3, Canada,
| |
Collapse
|
46
|
Heo A, Jang HJ, Sung JS, Park W. Global transcriptome and physiological responses of Acinetobacter oleivorans DR1 exposed to distinct classes of antibiotics. PLoS One 2014; 9:e110215. [PMID: 25330344 PMCID: PMC4201530 DOI: 10.1371/journal.pone.0110215] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2014] [Accepted: 09/09/2014] [Indexed: 11/18/2022] Open
Abstract
The effects of antibiotics on environment-originated nonpathogenic Acinetobacter species have been poorly explored. To understand the antibiotic-resistance mechanisms that function in nonpathogenic Acinetobacter species, we used an RNA-sequencing (RNA-seq) technique to perform global gene-expression profiling of soil-borne Acinetobacter oleivorans DR1 after exposing the bacteria to 4 classes of antibiotics (ampicillin, Amp; kanamycin, Km; tetracycline, Tc; norfloxacin, Nor). Interestingly, the well-known two global regulators, the soxR and the rpoE genes are present among 41 commonly upregulated genes under all 4 antibiotic-treatment conditions. We speculate that these common genes are essential for antibiotic resistance in DR1. Treatment with the 4 antibiotics produced diverse physiological and phenotypic changes. Km treatment induced the most dramatic phenotypic changes. Examination of mutation frequency and DNA-repair capability demonstrated the induction of the SOS response in Acinetobacter especially under Nor treatment. Based on the RNA-seq analysis, the glyoxylate-bypass genes of the citrate cycle were specifically upregulated under Amp treatment. We also identified newly recognized non-coding small RNAs of the DR1 strain, which were also confirmed by Northern blot analysis. These results reveal that treatment with antibiotics of distinct classes differentially affected the gene expression and physiology of DR1 cells. This study expands our understanding of the molecular mechanisms of antibiotic-stress response of environment-originated bacteria and provides a basis for future investigations.
Collapse
Affiliation(s)
- Aram Heo
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
| | - Hyun-Jin Jang
- Department of Life Science, Dongguk University, Seoul, Republic of Korea
| | - Jung-Suk Sung
- Department of Life Science, Dongguk University, Seoul, Republic of Korea
| | - Woojun Park
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, Republic of Korea
- * E-mail:
| |
Collapse
|
47
|
Wang Z, Wang Y, Zheng L, Yang X, Liu H, Guo J. Isolation and characterization of an antifungal protein from Bacillus licheniformis HS10. Biochem Biophys Res Commun 2014; 454:48-52. [PMID: 25445597 DOI: 10.1016/j.bbrc.2014.10.031] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 10/07/2014] [Indexed: 11/25/2022]
Abstract
Bacillus licheniformis HS10 is a good biocontrol agent against Pseudoperonospora cubensis which caused cucumber downy disease. To identify and characterize the antifungal proteins produced by B.licheniformis HS10, the proteins from HS10 were isolated by using 30-60% ammonium sulfate precipitation, and purified with column chromatography on DEAE Sepharose Fast Flow, RESOURCE Q and Sephadex G-75. And the SDS-PAGE and MALDI-TOF/TOF-MS analysis results demonstrated that the antifungal protein was a monomer with molecular weight of about 55 kDa, identified as carboxypeptidase. Our experiments also showed that the antifungal protein from B. licheniformis HS10 had significantly inhibition on eight different kinds of plant pathogenic fungi, and it was stable with good biological activity at as high as 100°C for 30 min and in pH value ranged from 6 to 10. The biological activity was negatively affected by protease K and 10mM metal cations except Ca(2+).
Collapse
Affiliation(s)
- Zhixin Wang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | - Yunpeng Wang
- College of Life Science and Chemical Engineering, Huaiyin Institute of Technology, Huai'an 223003, China
| | - Li Zheng
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China; Chinese Academy of Tropical Agricultural Sciences Guangzhou Experimental Station, Guangzhou 510140, China; Tropical Energy and Ecology Research Centre of CATAS, Guangzhou 510140, China
| | - Xiaona Yang
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| | - Hongxia Liu
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China.
| | - Jianhua Guo
- Department of Plant Pathology, College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China; Engineering Center of Bioresource Pesticide in Jiangsu Province, Nanjing 210095, China; Key Laboratory of Integrated Management of Crop Diseases and Pests (Nanjing Agricultural University), Ministry of Education, Nanjing 210095, China
| |
Collapse
|
48
|
Abstract
The cell wall of Gram-positive bacteria is a complex assemblage of glycopolymers and proteins. It consists of a thick peptidoglycan sacculus that surrounds the cytoplasmic membrane and that is decorated with teichoic acids, polysaccharides, and proteins. It plays a major role in bacterial physiology since it maintains cell shape and integrity during growth and division; in addition, it acts as the interface between the bacterium and its environment. Lactic acid bacteria (LAB) are traditionally and widely used to ferment food, and they are also the subject of more and more research because of their potential health-related benefits. It is now recognized that understanding the composition, structure, and properties of LAB cell walls is a crucial part of developing technological and health applications using these bacteria. In this review, we examine the different components of the Gram-positive cell wall: peptidoglycan, teichoic acids, polysaccharides, and proteins. We present recent findings regarding the structure and function of these complex compounds, results that have emerged thanks to the tandem development of structural analysis and whole genome sequencing. Although general structures and biosynthesis pathways are conserved among Gram-positive bacteria, studies have revealed that LAB cell walls demonstrate unique properties; these studies have yielded some notable, fundamental, and novel findings. Given the potential of this research to contribute to future applied strategies, in our discussion of the role played by cell wall components in LAB physiology, we pay special attention to the mechanisms controlling bacterial autolysis, bacterial sensitivity to bacteriophages and the mechanisms underlying interactions between probiotic bacteria and their hosts.
Collapse
|
49
|
Abstract
In this issue of Structure, Hoyland and colleagues describe the structure of a peptidoglycan L,D-carboxypeptidase in both substrate-bound and apoenzyme forms. These studies reveal the basis for enzyme specificity and assist greatly in a field where form and function overlap.
Collapse
Affiliation(s)
- Ian T Cadby
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Andrew L Lovering
- Institute of Microbiology and Infection, School of Biosciences, University of Birmingham, Birmingham B15 2TT, UK.
| |
Collapse
|
50
|
Pohane AA, Joshi H, Jain V. Molecular dissection of phage endolysin: an interdomain interaction confers host specificity in Lysin A of Mycobacterium phage D29. J Biol Chem 2014; 289:12085-12095. [PMID: 24627486 DOI: 10.1074/jbc.m113.529594] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mycobacterium tuberculosis has always been recognized as one of the most successful pathogens. Bacteriophages that attack and kill mycobacteria offer an alternate mechanism for the curtailment of this bacterium. Upon infection, mycobacteriophages produce lysins that catalyze cell wall peptidoglycan hydrolysis and mycolic acid layer breakdown of the host resulting in bacterial cell rupture and virus release. The ability to lyse bacterial cells make lysins extremely significant. We report here a detailed molecular dissection of the function and regulation of mycobacteriophage D29 Lysin A. Several truncated versions of Lysin A were constructed, and their activities were analyzed by zymography and by expressing them in both Escherichia coli and Mycobacterium smegmatis. Our experiments establish that Lysin A harbors two catalytically active domains, both of which show E. coli cell lysis upon their expression exclusively in the periplasmic space. However, the expression of only one of these domains and the full-length Lysin A caused M. smegmatis cell lysis. Interestingly, full-length protein remained inactive in E. coli periplasm. Our data suggest that the inactivity is ensued by a C-terminal domain that interacts with the N-terminal domain. This interaction was affirmed by surface plasmon resonance. Our experiments also demonstrate that the C-terminal domain of Lysin A selectively binds to M. tuberculosis and M. smegmatis peptidoglycans. Our methodology of studying E. coli cell lysis by Lysin A and its truncations after expressing these proteins in the bacterial periplasm with the help of signal peptide paves the way for a large scale identification and analysis of such proteins obtained from other bacteriophages.
Collapse
Affiliation(s)
- Amol Arunrao Pohane
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462023, India
| | - Himanshu Joshi
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462023, India
| | - Vikas Jain
- Microbiology and Molecular Biology Laboratory, Department of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal 462023, India.
| |
Collapse
|