1
|
Yarahmadi A, Najafiyan H, Yousefi MH, Khosravi E, Shabani E, Afkhami H, Aghaei SS. Beyond antibiotics: exploring multifaceted approaches to combat bacterial resistance in the modern era: a comprehensive review. Front Cell Infect Microbiol 2025; 15:1493915. [PMID: 40176987 PMCID: PMC11962305 DOI: 10.3389/fcimb.2025.1493915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2024] [Accepted: 01/23/2025] [Indexed: 04/05/2025] Open
Abstract
Antibiotics represent one of the most significant medical breakthroughs of the twentieth century, playing a critical role in combating bacterial infections. However, the rapid emergence of antibiotic resistance has become a major global health crisis, significantly complicating treatment protocols. This paper provides a narrative review of the current state of antibiotic resistance, synthesizing findings from primary research and comprehensive review articles to examine the various mechanisms bacteria employ to counteract antibiotics. One of the primary sources of antibiotic resistance is the improper use of antibiotics in the livestock industry. The emergence of drug-resistant microorganisms from human activities and industrial livestock production has presented significant environmental and public health concerns. Today, resistant nosocomial infections occur following long-term hospitalization of patients, causing the death of many people, so there is an urgent need for alternative treatments. In response to this crisis, non-antibiotic therapeutic strategies have been proposed, including bacteriophages, probiotics, postbiotics, synbiotics, fecal microbiota transplantation (FMT), nanoparticles (NPs), antimicrobial peptides (AMPs), antibodies, traditional medicines, and the toxin-antitoxin (TA) system. While these approaches offer innovative solutions for addressing bacterial infections and preserving the efficacy of antimicrobial therapies, challenges such as safety, cost-effectiveness, regulatory hurdles, and large-scale implementation remain. This review examines the potential and limitations of these strategies, offering a balanced perspective on their role in managing bacterial infections and mitigating the broader impact of antibiotic resistance.
Collapse
Affiliation(s)
- Aref Yarahmadi
- Department of Biology, Khorramabad Branch, Islamic Azad University, Khorramabad, Iran
| | - Hamide Najafiyan
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Hasan Yousefi
- Department of Tissue Engineering and Applied Cell Sciences, School of Medicine, Qom University of Medical Sciences, Qom, Iran
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Elham Khosravi
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Shabani
- Department of Clinical Pharmacy, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Hamed Afkhami
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
- Nervous System Stem Cells Research Center, Semnan University of Medical Sciences, Semnan, Iran
- Department of Medical Microbiology, Faculty of Medicine, Shahed University, Tehran, Iran
| | - Seyed Soheil Aghaei
- Department of Microbiology, Qom Branch, Islamic Azad University, Qom, Iran
- Applied Physiology Research Center, Qom Medical Sciences, Islamic Azad University, Qom, Iran
| |
Collapse
|
2
|
van der Fels-Klerx HJ, van Asselt ED, van Leeuwen SPJ, Dorgelo FO, Hoek-van den Hil EF. Prioritization of chemical food safety hazards in the European feed supply chain. Compr Rev Food Sci Food Saf 2024; 23:e70025. [PMID: 39379291 DOI: 10.1111/1541-4337.70025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/29/2024] [Accepted: 09/01/2024] [Indexed: 10/10/2024]
Abstract
Extensive monitoring programs of chemical hazards in the animal feed chain are in place, both organized by public and private organizations. The objective of this review was to prioritize chemical hazards for monitoring in the European animal feed supply chain. A step-wise approach was designed for the prioritization, based on: historical occurrence of the chemicals in animal feed ingredients and animal feeds (in relation to European guidance values or maximum limits in feed); information on transfer of the chemical to edible animal products, and; the extent of human dietary intake of the products and possible adverse human health effects of the chemical. Possible prioritization outcomes were: high (H), medium (M), or low (L) priority for monitoring, or classification not possible (NC) because of limited available data on the transfer of the chemical to edible animal tissues. The selection of chemicals included (with results in parentheses): dioxins and polychlorinated biphenyls (H); brominated flame retardants (H); per- and polyfluorinated alkyl substances (H); the heavy metals arsenic (H) and cadmium (H) as well as lead (M) and mercury (M); aflatoxins (H), ochratoxin A (NC), and other mycotoxins (L); pyrrolizidine alkaloids (H) and other plant toxins (NC); organochlorine pesticides (H) and other pesticides (L); pharmaceutically active substances (M); hormones (NC); polycyclic aromatic hydrocarbons (L), heat-induced processing contaminants (NC), and mineral oils (NC). Results of this study can be used to support risk-based monitoring by food safety authorities and feed-producing companies in Europe.
Collapse
Affiliation(s)
| | - E D van Asselt
- Wageningen Food Safety Research, Wageningen, The Netherlands
| | | | - F O Dorgelo
- Wageningen Food Safety Research, Wageningen, The Netherlands
| | | |
Collapse
|
3
|
Liu Q, Chen B, Li X, Zhou M, Xiong T, Hu X, Mao H, Liu S. Dietary supplementation of Sida rhombifolia enhances the plasma antioxidation and modulates gut microbiota in Anyi tile-like grey chickens. J Anim Physiol Anim Nutr (Berl) 2024; 108:1712-1722. [PMID: 38943520 DOI: 10.1111/jpn.14013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 05/06/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024]
Abstract
Sida rhombifolia (S. rhombifolia) is a widely used herbal plant for humans because of its antioxidant and antibacterial effects, but its potential use as a feed additive for livestock has not been investigated. Twenty 350 days-old Anyi tile-like grey chickens were randomly divided into a control group (fed basal diet) and a treatment group (fed basal diet + 3% of S. rhombifolia), and these chickens were feed for 31 days. Dietary S. rhombifolia remarkably enhanced plasma antioxidants, including the significantly increased total antioxidant capability (p < 0.01), catalase (p = 0.04), and superoxide dismutase (p < 0.01) in the treatment group. Furthermore, dietary S. rhombifolia also modulated chicken cecal microbiota, including an increased microbial diversity (Shannon, p = 0.03; Chao1, p = 0.03) in the treatment group. Regarding taxonomic analysis, 34 microbial taxa showed significant differences between the two groups. Meanwhile, the dominant phylum Actinobacteriota (p = 0.04), and dominant genera Desulfovibrio (p = 0.04) and Olsenella (p = 0.02) were significantly increased after treatment, whereas the pathogenic genus Escherichia-Shigella (p = 0.04) was significantly decreased after feeding S. rhombifolia. The results indicating that S. rhombifolia has potential for use as a natural plant feed additive for chickens.
Collapse
Affiliation(s)
- Qiuhong Liu
- Department of Poultry Genetics and Breeding, Poultry Institute, Jiangxi Agricultural University, Nanchang, P. R. China
- Department of Animal Science, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, P. R. China
| | - Biao Chen
- Department of Poultry Genetics and Breeding, Poultry Institute, Jiangxi Agricultural University, Nanchang, P. R. China
- Department of Animal Science, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, P. R. China
| | - Xinghui Li
- Department of Animal Husbandry and Veterinary, Agriculture and Rural Affairs Bureau of Ningdu County, Ganzhou, P. R. China
| | - Mingfang Zhou
- Department of Poultry Genetics and Breeding, Poultry Institute, Jiangxi Agricultural University, Nanchang, P. R. China
- Department of Animal Science, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, P. R. China
| | - Ting Xiong
- Department of Poultry Genetics and Breeding, Poultry Institute, Jiangxi Agricultural University, Nanchang, P. R. China
- Department of Animal Science, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, P. R. China
| | - Xiaolong Hu
- Department of Poultry Genetics and Breeding, Poultry Institute, Jiangxi Agricultural University, Nanchang, P. R. China
- Department of Animal Science, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, P. R. China
| | - Huirong Mao
- Department of Poultry Genetics and Breeding, Poultry Institute, Jiangxi Agricultural University, Nanchang, P. R. China
- Department of Animal Science, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, P. R. China
| | - Sanfeng Liu
- Department of Poultry Genetics and Breeding, Poultry Institute, Jiangxi Agricultural University, Nanchang, P. R. China
- Department of Animal Science, College of Animal Science and Technology, Jiangxi Agricultural University, Nanchang, P. R. China
| |
Collapse
|
4
|
Khalifa HO, Shikoray L, Mohamed MYI, Habib I, Matsumoto T. Veterinary Drug Residues in the Food Chain as an Emerging Public Health Threat: Sources, Analytical Methods, Health Impacts, and Preventive Measures. Foods 2024; 13:1629. [PMID: 38890858 PMCID: PMC11172309 DOI: 10.3390/foods13111629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Veterinary medications are necessary for both contemporary animal husbandry and food production, but their residues can linger in foods obtained from animals and pose a dangerous human risk. In this review, we aim to highlight the sources, occurrence, human exposure pathways, and human health effects of drug residues in food-animal products. Following the usage of veterinary medications, pharmacologically active compounds known as drug residues can be found in food, the environment, or animals. They can cause major health concerns to people, including antibiotic resistance development, the development of cancer, teratogenic effects, hypersensitivity, and disruption of normal intestinal flora. Drug residues in animal products can originate from variety of sources, including water or food contamination, extra-label drug use, and ignoring drug withdrawal periods. This review also examines how humans can be exposed to drug residues through drinking water, food, air, and dust, and discusses various analytical techniques for identifying these residues in food. Furthermore, we suggest some potential solutions to prevent or reduce drug residues in animal products and human exposure pathways, such as implementing withdrawal periods, monitoring programs, education campaigns, and new technologies that are crucial for safeguarding public health. This review underscores the urgency of addressing veterinary drug residues as a significant and emerging public health threat, calling for collaborative efforts from researchers, policymakers, and industry stakeholders to develop sustainable solutions that ensure the safety of the global food supply chain.
Collapse
Affiliation(s)
- Hazim O. Khalifa
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates; (L.S.); (M.-Y.I.M.); (I.H.)
- Department of Pharmacology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 3351, Egypt
| | - Lamek Shikoray
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates; (L.S.); (M.-Y.I.M.); (I.H.)
| | - Mohamed-Yousif Ibrahim Mohamed
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates; (L.S.); (M.-Y.I.M.); (I.H.)
- ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
| | - Ihab Habib
- Department of Veterinary Medicine, College of Agriculture and Veterinary Medicine, United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates; (L.S.); (M.-Y.I.M.); (I.H.)
- ASPIRE Research Institute for Food Security in the Drylands (ARIFSID), United Arab Emirates University, Al Ain P.O. Box 1555, United Arab Emirates
| | - Tetsuya Matsumoto
- Department of Infectious Diseases, Graduate School of Medicine, International University of Health and Welfare, Narita 286-0048, Japan
| |
Collapse
|
5
|
Sepordeh S, Jafari AM, Bazzaz S, Abbasi A, Aslani R, Houshmandi S, Rad AH. Postbiotic as Novel Alternative Agent or Adjuvant for the Common Antibiotic Utilized in the Food Industry. Curr Pharm Biotechnol 2024; 25:1245-1263. [PMID: 37702234 DOI: 10.2174/1389201025666230912123849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/11/2023] [Accepted: 07/27/2023] [Indexed: 09/14/2023]
Abstract
BACKGROUND Antibiotic resistance is a serious public health problem as it causes previously manageable diseases to become deadly infections that can cause serious disability or even death. Scientists are creating novel approaches and procedures that are essential for the treatment of infections and limiting the improper use of antibiotics in an effort to counter this rising risk. OBJECTIVES With a focus on the numerous postbiotic metabolites formed from the beneficial gut microorganisms, their potential antimicrobial actions, and recent associated advancements in the food and medical areas, this review presents an overview of the emerging ways to prevent antibiotic resistance. RESULTS Presently, scientific literature confirms that plant-derived antimicrobials, RNA therapy, fecal microbiota transplantation, vaccines, nanoantibiotics, haemofiltration, predatory bacteria, immunotherapeutics, quorum-sensing inhibitors, phage therapies, and probiotics can be considered natural and efficient antibiotic alternative candidates. The investigations on appropriate probiotic strains have led to the characterization of specific metabolic byproducts of probiotics named postbiotics. Based on preclinical and clinical studies, postbiotics with their unique characteristics in terms of clinical (safe origin, without the potential spread of antibiotic resistance genes, unique and multiple antimicrobial action mechanisms), technological (stability and feasibility of largescale production), and economic (low production costs) aspects can be used as a novel alternative agent or adjuvant for the common antibiotics utilized in the production of animal-based foods. CONCLUSION Postbiotic constituents may be a new approach for utilization in the pharmaceutical and food sectors for developing therapeutic treatments. Further metabolomics investigations are required to describe novel postbiotics and clinical trials are also required to define the sufficient dose and optimum administration frequency of postbiotics.
Collapse
Affiliation(s)
- Sama Sepordeh
- Student Research Committee, Tabriz University of Medical Sciences, Tabriz, Iran
| | | | - Sara Bazzaz
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Amin Abbasi
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ramin Aslani
- Food Safety and Hygiene Division, Department of Environmental Health Engineering, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Sousan Houshmandi
- Department of Midwifery, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Aziz Homayouni Rad
- Department of Food Science and Technology, Faculty of Nutrition & Food Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
6
|
Fan Q, Zhang J, Shi H, Chang S, Hou F. Metagenomic Profiles of Yak and Cattle Manure Resistomes in Different Feeding Patterns before and after Composting. Appl Environ Microbiol 2023; 89:e0064523. [PMID: 37409977 PMCID: PMC10370317 DOI: 10.1128/aem.00645-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 06/04/2023] [Indexed: 07/07/2023] Open
Abstract
Antibiotic resistance is a global threat to public health, with antibiotic resistance genes (ARGs) being one of the emerging contaminants; furthermore, animal manure is an important reservoir of biocide resistance genes (BRGs) and metal resistance genes (MRGs). However, few studies have reported differences in the abundance and diversity of BRGs and MRGs between different types of animal manure and the changes in BRGs and MRGs before and after composting. This study employed a metagenomics-based approach to investigate ARGs, BRGs, MRGs, and mobile genetic elements (MGEs) of yak and cattle manure before and after composting under grazing and intensive feeding patterns. The total abundances of ARGs, clinical ARGs, BRGs, MRGs, and MGEs were lower in the manure of grazing livestock than in the manure of the intensively fed group. After composting, the total abundances of ARGs, clinical ARGs, and MGEs in intensively fed livestock manure decreased, whereas those of ARGs, clinical ARGs, MRGs, and MGEs increased in grazing livestock manure. The synergy between MGEs mediated horizontal gene transfer and vertical gene transmission via host bacteria proliferation, which was the main driver that altered the abundance and diversity of ARGs, BRGs, and MRGs in livestock manure and compost. Additionally, tetQ, IS91, mdtF, and fabK were potential indicators for estimating the total abundance of clinical ARGs, BRGs, MRGs, and MGEs in livestock manure and compost. These findings suggest that grazing livestock manure can be directly discharged into the fields, whereas intensively fed livestock manure should be composted before returning to the field. IMPORTANCE The recent increase in the prevalence of antibiotic resistance genes (ARGs), biocide resistance genes (BRGs), and metal resistance genes (MRGs) in livestock manure poses risks to human health. Composting is known to be a promising technology for reducing the abundance of resistance genes. This study investigated the differences and changes in the abundances of ARGs, BRGs, and MRGs between yak and cattle manure under grazing and intensive feeding patterns before and after composting. The results indicate that the feeding pattern significantly affected the abundances of resistance genes in livestock manure. Manure in intensive farming should be composted before being discharged into the field, while grazing livestock manure is not suitable for composting due to an increased number of resistance genes.
Collapse
Affiliation(s)
- Qingshan Fan
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Jing Zhang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Hairen Shi
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Shenghua Chang
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| | - Fujiang Hou
- State Key Laboratory of Grassland Agro-ecosystems, Key Laboratory of Grassland Livestock Industry Innovation, Ministry of Agriculture, College of Pastoral Agriculture Science and Technology, Lanzhou University, Lanzhou, China
| |
Collapse
|
7
|
Tigabie M, Biset S, Belachew T, Amare A, Moges F. Multidrug-resistant and extended-spectrum beta-lactamase-producing Enterobacteriaceae isolated from chicken droppings in poultry farms at Gondar City, Northwest Ethiopia. PLoS One 2023; 18:e0287043. [PMID: 37294782 PMCID: PMC10256222 DOI: 10.1371/journal.pone.0287043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/29/2023] [Indexed: 06/11/2023] Open
Abstract
BACKGROUND The poultry sector is one of the largest and fastest-growing agricultural sub-sector, especially in developing countries like Ethiopia. In poultry production, poultry farmers use sub-optimum doses of antibiotics for growth promotion and disease prevention purpose. This indiscriminate use of antibiotics in poultry farms contributes to the emergence of antibiotic-resistant bacteria, which has adverse implications for public health. Therefore, this study is aimed to assess multidrug resistance and extended-spectrum beta-lactamase-producing Enterobacteriaceae from chicken droppings in poultry farms. METHODS A total of 87 pooled chicken-dropping samples were collected from poultry farms from March to June 2022. Samples were transported with buffered peptone water. Selenite F broth was used for the enrichment and isolation of Salmonella spp. Isolates were cultured and identified by using MacConkey agar, Xylose lysine deoxycholate agar, and routine biochemical tests. Kirby-Bauer disk diffusion technique and combination disk test were used for antibiotic susceptibility testing and confirmation of extended-spectrum beta-lactamase production, respectively. Data were entered using Epi-data version 4.6 and then exported to SPSS version 26 for analysis. RESULT Out of 87 pooled chicken droppings, 143 Enterobacteriaceae isolates were identified. Of these, E. coli accounts for 87 (60.8%), followed by Salmonella spp. 23 (16.1%), P. mirabilis 18 (12.6%) and K. pneumoniae 11 (7.7%). A high resistance rate was observed for ampicillin 131 (91.6%), followed by tetracycline 130 (90.9), and trimethoprim-sulfamethoxazole 94 (65.7%). The overall multidrug resistance rate was 116/143 (81.1%; 95% CI: 74.7-87.5). A total of 12/143 (8.4%; CI: 3.9-12.9) isolates were extended-spectrum beta-lactamase producers, with 11/87 (12.6%) E. coli and 1/11 (9.1%) K. pneumoniae. CONCLUSION AND RECOMMENDATIONS High prevalence of multi-drug resistant isolates was observed. This study alarms poultry as a potential reservoir of extended-spectrum beta-lactamase-producing Enterobacteriaceae, which might shed and contaminate the environment through faecal matter. Prudent use of antibiotics should be implemented to manage antibiotic resistance in poultry production.
Collapse
Affiliation(s)
- Mitkie Tigabie
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Sirak Biset
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Teshome Belachew
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Azanaw Amare
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| | - Feleke Moges
- Department of Medical Microbiology, School of Biomedical and Laboratory Sciences, College of Medicine and Health Sciences, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
8
|
Abdelrazik E, El-Hadidi M. Tracking Antibiotic Resistance from the Environment to Human Health. Methods Mol Biol 2023; 2649:289-301. [PMID: 37258869 DOI: 10.1007/978-1-0716-3072-3_15] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Antimicrobial resistance (AMR) is one of the threats to our world according to the World Health Organization (WHO). Resistance is an evolutionary dynamic process where host-associated microbes have to adapt to their stressful environments. AMR could be classified according to the mechanism of resistance or the biome where resistance takes place. Antibiotics are one of the stresses that lead to resistance through antibiotic resistance genes (ARGs). The resistome could be defined as the collection of all ARGs in an organism's genome or metagenome. Currently, there is a growing body of evidence supporting that the environment is the largest source of ARGs, but to what extent the environment does contribute to the antimicrobial resistance evolution is a matter of investigation. Monitoring the ARGs transfer route from the environment to humans and vice versa is a nature-to-nature feedback loop where you cannot set an accurate starting point of the evolutionary event. Thus, tracking resistome evolution and transfer to and from different biomes is crucial for the surveillance and prediction of the next resistance outbreak.Herein, we review the overlap between clinical and environmental resistomes and the available databases and computational analysis tools for resistome analysis through ARGs detection and characterization in bacterial genomes and metagenomes. Till this moment, there is no tool that can predict the resistance evolution and dynamics in a distinct biome. But, hopefully, by understanding the complicated relationship between the environmental and clinical resistome, we could develop tools that track the feedback loop from nature to nature in terms of evolution, mobilization, and transfer of ARGs.
Collapse
Affiliation(s)
- Eman Abdelrazik
- Bioinformatics Group, Center of Informatics Sciences (CIS), Nile University, Giza, Egypt
| | - Mohamed El-Hadidi
- Bioinformatics Group, Center of Informatics Sciences (CIS), Nile University, Giza, Egypt.
| |
Collapse
|
9
|
Porcine Interleukin-17 and 22 Co-Expressed by Yarrowia lipolytica Enhance Immunity and Increase Protection against Bacterial Challenge in Mice and Piglets. BIOLOGY 2022; 11:biology11121747. [PMID: 36552257 PMCID: PMC9774966 DOI: 10.3390/biology11121747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 11/24/2022] [Accepted: 11/24/2022] [Indexed: 12/03/2022]
Abstract
Drug resistance in economic animals to pathogens is a matter of widespread concern due to abuse of antibiotics. In order to develop a safe and economical immunopotentiator to raise the immunity and antibacterial response as a replacement for antibiotics, a recombinant yeast co-expressing pig interleukin-17 (IL-17) and IL-22 was constructed and designated as Po1h-pINA1297-IL-17/22. To evaluate the immunoregulator activities of Po1h-pINA1297-IL-17/22, two experiment groups (oral inoculation with Po1h-pINA1297 or Po1h-pINA1297-IL-17/22) and a negative control group (PBS) were set up using 4-week-old female BALB/c mice (10/group). The level of cytokines, including IL-2, IL-4, IL-10, and IFN-γ, were detected by ELISA, and the circulating CD4+ and CD8+ lymphocytes were quantified by flow cytometry. The IgG and secretory IgA (SIgA) levels in both small intestine and fecal matter were also measured by ELISA. The results indicated that the IgG antibody titer and SIgA concentration increased significantly in the Po1h-pINA1297-IL17/22 group in comparison with the controls (p < 0.05) and so did the cytokine levels in the serum (IL-2, IL-4, IL-10, and IFN-γ). In addition, CD4+ and CD8+ T cells were also obviously elevated in the Po1h-pINA1297-IL17/22 group on 35th day (p < 0.05). After challenge with pathogenic Salmonella typhimurium, the Po1h-pINA1297-IL17/22 group showed a relatively higher survival rate without obvious infectious symptoms. On the contrary, the mortality of control group reached 80% due to bacterial infection. As for the piglet experiment, 30 healthy 7-day piglets were similarly attributed into three groups. The oral inoculation of piglets with Po1h-pINA1297-IL17/22 also markedly improved the growth performance and systemic immunity (up-regulations of IL-4, IL-6, IL-15, IL-17, IL-22, and IL-23). Overall, the results indicated that Po1h-pINA1297-IL17/22 effectively promoted the humoral and cellular immunity against bacterial infection. These proved the promising potential of Po1h-pINA1297-IL-17/22 to be a potent immunopotentiator for the prevention of microbial pathogen infections.
Collapse
|
10
|
Liu C, Yao H, Cao Q, Wang T, Wang C. The enhanced degradation behavior of oxytetracycline by black soldier fly larvae with tetracycline resistance genes in the larval gut: Kinetic process and mechanism. ENVIRONMENTAL RESEARCH 2022; 214:114211. [PMID: 36037919 DOI: 10.1016/j.envres.2022.114211] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 08/15/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Black soldier fly larvae (larvae) can digest organic wastes and degrade contaminants such as oxytetracycline (OTC). However, compared to the kinetic processes and enhanced mechanisms used in the traditional microbial degradation of OTC, those employed by larvae are largely uncharacterized. To obtain further details, a combined analysis of larval development, larval nutritional values (crude protein, crude fat and the composition of fatty acids) and the expression of tetracycline resistance genes (TRGs) in the larval gut was performed for the degradation of OTC added to substrates and for oxytetracycline bacterial residue (OBR). When the larvae were exposed to the substrates, the degradation processes were enhanced significantly (P < 0.01), with a 4.74-7.86-fold decrease in the degradation half-life (day-1) and a 3.34-5.74-fold increase in the final degradation efficiencies. This result was attributed to the abundant TRGs (with a detection rate of 35.90%∼52.14%) in the larval gut. The TRGs presented the resistance mechanisms of cellular protection and efflux pumps, which ensured that the larvae could tolerate elevated OTC concentrations. Investigation of the TRGs indicated that enzymatic inactivation enhanced OTC degradation by larvae. These findings demonstrate that the larval degradation of antibiotic contaminants is an efficient method based on abundant TRGs in the larval gut, even though OTC degradation results in OBR. In addition, a more optimized system for higher reductions in antibiotic levels and the expansion of larval bioremediation to other fields is necessary.
Collapse
Affiliation(s)
- Cuncheng Liu
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Research Center for Environmental Ecology and Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Huaiying Yao
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Research Center for Environmental Ecology and Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station, Chinese Academy of Sciences, Ningbo, 315800, PR China; Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, 361021, PR China.
| | - Qingcheng Cao
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Research Center for Environmental Ecology and Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Tielin Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Research Center for Environmental Ecology and Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China
| | - Cunwen Wang
- Key Laboratory of Green Chemical Process of Ministry of Education, Key Laboratory of Novel Reactor and Green Chemical Technology of Hubei Province, Research Center for Environmental Ecology and Engineering, Wuhan Institute of Technology, Wuhan, 430205, PR China.
| |
Collapse
|
11
|
Kulyar MFEA, Chen X, Bhutta ZA, Boruah P, Shabbir S, Akhtar M, Aqib AI, Ashar A, Li K. Editorial: Antimicrobials alternatives for the prevention and treatment of veterinary infectious diseases. Front Vet Sci 2022; 9:1025150. [PMID: 36157178 PMCID: PMC9501705 DOI: 10.3389/fvets.2022.1025150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 08/23/2022] [Indexed: 11/16/2022] Open
Affiliation(s)
- Muhammad Fakhar-e-Alam Kulyar
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Xiushuang Chen
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Zeeshan Ahmad Bhutta
- Laboratory of Biochemistry and Immunology, College of Veterinary Medicine, Chungbuk National University, Cheongju, South Korea
| | - Prerona Boruah
- DY Patil, Deemed to be University, Navi Mumbai, Maharastra, India
| | - Samina Shabbir
- Institute of Plant Protection, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Muhammad Akhtar
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan, China
| | - Amjad Islam Aqib
- Department of Medicine, Cholistan University of Veterinary and Animal Sciences, Bahawalpur, Pakistan
- Amjad Islam Aqib
| | - Ambreen Ashar
- Department of Chemistry, Government College Women University, Faisalabad, Pakistan
- Ambreen Ashar
| | - Kun Li
- Institute of Traditional Chinese Veterinary Medicine, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- *Correspondence: Kun Li
| |
Collapse
|
12
|
Vidyadharani G, Vijaya Bhavadharani HK, Sathishnath P, Ramanathan S, Sariga P, Sandhya A, Subikshaa S, Sugumar S. Present and pioneer methods of early detection of food borne pathogens. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:2087-2107. [PMID: 35602455 DOI: 10.1007/s13197-021-05130-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 04/30/2021] [Accepted: 05/04/2021] [Indexed: 11/27/2022]
Abstract
Food-borne pathogens are a severe threat to human illness and death world-wide. Researchers have reported more than 250 food-borne diseases. Most of these are infections caused by a wide variety of bacteria, viruses, and parasites. It has a significant economic impact also. Detection of pathogenic microbes is thus essential for food safety. Such identification techniques could meet the following parameters viz., the accuracy of detection techniques that are quick, efficient, economical, highly sensitive, specific, and non-labor intensive. The various available methods for detecting food pathogens are classified into different groups, each having its advantages and disadvantages. The conventional methods are usually the first choice of detection even though they are laborious. Modern techniques such as biosensors, immunological assays, and macromolecule-based (nucleic acid) methods are being developed and refined to overcome traditional methods' limitations. Early detection of pathogens and secure food safety at each stage of food processing to storage, utilizing improved methodologies are mandatory. This review summarizes the deadly food pathogens leading to significant outbreaks and discusses the importance of early detection methods and advanced detection methods in comparison.
Collapse
Affiliation(s)
- G Vidyadharani
- Department of Microbiology, Valliammal College for Women, Chennai, TamilNadu 600102 India
| | - H K Vijaya Bhavadharani
- Department of Biotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamilnadu 603203 India
| | - P Sathishnath
- Department of Biotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamilnadu 603203 India
| | - Shruti Ramanathan
- Department of Biotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamilnadu 603203 India
| | - P Sariga
- Department of Biotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamilnadu 603203 India
| | - A Sandhya
- Department of Biotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamilnadu 603203 India
| | - S Subikshaa
- Department of Biotechnology, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamilnadu 603203 India
| | - Shobana Sugumar
- Department of Genetic Engineering, Faculty of Engineering and Technology, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, Kanchipuram, Chennai, Tamilnadu 603203 India
| |
Collapse
|
13
|
Antibiotic Use in Livestock and Residues in Food-A Public Health Threat: A Review. Foods 2022; 11:foods11101430. [PMID: 35627000 PMCID: PMC9142037 DOI: 10.3390/foods11101430] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 01/05/2023] Open
Abstract
The usage of antibiotics has been, and remains, a topic of utmost importance; on the one hand, for animal breeders, and on the other hand, for food safety. Although many countries have established strict rules for using antibiotics in animal husbandry for the food industry, their misuse and irregularities in compliance with withdrawal periods are still identified. In addition to animal-origin foods that may cause antibiotic residue problems, more and more non-animal-origin foods with this type of non-compliance are identified. In this context, we aim to summarize the available information regarding the presence of antibiotic residues in food products, obtained in various parts of the world, as well as the impact of consumption of food with antibiotic residues on consumer health. We also aim to present the methods of analysis that are currently used to determine antibiotic residues in food, as well as methods that are characterized by the speed of obtaining results or by the possibility of identifying very small amounts of residues.
Collapse
|
14
|
Martínez Y, Iser M, Valdivié M, Rosales M, Albarrán E, Sánchez D. Dietary Supplementation with Agave tequilana (Weber Var. Blue) Stem Powder Improves the Performance and Intestinal Integrity of Broiler Rabbits. Animals (Basel) 2022; 12:ani12091117. [PMID: 35565544 PMCID: PMC9102430 DOI: 10.3390/ani12091117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 04/14/2022] [Accepted: 04/19/2022] [Indexed: 01/04/2023] Open
Abstract
This study evaluated the effect of Agave tequilana (Weber var. azul) stem powder on the growth performance and the intestinal integrity in rabbits. A total of 120 male rabbits [New Zealand × California] were weaned for 35 days and randomized into four dietary treatments, 15 replicates per treatment, and two rabbits per replicate. The treatments consisted of a basal diet (T0) and dietary supplementation with 0.5% (T1), 1.0% (T2) and 1.5% (T3) of Agave tequilana stem powder. The T3 treatment improved the body weight and average daily gain (p < 0.05) compared to the other groups, without affecting viability and feed conversion ratio (p > 0.05). Furthermore, the T3 treatment enhanced (p < 0.05) the thickness of the muscular and mucous layers, and the height, thickness, and number of villi in the duodenum (p < 0.05). However, this treatment (T3) significantly decreased (p < 0.05) values for the area and depth of the crypts in the duodenum and the villus/crypt ratio. Likewise, in the cecum, T3 treatment provoked a marked decrease (p < 0.05) in the depth and thickness of the crypts. The results indicate that the dietary use with 1.5% of A. tequilana stem powder had a natural growth-promoting effect and enhanced the histomorphometry of the concentric layers (muscle and mucosa), villi, and crypts as indicators of intestinal health in rabbits.
Collapse
Affiliation(s)
- Yordan Martínez
- Agricultural Science and Production Department, Zamorano University, Valle de Yeguare, San Antonio de Oriente, Francisco Morazan, P.O. Box 93, Tegucigalpa 11101, Honduras
- Correspondence: ; Tel.: +504-944422496
| | - Maidelys Iser
- Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, P.O. Box 49, Guadalajara 44214, Jalisco, Mexico; (M.I.); (M.R.); (E.A.); (D.S.)
| | - Manuel Valdivié
- National Center for Laboratory Animal Production, Santiago de las Vegas, Rancho Boyeros, La Habana P.O. Box 6240, Cuba;
| | - Manuel Rosales
- Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, P.O. Box 49, Guadalajara 44214, Jalisco, Mexico; (M.I.); (M.R.); (E.A.); (D.S.)
| | - Esther Albarrán
- Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, P.O. Box 49, Guadalajara 44214, Jalisco, Mexico; (M.I.); (M.R.); (E.A.); (D.S.)
| | - David Sánchez
- Centro Universitario de Ciencias Biológicas y Agropecuarias (CUCBA), Universidad de Guadalajara, P.O. Box 49, Guadalajara 44214, Jalisco, Mexico; (M.I.); (M.R.); (E.A.); (D.S.)
| |
Collapse
|
15
|
Li M, Li Z, Zhong Q, Liu J, Han G, Li Y, Li C. Antibiotic resistance of fecal carriage of Escherichia coli from pig farms in China: a meta-analysis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:22989-23000. [PMID: 34797542 DOI: 10.1007/s11356-021-17339-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 10/29/2021] [Indexed: 06/13/2023]
Abstract
Fecal carriage of bacteria is a major source of antibiotic resistance genes (ARGs) and a public health risk, but the antibiotic resistance of Escherichia coli (E. coli) in Chinese pig farms remains a major gap in the available literature. Our goal was to conduct a meta-analysis of studies reporting antibiotic resistance of fecal carriage of E. coli from pig farms in China, calculating the pooled resistance rates and summarizing factors associated with it. We searched PubMed and Web of Science for studies published in English up to February 28, 2021. We also searched bibliographic indices and corresponded with the authors. We chose ciprofloxacin, gentamicin, tetracycline, ampicillin, and florfenicol from five major types of antibiotics to comprehensively evaluate the resistance rate of E. coli. We used a random-effects model and Freeman-Tukey double arcsine transformation to calculate the resistance rate and 95% confidence interval. Among the 120 retrieved manuscripts, 16 studies (1985 E. coli isolates) were deemed eligible for our analysis. The combined resistance rate of E. coli from feces was 58.8% (95% CI: 45.3-71.7%) to ciprofloxacin, 54.3% (95% CI: 35.3-72.6%) to gentamicin, 91.0% (95% CI: 83.1-96.7%) to tetracycline, 81.4% (95% CI: 62.0-95.1%) to ampicillin, and 65.4% (95% CI: 33.9-90.9%) to florfenicol. In conclusion, fecal carriage of E. coli in Chinese pig farms shows high resistance to ciprofloxacin, gentamicin, tetracycline, ampicillin, and florfenicol. Subgroup analysis showed that the resistance of E. coli to antibiotics was closely related to the sample size and the health condition of the pigs. Specifically, ESBL-producing E. coli has a higher ratio of resistance to other antibiotics. Future collection of antibiotic resistance and other information in pig farms should be more precise and depend on local surveys.
Collapse
Affiliation(s)
- Mingyang Li
- Research Center for livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Zhi Li
- Key Laboratory of Animal Physiology, Biochemistry and Molecular Biology of Hebei Province, College of Life Sciences, Hebei Normal University, Shijiazhuang, 050024, Hebei Province, China
| | - Qiuming Zhong
- Research Center for livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Junze Liu
- Research Center for livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Guofeng Han
- Research Center for livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Yansen Li
- Research Center for livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China
| | - Chunmei Li
- Research Center for livestock Environmental Control and Smart Production, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, 210095, Jiangsu Province, China.
| |
Collapse
|
16
|
Differences in Fecal Microbiome and Antimicrobial Resistance between Captive and Free-Range Sika Deer under the Same Exposure of Antibiotic Anthelmintics. Microbiol Spectr 2021; 9:e0191821. [PMID: 34851181 PMCID: PMC8635127 DOI: 10.1128/spectrum.01918-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
This study aimed to compare the fecal microbiome and antimicrobial resistance between captive and free-range sika deer with the same exposure to antibiotic anthelmintics. The taxonomic differences mainly involved significant changes in the dominant phyla, genera, and species. Linear discriminant analysis effect size (LEfSe) analysis revealed that 22 taxa were significantly different between the two groups. The KEGG analysis showed that the fecal microbiome metabolic function, and all level 2 categories in metabolism had higher abundance in the free-range deer. Based on the carbohydrate-active enzyme (CAZy) database analysis, glycoside hydrolases and carbohydrate-binding modules showed remarkable differences between the two groups. Regarding antibiotic resistance, tetQ and lnuC dominated the antibiotic resistance ontology (ARO) terms, and tetracycline and lincosamide resistance dominated the antimicrobial resistance patterns. Furthermore, the lnuC, ErmF, and tetW/N/W AROs and lincosamide resistance showed higher abundance in the captive deer, suggesting that captivity may yield more serious resistance issues because of the differences in greenfeed diet, breeding density, and/or housing environment. The results also revealed important associations between the phylum Proteobacteria, genus Prevotella, and major antibiotic resistance genes. Although the present study was a pilot study with a limited sample size that was insufficient control for some potential factors, it serves as the metagenomic study on the microbial communities and antimicrobial resistance in sika deer. IMPORTANCE We used a metagenomic approach to investigate whether and how captive and free-range impact the microbial communities and antimicrobial resistance in sika deer. The results provide solid evidence of the significant impacts on the microbial composition and function in captive and free-range sika deer. Interestingly, although the sika deer had the same exposure to antibiotic anthelmintics, the antimicrobial resistances were affected by the breeding environment.
Collapse
|
17
|
Subirats J, Murray R, Yin X, Zhang T, Topp E. Impact of chicken litter pre-application treatment on the abundance, field persistence, and transfer of antibiotic resistant bacteria and antibiotic resistance genes to vegetables. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149718. [PMID: 34425441 DOI: 10.1016/j.scitotenv.2021.149718] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 06/13/2023]
Abstract
Treatment of manures prior to land application can potentially reduce the abundance of antibiotic resistance genes and thus the risk of contaminating crops or water resources. In this study, raw and composted chicken litter were applied to field plots that were cropped to carrots, lettuce and radishes. Vegetables were washed per normal culinary practice before downstream analysis. The impact of composting on manure microbial composition, persistence of antibiotic resistant bacteria in soil following application, and distribution of antibiotic resistance genes and bacteria on washed vegetables were determined. A subset of samples that were thought likely to reveal the most significant effects were chosen for shotgun sequencing. The absolute abundance of all target genes detected by qPCR decreased after composting except sul1, intI1, incW and erm(F) that remained stable. The shotgun sequencing revealed that some integron integrases were enriched by composting. Composting significantly reduced the abundance of enteric bacteria, including those carrying antibiotic resistance. Manure-amended soil showed significantly higher abundances of sul1, str(A), str(B), erm(B), aad(A), intI1 and incW compared to unmanured soil. At harvest, those genes that were detected in soil samples before the application of manure (intI1, sul1, strA and strB) were quantifiable by qPCR on vegetables, with a larger number of gene targets detected on the radishes than in the carrots or lettuce. Shotgun metagenomic sequencing suggested that the increase of antibiotic resistance genes on radishes produced in soil receiving raw manure may be due to changes to soil microbial communities following manure application, rather than transfer to the radishes of enteric bacteria. Overall, under field conditions there was limited evidence for transfer of antibiotic resistance genes from composted or raw manure to vegetables that then persisted through washing.
Collapse
Affiliation(s)
- Jessica Subirats
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada; Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Roger Murray
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada
| | - Xiaole Yin
- Environmental Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Tong Zhang
- Environmental Biotechnology Lab, Department of Civil Engineering, The University of Hong Kong, Hong Kong, China
| | - Edward Topp
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada; Department of Biology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
18
|
Ma X, Yang Z, Xu T, Qian M, Jiang X, Zhan X, Han X. Chlortetracycline alters microbiota of gut or faeces in pigs and leads to accumulation and migration of antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148976. [PMID: 34273831 DOI: 10.1016/j.scitotenv.2021.148976] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/11/2021] [Accepted: 07/07/2021] [Indexed: 06/13/2023]
Abstract
In this study, we investigated the effect of long-term use of chlortetracycline (CTC) on the gut microbiota composition and metabolism profiles in pigs, and the variation of antibiotic resistance genes (ARGs) and microbial communities in faeces and manure during aerobic composting (AC) and anaerobic digestion (AD). The pigs were fed the same basal diet supplemented with or without 75 mg/kg CTC, and fresh faeces of 30-, 60-, 90-, and 120-day-old pigs were collected from the CTC group. The results showed that CTC reduced the diversity of the gut microbiota significantly and changed its structure. Metabolomics analysis of intestinal contents revealed 23 differentially abundant metabolites, mainly organic acids, carbohydrates, and amino acids. Metabolic pathways, such as the TCA cycle, propionate metabolism, and pyruvate metabolism, were changed. From 30 to 120 days of age, the amount of CTC residues in faeces and the abundance of 3 tetracycline resistance genes increased significantly, and it was positively correlated with tetC, tetG, tetW, sul1 and intI2. CTC residue levels and ARGs abundance gradually decreased with fermentation time, and AC was better than AD at reducing ARGs abundance. The results suggest that in-feed CTC can reduce the diversity of the gut microbiota, change the structure, function and metabolism of the bacterial community, and increase the abundance of ARGs in faeces.
Collapse
Affiliation(s)
- Xin Ma
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Zhiren Yang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Hainan, China
| | - Tingting Xu
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Mengqi Qian
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Xuemei Jiang
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou 310058, China
| | - Xiuan Zhan
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou 310058, China.
| | - Xinyan Han
- Key Laboratory of Animal Nutrition and Feed Science in East China, Ministry of Agriculture, College of Animal Science, Zhejiang University, Hangzhou 310058, China; Hainan Institute of Zhejiang University, Hainan, China.
| |
Collapse
|
19
|
Ma T, McAllister TA, Guan LL. A review of the resistome within the digestive tract of livestock. J Anim Sci Biotechnol 2021; 12:121. [PMID: 34763729 PMCID: PMC8588621 DOI: 10.1186/s40104-021-00643-6] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/07/2021] [Indexed: 12/25/2022] Open
Abstract
Antimicrobials have been widely used to prevent and treat infectious diseases and promote growth in food-production animals. However, the occurrence of antimicrobial resistance poses a huge threat to public and animal health, especially in less developed countries where food-producing animals often intermingle with humans. To limit the spread of antimicrobial resistance from food-production animals to humans and the environment, it is essential to have a comprehensive knowledge of the role of the resistome in antimicrobial resistance (AMR), The resistome refers to the collection of all antimicrobial resistance genes associated with microbiota in a given environment. The dense microbiota in the digestive tract is known to harbour one of the most diverse resistomes in nature. Studies of the resistome in the digestive tract of humans and animals are increasing exponentially as a result of advancements in next-generation sequencing and the expansion of bioinformatic resources/tools to identify and describe the resistome. In this review, we outline the various tools/bioinformatic pipelines currently available to characterize and understand the nature of the intestinal resistome of swine, poultry, and ruminants. We then propose future research directions including analysis of resistome using long-read sequencing, investigation in the role of mobile genetic elements in the expression, function and transmission of AMR. This review outlines the current knowledge and approaches to studying the resistome in food-producing animals and sheds light on future strategies to reduce antimicrobial usage and control the spread of AMR both within and from livestock production systems.
Collapse
Affiliation(s)
- Tao Ma
- Key laboratory of Feed Biotechnology of the Ministry of Agriculture, Institute of Feed Research, Chinese Academy of Agricultural Sciences, Beijing, 100081, China.,Department of Agricultural, Food and Nutritional Science, University of Alberta, T6G2P5, Edmonton, AB, Canada
| | - Tim A McAllister
- Lethbridge Research and Development Centre, Lethbridge, AB, T1J 4P4, Canada
| | - Le Luo Guan
- Department of Agricultural, Food and Nutritional Science, University of Alberta, T6G2P5, Edmonton, AB, Canada.
| |
Collapse
|
20
|
Cui L, Li HZ, Yang K, Zhu LJ, Xu F, Zhu YG. Raman biosensor and molecular tools for integrated monitoring of pathogens and antimicrobial resistance in wastewater. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116415] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
21
|
Rodríguez EA, Pino NJ, Jiménez JN. Climatological and Epidemiological Conditions Are Important Factors Related to the Abundance of bla KPC and Other Antibiotic Resistance Genes (ARGs) in Wastewater Treatment Plants and Their Effluents, in an Endemic Country. Front Cell Infect Microbiol 2021; 11:686472. [PMID: 34485173 PMCID: PMC8414572 DOI: 10.3389/fcimb.2021.686472] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 07/21/2021] [Indexed: 11/24/2022] Open
Abstract
Several physicochemical and season factors have been related to the abundance of antibiotic resistance genes (ARGs) in wastewater treatment plants (WWTPs), considered hotspots of bacterial resistance. However, few studies on the subject have been carried out in tropical countries endemic for resistance mechanisms such as blaKPC. In this study, the occurrence of ARGs, particularly blaKPC, was determined throughout a WWTP, and the factors related to their abundance were explored. In 2017, wastewater samples were taken from a WWTP in Colombia every 15 days for 6 months, and a total of 44 samples were analyzed by quantitative real-time PCR. sul1, sul2, blaKPC, and ermB were found to be the most prevalent ARGs. A low average reduction of the absolute abundance ARGs in effluent with respect to influent was observed, as well as a greater absolute abundance of ARGs in the WWTP effluent in the rainy season. Factors such as temperature, pH, oxygen, total organic carbon (TOC), chemical oxygen demand (COD), and precipitation were significantly correlated with the absolute abundance of several of the ARGs evaluated. A generalized linear mixed-effects model analysis showed that dissolved oxygen and precipitation in the sampling day were important factors related to the absolute concentration of blaKPC over time. In conclusion, the abundance of ARGs in the WWTP could be influenced by endemic conditions and physicochemical and climatological parameters. Therefore, it is necessary to continuously monitor clinical relevant genes in WWTPs from different global regions, even more so in low-income countries where sewage treatment is limited.
Collapse
Affiliation(s)
- Erika A Rodríguez
- Línea de Epidemiología Molecular Bacteriana, Grupo de Investigación en Microbiología Básica y Aplicada (MICROBA), Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| | - Nancy J Pino
- Grupo Diagnóstico y Control de la Contaminación (GDCON), Sede de Investigación Universitaria, Universidad de Antioquia, Medellín, Colombia
| | - J Natalia Jiménez
- Línea de Epidemiología Molecular Bacteriana, Grupo de Investigación en Microbiología Básica y Aplicada (MICROBA), Escuela de Microbiología, Universidad de Antioquia, Medellín, Colombia
| |
Collapse
|
22
|
Delaney S, Do TT, Corrigan A, Murphy R, Walsh F. Investigation into the effect of mannan-rich fraction supplementation on the metagenome of broiler chickens. Microb Genom 2021; 7. [PMID: 34259622 PMCID: PMC8477404 DOI: 10.1099/mgen.0.000602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Antibiotic resistance is regarded as one of the most serious threats to human health worldwide. The rapid increase in resistance rates has been attributed to the extensive use of antibiotics since they became commercially available. The use of antibiotics as growth promotors has been banned in numerous regions for this reason. Mannan-rich fraction (MRF) has been reported to show similar growth-promoting effects to antibiotics. We investigated the effect of MRF on the microbial community, resistome and metabolic pathways within the caecum of commercial broilers at two different timepoints within the growth of the broiler, day 27 and day 34. The data indicated an overall increase in health and economic gain for the producer with the addition of MRF to the diet of the broilers. The only significant difference across the microbial composition of the samples was in the richness of the microbial communities across all samples. While all samples harboured resistance genes conferring resistance to the same classes of antibiotics, there was significant variation in the antimicrobial resistance gene richness across time and treatment and across combinations of time and treatment. The taxa with positive correlation comprised Bacilli and Clostridia. The negative correlation taxa were also dominated by Bacilli, specifically the Streptococcus genera. The KEGG-pathway analysis identified an age-related change in the metabolism pathway abundances of the caecal microflora. We suggest that the MRF-related increases in health and weight gain in the broilers may be associated with changes in the metabolism of the microbiomes rather than the microbial composition. The resistome variations across samples were correlated with specific genera. These data may be used to further enhance the development of feed supplements to reduce the presence of antibiotic resistance genes (ARGs) within poultry. While the ARGs of greatest concern to human or animal health were not detected in this study, it has identified the potential to reduce the presence of ARGs by the increase in specific genera.
Collapse
Affiliation(s)
- Sarah Delaney
- Antimicrobial Resistance & Microbiome Research Group, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland.,Alltech European Bioscience CentreDunboyne, Co. Meath, Ireland
| | - Thi Thuy Do
- Antimicrobial Resistance & Microbiome Research Group, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Aoife Corrigan
- Alltech European Bioscience CentreDunboyne, Co. Meath, Ireland
| | - Richard Murphy
- Alltech European Bioscience CentreDunboyne, Co. Meath, Ireland
| | - Fiona Walsh
- Antimicrobial Resistance & Microbiome Research Group, Department of Biology, Maynooth University, Maynooth, Co. Kildare, Ireland
| |
Collapse
|
23
|
Wei S, Zhao X, Yu J, Yin S, Liu M, Bo R, Li J. Characterization of tea tree oil nanoemulsion and its acute and subchronic toxicity. Regul Toxicol Pharmacol 2021; 124:104999. [PMID: 34242706 DOI: 10.1016/j.yrtph.2021.104999] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/20/2021] [Accepted: 07/02/2021] [Indexed: 10/20/2022]
Abstract
Tea tree oil (TTO) is a popular topical use to treat skin infections. However, its poor aqueous solubility and stability have substantially limited its widespread application, including oral administration that might be therapeutic for enteric infections. In this study, mechanical ultrasonic methods were used to prepare TTO nanoemulsion (nanoTTO) with a mean droplet diameter of 161.80 nm ± 3.97, polydispersity index of 0.21 ± 0.01, and zeta potential of -12.33 ± 0.72 mV. The potential toxicity of nanoTTO was assessed by studying the oral median lethal dose (LD50) and repeated 28-day oral toxicity to provide a reference for in vivo application. Results showed that nanoTTO had no phase separation under a centrifugation test and displayed good stability during storage at -20, 4 and 25 °C over 60 days. Repeated-dose 28-day oral toxicity evaluation revealed no significant effects on growth and behavior. Assessments of hematology, clinical biochemistry, and histopathology indicated no obvious adverse effects in mice at 50, 100 and 200 mg/mL. These data suggest that nanoTTO can be considered a potential antimicrobial agent by oral administration due to its inhibitory effect on bacteria and relatively lower toxicity.
Collapse
Affiliation(s)
- SiMin Wei
- School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China; Postgraduate Research &Practice Innovation Program of Jiangsu Province, China
| | - Xin Zhao
- School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - Jie Yu
- The Affiliated Hospital of Yangzhou University, Yangzhou University, Yangzhou, 225009, PR China
| | - ShaoJie Yin
- School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - MingJiang Liu
- School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - RuoNan Bo
- School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China
| | - JinGui Li
- School of Veterinary Medicine, Yangzhou University, Yangzhou, 225009, PR China; Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, PR China; Joint International Research Laboratory of Agriculture and Agri-Product Safety, The Ministry of Education of China, Yangzhou University, Yangzhou, Jiangsu, 225009, China.
| |
Collapse
|
24
|
Gao Q, Gao S, Bates C, Zeng Y, Lei J, Su H, Dong Q, Qin Z, Zhao J, Zhang Q, Ning D, Huang Y, Zhou J, Yang Y. The microbial network property as a bio-indicator of antibiotic transmission in the environment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 758:143712. [PMID: 33277004 DOI: 10.1016/j.scitotenv.2020.143712] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 10/18/2020] [Accepted: 11/10/2020] [Indexed: 06/12/2023]
Abstract
Interspecies interaction is an essential mechanism for bacterial communities to develop antibiotic resistance via horizontal gene transfer. Nonetheless, how bacterial interactions vary along the environmental transmission of antibiotics and the underpinnings remain unclear. To address it, we explore potential microbial associations by analyzing bacterial networks generated from 16S rRNA gene sequences and functional networks containing a large number of antibiotic-resistance genes (ARGs). Antibiotic concentration decreased by more than 4000-fold along the environmental transmission chain from manure samples of swine farms to aerobic compost, compost-amended agricultural soils, and neighboring agricultural soils. Both bacterial and functional networks became larger in nodes and links with decreasing antibiotic concentrations, likely resulting from lower antibiotics stress. Nonetheless, bacterial networks became less clustered with decreasing antibiotic concentrations, while functional networks became more clustered. Modularity, a key topological property that enhances system resilience to antibiotic stress, remained high for functional networks, but the modularity values of bacterial networks were the lowest when antibiotic concentrations were intermediate. To explain it, we identified a clear shift from deterministic processes, particularly variable selection, to stochastic processes at intermediate antibiotic concentrations as the dominant mechanism in shaping bacterial communities. Collectively, our results revealed microbial network dynamics and suggest that the modularity value of association networks could serve as an important indicator of antibiotic concentrations in the environment.
Collapse
Affiliation(s)
- Qun Gao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Shuhong Gao
- School of Civil and Environmental Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Colin Bates
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA
| | - Yufei Zeng
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jiesi Lei
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Hang Su
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Qiang Dong
- Institute of Chemical Defense, Beijing 102205, China
| | - Ziyan Qin
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Jianshu Zhao
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30318, USA
| | - Qiuting Zhang
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA
| | - Daliang Ning
- Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA
| | - Yi Huang
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Science and Engineering, Peking University, Beijing 100871, China
| | - Jizhong Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Institute for Environmental Genomics and Department of Botany and Microbiology, University of Oklahoma, Norman, OK 73019, USA; Earth Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Yunfeng Yang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
25
|
From Farm-to-Fork: E. Coli from an Intensive Pig Production System in South Africa Shows High Resistance to Critically Important Antibiotics for Human and Animal Use. Antibiotics (Basel) 2021; 10:antibiotics10020178. [PMID: 33578692 PMCID: PMC7916376 DOI: 10.3390/antibiotics10020178] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/04/2021] [Accepted: 02/08/2021] [Indexed: 12/19/2022] Open
Abstract
Antibiotic resistance profiles of Escherichia coli were investigated in an intensive pig production system in the uMgungundlovu District, South Africa, using the 'farm-to-fork' approach. Four hundred seventeen (417) samples were collected from pig and pig products at different points (farm, transport, and abattoir). E. coli was isolated and enumerated using the Colilert® 18/Quanti-Tray® 2000 system. Ten isolates from each Quanti-tray were selected randomly and putatively identified on eosin methylene blue agar. Real-time PCR targeting the uidA gene was used to confirm isolates to the genus level. The Kirby-Bauer disc diffusion method was used to determine the isolates' antibiotic susceptibility profiles against 20 antibiotics. A total of 1044 confirmed E. coli isolates were obtained across the three critical points in the food chain. Resistance was observed to all the antibiotics tested with the highest and lowest rates obtained against tetracycline (88.5%) and meropenem (0.2%), respectively. Resistance was also observed to chloramphenicol (71.4%), ampicillin (71.1%), trimethoprim-sulfamethoxazole (61.3%), amoxicillin-clavulanate (43.8%), cephalexin (34.3%), azithromycin (23.9%), nalidixic acid (22.1%), cefoxitin (21.1%), ceftriaxone (18.9%), ciprofloxacin (17.3%), cefotaxime (16.9%), gentamicin (15.5%), cefepime (13.8%), ceftazidime (9.8%), amikacin (3.4%), piperacillin-tazobactam (1.2%), tigecycline (0.9%), and imipenem (0.3%). Multidrug resistance (MDR) was observed in 71.2% of the resistant isolates with an overall multiple antibiotic resistance (MAR) index of 0.25, indicating exposure to high antibiotic use environments at the farm level. A high percentage of resistance was observed to growth promoters and antibiotics approved for veterinary medicine in South Africa. Of concern was resistance to critically important antibiotics for animal and human use and the watch and reserve categories of antibiotics. This could have adverse animal and human health consequences from a food safety perspective, necessitating efficient antibiotic stewardship and guidelines to streamline antibiotic use in the food-animal production chain.
Collapse
|
26
|
Kumar M, Sarma DK, Shubham S, Kumawat M, Verma V, Nina PB, JP D, Kumar S, Singh B, Tiwari RR. Futuristic Non-antibiotic Therapies to Combat Antibiotic Resistance: A Review. Front Microbiol 2021; 12:609459. [PMID: 33574807 PMCID: PMC7870489 DOI: 10.3389/fmicb.2021.609459] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Accepted: 01/04/2021] [Indexed: 12/26/2022] Open
Abstract
The looming problem of resistance to antibiotics in microorganisms is a global health concern. The drug-resistant microorganisms originating from anthropogenic sources and commercial livestock farming have posed serious environmental and health challenges. Antibiotic-resistant genes constituting the environmental "resistome" get transferred to human and veterinary pathogens. Hence, deciphering the origin, mechanism and extreme of transfer of these genetic factors into pathogens is extremely important to develop not only the therapeutic interventions to curtail the infections, but also the strategies to avert the menace of microbial drug-resistance. Clinicians, researchers and policymakers should jointly come up to develop the strategies to prevent superfluous exposure of pathogens to antibiotics in non-clinical settings. This article highlights the present scenario of increasing antimicrobial-resistance in pathogenic bacteria and the clinical importance of unconventional or non-antibiotic therapies to thwart the infectious pathogenic microorganisms.
Collapse
Affiliation(s)
- Manoj Kumar
- ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | | | - Swasti Shubham
- ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Manoj Kumawat
- ICMR-National Institute for Research in Environmental Health, Bhopal, India
| | - Vinod Verma
- Stem Cell Research Centre, Department of Hematology, SGPGIMS, Lucknow, India
| | | | - Devraj JP
- ICMR- National Institute of Nutrition, Hyderabad, India
| | - Santosh Kumar
- ICMR- National Institute of Nutrition, Hyderabad, India
| | - Birbal Singh
- ICAR-Indian Veterinary Research Institute, Regional Station, Palampur, India
| | | |
Collapse
|
27
|
Wang W, Wei X, Wu L, Shang X, Cheng F, Li B, Zhou X, Zhang J. The occurrence of antibiotic resistance genes in the microbiota of yak, beef and dairy cattle characterized by a metagenomic approach. J Antibiot (Tokyo) 2021; 74:508-518. [PMID: 34103703 PMCID: PMC8313426 DOI: 10.1038/s41429-021-00425-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Revised: 02/13/2021] [Accepted: 05/11/2021] [Indexed: 02/06/2023]
Abstract
Drug resistance has been partly driven by the overuse of antimicrobials in agricultural animal feed. Better understanding of antibiotic resistance in bovine gut is needed to assess its potential effects based on metagenomic approach and analysis. In this study, we collected 40 fecal samples to explore drug resistance derived from antibiotic use in the bacterial community by an analysis of the diversities and differences of antibiotic-resistant genes (ARGs) in the gut microbiota from yak, beef, and dairy cattle. Overall, 1688 genes were annotated, including 734 ARG subtypes. The ARGs were related to tetracyclines, quinolones, β-lactam, and aminoglycosides, in accordance with the antibiotics widely used in the clinic for humans or animals. The emergence, prevalence, and differences in resistance genes in the intestines of yaks, beef, and dairy cattle may be caused by the selective pressure of different feeding patterns, where yaks were raised without antibiotics for growth promotion. In addition, the abundance of ARGs in yak was lower than in beef and dairy cattle, whereas the abundance of integron, a kind of mobile genetic elements (MGEs) was higher in yaks than those in beef and dairy cattle. Furthermore, the results of this study could provide the basis for a comprehensive profile of various ARGs among yak, beef, and dairy cattle in future.
Collapse
Affiliation(s)
- Weiwei Wang
- grid.32566.340000 0000 8571 0482Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province 730050 PR China ,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province 730050 PR China ,grid.410727.70000 0001 0526 1937Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730050 PR China
| | - Xiaojuan Wei
- grid.32566.340000 0000 8571 0482Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province 730050 PR China ,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province 730050 PR China ,grid.410727.70000 0001 0526 1937Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730050 PR China
| | - Lingyu Wu
- grid.32566.340000 0000 8571 0482Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province 730050 PR China ,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province 730050 PR China ,grid.410727.70000 0001 0526 1937Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730050 PR China
| | - Xiaofei Shang
- grid.32566.340000 0000 8571 0482Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province 730050 PR China ,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province 730050 PR China ,grid.410727.70000 0001 0526 1937Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730050 PR China
| | - Fusheng Cheng
- grid.32566.340000 0000 8571 0482Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province 730050 PR China ,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province 730050 PR China ,grid.410727.70000 0001 0526 1937Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730050 PR China
| | - Bing Li
- grid.32566.340000 0000 8571 0482Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province 730050 PR China ,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province 730050 PR China ,grid.410727.70000 0001 0526 1937Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730050 PR China
| | - Xuzheng Zhou
- grid.32566.340000 0000 8571 0482Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province 730050 PR China ,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province 730050 PR China ,grid.410727.70000 0001 0526 1937Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730050 PR China
| | - Jiyu Zhang
- grid.32566.340000 0000 8571 0482Key Laboratory of New Animal Drug Project of Gansu Province, Lanzhou, Gansu Province 730050 PR China ,Key Laboratory of Veterinary Pharmaceutical Development, Ministry of Agriculture, Lanzhou, Gansu Province 730050 PR China ,grid.410727.70000 0001 0526 1937Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province 730050 PR China
| |
Collapse
|
28
|
Groves PJ, Underwood G. Impact of antibiotic use and disease risks on Australian laying hen welfare. ANIMAL PRODUCTION SCIENCE 2021. [DOI: 10.1071/an19698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Antibiotic stewardship is an important concern for government, communities and producers. Shifts towards more extensive production systems in egg layers (i.e. free range) has increased the incidence of many diseases and parasites, requiring a return to the use of medications. Limitations on the number of antimicrobial drugs available for use in Australian egg layers under these increased usage situations can lead to the loss of effectiveness of the medications, antibiotic resistance development and continued declines in bird health and welfare. The small size of the Australian layer flock makes the likelihood of more antimicrobials becoming available very low due to the high cost of obtaining additional registration for use in layers and the significant challenge in assuring nil residues in eggs.
Collapse
|
29
|
Hu T, Dai Q, Chen H, Zhang Z, Dai Q, Gu X, Yang X, Yang Z, Zhu L. Geographic pattern of antibiotic resistance genes in the metagenomes of the giant panda. Microb Biotechnol 2021; 14:186-197. [PMID: 32812361 PMCID: PMC7888472 DOI: 10.1111/1751-7915.13655] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Accepted: 08/01/2020] [Indexed: 12/17/2022] Open
Abstract
The rise in infections by antibiotic-resistant bacteria poses a serious public health problem worldwide. The gut microbiome of animals is a reservoir for antibiotic resistance genes (ARGs). However, the correlation between the gut microbiome of wild animals and ARGs remains controversial. Here, based on the metagenomes of giant pandas (including three wild populations from the Qinling, Qionglai and Xiaoxiangling Mountains, and two major captive populations from Yaan and Chengdu), we investigated the potential correlation between the constitution of the gut microbiome and the composition of ARGs across the different geographic locations and living environments. We found that the types of ARGs were correlated with gut microbiome composition. The NMDS cluster analysis using Jaccard distance of the ARGs composition of the gut microbiome of wild giant pandas displayed a difference based on geographic location. Captivity also had an effect on the differences in ARGs composition. Furthermore, we found that the Qinling population exhibited profound dissimilarities of both gut microbiome composition and ARGs (the highest proportion of Clostridium and vancomycin resistance genes) when compared to the other wild and captive populations studies, which was supported by previous giant panda whole-genome sequencing analysis. In this study, we provide an example of a potential consensus pattern regarding host population genetics, symbiotic gut microbiome and ARGs. We revealed that habitat isolation impacts the ARG structure in the gut microbiome of mammals. Therefore, the difference in ARG composition between giant panda populations will provide some basic information for their conservation and management, especially for captive populations.
Collapse
Affiliation(s)
- Ting Hu
- College of Life SciencesNanjing Normal UniversityNanjing210046China
| | - Qinlong Dai
- Sichan Liziping National Nature ReserveShimianChina
- Shimian Research Center of Giant Panda Small Population Conservation and RejuvenationShimianChina
| | - Hua Chen
- Mingke Biotechnology Co., Ltd.HangzhouChina
| | - Zheng Zhang
- College of Life SciencesNanjing Normal UniversityNanjing210046China
| | - Qiang Dai
- Chengdu Institute of BiologyChinese Academy of SciencesChengduChina
| | - Xiaodong Gu
- Sichuan Station of Wildlife Survey and ManagementChengdu610082China
| | - Xuyu Yang
- Sichuan Station of Wildlife Survey and ManagementChengdu610082China
| | - Zhisong Yang
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education)China West Normal UniversityNanchong637002China
| | - Lifeng Zhu
- College of Life SciencesNanjing Normal UniversityNanjing210046China
| |
Collapse
|
30
|
Zhu Z, Cao M, Wang W, Zhang L, Ma T, Liu G, Zhang Y, Shang Z, Chen X, Shi Y, Zhang J. Exploring the Prevalence and Distribution Patterns of Antibiotic Resistance Genes in Bovine Gut Microbiota Using a Metagenomic Approach. Microb Drug Resist 2020; 27:980-990. [PMID: 33395552 DOI: 10.1089/mdr.2020.0271] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Antibiotic resistance genes (ARGs) have become recognized contaminants and pose a high public health risk. The animal gut microbiota is a reservoir of ARGs, but the knowledge of the origin and dissemination of ARGs remains unclear. In this study, we provide a comprehensive profile of ARGs and mobile genetic elements in the gut microbiota from 30 bovines to study the impact of modern antibiotics on resistance. A total of 42 ARG types were detected by annotating the metagenomic sequencing data from Comprehensive Antibiotic Resistance Database (CARD). We found that the diversity and abundance of ARGs in individual yaks were significantly lower than those in dairy and beef cattle (p < 0.0001). The results of heat map and single nucleotide polymorphism clustering suggest that ARGs from dairy and beef cattle are more similar, whereas those from yaks cluster separately. The long-term use of antibiotics may contribute to this difference, suggesting that antibiotic consumption is the main cause of ARG prevalence. Furthermore, abundant insertions were also found in this study, signifying a strong potential for horizontal transfer of ARGs among microbes, especially pathogens.
Collapse
Affiliation(s)
- Zhen Zhu
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China.,College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Mingze Cao
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Weiwei Wang
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Liwei Zhang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Tenghe Ma
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Guanhui Liu
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yue Zhang
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Zixuang Shang
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| | - Xu Chen
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Yuxiang Shi
- College of Life Science and Food Engineering, Hebei University of Engineering, Handan, China
| | - Jiyu Zhang
- Key Laboratory of New Animal Drug Project of Gansu Province, Key Laboratory of Veterinary Pharmaceutical Development of the Ministry of Agriculture, Lanzhou Institute of Husbandry and Pharmaceutical Sciences of CAAS, Lanzhou, China
| |
Collapse
|
31
|
Subirats J, Murray R, Scott A, Lau CHF, Topp E. Composting of chicken litter from commercial broiler farms reduces the abundance of viable enteric bacteria, Firmicutes, and selected antibiotic resistance genes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 746:141113. [PMID: 32768779 DOI: 10.1016/j.scitotenv.2020.141113] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/16/2020] [Accepted: 07/18/2020] [Indexed: 06/11/2023]
Abstract
We examined the ability of composting to remove ARGs and enteric bacteria in litter obtained from broiler chickens fed with a diet supplemented with Bacitracin methylene disalicylate (BDM) (conventional chicken litter), or an antibiotic-free diet (raised without antibiotic (RWA) chicken litter). This was done by evaluating the litter before and after composting for the abundance of ten gene targets associated with antibiotic resistance or horizontal gene transfer, the composition of the bacterial communities, and the abundance of viable enteric bacteria. The abundance of gene targets was determined by qPCR and the microbial community composition of chicken litter determined by 16S rRNA gene amplicon sequencing. Enteric bacteria were enumerated by viable plate count. A majority of the gene targets were more abundant in conventional than in RWA litter. In both litter types, the absolute abundance of all of the target genes decreased after composting except sul1, intI1, incW and erm(F) that remained stable. Composting significantly reduced the abundance of enteric bacteria, including those carrying antibiotic resistance. The major difference in bacterial community composition between conventional and RWA litter was due to members affiliated to the genus Pseudomonas, which were 28% more abundant in conventional than in RWA litter. Composting favoured the presence of thermophilic bacteria, such as those affiliated with the genus Truepera, but decreased the abundance of those bacterial genera associated with cold-adapted species, such as Carnobacterium, Psychrobacter and Oceanisphaera. The present study shows that chicken litter from broilers fed with a diet supplemented with antibiotic has an increased abundance of some ARGs, even after composting. However, we can conclude that fertilization with composted litter represents a reduced risk of transmission of antibiotic resistance genes and enteric bacteria of poultry origin to soil and crops than will fertilization with raw litter.
Collapse
Affiliation(s)
- Jessica Subirats
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada; Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Roger Murray
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada
| | - Andrew Scott
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada
| | - Calvin Ho-Fung Lau
- Canadian Food Inspection Agency, 960 Carling Avenue, Ottawa, Ontario, Canada
| | - Edward Topp
- Agriculture and Agri-Food Canada, London Research and Development Centre, London, Ontario, Canada; Department of Biology, University of Western Ontario, London, Ontario, Canada.
| |
Collapse
|
32
|
Kumar SB, Arnipalli SR, Ziouzenkova O. Antibiotics in Food Chain: The Consequences for Antibiotic Resistance. Antibiotics (Basel) 2020; 9:antibiotics9100688. [PMID: 33066005 PMCID: PMC7600537 DOI: 10.3390/antibiotics9100688] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/28/2020] [Accepted: 10/08/2020] [Indexed: 12/14/2022] Open
Abstract
Antibiotics have been used as essential therapeutics for nearly 100 years and, increasingly, as a preventive agent in the agricultural and animal industry. Continuous use and misuse of antibiotics have provoked the development of antibiotic resistant bacteria that progressively increased mortality from multidrug-resistant bacterial infections, thereby posing a tremendous threat to public health. The goal of our review is to advance the understanding of mechanisms of dissemination and the development of antibiotic resistance genes in the context of nutrition and related clinical, agricultural, veterinary, and environmental settings. We conclude with an overview of alternative strategies, including probiotics, essential oils, vaccines, and antibodies, as primary or adjunct preventive antimicrobial measures or therapies against multidrug-resistant bacterial infections. The solution for antibiotic resistance will require comprehensive and incessant efforts of policymakers in agriculture along with the development of alternative therapeutics by experts in diverse fields of microbiology, biochemistry, clinical research, genetic, and computational engineering.
Collapse
|
33
|
Helsens N, Calvez SÉ, Bouju-Albert A, Rossero A, PrÉvost H, Magras C. Comparison of Stomaching versus Rinsing for Recovering Bacterial Communities from Rainbow Trout (Oncorhynchus mykiss) Fillets. J Food Prot 2020; 83:1540-1546. [PMID: 32339230 DOI: 10.4315/jfp-20-037] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 04/27/2020] [Indexed: 11/11/2022]
Abstract
ABSTRACT The use of high-throughput methods allows a better characterization of food-related bacterial communities. However, such methods require large amounts of high-quality bacterial DNA, which may be a challenge when dealing with a complex matrix that has a low concentration of bacteria, such as fresh fish fillets. Therefore, the choice of method used to recover bacteria from a food matrix in a cost-effective way is critical, yet little information is available on the performance of commonly used methods. We assessed the recovery capacity of two such methods: stomaching and mechanical rinsing. The efficiency of the methods was evaluated through quantitative recovery and compatibility with end-point quantitative PCR (qPCR). Fresh rainbow trout (Oncorhynchus mykiss) fillets were inoculated with a bacterial marker, Brochothrix thermosphacta, at different concentrations (7.52 to 1.52 log CFU/g). The fillets were processed by one of the two methods, and the recovery of the marker in the suspensions was assessed by plate counting and qPCR targeting B. thermosphacta-rpoC. The same analyses were performed on six noninoculated fresh fillets. Stomaching and mechanical rinsing allowed efficient and repeatable recovery of the bacterial communities from the 42 inoculated fillets. No significant differences in recovery ratios were observed between the marker enumerated in the inoculation suspensions and in the corresponding recovery suspensions after rinsing and stomaching. However, the stomaching method allowed too many particles to pass through the filters bag, making necessary a limiting supplementary filtration step. As a consequence, only the rinsing recovery method allowed proper PCR quantification of the inoculated B. thermosphacta. The mean recovered bacterial level of the fillets was approximately 3 log CFU/g. It seems more relevant and cost-effective to recover the endogenous bacterial microbiota of a fish fillet structure using the rinsing method rather than the stomaching method. HIGHLIGHTS
Collapse
Affiliation(s)
- Nicolas Helsens
- SECALIM, Institut National de la Recherche Agronomique, Oniris, 44300, Nantes, France.,BIOEPAR, Institut National de la Recherche Agronomique, Oniris, 44300, Nantes, France (ORCID: https://orcid.org/0000-0001-8902-0486 [N.H.]; https://orcid.org/0000-0001-6145-2666 [S.C.]; https://orcid.org/0000-0001-9384-8382 [H.P.])
| | - SÉgolÈne Calvez
- BIOEPAR, Institut National de la Recherche Agronomique, Oniris, 44300, Nantes, France (ORCID: https://orcid.org/0000-0001-8902-0486 [N.H.]; https://orcid.org/0000-0001-6145-2666 [S.C.]; https://orcid.org/0000-0001-9384-8382 [H.P.])
| | - AgnÈs Bouju-Albert
- SECALIM, Institut National de la Recherche Agronomique, Oniris, 44300, Nantes, France
| | - Albert Rossero
- SECALIM, Institut National de la Recherche Agronomique, Oniris, 44300, Nantes, France
| | - HervÉ PrÉvost
- SECALIM, Institut National de la Recherche Agronomique, Oniris, 44300, Nantes, France
| | - Catherine Magras
- SECALIM, Institut National de la Recherche Agronomique, Oniris, 44300, Nantes, France
| |
Collapse
|
34
|
Hedman HD, Vasco KA, Zhang L. A Review of Antimicrobial Resistance in Poultry Farming within Low-Resource Settings. Animals (Basel) 2020; 10:E1264. [PMID: 32722312 PMCID: PMC7460429 DOI: 10.3390/ani10081264] [Citation(s) in RCA: 102] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 07/18/2020] [Accepted: 07/20/2020] [Indexed: 12/28/2022] Open
Abstract
The emergence, spread, and persistence of antimicrobial resistance (AMR) remain a pressing global health issue. Animal husbandry, in particular poultry, makes up a substantial portion of the global antimicrobial use. Despite the growing body of research evaluating the AMR within industrial farming systems, there is a gap in understanding the emergence of bacterial resistance originating from poultry within resource-limited environments. As countries continue to transition from low- to middle income countries (LMICs), there will be an increased demand for quality sources of animal protein. Further promotion of intensive poultry farming could address issues of food security, but it may also increase risks of AMR exposure to poultry, other domestic animals, wildlife, and human populations. Given that intensively raised poultry can function as animal reservoirs for AMR, surveillance is needed to evaluate the impacts on humans, other animals, and the environment. Here, we provide a comprehensive review of poultry production within low-resource settings in order to inform future small-scale poultry farming development. Future research is needed in order to understand the full extent of the epidemiology and ecology of AMR in poultry within low-resource settings.
Collapse
Affiliation(s)
- Hayden D. Hedman
- Illinois Natural History Survey, Prairie Research Institute, University of Illinois Urbana-Champaign, Champaign, IL 61820, USA
| | - Karla A. Vasco
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; (K.A.V.); (L.Z.)
| | - Lixin Zhang
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI 48824, USA; (K.A.V.); (L.Z.)
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
| |
Collapse
|
35
|
Gurmessa B, Pedretti EF, Cocco S, Cardelli V, Corti G. Manure anaerobic digestion effects and the role of pre- and post-treatments on veterinary antibiotics and antibiotic resistance genes removal efficiency. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137532. [PMID: 32179343 DOI: 10.1016/j.scitotenv.2020.137532] [Citation(s) in RCA: 81] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 02/22/2020] [Accepted: 02/23/2020] [Indexed: 05/23/2023]
Abstract
This review was aimed to summarize and critically evaluate studies on removal of veterinary antibiotics (VAs), antibiotic resistance genes (ARGs) and mobile genetic elements (MGEs) with anaerobic digestion (AD) of manure and demonstrate areas of focus for improved removal efficiency. The environmental risks associated to the release of the same were also critically evaluated. The potential of AD and advanced AD of manure on removal rate of VAs, ARGs and MGEs was thoroughly assessed. In addition, the role of post and pre-AD treatments and their potential to support VAs and ARGs removal efficiency were evaluated. The overall review results show disparity among the different groups of VAs in terms of removal rate with relatively higher efficiency for β-lactams and tetracyclines compared to the other groups. Some of sulfonamides, fluoroquinolones and macrolides were reported to be highly persistent with removal rates as low as zero. Within group differences were also reported in many literatures. Moreover, removal of ARGs and MGEs by AD was widely reported although complete removal was hardly possible. Even in rare scenarios, some AD conditions were reported to increase copies of specific groups of the genes. Temperature pretreatments and temperature phased advanced AD were also reported to improve removal efficiency of VAs while contributing to increased biogas production. Moreover, a few studies also showed the possibility of further removal by post-AD treatments such as liquid-solid separation, drying and composting. In conclusion, the various studies revealed that AD in its current technological level is not a guarantee for complete removal of VAs, ARGs and MGEs from manure. Consequently, their possible release to the soils with digestate could threaten the healthcare and disturb soil microbial ecology. Thus, intensive management strategies need to be designed to increase removal efficiency at the different manure management points along the anaerobic digestion process.
Collapse
Affiliation(s)
- Biyensa Gurmessa
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy.
| | - Ester Foppa Pedretti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Stefania Cocco
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Valeria Cardelli
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| | - Giuseppe Corti
- Department of Agricultural, Food and Environmental Sciences, Università Politecnica delle Marche, 60131 Ancona, Italy
| |
Collapse
|
36
|
Lopez CM, Callegari ML, Patrone V, Rebecchi A. Assessment of antibiotic resistance in staphylococci involved in fermented meat product processing. Curr Opin Food Sci 2020. [DOI: 10.1016/j.cofs.2019.09.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
37
|
Pesciaroli M, Magistrali CF, Filippini G, Epifanio EM, Lovito C, Marchi L, Maresca C, Massacci FR, Orsini S, Scoccia E, Tofani S, Pezzotti G. Antibiotic-resistant commensal Escherichia coli are less frequently isolated from poultry raised using non-conventional management systems than from conventional broiler. Int J Food Microbiol 2019; 314:108391. [PMID: 31689613 DOI: 10.1016/j.ijfoodmicro.2019.108391] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 10/15/2019] [Accepted: 10/17/2019] [Indexed: 02/07/2023]
Abstract
Poultry production is the fastest growing meat sector worldwide. In the last five years, growing concerns have been expressed by international health agencies and consumers about the transmission of antibiotic-resistant bacteria from poultry meat to human. Consequently, poultry producers have adopted alternative production systems based on reduced antibiotic usage, including organic and antibiotic-free (AF) production. However, the effect of these production systems on the antibiotic resistance of the gut flora in slaughtered poultry has been poorly investigated. We hypothesized that organic and AF production systems reduce the risk of antibiotic resistance in the commensal Escherichia coli of broilers at slaughter compared with conventional production. Cecal content from broilers raised in conventional (292), AF (291), or organic (272) flocks (855 broilers in total) belonging to the same company was sampled. E. coli loads [colony-forming units (CFU/g)] and numbers of E. coli resistant to nalidixic acid (E. colinal) were determined for each sample. Antibiotic susceptibility of one isolate per sample was evaluated using the disc diffusion method; colistin resistance was determined by using the broth microdilution method. The differences in bacterial loads from the three production types were evaluated using one-way ANOVA. Differences in the proportion of resistant isolates in the three production lines were evaluated using Pearson's χ2 or Fisher's test. The strength of the association was evaluated by using odds ratio (OR), with the conventional production type as a reference (OR = 1). Overall, the analysis revealed a high level of resistance (50% or higher) to ampicillin, cefazolin, sulfonamides, nalidixic acid, and tetracycline, independently of the production type. High proportion of ciprofloxacin resistance (52%) was observed, with 4.5% isolates resistant to cefotaxime and 1.8% resistant to colistin. The average loads (log CFU/g cecal content) of E. colinal were determined as 6.84 for AF, 6.38 for organic type, and 7.27 for conventional type. The difference was significant (p < 0.00001). Interestingly, broilers from AF flocks had higher E. colinal loads than broilers from organic flocks. This trend (conventional > AF > organic) was confirmed by qualitative data. However, the magnitude of the effect, measured as a reduced risk of resistance, varied broadly for the antibiotics tested. These findings suggest that poultry production systems alternative to the conventional broiler production are associated with reduced frequency of antibiotic-resistant E. coli among the commensal gut flora, posing a lower risk to the environment and the consumer.
Collapse
Affiliation(s)
- Michele Pesciaroli
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| | | | - Giovanni Filippini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| | - Ersilia Maria Epifanio
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| | - Carmela Lovito
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| | - Lucia Marchi
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| | - Carmen Maresca
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| | | | - Serenella Orsini
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| | - Eleonora Scoccia
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| | - Silvia Tofani
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| | - Giovanni Pezzotti
- Istituto Zooprofilattico Sperimentale dell'Umbria e delle Marche 'Togo Rosati', Perugia, Italy
| |
Collapse
|
38
|
Castro V, Rosario D, Mutz Y, Paletta A, Figueiredo E, Conte‐Junior C. Modelling inactivation of wild‐type and clinicalEscherichia coliO26 strains using UV‐C and thermal treatment and subsequent persistence in simulated gastric fluid. J Appl Microbiol 2019; 127:1564-1575. [DOI: 10.1111/jam.14397] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/12/2019] [Accepted: 07/16/2019] [Indexed: 11/26/2022]
Affiliation(s)
- V.S. Castro
- Institute of Chemistry Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Agronomy and Animal Science College Universidade Federal de Mato Grosso Mato Grosso Brazil
- Nutrition College, Universidade Federal de Mato Grosso Mato Grosso Brazil
- Department of Food Technology, Faculdade de Veterinária Universidade Federal Fluminense Rio de Janeiro Brazil
| | - D.K.A. Rosario
- Institute of Chemistry Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Department of Food Technology, Faculdade de Veterinária Universidade Federal Fluminense Rio de Janeiro Brazil
| | - Y.S. Mutz
- Institute of Chemistry Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Department of Food Technology, Faculdade de Veterinária Universidade Federal Fluminense Rio de Janeiro Brazil
| | - A.C.C. Paletta
- Department of Food Technology, Faculdade de Veterinária Universidade Federal Fluminense Rio de Janeiro Brazil
| | - E.E.S. Figueiredo
- Agronomy and Animal Science College Universidade Federal de Mato Grosso Mato Grosso Brazil
- Nutrition College, Universidade Federal de Mato Grosso Mato Grosso Brazil
| | - C.A. Conte‐Junior
- Institute of Chemistry Universidade Federal do Rio de Janeiro Rio de Janeiro Brazil
- Department of Food Technology, Faculdade de Veterinária Universidade Federal Fluminense Rio de Janeiro Brazil
- National Institute of Health Quality Control Fundação Oswaldo Cruz Rio de Janeiro Brazil
| |
Collapse
|
39
|
Van TTH, Yidana Z, Smooker PM, Coloe PJ. Antibiotic use in food animals worldwide, with a focus on Africa: Pluses and minuses. J Glob Antimicrob Resist 2019; 20:170-177. [PMID: 31401170 DOI: 10.1016/j.jgar.2019.07.031] [Citation(s) in RCA: 211] [Impact Index Per Article: 35.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 10/26/2022] Open
Abstract
Antibiotics are frequently used in food animal production in developing countries to promote the well-being and growth of animals. This practice provides some economic benefits to producers and consumers at large. Nevertheless, this practice is also associated with a number of concerns. A major concern has been that repeatedly exposing these animals to small doses of antibiotics contributes significantly to antimicrobial resistance, since a good fraction of the antibiotics used are the same or surrogates of antibiotics used in human therapeutic practices. Studies over decades have shown an explicit relationship between antimicrobial use and antimicrobial resistance in veterinary science. Many antibiotics can be purchased over the counter in African countries, and antibiotic resistance is an important issue to address in this region. This review examines some of the risks and benefits associated with antibiotic use in food animals. We conclude that the use of antibiotics in food animal production constitutes a major contributing factor to the current antimicrobial resistance crisis and that antibiotics should only be used for the treatment of sick animals based on prior diagnosis of disease.
Collapse
Affiliation(s)
- Thi Thu Hao Van
- Biosciences & Food Technology Discipline, School of Science, RMIT University, Melbourne, Victoria, Australia
| | - Zuwera Yidana
- Biosciences & Food Technology Discipline, School of Science, RMIT University, Melbourne, Victoria, Australia; Kintampo Health Research Centre, Kintampo, Ghana
| | - Peter M Smooker
- Biosciences & Food Technology Discipline, School of Science, RMIT University, Melbourne, Victoria, Australia.
| | - Peter J Coloe
- College of Science, Engineering and Health, RMIT University, Melbourne, Victoria, Australia
| |
Collapse
|
40
|
Longitudinal Comparison of Bacterial Diversity and Antibiotic Resistance Genes in New York City Sewage. mSystems 2019; 4:4/4/e00327-19. [PMID: 31387933 PMCID: PMC6687945 DOI: 10.1128/msystems.00327-19] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Urban sewage or wastewater is a diverse source of bacterial growth, as well as a hot spot for the development of environmental antibiotic resistance, which can in turn influence the health of the residents of the city. As part of a larger study to characterize the urban New York City microbial metagenome, we collected raw sewage samples representing three seasonal time points spanning the five boroughs of NYC and went on to characterize the microbiome and the presence of a range of antibiotic resistance genes. Through this study, we have established a baseline microbial population and antibiotic resistance abundance in NYC sewage which can prove to be very useful in studying the load of antibiotic usage, as well as for developing effective measures in antibiotic stewardship. Bacterial resistance to antibiotics is a pressing health issue around the world, not only in health care settings but also in the community and environment, particularly in crowded urban populations. The aim of our work was to characterize the microbial populations in sewage and the spread of antibiotic resistance within New York City (NYC). Here, we investigated the structure of the microbiome and the prevalence of antibiotic resistance genes in raw sewage samples collected from the fourteen NYC Department of Environmental Protection wastewater treatment plants, distributed across the five NYC boroughs. Sewage, a direct output of anthropogenic activity and a reservoir of microbes, provides an ecological niche to examine the spread of antibiotic resistance. Taxonomic diversity analysis revealed a largely similar and stable bacterial population structure across all the samples, which was found to be similar over three time points in an annual cycle, as well as in the five NYC boroughs. All samples were positive for the presence of the seven antibiotic resistance genes tested, based on real-time quantitative PCR assays, with higher levels observed for tetracycline resistance genes at all time points. For five of the seven genes, abundances were significantly higher in May than in February and August. This study provides characteristics of the NYC sewage resistome in the context of the overall bacterial populations. IMPORTANCE Urban sewage or wastewater is a diverse source of bacterial growth, as well as a hot spot for the development of environmental antibiotic resistance, which can in turn influence the health of the residents of the city. As part of a larger study to characterize the urban New York City microbial metagenome, we collected raw sewage samples representing three seasonal time points spanning the five boroughs of NYC and went on to characterize the microbiome and the presence of a range of antibiotic resistance genes. Through this study, we have established a baseline microbial population and antibiotic resistance abundance in NYC sewage which can prove to be very useful in studying the load of antibiotic usage, as well as for developing effective measures in antibiotic stewardship.
Collapse
|
41
|
Use of synthesized double-stranded gene fragments as qPCR standards for the quantification of antibiotic resistance genes. J Microbiol Methods 2019; 164:105670. [PMID: 31325465 DOI: 10.1016/j.mimet.2019.105670] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 07/13/2019] [Accepted: 07/16/2019] [Indexed: 11/23/2022]
Abstract
Pollution of various environmental matrices by antibiotic resistance genes (ARGs) has become a growing threat to human health. For the quantitative analysis of the presence of ARGs, there is a need for sensitive and robust qPCR assays which can detect various genes from different types of DNA extracts. Fourteen ARGs were selected as target genes in this study including: blaTEM, blaOXA-1 and blaCTX-M coded for resistance to β-lactams; ermB for macrolides; tetA, tetG, tetM, tetQ, tetW and tetX for tetracyclines; sul I and sul II for sulfonamides; drfA1 and drfA12 d for trimethoprim; and integron gene intI 1 and intI 2. Chemically synthesized double-stranded gene fragments were modified using molecular biology methods and used as real-time PCR standards as well as to establish in-house qPCR assays. The ermB gene from a naturally occurring plasmid was used to compare the performance of qPCR assay with the chemically synthesized ermB. Additionally, environmental water, soil and faeces samples were used to validate the established qPCR assays. Importantly, the study proves the usefulness of rapidly synthesized oligonucleotides serving as qPCR standards for ARG analysis and provides comparable sensitivity and reliability to a traditional amplicon standard.
Collapse
|
42
|
Corno G, Yang Y, Eckert EM, Fontaneto D, Fiorentino A, Galafassi S, Zhang T, Di Cesare A. Effluents of wastewater treatment plants promote the rapid stabilization of the antibiotic resistome in receiving freshwater bodies. WATER RESEARCH 2019; 158:72-81. [PMID: 31015144 DOI: 10.1016/j.watres.2019.04.031] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 04/12/2019] [Accepted: 04/13/2019] [Indexed: 06/09/2023]
Abstract
Treated wastewater discharged into the environment acts as a disturbance of the natural microbial communities in terms of taxonomic composition and of functional gene pool, including antibiotic resistance genes. We tested whether stochastic and heterogeneous site-specific trajectories or generalities, potentially driven by deterministic processes, control the fate of allochthonous bacteria from anthropogenic sources and the persistence of their functional traits in freshwater. Finding generalities would allow the identification of wastewater treatments that could be effective in abating determinants of antibiotic resistance. We analysed the short-term response of native bacterial communities in waters exposed to the disturbance of wastewater at different dilutions, using a metagenomic approach that revealed both microbial community composition and the scope and abundance of the resistome that can pose indirect risks to human health. We found that the taxonomic composition of the communities after the disturbance was driven by case-specific stochastic processes, whereas the resistome had a deterministic trajectory, rapidly stabilising its functional traits with higher proportions of wastewater effluents, regardless of differences in taxonomic composition, richness of antibiotic resistance genes and of bacterial taxa, phenotypic features of the bacterial communities, and type of wastewater treatment. The observed deterministic proliferation of resistomes in freshwater bodies receiving wastewater effluents, suggests that this process may contribute to the global propagation of antibiotic resistance, and thus calls for new legislations promoting alternative tertiary treatments for the wastewater reuse, and targeting bacterial functional traits and not only bacterial abundances.
Collapse
Affiliation(s)
- Gianluca Corno
- Microbial Ecology Group, Water Research Institute - National Research Council (CNR-IRSA), Largo Tonolli 50, 28922, Verbania, Italy.
| | - Ying Yang
- School of Marine Sciences, Sun Yat-Sen University, Xingang Xi Road 135, 510275, Guangzhou, China
| | - Ester M Eckert
- Microbial Ecology Group, Water Research Institute - National Research Council (CNR-IRSA), Largo Tonolli 50, 28922, Verbania, Italy
| | - Diego Fontaneto
- Microbial Ecology Group, Water Research Institute - National Research Council (CNR-IRSA), Largo Tonolli 50, 28922, Verbania, Italy
| | - Antonino Fiorentino
- Microbial Ecology Group, Water Research Institute - National Research Council (CNR-IRSA), Largo Tonolli 50, 28922, Verbania, Italy
| | - Silvia Galafassi
- Microbial Ecology Group, Water Research Institute - National Research Council (CNR-IRSA), Largo Tonolli 50, 28922, Verbania, Italy
| | - Tong Zhang
- Environmental Biotechnology Laboratory, The University of Hong Kong, Hong Kong, China
| | - Andrea Di Cesare
- Microbial Ecology Group, Water Research Institute - National Research Council (CNR-IRSA), Largo Tonolli 50, 28922, Verbania, Italy
| |
Collapse
|
43
|
Walia K, Sharma M, Vijay S, Shome BR. Understanding policy dilemmas around antibiotic use in food animals & offering potential solutions. Indian J Med Res 2019; 149:107-118. [PMID: 31219075 PMCID: PMC6563746 DOI: 10.4103/ijmr.ijmr_2_18] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Indexed: 12/29/2022] Open
Abstract
The looming concern of antimicrobial resistance (AMR) has prompted the government of many countries of the world to act upon and come up with the guidelines, comprehensive recommendations and policies concerning prudent use of antibiotics and containment of AMR. However, such initiatives from countries with high incidence of antibiotic-resistant bacteria in food animals are still in infancy. This review highlights the existing global policies on antibiotics use in food animals along with details of the various Indian policies and guidelines. In India, in spite of availability of integrated policies for livestock, poultry and aquaculture sector, uniform regulations with coordinated initiative are needed to formulate strict policies regarding antimicrobial use both in humans and animals. In an attempt to create effective framework to tackle the AMR, the Indian Council of Medical Research initiated a series of dialogues with various stakeholders and suggested various action points for urgent implementation. This review summarizes the recommendations made during the various consultations. The overarching aim of this review is to clearly delineate the action points which need to be carried out urgently to regulate the antibiotic use in animals.
Collapse
Affiliation(s)
- Kamini Walia
- Division of Epidemiology & Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | - Monica Sharma
- Division of Epidemiology & Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | - Sonam Vijay
- Division of Epidemiology & Communicable Diseases, Indian Council of Medical Research, New Delhi, India
| | - Bibek R. Shome
- Microbial Pathogenesis and Pathogen Diversity Laboratory,Indian Council of Agricultural Research - National Institute of Veterinary Epidemiology & Disease Informatics, Bengaluru, India
| |
Collapse
|
44
|
Khan AS, Georges K, Rahaman S, Abdela W, Adesiyun AA. Antimicrobial Resistance of Salmonella Isolates Recovered from Chickens Sold at Retail Outlets in Trinidad. J Food Prot 2018; 81:1880-1889. [PMID: 30347170 DOI: 10.4315/0362-028x.jfp-18-223] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
This study determined the frequency of resistance of 135 isolates of Salmonella, including 15 serotypes recovered from chickens purchased from retail outlets (cottage processors and supermarkets) across Trinidad. Resistance to 16 antimicrobial agents was determined by using the disk diffusion method. Resistance among the isolates was related to the type of retail outlet, location of outlets, type of sample, and isolate serotype. Overall, all isolates exhibited resistance to one or more of the 16 antimicrobial agents tested. All isolates were sensitive to cefoxitin and norfloxacin, with the overall frequency of resistance ranging from 1.1% (sulfamethoxazole-trimethoprim) to 100.0% (ceftiofur and doxycycline). The frequency of resistance to tetracycline, ampicillin, ceftriaxone, amoxycillin-clavulanic acid, and chloramphenicol was significantly ( P < 0.05) higher in isolates recovered from cottage processor outlets compared with those from supermarkets. The frequency of resistance to antimicrobial agents was significantly different only to kanamycin ( P = 0.046) and enrofloxacin ( P = 0.000) across seven counties in Trinidad). Regarding sample presentation (whole versus parts), the frequency of resistance was only significantly higher to gentamicin ( P = 0.039) for chicken part isolates from cottage processor and to only tetracycline ( P = 0.034) for isolates from whole carcasses from supermarkets. All the 135 Salmonella isolates exhibited multidrug resistance patterns. The high frequency of resistance to seven antimicrobial agents (erythromycin, streptomycin, ceftiofur, doxycycline, kanamycin, tetracycline, and ampicillin), some used in the poultry industry, coupled with the occurrence of multidrug resistance, may have potential therapeutic implications for broiler farmers in Trinidad.
Collapse
Affiliation(s)
- Anisa S Khan
- 1 School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago (ORCID: http://orcid/org/0000-0001-9470-9421 [A.A.A.])
| | - Karla Georges
- 1 School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago (ORCID: http://orcid/org/0000-0001-9470-9421 [A.A.A.])
| | - Saed Rahaman
- 2 Veterinary Public Health Unit, Ministry of Health, Port of Spain, 16-18 Sackville Street, Trinidad and Tobago; and
| | - Woubit Abdela
- 3 Department of Pathobiology, College of Veterinary Medicine, Tuskegee University, Tuskegee, Alabama 36088, USA (ORCID: http://org/0000-0002-9262-5117 [W.A.])
| | - Abiodun A Adesiyun
- 1 School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago (ORCID: http://orcid/org/0000-0001-9470-9421 [A.A.A.])
| |
Collapse
|
45
|
Iossa G, White PC. The natural environment: a critical missing link in national action plans on antimicrobial resistance. Bull World Health Organ 2018; 96:858-860. [PMID: 30505034 PMCID: PMC6249705 DOI: 10.2471/blt.18.210898] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 06/13/2018] [Accepted: 07/02/2018] [Indexed: 12/23/2022] Open
Affiliation(s)
- Graziella Iossa
- School of Life Sciences, Joseph Banks Laboratories, University of Lincoln, Lincoln LN6 7TS, England
| | - Piran Cl White
- Department of Environment and Geography, University of York, York, England
| |
Collapse
|
46
|
Xiong W, Sun Y, Zeng Z. Antimicrobial use and antimicrobial resistance in food animals. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:18377-18384. [PMID: 29802609 DOI: 10.1007/s11356-018-1852-2] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Accepted: 03/21/2018] [Indexed: 06/08/2023]
Abstract
Antimicrobials have been widely used in food animals for growth promotion since the 1950s. Antimicrobial resistance emerges in animal production settings and frequently spreads to humans through the food chain and direct contact. There have been international efforts to restrict or ban antimicrobials used for both humans and animals. Denmark has taken positive strides in the development of a comprehensive database DANMAP to track antimicrobial usage and resistance. Although food animals are sources of antimicrobial resistance, there is little evidence that antimicrobial resistance originates from food animals. This review comprehensively introduces the history and trends of antimicrobial use, the emergence and spread of antimicrobial resistance in food animals provides suggestions to tackle the problems of the spread of antimicrobial resistance.
Collapse
Affiliation(s)
- Wenguang Xiong
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs and the Guangdong Provincial Key Laboratory of Veterinary Drugs Development and Safety Evaluation, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Yongxue Sun
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs and the Guangdong Provincial Key Laboratory of Veterinary Drugs Development and Safety Evaluation, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China.
| | - Zhenling Zeng
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs and the Guangdong Provincial Key Laboratory of Veterinary Drugs Development and Safety Evaluation, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China.
| |
Collapse
|
47
|
Kaplan E, Marano RBM, Jurkevitch E, Cytryn E. Enhanced Bacterial Fitness Under Residual Fluoroquinolone Concentrations Is Associated With Increased Gene Expression in Wastewater-Derived qnr Plasmid-Harboring Strains. Front Microbiol 2018; 9:1176. [PMID: 29937755 PMCID: PMC6003256 DOI: 10.3389/fmicb.2018.01176] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/15/2018] [Indexed: 12/18/2022] Open
Abstract
Plasmids harboring qnr genes confer resistance to low fluoroquinolone concentrations. These genes are of significant clinical, evolutionary and environmental importance, since they are widely distributed in a diverse array of natural and clinical environments. We previously extracted and sequenced a large (∼185 Kbp) qnrB-harboring plasmid, and several small (∼8 Kbp) qnrS-harboring plasmids, from Klebsiella pneumoniae isolates from municipal wastewater biosolids, and hypothesized that these plasmids provide host bacteria a selective advantage in wastewater treatment plants (WWTPs) that often contain residual concentrations of fluoroquinolones. The objectives of this study were therefore to determine the effect of residual fluoroquinolone concentrations on the growth kinetics of qnr plasmid-harboring bacteria; and on the copy number of qnr plasmids and expression of qnr genes. Electrotransformants harboring either one of the two types of plasmids could grow at ciprofloxacin concentrations exceeding 0.5 μg ml-1, but growth was significantly decreased at concentrations higher than 0.1 μg ml-1. In contrast, plasmid-free strains failed to grow even at 0.05 μg ml-1. No differences were observed in plasmid copy number under the tested ciprofloxacin concentrations, but qnr expression increased incrementally from 0 to 0.4 μg ml-1, suggesting that the transcription of this gene is regulated by antibiotic concentration. This study reveals that wastewater-derived qnr plasmids confer a selective advantage in the presence of residual fluoroquinolone concentrations and provides a mechanistic explanation for this phenomenon.
Collapse
Affiliation(s)
- Ella Kaplan
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Beit Dagan, Israel.,Department of Agroecology and Plant Health, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Roberto B M Marano
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Beit Dagan, Israel.,Department of Agroecology and Plant Health, The Robert H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel
| | - Edouard Jurkevitch
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Beit Dagan, Israel
| | - Eddie Cytryn
- Department of Soil Chemistry, Plant Nutrition and Microbiology, Institute of Soil, Water and Environmental Sciences, Volcani Center, Agricultural Research Organization, Beit Dagan, Israel
| |
Collapse
|
48
|
Xiong W, Wang Y, Sun Y, Ma L, Zeng Q, Jiang X, Li A, Zeng Z, Zhang T. Antibiotic-mediated changes in the fecal microbiome of broiler chickens define the incidence of antibiotic resistance genes. MICROBIOME 2018; 6:34. [PMID: 29439741 PMCID: PMC5811963 DOI: 10.1186/s40168-018-0419-2] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Accepted: 01/30/2018] [Indexed: 05/20/2023]
Abstract
BACKGROUND Antimicrobial agents have been widely used in animal farms to prevent and treat animal diseases and to promote growth. Antimicrobial agents may change the bacterial community and enhance the resistome in animal feces. We used metagenome-wide analysis to investigate the changes in bacterial community, variations in antibiotic resistance genes (ARGs), and their bacterial hosts in the feces of broiler chickens over a full-treatment course of chlortetracycline at low and therapeutic dose levels. RESULTS The effects of chlortetracycline on resistome were dependent on the specific ARG subtypes and not simply the overall community-level ARGs. Therapeutic dose of chlortetracycline promoted the abundance of tetracycline resistance genes (tetA and tetW) and inhibited multidrug resistance genes (mdtA, mdtC, mdtK, ompR, and TolC). The therapeutic dose of chlortetracycline led to loss of Proteobacteria mainly due to the decrease of Escherichia/Shigella (from 72 to 58%). Inhibition of Escherichia by chlortetracycline was the primary reason for the decrease of genes resistant to multiple drugs in the therapeutic dose group. The ARG host Bifidobacterium were enriched due to tetW harbored by Bifidobacterium under chlortetracycline treatment. Escherichia was always the major host for multidrug resistance genes, whereas the primary host was changed from Escherichia to Klebsiella for aminoglycoside resistance genes with the treatment of therapeutic dose of chlortetracycline. CONCLUSIONS We provided the first metagenomic insights into antibiotic-mediated alteration of ARG-harboring bacterial hosts at community-wide level in chicken feces. These results indicated that the changes in the structure of antibiotic-induced feces microbial communities accompany changes in the abundance of bacterial hosts carrying specific ARGs in the feces microbiota. These findings will help to optimize therapeutic schemes for the effective treatment of antibiotic resistant pathogens in poultry farms. Resistome variations in faecal microbiome of chickens exposed to chlortetracycline.
Collapse
Affiliation(s)
- Wenguang Xiong
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs (SCAU) and Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642 China
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yulin Wang
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Yongxue Sun
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs (SCAU) and Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642 China
| | - Liping Ma
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Qinglin Zeng
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs (SCAU) and Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642 China
| | - Xiaotao Jiang
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Andong Li
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| | - Zhenling Zeng
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs (SCAU) and Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642 China
| | - Tong Zhang
- Environmental Biotechnology Laboratory, The University of Hong Kong, Pokfulam Road, Hong Kong, China
| |
Collapse
|
49
|
Pimchan T, Cooper C, Eumkeb G, Nilsson A. In vitroactivity of a combination of bacteriophages and antimicrobial plant extracts. Lett Appl Microbiol 2018; 66:182-187. [DOI: 10.1111/lam.12838] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Revised: 12/11/2017] [Accepted: 12/11/2017] [Indexed: 12/14/2022]
Affiliation(s)
- T. Pimchan
- Institute of Science; Suranaree University of Technology; Nakhon-Ratchasima Thailand
| | - C.J. Cooper
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm Sweden
| | - G. Eumkeb
- Institute of Science; Suranaree University of Technology; Nakhon-Ratchasima Thailand
| | - A.S. Nilsson
- Department of Molecular Biosciences; The Wenner-Gren Institute; Stockholm University; Stockholm Sweden
| |
Collapse
|
50
|
Bengtsson-Palme J, Kristiansson E, Larsson DGJ. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol Rev 2018; 42:4563583. [PMID: 29069382 PMCID: PMC5812547 DOI: 10.1093/femsre/fux053] [Citation(s) in RCA: 545] [Impact Index Per Article: 77.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2017] [Accepted: 10/19/2017] [Indexed: 11/25/2022] Open
Abstract
Antibiotic resistance and its wider implications present us with a growing healthcare crisis. Recent research points to the environment as an important component for the transmission of resistant bacteria and in the emergence of resistant pathogens. However, a deeper understanding of the evolutionary and ecological processes that lead to clinical appearance of resistance genes is still lacking, as is knowledge of environmental dispersal barriers. This calls for better models of how resistance genes evolve, are mobilized, transferred and disseminated in the environment. Here, we attempt to define the ecological and evolutionary environmental factors that contribute to resistance development and transmission. Although mobilization of resistance genes likely occurs continuously, the great majority of such genetic events do not lead to the establishment of novel resistance factors in bacterial populations, unless there is a selection pressure for maintaining them or their fitness costs are negligible. To enable preventative measures it is therefore critical to investigate under what conditions and to what extent environmental selection for resistance takes place. In addition, understanding dispersal barriers is not only key to evaluate risks, but also to prevent resistant pathogens, as well as novel resistance genes, from reaching humans.
Collapse
Affiliation(s)
- Johan Bengtsson-Palme
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Box 440, SE-40530, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-413 46, Gothenburg, Sweden
| | - Erik Kristiansson
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Box 440, SE-40530, Gothenburg, Sweden
- Department of Mathematical Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - D G Joakim Larsson
- Centre for Antibiotic Resistance Research (CARe), University of Gothenburg, Box 440, SE-40530, Gothenburg, Sweden
- Department of Infectious Diseases, Institute of Biomedicine, The Sahlgrenska Academy, University of Gothenburg, Guldhedsgatan 10, SE-413 46, Gothenburg, Sweden
| |
Collapse
|