1
|
Pantaleón García J, Wurster S, Albert ND, Bharadwaj U, Bhoda K, Kulkarni VK, Ntita M, Rodríguez Carstens P, Burch-Eapen M, Covarrubias López D, Foncerrada Lizaola J, Larsen KE, Matula LM, Moghaddam SJ, Wang Y, Kontoyiannis DP, Evans SE. Immunotherapy with nebulized pattern recognition receptor agonists restores severe immune paralysis and improves outcomes in mice with influenza-associated pulmonary aspergillosis. mBio 2025; 16:e0406124. [PMID: 40197039 PMCID: PMC12077147 DOI: 10.1128/mbio.04061-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 03/05/2025] [Indexed: 04/09/2025] Open
Abstract
Influenza-associated pulmonary aspergillosis (IAPA) is a potentially deadly superinfection in patients with influenza pneumonia, especially those with severe disease, underlying immunosuppression, corticosteroid therapy, or requiring intensive care support. Given the high mortality of IAPA, adjunct immunomodulatory strategies remain a critical unmet need. Previously, the desensitization of pattern recognition pathways has been described as a hallmark of IAPA pathogenesis and a predictor of mortality in IAPA patients. Therefore, we studied the impact of nebulized Toll-like receptor 2/6/9 agonists Pam2 CSK4 (Pam2) and CpG oligodeoxynucleotides (ODNs) on infection outcomes and pulmonary immunopathology in a corticosteroid-immunosuppressed murine IAPA model. Mice with IAPA receiving mock therapy showed rapidly progressing disease and a paralyzed immune response to secondary Aspergillus fumigatus infection. Nebulized Pam2ODN was well tolerated and significantly prolonged event-free survival. Specifically, dual-dose Pam2ODN therapy before and after A. fumigatus infection led to 81% survival and full recovery of all survivors. Additionally, transcriptional analysis of lung tissue homogenates revealed induction of pattern recognition receptor signaling and several key effector cytokine pathways after Pam2ODN therapy. Moreover, transcriptional and flow cytometric analyses suggested increased frequencies of macrophages, natural killer cells, and T cells in the lungs of Pam2ODN-treated mice. Collectively, immunomodulatory treatment with nebulized Pam2ODN strongly improved morbidity and mortality outcomes and alleviated paralyzed antifungal immunity in an otherwise lethal IAPA model. These findings suggest that Pam2ODN might be a promising candidate for locally delivered immunomodulatory therapy to improve outcomes of virus-associated mold infections such as IAPA.IMPORTANCEThe COVID-19 pandemic has highlighted the significant healthcare burden, morbidity, and mortality caused by secondary fungal pneumonias. Given the heightened prevalence of severe viral pneumonias, such as influenza, and poor outcomes of secondary mold pneumonias, adjunct immunotherapies are needed to prevent and treat secondary infections. We herein demonstrate severely paralyzed immunity to secondary Aspergillus fumigatus infection in a corticosteroid-immunosuppressed mouse model of influenza-associated pulmonary aspergillosis (IAPA), partially due to dysregulated pathogen-sensing pathways. To overcome immune paralysis and IAPA progression, we used a dyad of nebulized immunomodulators (Toll-like receptor agonists). Nebulized immunotherapy significantly improved morbidity and mortality compared to mock therapy, increased frequencies of mature mononuclear phagocytes and natural killer cells in the lung, and stimulated antimicrobial signaling. Collectively, this proof-of-concept study demonstrates the feasibility and efficacy of locally delivered immunomodulatory therapy to alleviate virus-induced immune dysregulation in the lung and improve outcomes of post-viral mold pneumonias such as IAPA.
Collapse
Affiliation(s)
- Jezreel Pantaleón García
- Department of Pulmonary Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Sebastian Wurster
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Nathaniel D. Albert
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Uddalak Bharadwaj
- Department of Pulmonary Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Keerthi Bhoda
- Department of Pulmonary Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Vikram K. Kulkarni
- Department of Pulmonary Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Mbaya Ntita
- Department of Pulmonary Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Paris Rodríguez Carstens
- Department of Pulmonary Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Madeleine Burch-Eapen
- Department of Pulmonary Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Daniela Covarrubias López
- Department of Pulmonary Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Jania Foncerrada Lizaola
- Department of Pulmonary Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Katherine E. Larsen
- Department of Pulmonary Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Lauren M. Matula
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Seyed J. Moghaddam
- Department of Pulmonary Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Yongxing Wang
- Department of Pulmonary Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Dimitrios P. Kontoyiannis
- Department of Pulmonary Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| | - Scott E. Evans
- Department of Pulmonary Medicine, The University of Texas M.D. Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
2
|
van de Veerdonk FL, Carvalho A, Wauters J, Chamilos G, Verweij PE. Aspergillus fumigatus biology, immunopathogenicity and drug resistance. Nat Rev Microbiol 2025:10.1038/s41579-025-01180-z. [PMID: 40316713 DOI: 10.1038/s41579-025-01180-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/31/2025] [Indexed: 05/04/2025]
Abstract
Aspergillus fumigatus is a saprophytic fungus prevalent in the environment and capable of causing severe invasive infection in humans. This organism can use strategies such as molecule masking, immune response manipulation and gene expression alteration to evade host defences. Understanding these mechanisms is essential for developing effective diagnostics and therapies to improve patient outcomes in Aspergillus-related diseases. In this Review, we explore the biology and pathogenesis of A. fumigatus in the context of host biology and disease, highlighting virus-associated pulmonary aspergillosis, a newly identified condition that arises in patients with severe pulmonary viral infections. In the post-pandemic landscape, in which immunotherapy is gaining attention for managing severe infections, we examine the host immune responses that are critical for controlling invasive aspergillosis and how A. fumigatus circumvents these defences. Additionally, we address the emerging issue of azole resistance in A. fumigatus, emphasizing the urgent need for greater understanding in an era marked by increasing antimicrobial resistance. This Review provides timely insights necessary for developing new immunotherapeutic strategies against invasive aspergillosis.
Collapse
Affiliation(s)
- Frank L van de Veerdonk
- Department of Internal Medicine, Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands.
- Radboudumc/CWZ Center of Expertise in Mycology (RCEM), Radboud University Medical Center, Nijmegen, The Netherlands.
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Braga, Portugal
| | - Joost Wauters
- Medical Intensive Care, University Hospitals Leuven and Department for Clinical Infectious and Inflammatory Disorders, University Leuven, Leuven, Belgium
| | - George Chamilos
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Greece
- School of Medicine, University of Crete, Heraklion, Greece
| | - Paul E Verweij
- Radboudumc/CWZ Center of Expertise in Mycology (RCEM), Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Microbiology, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
3
|
Singh A, Mourya A, Singh H, Bajad G, Bojja B, Arya S, Devi S, Guru SK, Madan J. Poloxamer 188 stabilized poly (ε-caprolactone) microspheres of voriconazole for targeting pulmonary aspergillosis. Ther Deliv 2025; 16:155-166. [PMID: 39716773 PMCID: PMC11849943 DOI: 10.1080/20415990.2024.2441647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 12/10/2024] [Indexed: 12/25/2024] Open
Abstract
AIM Voriconazole (VRZ) is highly effective in treating invasive pulmonary aspergillosis (IPA), in addition to hepatotoxicity. Therefore, the current study focuses on the development and characterization of voriconazole-loaded microspheres (VRZ@PCL MSPs) to augment pulmonary localization and antifungal efficacy. METHODS VRZ@PCL MSPs were fabricated by using the o/w emulsion method. The optimized F3VRZ@PCL MSPs were subjected to physicochemical characterization, in vitro release, hemocompatibility, antifungal efficacy as well as pharmacokinetic and biodistribution evaluation. RESULTS The optimized F3VRZ@MSPs exhibited a particle size (10.90 ± 2.61 µm), entrapment efficiency (19.35 ± 2.47%), drug loading (3.22 ± 0.41%) with sustained release behavior up to 24 h and hemocompatibility upto 50 µg/mL. Results of antifungal testing indicated the superior antifungal potential of F3VRZ@PCL MSPs as compared to free VRZ and nystatin. In vivo pharmacokinetic evaluation in Sprague-Dawley rats displayed 12.5-fold and 4.5-fold increments, respectively, in t1/2 and AUC0-t of F3VRZ@PCL MSPs as compared to free VRZ. Moreover, F3VRZ@PCL MSPs displayed relatively higher lung targeting with a drug targeting index (DTI) of 0.213 as compared to DTI of 0.037 of free VRZ. CONCLUSION In conclusion, F3VRZ@PCL MSPs offer a promising approach for sustained and targeted delivery of VRZ and hold the potential to offer high therapeutic efficacy in the treatment of IPA.
Collapse
Affiliation(s)
- Aayush Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Atul Mourya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Hoshiyar Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Gopal Bajad
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Bhavana Bojja
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Shristi Arya
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| | - Shalini Devi
- Department of Microbiology, Bhavan’s Vivekananda College of Science, Humanities and Commerce, Hyderabad, India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education and Research, Hyderabad, Telangana, India
| | - Jitender Madan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research, Hyderabad, India
| |
Collapse
|
4
|
Hermida-Alava K, Pola S, García-Effrón G, Cuestas ML. Comparison of MIC Test Strip and reference broth microdilution method for amphotericin B and azoles susceptibility testing on wild-type and non-wild-type Aspergillus species. Med Mycol 2025; 63:myaf006. [PMID: 39870380 DOI: 10.1093/mmy/myaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 01/07/2025] [Accepted: 01/24/2025] [Indexed: 01/29/2025] Open
Abstract
This study aimed to evaluate whether the MIC Test Strip (MTS) quantitative assay for determining the minimum inhibitory concentration (MIC) correlated with the CLSI reference broth microdilution (BMD) method for antifungal susceptibility testing of wild-type and non-wild-type Aspergillus species against antifungal agents known to be usually effective against Aspergillus spp. This study was performed to assist in the decision-making process for possible deployment of the MTS assay for antimicrobial susceptibility testing of Aspergillus species into regional public health laboratories of Mycology due to difficulties in equipping the reference BMD methods in a laboratory routine. For this purpose, a set of 40 phenotypically diverse isolates (27 wild-type, 9 non-wild-type, and 4 species with reduced susceptibility to azoles and amphotericin B [AMB]) collected from clinical samples were tested. MICs were performed by both MTS and reference BMD for AMB and azoles. MTS results for posaconazole correlated well with reference BMD, rendering an almost perfect agreement (kappa value = 1.000) by category interpretation (CI)/category distribution of MICs (CDM) (100%), while voriconazole MTS results yielded a substantial correlation with BMD (kappa value = 0.788) by CI/CDM (97.5%). In contrast, itraconazole and AMB yielded the poorest correlation with BMD, rendering moderate agreement (kappa values of 0.554 and 0.437, respectively) by CI/CDM (87.5% and 85%, respectively). In conclusion, the MTS method represents a valid option for antimicrobial susceptibility testing of Aspergillus species against posaconazole and voriconazole. Itraconazole and AMB MTS results showed some concerning lack of correlation with the corresponding reference BMD results.
Collapse
Affiliation(s)
- Katherine Hermida-Alava
- Laboratorio de Investigación y Desarrollo en Micología, Instituto de Investigaciones en Microbiología y Parasitología Médica, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Santiago Pola
- Laboratorio de Investigación y Desarrollo en Micología, Instituto de Investigaciones en Microbiología y Parasitología Médica, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| | - Guillermo García-Effrón
- Laboratorio de Micología y Diagnóstico Molecular, Cátedra de Parasitología y Micología, Facultad de Bioquímica y Ciencias Biológicas, Universidad Nacional del Litoral, Santa Fe, Argentina
- Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Santa Fe city (Santa Fe), Argentina
| | - María L Cuestas
- Laboratorio de Investigación y Desarrollo en Micología, Instituto de Investigaciones en Microbiología y Parasitología Médica, Universidad de Buenos Aires-CONICET, Buenos Aires, Argentina
| |
Collapse
|
5
|
Prattes J, Giacobbe DR, Marelli C, Signori A, Dettori S, Cattardico G, Hatzl S, Reisinger AC, Eller P, Krause R, Reizine F, Bassetti M, Gangneux J, Hoenigl M. Posaconazole for Prevention of COVID-19-Associated Pulmonary Aspergillosis in Mechanically Ventilated Patients: A European Multicentre Case-Control Study (POSACOVID). Mycoses 2025; 68:e70023. [PMID: 39800852 PMCID: PMC11725623 DOI: 10.1111/myc.70023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 12/30/2024] [Accepted: 12/31/2024] [Indexed: 01/16/2025]
Abstract
BACKGROUND This study investigated the impact of posaconazole (POSA) prophylaxis in COVID-19 patients with acute respiratory failure receiving systemic corticosteroids on the risk for the development of COVID-19-associated pulmonary aspergillosis (CAPA). METHODS The primary aim of this prospective, multicentre, case-control study was to assess whether application of POSA prophylaxis in mechanically ventilated COVID-19 patients reduces the risk for CAPA development. All consecutive patients from centre 1 (cases) who received POSA prophylaxis as standard-of-care were matched to one subject from centre 2 and centre 3 who did not receive any antifungal prophylaxis, using propensity score matching for the following variables: (i) age, (ii) sex, (iii) treatment with tocilizumab and (iv) time at risk. RESULTS Eighty-three consecutive patients receiving POSA prophylaxis were identified at centre 1 and matched to 166 controls. In the matched cohort, incidence rates of CAPA were 1.69 (centre 1), 0.84 (centre 2) and 7.18 (centre 3) events per 1000 ICU days. In multivariable logistic regression analysis, the presence of an EORTC/MSGERC risk factor at ICU admission (OR 4.35) and centre 3 versus centre 1 (OR 6.07; 95% CI 1.76-20.91; p = 0.004) were associated with an increased risk of CAPA. No increased risk of CAPA was registered for centre 2 versus centre 1. CONCLUSIONS The impact of POSA prophylaxis depends on the baseline CAPA incidence rate, which varies widely between centres. Future trials should therefore investigate targeted antifungal prophylaxis (e.g., stratified for high-prevalence centres or high-risk patients) in COVID-19 patients. TRIAL REGISTRATION NCT05065658.
Collapse
Affiliation(s)
- Juergen Prattes
- Division of Infectious Diseases, Department of Internal Medicine, Excellence Center for Medical Mycology (ECMM)Medical University of GrazGrazAustria
- BioTechMed GrazGrazAustria
| | - Daniele R. Giacobbe
- Department of Health Sciences (DISSAL)University of GenoaGenoaItaly
- Clinica Malattie InfettiveIRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Cristina Marelli
- Clinica Malattie InfettiveIRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Alessio Signori
- Section of Biostatistics, Department of Health Sciences (DISSAL)University of GenoaGenoaItaly
| | - Silvia Dettori
- Clinica Malattie InfettiveIRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Greta Cattardico
- Department of Health Sciences (DISSAL)University of GenoaGenoaItaly
- Clinica Malattie InfettiveIRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Stefan Hatzl
- Department of Internal Medicine, Intensive Care UnitMedical University of GrazGrazAustria
| | - Alexander C. Reisinger
- Department of Internal Medicine, Intensive Care UnitMedical University of GrazGrazAustria
| | - Philipp Eller
- Department of Internal Medicine, Intensive Care UnitMedical University of GrazGrazAustria
| | - Robert Krause
- Division of Infectious Diseases, Department of Internal Medicine, Excellence Center for Medical Mycology (ECMM)Medical University of GrazGrazAustria
- BioTechMed GrazGrazAustria
| | - Florian Reizine
- Medical Intensive Care UnitRennes University HospitalRennesFrance
- Univ RennesCHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en santé, Environnement et Travail) – UMR_S 1085RennesFrance
| | - Matteo Bassetti
- Department of Health Sciences (DISSAL)University of GenoaGenoaItaly
- Clinica Malattie InfettiveIRCCS Ospedale Policlinico San MartinoGenoaItaly
| | - Jean‐Pierre Gangneux
- Univ RennesCHU Rennes, Inserm, EHESP, Irset (Institut de Recherche en santé, Environnement et Travail) – UMR_S 1085RennesFrance
- Laboratoire de Parasitologie‐Mycologie, Centre National de Référence Pour les Aspergilloses Chroniques (CNRMA‐LA AspC), ECMM Excellence Center for Medical MycologyCentre Hospitalier Universitaire de RennesRennesFrance
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Excellence Center for Medical Mycology (ECMM)Medical University of GrazGrazAustria
- BioTechMed GrazGrazAustria
| |
Collapse
|
6
|
Jaggi TK, Agarwal R, Tiew PY, Shah A, Lydon EC, Hage CA, Waterer GW, Langelier CR, Delhaes L, Chotirmall SH. Fungal lung disease. Eur Respir J 2024; 64:2400803. [PMID: 39362667 PMCID: PMC11602666 DOI: 10.1183/13993003.00803-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024]
Abstract
Fungal lung disease encompasses a wide spectrum of organisms and associated clinical conditions, presenting a significant global health challenge. The type and severity of disease are determined by underlying host immunity and infecting fungal strain. The most common group of diseases are associated with the filamentous fungus Aspergillus species and include allergic bronchopulmonary aspergillosis, sensitisation, aspergilloma and chronic and invasive pulmonary aspergillosis. Fungal lung disease remains epidemiologically heterogenous and is influenced by geography, environment and host comorbidities. Diagnostic modalities continue to evolve and now include novel molecular assays and biomarkers; however, persisting challenges include achieving rapid and accurate diagnosis, particularly in resource-limited settings, and in differentiating fungal infection from other pulmonary conditions. Treatment strategies for fungal lung diseases rely mainly on antifungal agents but the emergence of drug-resistant strains poses a substantial global threat and adds complexity to existing therapeutic challenges. Emerging antifungal agents and increasing insight into the lung mycobiome may offer fresh and personalised approaches to diagnosis and treatment. Innovative methodologies are required to mitigate drug resistance and the adverse effects of treatment. This state-of-the-art review describes the current landscape of fungal lung disease, highlighting key clinical insights, current challenges and emerging approaches for its diagnosis and treatment.
Collapse
Affiliation(s)
- Tavleen Kaur Jaggi
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Ritesh Agarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education and Research, Chandigarh, India
| | - Pei Yee Tiew
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Singapore General Hospital, Singapore, Singapore
- Duke-NUS Medical School, Singapore, Singapore
| | - Anand Shah
- Department of Respiratory Medicine, Royal Brompton and Harefield Hospitals, Guy's and St Thomas' NHS Foundation Trust, London, UK
- MRC Centre of Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - Emily C Lydon
- Division of Infectious Diseases, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Chadi A Hage
- Pulmonary, Allergy and Critical Care Medicine, University of Pittsburgh,Pittsburgh, PA, USA
- Lung Transplant, University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - Grant W Waterer
- University of Western Australia, Royal Perth Hospital, Perth, Australia
| | - Charles R Langelier
- Division of Infectious Diseases, Department of Medicine, University of California San Francisco, San Francisco, CA, USA
- Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - Laurence Delhaes
- Univ. Bordeaux, Centre de Recherche Cardio-Thoracique de Bordeaux, U1045, Bordeaux, France
- CHU de Bordeaux: Laboratoire de Parasitologie-Mycologie, CNR des Aspergilloses Chroniques, Univ. Bordeaux, FHU ACRONIM, Bordeaux, France
| | - Sanjay H Chotirmall
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
- Department of Respiratory and Critical Care Medicine, Tan Tock Seng Hospital, Singapore, Singapore
| |
Collapse
|
7
|
Gong M, Yu H, Qu H, Li Z, Liu D, Zhao X. Global research trends and hotspots on human intestinal fungi and health: a bibliometric visualization study. Front Cell Infect Microbiol 2024; 14:1460570. [PMID: 39483119 PMCID: PMC11525014 DOI: 10.3389/fcimb.2024.1460570] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Accepted: 09/27/2024] [Indexed: 11/03/2024] Open
Abstract
Background This article employs bibliometric methods and visual maps to delineate the research background, collaborative relationships, hotspots, and trends in the study of gut fungi in human diseases and health. Methods Publications related to human gut fungi were retrieved from the Web of Science Core Collection. VOSviewer, CiteSpace, R software and Microsoft Excel were employed to generate visual representations illustrating the contributions made by countries/regions, authors, organizations, and journals. Employing VOSviewer and CiteSpace, we conducted a comprehensive analysis of the retrieved publications, revealing underlying tendencies, research hotspots, and intricate knowledge networks. Results This study analyzed a total of 3,954 publications. The United States ranks first in the number of published papers and has the highest number of citations and h-index. Mostafa S Elshahed is the most prolific author. The University of California System is the institution that published the most papers. Frontiers In Microbiology is the journal with the largest number of publications. Three frequently co-cited references have experienced a citation burst lasting until 2024. Conclusion Advancements in sequencing technologies have intensified research into human gut fungi and their health implications, shifting the research focus from gut fungal infections towards microbiome science. Inflammatory bowel diseases and Candida albicans have emerged as pivotal areas of interest in this endeavor. Through this study, we have gained a deeper insight into global trends and frontier hotspots within this field, thereby enhancing our understanding of the intricate relationship between gut fungi and human health.
Collapse
Affiliation(s)
- Ming Gong
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, China
| | - Huiying Yu
- Laboratory of Basic Medicine, General Hospital of Northern Theater Command, Shenyang, China
| | - Hong Qu
- Bidding and Procurement Office, The Second Hospital of Dalian Medical University, Dalian, China
| | - Zhexian Li
- Dalian Medical University, Dalian, China
| | - Di Liu
- First Clinical Faculty, Liaoning University of Traditional Chinese Medicine, Shenyang, China
| | - Xin Zhao
- Department of Cardiology, The Second Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
8
|
Pantić N, Barać A, Mano V, Dedeić-Ljubović A, Malkodanski I, Jaksić O, Gkentzi D, Mitrović M, Munteanu O, Šišević D, Stojanoski Z, Popescu O, Todorović J, Cornely OA, Salmanton-García J. Mapping the path to excellence: Evaluation of the diagnostic and treatment tools for invasive fungal infections in the balkans. J Infect Public Health 2024; 17:102493. [PMID: 38970927 DOI: 10.1016/j.jiph.2024.102493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/11/2024] [Accepted: 06/30/2024] [Indexed: 07/08/2024] Open
Abstract
BACKGROUND In the Balkans, rising concerns about invasive fungal infections over the past decade stem from various factors. Primarily, there has been a notable uptick in immunocompromised individuals, including those with chronic illnesses like immunological and hematological diseases. Thus, it is essential to assess the region's laboratory capabilities and the availability of antifungals. This evaluation is vital for gauging the preparedness to diagnose and treat fungal infections effectively, thus minimizing their public health impact. METHODS Data were collected via an online questionnaire targeting healthcare professionals specializing in relevant fields across diverse healthcare settings in Balkan countries. The survey covered various aspects, including diagnostic methods, imaging techniques, and available antifungal armamentarium. RESULTS Responses were obtained from 50 institutions across the Balkans. While conventional diagnostic methods like microscopy (96 %) and culture (100 %) diagnostics were widely available, access to newer diagnostic tools such as molecular assays (61 %) were limited, often relying on outsourced services. Imaging modalities like ultrasound (100 %) and CT scans (93 %) were universally accessible. A variety of antifungal drugs were available, including amphotericin B formulations (80 %), echinocandins (79 %), and triazoles (100 %). However, access to newer agents like posaconazole (62 %) and isavuconazole (45 %) was inconsistent. Therapeutic drug monitoring (53 %) services were also limited. CONCLUSION The study underscores the need for equitable access to diagnostic facilities and antifungal treatments across healthcare settings in the Balkan geographic region. Improving access to molecular diagnostic tools and essential antifungal drugs, as well as implementing therapeutic drug monitoring, would optimize the management of fungal infections in the region.
Collapse
Affiliation(s)
- Nikola Pantić
- Clinic for Hematology, University Clinical Centre of Serbia, Belgrade, Serbia.
| | - Aleksandra Barać
- Faculty of Medicine, University of Belgrade, Hospital for Infectious and Tropical Diseases, Clinical Center of Serbia, Belgrade, Serbia
| | - Vasilika Mano
- Laboratory of Microbiology, University Medical Center of Tirana "Mother Teresa", Tirana, Albania
| | - Amela Dedeić-Ljubović
- Department of Clinical Microbiology, Clinical Center University of Sarajevo, Sarajevo, Bosnia and Herzegovina
| | - Ivan Malkodanski
- St. Marina University Hospital, Medical University, Pleven, Bulgaria
| | - Ozren Jaksić
- Division of Hematology, Department of Medicine, University Hospital Dubrava, Medical School University of Zagreb, Zagreb, Croatia
| | - Despoina Gkentzi
- Department of Paediatrics, University of Patras, University General Hospital of Patras, Patras, Greece
| | - Mirjana Mitrović
- Clinic for Hematology, University Clinical Centre of Serbia, Belgrade, Serbia
| | - Oxana Munteanu
- Division of Pneumology and Allergology, Department of Internal Medicine, State University of Medicine and Pharmacy "Nicolae Testemițanu", Medpark International Hospital, Chișinău, Moldova
| | | | - Zlate Stojanoski
- University Hematology Clinic, Medical Faculty, Ss. Cyril and Methodius University, Skopje, North Macedonia
| | - Oana Popescu
- National Institute of Pneumology Marius Nasta, Bucharest, Romania
| | | | - Oliver A Cornely
- Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany; Faculty of Medicine and University Hospital Cologne, Clinical Trials Centre Cologne (ZKS Köln), University of Cologne, Cologne, Germany
| | - Jon Salmanton-García
- Faculty of Medicine and University Hospital Cologne, Institute of Translational Research, Cologne Excellence Cluster on Cellular Stress Responses in Aging-Associated Diseases (CECAD), University of Cologne, Cologne, Germany; Faculty of Medicine and University Hospital Cologne, Department I of Internal Medicine, Center for Integrated Oncology Aachen Bonn Cologne Duesseldorf (CIO ABCD) and Excellence Center for Medical Mycology (ECMM), University of Cologne, Cologne, Germany; German Centre for Infection Research (DZIF), Partner Site Bonn-Cologne, Cologne, Germany.
| |
Collapse
|
9
|
Koulenti D, Paramythiotou E, Almyroudi MP, Karvouniaris M, Markou N, Paranos P, Routsi C, Meletiadis J, Blot S. Severe mold fungal infections in critically ill patients with COVID-19. Future Microbiol 2024; 19:825-840. [PMID: 38700287 PMCID: PMC11290760 DOI: 10.2217/fmb-2023-0261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/20/2024] [Indexed: 05/05/2024] Open
Abstract
The SARS-CoV-2 pandemic put an unprecedented strain on modern societies and healthcare systems. A significantly higher incidence of invasive fungal co-infections was noted compared with the pre-COVID-19 era, adding new diagnostic and therapeutic challenges in the critical care setting. In the current narrative review, we focus on invasive mold infections caused by Aspergillus and Mucor species in critically ill COVID-19 patients. We discuss up-to-date information on the incidence, pathogenesis, diagnosis and treatment of these mold-COVID-19 co-infections, as well as recommendations on preventive and prophylactic interventions. Traditional risk factors were often not recognized in COVID-19-associated aspergillosis and mucormycosis, highlighting the role of other determinant risk factors. The associated patient outcomes were worse compared with COVID-19 patients without mold co-infection.
Collapse
Affiliation(s)
- Despoina Koulenti
- Department of Critical Care Medicine, King's College Hospital NHS Foundation Trust, London, UK
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | | | - Maria Panagiota Almyroudi
- Emergency Department, Attikon University Hospital, National & Kapodistrian University of Athens, Greece
| | | | - Nikolaos Markou
- Intensive Care Unit of Latseio Burns Centre, Thriasio General Hospital of Elefsina, Greece
| | - Paschalis Paranos
- Clinical Microbiology Laboratory, Attikon University Hospital, National & Kapodistrian Uni-versity of Athens, Greece
| | - Christina Routsi
- First Department of Intensive Care, School of Medicine, National & Kapodistrian University of Athens, Evangelismos General Hospital, Athens, Greece
| | - Joseph Meletiadis
- Clinical Microbiology Laboratory, Attikon University Hospital, National & Kapodistrian Uni-versity of Athens, Greece
| | - Stijn Blot
- UQ Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Department of Internal Medicine & Pediatrics, Ghent University, Ghent, Belgium
| |
Collapse
|
10
|
Gonçalves SM, Pereira I, Feys S, Cunha C, Chamilos G, Hoenigl M, Wauters J, van de Veerdonk FL, Carvalho A. Integrating genetic and immune factors to uncover pathogenetic mechanisms of viral-associated pulmonary aspergillosis. mBio 2024; 15:e0198223. [PMID: 38651925 PMCID: PMC11237550 DOI: 10.1128/mbio.01982-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024] Open
Abstract
Invasive pulmonary aspergillosis is a severe fungal infection primarily affecting immunocompromised patients. Individuals with severe viral infections have recently been identified as vulnerable to developing invasive fungal infections. Both influenza-associated pulmonary aspergillosis (IAPA) and COVID-19-associated pulmonary aspergillosis (CAPA) are linked to high mortality rates, emphasizing the urgent need for an improved understanding of disease pathogenesis to unveil new molecular targets with diagnostic and therapeutic potential. The recent establishment of animal models replicating the co-infection context has offered crucial insights into the mechanisms that underlie susceptibility to disease. However, the development and progression of human viral-fungal co-infections exhibit a significant degree of interindividual variability, even among patients with similar clinical conditions. This observation implies a significant role for host genetics, but information regarding the genetic basis for viral-fungal co-infections is currently limited. In this review, we discuss how genetic factors known to affect either antiviral or antifungal immunity could potentially reveal pathogenetic mechanisms that predispose to IAPA or CAPA and influence the overall disease course. These insights are anticipated to foster further research in both pre-clinical models and human patients, aiming to elucidate the complex pathophysiology of viral-associated pulmonary aspergillosis and contributing to the identification of new diagnostic and therapeutic targets to improve the management of these co-infections.
Collapse
Affiliation(s)
- Samuel M Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Inês Pereira
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Simon Feys
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| | - Georgios Chamilos
- Laboratory of Clinical Microbiology and Microbial Pathogenesis, School of Medicine, University of Crete, Heraklion, Crete, Greece
- Institute of Molecular Biology and Biotechnology, Foundation for Research and Technology, Heraklion, Crete, Greece
| | - Martin Hoenigl
- Division of Infectious Diseases, ECMM Excellence Center for Medical Mycology, Department of Internal Medicine, Medical University of Graz, Graz, Austria
- BioTechMed, Graz, Austria
| | - Joost Wauters
- Medical Intensive Care Unit, Department of General Internal Medicine, University Hospitals Leuven, Leuven, Belgium
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Frank L van de Veerdonk
- Department of Internal Medicine, Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
- Radboud Center for Infectious Diseases (RCI), Radboud University Nijmegen Medical Centre, Nijmegen, the Netherlands
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal
- ICVS/3B's-PT Government Associate Laboratory, Guimarães/Braga, Portugal
| |
Collapse
|
11
|
Şensoy L, Atilla A, Güllü YT, Gür Vural D, Turgut M, Esen Ş, Tanyel E. Evaluation of interleukin-8 levels in the diagnosis of invasive pulmonary aspergillosis in patients with haematological malignancies. Med Mycol 2024; 62:myae036. [PMID: 38592958 DOI: 10.1093/mmy/myae036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/05/2024] [Accepted: 04/08/2024] [Indexed: 04/11/2024] Open
Abstract
This study aimed to determine the level of interleukin (IL)-8 in diagnosing of invasive pulmonary aspergillosis (IPA). We conducted this study with 50 controls and 25 IPA patients with haematological malignancies. Demographic data, haematological diagnoses, chemotherapy regimen, galactomannan level, fungal culture, and computed tomography findings of the patients were evaluated prospectively. IL-8 levels were studied with the ELISA method. The mean age of patients in the case group was 60.84 ± 15.38 years, while that of the controls was 58.38 ± 16.64 years. Of the patients, 2/25 were classified as having 'proven', 13/25 as 'probable', and 10/25 as 'possible' invasive aspergillosis (IA). Serum IL-8 levels were found to be significantly higher in the case group compared to the controls. There was a negative correlation between serum IL-8 levels and neutrophil counts and a positive correlation with the duration of neutropenia. A significant cutoff value for serum IL-8 parameter in detecting IPA disease was obtained as ≥274 ng/l; sensitivity was 72%; specificity was 64%; PPV was 50%; and NPV was 82%. In the subgroup analysis, there was no significant difference in serum IL-8 levels between the case group and the patients in the neutropenic control group, while a significant difference was found in with the patients in the non-neutropenic control group. Serum IL-8 levels in neutropenic patients who develop IPA are not adequate in terms of both the diagnosis of the disease and predicting mortality. New, easily applicable methods with high sensitivity and specificity in diagnosing IPA are still needed.
Collapse
Affiliation(s)
- Levent Şensoy
- Department of Clinical Microbiology and Infectious Diseases, Fatsa Government Hospital, Ordu 52400, Türkiye
| | - Aynur Atilla
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Medicine, Ondokuz Mayis University, Samsun 55100, Türkiye
| | - Yusuf Taha Güllü
- Department of Pulmonary Medicine, Faculty of Medicine, Ondokuz Mayis University, Samsun 55100, Türkiye
| | - Demet Gür Vural
- Department of Medical Microbiology, Faculty of Medicine, Ondokuz Mayis University, Samsun 55100, Türkiye
| | - Mehmet Turgut
- Department of Hematology, Faculty of Medicine, Ondokuz Mayis University, Samsun 55100, Türkiye
| | - Şaban Esen
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Medicine, Ondokuz Mayis University, Samsun 55100, Türkiye
| | - Esra Tanyel
- Department of Clinical Microbiology and Infectious Diseases, Faculty of Medicine, Ondokuz Mayis University, Samsun 55100, Türkiye
| |
Collapse
|
12
|
Krifors A, Blennow O, Påhlman LI, Gille-Johnson P, Janols H, Lipcsey M, Källman J, Tham J, Stjärne Aspelund A, Ljungquist O, Hammarskjöld F, Hällgren A, De Geer L, Lemberg M, Petersson J, Castegren M. Influenza-associated invasive aspergillosis in patients admitted to the intensive care unit in Sweden: a prospective multicentre cohort study. Infect Dis (Lond) 2024; 56:110-115. [PMID: 37897800 DOI: 10.1080/23744235.2023.2273381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 10/16/2023] [Indexed: 10/30/2023] Open
Abstract
BACKGROUND The purpose of this study was to prospectively investigate the incidence of influenza-associated pulmonary aspergillosis (IAPA) in influenza patients admitted to intensive care units in Sweden. METHODS The study included consecutive adult patients with PCR-verified influenza A or B in 12 Swedish intensive care units (ICUs) over four influenza seasons (2019-2023). Patients were screened using serum galactomannan and β-d-glucan tests and fungal culture of a respiratory sample at inclusion and weekly during the ICU stay. Bronchoalveolar lavage was performed if clinically feasible. IAPA was classified according to recently proposed case definitions. RESULTS The cohort included 55 patients; 42% were female, and the median age was 59 (IQR 48-71) years. All patients had at least one galactomannan test, β-d-glucan test and respiratory culture performed. Bronchoalveolar lavage was performed in 24 (44%) of the patients. Five (9%, 95% CI 3.8% - 20.4%) patients were classified as probable IAPA, of which four lacked classical risk factors. The overall ICU mortality was significantly higher among IAPA patients than non-IAPA patients (60% vs 8%, p = 0.01). CONCLUSIONS The study represents the first prospective investigation of IAPA incidence. The 9% incidence of IAPA confirms the increased risk of invasive pulmonary aspergillosis among influenza patients admitted to the ICU. Therefore, it appears reasonable to implement a screening protocol for the early diagnosis and treatment of IAPA in influenza patients receiving intensive care. TRIAL REGISTRATION ClinicalTrials.gov NCT04172610, registered November 21, 2019.
Collapse
Affiliation(s)
- Anders Krifors
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Centre for Clinical Research Västmanland, Uppsala University, Hospital of Västmanland, Västerås, Sweden
| | - Ola Blennow
- Unit of Infectious Diseases, Department of Medicine Huddinge, Karolinska Institutet, and Department of Infectious Diseases, Karolinska University Hospital, Stockholm, Sweden
| | - Lisa I Påhlman
- Department of Clinical Sciences Lund, Section for Infection Medicine, Lund University, Skåne University Hospital, Lund, Sweden
- Wallenberg Centre for Molecular Medicine, Lund University, Lund, Sweden
| | | | - Helena Janols
- Department of Medical Sciences, Section of Infectious Diseases, Uppsala University, Uppsala, Sweden
| | - Miklos Lipcsey
- Anaesthesiology and Intensive Care Medicine, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
- Hedenstierna Laboratory, Department of Surgical Sciences, Uppsala University, Uppsala, Sweden
| | - Jan Källman
- Department of Infectious Diseases, Örebro University Hospital, Örebro, Sweden
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Johan Tham
- Department of Translational Medicine, Lund University, Lund, Sweden
- Department of Clinical Infection Medicine, Skåne University Hospital, Malmö, Sweden
| | - Anna Stjärne Aspelund
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Clinical Microbiology and Infection Prevention and Control, Skåne University Hospital, Lund, Sweden
| | - Oskar Ljungquist
- Division of Infection Medicine, Department of Clinical Sciences, Lund University, Lund, Sweden
- Department of Infectious Diseases, Helsingborg Hospital, Helsingborg, Sweden
| | - Fredrik Hammarskjöld
- Department of Anaesthesia and Intensive Care Medicine, Ryhov County Hospital, Jönköping, Sweden
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Anita Hällgren
- Department of Infectious Diseases in Östergötland and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Lina De Geer
- Department of Anaestesiology and Intensive Care and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Marie Lemberg
- Department of Anesthesia and Intensive Care, Västerås Hospital, Västerås, Sweden
| | - Johan Petersson
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Department of Perioperative Medicine and Intensive Care, Karolinska University Hospital, Stockholm, Sweden
| | - Markus Castegren
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
- Centre for Clinical Research Sörmland, Uppsala University, Mälarsjukhuset, Eskilstuna, Sweden
| |
Collapse
|
13
|
Abstract
The filamentous fungus Aspergillus causes a wide spectrum of diseases in the human lung, with Aspergillus fumigatus being the most pathogenic and allergenic subspecies. The broad range of clinical syndromes that can develop from the presence of Aspergillus in the respiratory tract is determined by the interaction between host and pathogen. In this review, an oversight of the different clinical entities of pulmonary aspergillosis is given, categorized by their main pathophysiological mechanisms. The underlying immune processes are discussed, and the main clinical, radiological, biochemical, microbiological, and histopathological findings are summarized.
Collapse
Affiliation(s)
- Iris Janssens
- Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Bart N. Lambrecht
- Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Pulmonary Medicine, ErasmusMC; Rotterdam, The Netherlands
| | - Eva Van Braeckel
- Department of Internal Medicine and Paediatrics, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
- Department of Respiratory Medicine, Ghent University Hospital, Ghent, Belgium
| |
Collapse
|
14
|
Frost J, Gornicec M, Reisinger AC, Eller P, Hoenigl M, Prattes J. COVID-19 associated Pulmonary Aspergillosis in Patients Admitted to the Intensive Care Unit: Impact of Antifungal Prophylaxis. Mycopathologia 2024; 189:3. [PMID: 38217742 PMCID: PMC10787678 DOI: 10.1007/s11046-023-00809-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 10/07/2023] [Indexed: 01/15/2024]
Abstract
Early after the beginning of the coronavirus disease 2019 (COVID-19)-pandemic, it was observed that critically ill patients in the intensive care unit (ICU) were susceptible to developing secondary fungal infections, particularly COVID-19 associated pulmonary aspergillosis (CAPA). Here we report our local experience on the impact of mold active antifungal prophylaxis on CAPA occurrence in critically ill COVID-19 patients. This is a monocentric, prospective cohort study including all consecutive patients with COVID-19 associated acute respiratory failure who were admitted to our local medical ICU. Based on the treating physician's discretion, patients may have received antifungal prophylaxis or not. All patients were retrospectively characterized as having CAPA according to the 2020 ECMM/ISHAM consensus definitions. Seventy-seven patients were admitted to our medical ICU during April 2020 and May 2021 and included in the study. The majority of patients received invasive-mechanical ventilation (61%). Fifty-three patients (68.8%) received posaconazole prophylaxis. Six cases of probable CAPA were diagnosed within clinical routine management. All six cases were diagnosed in the non-prophylaxis group. The incidence of CAPA in the overall study cohort was 0.57 events per 100 ICU days and 2.20 events per 100 ICU days in the non-prophylaxis group. No difference of cumulative 84-days survival could be observed between the two groups (p = 0.115). In this monocentric cohort, application of posaconazole prophylaxis in patients with COVID-19 associated respiratory failure did significantly reduce the rate of CAPA.
Collapse
Affiliation(s)
- Jonas Frost
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center, Graz, Austria
| | - Maximilian Gornicec
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center, Graz, Austria
| | - Alexander C Reisinger
- Intensive Care Unit, Department of Internal Medicine, Medical University Graz, Graz, Austria
| | - Philipp Eller
- Intensive Care Unit, Department of Internal Medicine, Medical University Graz, Graz, Austria
| | - Martin Hoenigl
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center, Graz, Austria
- BioTechMed Graz, Graz, Austria
| | - Juergen Prattes
- Division of Infectious Diseases, Department of Internal Medicine, Medical University of Graz, ECMM Excellence Center, Graz, Austria.
- BioTechMed Graz, Graz, Austria.
| |
Collapse
|
15
|
Zhu X, Chen Y, Yu D, Fang W, Liao W, Pan W. Progress in the application of nanoparticles for the treatment of fungal infections: A review. Mycology 2023; 15:1-16. [PMID: 38558835 PMCID: PMC10977003 DOI: 10.1080/21501203.2023.2285764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 10/28/2023] [Indexed: 04/04/2024] Open
Abstract
The burden of fungal infections on human health is increasing worldwide. Aspergillus, Candida, and Cryptococcus are the top three human pathogenic fungi that are responsible for over 90% of infection-related deaths. Moreover, effective antifungal therapeutics are lacking, primarily due to host toxicity, pathogen resistance, and immunodeficiency. In recent years, nanomaterials have proved not only to be more efficient antifungal therapeutic agents but also to overcome resistance against fungal medication. This review will examine the limitations of standard antifungal therapy as well as focus on the development of nanomaterials.
Collapse
Affiliation(s)
- Xinlin Zhu
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Youming Chen
- Department of Infectious Diseases and Immunology, Shanghai Public Health Clinical Center, Fudan University, Shanghai, China
| | - Dan Yu
- Department of General Practice, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wenjie Fang
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wanqing Liao
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Weihua Pan
- Department of Dermatology, Shanghai Key Laboratory of Molecular Medical Mycology, Second Affiliated Hospital of Naval Medical University, Shanghai, China
| |
Collapse
|
16
|
Lass-Flörl C, Steixner S. The changing epidemiology of fungal infections. Mol Aspects Med 2023; 94:101215. [PMID: 37804792 DOI: 10.1016/j.mam.2023.101215] [Citation(s) in RCA: 41] [Impact Index Per Article: 20.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 06/19/2023] [Accepted: 09/21/2023] [Indexed: 10/09/2023]
Abstract
Invasive fungal diseases are common complications in critically ill patients and in those with significant underlying imbalanced immune systems. Fungal co-, and/or super-infections are emerging and have become a rising concern within the last few years. In Europe, cases of candidiasis and aspergillosis dominate, followed by mucormycosis in India. Epidemiological studies show an increasing trend in the incidence of all three entities. Parallel to this, a shift within the underlying fungal pathogens is observed. More non-albicans Candida infections and aspergillosis with cryptic species are on the rise; cryptic species may cover intrinsic resistance to azoles and other antifungal drugs. The recent COVID-19 pandemic led to a significantly increasing incidence of invasive fungal diseases among hospitalized patients.
Collapse
Affiliation(s)
- Cornelia Lass-Flörl
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, A-6020, Innsbruck, Austria.
| | - Stephan Steixner
- Institute of Hygiene and Medical Microbiology, Medical University of Innsbruck, A-6020, Innsbruck, Austria
| |
Collapse
|
17
|
Wang K, Espinosa V, Rivera A. Commander-in-chief: monocytes rally the troops for defense against aspergillosis. Curr Opin Immunol 2023; 84:102371. [PMID: 37523967 DOI: 10.1016/j.coi.2023.102371] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 06/23/2023] [Accepted: 06/24/2023] [Indexed: 08/02/2023]
Abstract
The detrimental impact of fungal infections to human health has steadily increased over the past decades. In October of 2022, the World Health Organization published the first ever fungal-pathogen priority list highlighting increased awareness of this problem, and the need for more research in this area. There were four distinct fungal pathogens identified as critical priority groups with Aspergillus fumigatus (Af) being the only mold. Af is a common environmental fungus responsible for over 90% of invasive aspergillosis cases worldwide. Pulmonary protection against Af is critically dependent on innate effector cells with essential roles played by neutrophils and monocytes. In this review, we will summarize our current understanding of how monocytes help orchestrate antifungal defense against Af.
Collapse
Affiliation(s)
- Keyi Wang
- Center for Immunity and Inflammation, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, USA; School of Graduate Studies, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, USA
| | - Vanessa Espinosa
- Center for Immunity and Inflammation, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, USA
| | - Amariliz Rivera
- Center for Immunity and Inflammation, Rutgers Biomedical and Health Sciences, New Jersey Medical School, Newark, NJ, USA.
| |
Collapse
|
18
|
Koulenti D, Papathanakos G, Blot S. Invasive pulmonary aspergillosis in the ICU: tale of a broadening risk profile. Curr Opin Crit Care 2023; 29:463-469. [PMID: 37641513 DOI: 10.1097/mcc.0000000000001070] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW In the absence of histopathological proof, the diagnosis of invasive pulmonary aspergillosis (IPA) is usually based on mycology (not on tissue), medical imaging, and the patient's risk profile for acquiring invasive fungal disease. Here, we review the changes in risk profile for IPA that took place over the past decades. RECENT FINDINGS In the early 2000s IPA was considered exclusively a disease of immunocompromised patients. Particularly in the context of critical illness, the risk profile has been broadened steadily. Acute viral infection by influenza or SARS-Cov-2 are now well recognized risk factors for IPA. SUMMARY The classic risk profile ('host factors') reflecting an immunocompromised status was first enlarged by a spectrum of chronic conditions such as AIDS, cirrhosis, and chronic obstructive pulmonary disease. In the presence of critical illness, especially characterized by sepsis and/or severe respiratory distress, any chronic condition could add to the risk profile. Recently, acute viral infections have been associated with IPA leading to the concepts of influenza-associated IPA and COVID-19-associated IPA. These viral infections may affect patients without underlying disease. Hence, the risk for IPA is now a reality for ICU patients, even in the absence of any chronic conditions.
Collapse
Affiliation(s)
- Despoina Koulenti
- 2nd Critical Care Department, Attikon University Hospital, Athens, Greece
- UQCCR, Faculty of Medicine, The University of Queensland, Brisbane, Australia
| | - Georgios Papathanakos
- Department of Intensive Care Medicine, University Hospital of Ioannina, Ioannina, Greece
| | - Stijn Blot
- UQCCR, Faculty of Medicine, The University of Queensland, Brisbane, Australia
- Department of Internal Medicine and Pediatrics, Faculty of Medicine and Health Science, Ghent University, Ghent, Belgium
| |
Collapse
|
19
|
Sousa C, Pasini RA, Pasqualotto A, Marchiori E, Altmayer S, Irion K, Mançano A, Hochhegger B. Imaging Findings in Aspergillosis: From Head to Toe. Mycopathologia 2023; 188:623-641. [PMID: 37380874 DOI: 10.1007/s11046-023-00766-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/16/2023] [Indexed: 06/30/2023]
Abstract
Aspergillosis is a mycotic infection induced by airborne fungi that are ubiquitous. Inhalation of Aspergillus conidia results in transmission through the respiratory tract. The clinical presentation is dependent on organism and host specifics, with immunodeficiency, allergies, and preexisting pulmonary disease constituting the most important risk factors. In recent decades, the incidence of fungal infections has increased dramatically, due in part to the increased number of transplants and the pervasive use of chemotherapy and immunosuppressive drugs. The spectrum of clinical manifestations can range from an asymptomatic or mild infection to a swiftly progressive, life-threatening illness. Additionally, invasive infections can migrate to extrapulmonary sites, causing infections in distant organs. Recognition and familiarity with the various radiological findings in the appropriate clinical context are essential for patient management and the prompt initiation of life-saving treatment. We discuss the radiological characteristics of chronic and invasive pulmonary aspergillosis, as well as some of the typically unexpected extrapulmonary manifestations of disseminated disease.
Collapse
Affiliation(s)
- Célia Sousa
- Radiology Department, Centro Hospitalar Universitário Lisboa Norte, Lisbon, Portugal
| | | | - Alessandro Pasqualotto
- Radiology Department, Universidade Federal de Ciências da Saúde de Porto Alegre, Santa Casa de Misericórdia de Porto Alegre, Porto Alegre, Brazil
| | - Edson Marchiori
- Radiology Department, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brasil
| | | | - Klaus Irion
- Radiology Department, University of Florida, Gainesville, FL, USA
| | | | - Bruno Hochhegger
- Radiology Department, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
20
|
Yuan X, Xie L, Shi Z, Zhou M. Application of mNGS in the study of pulmonary microbiome in pneumoconiosis complicated with pulmonary infection patients and exploration of potential biomarkers. Front Cell Infect Microbiol 2023; 13:1200157. [PMID: 37545858 PMCID: PMC10403237 DOI: 10.3389/fcimb.2023.1200157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/26/2023] [Indexed: 08/08/2023] Open
Abstract
Background Pneumoconiosis patients have a high prevalence of pulmonary infections, which can complicate diagnosis and treatment. And there is no comprehensive study of the microbiome of patients with pneumoconiosis. The application of metagenomic next-generation sequencing (mNGS) fills the gap to some extent by analyzing the lung microbiota of pneumoconiosis population while achieving accurate diagnosis. Methods We retrospectively analyzed 44 patients with suspected pneumoconiosis complicated with pulmonary infection between Jan 2020 and Nov 2022. Bronchoalveolar lavage fluid (BALF) specimens from 44 patients were collected and tested using the mNGS technology. Results Among the lung microbiome of pneumoconiosis patients with complicated pulmonary infection (P group), the most frequently detected bacteria and fungi at the genus level were Streptococcus and Aspergillus, at the species level were Streptococcus pneumoniae and Aspergillus flavus, respectively, and the most frequently detected DNA virus was Human gammaherpesvirus 4. There was no significant difference in α diversity between the P group and the non-pneumoconiosis patients complicated with pulmonary infection group (Non-P group) in pulmonary flora, while P< 0.01 for β diversity analysis, and the differential species between the two groups were Mycobacterium colombiense and Fusobacterium nucleatum. In addition, we monitored a high distribution of Malassezia and Pneumocystis in the P group, while herpes virus was detected in the majority of samples. Conclusions Overall, we not only revealed a comprehensive lung microbiome profile of pneumoconiosis patients, but also compared the differences between their microbiome and that of non-pneumoconiosis complicated with pulmonary infection patients. This provides a good basis for a better understanding of the relationship between pneumoconiosis and microorganisms, and for the search of potential biomarkers.
Collapse
Affiliation(s)
- Xingya Yuan
- Department of Respiratory Medicine, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Linshen Xie
- Department of Respiratory Medicine, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| | | | - Min Zhou
- Department of Respiratory Medicine, West China Fourth Hospital, Sichuan University, Chengdu, Sichuan, China
| |
Collapse
|
21
|
Bouyssi A, Déméautis T, Trecourt A, Delles M, Agostini F, Monneret G, Glehen O, Wallon M, Persat F, Devouassoux G, Bentaher A, Menotti J. Characterization of Lung Inflammatory Response to Aspergillus fumigatus Spores. J Fungi (Basel) 2023; 9:682. [PMID: 37367618 DOI: 10.3390/jof9060682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Revised: 06/05/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023] Open
Abstract
The airway exposure to Aspergillus fumigatus spores (AFsp) is associated with an inflammatory response, potentially leading to allergic and/or chronic pulmonary aspergillosis. The aim of our study is to better understand the host response, first in vitro, then in vivo, following the chronic exposure of mice to AFsp. We investigated the inflammatory response to AFsp in cell mono- and co-culture systems with murine macrophages and alveolar epithelial cells. The mice were subjected to two intranasal instillations using 105 AFsp. Their lungs were processed for inflammatory and histopathological analyses. In cell culture, the gene expressions significantly increased for TNF-α, CXCL-1, CXCL-2, IL-1β, IL-1α and GM-CSF in macrophages, with these increases being limited for TNF-α, CXCL-1 and IL-1α in epithelial cells. In co-culture, increases in the TNF-α, CXCL-2 and CXCL-1 gene expressions were observed to be associated with increased protein levels. The in vivo lung histological analyses of mice challenged by AFsp showed cellular infiltrates in the peribronchial and/or alveolar spaces. A Bio-Plex approach on the bronchoalveolar lavage revealed significant increases in the protein secretion of selected mediators of the challenged mice compared to the unchallenged mice. In conclusion, the exposure to AFsp resulted in a marked inflammatory response of macrophages and epithelial cells. These inflammatory findings were confirmed in mouse models associated with lung histologic changes.
Collapse
Affiliation(s)
- Alexandra Bouyssi
- UR3738 Centre pour l'lnnovation en Cancérologie de Lyon, Team Inflammation and Immunity of the Respiratory Epithelium, Claude Bernard University-Lyon 1, 69495 Pierre Bénite, France
| | - Tanguy Déméautis
- UR3738 Centre pour l'lnnovation en Cancérologie de Lyon, Team Inflammation and Immunity of the Respiratory Epithelium, Claude Bernard University-Lyon 1, 69495 Pierre Bénite, France
| | - Alexis Trecourt
- UR3738 Centre pour l'lnnovation en Cancérologie de Lyon, Team Inflammation and Immunity of the Respiratory Epithelium, Claude Bernard University-Lyon 1, 69495 Pierre Bénite, France
- Department of Pathology, South Lyon Hospital, Hospices Civils de Lyon, 69495 Pierre Bénite, France
| | - Marie Delles
- UR3738 Centre pour l'lnnovation en Cancérologie de Lyon, Team Inflammation and Immunity of the Respiratory Epithelium, Claude Bernard University-Lyon 1, 69495 Pierre Bénite, France
| | - Fany Agostini
- UR3738 Centre pour l'lnnovation en Cancérologie de Lyon, Team Inflammation and Immunity of the Respiratory Epithelium, Claude Bernard University-Lyon 1, 69495 Pierre Bénite, France
| | - Guillaume Monneret
- Immunology Laboratory, EA7426, Edouard Herriot Hospital, Hospices Civils de Lyon and Claude Bernard University-Lyon 1, 69003 Lyon, France
| | - Olivier Glehen
- UR3738 Centre pour l'lnnovation en Cancérologie de Lyon, Surgical Department, South Lyon Hospital, Hospices Civils de Lyon, Claude Bernard University-Lyon 1, 69495 Pierre Bénite, France
| | - Martine Wallon
- Department of Medical Mycology and Parasitology, Institute of Infectious Agents, Croix-Rousse Hospital, Hospices Civils de Lyon, 69004 Lyon, France
| | - Florence Persat
- UR3738 Centre pour l'lnnovation en Cancérologie de Lyon, Team Inflammation and Immunity of the Respiratory Epithelium, Claude Bernard University-Lyon 1, 69495 Pierre Bénite, France
- Department of Medical Mycology and Parasitology, Institute of Infectious Agents, Croix-Rousse Hospital, Hospices Civils de Lyon, 69004 Lyon, France
| | - Gilles Devouassoux
- UR3738 Centre pour l'lnnovation en Cancérologie de Lyon, Team Inflammation and Immunity of the Respiratory Epithelium, Claude Bernard University-Lyon 1, 69495 Pierre Bénite, France
- Department of Pulmonology, Croix-Rousse Hospital, Hospices Civils de Lyon, 69004 Lyon, France
| | - Abderrazzak Bentaher
- UR3738 Centre pour l'lnnovation en Cancérologie de Lyon, Team Inflammation and Immunity of the Respiratory Epithelium, Claude Bernard University-Lyon 1, 69495 Pierre Bénite, France
| | - Jean Menotti
- UR3738 Centre pour l'lnnovation en Cancérologie de Lyon, Team Inflammation and Immunity of the Respiratory Epithelium, Claude Bernard University-Lyon 1, 69495 Pierre Bénite, France
- Department of Medical Mycology and Parasitology, Institute of Infectious Agents, Croix-Rousse Hospital, Hospices Civils de Lyon, 69004 Lyon, France
| |
Collapse
|
22
|
Breitkopf R, Treml B, Bukumiric Z, Innerhofer N, Fodor M, Rajsic S. Invasive Fungal Infections: The Early Killer after Liver Transplantation. J Fungi (Basel) 2023; 9:655. [PMID: 37367592 DOI: 10.3390/jof9060655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 06/07/2023] [Accepted: 06/09/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Liver transplantation is a standard of care and a life-saving procedure for end-stage liver diseases and certain malignancies. The evidence on predictors and risk factors for poor outcomes is lacking. Therefore, we aimed to identify potential risk factors for mortality and to report on overall 90-day mortality after orthotopic liver transplantation (OLT), especially focusing on the role of fungal infections. METHODS We retrospectively reviewed medical charts of all patients undergoing OLT at a tertiary university center in Europe. RESULTS From 299 patients, 214 adult patients who received a first-time OLT were included. The OLT indication was mainly due to tumors (42%, 89/214) and cirrhosis (32%, 68/214), including acute liver failure in 4.7% (10/214) of patients. In total, 8% (17/214) of patients died within the first three months, with a median time to death of 15 (1-80) days. Despite a targeted antimycotic prophylaxis using echinocandins, invasive fungal infections occurred in 12% (26/214) of the patients. In the multivariate analysis, patients with invasive fungal infections had an almost five times higher chance of death (HR 4.6, 95% CI 1.1-18.8; p = 0.032). CONCLUSIONS Short-term mortality after OLT is mainly determined by infectious and procedural complications. Fungal breakthrough infections are becoming a growing concern. Procedural, host, and fungal factors can contribute to a failure of prophylaxis. Finally, invasive fungal infections may be a potentially modifiable risk factor, but the ideal perioperative antimycotic prophylaxis has yet to be determined.
Collapse
Affiliation(s)
- Robert Breitkopf
- Department of Anesthesia and Intensive Care Medicine, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Benedikt Treml
- Department of Anesthesia and Intensive Care Medicine, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Zoran Bukumiric
- Institute of Medical Statistics and Informatics, Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia
| | - Nicole Innerhofer
- Department of Anesthesia and Intensive Care Medicine, Medical University Innsbruck, 6020 Innsbruck, Austria
| | - Margot Fodor
- Department of Visceral, Transplantation and Thoracic Surgery, Medical University of Innsbruck, 6020 Innsbruck, Austria
| | - Sasa Rajsic
- Department of Anesthesia and Intensive Care Medicine, Medical University Innsbruck, 6020 Innsbruck, Austria
| |
Collapse
|
23
|
Obar JJ, Shepardson KM. Coinfections in the lung: How viral infection creates a favorable environment for bacterial and fungal infections. PLoS Pathog 2023; 19:e1011334. [PMID: 37141196 PMCID: PMC10159189 DOI: 10.1371/journal.ppat.1011334] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023] Open
Affiliation(s)
- Joshua J Obar
- Geisel School of Medicine at Dartmouth, Department of Microbiology & Immunology, Lebanon, New Hampshire, United States of America
| | - Kelly M Shepardson
- University of California, Merced, Department of Molecular and Cell Biology, Merced, California, United States of America
| |
Collapse
|
24
|
Abstract
The respiratory tree maintains sterilizing immunity against human fungal pathogens. Humans inhale ubiquitous filamentous molds and geographically restricted dimorphic fungal pathogens that form small airborne conidia. In addition, pathogenic yeasts, exemplified by encapsulated Cryptococcus species, and Pneumocystis pose significant fungal threats to the lung. Classically, fungal pneumonia occurs in immune compromised individuals, specifically in patients with HIV/AIDS, in patients with hematologic malignancies, in organ transplant recipients, and in patients treated with corticosteroids and targeted biologics that impair fungal immune surveillance in the lung. The emergence of fungal co-infections during severe influenza and COVID-19 underscores the impairment of fungus-specific host defense pathways in the lung by respiratory viruses and by medical therapies to treat viral infections. Beyond life-threatening invasive syndromes, fungal antigen exposure can exacerbate allergenic disease in the lung. In this review, we discuss emerging principles of lung-specific antifungal immunity, integrate the contributions and cooperation of lung epithelial, innate immune, and adaptive immune cells to mucosal barrier immunity, and highlight the pathogenesis of fungal-associated allergenic disease. Improved understanding of fungus-specific immunity in the respiratory tree has paved the way to develop improved diagnostic, pre-emptive, therapeutic, and vaccine approaches for fungal diseases of the lung.
Collapse
Affiliation(s)
- Lena J Heung
- Division of Infectious Diseases, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Research Division of Immunology, Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA; Women's Guild Lung Institute, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Darin L Wiesner
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Keyi Wang
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Amariliz Rivera
- Center for Immunity and Inflammation, New Jersey Medical School, Rutgers Biomedical and Health Sciences, Newark, NJ, USA
| | - Tobias M Hohl
- Infectious Disease Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA; Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| |
Collapse
|
25
|
Jeong YJ, Wi YM, Park H, Lee JE, Kim SH, Lee KS. Current and Emerging Knowledge in COVID-19. Radiology 2023; 306:e222462. [PMID: 36625747 PMCID: PMC9846833 DOI: 10.1148/radiol.222462] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/21/2022] [Accepted: 11/23/2022] [Indexed: 01/11/2023]
Abstract
COVID-19 has emerged as a pandemic leading to a global public health crisis of unprecedented morbidity. A comprehensive insight into the imaging of COVID-19 has enabled early diagnosis, stratification of disease severity, and identification of potential sequelae. The evolution of COVID-19 can be divided into early infectious, pulmonary, and hyperinflammatory phases. Clinical features, imaging features, and management are different among the three phases. In the early stage, peripheral ground-glass opacities are predominant CT findings, and therapy directly targeting SARS-CoV-2 is effective. In the later stage, organizing pneumonia or diffuse alveolar damage pattern are predominant CT findings and anti-inflammatory therapies are more beneficial. The risk of severe disease or hospitalization is lower in breakthrough or Omicron variant infection compared with nonimmunized or Delta variant infections. The protection rates of the fourth dose of mRNA vaccination were 34% and 67% against overall infection and hospitalizations for severe illness, respectively. After acute COVID-19 pneumonia, most residual CT abnormalities gradually decreased in extent, but they may remain as linear or multifocal reticular or cystic lesions. Advanced insights into the pathophysiologic and imaging features of COVID-19 along with vaccine benefits have improved patient care, but emerging knowledge of post-COVID-19 condition, or long COVID, also presents radiology with new challenges.
Collapse
Affiliation(s)
- Yeon Joo Jeong
- From the Department of Radiology, Research Institute for Convergence
of Biomedical Science and Technology, Pusan National University Yangsan
Hospital, Pusan National University School of Medicine, Yangsan, Korea (Y.J.J.);
Division of Infectious Diseases, Department of Internal Medicine (Y.M.W.,
S.H.K.) and Department of Radiology (K.S.L.), Samsung Changwon Hospital,
Sungkyunkwan University School of Medicine (SKKU-SOM), Changwon 51353, Korea;
Department of Electrical and Computer Engineering, Sungkyunkwan University,
Suwon, Korea (H.P.); Center for Neuroscience Imaging Research, Institute for
Basic Science, Suwon, Korea (H.P.); and Department of Radiology, Chonnam
National University Hospital, Gwangju, Korea (J.E.L.)
| | - Yu Mi Wi
- From the Department of Radiology, Research Institute for Convergence
of Biomedical Science and Technology, Pusan National University Yangsan
Hospital, Pusan National University School of Medicine, Yangsan, Korea (Y.J.J.);
Division of Infectious Diseases, Department of Internal Medicine (Y.M.W.,
S.H.K.) and Department of Radiology (K.S.L.), Samsung Changwon Hospital,
Sungkyunkwan University School of Medicine (SKKU-SOM), Changwon 51353, Korea;
Department of Electrical and Computer Engineering, Sungkyunkwan University,
Suwon, Korea (H.P.); Center for Neuroscience Imaging Research, Institute for
Basic Science, Suwon, Korea (H.P.); and Department of Radiology, Chonnam
National University Hospital, Gwangju, Korea (J.E.L.)
| | - Hyunjin Park
- From the Department of Radiology, Research Institute for Convergence
of Biomedical Science and Technology, Pusan National University Yangsan
Hospital, Pusan National University School of Medicine, Yangsan, Korea (Y.J.J.);
Division of Infectious Diseases, Department of Internal Medicine (Y.M.W.,
S.H.K.) and Department of Radiology (K.S.L.), Samsung Changwon Hospital,
Sungkyunkwan University School of Medicine (SKKU-SOM), Changwon 51353, Korea;
Department of Electrical and Computer Engineering, Sungkyunkwan University,
Suwon, Korea (H.P.); Center for Neuroscience Imaging Research, Institute for
Basic Science, Suwon, Korea (H.P.); and Department of Radiology, Chonnam
National University Hospital, Gwangju, Korea (J.E.L.)
| | - Jong Eun Lee
- From the Department of Radiology, Research Institute for Convergence
of Biomedical Science and Technology, Pusan National University Yangsan
Hospital, Pusan National University School of Medicine, Yangsan, Korea (Y.J.J.);
Division of Infectious Diseases, Department of Internal Medicine (Y.M.W.,
S.H.K.) and Department of Radiology (K.S.L.), Samsung Changwon Hospital,
Sungkyunkwan University School of Medicine (SKKU-SOM), Changwon 51353, Korea;
Department of Electrical and Computer Engineering, Sungkyunkwan University,
Suwon, Korea (H.P.); Center for Neuroscience Imaging Research, Institute for
Basic Science, Suwon, Korea (H.P.); and Department of Radiology, Chonnam
National University Hospital, Gwangju, Korea (J.E.L.)
| | - Si-Ho Kim
- From the Department of Radiology, Research Institute for Convergence
of Biomedical Science and Technology, Pusan National University Yangsan
Hospital, Pusan National University School of Medicine, Yangsan, Korea (Y.J.J.);
Division of Infectious Diseases, Department of Internal Medicine (Y.M.W.,
S.H.K.) and Department of Radiology (K.S.L.), Samsung Changwon Hospital,
Sungkyunkwan University School of Medicine (SKKU-SOM), Changwon 51353, Korea;
Department of Electrical and Computer Engineering, Sungkyunkwan University,
Suwon, Korea (H.P.); Center for Neuroscience Imaging Research, Institute for
Basic Science, Suwon, Korea (H.P.); and Department of Radiology, Chonnam
National University Hospital, Gwangju, Korea (J.E.L.)
| | - Kyung Soo Lee
- From the Department of Radiology, Research Institute for Convergence
of Biomedical Science and Technology, Pusan National University Yangsan
Hospital, Pusan National University School of Medicine, Yangsan, Korea (Y.J.J.);
Division of Infectious Diseases, Department of Internal Medicine (Y.M.W.,
S.H.K.) and Department of Radiology (K.S.L.), Samsung Changwon Hospital,
Sungkyunkwan University School of Medicine (SKKU-SOM), Changwon 51353, Korea;
Department of Electrical and Computer Engineering, Sungkyunkwan University,
Suwon, Korea (H.P.); Center for Neuroscience Imaging Research, Institute for
Basic Science, Suwon, Korea (H.P.); and Department of Radiology, Chonnam
National University Hospital, Gwangju, Korea (J.E.L.)
| |
Collapse
|
26
|
Crossen AJ, Ward RA, Reedy JL, Surve MV, Klein BS, Rajagopal J, Vyas JM. Human Airway Epithelium Responses to Invasive Fungal Infections: A Critical Partner in Innate Immunity. J Fungi (Basel) 2022; 9:40. [PMID: 36675861 PMCID: PMC9862202 DOI: 10.3390/jof9010040] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 12/09/2022] [Accepted: 12/26/2022] [Indexed: 12/29/2022] Open
Abstract
The lung epithelial lining serves as the primary barrier to inhaled environmental toxins, allergens, and invading pathogens. Pulmonary fungal infections are devastating and carry high mortality rates, particularly in those with compromised immune systems. While opportunistic fungi infect primarily immunocompromised individuals, endemic fungi cause disease in immune competent and compromised individuals. Unfortunately, in the case of inhaled fungal pathogens, the airway epithelial host response is vastly understudied. Furthering our lack of understanding, very few studies utilize primary human models displaying pseudostratified layers of various epithelial cell types at air-liquid interface. In this review, we focus on the diversity of the human airway epithelium and discuss the advantages and disadvantages of oncological cell lines, immortalized epithelial cells, and primary epithelial cell models. Additionally, the responses by human respiratory epithelial cells to invading fungal pathogens will be explored. Future investigations leveraging current human in vitro model systems will enable identification of the critical pathways that will inform the development of novel vaccines and therapeutics for pulmonary fungal infections.
Collapse
Affiliation(s)
- Arianne J. Crossen
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Rebecca A. Ward
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Jennifer L. Reedy
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Manalee V. Surve
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Bruce S. Klein
- Department of Pediatrics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
- Department of Medical Microbiology and Immunology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Division of Pulmonary and Critical Care Medicine, Department of Medicine, Massachusetts General Hospital, Boston, MA 02114, USA
- Harvard Stem Cell Institute, Cambridge, MA 02138, USA
- Klarman Cell Observatory, Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA
| | - Jatin M. Vyas
- Division of Infectious Diseases, Massachusetts General Hospital, Boston, MA 02114, USA
- Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
27
|
Hawes AM, Permpalung N. Diagnosis and Antifungal Prophylaxis for COVID-19 Associated Pulmonary Aspergillosis. Antibiotics (Basel) 2022; 11:antibiotics11121704. [PMID: 36551361 PMCID: PMC9774425 DOI: 10.3390/antibiotics11121704] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 11/19/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
The COVID-19 pandemic has redemonstrated the importance of the fungal-after-viral phenomenon, and the question of whether prophylaxis should be used to prevent COVID-19-associated pulmonary aspergillosis (CAPA). A distinct pathophysiology from invasive pulmonary aspergillosis (IPA), CAPA has an incidence that ranges from 5% to 30%, with significant mortality. The aim of this work was to describe the current diagnostic landscape of CAPA and review the existing literature on antifungal prophylaxis. A variety of definitions for CAPA have been described in the literature and the performance of the diagnostic tests for CAPA is limited, making diagnosis a challenge. There are only six studies that have investigated antifungal prophylaxis for CAPA. The two studied drugs have been posaconazole, either a liquid formulation via an oral gastric tube or an intravenous formulation, and inhaled amphotericin. While some studies have revealed promising results, they are limited by small sample sizes and bias inherent to retrospective studies. Additionally, as the COVID-19 pandemic changes and we see fewer intubated and critically ill patients, it will be more important to recognize these fungal-after-viral complications among non-critically ill, immunocompromised patients. Randomized controlled trials are needed to better understand the role of antifungal prophylaxis.
Collapse
Affiliation(s)
- Armani M. Hawes
- Correspondence: ; Tel.: +1-410-955-5000; Fax: +1-210-892-3847
| | | |
Collapse
|
28
|
Lo Cascio G, Bazaj A, Trovato L, Sanna S, Andreoni S, Blasi E, Conte M, Fazii P, Oliva E, Lepera V, Lombardi G, Farina C. Multicenter Italian Study on "In Vitro Activities" of Isavuconazole, Voriconazole, Amphotericin B, and Caspofungin for Aspergillus Species: Comparison between Sensititre TM YeastOne TM and MIC Test Strip. Infect Drug Resist 2022; 15:5839-5848. [PMID: 36217342 PMCID: PMC9547591 DOI: 10.2147/idr.s367082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 09/16/2022] [Indexed: 11/05/2022] Open
Abstract
In this study the activity of Isavuconazole, Voriconazole, Amphotericin B, and Caspofungin against 224 clinical isolates of Aspergillus spp. originating from seven Italian hospitals, was comparatively evaluated with two commercial antifungal susceptibility tests (AST): SensititreTM YeastOneTM (SYO) and MIC Test Strip. More attention was focused on Isavuconazole activity, given the new introduction of the drug in widely distributed antifungal susceptibilities methods in the clinical microbiology lab. The minimum inhibitory concentrations of antifungal drug that can inhibit the growth of pathogen by 90% (MIC90) for Isavuconazole detected by SYO were 0.5, 1, 0.25, and 2 µg/mL for Aspergillus fumigatus, Aspergillus flavus, Aspergillus terreus, and Aspergillus niger, respectively, whilst they were 0.25, 0.25, 0.5, and 0.75 µg/mL by MIC Test Strip. Essential agreement between the two tested methods for Isavuconazole is 70% for all the species tested, 75.7% for A. fumigatus, 45.2% for A. flavus, 90.6% for A. terreus, and 40% for A. niger. Although the tested strains do not express any phenotypic resistance, MIC results were quite different if tested with microdilution broth or gradient agar method. This is the first Italian multicenter report on Isavuconazole MIC obtained employing the widely used SensititreTM Yeast OneTM (SYO) and MIC Test Strip on clinical isolates of Aspergillus.
Collapse
Affiliation(s)
- Giuliana Lo Cascio
- Clinical Microbiology and Virology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy,Medical Mycology Committee, Italian Society of Clinical Microbiologist, Milan, Italy,Clinical Microbiology and Virology Unit, Azienda USL, Piacenza, Italy,Correspondence: Giuliana Lo Cascio, Email
| | - Alda Bazaj
- Clinical Microbiology and Virology Unit, Azienda Ospedaliera Universitaria Integrata, Verona, Italy
| | - Laura Trovato
- Medical Mycology Committee, Italian Society of Clinical Microbiologist, Milan, Italy,Clinical Microbiology, Azienda Ospedaliera Universitaria- Policlinico Vittorio Emanuele, Catania, Italy
| | - Silvana Sanna
- Medical Mycology Committee, Italian Society of Clinical Microbiologist, Milan, Italy,Microbiology and Virology Unit, Azienda Ospedaliera Universitaria, Sassari, Italy
| | - Stefano Andreoni
- Medical Mycology Committee, Italian Society of Clinical Microbiologist, Milan, Italy,Microbiology and Virology Unit, Azienda Ospedaliero Universitaria Maggiore della Carità, Novara, Italy
| | - Elisabetta Blasi
- Medical Mycology Committee, Italian Society of Clinical Microbiologist, Milan, Italy,Clinical Microbiology, Azienda Ospedaliero-Universitaria, Policlinico di Modena, Modena, Italy
| | - Marco Conte
- Medical Mycology Committee, Italian Society of Clinical Microbiologist, Milan, Italy,Microbiology and Virology Unit, Grande Ospedale Metropolitano Bianchi- Melacrino- Morelli, Reggio, Calabria, Italy
| | - Paolo Fazii
- Medical Mycology Committee, Italian Society of Clinical Microbiologist, Milan, Italy,Clinical Microbiology and Virology P.O. Spirito Santo, Pescara, Italy
| | - Ester Oliva
- Clinical Microbiology and Virology Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| | - Valentina Lepera
- Clinical Microbiology, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Gianluigi Lombardi
- Medical Mycology Committee, Italian Society of Clinical Microbiologist, Milan, Italy,Clinical Microbiology, ASST Grande Ospedale Metropolitano Niguarda, Milan, Italy
| | - Claudio Farina
- Medical Mycology Committee, Italian Society of Clinical Microbiologist, Milan, Italy,Clinical Microbiology and Virology Unit, ASST Papa Giovanni XXIII, Bergamo, Italy
| |
Collapse
|
29
|
Type I interferons during host–fungus interactions: Is antifungal immunity going viral? PLoS Pathog 2022; 18:e1010740. [PMID: 36006878 PMCID: PMC9409562 DOI: 10.1371/journal.ppat.1010740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
30
|
Feys S, Gonçalves SM, Khan M, Choi S, Boeckx B, Chatelain D, Cunha C, Debaveye Y, Hermans G, Hertoghs M, Humblet-Baron S, Jacobs C, Lagrou K, Marcelis L, Maizel J, Meersseman P, Nyga R, Seldeslachts L, Starick MR, Thevissen K, Vandenbriele C, Vanderbeke L, Vande Velde G, Van Regenmortel N, Vanstapel A, Vanmassenhove S, Wilmer A, Van De Veerdonk FL, De Hertogh G, Mombaerts P, Lambrechts D, Carvalho A, Van Weyenbergh J, Wauters J. Lung epithelial and myeloid innate immunity in influenza-associated or COVID-19-associated pulmonary aspergillosis: an observational study. THE LANCET. RESPIRATORY MEDICINE 2022; 10:1147-1159. [PMID: 36029799 PMCID: PMC9401975 DOI: 10.1016/s2213-2600(22)00259-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/23/2022] [Accepted: 06/24/2022] [Indexed: 12/14/2022]
Abstract
BACKGROUND Influenza-associated pulmonary aspergillosis (IAPA) and COVID-19-associated pulmonary aspergillosis (CAPA) affect about 15% of critically ill patients with influenza or COVID-19, respectively. These viral-fungal coinfections are difficult to diagnose and are associated with increased mortality, but data on their pathophysiology are scarce. We aimed to explore the role of lung epithelial and myeloid innate immunity in patients with IAPA or CAPA. METHODS In this observational study, we retrospectively recruited patients who had been admitted to the intensive care unit (ICU) of University Hospitals Leuven, Belgium, requiring non-invasive or invasive ventilation because of severe influenza or COVID-19, with or without aspergillosis, between Jan 1, 2011, and March 31, 2021, whose bronchoalveolar lavage samples were available at the hospital biobank. Additionally, biobanked in vivo tracheobronchial biopsy samples from patients with IAPA or CAPA and invasive Aspergillus tracheobronchitis admitted to ICUs requiring invasive ventilation between the same dates were collected from University Hospitals Leuven, Hospital Network Antwerp (Belgium), and Amiens-Picardie University Hospital (France). We did nCounter gene expression analysis of 755 genes linked to myeloid innate immunity and protein analysis of 47 cytokines, chemokines, and growth factors on the bronchoalveolar lavage samples. Gene expression data were used to infer cell fractions by use of CIBERSORTx, to perform hypergeometric enrichment pathway analysis and gene set enrichment analysis, and to calculate pathway module scores for the IL-1β, TNF-α, type I IFN, and type II IFN (IFNγ) pathways. We did RNAScope targeting influenza virus or SARS-CoV-2 RNA and GeoMx spatial transcriptomics on the tracheobronchial biopsy samples. FINDINGS Biobanked bronchoalveolar lavage samples were retrieved from 166 eligible patients, of whom 40 had IAPA, 52 had influenza without aspergillosis, 33 had CAPA, and 41 had COVID-19 without aspergillosis. We did nCounter gene expression analysis on bronchoalveolar lavage samples from 134 patients, protein analysis on samples from 162 patients, and both types of analysis on samples from 130 patients. We performed RNAScope and spatial transcriptomics on the tracheobronchial biopsy samples from two patients with IAPA plus invasive Aspergillus tracheobronchitis and two patients with CAPA plus invasive Aspergillus tracheobronchitis. We observed a downregulation of genes associated with antifungal effector functions in patients with IAPA and, to a lesser extent, in patients with CAPA. We found a downregulated expression of several genes encoding proteins with functions in the opsonisation, recognition, and killing of conidia in patients with IAPA versus influenza only and in patients with CAPA versus COVID-19 only. Several genes related to LC3-associated phagocytosis, autophagy, or both were differentially expressed. Patients with CAPA had significantly lower neutrophil cell fractions than did patients with COVID-19 only. Patients with IAPA or CAPA had downregulated IFNγ signalling compared with patients with influenza only or COVID-19 only, respectively. The concentrations of several fibrosis-related growth factors were significantly elevated in the bronchoalveolar lavage fluid from patients with IAPA versus influenza only and from patients with CAPA versus COVID-19 only. In one patient with CAPA, we visualised an active or very recent SARS-CoV-2 infection disrupting the epithelial barrier, facilitating tissue-invasive aspergillosis. INTERPRETATION Our results reveal a three-level breach in antifungal immunity in IAPA and CAPA, affecting the integrity of the epithelial barrier, the capacity to phagocytise and kill Aspergillus spores, and the ability to destroy Aspergillus hyphae, which is mainly mediated by neutrophils. The potential of adjuvant IFNγ in the treatment of IAPA and CAPA should be investigated. FUNDING Research Foundation Flanders, Coronafonds, the Max Planck Society, the Fundação para a Ciência e a Tecnologia, the European Regional Development Fund, "la Caixa" Foundation, and Horizon 2020.
Collapse
Affiliation(s)
- Simon Feys
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium,Medical Intensive Care Uni, University Hospitals Leuven, Leuven, Belgium
| | - Samuel M Gonçalves
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Mona Khan
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Sumin Choi
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Bram Boeckx
- Department of Human Genetics, KU Leuven, Leuven, Belgium,VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Denis Chatelain
- Department of Pathology, CHU Amiens Picardie, Amiens, France
| | - Cristina Cunha
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Yves Debaveye
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium,Department of Intensive Care Medicine, University Hospitals Leuven, Leuven, Belgium
| | - Greet Hermans
- Department of Cellular and Molecular Medicine, KU Leuven, Leuven, Belgium,Medical Intensive Care Uni, University Hospitals Leuven, Leuven, Belgium
| | - Marjan Hertoghs
- Department of Pathology, Network Hospitals GZA-ZNA, Antwerp, Belgium
| | | | - Cato Jacobs
- Medical Intensive Care Uni, University Hospitals Leuven, Leuven, Belgium
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium,Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, Leuven, Belgium
| | - Lukas Marcelis
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Julien Maizel
- Department of Medical Intensive Care, CHU Amiens Picardie, Amiens, France
| | - Philippe Meersseman
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium,Medical Intensive Care Uni, University Hospitals Leuven, Leuven, Belgium
| | - Rémy Nyga
- Department of Medical Intensive Care, CHU Amiens Picardie, Amiens, France
| | | | | | - Karin Thevissen
- Department of Microbial and Molecular Systems, Center of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium
| | - Christophe Vandenbriele
- Department of Cardiovascular Sciences, KU Leuven, Leuven, Belgium,Department of Cardiovascular Diseases, University Hospitals Leuven, Leuven, Belgium
| | - Lore Vanderbeke
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium,Medical Intensive Care Uni, University Hospitals Leuven, Leuven, Belgium
| | | | - Niels Van Regenmortel
- Department of Intensive Care Medicine, ZNA Stuivenberg, Antwerp, Belgium,Department of Intensive Care Medicine, Antwerp University Hospital, Edegem, Belgium
| | - Arno Vanstapel
- Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Sam Vanmassenhove
- Department of Human Genetics, KU Leuven, Leuven, Belgium,VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Alexander Wilmer
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium,Medical Intensive Care Uni, University Hospitals Leuven, Leuven, Belgium
| | | | - Gert De Hertogh
- Department of Imaging and Pathology, KU Leuven, Leuven, Belgium,Department of Pathology, University Hospitals Leuven, Leuven, Belgium
| | - Peter Mombaerts
- Max Planck Research Unit for Neurogenetics, Frankfurt, Germany
| | - Diether Lambrechts
- Department of Human Genetics, KU Leuven, Leuven, Belgium,VIB-KU Leuven Center for Cancer Biology, Leuven, Belgium
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal,ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Johan Van Weyenbergh
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium
| | - Joost Wauters
- Department of Microbiology, Immunology and Transplantation, KU Leuven, Leuven, Belgium,Medical Intensive Care Uni, University Hospitals Leuven, Leuven, Belgium,Correspondence to: Dr Joost Wauters, Medical Intensive Care Unit, University Hospitals Leuven, Leuven 3000, Belgium
| |
Collapse
|
31
|
Fischer T, El Baz Y, Graf N, Wildermuth S, Leschka S, Kleger GR, Pietsch U, Frischknecht M, Scanferla G, Strahm C, Wälti S, Dietrich TJ, Albrich WC. Clinical and Imaging Features of COVID-19-Associated Pulmonary Aspergillosis. Diagnostics (Basel) 2022; 12:diagnostics12051201. [PMID: 35626356 PMCID: PMC9140144 DOI: 10.3390/diagnostics12051201] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/04/2022] [Accepted: 05/09/2022] [Indexed: 12/15/2022] Open
Abstract
Background: COVID-19 superinfection by Aspergillus (COVID-19-associated aspergillosis, CAPA) is increasingly observed due to increased awareness and use of corticosteroids. The aim of this study is to compare clinical and imaging features between COVID-19 patients with and without associated pulmonary aspergillosis. Material and Methods: In this case–control study, hospitalized patients between March 2020 and March 2021 were evaluated. Two observers independently compared 105 chest CTs of 52 COVID-19 patients without pulmonary aspergillosis to 40 chest CTs of 13 CAPA patients. The following features were evaluated: lung involvement, predominant main pattern (ground glass opacity, crazy paving, consolidation) and additional lung and chest findings. Chronological changes in the abnormal extent upon CT and chronological changes in the main patterns were compared with mixed models. Patient-wise comparisons of additional features and demographic and clinical data were performed using Student’s t-test, Chi-squared test, Fisher’s exact tests and Wilcoxon rank-sum tests. Results: Compared to COVID-19 patients without pulmonary aspergillosis, CAPA patients were older (mean age (±SD): 70.3 (±7.8) versus 63.5 (±9.5) years (p = 0.01). The time-dependent evolution rates for consolidation (p = 0.02) and ground glass (p = 0.006) differed. In early COVID-19 disease, consolidation was associated with CAPA, whereas ground glass was less common. Chronological changes in the abnormal extent upon CT did not differ (p = 0.29). Regardless of the time point, bronchial wall thickening was observed more frequently in CAPA patients (p = 0.03). Conclusions: CAPA patients showed a tendency for consolidation in early COVID-19 disease. Bronchial wall thickening and higher patient age were associated with CAPA. The overall lung involvement was similar between both groups.
Collapse
Affiliation(s)
- Tim Fischer
- Division of Radiology and Nuclear Medicine, St. Gallen Cantonal Hospital, 9007 St. Gallen, Switzerland; (Y.E.B.); (S.W.); (S.L.); (S.W.); (T.J.D.)
- Correspondence: ; Tel.: +41-71-494-2185
| | - Yassir El Baz
- Division of Radiology and Nuclear Medicine, St. Gallen Cantonal Hospital, 9007 St. Gallen, Switzerland; (Y.E.B.); (S.W.); (S.L.); (S.W.); (T.J.D.)
| | - Nicole Graf
- Clinical Trials Unit, St. Gallen Cantonal Hospital, 9007 St. Gallen, Switzerland;
| | - Simon Wildermuth
- Division of Radiology and Nuclear Medicine, St. Gallen Cantonal Hospital, 9007 St. Gallen, Switzerland; (Y.E.B.); (S.W.); (S.L.); (S.W.); (T.J.D.)
| | - Sebastian Leschka
- Division of Radiology and Nuclear Medicine, St. Gallen Cantonal Hospital, 9007 St. Gallen, Switzerland; (Y.E.B.); (S.W.); (S.L.); (S.W.); (T.J.D.)
| | - Gian-Reto Kleger
- Division of Intensive Care, St. Gallen Cantonal Hospital, 9007 St. Gallen, Switzerland;
| | - Urs Pietsch
- Department of Anesthesia, Intensive Care, Emergency and Pain Medicine, St. Gallen Cantonal Hospital, 9007 St. Gallen, Switzerland;
| | - Manuel Frischknecht
- Division of Infectious Diseases and Hospital Epidemiology, St. Gallen Cantonal Hospital, 9007 St. Gallen, Switzerland; (M.F.); (G.S.); (C.S.); (W.C.A.)
| | - Giulia Scanferla
- Division of Infectious Diseases and Hospital Epidemiology, St. Gallen Cantonal Hospital, 9007 St. Gallen, Switzerland; (M.F.); (G.S.); (C.S.); (W.C.A.)
| | - Carol Strahm
- Division of Infectious Diseases and Hospital Epidemiology, St. Gallen Cantonal Hospital, 9007 St. Gallen, Switzerland; (M.F.); (G.S.); (C.S.); (W.C.A.)
| | - Stephan Wälti
- Division of Radiology and Nuclear Medicine, St. Gallen Cantonal Hospital, 9007 St. Gallen, Switzerland; (Y.E.B.); (S.W.); (S.L.); (S.W.); (T.J.D.)
| | - Tobias Johannes Dietrich
- Division of Radiology and Nuclear Medicine, St. Gallen Cantonal Hospital, 9007 St. Gallen, Switzerland; (Y.E.B.); (S.W.); (S.L.); (S.W.); (T.J.D.)
| | - Werner C. Albrich
- Division of Infectious Diseases and Hospital Epidemiology, St. Gallen Cantonal Hospital, 9007 St. Gallen, Switzerland; (M.F.); (G.S.); (C.S.); (W.C.A.)
| |
Collapse
|
32
|
Venturini S, Reffo I, Sagnelli V, Avolio M, Fossati S, Callegari A, DE Rosa R, Pellis T, Nadalin G, Crapis M. COVID-19 associated pulmonary aspergillosis. A real problem? Minerva Anestesiol 2022; 88:314-315. [PMID: 35410106 DOI: 10.23736/s0375-9393.21.16214-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Sergio Venturini
- Unit of Infectious Diseases, Santa Maria degli Angeli Hospital, Azienda per i Servizi Sanitari Friuli Occidentale, Pordenone, Italy
| | - Ingrid Reffo
- Anesthesia and Intensive Care Unit, Department of Emergency and Critical Care, Santa Maria dei Battuti Hospital, Azienda per i Servizi Sanitari Friuli Occidentale, San Vito al Tagliamento, Pordenone, Italy -
| | - Vincenzo Sagnelli
- Anesthesia and Intensive Care Unit, Department of Emergency and Critical Care, Santa Maria degli Angeli Hospital, Azienda per i Servizi Sanitari Friuli Occidentale, Pordenone, Italy
| | - Manuela Avolio
- Unit of Microbiology, Santa Maria degli Angeli Hospital, Azienda per i Servizi Sanitari Friuli Occidentale, Pordenone, Italy
| | - Sara Fossati
- Unit of Infectious Diseases, Santa Maria degli Angeli Hospital, Azienda per i Servizi Sanitari Friuli Occidentale, Pordenone, Italy
| | - Astrid Callegari
- Unit of Infectious Diseases, Santa Maria degli Angeli Hospital, Azienda per i Servizi Sanitari Friuli Occidentale, Pordenone, Italy
| | - Rita DE Rosa
- Unit of Microbiology, Santa Maria degli Angeli Hospital, Azienda per i Servizi Sanitari Friuli Occidentale, Pordenone, Italy
| | - Tommaso Pellis
- Anesthesia and Intensive Care Unit, Department of Emergency and Critical Care, Santa Maria degli Angeli Hospital, Azienda per i Servizi Sanitari Friuli Occidentale, Pordenone, Italy
| | - Gabriella Nadalin
- Anesthesia and Intensive Care Unit, Department of Emergency and Critical Care, Santa Maria dei Battuti Hospital, Azienda per i Servizi Sanitari Friuli Occidentale, San Vito al Tagliamento, Pordenone, Italy
| | - Massimo Crapis
- Unit of Infectious Diseases, Santa Maria degli Angeli Hospital, Azienda per i Servizi Sanitari Friuli Occidentale, Pordenone, Italy
| |
Collapse
|
33
|
Worku DA. SARS-CoV-2 Associated Immune Dysregulation and COVID-Associated Pulmonary Aspergilliosis (CAPA): A Cautionary Tale. Int J Mol Sci 2022; 23:3228. [PMID: 35328649 PMCID: PMC8953852 DOI: 10.3390/ijms23063228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 02/01/2023] Open
Abstract
As the global SARS-CoV-2 pandemic continues to plague healthcare systems, it has become clear that opportunistic pathogens cause a considerable proportion of SARS-CoV-2-associated mortality and morbidity cases. Of these, Covid-Associated Pulmonary Aspergilliosis (CAPA) is a major concern with evidence that it occurs in the absence of traditional risk factors such as neutropenia and is diagnostically challenging for the attending physician. In this review, we focus on the immunopathology of SARS-CoV-2 and how this potentiates CAPA through dysregulation of local and systemic immunity as well as the unintended consequences of approved COVID treatments including corticosteroids and IL-6 inhibitors. Finally, we will consider how knowledge of the above may aid in the diagnosis of CAPA using current diagnostics and what treatment should be instituted in probable and confirmed cases.
Collapse
Affiliation(s)
- Dominic Adam Worku
- Infectious Diseases and Microbiology Department, Morriston Hospital, Swansea University Health Board, Swansea SA6 6NL, UK;
- Public Health Wales, Cardiff CF10 4BZ, UK
| |
Collapse
|
34
|
Critically ill patients with COVID-19 show lung fungal dysbiosis with reduced microbial diversity in Candida spp colonized patients. Int J Infect Dis 2022; 117:233-240. [PMID: 35150910 PMCID: PMC8828296 DOI: 10.1016/j.ijid.2022.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2021] [Revised: 02/03/2022] [Accepted: 02/06/2022] [Indexed: 12/16/2022] Open
Abstract
Background The COVID-19 pandemic has intensified interest in how the infection affects the lung microbiome of critically ill patients and how it contributes to acute respiratory distress syndrome (ARDS). We aimed to characterize the lower respiratory tract mycobiome of critically ill patients with COVID-19 in comparison to patients without COVID-19. Methods We performed an internal transcribed spacer 2 (ITS2) profiling with the Illumina MiSeq platform on 26 respiratory specimens from patients with COVID-19 as well as from 26 patients with non–COVID-19 pneumonia. Results Patients with COVID-19 were more likely to be colonized with Candida spp. ARDS was associated with lung dysbiosis characterized by a shift to Candida species colonization and a decrease of fungal diversity. We also observed higher bacterial phylogenetic distance among taxa in colonized patients with COVID-19. In patients with COVID-19 not colonized with Candida spp., ITS2 amplicon sequencing revealed an increase of Ascomycota unassigned spp. and 1 Aspergillus spp.–positive specimen. In addition, we found that corticosteroid therapy was frequently associated with positive Galactomannan cell wall component of Aspergillus spp. among patients with COVID-19. Conclusion Our study underpins that ARDS in patients with COVID-19 is associated with lung dysbiosis and that an increased density of Ascomycota unassigned spp. is present in patients not colonized with Candida spp.
Collapse
|
35
|
Leistner R, Schroeter L, Adam T, Poddubnyy D, Stegemann M, Siegmund B, Maechler F, Geffers C, Schwab F, Gastmeier P, Treskatsch S, Angermair S, Schneider T. Corticosteroids as risk factor for COVID-19-associated pulmonary aspergillosis in intensive care patients. Crit Care 2022; 26:30. [PMID: 35090528 PMCID: PMC8796178 DOI: 10.1186/s13054-022-03902-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/16/2022] [Indexed: 12/15/2022] Open
Abstract
PURPOSE Corticosteroids, in particular dexamethasone, are one of the primary treatment options for critically ill COVID-19 patients. However, there are a growing number of cases that involve COVID-19-associated pulmonary aspergillosis (CAPA), and it is unclear whether dexamethasone represents a risk factor for CAPA. Our aim was to investigate a possible association of the recommended dexamethasone therapy with a risk of CAPA. METHODS We performed a study based on a cohort of COVID-19 patients treated in 2020 in our 13 intensive care units at Charité Universitätsmedizin Berlin. We used ECMM/ISHM criteria for the CAPA diagnosis and performed univariate and multivariable analyses of clinical parameters to identify risk factors that could result in a diagnosis of CAPA. RESULTS Altogether, among the n = 522 intensive care patients analyzed, n = 47 (9%) patients developed CAPA. CAPA patients had a higher simplified acute physiology score (SAPS) (64 vs. 53, p < 0.001) and higher levels of IL-6 (1,005 vs. 461, p < 0.008). They more often had severe acute respiratory distress syndrome (ARDS) (60% vs. 41%, p = 0.024), renal replacement therapy (60% vs. 41%, p = 0.024), and they were more likely to die (64% vs. 48%, p = 0.049). The multivariable analysis showed dexamethasone (OR 3.110, CI95 1.112-8.697) and SAPS (OR 1.063, CI95 1.028-1.098) to be independent risk factors for CAPA. CONCLUSION In our study, dexamethasone therapy as recommended for COVID-19 was associated with a significant three times increase in the risk of CAPA. TRIAL REGISTRATION Registration number DRKS00024578, Date of registration March 3rd, 2021.
Collapse
Affiliation(s)
- Rasmus Leistner
- Division of Gastroenterology, Infectious Diseases and Rheumatology, Medical Department, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
- Institute of Hygiene and Environmental Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany.
| | - Lisa Schroeter
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Thomas Adam
- Labor Berlin, Charité Vivantes GmbH, Berlin, Germany
| | - Denis Poddubnyy
- Division of Gastroenterology, Infectious Diseases and Rheumatology, Medical Department, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Miriam Stegemann
- Department of Infectious Diseases and Respiratory Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Britta Siegmund
- Division of Gastroenterology, Infectious Diseases and Rheumatology, Medical Department, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Friederike Maechler
- Institute of Hygiene and Environmental Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Christine Geffers
- Institute of Hygiene and Environmental Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Frank Schwab
- Institute of Hygiene and Environmental Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Petra Gastmeier
- Institute of Hygiene and Environmental Medicine, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| | - Sascha Treskatsch
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Stefan Angermair
- Department of Anesthesiology and Intensive Care Medicine, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany, Charité Campus Benjamin Franklin, Berlin, Germany
| | - Thomas Schneider
- Division of Gastroenterology, Infectious Diseases and Rheumatology, Medical Department, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
36
|
Novel Clinical and Laboratorial Challenges in Aspergillosis. Microorganisms 2022; 10:microorganisms10020259. [PMID: 35208714 PMCID: PMC8877562 DOI: 10.3390/microorganisms10020259] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/18/2022] [Accepted: 01/19/2022] [Indexed: 01/04/2023] Open
Abstract
In recent years, research in the areas of Aspergillus and aspergillosis has continued to advance rapidly, including advancements in genomics, immunological studies, clinical areas, and diagnostic areas. Recently, new risk groups for the development of aspergillosis have emerged—patients with influenza- or COVID-19-ssociated pulmonary aspergillosis. The rise and spread of antifungal resistances have also become a clinical concern in some geographic areas and have drawn the attention of clinicians due to difficulties in treating these infections. In this paper, a snapshot of these issues is presented, emphasizing these novel clinical and laboratorial challenges in the aspergillosis field and focusing on their actual relevance.
Collapse
|
37
|
Feys S, Almyroudi MP, Braspenning R, Lagrou K, Spriet I, Dimopoulos G, Wauters J. A Visual and Comprehensive Review on COVID-19-Associated Pulmonary Aspergillosis (CAPA). J Fungi (Basel) 2021; 7:1067. [PMID: 34947049 PMCID: PMC8708864 DOI: 10.3390/jof7121067] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/07/2021] [Accepted: 12/09/2021] [Indexed: 01/08/2023] Open
Abstract
Coronavirus disease 19 (COVID-19)-associated pulmonary aspergillosis (CAPA) is a severe fungal infection complicating critically ill COVID-19 patients. Numerous retrospective and prospective studies have been performed to get a better grasp on this lethal co-infection. We performed a qualitative review and summarized data from 48 studies in which 7047 patients had been included, of whom 820 had CAPA. The pooled incidence of proven, probable or putative CAPA was 15.1% among 2953 ICU-admitted COVID-19 patients included in 18 prospective studies. Incidences showed great variability due to multiple factors such as discrepancies in the rate and depth of the fungal work-up. The pathophysiology and risk factors for CAPA are ill-defined, but therapy with corticosteroids and anti-interleukin-6 therapy potentially confer the biggest risk. Sampling for mycological work-up using bronchoscopy is the cornerstone for diagnosis, as imaging is often aspecific. CAPA is associated with an increased mortality, but we do not have conclusive data whether therapy contributes to an increased survival in these patients. We conclude our review with a comparison between influenza-associated pulmonary aspergillosis (IAPA) and CAPA.
Collapse
Affiliation(s)
- Simon Feys
- Medical Intensive Care Unit, University Hospitals Leuven, 3000 Leuven, Belgium;
- Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium;
| | - Maria Panagiota Almyroudi
- Department of Emergency Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece;
| | - Reinout Braspenning
- Medical Intensive Care Unit, University Hospitals Leuven, 3000 Leuven, Belgium;
| | - Katrien Lagrou
- Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium;
- Department of Laboratory Medicine and National Reference Center for Mycosis, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Isabel Spriet
- Pharmacy Department, University Hospitals Leuven, 3000 Leuven, Belgium;
- Department of Pharmaceutical and Pharmacological Sciences, KU Leuven, 3000 Leuven, Belgium
| | - George Dimopoulos
- ICU of 1st Department of Critical Care, Sotiria Hospital, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Joost Wauters
- Medical Intensive Care Unit, University Hospitals Leuven, 3000 Leuven, Belgium;
- Department of Microbiology, Immunology and Transplantation, KU Leuven, 3000 Leuven, Belgium;
| |
Collapse
|
38
|
Rauwolf KK, Hoertnagl C, Lass-Floerl C, Groll AH. Interaction in vitro of pulmonary surfactant with antifungal agents used for treatment and prevention of invasive aspergillosis. J Antimicrob Chemother 2021; 77:695-698. [PMID: 34788449 DOI: 10.1093/jac/dkab422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 10/19/2021] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Optimizing antifungal therapy is important to improve outcomes in severely immunocompromised patients. OBJECTIVES We analysed the in vitro interaction between pulmonary surfactant and antifungal agents used for management of invasive pulmonary aspergillosis. METHODS Amphotericin B formulations, mould-active triazoles and echinocandins were tested in vitro against 24 clinical isolates of different Aspergillus spp. with and without the addition of a commercial porcine surfactant (Curosurf®; Poractant alfa, Nycomed, Austria). The data are presented as MIC or minimum effective concentration (MEC) ranges, as MIC or MEC values that inhibited 90% of the isolates (MIC90 or MEC90) and as geometric mean (GM) MIC or MEC values. RESULTS For amphotericin B products, addition of surfactant to a final concentration of 10% led to a statistically significant reduction of the GM MIC for all Aspergillus isolates tested after 24 h (0.765 versus 0.552 mg/L; P < 0.05). For the mould-active triazoles, addition of 10% surfactant resulted in a significantly higher GM MIC at 48 h (0.625 versus 0.898 mg/L; P < 0.05). For the echinocandins, the addition of 10% surfactant led to a significantly higher GM MEC after both 24 h (0.409 versus 0.6532 mg/L; P < 0.01) and 48 h (0.527 versus 0.9378 mg/L; P < 0.01). There were no meaningful differences between individual members of the three existing classes of antifungal agents or between the different Aspergillus spp. tested. CONCLUSIONS Using EUCAST methodology, addition of porcine surfactant up to a concentration of 10% had a minor, and presumably non-relevant, impact on the in vitro activity of antifungal agents used in prophylaxis and treatment of invasive pulmonary aspergillosis.
Collapse
Affiliation(s)
- Kerstin K Rauwolf
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Paediatric Haematology/Oncology, University Children's Hospital Münster, Münster, Germany.,Division of Pediatric Oncology, University Children's Hospital, Zürich, Switzerland
| | - Caroline Hoertnagl
- Institute of Hygiene and Medical Microbiology, Christian Doppler Laboratory for Invasive Fungal Infections, Medical University of Innsbruck, Innsbruck, Austria
| | - Cornelia Lass-Floerl
- Institute of Hygiene and Medical Microbiology, Christian Doppler Laboratory for Invasive Fungal Infections, Medical University of Innsbruck, Innsbruck, Austria
| | - Andreas H Groll
- Infectious Disease Research Program, Center for Bone Marrow Transplantation and Department of Paediatric Haematology/Oncology, University Children's Hospital Münster, Münster, Germany
| |
Collapse
|
39
|
Drummond RA, Obar JJ. Editorial overview: Niche-specific and species-specific host-fungal interactions - how do they impact human health? Curr Opin Microbiol 2021; 64:162-165. [PMID: 34696987 DOI: 10.1016/j.mib.2021.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Rebecca A Drummond
- Institute of Immunology & Immunotherapy, Institute of Microbiology & Infection, University of Birmingham, Birmingham, United Kingdom.
| | - Joshua J Obar
- Geisel School of Medicine at Dartmouth, Department of Microbiology & Immunology, Lebanon, NH 03756, United States.
| |
Collapse
|
40
|
Schruefer S, Spadinger A, Kleinemeier C, Schmid L, Ebel F. Ypd1 Is an Essential Protein of the Major Fungal Pathogen Aspergillus fumigatus and a Key Element in the Phosphorelay That Is Targeted by the Antifungal Drug Fludioxonil. FRONTIERS IN FUNGAL BIOLOGY 2021; 2:756990. [PMID: 37744118 PMCID: PMC10512271 DOI: 10.3389/ffunb.2021.756990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Accepted: 09/20/2021] [Indexed: 09/26/2023]
Abstract
Aspergillus fumigatus is a major fungal pathogen causing life threatening infections in immunocompromised humans and certain animals. The HOG pathway is for two reasons interesting in this context: firstly, it is a stress signaling pathway that contributes to the ability of this pathogen to adapt to various stress conditions and secondly, it is the target of antifungal agents, such as fludioxonil or pyrrolnitrin. In this study, we demonstrate that Ypd1 is an essential protein in A. fumigatus. As the central component of the multistep phosphorelay it represents the functional link between the sensor histidine kinases and the downstream response regulators SskA and Skn7. A GFP-Ypd1 fusion was found to reside in both, the cytoplasm and the nucleus and this pattern was only slightly affected by fludioxonil. A strain in which the ypd1 gene is expressed from a tet-on promoter construct is unable to grow under non-inducing conditions and shows the characteristic features of A. fumigatus wild type hyphae treated with fludioxonil. Expression of wild type Ypd1 prevents this lethal phenotype, but expression of an Ypd1 mutant protein lacking the conserved histidine at position 89 was unable to do so, which confirms that A. fumigatus Ypd1 is a phosphotransfer protein. Generation of ypd1tet-on variants of several mutant strains revealed that the lethal phenotype associated with low amounts of Ypd1 depends on SskA, but not on TcsC or Skn7. The ΔsskA ypd1tet-on, but not the ΔsskAΔskn7 ypd1tet-on mutant, was sensitive to fludioxonil, which underlines the importance of Skn7 in this context. We finally succeeded to delete ypd1, but only if sskA and skn7 were both inactivated, not in a ΔsskA single mutant. Hence, a deletion of ypd1 and an inactivation of Ypd1 by fludioxonil result in similar phenotypes and the two response regulators SskA and Skn7 are involved in both processes albeit with a different relative importance.
Collapse
Affiliation(s)
| | | | | | | | - Frank Ebel
- Department of Veterinary Sciences, Institute for Infectious Diseases and Zoonoses, Chair for Bacteriology and Mycology, Ludwig-Maximilians-University, Munich, Germany
| |
Collapse
|
41
|
Affiliation(s)
- Kyung Soo Lee
- From the Department of Radiology (K.S.L.) and Division of Infectious Diseases (Y.M.Y.) of Internal Medicine, Samsung ChangWon Hospital, Sungkyunkwan University School of Medicine, ChangWon, Gyeongsangnam-Do, 51353 Korea
| | - Yu Mi Wi
- From the Department of Radiology (K.S.L.) and Division of Infectious Diseases (Y.M.Y.) of Internal Medicine, Samsung ChangWon Hospital, Sungkyunkwan University School of Medicine, ChangWon, Gyeongsangnam-Do, 51353 Korea
| |
Collapse
|
42
|
Moyes DL, Guimarães AJ, Figueiredo RT. Editorial: Immunity to Fungal Infections: Insights From the Innate Immune Recognition and Antifungal Effector Mechanisms. Front Microbiol 2021; 12:714013. [PMID: 34335552 PMCID: PMC8319765 DOI: 10.3389/fmicb.2021.714013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 06/23/2021] [Indexed: 11/17/2022] Open
Affiliation(s)
- David L Moyes
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral and Craniofacial Sciences, King's College London, London, United Kingdom
| | - Allan J Guimarães
- Department of Microbiology and Parasitology, Biomedical Institute, Fluminense Federal University, Niterói, Brazil
| | - Rodrigo T Figueiredo
- Campus Duque de Caxias, Federal University of Rio de Janeiro, Duque de Caxias, Brazil
| |
Collapse
|