1
|
Ratna S, Pradhan L, Vasconcelos MP, Acharya A, Carnahan B, Wang A, Ghosh A, Bolt A, Ellis J, Hyland SN, Hillman AS, Fox JM, Kloxin A, Neunuebel MR, Grimes CL. The Legionella pneumophila peptidoglycan recycling kinase, AmgK, is essential for survival and replication inside host alveolar macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.21.644609. [PMID: 40166355 PMCID: PMC11957156 DOI: 10.1101/2025.03.21.644609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
Bacterial cells are surrounded by a dynamic cell wall which in part is made up of a mesh-like peptidoglycan (PG) layer that provides the cell with structural integrity and resilience. In Gram-positive bacteria, this layer is thick and robust, whereas in Gram-negative bacteria, it is thinner and flexible as the cell is supported by an additional outer membrane. PG undergoes continuous turnover, with degradation products being recycled to maintain cell wall homeostasis. Some Gram-negative species can bypass de novo PG biosynthesis, relying instead on PG recycling to sustain growth and division. Legionella pneumophila (hereafter Legionella), the causative agent of Legionnaires' disease, encodes such recycling machinery within its genome. This study investigates the biochemical, genetic, and pathogenic roles of PG recycling in Legionella. Previously, we have shown that PG can be visualized in both model and native systems using a combination of N-acetylmuramic acid (NAM) probes and PG recycling programs. Here, two PG recycling gene homologs in the Legionella genome lpg0296 (amgK) and lpg0295 (murU) were identified and characterized; chemical biology strategies were used to rigorously track the incorporation of "click"-PG-probes. Deletion of amgK abolished PG labeling, while genetic complementation restored labeling. Additionally, copper-free click chemistry with ultra-fast tetrazine-NAM probes enabled live-cell PG labeling. The data suggest that amgK contributes to the pathogenicity of the organism, as amgK deletion increased Legionella's susceptibility to antibiotics and significantly reduced Legionella's ability to replicate in host alveolar macrophages. An intracellular replication assay demonstrated that while PG recycling is not essential for internalization, successful replication of Legionella within MH-S murine alveolar macrophages requires functional amgK. These findings underscore the essential role of AmgK in Legionella's intracellular survival, emphasizing the importance of PG recycling in pathogenicity, and establish a foundation for developing novel Legionella-specific antibiotic strategies.
Collapse
Affiliation(s)
- Sushanta Ratna
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Lina Pradhan
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Marina P Vasconcelos
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Aastha Acharya
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Bella Carnahan
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Alex Wang
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - Arit Ghosh
- Delaware Biotechnology Institute, UD Flow Cytometry & Single Cell Core, University of Delaware, Newark, Delaware 19716, United States
| | - Abigail Bolt
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Jacob Ellis
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Stephen N Hyland
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Ashlyn S Hillman
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - Joseph M Fox
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
| | - April Kloxin
- Department of Chemical & Biomolecular Engineering, University of Delaware, Newark, Delaware 19716, United States
- Department of Materials Science & Engineering, University of Delaware, Newark, Delaware 19716, United States
| | - M Ramona Neunuebel
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| | - Catherine Leimkuhler Grimes
- Department of Chemistry and Biochemistry, University of Delaware, Newark, Delaware 19716, United States
- Department of Biological Sciences, University of Delaware, Newark, Delaware 19716, United States
| |
Collapse
|
2
|
Kim MJ, Moon EK, Jo HJ, Quan FS, Kong HH. Identifying the function of genes involved in excreted vesicle formation in Acanthamoeba castellanii containing Legionella pneumophila. Parasit Vectors 2023; 16:215. [PMID: 37380986 DOI: 10.1186/s13071-023-05824-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/28/2023] [Indexed: 06/30/2023] Open
Abstract
BACKGROUND Legionella spp. can survive and replicate inside host cells such as protozoa and macrophages. After enough growth, Legionella is released from the host cells as free legionellae or Legionella-filled vesicles. The vesicles support Legionella to survive for a long time in the environment and transmit to a new host. In this study, we identified the differentially expressed genes of Acanthamoeba infected by Legionella (ACA1_114460, ACA1_091500, and ACA1_362260) and examined their roles in the formation of the excreted vesicles and escape of Legionella from the Acanthamoeba. METHODS After ingestion of Escherichia coli and Legionella pneumophila, expression levels of target genes in Acanthamoeba were measured by real-time polymerase chain reaction (PCR) analysis. The roles of target genes were investigated by transfection of small interfering RNA (siRNA). The formation of Legionella-containing excreted vesicles and the vesicular co-localization with the lysosomes were examined by Giemsa stain and LysoTracker stain. RESULTS ACA1_114460, ACA1_091500, and ACA1_362260 were upregulated after ingestion of Legionella in Acanthamoeba. ACA1_114460- and ACA1_091500-silenced Acanthamoeba failed to form the Legionella-containing excreted vesicles. Legionella was released as free legionellae from the Acanthamoeba. When the ACA1_362260 of Acanthamoeba was silenced, Legionella-containing excreted vesicles were fused with the lysosome. CONCLUSIONS These results indicated that ACA1_114460, ACA1_091500, and ACA1_362260 of Acanthamoeba played important roles in the formation of Legionella-containing excreted vesicles and inhibition of the lysosomal co-localization with the phagosome.
Collapse
Affiliation(s)
- Min-Jeong Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Eun-Kyung Moon
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Republic of Korea
| | - Hye-Jeong Jo
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Republic of Korea
| | - Fu-Shi Quan
- Department of Medical Zoology, Kyung Hee University School of Medicine, Seoul, Republic of Korea
- Medical Research Center for Bioreaction to Reactive Oxygen Species and Biomedical Science Institute, School of Medicine, Graduate school, Kyung Hee University, Seoul, Republic of Korea
| | - Hyun-Hee Kong
- Department of Parasitology, Dong-A University College of Medicine, Busan, Republic of Korea.
| |
Collapse
|
3
|
Comparative Genomics of Legionella pneumophila Isolates from the West Bank and Germany Support Molecular Epidemiology of Legionnaires' Disease. Microorganisms 2023; 11:microorganisms11020449. [PMID: 36838414 PMCID: PMC9965269 DOI: 10.3390/microorganisms11020449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 01/27/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Legionella pneumophila is an environmental bacterium and clinical pathogen that causes many life-threating outbreaks of an atypical pneumonia called Legionnaires' disease (LD). Studies of this pathogen have focused mainly on Europe and the United States. A shortage in L. pneumophila data is clearly observed for developing countries. To reduce this knowledge gap, L. pneumophila isolates were studied in two widely different geographical areas, i.e., the West Bank and Germany. For this study, we sequenced and compared the whole genome of 38 clinical and environmental isolates of L. pneumophila covering different MLVA-8(12) genotypes in the two areas. Sequencing was conducted using the Illumina HiSeq 2500 platform. In addition, two isolates (A194 and H3) were sequenced using a Pacific Biosciences (PacBio) RSII platform to generate complete reference genomes from each of the geographical areas. Genome sequences from 55 L. pneumophila strains, including 17 reference strains, were aligned with the genome sequence of the closest strain (L. pneumophila strain Alcoy). A whole genome phylogeny based on single nucleotide polymorphisms (SNPs) was created using the ParSNP software v 1.0. The reference genomes obtained for isolates A194 and H3 consisted of circular chromosomes of 3,467,904 bp and 3,691,263 bp, respectively. An average of 36,418 SNPs (min. 8569, max. 70,708 SNPs) against our reference strain L. pneumophila str. Alcoy, and 2367 core-genes were identified among the fifty-five strains. An analysis of the genomic population structure by SNP comparison divided the fifty-five L. pneumophila strains into six branches. Individual isolates in sub-lineages in these branches differed by less than 120 SNPs if they had the same MLVA genotype and were isolated from the same location. A bioinformatics analysis identified the genomic islands (GIs) for horizontal gene transfer and mobile genetic elements, demonstrating that L. pneumophila showed high genome plasticity. Four L. pneumophila isolates (H3, A29, A129 and L10-091) contained well-defined plasmids. On average, only about half of the plasmid genes could be matched to proteins in databases. In silico phage findings suggested that 43 strains contained at least one phage. However, none of them were found to be complete. BLASTp analysis of proteins from the type IV secretion Dot/Icm system showed those proteins highly conserved, with less than 25% structural differences in the new L. pneumophila isolates. Overall, we demonstrated that whole genome sequencing provides a molecular surveillance tool for L. pneumophila at the highest conceivable discriminatory level, i.e., two to eight SNPs were observed for isolates from the same location but several years apart.
Collapse
|
4
|
Zayed AR, Bunk B, Jaber L, Abu-Teer H, Ali M, Steinert M, Höfle MG, Brettar I, Bitar DM. Whole-genome sequencing of the clinical isolate of Legionella pneumophila ALAW1 from the West Bank allows high-resolution typing and determination of pathogenicity mechanisms. Eur Clin Respir J 2023; 10:2168346. [PMID: 36698751 PMCID: PMC9869991 DOI: 10.1080/20018525.2023.2168346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Background Legionella pneumophila is water-based bacterium causing Legionnaires' disease (LD). We describe the first documented case of nosocomial LD caused by L. pneumophila sequence type (ST) 461 and serogroup 6. The etiology of LD was confirmed by culturing the bronchoalveolar lavage sample retrieving L. pneumophila strain ALAW1. A 7-days treatment of the LD patient with Azithromycin and Levofloxacin allowed complete recovery. Methods In details, we sequenced the whole genome of the L. pneumophila ALAW1 using Illumina HiSeq platform. The sequence of ALAW1 was aligned with the genome sequence from the closely related reference strain Alcoy 2300/99 and a whole-genome phylogeny based on single nucleotide polymorphisms (SNPs) was created using Parsnp software. Also, the TYGS web-server was used in order to compare the genome with type strain. Results An analysis of the population structure by SNP and TYGS comparison clustered ALAW1 with the reference genome Alcoy 2300/99. Blastp analysis of the type IV secretion Dot/Icm system genes showed that these genes were highly conserved with (≤25%) structural differences at the protein level. Conclusions Overall, this study provides insights into detailed genome structure and demonstrated the value of whole-genome sequencing as the ultimate typing tool for Legionella.
Collapse
Affiliation(s)
- Ashraf R. Zayed
- CONTACT Ashraf R. Zayed Department of Biomedical Sciences, Faculty of Medicine and Health Sciences, An-Najah National University, Nablus, P. O. Box. 7, Palestine;Microbiology Research laboratory Faculty of Medicine Al-Quds University Abu-Dies, East Jerusalem 9993100, Palestine Zayed
| | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Selvaraj C, Vierra M, Dinesh DC, Abhirami R, Singh SK. Structural insights of macromolecules involved in bacteria-induced apoptosis in the pathogenesis of human diseases. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2021; 126:1-38. [PMID: 34090612 DOI: 10.1016/bs.apcsb.2021.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Numbers of pathogenic bacteria can induce apoptosis in human host cells and modulate the cellular pathways responsible for inducing or inhibiting apoptosis. These pathogens are significantly recognized by host proteins and provoke the multitude of several signaling pathways and alter the cellular apoptotic stimuli. This process leads the bacterial entry into the mammalian cells and evokes a variety of responses like phagocytosis, release of mitochondrial cytochrome c, secretion of bacterial effectors, release of both apoptotic and inflammatory cytokines, and the triggering of apoptosis. Several mechanisms are involved in bacteria-induced apoptosis including, initiation of the endogenous death machinery, pore-forming proteins, and secretion of superantigens. Either small molecules or proteins may act as a binding partner responsible for forming the protein complexes and regulate enzymatic activity via protein-protein interactions. The bacteria induce apoptosis, attack the human cell and gain control over various types of cells and tissue. Since these processes are intricate in the defense mechanisms of host organisms against pathogenic bacteria and play an important function in host-pathogen interactions. In this chapter, we focus on the various bacterial-induced apoptosis mechanisms in host cells and discuss the important proteins and bacterial effectors that trigger the host cell apoptosis. The structural characterization of bacterial effector proteins and their interaction with human host cells are also considered.
Collapse
Affiliation(s)
- Chandrabose Selvaraj
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India.
| | - Marisol Vierra
- Department of Pharmacology & Toxicology, Michigan State University, East Lansing, MI, United States
| | | | - Rajaram Abhirami
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India
| | - Sanjeev Kumar Singh
- Computer Aided Drug Design and Molecular Modeling Lab, Department of Bioinformatics, Science Block, Alagappa University, Karaikudi, Tamil Nadu, India.
| |
Collapse
|
6
|
Dey R, Mameri MR, Trajkovic-Bodennec S, Bodennec J, Pernin P. Impact of inter-amoebic phagocytosis on the L. pneumophila growth. FEMS Microbiol Lett 2020; 367:5899054. [PMID: 32860684 DOI: 10.1093/femsle/fnaa147] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 08/25/2020] [Indexed: 01/21/2023] Open
Abstract
Free-living amoebae are known to act as replication niches for the pathogenic bacterium Legionella pneumophila in freshwater environments. However, we previously reported that some strains of the Willaertia magna species are more resistant to L. pneumophila infection and differ in their ability to support its growth. From this observation, we hypothesize that L. pneumophila growth in environment could be partly dependent on the composition of amoebic populations and on the possible interactions between different amoebic species. We tested this hypothesis by studying the growth of L. pneumophila and of a permissive free-living amoeba, Vermamoeba vermiformis (formerly named Hartmannella vermiformis), in co-culture with or without other free-living amoebae (Acanthamoeba castellanii and W. magna). We demonstrate the occurrence of inter-amoebic phagocytosis with A. castellanii and W. magna being able to ingest V. vermiformis infected or not infected with L. pneumophila. We also found that L. pneumophila growth is strongly impacted by the permissiveness of each interactive amoeba demonstrating that L. pneumophila proliferation and spread are controlled, at least in part, by inter-amoebic interactions.
Collapse
Affiliation(s)
- Rafik Dey
- Université claude Bernard Lyon I, 43 boulevard du 11 Novembre 1918, 69100 Villeurbanne, France.,Université Lyon 1; ISPB-Faculté de Pharmacie Laboratoire de Biologie Cellulaire, 8, Avenue Rockefeller, F-69373, France.,School of public health. University of Alberta, Edmonton AB, Canada
| | - Mouh Rayane Mameri
- Amoeba R & D Center, 38 Av des Frères Montgolfier, Chassieu F-69680, France.,Université Lyon 1; ISPB-Faculté de Pharmacie Laboratoire de Biologie Cellulaire, 8, Avenue Rockefeller, F-69373, France
| | | | - Jacques Bodennec
- Université claude Bernard Lyon I, 43 boulevard du 11 Novembre 1918, 69100 Villeurbanne, France.,Université Lyon 1, Lyon Neuroscience Research Center CNRS, UMR 5292, Villeurbanne, F-69622, France.,Université Lyon 1, INSERM, U1028, Tiger Team, Bron, F-69500, France
| | - Pierre Pernin
- Université claude Bernard Lyon I, 43 boulevard du 11 Novembre 1918, 69100 Villeurbanne, France.,Université Lyon 1; ISPB-Faculté de Pharmacie Laboratoire de Biologie Cellulaire, 8, Avenue Rockefeller, F-69373, France
| |
Collapse
|
7
|
Lindsey ARI. Sensing, Signaling, and Secretion: A Review and Analysis of Systems for Regulating Host Interaction in Wolbachia. Genes (Basel) 2020; 11:E813. [PMID: 32708808 PMCID: PMC7397232 DOI: 10.3390/genes11070813] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2020] [Revised: 07/12/2020] [Accepted: 07/13/2020] [Indexed: 12/18/2022] Open
Abstract
Wolbachia (Anaplasmataceae) is an endosymbiont of arthropods and nematodes that resides within host cells and is well known for manipulating host biology to facilitate transmission via the female germline. The effects Wolbachia has on host physiology, combined with reproductive manipulations, make this bacterium a promising candidate for use in biological- and vector-control. While it is becoming increasingly clear that Wolbachia's effects on host biology are numerous and vary according to the host and the environment, we know very little about the molecular mechanisms behind Wolbachia's interactions with its host. Here, I analyze 29 Wolbachia genomes for the presence of systems that are likely central to the ability of Wolbachia to respond to and interface with its host, including proteins for sensing, signaling, gene regulation, and secretion. Second, I review conditions under which Wolbachia alters gene expression in response to changes in its environment and discuss other instances where we might hypothesize Wolbachia to regulate gene expression. Findings will direct mechanistic investigations into gene regulation and host-interaction that will deepen our understanding of intracellular infections and enhance applied management efforts that leverage Wolbachia.
Collapse
Affiliation(s)
- Amelia R I Lindsey
- Department of Entomology, University of Minnesota, St. Paul, MN 55108, USA
| |
Collapse
|
8
|
Mou Q, Leung PHM. Differential expression of virulence genes in Legionella pneumophila growing in Acanthamoeba and human monocytes. Virulence 2017; 9:185-196. [PMID: 28873330 PMCID: PMC5955191 DOI: 10.1080/21505594.2017.1373925] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Legionella pneumophila, the causative agent of Legionnaires’ disease, is widely distributed throughout natural and artificial water systems and can replicate in macrophages and amoebae. Amoebae are the natural hosts of L. pneumophila, whereas macrophages are incidentally infected. The life cycle of L. pneumophila comprises a replicative phase within the Legionella-containing vacuole (LCV) and a transmissive phase during which bacterial cells become motile and are released via killing of the host. Although the host death mechanisms induced by L. pneumophila have been studied, the expression patterns of related L. pneumophila genes have not been reported. The present study compared the expression patterns of host cell death-associated genes in L. pneumophila grown in the human monocytic cell line THP-1 and Acanthamoeba castellanii. Notably, when L. pneumophila was grown in THP-1, expression of the gene flaA, which is involved in the induction of pyroptosis, was downregulated during the course of infection. In contrast, sdhA associated indirectly with host death, was upregulated. Expression of the genes vipD and sidF, which are involved in the induction and suppression of apoptosis, changed by less than 2-fold. Notably, a lower percentage of pyroptotic cells was observed among infected THP-1 cells relative to uninfected cells, and the latter exhibited stronger expression of caspase-1. A different pattern was observed when L. pneumophila was grown in A. castellanii: flaA and vipD were activated, whereas sdhA and sidF were downregulated during the later stage of replication. The percentage of non-viable (annexin-V+ PI+ or annexin-V+PI−) A. castellanii organisms increased with Legionella infection, and the expression of metacaspase-1, which is involved in encystation was up-regulated at late infection time. In summary, L. pneumophila can multiply intracellularly in both amoebae and macrophages to induce cell death and secondary infection, and this characteristic is essential for its survival in water and the lungs. The gene expression profiles observed in this study indicated the increased cytotoxicity of L. pneumophila in A. castellanii, suggesting an increased adaptation of Legionella to this host.
Collapse
Affiliation(s)
- Qianqian Mou
- a Department of Health Technology and Informatics , The Hong Kong Polytechnic University , Kowloon , Hong Kong , China
| | - Polly H M Leung
- a Department of Health Technology and Informatics , The Hong Kong Polytechnic University , Kowloon , Hong Kong , China
| |
Collapse
|
9
|
Hoppe J, Ünal CM, Thiem S, Grimpe L, Goldmann T, Gaßler N, Richter M, Shevchuk O, Steinert M. PilY1 Promotes Legionella pneumophila Infection of Human Lung Tissue Explants and Contributes to Bacterial Adhesion, Host Cell Invasion, and Twitching Motility. Front Cell Infect Microbiol 2017; 7:63. [PMID: 28326293 PMCID: PMC5339237 DOI: 10.3389/fcimb.2017.00063] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2016] [Accepted: 02/20/2017] [Indexed: 11/13/2022] Open
Abstract
Legionnaires' disease is an acute fibrinopurulent pneumonia. During infection Legionella pneumophila adheres to the alveolar lining and replicates intracellularly within recruited macrophages. Here we provide a sequence and domain composition analysis of the L. pneumophila PilY1 protein, which has a high homology to PilY1 of Pseudomonas aeruginosa. PilY1 proteins of both pathogens contain a von Willebrand factor A (vWFa) and a C-terminal PilY domain. Using cellular fractionation, we assigned the L. pneumophila PilY1 as an outer membrane protein that is only expressed during the transmissive stationary growth phase. PilY1 contributes to infection of human lung tissue explants (HLTEs). A detailed analysis using THP-1 macrophages and A549 lung epithelial cells revealed that this contribution is due to multiple effects depending on host cell type. Deletion of PilY1 resulted in a lower replication rate in THP-1 macrophages but not in A549 cells. Further on, adhesion to THP-1 macrophages and A549 epithelial cells was decreased. Additionally, the invasion into non-phagocytic A549 epithelial cells was drastically reduced when PilY1 was absent. Complementation variants of a PilY1-negative mutant revealed that the C-terminal PilY domain is essential for restoring the wild type phenotype in adhesion, while the putatively mechanosensitive vWFa domain facilitates invasion into non-phagocytic cells. Since PilY1 also promotes twitching motility of L. pneumophila, we discuss the putative contribution of this newly described virulence factor for bacterial dissemination within infected lung tissue.
Collapse
Affiliation(s)
- Julia Hoppe
- Institut für Mikrobiologie, Technische Universität BraunschweigBraunschweig, Germany
| | - Can M. Ünal
- Institut für Mikrobiologie, Technische Universität BraunschweigBraunschweig, Germany
| | - Stefanie Thiem
- Institut für Mikrobiologie, Technische Universität BraunschweigBraunschweig, Germany
| | - Louisa Grimpe
- Institut für Mikrobiologie, Technische Universität BraunschweigBraunschweig, Germany
| | - Torsten Goldmann
- Pathology of the University Hospital of Lübeck and the Leibniz Research CenterBorstel, Germany
- Airway Research Center North (ARCN), Member of the German Center for Lung ResearchBorstel, Germany
| | - Nikolaus Gaßler
- Institut für Pathologie, Klinikum BraunschweigBraunschweig, Germany
| | | | - Olga Shevchuk
- Center for Proteomics, University of RijekaRijeka, Croatia
| | - Michael Steinert
- Institut für Mikrobiologie, Technische Universität BraunschweigBraunschweig, Germany
- Helmholtz Center for Infection ResearchBraunschweig, Germany
| |
Collapse
|
10
|
Nishida T, Watanabe K, Tachibana M, Shimizu T, Watarai M. Characterization of the cryptic plasmid pOfk55 from Legionella pneumophila and construction of a pOfk55-derived shuttle vector. Plasmid 2017; 90:30-37. [DOI: 10.1016/j.plasmid.2017.02.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 11/29/2022]
|
11
|
Eisenreich W, Heuner K. The life stage-specific pathometabolism of Legionella pneumophila. FEBS Lett 2016; 590:3868-3886. [PMID: 27455397 DOI: 10.1002/1873-3468.12326] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Revised: 07/08/2016] [Accepted: 07/21/2016] [Indexed: 12/17/2022]
Abstract
The genus Legionella belongs to Gram-negative bacteria found ubiquitously in aquatic habitats, where it grows in natural biofilms and replicates intracellularly in various protozoa (amoebae, ciliates). L. pneumophila is known as the causative agent of Legionnaires' disease, since it is also able to replicate in human alveolar macrophages, finally leading to inflammation of the lung and pneumonia. To withstand the degradation by its host cells, a Legionella-containing vacuole (LCV) is established for intracellular replication, and numerous effector proteins are secreted into the host cytosol using a type four B secretion system (T4BSS). During intracellular replication, Legionella has a biphasic developmental cycle that alternates between a replicative and a transmissive form. New knowledge about the host-adapted and life stage-dependent metabolism of intracellular L. pneumophila revealed a bipartite metabolic network with life stage-specific usages of amino acids (e.g. serine), carbohydrates (e.g. glucose) and glycerol as major substrates. These metabolic features are associated with the differentiation of the intracellular bacteria, and thus have an important impact on the virulence of L. pneumophila.
Collapse
Affiliation(s)
| | - Klaus Heuner
- Cellular Interactions of Bacterial Pathogens, ZBS 2, Robert Koch Institute, Berlin, Germany
| |
Collapse
|
12
|
Dupuy M, Binet M, Bouteleux C, Herbelin P, Soreau S, Héchard Y. Permissiveness of freshly isolated environmental strains of amoebae for growth ofLegionella pneumophila. FEMS Microbiol Lett 2016; 363:fnw022. [DOI: 10.1093/femsle/fnw022] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/27/2016] [Indexed: 12/24/2022] Open
|
13
|
Jjemba PK, Johnson W, Bukhari Z, LeChevallier MW. Occurrence and Control of Legionella in Recycled Water Systems. Pathogens 2015; 4:470-502. [PMID: 26140674 PMCID: PMC4584268 DOI: 10.3390/pathogens4030470] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2015] [Accepted: 06/24/2015] [Indexed: 01/11/2023] Open
Abstract
Legionella pneumophila is on the United States Environmental Protection Agency (USEPA) Candidate Contaminant list (CCL) as an important pathogen. It is commonly encountered in recycled water and is typically associated with amoeba, notably Naegleria fowleri (also on the CCL) and Acanthamoeba sp. No legionellosis outbreak has been linked to recycled water and it is important for the industry to proactively keep things that way. A review was conducted examine the occurrence of Legionella and its protozoa symbionts in recycled water with the aim of developing a risk management strategy. The review considered the intricate ecological relationships between Legionella and protozoa, methods for detecting both symbionts, and the efficacy of various disinfectants.
Collapse
Affiliation(s)
- Patrick K Jjemba
- American Water Research Laboratory, 213 Carriage Lane, Delran, NJ 08075, USA.
| | - William Johnson
- American Water Research Laboratory, 213 Carriage Lane, Delran, NJ 08075, USA.
| | - Zia Bukhari
- American Water, 1025 Laurel Oak Road, Voorhees, NJ 08043, USA.
| | | |
Collapse
|
14
|
Effect of amino acid substitution in the staphylococcal peptides warnericin RK and PSMα on their anti-Legionella and hemolytic activities. Mol Cell Biochem 2015; 405:159-67. [PMID: 25869678 DOI: 10.1007/s11010-015-2407-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 04/09/2015] [Indexed: 10/23/2022]
|
15
|
Cervero-Aragó S, Sommer R, Araujo RM. Effect of UV irradiation (253.7 nm) on free Legionella and Legionella associated with its amoebae hosts. WATER RESEARCH 2014; 67:299-309. [PMID: 25306486 DOI: 10.1016/j.watres.2014.09.023] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2014] [Revised: 09/15/2014] [Accepted: 09/22/2014] [Indexed: 06/04/2023]
Abstract
Water systems are the primary reservoir for Legionella spp., where the bacteria live in association with other microorganisms, such as free-living amoebae. A wide range of disinfection treatments have been studied to control and prevent Legionella colonization but few of them were performed considering its relation with protozoa. In this study, the effectiveness of UV irradiation (253.7 nm) using low-pressure lamps was investigated as a disinfection method for Legionella and amoebae under controlled laboratory conditions. UV treatments were applied to 5 strains of Legionella spp., 4 strains of free-living amoeba of the genera Acanthamoeba and Vermamoeba, treating separately trophozoites and cysts, and to two different co-cultures of Legionella pneumophila with the Acanthamoeba strains. No significant differences in the UV inactivation behavior were observed among Legionella strains tested which were 3 logs reduced for fluences around 45 J/m(2). UV irradiation was less effective against free-living amoebae; which in some cases required up to 990 J/m(2) to obtain the same population reduction. UV treatment was more effective against trophozoites compared to cysts; moreover, inactivation patterns were clearly different between the genus Acanthamoeba and Vermamoeba. For the first time data about Vermamoeba vermiformis UV inactivation has been reported in a study. Finally, the results showed that the association of L. pneumophila with free-living amoebae decreases the effectiveness of UV irradiation against the bacteria in a range of 1.5-2 fold. That fact demonstrates that the relations established between different microorganisms in the water systems can modify the effectiveness of the UV treatments applied.
Collapse
Affiliation(s)
- Sílvia Cervero-Aragó
- Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain; Medical University Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090 Vienna, Austria
| | - Regina Sommer
- Medical University Vienna, Institute for Hygiene and Applied Immunology, Water Hygiene, Kinderspitalgasse 15, A-1090 Vienna, Austria
| | - Rosa M Araujo
- Departament de Microbiologia, Facultat de Biologia, Universitat de Barcelona, Av. Diagonal 643, 08028 Barcelona, Spain.
| |
Collapse
|
16
|
Costa J, Teixeira PG, d'Avó AF, Júnior CS, Veríssimo A. Intragenic recombination has a critical role on the evolution of Legionella pneumophila virulence-related effector sidJ. PLoS One 2014; 9:e109840. [PMID: 25299187 PMCID: PMC4192588 DOI: 10.1371/journal.pone.0109840] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 08/14/2014] [Indexed: 12/31/2022] Open
Abstract
SidJ is a Dot/Icm effector involved in the trafficking or retention of ER-derived vesicles to Legionella pneumophila vacuoles whose mutation causes an observable growth defect, both in macrophage and amoeba hosts. Given the crucial role of this effector in L. pneumophila virulence we investigated the mechanisms shaping its molecular evolution. The alignment of SidJ sequences revealed several alleles with amino acid variations that may influence the protein properties. The identification of HGT events and the detection of balancing selection operating on sidJ evolution emerge as a clear result. Evidence suggests that intragenic recombination is an important strategy in the evolutionary adaptive process playing an active role on sidJ genetic plasticity. This pattern of evolution is in accordance with the life style of L. pneumophila as a broad host-range pathogen by preventing host-specialization and contributing to the resilience of the species.
Collapse
Affiliation(s)
- Joana Costa
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Paulo Gonçalves Teixeira
- Department of Chemical and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ana Filipa d'Avó
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
| | - Célio Santos Júnior
- Department of Molecular Biology and Evolutionary Genetics, Federal University of São Carlos (UFSCar), São Paulo, Brazil
| | - António Veríssimo
- Department of Life Sciences, University of Coimbra, Coimbra, Portugal
- CNC - Center for Neuroscience and Cell Biology, University of Coimbra, Coimbra, Portugal
- * E-mail:
| |
Collapse
|
17
|
Harada T, Miyake M, Imai Y. Evasion ofLegionella pneumophilafrom the Bactericidal System by Reactive Oxygen Species (ROS) in Macrophages. Microbiol Immunol 2013; 51:1161-70. [DOI: 10.1111/j.1348-0421.2007.tb04011.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Toshihiko Harada
- Laboratory of Microbiology and Immunology and the Global COE Program, School of Pharmaceutical Sciences; University of Shizuoka; Shizuoka-shi Shizuoka 422-8526 Japan
| | - Masaki Miyake
- Laboratory of Microbiology and Immunology and the Global COE Program, School of Pharmaceutical Sciences; University of Shizuoka; Shizuoka-shi Shizuoka 422-8526 Japan
| | - Yasuyuki Imai
- Laboratory of Microbiology and Immunology and the Global COE Program, School of Pharmaceutical Sciences; University of Shizuoka; Shizuoka-shi Shizuoka 422-8526 Japan
| |
Collapse
|
18
|
Alleron L, Khemiri A, Koubar M, Lacombe C, Coquet L, Cosette P, Jouenne T, Frere J. VBNC Legionella pneumophila cells are still able to produce virulence proteins. WATER RESEARCH 2013; 47:6606-17. [PMID: 24064547 DOI: 10.1016/j.watres.2013.08.032] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Revised: 07/24/2013] [Accepted: 08/27/2013] [Indexed: 05/22/2023]
Abstract
Legionella pneumophila is the agent responsible for legionellosis. Numerous bacteria, including L. pneumophila, can enter into a viable but not culturable (VBNC) state under unfavorable environmental conditions. In this state, cells are unable to form colonies on standard medium but are still alive. Here we show that VBNC L. pneumophila cells, obtained by monochloramine treatment, were still able to synthesize proteins, some of which are involved in virulence. Protein synthesis was measured using (35)S-labeling and the proteomes of VBNC and culturable cells then compared. This analysis allowed the identification of nine proteins that were accumulated in the VBNC state. Among them, four were involved in virulence, i.e., the macrophage infectivity potentiator protein, the hypothetical protein lpl2247, the ClpP protease proteolytic subunit and the 27 kDa outer membrane protein. Others, i.e., the enoyl reductase, the electron transfer flavoprotein (alpha and beta subunits), the 50S ribosomal proteins (L1 and L25) are involved in metabolic and energy production pathways. However, resuscitation experiments performed with Acanthamoeba castellanii failed, suggesting that the accumulation of virulence factors by VBNC cells is not sufficient to maintain their virulence.
Collapse
Affiliation(s)
- Laëtitia Alleron
- Laboratoire Ecologie et Biologie des Interactions, UMR CNRS 7267, Equipe Microbiologie de l'Eau, B36, Université de Poitiers, 40 Avenue du Recteur Pineau, 86022 Poitiers Cedex, France
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Richards AM, Von Dwingelo JE, Price CT, Abu Kwaik Y. Cellular microbiology and molecular ecology of Legionella-amoeba interaction. Virulence 2013; 4:307-14. [PMID: 23535283 PMCID: PMC3710333 DOI: 10.4161/viru.24290] [Citation(s) in RCA: 94] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
Legionella pneumophila is an aquatic organism that interacts with amoebae and ciliated protozoa as the natural hosts, and this interaction plays a central role in bacterial ecology and infectivity. Upon transmission to humans, L. pneumophila infect and replicate within alveolar macrophages causing pneumonia. Intracellular proliferation of L. pneumophila within the two evolutionarily distant hosts is facilitated by bacterial exploitation of evolutionarily conserved host processes that are targeted by bacterial protein effectors injected into the host cell by the Dot/Icm type VIB translocation system. Although cysteine is semi-essential for humans and essential for amoeba, it is a metabolically favorable source of carbon and energy generation by L. pneumophila. To counteract host limitation of cysteine, L. pneumophila utilizes the AnkB Dot/Icm-translocated F-box effector to promote host proteasomal degradation of polyubiquitinated proteins within amoebae and human cells. Evidence indicates ankB and other Dot/Icm-translocated effector genes have been acquired through inter-kingdom horizontal gene transfer.
Collapse
Affiliation(s)
- Ashley M Richards
- Department of Microbiology and Immunology, College of Medicine, University of Louisville, Louisville, KY, USA
| | | | | | | |
Collapse
|
20
|
Messi P, Bargellini A, Anacarso I, Marchesi I, de Niederhäusern S, Bondi M. Protozoa and human macrophages infection by Legionella pneumophila environmental strains belonging to different serogroups. Arch Microbiol 2013; 195:89-96. [PMID: 23135482 DOI: 10.1007/s00203-012-0851-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2012] [Revised: 10/11/2012] [Accepted: 10/29/2012] [Indexed: 12/01/2022]
Abstract
Three Legionella pneumophila strains isolated from municipal hot tap water during a multicentric Italian survey and belonging to serogroups 1, 6, 9 and the reference strain Philadelphia-1 were studied to determine the intracellular replication capability and the cytopathogenicity in human monocyte cell line U937 and in an Acanthamoeba polyphaga strain. Our results show that both serogroups 1 and Philadelphia-1 were able to multiply into macrophages inducing cytopathogenicity, while serogroup 6 and ever more serogroup 9 were less efficient in leading to death of the infected macrophages. Both serogroups 1 and 6 displayed a quite good capability of intracellular replication in A. polyphaga, although serogroup 1 was less cytopathogenic than serogroup 6. Serogroup 9, like Philadelphia-1 strain, showed a reduced efficiency of infection and replication and a low cytopathogenicity towards the protozoan. Our study suggests that bacterial pathogenesis is linked to the difference in the virulence expression of L. pneumophila serogroups in both hosts, as demonstrated by the fact that only L. pneumophila serogroup 1 shows the contextual expression of the two virulence traits. Serogroup 6 proves to be a good candidate as pathogen since it shows a good capacity for intracellular replication in protozoan.
Collapse
Affiliation(s)
- Patrizia Messi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy.
| | | | | | | | | | | |
Collapse
|
21
|
[Experience with prevention and control of legionellosis in Germany : plea for proactive risk management]. Bundesgesundheitsblatt Gesundheitsforschung Gesundheitsschutz 2011; 54:699-708. [PMID: 21626374 DOI: 10.1007/s00103-011-1286-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
Legionellosis is meanwhile the most important specific water-associated infectious disease in developed countries, which is completely preventable, if water distribution systems are correctly planned and operated. This assumes clear criteria for risk regulation and for verification, including microbiological monitoring for Legionella. There are different reactive and proactive strategies in the USA and in Europe. The common premises for prevention and control of legionellosis in Germany, relevant facts for risk regulation, experience in Germany toward proactive risk regulation, and the current approach of the amended drinking water ordinance are discussed. The article concludes with a short discussion of the controversial approaches for the prevention of legionellosis in Germany.
Collapse
|
22
|
Marchand A, Verdon J, Lacombe C, Crapart S, Héchard Y, Berjeaud JM. Anti-Legionella activity of staphylococcal hemolytic peptides. Peptides 2011; 32:845-51. [PMID: 21291938 DOI: 10.1016/j.peptides.2011.01.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/15/2010] [Revised: 01/19/2011] [Accepted: 01/19/2011] [Indexed: 10/18/2022]
Abstract
A collection of various Staphylococci was screened for their anti-Legionella activity. Nine of the tested strains were found to secrete anti-Legionella compounds. The culture supernatants of the strains, described in the literature to produce hemolytic peptides, were successfully submitted to a two step purification process. All the purified compounds, except one, corresponded to previously described hemolytic peptides and were not known for their anti-Legionella activity. By comparison of the minimal inhibitory concentrations, minimal permeabilization concentrations, decrease in the number of cultivable bacteria, hemolytic activity and selectivity, the purified peptides could be separated in two groups. First group, with warnericin RK as a leader, corresponds to the more hemolytic and bactericidal peptides. The peptides of the second group, represented by the PSMα from Staphylococcus epidermidis, appeared bacteriostatic and poorly hemolytic.
Collapse
Affiliation(s)
- A Marchand
- Laboratoire de Chimie et Microbiologie de l'Eau, UMR 6008 CNRS, IBMIG - UFR Sciences Fondamentales et Appliquées, Université de Poitiers, 1 rue du Georges Bonnet, 86022 Poitiers Cedex, France
| | | | | | | | | | | |
Collapse
|
23
|
Weissenmayer BA, Prendergast JGD, Lohan AJ, Loftus BJ. Sequencing illustrates the transcriptional response of Legionella pneumophila during infection and identifies seventy novel small non-coding RNAs. PLoS One 2011; 6:e17570. [PMID: 21408607 PMCID: PMC3048289 DOI: 10.1371/journal.pone.0017570] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2010] [Accepted: 02/03/2011] [Indexed: 11/18/2022] Open
Abstract
Second generation sequencing has prompted a number of groups to re-interrogate the transcriptomes of several bacterial and archaeal species. One of the central findings has been the identification of complex networks of small non-coding RNAs that play central roles in transcriptional regulation in all growth conditions and for the pathogen's interaction with and survival within host cells. Legionella pneumophila is a Gram-negative facultative intracellular human pathogen with a distinct biphasic lifestyle. One of its primary environmental hosts in the free-living amoeba Acanthamoeba castellanii and its infection by L. pneumophila mimics that seen in human macrophages. Here we present analysis of strand specific sequencing of the transcriptional response of L. pneumophila during exponential and post-exponential broth growth and during the replicative and transmissive phase of infection inside A. castellanii. We extend previous microarray based studies as well as uncovering evidence of a complex regulatory architecture underpinned by numerous non-coding RNAs. Over seventy new non-coding RNAs could be identified; many of them appear to be strain specific and in configurations not previously reported. We discover a family of non-coding RNAs preferentially expressed during infection conditions and identify a second copy of 6S RNA in L. pneumophila. We show that the newly discovered putative 6S RNA as well as a number of other non-coding RNAs show evidence for antisense transcription. The nature and extent of the non-coding RNAs and their expression patterns suggests that these may well play central roles in the regulation of Legionella spp. specific traits and offer clues as to how L. pneumophila adapts to its intracellular niche. The expression profiles outlined in the study have been deposited into Genbank's Gene Expression Omnibus (GEO) database under the series accession GSE27232.
Collapse
Affiliation(s)
| | | | - Amanda J. Lohan
- UCD Conway Institute for Biomolecular and Biomedical Research, Dublin, Ireland
| | - Brendan J. Loftus
- UCD Conway Institute for Biomolecular and Biomedical Research, Dublin, Ireland
- * E-mail:
| |
Collapse
|
24
|
Costa J, Tiago I, Da Costa MS, Veríssimo A. Molecular evolution of Legionella pneumophila dotA gene, the contribution of natural environmental strains. Environ Microbiol 2011; 12:2711-29. [PMID: 20482739 DOI: 10.1111/j.1462-2920.2010.02240.x] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Given the role of DotA protein in establishing successful infections and the diversity of host cells interacting with Legionella pneumophila in nature, it is possible that this gene product is a target for adaptive evolution. We investigated the influence of L. pneumophila isolates from natural environments with the molecular evolution of this crucial virulence-related gene. The population genetic structure of L. pneumophila was inferred from the partial sequences of rpoB and dotA of 303 worldwide strains. The topology of the two inferred trees was not congruent and in the inferred dotA tree the vast majority of the natural environmental isolates were clustered in a discrete group. The Ka/Ks ratio demonstrated that this group, contrary to all others, has been under strong diversifying selection. The alignment of all DotA sequences allowed the identification of several alleles and the amino acid variations were not randomly distributed. Moreover, from these results we can conclude that dotA from L. pneumophila clinical and man-made environmental strains belong to a sub-set of all genotypes existing in nature. A split graph analysis showed evidence of a network-like organization and several intergenic recombination events were detected within L. pneumophila strains resulting in mosaic genes in which different gene segments exhibited different evolutionary histories. We have determined that the allelic diversity of dotA is predominantly found in L. pneumophila isolates from natural environments, suggesting that niche-specific selection pressures have been operating on this gene. Indeed, the high level of dotA allelic diversity may reflect fitness variation in the persistence of those strains in distinct environmental niches and/or tropism to various protozoan hosts.
Collapse
Affiliation(s)
- Joana Costa
- Centro de Neurociências e Biologia Celular, Universidade de Coimbra, 3004-517 Coimbra, Portugal
| | | | | | | |
Collapse
|
25
|
Corbière V, Dirix V, Norrenberg S, Cappello M, Remmelink M, Mascart F. Phenotypic characteristics of human type II alveolar epithelial cells suitable for antigen presentation to T lymphocytes. Respir Res 2011; 12:15. [PMID: 21261956 PMCID: PMC3033824 DOI: 10.1186/1465-9921-12-15] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2010] [Accepted: 01/24/2011] [Indexed: 11/17/2022] Open
Abstract
Background Type II alveolar epithelial cells (AECII) are well known for their role in the innate immune system. More recently, it was proposed that they could play a role in the antigen presentation to T lymphocytes but contradictory results have been published both concerning their surface expressed molecules and the T lymphocyte responses in mixed lymphocyte cultures. The use of either AECII cell line or fresh cells could explain the observed discrepancies. Thus, this study aimed at defining the most relevant model of accessory antigen presenting cells by carefully comparing the two models for their expression of surface molecules necessary for efficient antigen presentation. Methods We have compared by flow cytometry the surface expression of the major markers involved in the immunological synapse on the A549 cell line, the most popular model of type II alveolar epithelial cells, and freshly isolated cells. HLA-DR, CD80, CD86, ICOS-L, CD54, CD58 surface expression were studied in resting conditions as well as after IFN-γ/TNF-α treatment, two inflammatory cytokines, known to modulate some of these markers. Results The major difference found between the two cells types was the very low surface expression of HLA-DR on the A549 cell line compared to its constitutive expression on freshly isolated AECII. The surface expression of co-stimulatory molecules from the B7 family was very low for the CD86 (B7-2) and ICOS-L (B7-H2) and absent for CD80 (B7-1) on both freshly isolated cells and A549 cell line. Neither IFN-γ nor TNF-α could increase the expression of these classical co-stimulatory molecules. However CD54 (ICAM-1) and CD58 (LFA-3) adhesion molecules, known to be implicated in B7 independent co-stimulatory signals, were well expressed on the two cell types. Conclusions Constitutive expression of MHC class I and II molecules as well as alternative co-stimulatory molecules by freshly isolated AECII render these cells a good model to study antigen presentation.
Collapse
Affiliation(s)
- Véronique Corbière
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles (U,L,B,), Brussels, Belgium
| | | | | | | | | | | |
Collapse
|
26
|
Dupuy M, Mazoua S, Berne F, Bodet C, Garrec N, Herbelin P, Ménard-Szczebara F, Oberti S, Rodier MH, Soreau S, Wallet F, Héchard Y. Efficiency of water disinfectants against Legionella pneumophila and Acanthamoeba. WATER RESEARCH 2011; 45:1087-94. [PMID: 21093012 DOI: 10.1016/j.watres.2010.10.025] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2010] [Revised: 10/18/2010] [Accepted: 10/19/2010] [Indexed: 05/07/2023]
Abstract
Free-living amoebae might be pathogenic by themselves and be a reservoir for bacterial pathogens, such as Legionella pneumophila. Not only could amoebae protect intra-cellular Legionella but Legionella grown within amoebae could undergo physiological modifications and become more resistant and more virulent. Therefore, it is important to study the efficiency of treatments on amoebae and Legionella grown within these amoebae to improve their application and to limit their impact on the environment. With this aim, we compared various water disinfectants against trophozoites of three Acanthamoeba strains and L. pneumophila alone or in co-culture. Three oxidizing disinfectants (chlorine, monochloramine, and chlorine dioxide) were assessed. All the samples were treated with disinfectants for 1 h and the disinfectant concentration was followed to calculate disinfectant exposure (Ct). We noticed that there were significant differences of susceptibility among the Acanthamoeba strains. However no difference was observed between infected and non-infected amoebae. Also, the comparison between the three disinfectants indicates that monochloramine was efficient at the same level towards free or co-cultured L. pneumophila while chlorine and chlorine dioxide were less efficient on co-cultured L. pneumophila. It suggests that these disinfectants should have different modes of action. Finally, our results provide for the first time disinfectant exposure values for Acanthamoeba treatments that might be used as references for disinfection of water systems.
Collapse
Affiliation(s)
- Mathieu Dupuy
- Université de Poitiers, Laboratoire de Chimie et Microbiologie de l'Eau, CNRS UMR 6008, 40 avenue du recteur Pineau, 86022 Poitiers Cedex, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Verdon J, Labanowski J, Sahr T, Ferreira T, Lacombe C, Buchrieser C, Berjeaud JM, Héchard Y. Fatty acid composition modulates sensitivity of Legionella pneumophila to warnericin RK, an antimicrobial peptide. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2010; 1808:1146-53. [PMID: 21182824 DOI: 10.1016/j.bbamem.2010.12.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2010] [Revised: 11/25/2010] [Accepted: 12/13/2010] [Indexed: 11/16/2022]
Abstract
Warnericin RK is an antimicrobial peptide, produced by a Staphyloccocus warneri strain, described to be specifically active against Legionella, the pathogenic bacteria responsible for Legionnaires' disease. Warnericin RK is an amphiphilic alpha-helical peptide, which possesses a detergent-like mode of action. Two others peptides, δ-hemolysin I and II, produced by the same S. warneri strain, are highly similar to S. aureus δ-hemolysin and also display anti-Legionella activity. It has been recently reported that S. aureus δ-hemolysin activity on vesicles is likewise related to phospholipid acyl-chain structure, such as chain length and saturation. As staphylococcal δ-hemolysins were highly similar, we thus hypothesized that fatty acid composition of Legionella's membrane might influence the sensitivity of the bacteria to warnericin RK. Relationship between sensitivity to the peptide and fatty acid composition was then followed in various conditions. Cells in stationary phase, which were already described as less resistant than cells in exponential phase, displayed higher amounts of branched-chain fatty acids (BCFA) and short chain fatty acids. An adapted strain, able to grow at a concentration 33 fold higher than minimal inhibitory concentration of the wild type (i.e. 1μM), was isolated after repeated transfers of L. pneumophila in the presence of increased concentrations of warnericin RK. The amount of BCFA was significantly higher in the adapted strain than in the wild type strain. Also, a transcriptomic analysis of the wild type and adapted strains showed that two genes involved in fatty acid biosynthesis were repressed in the adapted strain. These genes encode enzymes involved in desaturation and elongation of fatty acids respectively. Their repression was in agreement with the decrease of unsaturated fatty acids and fatty acid chain length in the adapted strain. Conclusively, our results indicate that the increase of BCFA and the decrease of fatty acid chain length in membrane were correlated with the increase in resistance to warnericin RK. Therefore, fatty acid profile seems to play a critical role in the sensitivity of L. pneumophila to warnericin RK.
Collapse
Affiliation(s)
- Julien Verdon
- Laboratoire de Chimie et Microbiologie de l'Eau, UMR CNRS 6008, Université de Poitiers, Poitiers, France
| | | | | | | | | | | | | | | |
Collapse
|
28
|
Legionella pneumophila pneumonia in a pregnant woman treated with anti-TNF-α antibodies for Crohn's disease: a case report. J Crohns Colitis 2010; 4:687-9. [PMID: 21122583 DOI: 10.1016/j.crohns.2010.08.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2010] [Revised: 06/30/2010] [Accepted: 08/01/2010] [Indexed: 02/08/2023]
Abstract
Anti-TNF-α antibodies are widely used. The indications for their usage are still increasing. With their emerging use, their infectious complications are seen more often. We describe the first case of a pneumonia with Legionella pneumophila in a pregnant women with Crohn's disease, during treatment with anti-TNF-α antibodies. She was treated with erythromycin and made a full recovery.
Collapse
|
29
|
Cellular pharmacodynamics of the novel biaryloxazolidinone radezolid: studies with infected phagocytic and nonphagocytic cells, using Staphylococcus aureus, Staphylococcus epidermidis, Listeria monocytogenes, and Legionella pneumophila. Antimicrob Agents Chemother 2010; 54:2549-59. [PMID: 20385852 DOI: 10.1128/aac.01724-09] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Radezolid is a novel biaryloxazolidinone in clinical development which shows improved activity, including against linezolid-resistant strains. In a companion paper (29), we showed that radezolid accumulates about 11-fold in phagocytic cells, with approximately 60% of the drug localized in the cytosol and approximately 40% in the lysosomes of the cells. The present study examines its activity against (i) bacteria infecting human THP-1 macrophages and located in different subcellular compartments (Listeria monocytogenes, cytosol; Legionella pneumophila, vacuoles; Staphylococcus aureus and Staphylococcus epidermidis, mainly phagolysosomal), (ii) strains of S. aureus with clinically relevant mechanisms of resistance, and (iii) isogenic linezolid-susceptible and -resistant S. aureus strains infecting a series of phagocytic and nonphagocytic cells. Radezolid accumulated to similar levels ( approximately 10-fold) in all cell types (human keratinocytes, endothelial cells, bronchial epithelial cells, osteoblasts, macrophages, and rat embryo fibroblasts). At equivalent weight concentrations, radezolid proved consistently 10-fold more potent than linezolid in all these models, irrespective of the bacterial species and resistance phenotype or of the cell type infected. This results from its higher intrinsic activity and higher cellular accumulation. Time kill curves showed that radezolid's activity was more rapid than that of linezolid both in broth and in infected macrophages. These data suggest the potential interest of radezolid for recurrent or persistent infections where intracellular foci play a determinant role.
Collapse
|
30
|
Scaturro M, Meschini S, Arancia G, Stefano F, Ricci ML. Characterization of a spontaneous avirulent mutant of Legionella pneumophila Serogroup 6: Evidence of DotA and flagellin involvement in the loss of virulence. J Microbiol 2010; 47:768-73. [DOI: 10.1007/s12275-009-0103-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2009] [Accepted: 07/16/2009] [Indexed: 12/27/2022]
|
31
|
Amer AO. Modulation of caspases and their non-apoptotic functions byLegionella pneumophila. Cell Microbiol 2010; 12:140-7. [DOI: 10.1111/j.1462-5822.2009.01401.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
32
|
Molmeret M, Jones S, Santic M, Habyarimana F, Esteban MTG, Kwaik YA. Temporal and spatial trigger of post-exponential virulence-associated regulatory cascades by Legionella pneumophila after bacterial escape into the host cell cytosol. Environ Microbiol 2009; 12:704-15. [PMID: 19958381 DOI: 10.1111/j.1462-2920.2009.02114.x] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
During late stages of infection and prior to lysis of the infected macrophages or amoeba, the Legionella pneumophila-containing phagosome becomes disrupted, followed by bacterial escape into the host cell cytosol, where the last few rounds of bacterial proliferation occur prior to lysis of the plasma membrane. This coincides with growth transition into the post-exponential (PE) phase, which is controlled by regulatory cascades including RpoS and the LetA/S two-component regulator. Whether the temporal expression of flagella by the regulatory cascades at the PE phase is exhibited within the phagosome or after bacterial escape into the host cell cytosol is not known. We have utilized fluorescence microscopy-based phagosome integrity assay to differentiate between vacuolar and cytosolic bacteria/or bacteria within disrupted phagosomes. Our data show that during late stages of infection, expression of FlaA is triggered after bacterial escape into the macrophage cytosol and the peak of FlaA expression is delayed for few hours after cytosolic residence of the bacteria. Importantly, bacterial escape into the host cell cytosol is independent of flagella, RpoS and the two-component regulator LetA/S, which are all triggered by L. pneumophila upon growth transition into the PE phase. Disruption of the phagosome and bacterial escape into the cytosol of macrophages is independent of the bacterial pore-forming activity, and occurs prior to the induction of apoptosis during late stages of infection. We conclude that the temporal and spatial engagement of virulence-associated regulatory cascades by L. pneumophila at the PE phase is temporally and spatially triggered after phagosomal escape and bacterial residence in the host cell cytosol.
Collapse
Affiliation(s)
- Maëlle Molmeret
- Department of Microbiology and Immunology, Room MS-410, University of Louisville College of Medicine, Louisville, KY 40292, USA
| | | | | | | | | | | |
Collapse
|
33
|
Ferhat M, Atlan D, Vianney A, Lazzaroni JC, Doublet P, Gilbert C. The TolC protein of Legionella pneumophila plays a major role in multi-drug resistance and the early steps of host invasion. PLoS One 2009; 4:e7732. [PMID: 19888467 PMCID: PMC2766832 DOI: 10.1371/journal.pone.0007732] [Citation(s) in RCA: 47] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2009] [Accepted: 09/29/2009] [Indexed: 01/18/2023] Open
Abstract
Pneumonia associated with Iegionnaires's disease is initiated in humans after inhalation of contaminated aerosols. In the environment, Legionella pneumophila is thought to survive and multiply as an intracellular parasite within free-living amoeba. In the genome of L. pneumophila Lens, we identified a unique gene, tolC, encoding a protein that is highly homologous to the outer membrane protein TolC of Escherichia coli. Deletion of tolC by allelic exchange in L. pneumophila caused increased sensitivity to various drugs. The complementation of the tolC mutation in trans restored drug resistance, indicating that TolC is involved in multi-drug efflux machinery. In addition, deletion of tolC caused a significant attenuation of virulence towards both amoebae and macrophages. Thus, the TolC protein appears to play a crucial role in virulence which could be mediated by its involvement in efflux pump mechanisms. These findings will be helpful in unraveling the pathogenic mechanisms of L. pneumophila as well as in developing new therapeutic agents affecting the efflux of toxic compounds.
Collapse
|
34
|
Akhter A, Gavrilin MA, Frantz L, Washington S, Ditty C, Limoli D, Day C, Sarkar A, Newland C, Butchar J, Marsh CB, Wewers MD, Tridandapani S, Kanneganti TD, Amer AO. Caspase-7 activation by the Nlrc4/Ipaf inflammasome restricts Legionella pneumophila infection. PLoS Pathog 2009; 5:e1000361. [PMID: 19343209 PMCID: PMC2657210 DOI: 10.1371/journal.ppat.1000361] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2008] [Accepted: 03/02/2009] [Indexed: 01/28/2023] Open
Abstract
Legionella pneumophila (L. pneumophila), the causative agent of a severe form of pneumonia called Legionnaires' disease, replicates in human monocytes and macrophages. Most inbred mouse strains are restrictive to L. pneumophila infection except for the A/J, Nlrc4−/− (Ipaf−/−), and caspase-1−/− derived macrophages. Particularly, caspase-1 activation is detected during L. pneumophila infection of murine macrophages while absent in human cells. Recent in vitro experiments demonstrate that caspase-7 is cleaved by caspase-1. However, the biological role for caspase-7 activation downstream of caspase-1 is not known. Furthermore, whether this reaction is pertinent to the apoptosis or to the inflammation pathway or whether it mediates a yet unidentified effect is unclear. Using the intracellular pathogen L. pneumophila, we show that, upon infection of murine macrophages, caspase-7 was activated downstream of the Nlrc4 inflammasome and required caspase-1 activation. Such activation of caspase-7 was mediated by flagellin and required a functional Naip5. Remarkably, mice lacking caspase-7 and its macrophages allowed substantial L. pneumophila replication. Permissiveness of caspase-7−/− macrophages to the intracellular pathogen was due to defective delivery of the organism to the lysosome and to delayed cell death during early stages of infection. These results reveal a new mechanism for caspase-7 activation downstream of the Nlrc4 inflammasome and present a novel biological role for caspase-7 in host defense against an intracellular bacterium. Legionella pneumophila causes a severe form of pneumonia called Legionnaires' disease. In human macrophages, L. pneumophila establishes special vacuoles that do not fuse with the lysosome and grows intracellularly. However, in mouse macrophages, the bacteria are efficiently delivered to the lysosome for degradation. Importantly, caspase-1 is activated when L. pneumophila infects mouse macrophages, but not when it infects human cells. Caspase-1 activation promotes the fusion of the L. pneumophila vacuole with the lysosome and macrophage death. However, the caspase-1 substrate mediating such effects is unknown. Experiments performed in vitro demonstrate that caspase-7 is a substrate of caspase-1. Yet, it is not known if the reaction takes place within the macrophage, and it is unclear if it has any biological effect. In this study we show that, in mouse macrophages, caspase-7 is activated by L. pneumophila downstream of caspase-1 and requires the host receptors Nlrc4 and Naip5. Remarkably, caspase-7 activation during L. pneumophila infection restricts growth by promoting early macrophage death and efficient delivery of the organism to the lysosome. Consequently, L. pneumophila grows in the macrophages and the lungs of caspase-7−/− mice. Therefore, we demonstrate a novel caspase-7 activation pathway that contributes to the restriction of L. pneumophila infection.
Collapse
Affiliation(s)
- Anwari Akhter
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Mikhail A. Gavrilin
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Laura Frantz
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Songcerae Washington
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Cameron Ditty
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Dominique Limoli
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Colby Day
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Anasuya Sarkar
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Christie Newland
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Jonathan Butchar
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Clay B. Marsh
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Mark D. Wewers
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Susheela Tridandapani
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
| | - Thirumala-Devi Kanneganti
- Department of Immunology, St Jude Children's Research Hospital, Memphis, Tennessee, United States of America
- * E-mail: (TDK); (AOA)
| | - Amal O. Amer
- Division of Pulmonary, Allergy, Critical Care, and Sleep Medicine, Center for Microbial Interface Biology and the Department of Internal Medicine, Ohio State University, Columbus, Ohio, United States of America
- * E-mail: (TDK); (AOA)
| |
Collapse
|
35
|
Abstract
Twitching motility is a form of bacterial translocation over solid or semi-solid surfaces mediated by the extension, tethering, and subsequent retraction of type IV pili. These pili are also known to be involved in virulence, biofilm formation, formation of fruiting bodies, horizontal gene transfer, and protein secretion. We have characterized the presence of twitching motility on agar plates in Legionella pneumophila, the etiological agent of Legionnaires' disease. By examining twitching motility zones, we have demonstrated that twitching motility was dependent on agar thickness/concentration, the chemical composition of the media, the presence of charcoal and cysteine, proximity to other bacteria, and temperature. A knockout mutant of the pilus subunit, pilE, exhibited a total loss of twitching motility at 37 degrees C, but not at 27 degrees C, suggesting either the existence of a compensating pilus subunit or of another twitching motility system in this organism.
Collapse
Affiliation(s)
- David A Coil
- Laboratory of Bacteriology, Rega Institute for Medical Research, Katholieke Universiteit Leuven, Leuven, Belgium
| | | |
Collapse
|
36
|
Dey R, Bodennec J, Mameri MO, Pernin P. Free-living freshwater amoebae differ in their susceptibility to the pathogenic bacterium Legionella pneumophila. FEMS Microbiol Lett 2008; 290:10-7. [PMID: 19016880 DOI: 10.1111/j.1574-6968.2008.01387.x] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Legionella pneumophila is known as a facultative intracellular parasite of free-living soil and freshwater amoebae, of which several species have been shown to support the growth of the pathogenic bacteria. We report for the first time the behaviour of two strains (c2c and Z503) of the amoeba Willaertia magna towards different strains of L. pneumophila serogroup 1 and compared it with Acanthamoeba castellanii and Hartmannella vermiformis, known to be L. pneumophila permissive. In contrast to the results seen with other amoebae, W. magna c2c inhibited the growth of one strain of Legionella (L. pneumophila, Paris), but not of others belonging to the same serogroup (L. pneumophila, Philadelphia and L. pneumophila, Lens). Also, the different L. pneumophila inhibited cell growth and induced cell death in A. castellanii, H. vermiformis and W. magna Z503 within 3-4 days while W. magna c2c strain remained unaffected even up to 7 days. Electron microscopy demonstrated that the formation of numerous replicative phagosomes observed within Acanthamoeba and Hartmannella is rarely seen in W. magna c2c cocultured with L. pneumophila. Moreover, the morphological differences were observed between L. pneumophila cultured either with Willaertia or other amoebae. These observations show that amoebae are not all equally permissive to L. pneumophila and highlight W. magna c2c as particularly resistant towards some strains of this bacterium.
Collapse
|
37
|
Alleron L, Merlet N, Lacombe C, Frère J. Long-term survival of Legionella pneumophila in the viable but nonculturable state after monochloramine treatment. Curr Microbiol 2008; 57:497-502. [PMID: 18839249 DOI: 10.1007/s00284-008-9275-9] [Citation(s) in RCA: 97] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2008] [Accepted: 07/03/2008] [Indexed: 11/29/2022]
Abstract
Legionella pneumophila, a facultative intracellular human pathogen, can persist for long periods in natural and artificial aquatic environments. Eradication of this bacterium from plumbing systems is often difficult. We tested L. pneumophila survival after monochloramine treatment. Survival was monitored using the BacLight Bacterial Viability Kit (Molecular Probes), ChemChrome V6 Kit (Chemunex), quantitative polymerase chain reaction and culturability on buffered charcoal-yeast extract agar. In nonculturable samples, regain of culturability was obtained after addition of the amoeba Acanthamoeba castellanii, and esterase activity and membrane integrity were observed after >4 months after treatment. These results demonstrate for the first time that L. pneumophila could persist for long periods in biofilms into the viable but nonculturable (VBNC) state. Monitoring L. pneumophila in water networks is generally done by enumeration on standard solid medium. This method does not take into account VBNC bacteria. VBNC L. pneumophila could persist for long periods and should be resuscitated by amoeba. These cells constitute potential sources of contamination and should be taken into account in monitoring water networks.
Collapse
Affiliation(s)
- Laëtitia Alleron
- Laboratoire de Chimie et de Microbiologie de l'Eau, University of Poitiers, 86022, Poitiers Cedex, France
| | | | | | | |
Collapse
|
38
|
Al-Khodor S, Price CT, Habyarimana F, Kalia A, Abu Kwaik Y. A Dot/Icm-translocated ankyrin protein of Legionella pneumophila is required for intracellular proliferation within human macrophages and protozoa. Mol Microbiol 2008; 70:908-23. [PMID: 18811729 DOI: 10.1111/j.1365-2958.2008.06453.x] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
The Dot/Icm type IV secretion system of Legionella pneumophila translocates numerous bacterial effectors into the host cell and is essential for bacterial proliferation within macrophages and protozoa. We have recently shown that L. pneumophila strain AA100/130b harbours 11 genes encoding eukaryotic-like ankyrin (Ank) proteins, a family of proteins involved in various essential eukaryotic cellular processes. In contrast to most Dot/Icm-exported substrates, which have little or no detectable role in intracellular proliferation, a mutation in ankB results in a severe growth defect in intracellular replication within human monocyte-derived macrophages (hMDMs), U937 macrophages and Acanthamoeba polyphaga. Single cell analyses of coinfections of hMDMs have shown that the intracellular growth defect of the ankB mutant is totally rescued in cis within communal phagosomes harbouring the wild type strain. Interestingly, distinct from dot/icm structural mutants, the ankB mutant is also rescued in trans within cells harbouring the wild type strain in a different phagosome, indicating that AnkB is a trans-acting secreted effector. Using adenylate cyclase fusions to AnkB, we show that AnkB is translocated into the host cell via the Dot/Icm secretion system in an IcmSW-dependent manner and that the last three C-terminal amino acid residues are essential for translocation. Distinct from the dot/icm structural mutants, the ankB mutant-containing phagosomes exclude late endosomal and lysosomal markers and their phagosomes are remodelled by the rough endoplasmic reticulum. We show that at the postexponential phase of growth, the LetA/S and PmrA/B Two Component Systems confer a positive regulation on expression of the ankB gene, whereas RpoS, LetE and RelA suppress its expression. Our data show that the eukaryotic-like AnkB protein is a Dot/Icm-exported effector that plays a major role in intracellular replication of L. pneumophila within macrophages and protozoa, and its expression is temporally controlled by regulators of the postexponential phase of growth.
Collapse
Affiliation(s)
- Souhaila Al-Khodor
- Department of Microbiology and Immunology, Room 413, College of Medicine, University of Louisville, KY 40202, USA
| | | | | | | | | |
Collapse
|
39
|
Rivero-Lezcano OM, Rodríguez-Aparicio LB. Detection of inhibition of antimicrobial activity by mycobacterial lysates in human monocytes infected with Legionella pneumophila. J Immunol Methods 2008; 336:16-21. [PMID: 18436233 DOI: 10.1016/j.jim.2008.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2007] [Revised: 02/11/2008] [Accepted: 03/06/2008] [Indexed: 11/16/2022]
Abstract
Antimicrobial activity in human monocytes infected with Mycobacterium tuberculosis has been difficult to demonstrate in vitro, and the molecular mechanisms allowing the bacteria to survive intracellularly are unknown. As a means to test the influence of bacterial products in the microbicidal activity of monocytes we have developed an infection model with Legionella pneumophila, which is killed by interferon gamma activated cells. We demonstrate that this model is useful because M. tuberculosis lysates inhibit one hundred fold the interferon gamma induced activity against L. pneumophila. Comparable degrees of inhibition are also detected when we use lysates from the less pathogenic Mycobacterium gordonae and the pathogenic Staphylococcus aureus, suggesting the participation of a common mechanism. This hypothesis is supported by the fact that the pattern of cytokine secretion is similar in all cases. A significant difference is, however, observed when we used lysates from the non-pathogenic Escherichia coli, which resulted in the recovery of low numbers of bacteria, probably because they induce the cell death of infected monocytes.
Collapse
Affiliation(s)
- Octavio M Rivero-Lezcano
- Unit of Investigation, Hospital de León. Bldg. S. Antonio Abad. Altos de Nava s/n, 24008-León, Spain.
| | | |
Collapse
|
40
|
Verdon J, Berjeaud JM, Lacombe C, Héchard Y. Characterization of anti-Legionella activity of warnericin RK and delta-lysin I from Staphylococcus warneri. Peptides 2008; 29:978-84. [PMID: 18339450 DOI: 10.1016/j.peptides.2008.01.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/28/2007] [Revised: 01/24/2008] [Accepted: 01/26/2008] [Indexed: 11/23/2022]
Abstract
Legionella pneumophila, the causative agent of Legionnaires' disease, is a waterborne bacteria. It can multiply in man-made water systems and infect people who inhale contaminated droplets. We have previously reported a Staphylococcus warneri strain that display an anti-Legionella activity. In this work, we characterized three anti-Legionella peptides that are produced by S. warneri. One peptide, warnericin RK, is original, while the two others are delta-lysin I and delta-lysin II, whose genes were previously described. Due to high sequence similarity of the two delta-lysins, further characterization was performed only on delta-lysin I. Warnericin RK and delta-lysin I displayed the same antibacterial spectrum, which is almost restricted to the Legionella genus. Also, both peptides have a hemolytic activity. These results led to the hypothesis that warnericin RK and delta-lysin I share a similar mode of action, and that Legionella should have a specific feature that may explain the high specificity of these antibacterial peptides.
Collapse
Affiliation(s)
- Julien Verdon
- Université de Poitiers, Laboratoire de Chimie et Microbiologie de l'Eau, CNRS UMR 6008, 40 avenue du recteur Pineau, 86022 Poitiers, France
| | | | | | | |
Collapse
|
41
|
In vivo effect of adhesion inhibitor heparin on Legionella pneumophila pathogenesis in a murine pneumonia model. Intensive Care Med 2008; 34:1511-9. [PMID: 18365173 DOI: 10.1007/s00134-008-1063-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2007] [Accepted: 12/13/2007] [Indexed: 01/11/2023]
Abstract
OBJECTIVE To examine the effect of intratracheal heparin instillation on Legionella pneumophila-related acute lung injury (ALI) and systemic dissemination. DESIGN Prospective, controlled experimental study. SETTING University research laboratory. INTERVENTIONS A/J mice received 5 microg of sulfated heparin intratracheally co-instilled with 10(6) or 10(8) colony-forming units (CFU) of a virulent isolate of L. pneumophila. MEASUREMENTS AND RESULTS ALI was assessed in control groups (PBS and PBS-heparin) and on days 1, 2 and 3 post-infection, in terms of the lung wet-to-dry (W/D) weight ratios and of lung endothelial permeability to radio-labeled albumin (Perm-I(125)). Lung bacterial loads were measured and systemic spread was assessed by blood and target organ culture. The alveolar inflammatory response was evaluated by measuring the cytokine levels (TNF-alpha, IFN-gamma, IL-6 and IL-12p70) in bronchoalveolar lavage fluids (BALF). Co-instilled heparin improved mouse survival after the 10(8) CFU challenge (p < 0.01). On day 2, heparin co-instillation significantly reduced the W/D ratio and Perm-I(125) (p < 0.01 and p < 0.001 respectively), improved lung bacterial clearance (p < 0.001), prevented systemic dissemination (blood, liver, spleen, kidneys and brain cultures, all p < 0.05) and significantly increased IFN-gamma and IL-12p70 levels in BALF (p < 0.05). CONCLUSIONS Heparin co-instillation during intratracheal L. pneumophila challenge has a protective effect on the alveolar-capillary barrier and prevents bacterial dissemination. These results tend to confirm the competitive inhibition by heparin of L. pneumophila attachment to lung epithelium in vivo, and point to the possible involvement of a heparan-sulfate adhesin in L. pneumophila binding to pneumocytes.
Collapse
|
42
|
Molmeret M, Santic' M, Asare R, Carabeo RA, Abu Kwaik Y. Rapid escape of the dot/icm mutants of Legionella pneumophila into the cytosol of mammalian and protozoan cells. Infect Immun 2007; 75:3290-304. [PMID: 17438033 PMCID: PMC1932949 DOI: 10.1128/iai.00292-07] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The Legionella pneumophila-containing phagosome evades endocytic fusion and intercepts endoplasmic reticulum (ER)-to-Golgi vesicle traffic, which is believed to be mediated by the Dot/Icm type IV secretion system. Although phagosomes harboring dot/icm mutants are thought to mature through the endosomal-lysosomal pathway, colocalization studies with lysosomal markers have reported contradictory results. In addition, phagosomes harboring the dot/icm mutants do not interact with endocytosed materials, which is inconsistent with maturation of the phagosomes in the endosomal-lysosomal pathway. Using multiple strategies, we show that the dot/icm mutants defective in the Dot/Icm structural apparatus are unable to maintain the integrity of their phagosomes and escape into the cytoplasm within minutes of entry into various mammalian and protozoan cells in a process independent of the type II secretion system. In contrast, mutants defective in cytoplasmic chaperones of Dot/Icm effectors and rpoS, letA/S, and letE regulatory mutants are all localized within intact phagosomes. Importantly, non-dot/icm L. pneumophila mutants whose phagosomes acquire late endosomal-lysosomal markers are all located within intact phagosomes. Using high-resolution electron microscopy, we show that phagosomes harboring the dot/icm transporter mutants do not fuse to lysosomes but are free in the cytoplasm. Inhibition of ER-to-Golgi vesicle traffic by brefeldin A does not affect the integrity of the phagosomes harboring the parental strain of L. pneumophila. We conclude that the Dot/Icm transporter is involved in maintaining the integrity of the L. pneumophila phagosome, independent of interception of ER-to-Golgi vesicle traffic, which is a novel function of type IV secretion systems.
Collapse
Affiliation(s)
- Maëlle Molmeret
- Department of Microbiology and Immunology, University of Louisville College of Medicine, Louisville, KY 40292, USA
| | | | | | | | | |
Collapse
|
43
|
Wagner C, Khan AS, Kamphausen T, Schmausser B, Unal C, Lorenz U, Fischer G, Hacker J, Steinert M. Collagen binding protein Mip enables Legionella pneumophila to transmigrate through a barrier of NCI-H292 lung epithelial cells and extracellular matrix. Cell Microbiol 2007; 9:450-62. [PMID: 16953800 DOI: 10.1111/j.1462-5822.2006.00802.x] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Guinea pigs are highly susceptible to Legionella pneumophila infection and therefore have been the preferred animal model for studies of legionellosis. In this study guinea pig infections revealed that the Legionella virulence factor Mip (macrophage infectivity potentiator) contributes to the bacterial dissemination within the lung tissue and the spread of Legionella to the spleen. Histopathology of infected animals, binding assays with components of the extracellular matrix (ECM), bacterial transmigration experiments across an artificial lung epithelium barrier, inhibitor studies and ECM degradation assays were used to elucidate the underlying mechanism of the in vivo observation. The Mip protein, which belongs to the enzyme family of FK506-binding proteins (FKBP), was shown to bind to the ECM protein collagen (type I, II, III, IV, V, VI). Transwell assays with L. pneumophila and recombinant Escherichia coli HB101 strains revealed that Mip enables these bacteria to transmigrate across a barrier of NCI-H292 lung epithelial cells and ECM (NCI-H292/ECM barrier). Mip-specific monoclonal antibodies and the immunosuppressants rapamycin and FK506, which inhibit the peptidyl prolyl cis/trans isomerase (PPIase) activity of Mip, were able to inhibit this transmigration. By using protease inhibitors we found that the penetration of the NCI-H292/ECM barrier additionally requires a serine protease activity. Degradation assays with (35)S-labelled ECM proteins supported the finding of a concerted action of Mip and a serine protease. The described synergism between the activity of the collagen binding Mip protein and the serine protease activity represents an entirely new mechanism for bacterial penetration of the lung epithelial barrier and has implications for other prokaryotic and eukaryotic pathogens.
Collapse
Affiliation(s)
- Carina Wagner
- Institut für Molekulare Infektionsbiologie, Universität Würzburg, Röntgenring 11, D-97070 Würzburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Asare R, Santic M, Gobin I, Doric M, Suttles J, Graham JE, Price CD, Abu Kwaik Y. Genetic susceptibility and caspase activation in mouse and human macrophages are distinct for Legionella longbeachae and L. pneumophila. Infect Immun 2007; 75:1933-45. [PMID: 17261610 PMCID: PMC1865702 DOI: 10.1128/iai.00025-07] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Legionella pneumophila is the predominant cause of Legionnaires' disease in the United States and Europe, while Legionella longbeachae is the common cause of the disease in Western Australia. Although clinical manifestations by both intracellular pathogens are very similar, recent studies have shown that phagosome biogeneses of both species within human macrophages are distinct (R. Asare and Y. Abu Kwaik, Cell. Microbiol., in press). Most inbred mouse strains are resistant to infection by L. pneumophila, with the exception of the A/J mouse strain, and this genetic susceptibility is associated with polymorphism in the naip5 allele and flagellin-mediated early activation of caspase 1 and pyropoptosis in nonpermissive mouse macrophages. Here, we show that genetic susceptibility of mice to infection by L. longbeachae is independent of allelic polymorphism of naip5. L. longbeachae replicates within bone marrow-derived macrophages and in the lungs of A/J, C57BL/6, and BALB/c mice, while L. pneumophila replicates in macrophages in vitro and in the lungs of the A/J mouse strain only. Quantitative real-time PCR studies on infected A/J and C57BL/6 mouse bone marrow-derived macrophages show that both L. longbeachae and L. pneumophila trigger similar levels of naip5 expression, but the levels are higher in infected C57BL/6 mouse macrophages. In contrast to L. pneumophila, L. longbeachae has no detectable pore-forming activity and does not activate caspase 1 in A/J and C57BL/6 mouse or human macrophages, despite flagellation. Unlike L. pneumophila, L. longbeachae triggers only a modest activation of caspase 3 and low levels of apoptosis in human and murine macrophages in vitro and in the lungs of infected mice at late stages of infection. We conclude that despite flagellation, infection by L. longbeachae is independent of polymorphism in the naip5 allele and L. longbeachae does not trigger the activation of caspase 1, caspase 3, or late-stage apoptosis in mouse and human macrophages. Neither species triggers caspase 1 activation in human macrophages.
Collapse
Affiliation(s)
- Rexford Asare
- Department of Microbiology and Immunology, University of Louisville College of Medicine, 319 Abraham Flexner Way, Louisville, KY 40292, USA.
| | | | | | | | | | | | | | | |
Collapse
|
45
|
Laguna RK, Creasey EA, Li Z, Valtz N, Isberg RR. A Legionella pneumophila-translocated substrate that is required for growth within macrophages and protection from host cell death. Proc Natl Acad Sci U S A 2006; 103:18745-50. [PMID: 17124169 PMCID: PMC1656969 DOI: 10.1073/pnas.0609012103] [Citation(s) in RCA: 169] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2006] [Indexed: 11/18/2022] Open
Abstract
Legionella pneumophila requires the Dot/Icm protein translocation system to replicate within host cells as a critical component of Legionnaire's pneumonia. None of the known individual substrates of the translocator have been shown to be essential for intracellular replication. We demonstrate here that mutants lacking the Dot/Icm substrate SdhA were severely impaired for intracellular growth within mouse bone marrow macrophages, with the defect absolute in triple mutants lacking sdhA and its two paralogs. The defect caused by the absence of the sdhA family was less severe during growth within Dictyostelium discoideum amoebae, indicating that the requirement for SdhA shows cell-type specificity. Macrophages harboring the L. pneumophila sdhA mutant showed increased nuclear degradation, mitochondrial disruption, membrane permeability, and caspase activation, indicating a role for SdhA in preventing host cell death. Defective intracellular growth of the sdhA(-) mutant could be partially suppressed by the action of caspase inhibitors, but caspase-independent cell death pathways eventually aborted replication of the mutant.
Collapse
Affiliation(s)
- Rita K. Laguna
- *Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111
| | - Elizabeth A. Creasey
- Howard Hughes Medical Institute and
- *Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111
| | - Zhiru Li
- *Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111
| | - Nicole Valtz
- *Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111
| | - Ralph R. Isberg
- Howard Hughes Medical Institute and
- *Department of Molecular Biology and Microbiology, Tufts University School of Medicine, 150 Harrison Avenue, Boston, MA 02111
| |
Collapse
|
46
|
Bandyopadhyay P, Liu S, Gabbai CB, Venitelli Z, Steinman HM. Environmental mimics and the Lvh type IVA secretion system contribute to virulence-related phenotypes of Legionella pneumophila. Infect Immun 2006; 75:723-35. [PMID: 17101653 PMCID: PMC1828514 DOI: 10.1128/iai.00956-06] [Citation(s) in RCA: 58] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila, the causative organism of Legionnaires' disease, is a fresh-water bacterium and intracellular parasite of amoebae. This study examined the effects of incubation in water and amoeba encystment on L. pneumophila strain JR32 and null mutants in dot/icm genes encoding a type IVB secretion system required for entry, delayed acidification of L. pneumophila-containing phagosomes, and intracellular multiplication when stationary-phase bacteria infect amoebae and macrophages. Following incubation of stationary-phase cultures in water, mutants in dotA and dotB, essential for function of the type IVB secretion system, exhibited entry and delay of phagosome acidification comparable to that of strain JR32. Following encystment in Acanthamoeba castellanii and reversion of cysts to amoeba trophozoites, dotA and dotB mutants exhibited intracellular multiplication in amoebae. The L. pneumophila Lvh locus, encoding a type IVA secretion system homologous to that in Agrobacterium tumefaciens, was required for restoration of entry and intracellular multiplication in dot/icm mutants following incubation in water and amoeba encystment and was required for delay of phagosome acidification in strain JR32. These data support a model in which the Dot/Icm type IVB secretion system is conditionally rather than absolutely required for L. pneumophila virulence-related phenotypes. The data suggest that the Lvh type IVA secretion system, previously thought to be dispensable, is involved in virulence-related phenotypes under conditions mimicking the spread of Legionnaires' disease from environmental niches. Since environmental amoebae are implicated as reservoirs for an increasing number of environmental pathogens and for drug-resistant bacteria, the environmental mimics developed here may be useful in virulence studies of other pathogens.
Collapse
Affiliation(s)
- Purnima Bandyopadhyay
- Department of Biochemistry, Albert Einstein College of Medicine, 1300 Morris Park Avenue, Bronx, New York 10461, USA
| | | | | | | | | |
Collapse
|
47
|
Abu-Zant A, Asare R, Graham JE, Abu Kwaik Y. Role for RpoS but not RelA of Legionella pneumophila in modulation of phagosome biogenesis and adaptation to the phagosomal microenvironment. Infect Immun 2006; 74:3021-6. [PMID: 16622243 PMCID: PMC1459718 DOI: 10.1128/iai.74.5.3021-3026.2006] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The induction of virulence traits by Legionella pneumophila at the post-exponential phase has been proposed to be triggered by the stringent response mediated by RelA, which triggers RpoS. We show that L. pneumophila rpoS but not relA is required for early intracellular survival and replication within human monocyte-derived macrophages and Acanthamoeba polyphaga. In addition, L. pneumophila rpoS but not relA is required for expression of the pore-forming activity. We provide evidence that RpoS plays a role in the modulation of phagosome biogenesis and in adaptation to the phagosomal microenvironment. Thus, there is no functional link between the stringent response and RpoS in the pathogenesis of L. pneumophila.
Collapse
Affiliation(s)
- Alaeddin Abu-Zant
- Department of Microbiology, University of Louisville College of Medicine, Louisville, KY 40292, USA
| | | | | | | |
Collapse
|
48
|
Santic M, Molmeret M, Klose KE, Abu Kwaik Y. Francisella tularensis travels a novel, twisted road within macrophages. Trends Microbiol 2005; 14:37-44. [PMID: 16356719 DOI: 10.1016/j.tim.2005.11.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2005] [Revised: 10/06/2005] [Accepted: 11/24/2005] [Indexed: 01/02/2023]
Abstract
Francisella tularensis is a highly infectious intracellular bacterium that causes fulminating disease and is a potential bioweapon. Although entry of the bacteria into macrophages is mediated by novel asymmetric, spacious pseudopod loops, the nascent phagosome becomes tight fitting within seconds of formation. Biogenesis of the Francisella-containing phagosome (FCP) is arrested for 2-4h at a unique stage within the endosomal-lysosomal degradation pathway, followed by gradual bacterial escape into the cytosol, where the microbe proliferates. By contrast, other intracellular pathogens either proliferate within an idiosyncratic phagosome or escape within minutes into the cytoplasm to avoid degradation. Thus, trafficking of the FCP defies the dogma of classification of intracellular pathogens into vacuolar or cytosolic. The Francisella pathogenicity island and its transcriptional regulator MglA are essential for arresting biogenesis of the FCP. Despite sophisticated microbial strategies to arrest phagosome biogenesis within quiescent macrophages, trafficking of F. tularensis and other intracellular pathogens within interferon-gamma-activated macrophages is similar, in that the bacterial phagosomes fuse to lysosomes. The potential use of F. tularensis as a bioweapon has generated interest in the study of its molecular pathogenesis to identify targets for therapy, vaccination and rapid diagnosis.
Collapse
Affiliation(s)
- Marina Santic
- Department of Microbiology and Parasitology, University of Rijeka, Rijeka, Croatia
| | | | | | | |
Collapse
|
49
|
Shadrach WS, Rydzewski K, Laube U, Holland G, Ozel M, Kiderlen AF, Flieger A. Balamuthia mandrillaris, free-living ameba and opportunistic agent of encephalitis, is a potential host for Legionella pneumophila bacteria. Appl Environ Microbiol 2005; 71:2244-9. [PMID: 15870307 PMCID: PMC1087515 DOI: 10.1128/aem.71.5.2244-2249.2005] [Citation(s) in RCA: 35] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Balamuthia mandrillaris is a free-living ameba and an opportunistic agent of granulomatous encephalitis in humans and other mammalian species. Other free-living amebas, such as Acanthamoeba and Hartmannella, can provide a niche for intracellular survival of bacteria, including the causative agent of Legionnaires' disease, Legionella pneumophila. Infection of amebas by L. pneumophila enhances the bacterial infectivity for mammalian cells and lung tissues. Likewise, the pathogenicity of amebas may be enhanced when they host bacteria. So far, the colonization of B. mandrillaris by bacteria has not been convincingly shown. In this study, we investigated whether this ameba could host L. pneumophila bacteria. Our experiments showed that L. pneumophila could initiate uptake by B. mandrillaris and could replicate within the ameba about 4 to 5 log cycles from 24 to 72 h after infection. On the other hand, a dotA mutant, known to be unable to propagate in Acanthamoeba castellanii, also did not replicate within B. mandrillaris. Approaching completion of the intracellular cycle, L. pneumophila wild-type bacteria were able to destroy their ameboid hosts. Observations by light microscopy paralleled our quantitative data and revealed the rounding, collapse, clumping, and complete destruction of the infected amebas. Electron microscopic studies unveiled the replication of the bacteria in a compartment surrounded by a structure resembling rough endoplasmic reticulum. The course of intracellular infection, the degree of bacterial multiplication, and the ultrastructural features of a L. pneumophila-infected B. mandrillaris ameba resembled those described for other amebas hosting Legionella bacteria. We hence speculate that B. mandrillaris might serve as a host for bacteria in its natural environment.
Collapse
Affiliation(s)
- Winlet Sheba Shadrach
- Robert Koch-Institut, Research Group Pathogenesis of Legionella Infections, D-13353 Berlin, Germany
| | | | | | | | | | | | | |
Collapse
|
50
|
Santic M, Molmeret M, Abu Kwaik Y. Maturation of the Legionella pneumophila-containing phagosome into a phagolysosome within gamma interferon-activated macrophages. Infect Immun 2005; 73:3166-71. [PMID: 15845527 PMCID: PMC1087382 DOI: 10.1128/iai.73.5.3166-3171.2005] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Legionella pneumophila is an intracellular pathogen that modulates the biogenesis of its phagosome to evade endocytic vesicle traffic. The Legionella-containing phagosome (LCP) does not acquire any endocytic markers and is remodeled by the endoplasmic reticulum during early stages. Here we show that intracellular replication of L. pneumophila is inhibited in gamma interferon (IFN-gamma)-activated, bone marrow-derived mouse macrophages and IFN-gamma-activated, human monocyte-derived macrophages in a dose-dependent manner. This inhibition of intracellular replication is associated with the maturation of the LCP into a phagolysosome, as documented by the acquisition of LAMP-2, cathepsin D, and lysosomal tracer Texas Red ovalbumin, and with the failure of the LCP to be remodeled by the rough endoplasmic reticulum. We conclude that IFN-gamma-activated macrophages override the ability of L. pneumophila to evade endocytic fusion and that the LCP is processed through the "default" endosomal-lysosomal degradation pathway.
Collapse
Affiliation(s)
- Marina Santic
- Department of Microbiology and Immunology, Room 316, University of Louisville College of Medicine, 319 Abraham Flexner Way 55A, Louisville, KY 40202, USA
| | | | | |
Collapse
|