1
|
Different Tidal Volumes May Jeopardize Pulmonary Redox and Inflammatory Status in Healthy Rats Undergoing Mechanical Ventilation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:5196896. [PMID: 34745417 PMCID: PMC8570858 DOI: 10.1155/2021/5196896] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 10/11/2021] [Indexed: 11/18/2022]
Abstract
Mechanical ventilation (MV) is essential for the treatment of critical patients since it may provide a desired gas exchange. However, MV itself can trigger ventilator-associated lung injury in patients. We hypothesized that the mechanisms of lung injury through redox imbalance might also be associated with pulmonary inflammatory status, which has not been so far described. We tested it by delivering different tidal volumes to normal lungs undergoing MV. Healthy Wistar rats were divided into spontaneously breathing animals (control group, CG), and rats were submitted to MV (controlled ventilation mode) with tidal volumes of 4 mL/kg (MVG4), 8 mL/kg (MVG8), or 12 mL/kg (MVG12), zero end-expiratory pressure (ZEEP), and normoxia (FiO2 = 21%) for 1 hour. After ventilation and euthanasia, arterial blood, bronchoalveolar lavage fluid (BALF), and lungs were collected for subsequent analysis. MVG12 presented lower PaCO2 and bicarbonate content in the arterial blood than CG, MVG4, and MVG8. Neutrophil influx in BALF and MPO activity in lung tissue homogenate were significantly higher in MVG12 than in CG. The levels of CCL5, TNF-α, IL-1, and IL-6 in lung tissue homogenate were higher in MVG12 than in CG and MVG4. In the lung parenchyma, the lipid peroxidation was more important in MVG12 than in CG, MVG4, and MVG8, while there was more protein oxidation in MVG12 than in CG and MVG4. The stereological analysis confirmed the histological pulmonary changes in MVG12. The association of controlled mode ventilation and high tidal volume, without PEEP and normoxia, impaired pulmonary histoarchitecture and triggered redox imbalance and lung inflammation in healthy adult rats.
Collapse
|
2
|
Evaluation of postmortem pathological changes in the lung in SARS-CoV-2 RT-PCR positive cases. JOURNAL OF SURGERY AND MEDICINE 2021. [DOI: 10.28982/josam.997381] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
3
|
Fan Y, Wang Y, Yu S, Chang J, Yan Y, Wang Y, Bian Y. Natural products provide a new perspective for anti-complement treatment of severe COVID-19: a review. Chin Med 2021; 16:67. [PMID: 34321065 PMCID: PMC8318062 DOI: 10.1186/s13020-021-00478-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 07/21/2021] [Indexed: 01/08/2023] Open
Abstract
Exaggerated immune response and cytokine storm are accounted for the severity of COVID-19, including organ dysfunction, especially progressive respiratory failure and generalized coagulopathy. Uncontrolled activation of complement contributes to acute and chronic inflammation, the generation of cytokine storm, intravascular coagulation and cell/tissue damage, which may be a favorable target for the treatment of multiple organ failure and reduction of mortality in critically ill patients with COVID-19. Cytokine storm suppression therapy can alleviate the symptoms of critically ill patients to some extent, but as a remedial etiological measure, its long-term efficacy is still questionable. Anti-complement therapy has undoubtedly become an important hotspot in the upstream regulation of cytokine storm. However, chemosynthetic complement inhibitors are expensive, and their drug resistance and long-term side effects require further investigation. New complement inhibitors with high efficiency and low toxicity can be obtained from natural products at low development cost. This paper puts forward some insights of the development of natural anti-complement products in traditional Chinese medicine, that may provide a bright perspective for suppressing cytokine storm in critically ill patients with COVID-19.
Collapse
Affiliation(s)
- Yadong Fan
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No.10 PoYangHu Road, JingHai, District, Tianjin, 301617, People's Republic of China
| | - Ying Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No.10 PoYangHu Road, JingHai, District, Tianjin, 301617, People's Republic of China
| | - Shuang Yu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No.10 PoYangHu Road, JingHai, District, Tianjin, 301617, People's Republic of China
| | - Jun Chang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No.10 PoYangHu Road, JingHai, District, Tianjin, 301617, People's Republic of China
| | - Yiqi Yan
- Institute of Traditional Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yiyang Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No.10 PoYangHu Road, JingHai, District, Tianjin, 301617, People's Republic of China
| | - Yuhong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, No.10 PoYangHu Road, JingHai, District, Tianjin, 301617, People's Republic of China.
| |
Collapse
|
4
|
Elevated Expression Levels of Lung Complement Anaphylatoxin, Neutrophil Chemoattractant Chemokine IL-8, and RANTES in MERS-CoV-Infected Patients: Predictive Biomarkers for Disease Severity and Mortality. J Clin Immunol 2021; 41:1607-1620. [PMID: 34232441 PMCID: PMC8260346 DOI: 10.1007/s10875-021-01061-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/05/2021] [Indexed: 02/08/2023]
Abstract
The complement system, a network of highly-regulated proteins, represents a vital part of the innate immune response. Over-activation of the complement system plays an important role in inflammation, tissue damage, and infectious disease severity. The prevalence of MERS-CoV in Saudi Arabia remains significant and cases are still being reported. The role of complement in Middle East Respiratory Syndrome coronavirus (MERS-CoV) pathogenesis and complement-modulating treatment strategies has received limited attention, and studies involving MERS-CoV-infected patients have not been reported. This study offers the first insight into the pulmonary expression profile including seven complement proteins, complement regulatory factors, IL-8, and RANTES in MERS-CoV infected patients without underlying chronic medical conditions. Our results significantly indicate high expression levels of complement anaphylatoxins (C3a and C5a), IL-8, and RANTES in the lungs of MERS-CoV-infected patients. The upregulation of lung complement anaphylatoxins, C5a, and C3a was positively correlated with IL-8, RANTES, and the fatality rate. Our results also showed upregulation of the positive regulatory complement factor P, suggesting positive regulation of the complement during MERS-CoV infection. High levels of lung C5a, C3a, factor P, IL-8, and RANTES may contribute to the immunopathology, disease severity, ARDS development, and a higher fatality rate in MERS-CoV-infected patients. These findings highlight the potential prognostic utility of C5a, C3a, IL-8, and RANTES as biomarkers for MERS-CoV disease severity and mortality. To further explore the prediction of functional partners (proteins) of highly expressed proteins (C5a, C3a, factor P, IL-8, and RANTES), the computational protein–protein interaction (PPI) network was constructed, and six proteins (hub nodes) were identified.
Collapse
|
5
|
Wang E, Chen H, Sun B, Wang H, Qu H, Liu Y, Sun X, Qu J, Fang Z, Tian L, Zeng Y, Huang S, Hakonarson H, Liu Z. Serum levels of the IgA isotype switch factor TGF-β1 are elevated in patients with COVID-19. FEBS Lett 2021; 595:1819-1824. [PMID: 33961290 PMCID: PMC8209884 DOI: 10.1002/1873-3468.14104] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/25/2021] [Accepted: 04/30/2021] [Indexed: 01/27/2023]
Abstract
We previously observed enhanced immunoglobulin A (IgA) responses in severe COVID-19, which might confer damaging effects. Given the important role of IgA in immune and inflammatory responses, the aim of this study was to investigate the dynamic response of the IgA isotype switch factor TGF-β1 in COVID-19 patients. We observed, in a total of 153 COVID-19 patients, that the serum levels of TGF-β1 were increased significantly at the early and middle stages of COVID-19, and correlated with the levels of SARS-CoV-2-specific IgA, as well as with the APACHE II score in patients with severe disease. In view of the genetic association of the TGF-β1 activator THBS3 with severe COVID-19 identified by the COVID-19 Host Genetics Initiative, this study suggests TGF-β1 may play a key role in COVID-19.
Collapse
Affiliation(s)
- Er‐yi Wang
- Shenzhen Key Laboratory of Allergy & ImmunologyState Key Laboratory of Respiratory Disease for Allergy at Shenzhen UniversityShenzhen University School of MedicineChina
- Department of Respirology & AllergyThird Affiliated Hospital of Shenzhen UniversityChina
| | - Hao Chen
- Department of Allergy, Tongji Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory DiseaseFirst Affiliated Hospital of Guangzhou Medical UniversityChina
| | - Bao‐qing Sun
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory HealthFirst Affiliated Hospital of Guangzhou Medical UniversityChina
| | - Hui Wang
- Department of Medical LaboratoryThe Central Hospital of WuhanTongji Medical CollegeHuazhong University of Science and TechnologyWuhanChina
| | - Hui‐Qi Qu
- Center for Applied GenomicsThe Children’s Hospital of PhiladelphiaPAUSA
| | - Yichuan Liu
- Center for Applied GenomicsThe Children’s Hospital of PhiladelphiaPAUSA
| | - Xi‐zhuo Sun
- Department of Respirology & AllergyThird Affiliated Hospital of Shenzhen UniversityChina
| | - Jingchun Qu
- Center for Applied GenomicsThe Children’s Hospital of PhiladelphiaPAUSA
| | - Zhang‐fu Fang
- Shenzhen Key Laboratory of Allergy & ImmunologyState Key Laboratory of Respiratory Disease for Allergy at Shenzhen UniversityShenzhen University School of MedicineChina
- Department of Respirology & AllergyThird Affiliated Hospital of Shenzhen UniversityChina
| | - Lifeng Tian
- Center for Applied GenomicsThe Children’s Hospital of PhiladelphiaPAUSA
| | - Yi‐feng Zeng
- State Key Laboratory of Respiratory DiseaseNational Clinical Research Center for Respiratory DiseaseGuangzhou Institute of Respiratory HealthFirst Affiliated Hospital of Guangzhou Medical UniversityChina
| | - Shau‐Ku Huang
- Shenzhen Key Laboratory of Allergy & ImmunologyState Key Laboratory of Respiratory Disease for Allergy at Shenzhen UniversityShenzhen University School of MedicineChina
- National Health Research InstitutesMiaoliTaiwan
| | - Hakon Hakonarson
- Center for Applied GenomicsThe Children’s Hospital of PhiladelphiaPAUSA
- Division of Human Genetics & Division of Pulmonary MedicineChildren’s Hospital of PhiladelphiaPAUSA
| | - Zhi‐gang Liu
- Shenzhen Key Laboratory of Allergy & ImmunologyState Key Laboratory of Respiratory Disease for Allergy at Shenzhen UniversityShenzhen University School of MedicineChina
- Department of Respirology & AllergyThird Affiliated Hospital of Shenzhen UniversityChina
| |
Collapse
|
6
|
O Murchu E, Byrne P, Walsh KA, Carty PG, Connolly M, De Gascun C, Jordan K, Keoghan M, O'Brien KK, O'Neill M, Smith SM, Teljeur C, Ryan M, Harrington P. Immune response following infection with SARS-CoV-2 and other coronaviruses: A rapid review. Rev Med Virol 2021; 31:e2162. [PMID: 32964627 PMCID: PMC7536965 DOI: 10.1002/rmv.2162] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 08/16/2020] [Accepted: 08/17/2020] [Indexed: 12/25/2022]
Abstract
In this review, we systematically searched and summarized the evidence on the immune response and reinfection rate following SARS-CoV-2 infection. We also retrieved studies on SARS-CoV and MERS-CoV to assess the long-term duration of antibody responses. A protocol based on Cochrane rapid review methodology was adhered to and databases were searched from 1/1/2000 until 26/5/2020. Of 4744 citations retrieved, 102 studies met our inclusion criteria. Seventy-four studies were retrieved on SARS-CoV-2. While the rate and timing of IgM and IgG seroconversion were inconsistent across studies, most seroconverted for IgG within 2 weeks and 100% (N = 62) within 4 weeks. IgG was still detected at the end of follow-up (49-65 days) in all patients (N = 24). Neutralizing antibodies were detected in 92%-100% of patients (up to 53 days). It is not clear if reinfection with SARS-CoV-2 is possible, with studies more suggestive of intermittent detection of residual RNA. Twenty-five studies were retrieved on SARS-CoV. In general, SARS-CoV-specific IgG was maintained for 1-2 years post-infection and declined thereafter, although one study detected IgG up to 12 years post-infection. Neutralizing antibodies were detected up to 17 years in another study. Three studies on MERS-CoV reported that IgG may be detected up to 2 years. In conclusion, limited early data suggest that most patients seroconvert for SARS-CoV-2-specific IgG within 2 weeks. While the long-term duration of antibody responses is unknown, evidence from SARS-CoV studies suggest SARS-CoV-specific IgG is sustained for 1-2 years and declines thereafter.
Collapse
Affiliation(s)
- Eamon O Murchu
- Health Technology Assessment DirectorateHealth Information and Quality AuthorityDublin 7Ireland
- The Centre for Health Policy and ManagementTrinity College DublinDublin 2Ireland
| | - Paula Byrne
- Health Technology Assessment DirectorateHealth Information and Quality AuthorityDublin 7Ireland
| | - Kieran A. Walsh
- Health Technology Assessment DirectorateHealth Information and Quality AuthorityDublin 7Ireland
| | - Paul G. Carty
- Health Technology Assessment DirectorateHealth Information and Quality AuthorityDublin 7Ireland
| | - Máire Connolly
- School of MedicineNational University of Ireland GalwayGalwayIreland
| | - Cillian De Gascun
- UCD National Virus Reference LaboratoryUniversity College DublinDublin 4Ireland
| | - Karen Jordan
- Health Technology Assessment DirectorateHealth Information and Quality AuthorityDublin 7Ireland
| | - Mary Keoghan
- Department of Clinical ImmunologyBeaumont HospitalDublin 9Ireland
| | - Kirsty K. O'Brien
- Health Technology Assessment DirectorateHealth Information and Quality AuthorityDublin 7Ireland
| | - Michelle O'Neill
- Health Technology Assessment DirectorateHealth Information and Quality AuthorityDublin 7Ireland
| | - Susan M. Smith
- Department of General Practice, Health Research Board Centre for Primary Care ResearchRoyal College of Surgeons in IrelandDublin 2Ireland
| | - Conor Teljeur
- Health Technology Assessment DirectorateHealth Information and Quality AuthorityDublin 7Ireland
| | - Máirín Ryan
- Health Technology Assessment DirectorateHealth Information and Quality AuthorityDublin 7Ireland
- Department of Pharmacology & Therapeutics, Trinity Health SciencesTrinity College DublinDublin 8Ireland
| | - Patricia Harrington
- Health Technology Assessment DirectorateHealth Information and Quality AuthorityDublin 7Ireland
| |
Collapse
|
7
|
Wong NA, Saier MH. The SARS-Coronavirus Infection Cycle: A Survey of Viral Membrane Proteins, Their Functional Interactions and Pathogenesis. Int J Mol Sci 2021; 22:1308. [PMID: 33525632 PMCID: PMC7865831 DOI: 10.3390/ijms22031308] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/21/2021] [Accepted: 01/22/2021] [Indexed: 02/07/2023] Open
Abstract
Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) is a novel epidemic strain of Betacoronavirus that is responsible for the current viral pandemic, coronavirus disease 2019 (COVID-19), a global health crisis. Other epidemic Betacoronaviruses include the 2003 SARS-CoV-1 and the 2009 Middle East Respiratory Syndrome Coronavirus (MERS-CoV), the genomes of which, particularly that of SARS-CoV-1, are similar to that of the 2019 SARS-CoV-2. In this extensive review, we document the most recent information on Coronavirus proteins, with emphasis on the membrane proteins in the Coronaviridae family. We include information on their structures, functions, and participation in pathogenesis. While the shared proteins among the different coronaviruses may vary in structure and function, they all seem to be multifunctional, a common theme interconnecting these viruses. Many transmembrane proteins encoded within the SARS-CoV-2 genome play important roles in the infection cycle while others have functions yet to be understood. We compare the various structural and nonstructural proteins within the Coronaviridae family to elucidate potential overlaps and parallels in function, focusing primarily on the transmembrane proteins and their influences on host membrane arrangements, secretory pathways, cellular growth inhibition, cell death and immune responses during the viral replication cycle. We also offer bioinformatic analyses of potential viroporin activities of the membrane proteins and their sequence similarities to the Envelope (E) protein. In the last major part of the review, we discuss complement, stimulation of inflammation, and immune evasion/suppression that leads to CoV-derived severe disease and mortality. The overall pathogenesis and disease progression of CoVs is put into perspective by indicating several stages in the resulting infection process in which both host and antiviral therapies could be targeted to block the viral cycle. Lastly, we discuss the development of adaptive immunity against various structural proteins, indicating specific vulnerable regions in the proteins. We discuss current CoV vaccine development approaches with purified proteins, attenuated viruses and DNA vaccines.
Collapse
Affiliation(s)
- Nicholas A. Wong
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| | - Milton H. Saier
- Department of Molecular Biology, Division of Biological Sciences, University of California at San Diego, La Jolla, CA 92093-0116, USA
| |
Collapse
|
8
|
de Candia P, Prattichizzo F, Garavelli S, Matarese G. T Cells: Warriors of SARS-CoV-2 Infection. Trends Immunol 2021; 42:18-30. [PMID: 33277181 PMCID: PMC7664351 DOI: 10.1016/j.it.2020.11.002] [Citation(s) in RCA: 132] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 11/06/2020] [Accepted: 11/06/2020] [Indexed: 12/15/2022]
Abstract
Severe infection with severe acute respiratory syndrome coronavirus (SARS-CoV)-2 is characterized by massive cytokine release and T cell loss. The exaggerated host immune response, incapable of viral clearance, instead aggravates respiratory distress, as well as cardiac, and/or damage to other organs. The mortality pattern of SARS-CoV-2 infection, higher in older versus younger adults and almost absent in children, is possibly caused by the effects of age and pre-existing comorbidities on innate and adaptive immunity. Here, we speculate that the abnormal and excessive immune response to SARS-CoV-2 infection partly depends on T cell immunological memory, which is more pronounced in adults compared with children, and may significantly contribute to immunopathology and massive collateral damage in coronavirus disease 2019 (COVID-19) patients.
Collapse
Affiliation(s)
| | | | - Silvia Garavelli
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy
| | - Giuseppe Matarese
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, Consiglio Nazionale delle Ricerche (IEOS-CNR), 80131 Napoli, Italy; Treg Cell Lab, Dipartimento di Medicina Molecolare e Biotecnologie Mediche, Università di Napoli Federico II, 80131 Napoli, Italy.
| |
Collapse
|
9
|
Berthelot JM, Lioté F, Maugars Y, Sibilia J. Lymphocyte Changes in Severe COVID-19: Delayed Over-Activation of STING? Front Immunol 2020; 11:607069. [PMID: 33335532 PMCID: PMC7736628 DOI: 10.3389/fimmu.2020.607069] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Accepted: 11/03/2020] [Indexed: 12/13/2022] Open
Abstract
Upon recognition of microbial DNA or self-DNA, the cyclic-GMP-AMP synthase (cGAS) of the host catalyzes the production of the cyclic dinucleotide cGAMP. cGAMP is the main activator of STING, stimulator of interferon genes, leading to interferon synthesis through the STING-TBK1-IRF3 pathway. STING is also a hub for activation of NF-κB and autophagy. The present review details the striking similarities between T and B cell responses in severe coronavirus disease 2019 (COVID-19) and both animal or human models of STING gain of function (SAVI syndromes: STING-associated vasculopathy with onset in infancy). Those similarities may be further clues for a delayed activation of STING in severe COVID-19 patients, due to DNA damages following severe acute respiratory syndrome coronaviruses (SARS-CoV-2) infection and unusual role of STING in SARS-CoV-2 control. In early stages, Th2 differentiation are noticed in both severe COVID-19 and SAVI syndromes; then, CD4+ and CD8+ T cells functional exhaustion/senescent patterns due to TCR hyper-responsiveness are observed. T cell delayed over-responses can contribute to pneumonitis and delayed cytokine secretion with over-production of IL-6. Last, STING over-activation induces progressive CD4+ and CD8+ T lymphopenia in SAVI syndromes, which parallels what is observed in severe COVID-19. ACE2, the main receptor of SARS-CoV-2, is rarely expressed in immune cells, and it has not been yet proven that some human lymphocytes could be infected by SARS-CoV-2 through CD147 or CD26. However, STING, expressed in humans T cells, might be triggered following excessive transfer of cGAMP from infected antigen presenting cells into activated CD4+ and CD8+ T cells lymphocytes. Indeed, those lymphocytes highly express the cGAMP importer SLC19A1. Whereas STING is not expressed in human B cells, B cells counts are much less affected, either in COVID-19 or SAVI syndromes. The recognition of delayed STING over-activation in severe COVID-19 patients could prompt to target STING with specific small molecules inhibitors already designed and/or aspirin, which inhibits cGAS.
Collapse
Affiliation(s)
| | - Frédéric Lioté
- Rheumatology Department & Inserm UMR 1132 (centre Viggo Petersen), Hôpital Lariboisière, Université de Paris, Paris, France
| | - Yves Maugars
- Rheumatology Department, Nantes University Hospital, Nantes, France
| | - Jean Sibilia
- Service de rhumatologie, Hopitaux Universitaires de Strasbourg, RESO: Centre de Reference des Maladies Autoimmunes Systemiques Rares Est Sud-Ouest, Strasbourg, France
- INSERM UMR_S1109, Universite de Strasbourg, Strasbourg, France
| |
Collapse
|
10
|
Lo MW, Kemper C, Woodruff TM. COVID-19: Complement, Coagulation, and Collateral Damage. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 205:1488-1495. [PMID: 32699160 PMCID: PMC7484432 DOI: 10.4049/jimmunol.2000644] [Citation(s) in RCA: 117] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/06/2020] [Indexed: 12/15/2022]
Abstract
Coronavirus disease of 2019 (COVID-19) is a highly contagious respiratory infection that is caused by the severe acute respiratory syndrome coronavirus 2. Although most people are immunocompetent to the virus, a small group fail to mount an effective antiviral response and develop chronic infections that trigger hyperinflammation. This results in major complications, including acute respiratory distress syndrome, disseminated intravascular coagulation, and multiorgan failure, which all carry poor prognoses. Emerging evidence suggests that the complement system plays a key role in this inflammatory reaction. Indeed, patients with severe COVID-19 show prominent complement activation in their lung, skin, and sera, and those individuals who were treated with complement inhibitors all recovered with no adverse reactions. These and other studies hint at complement's therapeutic potential in these sequalae, and thus, to support drug development, in this review, we provide a summary of COVID-19 and review complement's role in COVID-19 acute respiratory distress syndrome and coagulopathy.
Collapse
Affiliation(s)
- Martin W Lo
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Queensland 4072, Australia; and
| | - Claudia Kemper
- National Heart, Lung, and Blood Institute, National Institutes of Health, Bethesda, MD 20892
| | - Trent M Woodruff
- School of Biomedical Sciences, Faculty of Medicine, The University of Queensland, St Lucia, Queensland 4072, Australia; and
| |
Collapse
|
11
|
Davis IM. SARS-CoV: Lessons learned; opportunities missed for SARS-CoV-2. Rev Med Virol 2020; 31:1-6. [PMID: 32808446 PMCID: PMC7460959 DOI: 10.1002/rmv.2152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/22/2020] [Accepted: 07/22/2020] [Indexed: 01/01/2023]
Abstract
SARS‐CoV‐2 and Covid‐19 have made a retrospective analysis of other coronavirus diseases important, so this article reviews the history of the SARS‐CoV viral disease from 2003. Standard and clinical chemistry diagnostics were developed in response to the outbreak. The response to SARS is examined to determine if there were lessons learned before it disappeared in June and July 2003. Various diagnostic approaches were developed and implemented to assist in the rapid identification of patients and treatment of their illness, yet many of the approaches required days or weeks from the onset of fever to show statistical significance. Most of the therapeutic methods used during the outbreak relied on treating symptoms of the underlying illness, such as lower respiratory infections and systemic infection, rather than effectively suppressing or curtailing replication of the virus. Retrospective studies are examined to determine how the SARS outbreak was viewed 10 years on and what the authors hoped would be instructive patterns for possible future pandemics. Implementation of some of these recommendations might have helped ease the current pandemic but were overlooked for budgetary reasons that seem short‐sighted at present.
Collapse
Affiliation(s)
- Ian M Davis
- Institute of Interdisciplinary Research, University of Coimbra, Portugal
| |
Collapse
|
12
|
Lucas C, Wong P, Klein J, Castro TBR, Silva J, Sundaram M, Ellingson MK, Mao T, Oh JE, Israelow B, Takahashi T, Tokuyama M, Lu P, Venkataraman A, Park A, Mohanty S, Wang H, Wyllie AL, Vogels CBF, Earnest R, Lapidus S, Ott IM, Moore AJ, Muenker MC, Fournier JB, Campbell M, Odio CD, Casanovas-Massana A, Herbst R, Shaw AC, Medzhitov R, Schulz WL, Grubaugh ND, Dela Cruz C, Farhadian S, Ko AI, Omer SB, Iwasaki A. Longitudinal analyses reveal immunological misfiring in severe COVID-19. Nature 2020; 584:463-469. [PMID: 32717743 DOI: 10.1101/2020.06.23.20138289] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 07/21/2020] [Indexed: 05/27/2023]
Abstract
Recent studies have provided insights into the pathogenesis of coronavirus disease 2019 (COVID-19)1-4. However, the longitudinal immunological correlates of disease outcome remain unclear. Here we serially analysed immune responses in 113 patients with moderate or severe COVID-19. Immune profiling revealed an overall increase in innate cell lineages, with a concomitant reduction in T cell number. An early elevation in cytokine levels was associated with worse disease outcomes. Following an early increase in cytokines, patients with moderate COVID-19 displayed a progressive reduction in type 1 (antiviral) and type 3 (antifungal) responses. By contrast, patients with severe COVID-19 maintained these elevated responses throughout the course of the disease. Moreover, severe COVID-19 was accompanied by an increase in multiple type 2 (anti-helminths) effectors, including interleukin-5 (IL-5), IL-13, immunoglobulin E and eosinophils. Unsupervised clustering analysis identified four immune signatures, representing growth factors (A), type-2/3 cytokines (B), mixed type-1/2/3 cytokines (C), and chemokines (D) that correlated with three distinct disease trajectories. The immune profiles of patients who recovered from moderate COVID-19 were enriched in tissue reparative growth factor signature A, whereas the profiles of those with who developed severe disease had elevated levels of all four signatures. Thus, we have identified a maladapted immune response profile associated with severe COVID-19 and poor clinical outcome, as well as early immune signatures that correlate with divergent disease trajectories.
Collapse
Affiliation(s)
- Carolina Lucas
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Patrick Wong
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Jon Klein
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Tiago B R Castro
- Laboratory of Mucosal Immunology, The Rockefeller University, New York, NY, USA
| | - Julio Silva
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Maria Sundaram
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Mallory K Ellingson
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Tianyang Mao
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Ji Eun Oh
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Benjamin Israelow
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Takehiro Takahashi
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Maria Tokuyama
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Peiwen Lu
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Arvind Venkataraman
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Annsea Park
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
| | - Subhasis Mohanty
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Haowei Wang
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Anne L Wyllie
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Chantal B F Vogels
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Rebecca Earnest
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Sarah Lapidus
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Isabel M Ott
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Adam J Moore
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - M Catherine Muenker
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - John B Fournier
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Melissa Campbell
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Camila D Odio
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Arnau Casanovas-Massana
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Roy Herbst
- Yale University School of Medicine, Yale Cancer Center, and Smilow Cancer Hospital, New Haven, CT, USA
| | - Albert C Shaw
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Ruslan Medzhitov
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA
- Howard Hughes Medical Institute, Chevy Chase, MD, USA
| | - Wade L Schulz
- Department of Laboratory Medicine, Yale University School of Medicine, New Haven, CT, USA
- Center for Outcomes Research and Evaluation, Yale-New Haven Hospital, New Haven, CT, USA
| | - Nathan D Grubaugh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Charles Dela Cruz
- Department of Medicine, Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine, New Haven, CT, USA
| | - Shelli Farhadian
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Albert I Ko
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
| | - Saad B Omer
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
- Department of Medicine, Section of Infectious Diseases, Yale University School of Medicine, New Haven, CT, USA
- Yale Institute for Global Health, Yale University, New Haven, CT, USA
| | - Akiko Iwasaki
- Department of Immunobiology, Yale University School of Medicine, New Haven, CT, USA.
- Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
13
|
McKechnie JL, Blish CA. The Innate Immune System: Fighting on the Front Lines or Fanning the Flames of COVID-19? Cell Host Microbe 2020; 27:863-869. [PMID: 32464098 PMCID: PMC7237895 DOI: 10.1016/j.chom.2020.05.009] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 01/20/2023]
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by SARS-CoV-2 has had devastating global impacts and will continue to have dramatic effects on public health for years to come. A better understanding of the immune response to SARS-CoV-2 will be critical for the application and development of therapeutics. The degree to which the innate immune response confers protection or induces pathogenesis through a dysregulated immune response remains unclear. In this review, we discuss what is known about the role of the innate immune system during SARS-CoV-2 infection, suggest directions for future studies, and evaluate proposed COVID-19 immunomodulating therapeutics.
Collapse
Affiliation(s)
- Julia L McKechnie
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA
| | - Catherine A Blish
- Program in Immunology, Stanford University School of Medicine, Stanford, CA, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA; Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
14
|
Immunomodulatory Effect after Irreversible Electroporation in Patients with Locally Advanced Pancreatic Cancer. JOURNAL OF ONCOLOGY 2019; 2019:9346017. [PMID: 31214261 PMCID: PMC6535893 DOI: 10.1155/2019/9346017] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 04/18/2019] [Accepted: 04/23/2019] [Indexed: 12/24/2022]
Abstract
Purpose Irreversible electroporation (IRE) has been demonstrated to be a safe and effective method for locally advanced pancreatic cancer (LAPC). The aim of this study was to evaluate the immunomodulatory effect after IRE and to evaluate the prognostic value of variations of the immune parameters in LAPC patients after IRE. Methods Peripheral blood samples of 34 patients were obtained preoperatively and on the third day (D3) and seventh day (D7) after IRE, respectively. The phenotypes of lymphocytes were analyzed by flow cytometry, and dynamic changes of serum levels of cytokines, complement, and immunoglobulin were assayed by enzyme-linked immunosorbent assay. Receiver operating characteristic (ROC) curve and concordance index (C-index) were used to compare the survival predictive ability. Results There was a transitory decrease followed by a steady increase for CD4+ T cell, CD8+ T cell, NK cell, IL-2, C3, C4, and IgG while a reverse trend was detected for Treg cell, IL-6, and IL10 after IRE. The alteration of CD8+ T cell between D3 and D7 was identified as a prognostic factor for both overall survival (OS) and progression-free survival (PFS). The values of ROC curve (AUC) and C-indexes of the alteration of CD8+ T cell for OS and PFS were 0.816 and 0.773 and 0.816 and 0.639, respectively, which were larger than those of other immune or inflammation-based indexes. Conclusions This study presented the first evidence of IRE-based immunomodulatory in patients with LAPC. The alteration of CD8+ T cell between D3 and D7 showed relatively good performance and could be used as an effective tool for prognostic evaluation for LAPC patients after IRE.
Collapse
|
15
|
Brand HK, Ferwerda G, Preijers F, de Groot R, Neeleman C, Staal FJ, Warris A, Hermans PW. CD4+ T-cell counts and interleukin-8 and CCL-5 plasma concentrations discriminate disease severity in children with RSV infection. Pediatr Res 2013; 73:187-93. [PMID: 23165450 PMCID: PMC7086553 DOI: 10.1038/pr.2012.163] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
BACKGROUND Current tools to predict the severity of respiratory syncytial virus (RSV) infection might be improved by including immunological parameters. We hypothesized that a combination of inflammatory markers would differentiate between severe and mild disease in RSV-infected children. METHODS Blood and nasopharyngeal samples from 52 RSV-infected children were collected during acute infection and after recovery. Retrospectively, patients were categorized into three groups based on disease severity: mild (no supportive treatment), moderate (supplemental oxygen and/or nasogastric feeding), and severe (mechanical ventilation). Clinical data, number of flow-defined leukocyte subsets, and cytokine concentrations were compared. RESULTS Children with severe RSV infection were characterized by young age; lymphocytopenia; increased interleukin (IL)-8, granulocyte colony-stimulating factor (G-CSF), and IL-6 concentrations; and decreased chemokine (C-C motif) ligand (CCL-5) concentrations in plasma. The combination of plasma levels of IL-8 and CCL-5, and CD4+ T-cell counts, with cutoff values of 67 pg/ml, 13 ng/ml, and 2.3 × 10(6)/ml, respectively, discriminated severe from mild RSV infection with 82% sensitivity and 96% specificity. CONCLUSION This study demonstrates that the combination of CD4+ T-cell counts and IL-8 and CCL-5 plasma concentrations correlates with disease severity in RSV-infected children. In addition to clinical features, these immunological markers may be used to assess severity of RSV infection and guide clinical management.
Collapse
Affiliation(s)
- Hanne K. Brand
- grid.10417.330000 0004 0444 9382Department of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Gerben Ferwerda
- grid.10417.330000 0004 0444 9382Department of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank Preijers
- grid.10417.330000 0004 0444 9382Department of Laboratory Medicine, Laboratory of Hematology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Ronald de Groot
- grid.10417.330000 0004 0444 9382Department of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Chris Neeleman
- grid.10417.330000 0004 0444 9382Department of Intensive Care Medicine, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Frank J.T. Staal
- grid.10419.3d0000000089452978Department of Immunohematology and Blood Transfusion, Leiden University Medical Centre, Leiden, The Netherlands
| | - Adilia Warris
- grid.10417.330000 0004 0444 9382Department of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Peter W.M. Hermans
- grid.10417.330000 0004 0444 9382Department of Pediatrics, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Shim BS, Stadler K, Nguyen HH, Yun CH, Kim DW, Chang J, Czerkinsky C, Song MK. Sublingual immunization with recombinant adenovirus encoding SARS-CoV spike protein induces systemic and mucosal immunity without redirection of the virus to the brain. Virol J 2012; 9:215. [PMID: 22995185 PMCID: PMC3489719 DOI: 10.1186/1743-422x-9-215] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2012] [Accepted: 09/19/2012] [Indexed: 11/29/2022] Open
Abstract
Background Sublingual (s.l.) administration of soluble protein antigens, inactivated viruses, or virus-like particles has been shown to induce broad immune responses in mucosal and extra-mucosal tissues. Recombinant replication-defective adenovirus vectors (rADVs) infect mucosa surface and therefore can serve as a mucosal antigen delivery vehicle. In this study we examined whether s.l. immunization with rADV encoding spike protein (S) (rADV-S) of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) induces protective immunity against SARS-CoV and could serve as a safe mucosal route for delivery of rADV. Results Here, we show that s.l. administration of rADV-S induced serum SARS-CoV neutralizing and airway IgA antibodies in mice. These antibody responses are comparable to those induced by intranasal (i.n.) administration. In addition, s.l. immunization induced antigen-specific CD8+ T cell responses in the lungs that are superior to those induced by intramuscular immunization. Importantly, unlike i.n. administration, s.l. immunization with rADV did not redirect the rADV vector to the olfactory bulb. Conclusion Our study indicates that s.l. immunization with rADV-S is safe and effective in induction of a broad spectrum of immune responses and presumably protection against infection with SARS-CoV.
Collapse
Affiliation(s)
- Byoung-Shik Shim
- Laboratory Sciences Division, International Vaccine Institute, Seoul, 151-919, Republic of Korea
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Li H, Du S, Yang L, Chen Y, Huang W, Zhang R, Cui Y, Yang J, Chen D, Li Y, Zhang S, Zhou J, Wei Z, Yao Z. Rapid pulmonary fibrosis induced by acute lung injury via a lipopolysaccharide three-hit regimen. Innate Immun 2009; 15:143-54. [PMID: 19474208 DOI: 10.1177/1753425908101509] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Based on the common characteristic of severe acute respiratory syndrome (SARS) and highly pathogenic avian influenza and the mechanism of inflammation and fibrosis, it is speculated that there should exist a fundamental pathological rule that severe acute lung injury (ALI)-induced rapid pulmonary fibrosis is caused by various etiological factors, such as SARS coronavirus, H5N1-virus, or other unknown factors, and also by lipopolysaccharide (LPS), the most common etiological factor. The investigation employed intratracheally, and intraperitoneally and intratracheally applied LPS three-hit regimen, compared with bleomycin-induced chronic pulmonary fibrosis. Inflammatory damage and fibrosis were evaluated, and the molecular mechanism was analyzed according to Th1/Th2 balance, Sma- and MAD-related proteins (Smads) and signal transducer and activator of transcriptions (STATs) expression. The results suggested that rapid pulmonary fibrosis could be induced by ALI via LPS three-hits. The period from 3-7 days in the LPS group was the first rapid pulmonary fibrosis stage, whereas the second fast fibrosis stage occurred on days 14-21. Th2 cell polarization, Smad4 and Smad7 should be the crucial molecular mechanism of ALI-induced rapid fibrosis. The investigation was not only performed to establish a new rapid pulmonary fibrosis model, but also to provide the elicitation for mechanism of ALI changed into the rapid pulmonary fibrosis.
Collapse
Affiliation(s)
- Hui Li
- Department of Anatomy, Guangzhou University of Chinese Medicine, Guangzhou, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Yang M, Ng MHL, Li CK, Chan PKS, Liu C, Ye JY, Chong BH. Thrombopoietin levels increased in patients with severe acute respiratory syndrome. Thromb Res 2008; 122:473-7. [PMID: 18314161 PMCID: PMC7112012 DOI: 10.1016/j.thromres.2007.12.021] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2007] [Revised: 11/20/2007] [Accepted: 12/04/2007] [Indexed: 02/06/2023]
Abstract
Hematological changes in patients with Severe Acute Respiratory Syndrome (SARS) are common and frequently include thrombocytopenia. Using a ELISA method, we found an increase in thrombopoietin (TPO) levels in the plasma of convalesced SARS patients (290 ± 53 pg/ml) and active SARS patients (251 ± 23 pg/ml) comparing to that from normal control patients (228 ± 17 pg/ml). In addition, the plasma from active SARS patients had an inhibitory effect on CFU-MK formation, which could be neutralized by anti-TGF-β antibodies. In the experiment to determine whether SARS-CoV can directly infect hematopoietic stem cells and megakaryocytic cells, incubation of the cells with SARS-CoV did not show active infection. Our findings of increased TPO levels in the plasma of SARS patients provide a possible explanation for the genesis of thrombocytosis, which frequently develops from thrombocytopenia in SARS patients.
Collapse
Affiliation(s)
- Mo Yang
- Department of Paediatrics and Adolescent Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong, PR China.
| | | | | | | | | | | | | |
Collapse
|
19
|
Brockmeier SL, Loving CL, Nicholson TL, Palmer MV. Coinfection of pigs with porcine respiratory coronavirus and Bordetella bronchiseptica. Vet Microbiol 2007; 128:36-47. [PMID: 18022332 PMCID: PMC7117186 DOI: 10.1016/j.vetmic.2007.09.025] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2007] [Revised: 09/19/2007] [Accepted: 09/26/2007] [Indexed: 11/25/2022]
Abstract
Coinfection with two or more pathogens is a common occurrence in respiratory diseases of most species. The manner in which multiple pathogens interact is not always straightforward, however. Bordetella bronchiseptica and porcine respiratory coronavirus (PRCV) are respiratory pathogens of pigs whose relatives, B. pertussis and the SARS virus, cause respiratory disease in humans. In an initial experiment, the effect of coinfection of PRCV and B. bronchiseptica was examined in thirty, 4-week-old pigs (10 pigs/group) that were infected with either PRCV or B. bronchiseptica, or both PRCV and B. bronchiseptica. An additional 10 pigs served as sham infected controls. Five pigs from each group were euthanized at 4 and 10 days post-infection. Gross and histopathological lung lesions were more severe in the coinfected group as compared to the groups infected with B. bronchiseptica or PRCV alone. In order to investigate the potential role of proinflammatory cytokines in disease severity after coinfection, a second experiment was performed to examine cytokine transcription in alveolar macrophages from single and dually infected pigs. A total of 48 pigs were divided equally into groups as above, but 4 pigs from each group were euthanized at 1, 4 and 10 days post-infection. Coinfected pigs showed a greater and more sustained transcription of proinflammatory cytokines, especially IL-6 and MCP-1, than pigs infected with either PRCV or B. bronchiseptica alone. Thus, there appears to be a synergistic effect between PRCV and B. bronchiseptica with regards to proinflammatory cytokine transcription that may partially explain the increased severity of pneumonia in coinfected pigs.
Collapse
Affiliation(s)
- S L Brockmeier
- Respiratory Diseases of Livestock Research Unit, USDA, Agricultural Research Service, National Animal Disease Center, Ames, IA 50010, USA.
| | | | | | | |
Collapse
|
20
|
Huang J, Cao Y, Du J, Bu X, Ma R, Wu C. Priming with SARS CoV S DNA and boosting with SARS CoV S epitopes specific for CD4+ and CD8+ T cells promote cellular immune responses. Vaccine 2007; 25:6981-91. [PMID: 17709158 PMCID: PMC7115420 DOI: 10.1016/j.vaccine.2007.06.047] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2007] [Revised: 06/16/2007] [Accepted: 06/19/2007] [Indexed: 01/19/2023]
Abstract
Cellular immune response plays an important role in antiviral immunity. In our previous study, immunization of mice with severe acute respiratory syndrome coronavirus (SARS CoV) spike (S) DNA vaccine could induce both humoral and cellular immunity in response to a pool of entire overlapping S peptides. Identification of functional dominant epitopes in SARS CoV S protein for T cells is crucial for further understanding of cellular immune responses elicited by SARS CoV S DNA vaccine. In present study, mice were immunized with SARS CoV S DNA vaccine. Subsequently, a pool of 17–19 mers overlapped SARS CoV S peptides, which served as immunogens, were scanned to identify the specific epitopes for T cells. Two H-2d restricted CD4+ T epitopes, N60 (S435–444) and P152 (S1111–1127), and two H-2d restricted CD8+ T cell epitopes, N50 (S365–374) and P141 (S1031–1047) were identified by three different methods, enzyme-linked immunosorbent assay (ELISA), enzyme linked immunospot assay (ELISPOT) and fluorescence activated cell sorter (FACS). The dominant CD4+ T cell epitope (N60) and CD8+ T cell epitope (N50) located in the receptor-binding domain (RBD) of SARS CoV S protein, which mediated virus combining and fusing to susceptible cells. Importantly, our novel finding is that mice primed with SARS S DNA vaccine and boosted with T cell epitopes (N50 and N60) could promote antigen specific CD4+ and CD8+ T cell immune responses. Our study provides valuable information for the design of vaccine for SARS study.
Collapse
Affiliation(s)
- Jun Huang
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Yingnan Cao
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, China
| | - Jiali Du
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Xianzhang Bu
- School of Pharmaceutical Science, Sun Yat-sen University, Guangzhou, China
| | - Rui Ma
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
| | - Changyou Wu
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, China
- Corresponding author. Tel.: +86 20 8733 1552; fax: +86 20 8733 1552.
| |
Collapse
|
21
|
Peng H, Yang LT, Li J, Lu ZQ, Wang LY, Koup RA, Bailer RT, Wu CY. Human memory T cell responses to SARS-CoV E protein. Microbes Infect 2006; 8:2424-31. [PMID: 16844400 PMCID: PMC7110890 DOI: 10.1016/j.micinf.2006.05.008] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2006] [Revised: 05/12/2006] [Accepted: 05/15/2006] [Indexed: 11/02/2022]
Abstract
E protein is a membrane component of severe acute respiratory syndrome coronavirus (SARS-CoV). Disruption of E protein may reduce viral infectivity. Thus, the SARS-CoV E protein is considered a potential target for the development of antiviral drugs. However, the cellular immune responses to E protein remain unclear in humans. In this study, we found that peripheral blood mononuclear cells (PBMCs) from fully recovered SARS individuals rapidly produced IFN-gamma and IL-2 following stimulation with a pool of 9 peptides overlapping the entire E protein sequence. Analysis of the immune responses by flow cytometry showed that both CD4+ and CD8+T cells were involved in the SARS-CoV E-specific immune responses after stimulation with SARS-CoV E peptides. Moreover, the majority of IFN-gamma+CD4+T cells were central memory cells expressing CD45RO+CCR7+CD62L-; whereas IFN-gamma+CD8+ memory T cells were mostly effector memory cells expressing CD45RO-CCR7-CD62L-. The results of T-cell responses to 9 individual peptides indicated that the E protein contained at least two major T cell epitopes (E2 amino acid [aa] 9-26 and E5-6: aa 33-57) which were important in eliciting cellular immune response to SARS-CoV E protein in humans.
Collapse
Affiliation(s)
- Hui Peng
- Department of Immunology, Zhongshan Medical School, Sun Yat-sen University, No. 74 Zhongshan Road II, Guangzhou 510089, China
| | | | | | | | | | | | | | | |
Collapse
|
22
|
Peng H, Yang LT, Wang LY, Li J, Huang J, Lu ZQ, Koup RA, Bailer RT, Wu CY. Long-lived memory T lymphocyte responses against SARS coronavirus nucleocapsid protein in SARS-recovered patients. Virology 2006; 351:466-75. [PMID: 16690096 PMCID: PMC7111820 DOI: 10.1016/j.virol.2006.03.036] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2006] [Revised: 03/09/2006] [Accepted: 03/22/2006] [Indexed: 01/28/2023]
Abstract
The nucleocapsid (N) protein is a structural component of severe acute respiratory syndrome (SARS) coronavirus (SARS-CoV) and can induce antibody responses in SARS patients during infection. However, it is not known whether SARS-CoV N protein can induce a long persistence of memory T-cell response in human. In this study, we found that peripheral blood mononuclear cells (PBMCs) from fully recovered SARS individuals rapidly produced IFN-gamma and IL-2 following stimulation with a pool of overlapping peptides that cover the entire N protein sequence. The N-specific IFN-gamma(+)CD4(+) T cells were mainly composed of CD45RA(-)CCR7(+)CD62L(-) cells, whereas IFN-gamma(+)CD8(+) memory T cells were mostly contained within CD45RA(+)CCR7(-)CD62L(-) cell population. Epitope mapping study indicated that a cluster of overlapping peptides located in the C-terminal region (amino acids [aa] 331 to 362) of N protein contained at least two different T-cell epitopes. The results indicated that human memory T-cell responses specific for SARS-CoV N protein could persist for 2 years in the absence of antigen, which would be a valuable for the design of effective vaccines against SARS-CoV and for basic studies of human T-cell memory.
Collapse
Affiliation(s)
- Hui Peng
- Department of Immunology, Zhongshan Medical School, Sun Yat-sen University, No. 74 Zhongshan Road II, Guangzhou 510089, China
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Yuan X, Wu J, Shan Y, Yao Z, Dong B, Chen B, Zhao Z, Wang S, Chen J, Cong Y. SARS coronavirus 7a protein blocks cell cycle progression at G0/G1 phase via the cyclin D3/pRb pathway. Virology 2005; 346:74-85. [PMID: 16303160 PMCID: PMC7111786 DOI: 10.1016/j.virol.2005.10.015] [Citation(s) in RCA: 100] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2005] [Revised: 08/29/2005] [Accepted: 10/10/2005] [Indexed: 01/10/2023]
Abstract
The genome of severe acute respiratory syndrome-associated coronavirus (SARS-CoV) contains four structural genes that are homologous to genes found in other coronaviruses, and also contains six subgroup-specific open reading frames (ORFs). Expression of one of these subgroup-specific genes, ORF7a, resulted in apoptosis via a caspase-dependent pathway. Here, we observed that transient expression of ORF7a protein fused with myc or GFP tags at its N or C terminus inhibited cell growth and prevented BrdU incorporation in different cultural cells, suggesting that ORF7a expression may regulate cell cycle progression. Analysis by flow cytometry demonstrated that ORF7a expression was associated with blockage of cell cycle progression at G0/G1 phase in HEK 293 cells after 24 to 60 h post-transfection. Similar results were observed in COS-7 and Vero cells. Mutation analysis of ORF7a revealed that the domain spanning aa 44–82 of 7a protein was essential for its cytoplasmic localization and for induction of the cell cycle arrest. After analyzing the cellular proteins involving in regulation of cell cycle progression, we demonstrated that ORF7a expression was correlated with a significant reduction of cyclin D3 level of mRNA transcription and expression, and phosphorylation of retinoblastoma (Rb) protein at ser795 and ser809/811, not with the expression of cyclin D1, D2, cdk4 and cdk6 in HEK 293 cells. These results suggest that the insufficient expression of cyclin D3 may cause a decreased activity of cyclin D/cdk4/6, resulting in the inhibition of Rb phosphorylation. Accumulation of hypo- or non-phosphorylated pRb thus prevents cell cycle progression at G0/G1 phase.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | - Yuwen Cong
- Corresponding author. Fax: +86 10 68214653.
| |
Collapse
|
24
|
Liu RY, Wu LZ, Huang BJ, Huang JL, Zhang YL, Ke ML, Wang JM, Tan WP, Zhang RH, Chen HK, Zeng YX, Huang W. Adenoviral expression of a truncated S1 subunit of SARS-CoV spike protein results in specific humoral immune responses against SARS-CoV in rats. Virus Res 2005; 112:24-31. [PMID: 16022898 PMCID: PMC7114075 DOI: 10.1016/j.virusres.2005.02.009] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2004] [Revised: 02/09/2005] [Accepted: 02/11/2005] [Indexed: 11/21/2022]
Abstract
The causative agent of severe acute respiratory syndrome (SARS) has been identified as SARS-associated coronavirus (SARS-CoV), but the prophylactic treatment of SARS-CoV is still under investigation. We constructed a recombinant adenovirus containing a truncated N-terminal fragment of the SARS-CoV Spike (S) gene (from--45 to 1469, designated Ad-S(N)), which encoded a truncated S protein (490 amino-acid residues, a part of 672 amino-acid S1 subunit), and investigated whether this construct could induce effective immunity against SARS-CoV in Wistar rats. Rats were immunized either subcutaneously or intranasally with Ad-S(N) once a week for three consecutive weeks. Our results showed that all of the immunized animals generated humoral immunity against the SARS-CoV spike protein, and the sera of immunized rats showed strong capable of protecting from SARS-CoV infection in vitro. Histopathological examination did not find evident side effects in the immunized animals. These results indicate that an adenoviral-based vaccine carrying an N-terminal fragment of the Spike gene is able to elicit strong SARS-CoV-specific humoral immune responses in rats, and may be useful for the development of a protective vaccine against SARS-CoV infection.
Collapse
Key Words
- ad-lacz, recombinant replication-incompetent adenoviral vector containing β-galactosidase gene
- ad-sn, recombinant replication-incompetent adenoviral vector containing the sn fragment of sars-cov
- elisa, enzyme-linked immuno-sorbent assay
- moi, multiplicity of infection
- pbs, phosphate-buffered saline
- pbst, pbs containing 0.05% tween 20
- sars, severe acute respiratory syndrome
- sars-cov, sars-associated coronavirus
- sn, the n-terminal fragment of the spike gene (from −45 to 1469)
- spf, specific pathogen-free
- s, spike
- pfu, plaque-forming unit
- vaccine
- sars-associated coronavirus
- adenoviral vector
- spike gene
- humoral immunity
Collapse
Affiliation(s)
- Ran-Yi Liu
- State Key Laboratory for Oncology in South China, Cancer Center, Sun Yat-sen University, 651 Dong-feng Road East, Guangzhou 510060, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|