1
|
Liu J, Zhou A, Liu Q, Gao Y, Xu S, Lu Y. Genomic Insights into Vector-Pathogen Adaptation in Haemaphysalis longicornis and Rhipicephalus microplus. Pathogens 2025; 14:306. [PMID: 40333071 PMCID: PMC12030188 DOI: 10.3390/pathogens14040306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/07/2025] [Accepted: 03/19/2025] [Indexed: 05/09/2025] Open
Abstract
As crucial vectors that transmit pathogens to humans and livestock, ticks pose substantial global health threats and economic burdens. We analyzed 328 tick genomes to explore the population's genetic structure and the adaptive evolution of H. longicornis and R. microplus, two tick species with distinct life cycle characteristics. We observed distinct genetic structures in H. longicornis and R. microplus. Gene flow estimation revealed a closer genetic connection in R. microplus than H. longicornis, which was facilitated by geographical proximity. Notably, we identified a set of candidate genes associated with possible adaptations. Specifically, the immune-related gene DUOX and the iron transport gene ACO1 showed significant signals of natural selection in R. microplus. Similarly, H. longicornis exhibited selection in pyridoxal-phosphate-dependent enzyme genes associated with heme synthesis. Moreover, we observed significant correlations between the abundance of pathogens, such as Rickettsia and Francisella, and specific tick genotypes, which highlights the role of R. microplus in maintaining these pathogens and its adaptations that influence immune responses and iron metabolism, suggesting potential coevolution between vectors and pathogens. Our study highlights the vital genes involved in tick blood feeding and immunity, and it provides insights into the coevolution of ticks and tick-borne pathogens.
Collapse
Affiliation(s)
- Jin Liu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.L.); (Y.G.); (S.X.)
| | - An Zhou
- Center for Evolutionary Biology, Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 200438, China;
| | - Qi Liu
- Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 201203, China;
| | - Yang Gao
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.L.); (Y.G.); (S.X.)
| | - Shuhua Xu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.L.); (Y.G.); (S.X.)
- Center for Evolutionary Biology, Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 200438, China;
- Department of Liver Surgery and Transplantation Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai 201203, China;
| | - Yan Lu
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, School of Life Sciences, Fudan University, Shanghai 200438, China; (J.L.); (Y.G.); (S.X.)
- Center for Evolutionary Biology, Ministry of Education Key Laboratory of Contemporary Anthropology, Fudan University, Shanghai 200438, China;
| |
Collapse
|
2
|
Liu XL, Zhang Q, Wang X, Liu YP, Ze LJ, Zhang HN, Lu M. Relish involved in immunity and larval survival in the willow leaf beetle Plagiodera versicolora. PEST MANAGEMENT SCIENCE 2024; 80:3808-3814. [PMID: 38507262 DOI: 10.1002/ps.8084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Insects mainly rely on innate immunity against pathogen infection. Plagiodera versicolora (Coleoptera: Chrysomelidae), is a worldwide leaf-eating forest pest in salicaceous trees. However, the mechanisms behind the immunodeficiency pathway (IMD) remain poorly understood. RESULTS In this study, we obtained a Relish gene from transcriptome analysis. Tissue and instar expression profiles were subsequently obtained using quantitative real-time polymerase chain reaction analysis. The results showed that Relish has high expression levels in eggs, larvae and adults, and especially in fat bodies. Transcripts of the tested antimicrobial peptides (AMPs), defensin1, defensin2 and attacin2 were downregulated by dsRelish. Knockdown of Relish led to greater mortality in larvae after Staphylococcus aureus infection. In addition, we performed bacterial 16S ribosomal RNA-based high-throughput sequencing. The results showed that the relative abundance of some gut bacteria was significantly altered after dsRelish ingestion. CONCLUSION This study provides a greater understanding of the IMD signaling pathway, facilitating functional studies of Relish in P. versicolora. Moreover, a genetic pest management technique might be developed using Relish as a lethal gene to control the pest P. versicolora. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Xiao-Long Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Qi Zhang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Xin Wang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Yi-Peng Liu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| | - Long-Ji Ze
- Key Laboratory of Integrated Management of Crop Disease and Pests, Ministry of Education, Nanjing Agricultural University, Nanjing, China
| | - Hai-Nan Zhang
- College of Plant Protection, Yangzhou University, Yangzhou, China
| | - Min Lu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan, China
| |
Collapse
|
3
|
Maigoro AY, Lee JH, Kim H, Frunze O, Kwon HW. Gut Microbiota of Apis mellifera at Selected Ontogenetic Stages and Their Immunogenic Potential during Summer. Pathogens 2024; 13:122. [PMID: 38392860 PMCID: PMC10893431 DOI: 10.3390/pathogens13020122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Honeybees (Apis mellifera) are pollinating agents of economic importance. The role of the gut microbiome in honeybee health has become increasingly evident due to its relationship with immune function, growth, and development. Although their dynamics at various developmental stages have been documented, their dynamics during the era of colony collapse disorder and immunogenic potential, which are connected to the antagonistic immune response against pathogens, need to be elucidated. Using 16S rRNA gene Illumina sequencing, the results indicated changes in the gut microbiota with the developmental stage. The bacterial diversity of fifth stage larva was significantly different among the other age groups, in which Fructobacillus, Escherichia-Shigella, Bombella, and Tyzzerella were unique bacteria. In addition, the diversity of the worker bee microbiome was distinct from that of the younger microbiome. Lactobacillus and Gilliamella remained conserved throughout the developmental stages, while Bifidobacterium colonized only worker bees. Using an in silico approach, the production potential of lipopolysaccharide-endotoxin was predicted. Forager bees tend to have a higher abundance rate of Gram-negative bacteria. Our results revealed the evolutionary importance of some microbiome from the larval stage to the adult stage, providing insight into the potential dynamics of disease response and susceptibility. This finding provides a theoretical foundation for furthering the understanding of the function of the gut microbiota at various developmental stages related to probiotic development and immunogenic potential.
Collapse
Affiliation(s)
- Abdulkadir Yusif Maigoro
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea (H.K.)
| | - Jeong-Hyeon Lee
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea;
| | - Hyunjee Kim
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea (H.K.)
| | - Olga Frunze
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea (H.K.)
| | - Hyung-Wook Kwon
- Convergence Research Center for Insect Vectors, Incheon National University, Incheon 22012, Republic of Korea (H.K.)
- Department of Life Sciences, College of Life Sciences and Bioengineering, Incheon National University, Incheon 22012, Republic of Korea;
| |
Collapse
|
4
|
Gao X, Hu F, Cui H, Zhu X, Wang L, Zhang K, Li D, Ji J, Luo J, Cui J. Glyphosate decreases survival, increases fecundity, and alters the microbiome of the natural predator Harmonia axyridis (ladybird beetle). ENVIRONMENTAL RESEARCH 2023; 238:117174. [PMID: 37739152 DOI: 10.1016/j.envres.2023.117174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/13/2023] [Accepted: 09/17/2023] [Indexed: 09/24/2023]
Abstract
Glyphosate is a widely-used herbicide that shows toxicity to non-target organisms. The predatory natural enemy Harmonia axyridis may ingest glyphosate present in pollen and aphid prey. The present study characterized the responses of adult H. axyridis to environmentally relevant concentrations of glyphosate (5, 10, and 20 mg/L) for one or five days. There were no obvious effects on adult H. axyridis survival rates or fecundity in response to 5 or 10 mg/L glyphosate. However, exposure to 20 mg/L glyphosate significantly reduced the survival rate and increased fecundity. Analysis of the adult H. axyridis microbiota with 16S rRNA sequencing demonstrated changes in the relative and/or total abundance of specific taxa, including Serratia, Enterobacter, Staphylococcus, and Hafnia-Obesumbacterium. These changes in symbiotic bacterial abundance may have led to changes in survival rates or fecundity of this beetle. This is the first report of herbicide-induced stimulation of fecundity in a non-target predatory natural enemy, reflecting potentially unexpected risks of glyphosate exposure in adult H. axyridis. Although glyphosate resistant crops have been widely planted, the results of this study indicate a need to strengthen glyphosate management to prevent over-use, which could cause glyphosate toxicity and threaten environmental and human health.
Collapse
Affiliation(s)
- Xueke Gao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Fangmei Hu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China; Zhongjian township People's Government of Qianxi county, Bijie, 551500, Guizhou, China
| | - Huanfei Cui
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Xiangzhen Zhu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Li Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Kaixin Zhang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Dongyang Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China
| | - Jichao Ji
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Junyu Luo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| | - Jinjie Cui
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang, 455000, Henan, China; Zhengzhou Research Base, National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Agricultural Sciences, Zhengzhou University, Zhengzhou, 450001, Henan, China.
| |
Collapse
|
5
|
Telleria EL, Tinoco-Nunes B, Forrest DM, Di-Blasi T, Leštinová T, Chang KP, Volf P, Pitaluga AN, Traub-Csekö YM. Evidence of a conserved mammalian immunosuppression mechanism in Lutzomyia longipalpis upon infection with Leishmania. Front Immunol 2023; 14:1162596. [PMID: 38022562 PMCID: PMC10652419 DOI: 10.3389/fimmu.2023.1162596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Accepted: 10/13/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction Sand flies (Diptera: Phlebotominae) belonging to the Lutzomyia genus transmit Leishmania infantum parasites. To understand the complex interaction between the vector and the parasite, we have been investigating the sand fly immune responses during the Leishmania infection. Our previous studies showed that genes involved in the IMD, Toll, and Jak-STAT immunity pathways are regulated upon Leishmania and bacterial challenges. Nevertheless, the parasite can thrive in the vectors' gut, indicating the existence of mechanisms capable of modulating the vector defenses, as was already seen in mammalian Leishmania infections. Methods results and discussion In this study, we investigated the expression of Lutzomyia longipalpis genes involved in regulating the Toll pathway under parasitic infection. Leishmania infantum infection upregulated the expression of two L. longipalpis genes coding for the putative repressors cactus and protein tyrosine phosphatase SHP. These findings suggest that the parasite can modulate the vectors' immune response. In mammalian infections, the Leishmania surface glycoprotein GP63 is one of the inducers of host immune depression, and one of the known effectors is SHP. In L. longipalpis we found a similar effect: a genetically modified strain of Leishmania amazonensis over-expressing the metalloprotease GP63 induced a higher expression of the sand fly SHP indicating that the L. longipalpis SHP and parasite GP63 increased expressions are connected. Immuno-stained microscopy of L. longipalpis LL5 embryonic cells cultured with Leishmania strains or parasite conditioned medium showed cells internalization of parasite GP63. A similar internalization of GP63 was observed in the sand fly gut tissue after feeding on parasites, parasite exosomes, or parasite conditioned medium, indicating that GP63 can travel through cells in vitro or in vivo. When the sand fly SHP gene was silenced by RNAi and females infected by L. infantum, parasite loads decreased in the early phase of infection as expected, although no significant differences were seen in late infections of the stomodeal valve. Conclusions Our findings show the possible role of a pathway repressor involved in regulating the L. longipalpis immune response during Leishmania infections inside the insect. In addition, they point out a conserved immunosuppressive effect of GP63 between mammals and sand flies in the early stage of parasite infection.
Collapse
Affiliation(s)
- Erich Loza Telleria
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Bruno Tinoco-Nunes
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil
| | - David M. Forrest
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Tatiana Di-Blasi
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Tereza Leštinová
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - Kwang Poo Chang
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL, United States
| | - Petr Volf
- Department of Parasitology, Faculty of Science, Charles University, Prague, Czechia
| | - André Nóbrega Pitaluga
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil
| | - Yara Maria Traub-Csekö
- Laboratório de Biologia Molecular de Parasitas e Vetores, Instituto Oswaldo Cruz - Fiocruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
6
|
Malladi S, Sukkar D, Bonnefoy A, Falla-Angel J, Laval-Gilly P. Imidacloprid and acetamiprid synergistically downregulate spaetzle and myD88 of the Toll pathway in haemocytes of the European honeybee (Apis mellifera). ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2023; 104:104323. [PMID: 37995888 DOI: 10.1016/j.etap.2023.104323] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 11/13/2023] [Accepted: 11/18/2023] [Indexed: 11/25/2023]
Abstract
Pollinator health has been of critical concern over the last few decades. The prevalence of the honeybee Colony Collapse Disorder (CCD), changing climate, and the rise of vector-borne honeybee diseases by Varroa destructor, have played a major role in the rapid decline of global honeybee populations. Honeybees are environmentally and economically significant actors in biodiversity. The impact of agricultural practices, such as pesticide use, has exacerbated the negative effects on honeybees. We demonstrate the synergistic effect of cocktails of the neonicotinoids imidacloprid and acetamiprid on honeybee haemocytes. Two genes responsible for critical immune responses, spaetzle and myD88, are consistently dysregulated following exposure to either neonicotinoid alone or as a mixture with or without an immune challenge. The 2018 ban of neonicotinoids in Europe, followed by the 2020 reauthorisation of imidacloprid in France and the current consideration to reinstate acetamiprid underscores the need to evaluate their cumulative impact on honeybee health.
Collapse
Affiliation(s)
| | - Dani Sukkar
- Université de Lorraine, INRAE, LSE, F-54000 Nancy, France; Université de Lorraine, IUT Thionville-Yutz, Plateforme de Recherche, Transfert de Technologie et Innovation (PRTI), 57970 Yutz, France
| | - Antoine Bonnefoy
- Université de Lorraine, IUT Thionville-Yutz, Plateforme de Recherche, Transfert de Technologie et Innovation (PRTI), 57970 Yutz, France
| | | | | |
Collapse
|
7
|
Kaya S. Immunosuppressive effect of Plantago major on the innate immunity of Galleria mellonella. PeerJ 2023; 11:e15982. [PMID: 37753175 PMCID: PMC10519203 DOI: 10.7717/peerj.15982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 08/08/2023] [Indexed: 09/28/2023] Open
Abstract
Greater plantain (Plantago major), a medicinal plant species, is used in folk medicine for the treatment of various diseases in many countries of the world. Different studies have shown that the bioactive components contained in the plant have a dual effect. It was also reported that in vivo and in vitro studies showed different results. The aim of the study was to determine the effects of P. major extract on the hemocyte-mediated and humoral immune responses of the invertebrate model organism Galleria mellonella, which is widely used in immune studies. In the evaluation of these effects, total hemocyte count, encapsulation, melanization, phenoloxidase, superoxide dismutase, catalase, malondialdehyde and total protein parameters were evaluated. The results of the study showed that the total hemocyte count did not change, that the encapsulation responses decreased, that the melanization responses and phenoloxidase activity increased and that the superoxide dismutase activity decreased. As a result, it was determined that high doses of P. major had negative effects on cell-mediated immunity and antioxidant defence and positive effects on melanization. High doses and continuous use of P. major may have negative effects on living things.
Collapse
Affiliation(s)
- Serhat Kaya
- Department of Biology/Faculty of Science, Çanakkale Onsekiz Mart University, Çanakkale, Turkey
| |
Collapse
|
8
|
Sukkar D, Kanso A, Laval-Gilly P, Falla-Angel J. A clash on the Toll pathway: competitive action between pesticides and zymosan A on components of innate immunity in Apis mellifera. Front Immunol 2023; 14:1247582. [PMID: 37753094 PMCID: PMC10518393 DOI: 10.3389/fimmu.2023.1247582] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/21/2023] [Indexed: 09/28/2023] Open
Abstract
Background The immune system of honeybees includes multiple pathways that may be affected by pesticide exposure decreasing the immune competencies of bees and increasing their susceptibility to diseases like the fungal Nosema spp. infection, which is detected in collapsed colonies. Methods To better understand the effect of the co-presence of multiple pesticides that interact with bees like imidacloprid and amitraz, we evaluated the expression of immune-related genes in honeybee hemocytes. Results Imidacloprid, amitraz, and the immune activator, zymosan A, mainly affect the gene expression in the Toll pathway. Discussion Imidacloprid, amitraz, and zymosan A have a synergistic or an antagonistic relationship on gene expression depending on the level of immune signaling. The presence of multiple risk factors like pesticides and pathogens requires the assessment of their complex interaction, which has differential effects on the innate immunity of honeybees as seen in this study.
Collapse
Affiliation(s)
- Dani Sukkar
- Université de Lorraine, INRAE, LSE, F-54000 Nancy, France
- Biology Department, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Ali Kanso
- Biology Department, Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | | | | |
Collapse
|
9
|
Askar AG, Yüksel E, Bozbuğa R, Öcal A, Kütük H, Dinçer D, Canhilal R, Dababat AA, İmren M. Evaluation of Entomopathogenic Nematodes against Common Wireworm Species in Potato Cultivation. Pathogens 2023; 12:pathogens12020288. [PMID: 36839560 PMCID: PMC9961910 DOI: 10.3390/pathogens12020288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Revised: 01/13/2023] [Accepted: 01/18/2023] [Indexed: 02/12/2023] Open
Abstract
Wireworms (Coleoptera: Elateridae) are common insect pests that attack a wide range of economically important crops including potatoes. The control of wireworms is of prime importance in potato production due to the potential damage of the larvae to tuber quantity and quality. Chemical insecticides, the main control strategy against wireworms, generally fail to provide satisfactory control due to the lack of available chemicals and the soil-dwelling habits of the larvae. In the last decades, new eco-friendly concepts have emerged in the sustainable control of wireworms, one of which is entomopathogenic nematodes (EPNs). EPNs are soil-inhabitant organisms and represent an ecological approach to controlling a great variety of soil-dwelling insect pests. In this study, the susceptibility of Agriotes sputator Linnaeus and A. rufipalpis Brullé larvae, the most common wireworm species in potato cultivation in Türkiye, to native EPN strains [Steinernema carpocapsae (Sc_BL22), S. feltiae (Sf_BL24 and Sf_KAY4), and Heterorhabditis bacteriophora (Hb_KAY10 and Hb_AF12)] were evaluated at two temperatures (25 and 30 °C) in pot experiments. Heterorhabditis bacteriophora Hb_AF12 was the most effective strain at 30 °C six days post-inoculation and caused 37.5% mortality to A. rufipalpis larvae. Agriotes sputator larvae were more susceptible to tested EPNs at the same exposure time, and 50% mortality was achieved by two EPNs species, Hb_AF12 and Sc_BL22. All EPN species/strains induced mortality over 70% to both wireworm species at both temperatures at 100 IJs/cm2, 18 days post-treatment. The results suggest that tested EPN species/strains have great potential in the control of A. sputator and A. rufipalpis larvae.
Collapse
Affiliation(s)
- Arife Gümüş Askar
- Istanbul Directorate of Agricultural Quarantine, Bakırköy, 34149 Istanbul, Türkiye
- Correspondence: (A.G.A.); (E.Y.)
| | - Ebubekir Yüksel
- Department of Plant Protection, Faculty of Agriculture, Kayseri Erciyes University, Melikgazi, 38030 Kayseri, Türkiye
- Correspondence: (A.G.A.); (E.Y.)
| | - Refik Bozbuğa
- Department of Plant Protection, Faculty of Agriculture, Eskişehir Osmangazi University, Odunpazarı, 26160 Eskişehir, Türkiye
| | - Atilla Öcal
- Atatürk Horticultural Central Research Institute, Merkez, 77100 Yalova, Türkiye
| | - Halil Kütük
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Gölköy, 14030 Bolu, Türkiye
| | - Dilek Dinçer
- Biological Control Research Institute, Yüreğir, 01321 Adana, Türkiye
| | - Ramazan Canhilal
- Department of Plant Protection, Faculty of Agriculture, Kayseri Erciyes University, Melikgazi, 38030 Kayseri, Türkiye
| | - Abdelfattah A. Dababat
- International Maize and Wheat Improvement Centre (CIMMYT) 39, Emek, 06511 Ankara, Türkiye
| | - Mustafa İmren
- Department of Plant Protection, Faculty of Agriculture, Bolu Abant Izzet Baysal University, Gölköy, 14030 Bolu, Türkiye
| |
Collapse
|
10
|
Ganesan R, Wierz JC, Kaltenpoth M, Flórez LV. How It All Begins: Bacterial Factors Mediating the Colonization of Invertebrate Hosts by Beneficial Symbionts. Microbiol Mol Biol Rev 2022; 86:e0012621. [PMID: 36301103 PMCID: PMC9769632 DOI: 10.1128/mmbr.00126-21] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Beneficial associations with bacteria are widespread across animals, spanning a range of symbiont localizations, transmission routes, and functions. While some of these associations have evolved into obligate relationships with permanent symbiont localization within the host, the majority require colonization of every host generation from the environment or via maternal provisions. Across the broad diversity of host species and tissue types that beneficial bacteria can colonize, there are some highly specialized strategies for establishment yet also some common patterns in the molecular basis of colonization. This review focuses on the mechanisms underlying the early stage of beneficial bacterium-invertebrate associations, from initial contact to the establishment of the symbionts in a specific location of the host's body. We first reflect on general selective pressures that can drive the transition from a free-living to a host-associated lifestyle in bacteria. We then cover bacterial molecular factors for colonization in symbioses from both model and nonmodel invertebrate systems where these have been studied, including terrestrial and aquatic host taxa. Finally, we discuss how interactions between multiple colonizing bacteria and priority effects can influence colonization. Taking the bacterial perspective, we emphasize the importance of developing new experimentally tractable systems to derive general insights into the ecological factors and molecular adaptations underlying the origin and establishment of beneficial symbioses in animals.
Collapse
Affiliation(s)
- Ramya Ganesan
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Jürgen C. Wierz
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Martin Kaltenpoth
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Insect Symbiosis, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Laura V. Flórez
- Department of Evolutionary Ecology, Institute of Organismic and Molecular Evolution, Johannes Gutenberg University, Mainz, Germany
- Department of Plant and Environmental Sciences, Section for Organismal Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
11
|
Ünal M, Yüksel E, Canhilal R. Biocontrol potential of cell suspensions and cell-free superntants of different Xenorhabdus and Photorhabdus bacteria against the different larval instars of Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae). Exp Parasitol 2022; 242:108394. [PMID: 36179855 DOI: 10.1016/j.exppara.2022.108394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 09/21/2022] [Accepted: 09/23/2022] [Indexed: 12/01/2022]
Abstract
The black cutworm (BCW), Agrotis ipsilon (Hufnagel) (Lepidoptera: Noctuidae), is one of the destructive cutworm species. Black cutworm is a highly polyphagous pest that feeds on more than 30 plants, many of which are of economic importance such as maize, sugar beet, and potato. The control of BCW larvae relies heavily on the application of synthetic insecticides which have a detrimental impact on human health and the natural environment. In addition, increasing insecticide resistance in many insect species requires a novel and sustainable approach to controlling insect pests. The endosymbionts of entomopathogenic nematodes (EPNs) (Xenorhabdus and Phorohabdus spp.) represent a newly emerging green approach to controlling a wide range of insect pests. In the current study, the oral and contact efficacy of cell suspension (4 × 107 cells ml-1) and cell-free supernatants of different symbiotic bacteria (X. nematophilai, X. bovienii, X. budapestensis, and P. luminescent subsp. kayaii) were evaluated against the mixed groups of 1st-2nd and 3rd-4th instars larvae of BCW under controlled conditions. The oral treatment of the cell suspension and cell-free supernatants resulted in higher mortality rates than contact treatments. In general, larval mortality was higher in the 1st-2nd instar larvae than in the 3rd-4th instar larvae. The highest (75%) mortality was obtained from the cell suspension of X. budapestensis. The results indicated that the oral formulations of the cell suspension and cell-free supernatants of bacterial strains may have a good control potential against the 1st-2nd larvae BCW. However, the efficacy of the cell suspension and cell-free supernatants of tested bacterial strains should be further evaluated under greenhouse and field conditions.
Collapse
Affiliation(s)
- Merve Ünal
- Department of Plant Protection, Faculty of Agriculture, Erciyes University, 38030, Melikgazi, Kayseri, Turkey
| | - Ebubekir Yüksel
- Department of Plant Protection, Faculty of Agriculture, Erciyes University, 38030, Melikgazi, Kayseri, Turkey.
| | - Ramazan Canhilal
- Department of Plant Protection, Faculty of Agriculture, Erciyes University, 38030, Melikgazi, Kayseri, Turkey
| |
Collapse
|
12
|
Sarkar P, Ghanim M. Interaction of Liberibacter Solanacearum with Host Psyllid Vitellogenin and Its Association with Autophagy. Microbiol Spectr 2022; 10:e0157722. [PMID: 35863005 PMCID: PMC9430699 DOI: 10.1128/spectrum.01577-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/14/2022] [Indexed: 12/28/2022] Open
Abstract
Candidatus Liberibacter solanacearum (CLso) haplotype D, transmitted by the carrot psyllid Bactericera trigonica, is a major constraint for carrot production in Israel. Unveiling the molecular interactions between the psyllid vector and CLso can facilitate the development of nonchemical approaches for controlling the disease caused by CLso. Bacterial surface proteins are often known to be involved in adhesion and virulence; however, interactions of CLso with carrot psyllid proteins that have a role in the transmission process has remained unexplored. In this study, we used CLso outer membrane protein (OmpA) and flagellin as baits to screen for psyllid interacting proteins in a yeast two-hybrid system assay. We identified psyllid vitellogenin (Vg) to interact with both OmpA and flagellin of CLso. As Vg and autophagy are often tightly linked, we also studied the expression of autophagy-related genes to further elucidate this interaction. We used the juvenile hormone (JH-III) to induce the expression of Vg, thapsigargin for suppressing autophagy, and rapamycin for inducing autophagy. The results revealed that Vg negatively regulates autophagy. Induced Vg expression significantly suppressed autophagy-related gene expression and the levels of CLso significantly increased, resulting in a significant mortality of the insect. Although the specific role of Vg remains obscure, the findings presented here identify Vg as an important component in the insect immune responses against CLso and may help in understanding the initial molecular response in the vector against Liberibacter. IMPORTANCE Pathogen transmission by vectors involves multiple levels of interactions, and for the transmission of liberibacter species by psyllid vectors, much of these interactions are yet to be explored. Candidatus Liberibacter solanacearum (CLso) haplotype D inflicts severe economic losses to the carrot industry. Understanding the specific interactions at different stages of infection is hence fundamental and could lead to the development of better management strategies to disrupt the transmission of the bacteria to new host plants. Here, we show that two liberibacter membrane proteins interact with psyllid vitellogenin and also induce autophagy. Altering vitellogenin expression directly influences autophagy and CLso abundance in the psyllid vector. Although the exact mechanism underlying this interaction remains unclear, this study highlights the importance of immune responses in the transmission of this disease agent.
Collapse
Affiliation(s)
- Poulami Sarkar
- Department of Entomology, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| | - Murad Ghanim
- Department of Entomology, Agricultural Research Organization, Volcani Institute, Rishon LeZion, Israel
| |
Collapse
|
13
|
González-Acosta S, Baca-González V, Asensio-Calavia P, Otazo-Pérez A, López MR, Morales-delaNuez A, Pérez de la Lastra JM. Efficient Oral Priming of Tenebrio molitor Larvae Using Heat-Inactivated Microorganisms. Vaccines (Basel) 2022; 10:vaccines10081296. [PMID: 36016184 PMCID: PMC9415734 DOI: 10.3390/vaccines10081296] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
Microbial resistance is a global health problem that will increase over time. Advances in insect antimicrobial peptides (AMPs) offer a powerful new approach to combat antimicrobial resistance. Invertebrates represent a rich group of animals for the discovery of new antimicrobial agents due to their high diversity and the presence of adaptive immunity or “immune priming”. Here, we report a priming approach for Tenebrio molitor that simulates natural infection via the oral route. This oral administration has the advantage of minimizing the stress caused by conventional priming techniques and could be a viable method for mealworm immunity studies. When using inactivated microorganisms for oral priming, our results showed an increased survival of T. molitor larvae after exposure to various pathogens. This finding was consistent with the induction of antimicrobial activity in the hemolymph of primed larvae. Interestingly, the hemolymph of larvae orally primed with Escherichia coli showed constitutive activity against Staphylococcus aureus and heterologous activity for other Gram-negative bacteria, such as Salmonella enterica. The priming of T. molitor is generally performed via injection of the microorganism. To our knowledge, this is the first report describing the oral administration of heat-inactivated microorganisms for priming mealworms. This technique has the advantage of reducing the stress that occurs with the conventional methods for priming vertebrates.
Collapse
Affiliation(s)
- Sergio González-Acosta
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, (IPNA-CSIC), 38206 San Cristóbal de la Laguna, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna Avda, Astrofísico Francisco Sánchez, SN. Edificio Calabaza-Apdo, 456, 38200 San Cristóbal de La Laguna, Spain
| | - Victoria Baca-González
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, (IPNA-CSIC), 38206 San Cristóbal de la Laguna, Spain
| | - Patricia Asensio-Calavia
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, (IPNA-CSIC), 38206 San Cristóbal de la Laguna, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna Avda, Astrofísico Francisco Sánchez, SN. Edificio Calabaza-Apdo, 456, 38200 San Cristóbal de La Laguna, Spain
| | - Andrea Otazo-Pérez
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, (IPNA-CSIC), 38206 San Cristóbal de la Laguna, Spain
- Escuela de Doctorado y Estudios de Posgrado, Universidad de La Laguna Avda, Astrofísico Francisco Sánchez, SN. Edificio Calabaza-Apdo, 456, 38200 San Cristóbal de La Laguna, Spain
| | - Manuel R. López
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, (IPNA-CSIC), 38206 San Cristóbal de la Laguna, Spain
| | - Antonio Morales-delaNuez
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, (IPNA-CSIC), 38206 San Cristóbal de la Laguna, Spain
| | - José Manuel Pérez de la Lastra
- Biotechnology of Macromolecules Research Group, Instituto de Productos Naturales y Agrobiología, (IPNA-CSIC), 38206 San Cristóbal de la Laguna, Spain
- Correspondence: ; Tel.: +34-922-474334
| |
Collapse
|
14
|
Lei X, Zhou Z, Wang S, Jin LH. The protective effect of safranal against intestinal tissue damage in Drosophila. Toxicol Appl Pharmacol 2022; 439:115939. [PMID: 35217026 DOI: 10.1016/j.taap.2022.115939] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 10/19/2022]
Abstract
Drosophila is often exposed to harmful environments, and the intestinal epithelium is the first line of defense against external infection. Intestinal stem cells (ISCs) in the Drosophila midgut play a crucial role in maintaining tissue homeostasis and compensating for cell loss caused by tissue damage. Crocus sativus L. (saffron) can protect against intestinal injury in response to inflammation; however, the specific protective components of saffron and the related mechanisms remain unclear. Safranal is one of the main components of saffron. Here, we used dextran sodium sulfate (DSS) or Erwinia carotovora carotovora 15 (Ecc15) to create an intestinal injury model and explored the protective effect of safranal against tissue damage. Excessive proliferation and differentiation of ISCs in the Drosophila midgut were observed after DSS or Ecc15 feeding; however, these phenotypes were rescued after safranal feeding. In addition, we found that this process occurred through inhibition of the c-Jun N-terminal kinase (JNK), epidermal growth factor receptor (EGFR) and Janus kinase (JAK)/signal transducer and activator of transcription (STAT) pathways. Furthermore, safranal inhibited the Ecc15- and DSS-induced increases in antimicrobial peptide (AMP) and reactive oxygen species (ROS) levels and intestinal epithelial cell death, thereby protecting gut integrity. In summary, safranal was found to have a significant protective effect and maintain intestinal homeostasis in Drosophila; these findings provide a foundation for the application of safranal in clinical research and the treatment of intestinal injury.
Collapse
Affiliation(s)
- Xue Lei
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Ziqian Zhou
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang Province, China
| | - Sihong Wang
- Key Laboratory of Natural Resource of the Changbai Mountain and Functional Molecules, Ministry of Education, Yanbian Province, China
| | - Li Hua Jin
- Department of Genetics, College of Life Sciences, Northeast Forestry University, Harbin, Heilongjiang Province, China.
| |
Collapse
|
15
|
Prigot-Maurice C, Beltran-Bech S, Braquart-Varnier C. Why and how do protective symbionts impact immune priming with pathogens in invertebrates? DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104245. [PMID: 34453995 DOI: 10.1016/j.dci.2021.104245] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/29/2021] [Accepted: 08/24/2021] [Indexed: 06/13/2023]
Abstract
Growing evidence demonstrates that invertebrates display adaptive-like immune abilities, commonly known as "immune priming". Immune priming is a process by which a host improves its immune defences following an initial pathogenic exposure, leading to better protection after a subsequent infection with the same - or different - pathogens. Nevertheless, beneficial symbionts can enhance similar immune priming processes in hosts, such as when they face repeated infections with pathogens. This "symbiotic immune priming" protects the host against pathogenic viruses, bacteria, fungi, or eukaryotic parasites. In this review, we explore the extent to which protective symbionts interfere and impact immune priming against pathogens from both a mechanical (proximal) and an evolutionary (ultimate) point of view. We highlight that the immune priming of invertebrates is the cornerstone of the tripartite interaction of hosts/symbionts/pathogens. The main shared mechanism of immune priming (induced by symbionts or pathogens) is the sustained immune response at the beginning of host-microbial interactions. However, the evolutionary outcome of immune priming leads to a specific discrimination, which provides enhanced tolerance or resistance depending on the type of microbe. Based on several studies testing immune priming against pathogens in the presence or absence of protective symbionts, we observed that both types of immune priming could overlap and affect each other inside the same hosts. As protective symbionts could be an evolutionary force that influences immune priming, they may help us to better understand the heterogeneity of pathogenic immune priming across invertebrate populations and species.
Collapse
Affiliation(s)
- Cybèle Prigot-Maurice
- Université de Poitiers - UFR Sciences Fondamentales et Appliquées, Laboratoire Écologie et Biologie des Interactions - UMR CNRS 7267, Bâtiment B8-B35, 5 rue Albert Turpin, TSA 51106, F, 86073, POITIERS Cedex 9, France.
| | - Sophie Beltran-Bech
- Université de Poitiers - UFR Sciences Fondamentales et Appliquées, Laboratoire Écologie et Biologie des Interactions - UMR CNRS 7267, Bâtiment B8-B35, 5 rue Albert Turpin, TSA 51106, F, 86073, POITIERS Cedex 9, France
| | - Christine Braquart-Varnier
- Université de Poitiers - UFR Sciences Fondamentales et Appliquées, Laboratoire Écologie et Biologie des Interactions - UMR CNRS 7267, Bâtiment B8-B35, 5 rue Albert Turpin, TSA 51106, F, 86073, POITIERS Cedex 9, France
| |
Collapse
|
16
|
Quque M, Villette C, Criscuolo F, Sueur C, Bertile F, Heintz D. Eusociality is linked to caste-specific differences in metabolism, immune system, and somatic maintenance-related processes in an ant species. Cell Mol Life Sci 2021; 79:29. [PMID: 34971425 PMCID: PMC11073003 DOI: 10.1007/s00018-021-04024-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 10/08/2021] [Accepted: 11/05/2021] [Indexed: 01/08/2023]
Abstract
The social organization of many primate, bird and rodent species and the role of individuals within that organization are associated with specific individual physiological traits. However, this association is perhaps most pronounced in eusocial insects (e.g., termites, ants). In such species, genetically close individuals show significant differences in behavior, physiology, and life expectancy. Studies addressing the metabolic changes according to the social role are still lacking. We aimed at understanding how sociality could influence essential molecular processes in a eusocial insect, the black garden ant (Lasius niger) where queens can live up to ten times longer than workers. Using mass spectrometry-based analysis, we explored the whole metabolome of queens, nest-workers and foraging workers. A former proteomics study done in the same species allowed us to compare the findings of both approaches. Confirming the former results at the proteome level, we showed that queens had fewer metabolites related to immunity. Contrary to our predictions, we did not find any metabolite linked to reproduction in queens. Among the workers, foragers had a metabolic signature reflecting a more stressful environment and a more highly stimulated immune system. We also found that nest-workers had more digestion-related metabolites. Hence, we showed that specific metabolic signatures match specific social roles. Besides, we identified metabolites differently expressed among behavioral castes and involved in nutrient sensing and longevity pathways (e.g., sirtuins, FOXO). The links between such molecular pathways and aging being found in an increasing number of taxa, our results confirm and strengthen their potential universality.
Collapse
Affiliation(s)
- Martin Quque
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, F-67000, Strasbourg, France.
| | - Claire Villette
- Plant Imaging and Mass Spectrometry (PIMS), Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67000, Strasbourg, France
| | - François Criscuolo
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, F-67000, Strasbourg, France
| | - Cédric Sueur
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, F-67000, Strasbourg, France
- Institut Universitaire de France, 75005, Paris, France
| | - Fabrice Bertile
- Université de Strasbourg, CNRS, IPHC UMR 7178, 23 rue du Loess, F-67000, Strasbourg, France
- Infrastructure Nationale de Protéomique ProFI, FR2048, Strasbourg, France
| | - Dimitri Heintz
- Plant Imaging and Mass Spectrometry (PIMS), Institut de Biologie Moléculaire des Plantes, CNRS, Université de Strasbourg, 12 rue du Général Zimmer, F-67000, Strasbourg, France
| |
Collapse
|
17
|
Mathew B, Aoyagi KL, Fisher MA. Yersinia pestis Lipopolysaccharide Remodeling Confers Resistance to a Xenopsylla cheopis Cecropin. ACS Infect Dis 2021; 7:2536-2545. [PMID: 34319069 DOI: 10.1021/acsinfecdis.1c00275] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Fleas are major vectors of Yersinia pestis, the causative agent of plague. It has been proposed that Y. pestis has developed the ability to overcome the innate immune responses of fleas. Despite the fact that they transmit a number of bacterial infections, very little is known about the immune responses in fleas. In this study, we describe the antimicrobial activities of a cecropin from Xenopsylla cheopis (cheopin), an efficient vector for Y. pestis in the wild. This is the first cecropin-class antimicrobial peptide described from Siphonaptera insects. Cheopin showed potent activity against Gram-negative bacteria but little activity against wild-type Y. pestis KIM6+. Deletion of the aminoarabinose operon, which is responsible for the 4-amino-4-deoxy-l-arabinose (Ara4N) modification of LPS, rendered Y. pestis highly susceptible to cheopin. Confocal microscopy and whole cell binding assays indicated that Ara4N modification reduces the affinity of cheopin for Y. pestis. Further, cheopin only permeabilized bacterial membranes in the absence of Ara4N-modified LPS, which was correlated with bacterial killing. This study provides insights into innate immunity of the flea and evidence for the crucial role of Ara4N modification of Y. pestis LPS in conferring resistance against flea antimicrobial peptides.
Collapse
Affiliation(s)
- Basil Mathew
- Department of Pathology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Kari L. Aoyagi
- Department of Pathology, University of Utah, Salt Lake City, Utah 84112, United States
| | - Mark A. Fisher
- Department of Pathology, University of Utah, Salt Lake City, Utah 84112, United States
- ARUP Laboratories, Salt Lake City, Utah 84112, United States
| |
Collapse
|
18
|
Lei Y, Hussain A, Guan Z, Wang D, Jaleel W, Lyu L, He Y. Unraveling the Mode of Action of Cordyceps fumosorosea: Potential Biocontrol Agent against Plutella xylostella (Lepidoptera: Plutellidae). INSECTS 2021; 12:insects12020179. [PMID: 33670783 PMCID: PMC7922683 DOI: 10.3390/insects12020179] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/20/2022]
Abstract
The entomopathogenic fungus, Cordyceps fumosorosea is a potential eco-friendly biocontrol agent. The present study revealed the entire course of infection of P. xylostella by C. fumosorosea with particular reference to cuticular penetration. Comparative studies on the infection of Plutella xylostella larvae by two strains of C. fumosorosea with different pathogenicity were carried out using light, scanning, and transmission electron microscopy. We found that C. fumosorosea tended to adhere to the cuticle surfaces containing protrusions. Although conidia of the lower pathogenic strain IFCF-D58 germinated, they failed to penetrate and complete the development cycle. In contrast, the higher pathogenic strain IFCF01 began to germinate within 4 h and attached to the cuticle by a thin mucilaginous matrix within 8 h post-inoculation. After 24 h post-inoculation, germ tubes and penetrating hyphae reached the cuticular epidermis and began to enter the haemocoel. Within 36 h post-inoculation, the hyphal bodies colonized the body cavity. Hyphae penetrated from inside to outside of the body after 48 h and sporulated the cadavers. After 72 h post-inoculation, numerous conidia emerged and the mycelial covered the entire cuticular surface. The two strains showed similarities in terms of conidial size and germination rate. However, IFCF-D58 exhibited significantly fewer appressoria and longer penetrating hyphae compared to the more infective IFCF01 on all surface topographies. The current pathogen invasion sequence of events suggested that the aggressive growth and propagation along with rapid and massive in vivo production of blastospores facilitate the conidia of IFCF01 to quickly overcome the diamondback moth's defense mechanism.
Collapse
Affiliation(s)
- Yanyuan Lei
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.L.); (W.J.); (L.L.)
| | - Abid Hussain
- Institute of Research and Consultancy, King Faisal University, Hofuf 31982, Saudi Arabia;
- Ministry of Environment, Water and Agriculture, Riyadh 11442, Saudi Arabia
| | - Zhaoying Guan
- School of Applied Biology, Shenzhen Institute of Technology, Shenzhen 518116, China;
| | - Desen Wang
- Department of Entomology, South China Agricultural University, Guangzhou 510642, China;
- Key Laboratory of Bio-Pesticide Innovation and Application, Guangzhou 510642, China
- Engineering Research Center of Biological Control, Ministry of Education, Guangzhou 510642, China
| | - Waqar Jaleel
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.L.); (W.J.); (L.L.)
| | - Lihua Lyu
- Guangdong Provincial Key Laboratory of High Technology for Plant Protection, Plant Protection Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou 510640, China; (Y.L.); (W.J.); (L.L.)
| | - Yurong He
- Department of Entomology, South China Agricultural University, Guangzhou 510642, China;
- Key Laboratory of Bio-Pesticide Innovation and Application, Guangzhou 510642, China
- Engineering Research Center of Biological Control, Ministry of Education, Guangzhou 510642, China
- Correspondence: ; Tel.: +86-20-85283985
| |
Collapse
|
19
|
Weil T, Ometto L, Esteve-Codina A, Gómez-Garrido J, Oppedisano T, Lotti C, Dabad M, Alioto T, Vrhovsek U, Hogenhout S, Anfora G. Linking omics and ecology to dissect interactions between the apple proliferation phytoplasma and its psyllid vector Cacopsylla melanoneura. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2020; 127:103474. [PMID: 33007407 DOI: 10.1016/j.ibmb.2020.103474] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/08/2020] [Accepted: 09/17/2020] [Indexed: 06/11/2023]
Abstract
Phytoplasmas are bacterial plant pathogens that are detrimental to many plants and cause devastating effects on crops. They are not viable outside their host plants and depend on specific insect vectors for their transmission. So far, research has largely focused on plant-pathogen interactions, while the complex interactions between phytoplasmas and insect vectors are far less understood. Here, we used next-generation sequencing to investigate how transcriptional profiles of the vector psyllid Cacopsylla melanoneura (Hemiptera, Psyllidae) are altered during infection by the bacterium Candidatus Phytoplasma mali (P. mali), which causes the economically important apple proliferation disease. This first de novo transcriptome assembly of an apple proliferation vector revealed that mainly genes involved in small GTPase mediated signal transduction, nervous system development, adhesion, reproduction, actin-filament based and rhythmic processes are significantly altered upon P. mali infection. Furthermore, the presence of P. mali is accompanied by significant changes in carbohydrate and polyol levels, as revealed by metabolomics analysis. Taken together, our results suggest that infection with P. mali impacts on the insect vector physiology, which in turn likely affects the ability of the vector to transmit phytoplasma.
Collapse
Affiliation(s)
- Tobias Weil
- Research and Innovation Center, Fondazione E. Mach, 38010, San Michele all'Adige (TN), Italy.
| | - Lino Ometto
- Research and Innovation Center, Fondazione E. Mach, 38010, San Michele all'Adige (TN), Italy; Department of Biology and Biotechnology, University of Pavia, 27100, Pavia, Italy
| | - Anna Esteve-Codina
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Jèssica Gómez-Garrido
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Tiziana Oppedisano
- Research and Innovation Center, Fondazione E. Mach, 38010, San Michele all'Adige (TN), Italy; Present address: Hermiston Agricultural Research and Extension Center, Oregon State University, Hermiston (OR, USA
| | - Cesare Lotti
- Research and Innovation Center, Fondazione E. Mach, 38010, San Michele all'Adige (TN), Italy
| | - Marc Dabad
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain
| | - Tyler Alioto
- CNAG-CRG, Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, 08028, Barcelona, Spain; Universitat Pompeu Fabra (UPF), 08003, Barcelona, Spain
| | - Urska Vrhovsek
- Research and Innovation Center, Fondazione E. Mach, 38010, San Michele all'Adige (TN), Italy
| | - Saskia Hogenhout
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, NR4 7UH, UK
| | - Gianfranco Anfora
- Research and Innovation Center, Fondazione E. Mach, 38010, San Michele all'Adige (TN), Italy; Centre Agriculture Food Environment, University of Trento, 38010, San Michele all'Adige (TN), Italy
| |
Collapse
|
20
|
Mason CJ. Complex Relationships at the Intersection of Insect Gut Microbiomes and Plant Defenses. J Chem Ecol 2020; 46:793-807. [PMID: 32537721 DOI: 10.1007/s10886-020-01187-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/13/2020] [Accepted: 05/27/2020] [Indexed: 02/07/2023]
Abstract
Insect herbivores have ubiquitous associations with microorganisms that have major effects on how host insects may interact in their environment. Recently, increased attention has been given to how insect gut microbiomes mediate interactions with plants. In this paper, I discuss the ecology and physiology of gut bacteria associated with insect herbivores and how they may shape interactions between insects and their various host plants. I first establish how microbial associations vary between insects with different feeding styles, and how the insect host physiology and ecology can shape stable or transient relationships with gut bacteria. Then, I describe how these relationships factor in with plant nutrition and plant defenses. Within this framework, I suggest that many of the interactions between plants, insects, and the gut microbiome are context-dependent and shaped by the type of defense and the isolates present in the environment. Relationships between insects and plants are not pairwise, but instead highly multipartite, and the interweaving of complex microbial interactions is needed to fully explore the context-dependent aspects of the gut microbiome in many of these systems. I conclude the review by suggesting studies that would help reduce the unsureness of microbial interactions with less-defined herbivore systems and identify how each could provide a path to more robust roles and traits.
Collapse
Affiliation(s)
- Charles J Mason
- The Pennsylvania State University Department of Entomology, 501 ASI Building, University Park, PA, 16823, USA.
| |
Collapse
|
21
|
Kaltenpoth M, Flórez LV. Versatile and Dynamic Symbioses Between Insects and Burkholderia Bacteria. ANNUAL REVIEW OF ENTOMOLOGY 2020; 65:145-170. [PMID: 31594411 DOI: 10.1146/annurev-ento-011019-025025] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Symbiotic associations with microorganisms represent major sources of ecological and evolutionary innovations in insects. Multiple insect taxa engage in symbioses with bacteria of the genus Burkholderia, a diverse group that is widespread across different environments and whose members can be mutualistic or pathogenic to plants, fungi, and animals. Burkholderia symbionts provide nutritional benefits and resistance against insecticides to stinkbugs, defend Lagria beetle eggs against pathogenic fungi, and may be involved in nitrogen metabolism in ants. In contrast to many other insect symbioses, the known associations with Burkholderia are characterized by environmental symbiont acquisition or mixed-mode transmission, resulting in interesting ecological and evolutionary dynamics of symbiont strain composition. Insect-Burkholderia symbioses present valuable model systems from which to derive insights into general principles governing symbiotic interactions because they are often experimentally and genetically tractable and span a large fraction of the diversity of functions, localizations, and transmission routes represented in insect symbioses.
Collapse
Affiliation(s)
- Martin Kaltenpoth
- Institute of Organismic and Molecular Evolution, Evolutionary Ecology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; ,
| | - Laura V Flórez
- Institute of Organismic and Molecular Evolution, Evolutionary Ecology, Johannes Gutenberg University Mainz, 55128 Mainz, Germany; ,
| |
Collapse
|
22
|
Walderdorff L, Laval-Gilly P, Wechtler L, Bonnefoy A, Falla-Angel J. Phagocytic activity of human macrophages and Drosophila hemocytes after exposure to the neonicotinoid imidacloprid. PESTICIDE BIOCHEMISTRY AND PHYSIOLOGY 2019; 160:95-101. [PMID: 31519262 DOI: 10.1016/j.pestbp.2019.07.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/28/2019] [Accepted: 07/13/2019] [Indexed: 06/10/2023]
Abstract
Neonicotinoid insecticides are increasingly used in modern pest control and in conventional agriculture. Their residues are frequently found in our environment and in our food leading to chronic exposure of pollinating insects and humans. Indeed, evidence has become stronger that chronic exposure to neonicotinoids might have a direct impact on the immune response of invertebrates and vertebrates. Therefore, we compared the cellular immune response of human macrophages (THP-1) and Drosophila melanogaster hemocytes (Schneider 2 cells) after exposure to four different concentrations of the neonicotinoid imidacloprid. Cells were immune activated with LPS (lipopolysaccharide) of Escherichia coli to compare the phagocytic activity of immune activated and non-activated cells during pesticide exposure. Drosophila cells were more strongly affected by the insecticide than human macrophages. Even though imidacloprid showed an adverse effect on phagocytosis on both cells while immune activated, it decreased phagocytosis in Drosophila cells at shorter exposure time and without immune activation.
Collapse
Affiliation(s)
| | | | - Laura Wechtler
- Université de Lorraine, Inra, LSE, F-54000 Nancy, France
| | - Antoine Bonnefoy
- Université de Lorraine, IUT de Thionville-Yutz, F-57970, Yutz, France
| | | |
Collapse
|
23
|
Comparison of Twelve Ant Species and Their Susceptibility to Fungal Infection. INSECTS 2019; 10:insects10090271. [PMID: 31454953 PMCID: PMC6780858 DOI: 10.3390/insects10090271] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Revised: 08/18/2019] [Accepted: 08/19/2019] [Indexed: 02/02/2023]
Abstract
Eusocial insects, such as ants, have access to complex disease defenses both at the individual, and at the colony level. However, different species may be exposed to different diseases, and/or deploy different methods of coping with disease. Here, we studied and compared survival after fungal exposure in 12 species of ants, all of which inhabit similar habitats. We exposed the ants to two entomopathogenic fungi (Beauveria bassiana and Metarhizium brunneum), and measured how exposure to these fungi influenced survival. We furthermore recorded hygienic behaviors, such as autogrooming, allogrooming and trophallaxis, during the days after exposure. We found strong differences in autogrooming behavior between the species, but none of the study species performed extensive allogrooming or trophallaxis under the experimental conditions. Furthermore, we discuss the possible importance of the metapleural gland, and how the secondary loss of this gland in the genus Camponotus could favor a stronger behavioral response against pathogen threats.
Collapse
|
24
|
Entomopathogenic nematode Steinernema carpocapsae surpasses the cellular immune responses of the hispid beetle, Octodonta nipae (Coleoptera: Chrysomelidae). Microb Pathog 2018; 124:337-345. [PMID: 30172903 DOI: 10.1016/j.micpath.2018.08.063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 08/29/2018] [Accepted: 08/29/2018] [Indexed: 12/29/2022]
Abstract
The Nipa palm hispid, Octodonta nipae (Maulik) is an important invasive pest of palm trees particularly in Southern China. How this beetle interacts with invading pathogens via its immune system remains to be dissected. Steinernema carpocapsae is a pathogenic nematode that attacks a number of insects of economic importance. The present study systematically investigates the cellular immune responses of O. nipae against S. carpocapsae infection using combined immunological, biochemical and transcriptomics approaches. Our data reveal that S. carpocapsae efficiently resists being encapsulated and melanized within the host's hemolymph and most of the nematodes were observed moving freely in the hemolymph even at 24 h post incubation. Consistently, isolated cuticles from the parasite also withstand encapsulation by the O. nipae hemocytes at all-time points. However, significant encapsulation and melanization of the isolated cuticles were recorded following heat treatment of the cuticles. The host's phenoloxidase activity was found to be slightly suppressed due to S. carpocapsae infection. Furthermore, the expression levels of some antimicrobial peptide (AMP) genes were significantly up-regulated in the S. carpocapsae-challenged O. nipae. Taken together, our data suggest that S. carpocapsae modulates and surpasses the O. nipae immune responses and hence can serve as an excellent biological control agent of the pest.
Collapse
|
25
|
Walderdorff L, Laval-Gilly P, Bonnefoy A, Falla-Angel J. Imidacloprid intensifies its impact on honeybee and bumblebee cellular immune response when challenged with LPS (lippopolysacharide) of Escherichia coli. JOURNAL OF INSECT PHYSIOLOGY 2018; 108:17-24. [PMID: 29758240 DOI: 10.1016/j.jinsphys.2018.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 03/27/2018] [Accepted: 05/11/2018] [Indexed: 06/08/2023]
Abstract
Insect hemocytes play an important role in insects' defense against environmental stressors as they are entirely dependent on their innate immune system for pathogen defense. In recent years a dramatic decline of pollinators has been reported in many countries. The drivers of this declines appear to be associated with pathogen infections like viruses, bacteria or fungi in combination with pesticide exposure. The aim of this study was thus to investigate the impact of imidacloprid, a neonicotinoid insecticide, on the cellular immune response of two pollinators (Apis mellifera and Bombus terrestris) during simultaneous immune activation with LPS (lipopolysaccharide) of Escherichia coli. For this purpose the phagocytosis capacity as well as the production of H2O2 and NO of larval hemocytes, exposed to five different imidacloprid concentrations in vitro, was measured. All used pesticide concentrations showed a weakening effect on phagocytosis with but also without LPS activation. Imidacloprid decreased H2O2 and increased NO production in honeybees. Immune activation by LPS clearly reinforced the effect of imidacloprid on the immune response of hemocytes in all three immune parameters tested. Bumblebee hemocytes appeared more sensitive to imidacloprid during phagocytosis assays while imidacloprid showed a greater impact on honeybee hemocytes during H2O2 and NO production.
Collapse
Affiliation(s)
- Louise Walderdorff
- Université de Lorraine, Inra, LSE, F-54000 Nancy, France; Université de Lorraine, IUT de Thionville-Yutz, F-57970 Yutz, France.
| | - Philippe Laval-Gilly
- Université de Lorraine, Inra, LSE, F-54000 Nancy, France; Université de Lorraine, IUT de Thionville-Yutz, F-57970 Yutz, France
| | - Antoine Bonnefoy
- Université de Lorraine, IUT de Thionville-Yutz, F-57970 Yutz, France
| | - Jaïro Falla-Angel
- Université de Lorraine, Inra, LSE, F-54000 Nancy, France; Université de Lorraine, IUT de Thionville-Yutz, F-57970 Yutz, France
| |
Collapse
|
26
|
Sinotte VM, Freedman SN, Ugelvig LV, Seid MA. Camponotusfloridanus Ants Incur a Trade-Off between Phenotypic Development and Pathogen Susceptibility from Their Mutualistic Endosymbiont Blochmannia. INSECTS 2018; 9:E58. [PMID: 29857577 PMCID: PMC6023366 DOI: 10.3390/insects9020058] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 05/23/2018] [Accepted: 05/30/2018] [Indexed: 11/21/2022]
Abstract
Various insects engage in microbial mutualisms in which the reciprocal benefits exceed the costs. Ants of the genus Camponotus benefit from nutrient supplementation by their mutualistic endosymbiotic bacteria, Blochmannia, but suffer a cost in tolerating and regulating the symbiont. This cost suggests that the ants face secondary consequences such as susceptibility to pathogenic infection and transmission. In order to elucidate the symbiont's effects on development and disease defence, Blochmannia floridanus was reduced in colonies of Camponotus floridanus using antibiotics. Colonies with reduced symbiont levels exhibited workers of smaller body size, smaller colony size, and a lower major-to-minor worker caste ratio, indicating the symbiont's crucial role in development. Moreover, these ants had decreased cuticular melanisation, yet higher resistance to the entomopathogen Metarhizium brunneum, suggesting that the symbiont reduces the ants' ability to fight infection, despite the availability of melanin to aid in mounting an immune response. While the benefits of improved growth and development likely drive the mutualism, the symbiont imposes a critical trade-off. The ants' increased susceptibility to infection exacerbates the danger of pathogen transmission, a significant risk given ants' social lifestyle. Thus, the results warrant research into potential adaptations of the ants and pathogens that remedy and exploit the described disease vulnerability.
Collapse
Affiliation(s)
- Veronica M Sinotte
- Department of Biology, Program of Neuroscience, University of Scranton, Loyola Science Center, Scranton, PA 1851-4699, USA.
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark.
| | - Samantha N Freedman
- Department of Biology, Program of Neuroscience, University of Scranton, Loyola Science Center, Scranton, PA 1851-4699, USA.
- Department of Pathology, University of Iowa, 1080 Medical Laboratories, 500 Newton Road, Iowa City, IA 52242-8205, USA.
| | - Line V Ugelvig
- Centre for Social Evolution, Section for Ecology and Evolution, Department of Biology, University of Copenhagen, Universitetsparken 15, DK-2100 Copenhagen, Denmark.
| | - Marc A Seid
- Department of Biology, Program of Neuroscience, University of Scranton, Loyola Science Center, Scranton, PA 1851-4699, USA.
| |
Collapse
|
27
|
Urbański A, Adamski Z, Rosiński G. Developmental changes in haemocyte morphology in response to Staphylococcus aureus and latex beads in the beetle Tenebrio molitor L. Micron 2017; 104:8-20. [PMID: 29049928 DOI: 10.1016/j.micron.2017.10.005] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Revised: 10/04/2017] [Accepted: 10/13/2017] [Indexed: 01/20/2023]
Abstract
The evolutionary success of insects is undoubtedly related to a well-functioning immune system. This is especially apparent during insect development by the adaptation of individuals to the changing risk of infection. In addition, current studies show that the insect immune system is characterized by some specificity in response to natural pathogens (for example, bacteria, viruses or fungi) and artificial challengers (for example, latex beads or nylon filaments). However, developmental changes and the specificity of immune system reactions simultaneously have not been analysed. Thus, the aim of the present research was to determine changes in haemocyte morphology in response to attenuated Staphylococcus aureus and latex beads across each developmental stage of the beetle Tenebrio molitor. The results of the present research clearly showed differences in the morphology of T. molitor haemocytes during development. The haemocytes of larvae and 4-day-old adult males were characterized by the highest adhesion ability, which was expressed as the largest average surface area, filopodia length and number of filopodia. In contrast, the haemocytes of pupae and 30-day-old adult males had a significantly lower value for these morphological parameters, which was probably related to metamorphosis (pupae) and immunosenescence (30-day-old adults). The haemocytes of the tested individuals reacted differently to the presence of S. aureus and latex beads. The presence of S. aureus led to a significant decrease in all previously mentioned morphological parameters in larvae and in both groups of adult individuals. In these groups, incubation of haemocytes with latex beads caused only a slight decrease in surface area and filopodia length and number. This morphological response of haemocytes to biotic and artificial challengers might be related to an increase in the migration abilities of haemocytes during infection. However, the differences in haemocyte reactivity towards S. aureus and latex beads might be explained by differences in pathogen recognition. Conversely, increased adhesive abilities of pupal haemocytes were also observed, which might be related to the specificity of metamorphosis and the hormonal titre during this developmental stage.
Collapse
Affiliation(s)
- Arkadiusz Urbański
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland.
| | - Zbigniew Adamski
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland; Electron and Confocal Microscope Laboratory, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
| | - Grzegorz Rosiński
- Department of Animal Physiology and Development, Faculty of Biology, Adam Mickiewicz University in Poznań, Poland
| |
Collapse
|
28
|
Dosselli R, Grassl J, Carson A, Simmons LW, Baer B. Flight behaviour of honey bee (Apis mellifera) workers is altered by initial infections of the fungal parasite Nosema apis. Sci Rep 2016; 6:36649. [PMID: 27827404 PMCID: PMC5101476 DOI: 10.1038/srep36649] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 10/19/2016] [Indexed: 11/09/2022] Open
Abstract
Honey bees (Apis mellifera) host a wide range of parasites, some being known contributors towards dramatic colony losses as reported over recent years. To counter parasitic threats, honey bees possess effective immune systems. Because immune responses are predicted to cause substantial physiological costs for infected individuals, they are expected to trade off with other life history traits that ultimately affect the performance and fitness of the entire colony. Here, we tested whether the initial onset of an infection negatively impacts the flight behaviour of honey bee workers, which is an energetically demanding behaviour and a key component of foraging activities. To do this, we infected workers with the widespread fungal pathogen Nosema apis, which is recognised and killed by the honey bee immune system. We compared their survival and flight behaviour with non-infected individuals from the same cohort and colony using radio frequency identification tags (RFID). We found that over a time frame of four days post infection, Nosema did not increase mortality but workers quickly altered their flight behaviour and performed more flights of shorter duration. We conclude that parasitic infections influence foraging activities, which could reduce foraging ranges of colonies and impact their ability to provide pollination services.
Collapse
Affiliation(s)
- Ryan Dosselli
- Centre for Integrative Bee Research (CIBER), ARC Centre of Excellence in Plant Energy Biology, Bayliss Building (M316), The University of Western Australia, Crawley WA 6009, Australia
| | - Julia Grassl
- Centre for Integrative Bee Research (CIBER), ARC Centre of Excellence in Plant Energy Biology, Bayliss Building (M316), The University of Western Australia, Crawley WA 6009, Australia
| | - Andrew Carson
- Centre for Integrative Bee Research (CIBER), ARC Centre of Excellence in Plant Energy Biology, Bayliss Building (M316), The University of Western Australia, Crawley WA 6009, Australia
- Centre for Evolutionary Biology, School of Animal Biology (M092), The University of Western Australia, Crawley WA 6009, Australia
| | - Leigh W. Simmons
- Centre for Evolutionary Biology, School of Animal Biology (M092), The University of Western Australia, Crawley WA 6009, Australia
| | - Boris Baer
- Centre for Integrative Bee Research (CIBER), ARC Centre of Excellence in Plant Energy Biology, Bayliss Building (M316), The University of Western Australia, Crawley WA 6009, Australia
| |
Collapse
|
29
|
Wang Y, Xiao D, Wang R, Li F, Zhang F, Wang S. Deep Sequencing-Based Transcriptome Analysis Reveals the Regulatory Mechanism of Bemisia tabaci (Hemiptera: Aleyrodidae) Nymph Parasitized by Encarsia sophia (Hymenoptera: Aphelinidae). PLoS One 2016; 11:e0157684. [PMID: 27332546 PMCID: PMC4917224 DOI: 10.1371/journal.pone.0157684] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Accepted: 06/02/2016] [Indexed: 11/19/2022] Open
Abstract
The whitefly Bemisia tabaci is a genetically diverse complex with multiple cryptic species, and some are the most destructive invasive pests of many ornamentals and crops worldwide. Encarsia sophia is an autoparasitoid wasp that demonstrated high efficiency as bio-control agent of whiteflies. However, the immune mechanism of B. tabaci parasitization by E. sophia is unknown. In order to investigate immune response of B. tabaci to E. Sophia parasitization, the transcriptome of E. sophia parasitized B. tabaci nymph was sequenced by Illumina sequencing. De novo assembly generated 393,063 unigenes with average length of 616 bp, in which 46,406 unigenes (15.8% of all unigenes) were successfully mapped. Parasitization by E. sophia had significant effects on the transcriptome profile of B. tabaci nymph. A total of 1482 genes were significantly differentially expressed, of which 852 genes were up-regulated and 630 genes were down-regulated. These genes were mainly involved in immune response, development, metabolism and host signaling pathways. At least 52 genes were found to be involved in the host immune response, 33 genes were involved in the development process, and 29 genes were involved in host metabolism. Taken together, the assembled and annotated transcriptome sequences provided a valuable genomic resource for further understanding the molecular mechanism of immune response of B. tabaci parasitization by E. sophia.
Collapse
Affiliation(s)
- Yingying Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Da Xiao
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Ran Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Fei Li
- College of Plant Protection, Nanjing Agricultural University, Nanjing, China
| | - Fan Zhang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| | - Su Wang
- Institute of Plant and Environment Protection, Beijing Academy of Agriculture and Forestry Sciences, Beijing, China
| |
Collapse
|
30
|
Gasmi L, Jakubowska AK, Herrero S. Gasmin (BV2-5), a polydnaviral-acquired gene in Spodoptera exigua. Trade-off in the defense against bacterial and viral infections. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 56:37-45. [PMID: 26658027 DOI: 10.1016/j.dci.2015.11.014] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Revised: 11/25/2015] [Accepted: 11/26/2015] [Indexed: 06/05/2023]
Abstract
Thousands of Hymenopteran endoparasitoids have developed a unique symbiotic relationship with viruses named polydnavirus (PDVs). These viruses immunocompromise the lepidopteran host allowing the survival of the wasp eggs. In a previous work, we have shown the horizontal transfer of some polydnaviral genes into the genome of the Lepidoptera, Spodoptera exigua. One of these genes, BV2-5 (named gasmin) interferes with actin polymerization, negatively affecting the multiplication of baculovirus in cell culture. In this work, we have focused in the study of the effect of Gasmin expression on different aspects of the baculovirus production. In addition, and since actin polymerization is crucial for phagocytosis, we have studied the effect of Gasmin expression on the larval interaction with bacterial pathogens. Over-expression of Gasmin on hemocytes significantly reduces their capacity to phagocytize the pathogenic bacteria Bacillus thuringiensis. According to these results, gasmin domestication negatively affects baculovirus replication, but increases larvae susceptibility to bacterial infections as pay off. Although the effect of Gasmin on the insect interaction with other pathogens or parasitoids remain unknown, the opposite effects described here could shape the biological history of this species based on the abundance of certain type of pathogens as suggested by the presence of truncated forms of this protein in several regions of the world.
Collapse
Affiliation(s)
- Laila Gasmi
- Department of Genetics, Universitat de València and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI-BIOTECMED), Universitat de València, Dr Moliner 50, 46100 Burjassot, Spain
| | - Agata K Jakubowska
- Department of Genetics, Universitat de València and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI-BIOTECMED), Universitat de València, Dr Moliner 50, 46100 Burjassot, Spain
| | - Salvador Herrero
- Department of Genetics, Universitat de València and Estructura de Recerca Interdisciplinar en Biotecnologia i Biomedicina (ERI-BIOTECMED), Universitat de València, Dr Moliner 50, 46100 Burjassot, Spain.
| |
Collapse
|
31
|
Zhang W, Chen J, Keyhani NO, Zhang Z, Li S, Xia Y. Comparative transcriptomic analysis of immune responses of the migratory locust, Locusta migratoria, to challenge by the fungal insect pathogen, Metarhizium acridum. BMC Genomics 2015; 16:867. [PMID: 26503342 PMCID: PMC4624584 DOI: 10.1186/s12864-015-2089-9] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2015] [Accepted: 10/15/2015] [Indexed: 01/20/2023] Open
Abstract
Background The migratory locust, Locusta migratoria manilensis, is an immensely destructive agricultural pest that forms a devastating and voracious gregarious phase. The fungal insect pathogen, Metarhizium acridum, is a specialized locust pathogen that has been used as a potent mycoinsecticide for locust control. Little, however, is known about locust immune tissue, i.e. fat body and hemocyte, responses to challenge by this fungus. Methods RNA-seq (RNA sequencing) technology were applied to comparatively examine the different roles of locust fat body and hemocytes, the two major contributors to the insect immune response, in defense against M. acridum. According to the sequence identity to homologies of other species explored immune response genes, immune related unigenes were screened in all transcriptome wide range from locust and the differential expressed genes were identified in these two tissues, respectively. Results Analysis of differentially expressed locust genes revealed 4660 and 138 up-regulated, and 1647 and 23 down-regulated transcripts in the fat body and hemocytes, respectively after inoculation with M. acridum spores. GO (Gene Ontology) enrichment analysis showed membrane biogenesis related proteins and effector proteins significantly differentially expressed in hemocytes, while the expression of energy metabolism and development related transcripts were enriched in the fat body after fungal infection. A total of 470 immune related unigenes were identified, including members of the three major insect immune pathways, i.e. Toll, Imd (immune deficiency) and JAK/STAT (janus kinase/signal transduction and activator of transcription). Of these, 58 and three were differentially expressed in the insect fat body or hemocytes after infection, respectively. Of differential expressed transcripts post challenge, 43 were found in both the fat body and hemocytes, including the LmLys4 lysozyme, representing a microbial cell wall targeting enzyme. Conclusions These data indicate that locust fat body and hemocytes adopt different strategies in response to M. acridum infection. Fat body gene expression after M. acridum challenge appears to function mainly through activation of innate immune related genes, energy metabolism and development related genes. Hemocyte responses attempt to limit fungal infection primarily through regulation of membrane related genes and activation of cellular immune responses and release of humoral immune factors. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2089-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Wei Zhang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Jianhong Chen
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Nemat O Keyhani
- Department of Microbiology and Cell Science, Institute of Food and Agricultural Sciences, University of Florida, Gainesville, FL, 32611, USA.
| | - Zhengyi Zhang
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Sai Li
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China.
| | - Yuxian Xia
- Genetic Engineering Research Center, School of Life Sciences, Chongqing University, Chongqing, 400045, People's Republic of China. .,Chongqing Engineering Research Center for Fungal Insecticide, Chongqing, 400045, People's Republic of China. .,Key Laboratory of Gene Function and Regulation Technologies under Chongqing Municipal Education Commission, Chongqing, 400045, People's Republic of China.
| |
Collapse
|
32
|
Wong WZ, H'ng PS, Chin KL, Sajap AS, Tan GH, Paridah MT, Othman S, Chai EW, Go WZ. Preferential Use of Carbon Sources in Culturable Aerobic Mesophilic Bacteria of Coptotermes curvignathus's (Isoptera: Rhinotermitidae) Gut and Its Foraging Area. ENVIRONMENTAL ENTOMOLOGY 2015; 44:1367-1374. [PMID: 26314017 DOI: 10.1093/ee/nvv115] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2015] [Accepted: 06/29/2015] [Indexed: 06/04/2023]
Abstract
The lower termite, Coptotermes curvignathus, is one of the most prominent plantation pests that feed upon, digest, and receive nourishment from exclusive lignocellulose diets. The objective of this study was to examine the utilization of sole carbon sources by isolated culturable aerobic bacteria among communities from the gut and foraging pathway of C. curvignathus. We study the bacteria occurrence from the gut of C. curvignathus and its surrounding feeding area by comparing the obtained phenotypic fingerprint with Biolog's extensive species library. A total of 24 bacteria have been identified mainly from the family Enterobacteriaceae from the identification of Biolog Gen III. Overall, the bacteria species in the termite gut differ from those of foraging pathway within a location, except Acintobacter baumannii, which was the only bacteria species found in both habitats. Although termites from a different study area do not have the same species of bacteria in the gut, they do have a bacterial community with similar role in degrading certain carbon sources. Sugars were preferential in termite gut isolates, while nitrogen carbon sources were preferential in foraging pathway isolates. The preferential use of specific carbon sources by these two bacterial communities reflects the role of bacteria for regulation of carbon metabolism in the termite gut and foraging pathway.
Collapse
Affiliation(s)
- W Z Wong
- Faculty of Forestry, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - P S H'ng
- Institute of Tropical Forestry and Forest Product, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia.
| | - K L Chin
- Institute of Tropical Forestry and Forest Product, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Ahmad Said Sajap
- Faculty of Forestry, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - G H Tan
- Faculty of Agricultural, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - M T Paridah
- Institute of Tropical Forestry and Forest Product, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - Soni Othman
- Crop Improvement and Protection Unit (UPPT), Rubber Research Institute, Malaysian Rubber Board, 47000 Sg. Buloh, Selangor, Malaysia
| | - E W Chai
- Faculty of Forestry, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| | - W Z Go
- Faculty of Forestry, Universiti Putra Malaysia, 43400 UPM Serdang, Selangor, Malaysia
| |
Collapse
|
33
|
Kellner K, Ishak HD, Linksvayer TA, Mueller UG. Bacterial community composition and diversity in an ancestral ant fungus symbiosis. FEMS Microbiol Ecol 2015; 91:fiv073. [PMID: 26113689 DOI: 10.1093/femsec/fiv073] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/19/2015] [Indexed: 12/16/2022] Open
Abstract
Fungus-farming ants (Hymenoptera: Formicidae, Attini) exhibit some of the most complex microbial symbioses because both macroscopic partners (ants and fungus) are associated with a rich community of microorganisms. The ant and fungal microbiomes are thought to serve important beneficial nutritional and defensive roles in these symbioses. While most recent research has investigated the bacterial communities in the higher attines (e.g. the leaf-cutter ant genera Atta and Acromyrmex), which are often associated with antibiotic-producing Actinobacteria, very little is known about the microbial communities in basal lineages, labeled as 'lower attines', which retain the ancestral traits of smaller and more simple societies. In this study, we used 16S amplicon pyrosequencing to characterize bacterial communities of the lower attine ant Mycocepurus smithii among seven sampling sites in central Panama. We discovered that ant and fungus garden-associated microbiota were distinct from surrounding soil, but unlike the situation in the derived fungus-gardening ants, which show distinct ant and fungal microbiomes, microbial community structure of the ants and their fungi were similar. Another surprising finding was that the abundance of actinomycete bacteria was low and instead, these symbioses were characterized by an abundance of Lactobacillus and Pantoea bacteria. Furthermore, our data indicate that Lactobacillus strains are acquired from the environment rather than acquired vertically.
Collapse
Affiliation(s)
- Katrin Kellner
- Section of Integrative Biology, Patterson Laboratories, University of Texas at Austin, 1 University Station #C0930, Austin, TX 78712, USA
| | - Heather D Ishak
- Section of Integrative Biology, Patterson Laboratories, University of Texas at Austin, 1 University Station #C0930, Austin, TX 78712, USA Division of Infectious Disease and Geographic Medicine, Stanford University, 300 Pasteur Dr. MC 5107, Stanford, CA 94305, USA
| | - Timothy A Linksvayer
- Department of Biology, University of Pennsylvania, 433 S. University Ave., Philadelphia, PA 19104, USA
| | - Ulrich G Mueller
- Section of Integrative Biology, Patterson Laboratories, University of Texas at Austin, 1 University Station #C0930, Austin, TX 78712, USA
| |
Collapse
|
34
|
Vieira CS, Waniek PJ, Mattos DP, Castro DP, Mello CB, Ratcliffe NA, Garcia ES, Azambuja P. Humoral responses in Rhodnius prolixus: bacterial feeding induces differential patterns of antibacterial activity and enhances mRNA levels of antimicrobial peptides in the midgut. Parasit Vectors 2014; 7:232. [PMID: 24885969 PMCID: PMC4032158 DOI: 10.1186/1756-3305-7-232] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2014] [Accepted: 05/12/2014] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The triatomine, Rhodnius prolixus, is a major vector of Trypanosoma cruzi, the causative agent of Chagas disease in Latin America. It has a strictly blood-sucking habit in all life stages, ingesting large amounts of blood from vertebrate hosts from which it can acquire pathogenic microorganisms. In this context, the production of antimicrobial peptides (AMPs) in the midgut of the insect is vital to control possible infection, and to maintain the microbiota already present in the digestive tract. METHODS In the present work, we studied the antimicrobial activity of the Rhodnius prolixus midgut in vitro against the Gram-negative and Gram-positive bacteria Escherichia coli and Staphylococcus aureus, respectively. We also analysed the abundance of mRNAs encoding for defensins, prolixicin and lysozymes in the midgut of insects orally infected by these bacteria at 1 and 7 days after feeding. RESULTS Our results showed that the anterior midgut contents contain a higher inducible antibacterial activity than those of the posterior midgut. We observed that the main AMP encoding mRNAs in the anterior midgut, 7 days after a blood meal, were for lysozyme A, B, defensin C and prolixicin while in the posterior midgut lysozyme B and prolixicin transcripts predominated. CONCLUSION Our findings suggest that R. prolixus modulates AMP gene expression upon ingestion of bacteria with patterns that are distinct and dependent upon the species of bacteria responsible for infection.
Collapse
Affiliation(s)
| | | | | | | | | | - Norman A Ratcliffe
- Laboratório de Bioquímica e Fisiologia de Insetos, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (Fiocruz), Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | | |
Collapse
|
35
|
Zhang CR, Zhang S, Xia J, Li FF, Xia WQ, Liu SS, Wang XW. The immune strategy and stress response of the Mediterranean species of the Bemisia tabaci complex to an orally delivered bacterial pathogen. PLoS One 2014; 9:e94477. [PMID: 24722540 PMCID: PMC3983193 DOI: 10.1371/journal.pone.0094477] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 03/16/2014] [Indexed: 12/31/2022] Open
Abstract
Background The whitefly, Bemisia tabaci, a notorious agricultural pest, has complex relationships with diverse microbes. The interactions of the whitefly with entomopathogens as well as its endosymbionts have received great attention, because of their potential importance in developing novel whitefly control technologies. To this end, a comprehensive understanding on the whitefly defense system is needed to further decipher those interactions. Methodology/Principal Findings We conducted a comprehensive investigation of the whitefly's defense responses to infection, via oral ingestion, of the pathogen, Pseudomonas aeruginosa, using RNA-seq technology. Compared to uninfected whiteflies, 6 and 24 hours post-infected whiteflies showed 1,348 and 1,888 differentially expressed genes, respectively. Functional analysis of the differentially expressed genes revealed that the mitogen associated protein kinase (MAPK) pathway was activated after P. aeruginosa infection. Three knottin-like antimicrobial peptide genes and several components of the humoral and cellular immune responses were also activated, indicating that key immune elements recognized in other insect species are also important for the response of B. tabaci to pathogens. Our data also suggest that intestinal stem cell mediated epithelium renewal might be an important component of the whitefly's defense against oral bacterial infection. In addition, we show stress responses to be an essential component of the defense system. Conclusions/Significance We identified for the first time the key immune-response elements utilized by B. tabaci against bacterial infection. This study provides a framework for future research into the complex interactions between whiteflies and microbes.
Collapse
Affiliation(s)
- Chang-Rong Zhang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shan Zhang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Jun Xia
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Fang-Fang Li
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Wen-Qiang Xia
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
| | - Xiao-Wei Wang
- Ministry of Agriculture Key Laboratory of Agricultural Entomology, Institute of Insect Sciences, Zhejiang University, Hangzhou, China
- * E-mail:
| |
Collapse
|
36
|
Zdybicka-Barabas A, Stączek S, Mak P, Skrzypiec K, Mendyk E, Cytryńska M. Synergistic action of Galleria mellonella apolipophorin III and lysozyme against Gram-negative bacteria. BIOCHIMICA ET BIOPHYSICA ACTA-BIOMEMBRANES 2013; 1828:1449-56. [DOI: 10.1016/j.bbamem.2013.02.004] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2012] [Revised: 01/14/2013] [Accepted: 02/08/2013] [Indexed: 12/14/2022]
|
37
|
An insecticidal protein from Xenorhabdus ehlersii stimulates the innate immune response in Galleria mellonella. World J Microbiol Biotechnol 2013; 29:1705-11. [PMID: 23529358 DOI: 10.1007/s11274-013-1333-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Accepted: 03/21/2013] [Indexed: 01/08/2023]
Abstract
The bacteria Xenorhabdus spp. are entomopathogenic symbionts that can produce several toxic proteins that interfere with the immune system of insects. Recently, we purified the insecticidal protein XeGroEL from Xenorhabdus ehlersii and discovered that injection of XeGroEL into larvae of Galleria mellonella triggers strong immune responses. In this study, we determined the level of induction of several immune-responsive proteins that were secreted into the hemolymph using comparative proteomic analyses of hemolymph proteins from XeGroEL-challenged larvae. Additionally, quantitative real-time reverse transcription-PCR analyses demonstrated increased transcriptional rates of immune-related genes at 5 h post-challenge with purified XeGroEL. Our results help to understand anti-microbial immune responses in G. mellonella, suggesting that the immune system recognizes exogenous proteins and pathogen-associated molecular patterns.
Collapse
|
38
|
Merville A, Venner S, Henri H, Vallier A, Menu F, Vavre F, Heddi A, Bel-Venner MC. Endosymbiont diversity among sibling weevil species competing for the same resource. BMC Evol Biol 2013; 13:28. [PMID: 23379718 PMCID: PMC3623666 DOI: 10.1186/1471-2148-13-28] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 01/30/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Whereas the impact of endosymbionts on the ecology of their hosts is well known in some insect species, the question of whether host communities are influenced by endosymbionts remains largely unanswered. Notably, the coexistence of host species competing with each other, which is expected to be stabilized by their ecological differences, could be facilitated by differences in their endosymbionts. Yet, the composition of endosymbiotic communities housed by natural communities of competing host species is still almost unknown. In this study, we started filling this gap by describing and comparing the bacterial endosymbiotic communities of four sibling weevil species (Curculio spp.) that compete with each other to lay eggs into oak acorns (Quercus spp.) and exhibit marked ecological differences. RESULTS All four species housed the primary endosymbiont Candidatus Curculioniphilus buchneri, yet each of these had a clearly distinct community of secondary endosymbionts, including Rickettsia, Spiroplasma, and two Wolbachia strains. Notably, three weevil species harbored their own predominant facultative endosymbiont and possessed the remaining symbionts at a residual infection level. CONCLUSIONS The four competing species clearly harbor distinct endosymbiotic communities. We discuss how such endosymbiotic communities could spread and keep distinct in the four insect species, and how these symbionts might affect the organization and species richness of host communities.
Collapse
Affiliation(s)
- Adrien Merville
- Université de Lyon, Université Lyon 1, CNRS, UMR5558, Laboratoire de Biométrie et Biologie Evolutive, Villeurbanne, France.
| | | | | | | | | | | | | | | |
Collapse
|
39
|
Ponton F, Wilson K, Holmes AJ, Cotter SC, Raubenheimer D, Simpson SJ. Integrating nutrition and immunology: a new frontier. JOURNAL OF INSECT PHYSIOLOGY 2013; 59:130-7. [PMID: 23159523 DOI: 10.1016/j.jinsphys.2012.10.011] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Revised: 10/09/2012] [Accepted: 10/09/2012] [Indexed: 05/20/2023]
Abstract
Nutrition is critical to immune defence and parasite resistance, which not only affects individual organisms, but also has profound ecological and evolutionary consequences. Nutrition and immunity are complex traits that interact via multiple direct and indirect pathways, including the direct effects of nutrition on host immunity but also indirect effects mediated by the host's microbiota and pathogen populations. The challenge remains, however, to capture the complexity of the network of interactions that defines nutritional immunology. The aim of this paper is to discuss the recent findings in nutritional research in the context of immunological studies. By taking examples from the entomological literature, we argue that insects provide a powerful tool for examining the network of interactions between nutrition and immunity due to their tractability, short lifespan and ethical considerations. We describe the relationships between dietary composition, immunity, disease and microbiota in insects, and highlight the importance of adopting an integrative and multi-dimensional approach to nutritional immunology.
Collapse
Affiliation(s)
- Fleur Ponton
- School of Biological Sciences, The University of Sydney, Sydney, New South Wales 2006, Australia.
| | | | | | | | | | | |
Collapse
|
40
|
Zhu JY, Yang P, Zhang Z, Wu GX, Yang B. Transcriptomic immune response of Tenebrio molitor pupae to parasitization by Scleroderma guani. PLoS One 2013; 8:e54411. [PMID: 23342153 PMCID: PMC3544796 DOI: 10.1371/journal.pone.0054411] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Accepted: 12/13/2012] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Host and parasitoid interaction is one of the most fascinating relationships of insects, which is currently receiving an increasing interest. Understanding the mechanisms evolved by the parasitoids to evade or suppress the host immune system is important for dissecting this interaction, while it was still poorly known. In order to gain insight into the immune response of Tenebrio molitor to parasitization by Scleroderma guani, the transcriptome of T. molitor pupae was sequenced with focus on immune-related gene, and the non-parasitized and parasitized T. molitor pupae were analyzed by digital gene expression (DGE) analysis with special emphasis on parasitoid-induced immune-related genes using Illumina sequencing. METHODOLOGY/PRINCIPAL FINDINGS In a single run, 264,698 raw reads were obtained. De novo assembly generated 71,514 unigenes with mean length of 424 bp. Of those unigenes, 37,373 (52.26%) showed similarity to the known proteins in the NCBI nr database. Via analysis of the transcriptome data in depth, 430 unigenes related to immunity were identified. DGE analysis revealed that parasitization by S. guani had considerable impacts on the transcriptome profile of T. molitor pupae, as indicated by the significant up- or down-regulation of 3,431 parasitism-responsive transcripts. The expression of a total of 74 unigenes involved in immune response of T. molitor was significantly altered after parasitization. CONCLUSIONS/SIGNIFICANCE obtained T. molitor transcriptome, in addition to establishing a fundamental resource for further research on functional genomics, has allowed the discovery of a large group of immune genes that might provide a meaningful framework to better understand the immune response in this species and other beetles. The DGE profiling data provides comprehensive T. molitor immune gene expression information at the transcriptional level following parasitization, and sheds valuable light on the molecular understanding of the host-parasitoid interaction.
Collapse
Affiliation(s)
- Jia-Ying Zhu
- Key Laboratory of Forest Disaster Warning and Control of Yunnan Province, Southwest Forestry University, Kunming, China.
| | | | | | | | | |
Collapse
|
41
|
Bacterial feeding, Leishmania infection and distinct infection routes induce differential defensin expression in Lutzomyia longipalpis. Parasit Vectors 2013; 6:12. [PMID: 23311993 PMCID: PMC3573903 DOI: 10.1186/1756-3305-6-12] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 12/14/2012] [Indexed: 01/07/2023] Open
Abstract
BACKGROUND Phlebotomine insects harbor bacterial, viral and parasitic pathogens that can cause diseases of public health importance. Lutzomyia longipalpis is the main vector of visceral leishmaniasis in the New World. Insects can mount a powerful innate immune response to pathogens. Defensin peptides take part in this response and are known to be active against Gram-positive and Gram-negative bacteria, and some parasites. We studied the expression of a defensin gene from Lutzomyia longipalpis to understand its role in sand fly immune response. METHODS We identified, sequenced and evaluated the expression of a L. longipalpis defensin gene by semi-quantitative RT-PCR. The gene sequence was compared to other vectors defensins and expression was determined along developmental stages and after exposure of adult female L. longipalpis to bacteria and Leishmania. RESULTS Phylogenetic analysis showed that the L. longipalpis defensin is closely related to a defensin from the Old World sand fly Phlebotomus duboscqi. Expression was high in late L4 larvae and pupae in comparison to early larval stages and newly emerged flies. Defensin expression was modulated by oral infection with bacteria. The Gram-positive Micrococcus luteus induced early high defensin expression, whilst the Gram-negative entomopathogenic Serratia marcescens induced a later response. Bacterial injection also induced defensin expression in adult insects. Female sand flies infected orally with Leishmania mexicana showed no significant difference in defensin expression compared to blood fed insects apart from a lower defensin expression 5 days post Leishmania infection. When Leishmania was introduced into the hemolymph by injection there was no induction of defensin expression until 72 h later. CONCLUSIONS Our results suggest that L. longipalpis modulates defensin expression upon bacterial and Leishmania infection, with patterns of expression that are distinct among bacterial species and routes of infection.
Collapse
|
42
|
Barrier immune effectors are maintained during transition from nurse to forager in the honey bee. PLoS One 2013; 8:e54097. [PMID: 23320121 PMCID: PMC3540063 DOI: 10.1371/journal.pone.0054097] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2012] [Accepted: 12/10/2012] [Indexed: 12/03/2022] Open
Abstract
Foragers facilitate horizontal pathogen transmission in honey bee colonies, yet their systemic immune function wanes during transition to this life stage. In general, the insect immune system can be categorized into mechanisms operating at both the barrier epithelial surfaces and at the systemic level. As proposed by the intergenerational transfer theory of aging, such immunosenescence may result from changes in group resource allocation. Yet, the relative influence of pathogen transmission and resource allocation on immune function in bees from different stages has not been examined in the context of barrier immunity. We find that expression levels of antimicrobial peptides (AMPs) in honey bee barrier epithelia of the digestive tract do not follow a life stage-dependent decrease. In addition, correlation of AMP transcript abundance with microbe levels reveals a number of microbe-associated changes in AMPs levels that are equivalent between nurses and foragers. These results favor a model in which barrier effectors are maintained in foragers as a first line of defense, while systemic immune effectors are dismantled to optimize hive-level resources. These findings have important implications for our understanding of immunosenescence in honey bees and other social insects.
Collapse
|
43
|
Abstract
Leishmaniases are vector-borne parasitic diseases with 0.9 - 1.4 million new human cases each year worldwide. In the vectorial part of the life-cycle, Leishmania development is confined to the digestive tract. During the first few days after blood feeding, natural barriers to Leishmania development include secreted proteolytic enzymes, the peritrophic matrix surrounding the ingested blood meal and sand fly immune reactions. As the blood digestion proceeds, parasites need to bind to the midgut epithelium to avoid being excreted with the blood remnant. This binding is strictly stage-dependent as it is a property of nectomonad and leptomonad forms only. While the attachment in specific vectors (P. papatasi, P. duboscqi and P. sergenti) involves lipophosphoglycan (LPG), this Leishmania molecule is not required for parasite attachment in other sand fly species experimentally permissive for various Leishmania. During late-stage infections, large numbers of parasites accumulate in the anterior midgut and produce filamentous proteophosphoglycan creating a gel-like plug physically obstructing the gut. The parasites attached to the stomodeal valve cause damage to the chitin lining and epithelial cells of the valve, interfering with its function and facilitating reflux of parasites from the midgut. Transformation to metacyclic stages highly infective for the vertebrate host is the other prerequisite for effective transmission. Here, we review the current state of knowledge of molecular interactions occurring in all these distinct phases of parasite colonization of the sand fly gut, highlighting recent discoveries in the field.
Collapse
Affiliation(s)
- Anna Dostálová
- Department of Parasitology, Faculty of Science, Charles University in Prague, Vinicna 7, 12844 Praha 2, Czech Republic
| | | |
Collapse
|
44
|
Diez L, Deneubourg JL, Detrain C. Social prophylaxis through distant corpse removal in ants. Naturwissenschaften 2012; 99:833-42. [PMID: 22955492 DOI: 10.1007/s00114-012-0965-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2012] [Revised: 08/21/2012] [Accepted: 08/23/2012] [Indexed: 10/27/2022]
Abstract
Living in groups raises important issues concerning waste management and related sanitary risks. Social insects such as ants live at high densities with genetically related individuals within confined and humid nests, all these factors being highly favorable for the spread of pathogens. Therefore, in addition to individual immunity, a social prophylaxis takes place, namely, by the removal of risky items such as corpses and their rejection at a distance from the ant nest. In this study, we investigate how Myrmica rubra workers manage to reduce encounters between potentially hazardous corpses and nestmates. Using both field and laboratory experiments, we describe how the spatial distribution and the removal distance of waste items vary as a function of their associated sanitary risks (inert item vs. corpse). In the field, corpse-carrying ants walked in a rather linear way away from the nest entrance and had an equal probability of choosing any direction. Therefore, they did not aggregate corpses in dedicated areas but scattered them in the environment. In both field and laboratory experiments, ants carrying corpses dropped their load in more remote-and less frequented-areas than workers carrying inert items. However, for equidistant areas, ants did not avoid dropping corpses at a location where they perceived area marking as a cue of high occupancy level by nestmates. Our results suggest that ants use distance to the nest rather than other occupancy cues to limit sanitary risks associated with dead nestmates.
Collapse
Affiliation(s)
- Lise Diez
- Unit of Social Ecology, Université Libre de Bruxelles, CP 231, Bd du Triomphe, 1050, Brussels, Belgium.
| | | | | |
Collapse
|
45
|
Xiong Q, Xie Y, Zhu Y, Xue J, Li J, Fan R. Morphological and ultrastructural characterization of Carposina sasakii larvae (Lepidoptera: Carposinidae) infected by Beauveria bassiana (Ascomycota: Hypocreales: Clavicipitaceae). Micron 2012; 44:303-11. [PMID: 22940571 DOI: 10.1016/j.micron.2012.08.002] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2011] [Revised: 07/30/2012] [Accepted: 08/03/2012] [Indexed: 11/19/2022]
Abstract
The aim of this study was to better understand the pathogenesis of the entomopathogenic fungus Beauveria bassiana (Balsamo) strain TST05 observed on the peach fruit moth (Carposina sasakii (Matsumura)), an important orchard pest. The morphological and ultrastructural characterization of the mature larvae of C. sasakii infected by B. bassiana was investigated by using light, scanning and transmission electron microscopy. The results of the study show that B. bassiana TST05 infected the host larvae mainly by penetrating the integument. The conidia of the fungus adhere easily to the area around the mouthparts and to the basal area around the acanthae on the thorax and abdomen. Observations of the host's defensive response to the fungal attack indicated that dark spots appeared on the cuticle and that melanization appeared in the hemocoel. After overcoming the host's defense system, the pathogen grew and reproduced primarily in the hemocoel. The infection spread sequentially to the internal tissues, e.g., fat body, muscle, Malpighian tubules, gut and even the silk gland. Ultimately, the larval internal organs and tissues were damaged very extensively. Finally, the fungus emerged through the cuticle of the dead insect and released conidiophores that could act as new pathogens to infect other larvae.
Collapse
Affiliation(s)
- Qi Xiong
- College of Life Science, Shanxi University, Taiyuan 030006, China
| | | | | | | | | | | |
Collapse
|
46
|
Ratzka C, Förster F, Liang C, Kupper M, Dandekar T, Feldhaar H, Gross R. Molecular characterization of antimicrobial peptide genes of the carpenter ant Camponotus floridanus. PLoS One 2012; 7:e43036. [PMID: 22912782 PMCID: PMC3415428 DOI: 10.1371/journal.pone.0043036] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/16/2012] [Indexed: 11/18/2022] Open
Abstract
The production of antimicrobial peptides (AMPs) is a major defense mechanism against pathogen infestation and of particular importance for insects relying exclusively on an innate immune system. Here, we report on the characterization of three AMPs from the carpenter ant Camponotus floridanus. Due to sequence similarities and amino acid composition these peptides can be classified into the cysteine-rich (e.g. defensin) and glycine-rich (e.g. hymenoptaecin) AMP groups, respectively. The gene and cDNA sequences of these AMPs were established and their expression was shown to be induced by microbial challenge. We characterized two different defensin genes. The defensin-2 gene has a single intron, whereas the defensin-1 gene has two introns. The deduced amino acid sequence of the C. floridanus defensins is very similar to other known ant defensins with the exception of a short C-terminal extension of defensin-1. The hymenoptaecin gene has a single intron and a very peculiar domain structure. The corresponding precursor protein consists of a signal- and a pro-sequence followed by a hymenoptaecin-like domain and six directly repeated hymenoptaecin domains. Each of the hymenoptaecin domains is flanked by an EAEP-spacer sequence and a RR-site known to be a proteolytic processing site. Thus, proteolytic processing of the multipeptide precursor may generate several mature AMPs leading to an amplification of the immune response. Bioinformatical analyses revealed the presence of hymenoptaecin genes with similar multipeptide precursor structure in genomes of other ant species suggesting an evolutionary conserved important role of this gene in ant immunity.
Collapse
Affiliation(s)
- Carolin Ratzka
- Department of Microbiology, Biocentre, University of Würzburg, Würzburg, Germany.
| | | | | | | | | | | | | |
Collapse
|
47
|
Molecular mechanisms of aging and immune system regulation in Drosophila. Int J Mol Sci 2012; 13:9826-9844. [PMID: 22949833 PMCID: PMC3431831 DOI: 10.3390/ijms13089826] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 07/25/2012] [Accepted: 07/30/2012] [Indexed: 12/04/2022] Open
Abstract
Aging is a complex process that involves the accumulation of deleterious changes resulting in overall decline in several vital functions, leading to the progressive deterioration in physiological condition of the organism and eventually causing disease and death. The immune system is the most important host-defense mechanism in humans and is also highly conserved in insects. Extensive research in vertebrates has concluded that aging of the immune function results in increased susceptibility to infectious disease and chronic inflammation. Over the years, interest has grown in studying the molecular interaction between aging and the immune response to pathogenic infections. The fruit fly Drosophila melanogaster is an excellent model system for dissecting the genetic and genomic basis of important biological processes, such as aging and the innate immune system, and deciphering parallel mechanisms in vertebrate animals. Here, we review the recent advances in the identification of key players modulating the relationship between molecular aging networks and immune signal transduction pathways in the fly. Understanding the details of the molecular events involved in aging and immune system regulation will potentially lead to the development of strategies for decreasing the impact of age-related diseases, thus improving human health and life span.
Collapse
|
48
|
Correlation of proteome-wide changes with social immunity behaviors provides insight into resistance to the parasitic mite, Varroa destructor, in the honey bee (Apis mellifera). Genome Biol 2012; 13:R81. [PMID: 23021491 PMCID: PMC3491398 DOI: 10.1186/gb-2012-13-9-r81] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2012] [Revised: 06/29/2012] [Accepted: 09/28/2012] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Disease is a major factor driving the evolution of many organisms. In honey bees, selection for social behavioral responses is the primary adaptive process facilitating disease resistance. One such process, hygienic behavior, enables bees to resist multiple diseases, including the damaging parasitic mite Varroa destructor. The genetic elements and biochemical factors that drive the expression of these adaptations are currently unknown. Proteomics provides a tool to identify proteins that control behavioral processes, and these proteins can be used as biomarkers to aid identification of disease tolerant colonies. RESULTS We sampled a large cohort of commercial queen lineages, recording overall mite infestation, hygiene, and the specific hygienic response to V. destructor. We performed proteome-wide correlation analyses in larval integument and adult antennae, identifying several proteins highly predictive of behavior and reduced hive infestation. In the larva, response to wounding was identified as a key adaptive process leading to reduced infestation, and chitin biosynthesis and immune responses appear to represent important disease resistant adaptations. The speed of hygienic behavior may be underpinned by changes in the antenna proteome, and chemosensory and neurological processes could also provide specificity for detection of V. destructor in antennae. CONCLUSIONS Our results provide, for the first time, some insight into how complex behavioural adaptations manifest in the proteome of honey bees. The most important biochemical correlations provide clues as to the underlying molecular mechanisms of social and innate immunity of honey bees. Such changes are indicative of potential divergence in processes controlling the hive-worker maturation.
Collapse
|
49
|
Abstract
Two gram-negative insect pathogens, Xenorhabdus nematophila and Photorhabdus luminescens, produce rhabduscin, an amidoglycosyl- and vinyl-isonitrile-functionalized tyrosine derivative. Heterologous expression of the rhabduscin pathway in Escherichia coli, precursor-directed biosynthesis of rhabduscin analogs, biochemical assays, and visualization using both stimulated Raman scattering and confocal fluorescence microscopy established rhabduscin's role as a potent nanomolar-level inhibitor of phenoloxidase, a key component of the insect's innate immune system, as well as rhabduscin's localization at the bacterial cell surface. Stimulated Raman scattering microscopy visualized rhabduscin at the periphery of wild-type X. nematophila cells and E. coli cells heterologously expressing the rhabduscin pathway. Precursor-directed biosynthesis created rhabduscin mimics in X. nematophila pathway mutants that could be accessed at the bacterial cell surface by an extracellular bioorthogonal probe, as judged by confocal fluorescence microscopy. Biochemical assays using both wild-type and mutant X. nematophila cells showed that rhabduscin was necessary and sufficient for potent inhibition (low nM) of phenoloxidases, the enzymes responsible for producing melanin (the hard black polymer insects generate to seal off microbial pathogens). These observations suggest a model in which rhabduscin's physical association at the bacterial cell surface provides a highly effective inhibitor concentration directly at the site of phenoloxidase contact. This class of molecules is not limited to insect pathogens, as the human pathogen Vibrio cholerae also encodes rhabduscin's aglycone, and bacterial cell-coated immunosuppressants could be a general strategy to combat host defenses.
Collapse
|
50
|
Ratzka C, Gross R, Feldhaar H. Endosymbiont Tolerance and Control within Insect Hosts. INSECTS 2012; 3:553-72. [PMID: 26466544 PMCID: PMC4553611 DOI: 10.3390/insects3020553] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 04/21/2012] [Revised: 05/31/2012] [Accepted: 06/05/2012] [Indexed: 01/22/2023]
Abstract
Bacterial endosymbioses are very common in insects and can range from obligate to facultative as well as from mutualistic to pathogenic associations. Several recent studies provide new insight into how endosymbionts manage to establish chronic infections of their hosts without being eliminated by the host immune system. Endosymbiont tolerance may be achieved either by specific bacterial adaptations or by host measurements shielding bacteria from innate defense mechanisms. Nevertheless, insect hosts also need to sustain control mechanisms to prevent endosymbionts from unregulated proliferation. Emerging evidence indicates that in some cases the mutual adaptations of the two organisms may have led to the integration of the endosymbionts as a part of the host immune system. In fact, endosymbionts may provide protective traits against pathogens and predators and may even be required for the proper development of the host immune system during host ontogeny. This review gives an overview of current knowledge of molecular mechanisms ensuring maintenance of chronic infections with mutualistic endosymbionts and the impact of endosymbionts on host immune competence.
Collapse
Affiliation(s)
- Carolin Ratzka
- Department of Microbiology, Biocentre, University of Würzburg, 97074, Germany.
| | - Roy Gross
- Department of Microbiology, Biocentre, University of Würzburg, 97074, Germany.
| | - Heike Feldhaar
- Animal Ecology I, University of Bayreuth, 95440, Germany.
| |
Collapse
|