1
|
Dourliou V, Kakaletsis N, Stamou D, Champla A, Tsakiri K, Agapakis D, Didangelos T. Diabetes Mellitus and Multidrug-Resistant Gram-Negative Bacterial Infections in Critically Ill COVID-19 Patients: A Retrospective Observational Study. Diagnostics (Basel) 2025; 15:1190. [PMID: 40428183 PMCID: PMC12110607 DOI: 10.3390/diagnostics15101190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2025] [Revised: 05/03/2025] [Accepted: 05/05/2025] [Indexed: 05/29/2025] Open
Abstract
Background: Diabetes mellitus (DM) is an independent risk factor for severe SARS-CoV-2 infection and is linked to higher incidences of infections and adverse outcomes in patients with DM. This study examines the association between DM and multidrug-resistant Gram-negative bacteria (MDR-GNB) in critically ill, intubated COVID-19 patients in the intensive care unit (ICU) and evaluates mortality rates and clinical factors contributing to unfavorable outcomes. Methods: This retrospective observational study included intubated COVID-19 patients diagnosed with secondary infections due to MDR-GNB. Patients were treated for acute respiratory distress syndrome (ARDS) in a tertiary care university hospital ICU between October 2020 and February 2022. Collected data included demographics, comorbidities, medication, and laboratory parameters including blood tests and culture samples. Results: Among 416 COVID-19 patients, 112 (26.9%) had T2DM. Cultures from lower respiratory tract specimens revealed a significantly higher likelihood of isolating Acinetobacter baumannii in patients with DM (OR: 2.18, 95% CI: 1.40-3.40, p < 0.001), and DM is an independent predictor of isolation Acinetobacter baumannii in bronchial secretions of COVID-19 intubated patients (OR: 2.046, 95% CI: 1.256-3.333. p < 0.004). DM was not significantly associated with differences in length of stay (LOS) until discharge or death (HR: 0.76, 95% CI: 0.51-1.12, p = 0.16; HR: 0.91, 95% CI: 0.70-1.19, p = 0.50) or 28-day ICU mortality (OR: 1.12, 95% CI: 0.52-2.41, p = 0.77). Age was linked to an increased 28-day mortality risk in patients with DM (OR: 1.10, 95% CI: 1.02-1.18, p = 0.011). Conclusions: In critically ill intubated COVID-19 patients, DM emerged as a significant and independent predictor for the isolation of Acinetobacter baumannii from bronchial secretions, highlighting a key link between DM and specific multidrug-resistant pathogens, even though no broader association with MDR-GNB-related secondary infections was observed.
Collapse
Affiliation(s)
- Vasiliki Dourliou
- Department of Adult Intensive Care Unit, Ippokrateio General Hospital, 54642 Thessaloniki, Greece; (D.S.); (A.C.); (K.T.)
| | - Nikolaos Kakaletsis
- Internal Medicine Unit, Ippokrateio General Hospital, Aristotle University of Thessaloniki, 54642 Thessaloniki, Greece;
| | - Dafni Stamou
- Department of Adult Intensive Care Unit, Ippokrateio General Hospital, 54642 Thessaloniki, Greece; (D.S.); (A.C.); (K.T.)
| | - Antigoni Champla
- Department of Adult Intensive Care Unit, Ippokrateio General Hospital, 54642 Thessaloniki, Greece; (D.S.); (A.C.); (K.T.)
| | - Kalliopi Tsakiri
- Department of Adult Intensive Care Unit, Ippokrateio General Hospital, 54642 Thessaloniki, Greece; (D.S.); (A.C.); (K.T.)
| | - Dimitrios Agapakis
- Department of Internal Medicine, Aghios Pavlos General Hospital, 55134 Thessaloniki, Greece;
| | - Triantafyllos Didangelos
- Diabetes Center, 1st Propaedeutic Department of Internal Medicine, Aristotle University of Thessaloniki, AHEPA Hospital, 54636 Thessaloniki, Greece;
| |
Collapse
|
2
|
Li FJ, Starrs L, Mathur A, Enosi Tuipulotu D, Man SM, Burgio G. Interferon signalling and non-canonical inflammasome activation promote host protection against multidrug-resistant Acinetobacter baumannii. Commun Biol 2024; 7:1494. [PMID: 39533032 PMCID: PMC11557958 DOI: 10.1038/s42003-024-07204-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Multidrug-resistant (MDR) Acinetobacter baumannii are of major concern worldwide due to their resistance to last resort carbapenem and polymyxin antibiotics. To develop an effective treatment strategy, it is critical to better understand how an A. baumannii MDR bacterium interacts with its mammalian host. Pattern-recognition receptors sense microbes, and activate the inflammasome pathway, leading to pro-inflammatory cytokine production and programmed cell death. Here, we examined the effects of a systemic MDR A. baumannii infection and found that MDR A. baumannii activate the NLRP3 inflammasome complex predominantly via the non-canonical caspase-11-dependent pathway. We show that caspase-1 and caspase-11-deficient mice are protected from a virulent MDR A. baumannii strain by maintaining a balance between protective and deleterious inflammation. Caspase-11-deficient mice also compromise between effector cell recruitment, phagocytosis, and programmed cell death in the lung during infection. Importantly, we found that cytosolic immunity - mediated by guanylate-binding protein 1 (GBP1) and type I interferon signalling - orchestrates caspase-11-dependent inflammasome activation. Together, our results suggest that non-canonical inflammasome activation via the (Interferon) IFN pathway plays a critical role in the host response against MDR A. baumannii infection.
Collapse
Affiliation(s)
- Fei-Ju Li
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, the Australian National University, Canberra, Australian Capital Territory, Australia
| | - Lora Starrs
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, the Australian National University, Canberra, Australian Capital Territory, Australia
| | - Anukriti Mathur
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, the Australian National University, Canberra, Australian Capital Territory, Australia
| | - Daniel Enosi Tuipulotu
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, the Australian National University, Canberra, Australian Capital Territory, Australia
| | - Si Ming Man
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, the Australian National University, Canberra, Australian Capital Territory, Australia
| | - Gaetan Burgio
- Division of Immunology and Infectious Disease, The John Curtin School of Medical Research, the Australian National University, Canberra, Australian Capital Territory, Australia.
| |
Collapse
|
3
|
Jackson-Litteken CD, Di Venanzio G, Janet-Maitre M, Castro ÍA, Mackel JJ, Rosen DA, López CB, Feldman MF. A chronic murine model of pulmonary Acinetobacter baumannii infection enabling the investigation of late virulence factors, long-term antibiotic treatments, and polymicrobial infections. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.17.613469. [PMID: 39345519 PMCID: PMC11429896 DOI: 10.1101/2024.09.17.613469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/01/2024]
Abstract
Acinetobacter baumannii can cause prolonged infections that disproportionately affect immunocompromised populations. Our understanding of A. baumannii respiratory pathogenesis relies on an acute murine infection model with limited clinical relevance that employs an unnaturally high number of bacteria and requires the assessment of bacterial load at 24-36 hours post-infection. Here, we demonstrate that low intranasal inoculums in immunocompromised mice with a tlr4 mutation leads to reduced inflammation, allowing for persistent infections lasting at least 3 weeks. Using this "chronic infection model," we determined the adhesin InvL is an imperative virulence factor required during later stages of infection, despite being dispensable in the early phase. We also demonstrate that the chronic model enables the distinction between antibiotics that, although initially reduce bacterial burden, either lead to complete clearance or result in the formation of bacterial persisters. To illustrate how our model can be applied to study polymicrobial infections, we inoculated mice with an active A. baumannii infection with Staphylococcus aureus or Klebsiella pneumoniae. We found that S. aureus exacerbates the infection, while K. pneumoniae enhances A. baumannii clearance. In all, the chronic model overcomes some limitations of the acute pulmonary model, expanding our capabilities to study of A. baumannii pathogenesis and lays the groundwork for the development of similar models for other important opportunistic pathogens.
Collapse
Affiliation(s)
- Clay D Jackson-Litteken
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Gisela Di Venanzio
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Manon Janet-Maitre
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Ítalo A Castro
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Joseph J Mackel
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - David A Rosen
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Department of Pediatrics, Division of Infectious Diseases, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Carolina B López
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
- Center for Women's Infectious Diseases Research, Washington University School of Medicine, Saint Louis, Missouri, USA
| | - Mario F Feldman
- Department of Molecular Microbiology, Washington University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
4
|
Calderon-Gonzalez R, Dumigan A, Sá-Pessoa J, Kissenpfennig A, Bengoechea JA. In vivo single-cell high-dimensional mass cytometry analysis to track the interactions between Klebsiella pneumoniae and myeloid cells. PLoS Pathog 2024; 20:e1011900. [PMID: 38578798 PMCID: PMC11023633 DOI: 10.1371/journal.ppat.1011900] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/17/2024] [Accepted: 03/18/2024] [Indexed: 04/07/2024] Open
Abstract
In vivo single-cell approaches have transformed our understanding of the immune populations in tissues. Mass cytometry (CyTOF), that combines the resolution of mass spectrometry with the ability to conduct multiplexed measurements of cell molecules at the single cell resolution, has enabled to resolve the diversity of immune cell subsets, and their heterogeneous functionality. Here we assess the feasibility of taking CyTOF one step further to immuno profile cells while tracking their interactions with bacteria, a method we term Bac-CyTOF. We focus on the pathogen Klebsiella pneumoniae interrogating the pneumonia mouse model. Using Bac-CyTOF, we unveil the atlas of immune cells of mice infected with a K. pneumoniae hypervirulent strain. The atlas is characterized by a decrease in the populations of alveolar and monocyte-derived macrophages. Conversely, neutrophils, and inflammatory monocytes are characterized by an increase in the subpopulations expressing markers of less active cells such as the immune checkpoint PD-L1. These are the cells infected. We show that the type VI secretion system (T6SS) contributes to shape the lung immune landscape. The T6SS governs the interaction with monocytes/macrophages by shifting Klebsiella from alveolar macrophages to interstitial macrophages and limiting the infection of inflammatory monocytes. The lack of T6SS results in an increase of cells expressing markers of active cells, and a decrease in the subpopulations expressing PD-L1. By probing Klebsiella, and Acinetobacter baumannii strains with limited ability to survive in vivo, we uncover that a heightened recruitment of neutrophils, and relative high levels of alveolar macrophages and eosinophils and the recruitment of a characteristic subpopulation of neutrophils are features of mice clearing infections. We leverage Bac-CyTOF-generated knowledge platform to investigate the role of the DNA sensor STING in Klebsiella infections. sting-/- infected mice present features consistent with clearing the infection including the reduced levels of PD-L1. STING absence facilitates Klebsiella clearance.
Collapse
Affiliation(s)
- Ricardo Calderon-Gonzalez
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Amy Dumigan
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Joana Sá-Pessoa
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - Adrien Kissenpfennig
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| | - José A. Bengoechea
- Wellcome-Wolfson Institute for Experimental Medicine, School of Medicine, Dentistry and Biomedical Sciences, Queen’s University Belfast, Belfast, United Kingdom
| |
Collapse
|
5
|
Bjånes E, Koh T, Qayum T, Zurich R, McCabe S, Hampel K, Cartwright L, Nizet V. Exploring Roles of the Polysaccharide Capsule in Pathogenesis of Hypervirulent Acinetobacter baumannii Clinical Isolate Lac-4. Antibiotics (Basel) 2023; 13:10. [PMID: 38275320 PMCID: PMC10812722 DOI: 10.3390/antibiotics13010010] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
The frequently multidrug-resistant bacterial pathogen Acinetobacter baumannii is a leading cause of nosocomial infections, including ventilator-associated pneumonia, such that the World Health Organization and US Centers for Disease Control and Prevention have declared it a top priority candidate for novel drug development. Nearly all clinical A. baumannii strains express a thick surface polysaccharide capsule that protects against desiccation, host defenses, and disinfectants. In this study, we investigated the contribution of the polysaccharide capsule to virulence caused by the A. baumannii clinical isolate Ab Lac-4, which is rare in its ability to cause pneumonia and disseminated sepsis in healthy mice. We assessed the role of the capsule in wildtype Lac-4 (WT) by generating a premature stop codon in wza, which codes for the polysaccharide export protein. The wza# mutant was hypersensitive to killing by complement, whole blood, and healthy human neutrophils compared to WT and a revertant mutant (wza-Rev). Furthermore, the wza# mutant was highly attenuated in murine sepsis and unable to disseminate from the lungs during pneumonia. This study reinforces the capsule as a key contributor to Ab Lac-4 hypervirulence.
Collapse
Affiliation(s)
- Elisabet Bjånes
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; (T.K.); (T.Q.); (R.Z.); (S.M.); (K.H.); (L.C.)
| | - Truman Koh
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; (T.K.); (T.Q.); (R.Z.); (S.M.); (K.H.); (L.C.)
| | - Tariq Qayum
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; (T.K.); (T.Q.); (R.Z.); (S.M.); (K.H.); (L.C.)
| | - Raymond Zurich
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; (T.K.); (T.Q.); (R.Z.); (S.M.); (K.H.); (L.C.)
| | - Sinead McCabe
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; (T.K.); (T.Q.); (R.Z.); (S.M.); (K.H.); (L.C.)
| | - Kegan Hampel
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; (T.K.); (T.Q.); (R.Z.); (S.M.); (K.H.); (L.C.)
| | - Lisa Cartwright
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; (T.K.); (T.Q.); (R.Z.); (S.M.); (K.H.); (L.C.)
| | - Victor Nizet
- Division of Host-Microbe Systems and Therapeutics, Department of Pediatrics, University of California San Diego, La Jolla, CA 92093, USA; (T.K.); (T.Q.); (R.Z.); (S.M.); (K.H.); (L.C.)
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| |
Collapse
|
6
|
Islam A, Actis LA, Wilson TJ. Natural Antibodies Mediate Protection Against Acinetobacter baumannii Respiratory Infections. J Infect Dis 2023; 228:353-363. [PMID: 36951192 PMCID: PMC10420402 DOI: 10.1093/infdis/jiad069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 02/22/2023] [Accepted: 03/21/2023] [Indexed: 03/24/2023] Open
Abstract
BACKGROUND Acinetobacter baumannii causes a wide range of dangerous infections due to the emergence of pandrug-resistant strains. Therefore, there is a need for alternative therapeutics to treat these infections, including those targeting the host immune responses. However, immune responses, especially the humoral response against this pathogen, are poorly understood. METHODS This study investigated the lymphocyte-mediated innate immune resistance to A. baumannii AB5075 pulmonary infection using B- and T-cell-deficient (Rag2-/-) mice, the protective effect of natural antibodies (NAbs), and the expression of complement-mediated responses using a mouse pneumonia model. RESULTS Our results showed that intranasally infected Rag2-/- mice are impaired in clearing bacteria from lung, liver, and spleen at 24 hours postinfection compared to wildtype mice. Animal pretreatment with normal mouse serum or purified antibodies from naive mice rescued Rag2-/- mice from infection. Analysis of C3 complement protein binding demonstrated that NAbs increased C3 protein deposition on A. baumannii cells, indicating the activation of the classical complement pathway by NAbs. CONCLUSIONS Overall, our study shows that NAbs mediate innate immune resistance against A. baumannii, a finding that may lead to the development of effective therapies against human infections caused by this antibiotic-resistant A. baumannii.
Collapse
|
7
|
Allemailem KS. Enhanced activity of Ellagic acid in lipid nanoparticles (EA-liposomes) against Acinetobacter baumannii in immunosuppressed mice. Saudi J Biol Sci 2023; 30:103707. [PMID: 37415860 PMCID: PMC10319833 DOI: 10.1016/j.sjbs.2023.103707] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/03/2023] [Accepted: 06/09/2023] [Indexed: 07/08/2023] Open
Abstract
Acinetobacter baumannii infections have come to the surface in huge numbers in the recent decades. Furthermore, A. baumannii has adopted great ability to nullify the majority of currently available antibiotics. With the purpose of finding a nontoxic and efficient therapeutic agent, we analyzed the activity of Ellagic acid (EA) against the multidrug-resistant A. baumannii. EA not only demonstrated its activity against A. baumannii, but also inhibited the biofilm formation. Since EA shows poor solubility in an aqueous environment, a lipid nanoparticle-based (liposomal) formulation of EA (EA-liposomes) was prepared and its effectiveness was assessed to treat bacterial infection in the immunocompromised murine model. Therapy with EA-liposomes imparted greater protection to infected mice by increasing the survival and decreasing the bacterial load in the lungs. A. baumannii infected mice treated with EA-liposomes (100 mg/kg) showed 60% survival rate as compared to 20% of those treated with free EA at the same dose. The bacterial load was found to be 32778 ± 12232 in the lungs of EA-liposomes (100 mg/kg)-treated mice, which was significantly lower to 165667 ± 53048 in the lung tissues of free EA treated mice. Likewise, EA-liposomes also restored the liver function (AST and ALT) and kidney function parameters (BUN and creatinine). The broncho-alveolar fluid (BALF) from infected mice contained greater quantities of IL-6, IL-1β and TNF-α, which were significantly alleviated in EA-liposomes treated mice. These findings together support the possible implication of EA-liposomes to treat A. baumannii infection, especially in immunocompromised mice.
Collapse
Affiliation(s)
- Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia
| |
Collapse
|
8
|
Sheldon JR, Himmel LE, Kunkle DE, Monteith AJ, Maloney KN, Skaar EP. Lipocalin-2 is an essential component of the innate immune response to Acinetobacter baumannii infection. PLoS Pathog 2022; 18:e1010809. [PMID: 36054235 PMCID: PMC9477428 DOI: 10.1371/journal.ppat.1010809] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 09/15/2022] [Accepted: 08/12/2022] [Indexed: 12/11/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic pathogen and an emerging global health threat. Within healthcare settings, major presentations of A. baumannii include bloodstream infections and ventilator-associated pneumonia. The increased prevalence of ventilated patients during the COVID-19 pandemic has led to a rise in secondary bacterial pneumonia caused by multidrug resistant (MDR) A. baumannii. Additionally, due to its MDR status and the lack of antimicrobial drugs in the development pipeline, the World Health Organization has designated carbapenem-resistant A. baumannii to be its priority critical pathogen for the development of novel therapeutics. To better inform the design of new treatment options, a comprehensive understanding of how the host contains A. baumannii infection is required. Here, we investigate the innate immune response to A. baumannii by assessing the impact of infection on host gene expression using NanoString technology. The transcriptional profile observed in the A. baumannii infected host is characteristic of Gram-negative bacteremia and reveals expression patterns consistent with the induction of nutritional immunity, a process by which the host exploits the availability of essential nutrient metals to curtail bacterial proliferation. The gene encoding for lipocalin-2 (Lcn2), a siderophore sequestering protein, was the most highly upregulated during A. baumannii bacteremia, of the targets assessed, and corresponds to robust LCN2 expression in tissues. Lcn2-/- mice exhibited distinct organ-specific gene expression changes including increased transcription of genes involved in metal sequestration, such as S100A8 and S100A9, suggesting a potential compensatory mechanism to perturbed metal homeostasis. In vitro, LCN2 inhibits the iron-dependent growth of A. baumannii and induces iron-regulated gene expression. To elucidate the role of LCN2 in infection, WT and Lcn2-/- mice were infected with A. baumannii using both bacteremia and pneumonia models. LCN2 was not required to control bacterial growth during bacteremia but was protective against mortality. In contrast, during pneumonia Lcn2-/- mice had increased bacterial burdens in all organs evaluated, suggesting that LCN2 plays an important role in inhibiting the survival and dissemination of A. baumannii. The control of A. baumannii infection by LCN2 is likely multifactorial, and our results suggest that impairment of iron acquisition by the pathogen is a contributing factor. Modulation of LCN2 expression or modifying the structure of LCN2 to expand upon its ability to sequester siderophores may thus represent feasible avenues for therapeutic development against this pathogen. A lack of therapeutic options has prompted the World Health Organization to designate multidrug-resistant Acinetobacter baumannii as its priority critical pathogen for research into new treatment strategies. The mechanisms employed by A. baumannii to cause disease and the host tactics exercised to constrain infection are not fully understood. Here, we further characterize the innate immune response to A. baumannii infection. We identify nutritional immunity, a process where the availability of nutrient metals is exploited to restrain bacterial growth, as being induced during infection. The gene encoding for lipocalin-2 (Lcn2), a protein that can impede iron uptake by bacteria, is highly upregulated in infected mice, and corresponds to robust LCN2 detection in the tissues. We find that LCN2 is crucial to reducing mortality from A. baumannii bacteremia and inhibits dissemination of the pathogen during pneumonia. In wild-type and Lcn2-deficient mice, broader transcriptional profiling reveals expression patterns consistent with the known response to Gram-negative bacteremia. Although the role of LCN2 in infection is likely multifactorial, we find its antimicrobial effects are at least partly exerted by impairing iron acquisition by A. baumannii. Facets of nutritional immunity, such as LCN2, may be exploited as novel therapeutics in combating A. baumannii infection.
Collapse
Affiliation(s)
- Jessica R. Sheldon
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Lauren E. Himmel
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Dillon E. Kunkle
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Andrew J. Monteith
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - K. Nichole Maloney
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
- Vanderbilt Institute of Chemical Biology, Vanderbilt University, Nashville, Tennessee, United States of America
- * E-mail:
| |
Collapse
|
9
|
Tansho-Nagakawa S, Sato Y, Ubagai T, Kikuchi-Ueda T, Kamoshida GO, Nishida S, Ono Y. Histopathological Analysis of Acinetobacter baumannii Lung Infection in a Mouse Model. Pol J Microbiol 2022; 70:469-477. [PMID: 35003278 PMCID: PMC8702610 DOI: 10.33073/pjm-2021-044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/31/2021] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter baumannii is the main causative pathogen of nosocomial infections that causes severe infections in the lungs. In this study, we analyzed the histopathological characteristics of lung infection with two strains of A. baumannii (ATCC 19606 and the clinical isolate TK1090) and Pseudomonas aeruginosa PAO-1 in C3H/HeN mice to evaluate the virulence of A. baumannii. Survival was evaluated over 14 days. At 1, 2, 5, or 14 days postinfection, mice of C3H/HeN were sacrificed, and histopathological analysis of lung specimens was also performed. Histopathological changes and accumulation of neutrophils and macrophages in the lungs after infection with A. baumannii and P. aeruginosa were analyzed. Following intratracheal inoculation, the lethality of ATCC 19606- and TK1090-infected mice was lower than that of PAO-1-infected mice. However, when mice were inoculated with a sub-lethal dose of A. baumannii, the lung bacterial burden remained in the mice until 14 days post-infection. Additionally, histopathological analysis revealed that macrophages infiltrated the lung foci of ATCC 19606-, TK1090-, and PAO-1-infected mice. Although neutrophils infiltrated the lung foci of ATCC 19606- and TK1090-infected mice, they poorly infiltrated the lung foci of PAO-1-infected mice. Accumulation of these cells in the lung foci of ATCC 19606- and TK1090-infected mice, but not PAO-1-infected mice, was observed for 14 days post-infection. These results suggest that A. baumannii is not completely eliminated despite the infiltration of immune cells in the lungs and that inflammation lasts for prolonged periods in the lungs. Further studies are required to understand the mechanism of A. baumannii infection, and novel drugs and vaccines should be developed to prevent A. baumannii infection.
Collapse
Affiliation(s)
- Shigeru Tansho-Nagakawa
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Tokyo, Japan
| | - Yoshinori Sato
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Tokyo, Japan
| | - Tsuneyuki Ubagai
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Tokyo, Japan
| | - Takane Kikuchi-Ueda
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Tokyo, Japan
| | - G O Kamoshida
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Tokyo, Japan
| | - Satoshi Nishida
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Tokyo, Japan
| | - Yasuo Ono
- Department of Microbiology and Immunology, Teikyo University School of Medicine, Tokyo, Japan
| |
Collapse
|
10
|
Bergamini G, Perico ME, Di Palma S, Sabatini D, Andreetta F, Defazio R, Felici A, Ferrari L. Mouse pneumonia model by Acinetobacter baumannii multidrug resistant strains: Comparison between intranasal inoculation, intratracheal instillation and oropharyngeal aspiration techniques. PLoS One 2021; 16:e0260627. [PMID: 34855837 PMCID: PMC8638993 DOI: 10.1371/journal.pone.0260627] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 11/12/2021] [Indexed: 11/18/2022] Open
Abstract
Infectious pneumonia induced by multidrug resistant (MDR) Acinetobacter baumannii strains is among the most common and deadly forms of healthcare acquired infections. Over the years, different strategies have been put in place to increase host susceptibility to MDR A. baumannii, since only a self-limiting pneumonia with no or limited local bacterial replication was frequently obtained in mouse models. Direct instillation into the trachea or intranasal inoculation of the bacterial suspension are the techniques used to induce the infection in most of the preclinical models of pneumonia developed to date. More recently, the oropharyngeal aspiration procedure has been widely described in the literature for a variety of purposes including pathogens administration. Aim of this study was to compare the oropharyngeal aspiration technique to the intranasal inoculation and intratracheal instillation in the ability of inducing a consistent lung infection with two MDR A. baumannii clinical isolates in immunocompromised mice. Moreover, pneumonia obtained by bacteria administration with two out of three techniques, intratracheal and oropharyngeal, was characterised in terms of histopathology of pulmonary lesions, biomarkers of inflammation level and leukocytes cells infiltration extent after mice treatment with either vehicle or the antibiotic tigecycline. The data generated clearly showed that both strains were not able to colonize the lungs when inoculated by intranasal route. By contrast, the bacterial load in lungs of mice intratracheally or oropharyngeally infected significantly increased during 26 hours of monitoring, thus highlighting the ability of these strains to generate the infection when directly instilled into the lower respiratory airways. Furthermore, the intragroup variability of mice was significantly reduced with respect to those intranasally administered. Tigecycline was efficacious in lung bacterial load and cytokines release reduction. Findings were supported by semi-quantitative histopathological evaluation of the pulmonary lesions and by inflammatory biomarkers analysis. To conclude, both intratracheal instillation and oropharyngeal aspiration techniques showed to be suitable methods for inducing a robust and consistent pneumonia infection in mice when difficult MDR A. baumannii clinical isolates were used. Noteworthy, oropharyngeal aspiration not requiring specific technical skills and dedicated equipment, was proven to be a safer, easier and faster technique in comparison to the intratracheal instillation.
Collapse
Affiliation(s)
- Gabriella Bergamini
- Translational Microbiology, Antibacterial Discovery, Aptuit (Verona) S.r.l., an Evotec Company DD&D Research Centre, Verona, Italy
- * E-mail:
| | - Maria Elisa Perico
- In vitro Pharmacology, Aptuit (Verona) S.r.l., an Evotec Company DD&D Research Centre, Verona, Italy
| | - Stefano Di Palma
- Pathology, Preclinical Development, Aptuit (Verona) S.r.l., an Evotec Company, DD&D Research Centre, Verona, Italy
| | - Daniela Sabatini
- In vitro Pharmacology, Microbiology Discovery, Aptuit (Verona) S.r.l., an Evotec Company, DD&D Research Centre, Verona, Italy
| | - Filippo Andreetta
- In vitro Pharmacology, Aptuit (Verona) S.r.l., an Evotec Company DD&D Research Centre, Verona, Italy
| | - Rossella Defazio
- Pathology, Preclinical Development, Aptuit (Verona) S.r.l., an Evotec Company, DD&D Research Centre, Verona, Italy
| | - Antonio Felici
- In vitro Pharmacology, Microbiology Discovery, Aptuit (Verona) S.r.l., an Evotec Company, DD&D Research Centre, Verona, Italy
| | - Livia Ferrari
- Translational Microbiology, Antibacterial Discovery, Aptuit (Verona) S.r.l., an Evotec Company DD&D Research Centre, Verona, Italy
| |
Collapse
|
11
|
Wijers CDM, Pham L, Menon S, Boyd KL, Noel HR, Skaar EP, Gaddy JA, Palmer LD, Noto MJ. Identification of Two Variants of Acinetobacter baumannii Strain ATCC 17978 with Distinct Genotypes and Phenotypes. Infect Immun 2021; 89:e0045421. [PMID: 34460288 PMCID: PMC8594612 DOI: 10.1128/iai.00454-21] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 08/19/2021] [Indexed: 01/11/2023] Open
Abstract
Acinetobacter baumannii is a nosocomial pathogen that exhibits substantial genomic plasticity. Here, the identification of two variants of A. baumannii ATCC 17978 that differ based on the presence of a 44-kb accessory locus, named AbaAL44 (A. baumannii accessory locus 44 kb), is described. Analyses of existing deposited data suggest that both variants are found in published studies of A. baumannii ATCC 17978 and that American Type Culture Collection (ATCC)-derived laboratory stocks comprise a mix of these two variants. Yet, each variant exhibits distinct interactions with the host in vitro and in vivo. Infection with the variant that harbors AbaAL44 (A. baumannii 17978 UN) results in decreased bacterial burdens and increased neutrophilic lung inflammation in a mouse model of pneumonia, and affects the production of interleukin 1 beta (IL-1β) and IL-10 by infected macrophages. AbaAL44 harbors putative pathogenesis genes, including those predicted to encode a type I pilus cluster, a catalase, and a cardiolipin synthase. The accessory catalase increases A. baumannii resistance to oxidative stress and neutrophil-mediated killing in vitro. The accessory cardiolipin synthase plays a dichotomous role by promoting bacterial uptake and increasing IL-1β production by macrophages, but also by enhancing bacterial resistance to cell envelope stress. Collectively, these findings highlight the phenotypic consequences of the genomic dynamism of A. baumannii through the evolution of two variants of a common type strain with distinct infection-related attributes.
Collapse
Affiliation(s)
- Christiaan D. M. Wijers
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Ly Pham
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Swapna Menon
- AnalyzeDat Consulting Services, Ernakulam, Kerala, India
| | - Kelli L. Boyd
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Hannah R. Noel
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Eric P. Skaar
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Jennifer A. Gaddy
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Veterans Affairs, Tennessee Valley Healthcare Systems, Nashville, Tennessee, USA
| | - Lauren D. Palmer
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, Illinois, USA
| | - Michael J. Noto
- Department of Pathology, Microbiology, and Immunology, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Vanderbilt Institute for Infection, Immunology, and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| |
Collapse
|
12
|
Allemailem KS, Almatroudi A, Alrumaihi F, Aljaghwani A, Alnuqaydan AM, Khalilullah H, Younus H, El-Kady AM, Aldakheel FM, Khan AA, Khan A, Khan MA. Antimicrobial, Immunomodulatory and Anti-Inflammatory Potential of Liposomal Thymoquinone: Implications in the Treatment of Bacterial Pneumonia in Immunocompromised Mice. Biomedicines 2021; 9:1673. [PMID: 34829902 PMCID: PMC8615793 DOI: 10.3390/biomedicines9111673] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 11/08/2021] [Accepted: 11/09/2021] [Indexed: 11/17/2022] Open
Abstract
Acinetobacter baumannii has recently been increasing as an aggressive pathogen in immunocompromised persons. In the present study, we determined the in vitro antibacterial and anti-biofilm activity of thymoquinone (TQ) against A. baumannii. A liposomal formulation of TQ (Lip-TQ) was prepared and its therapeutic potential was investigated in the treatment of A. baumannii infection in immunocompromised mice. Leukopenia was induced in mice by injecting cyclophosphamide (CYP) at a dose of 200 mg/kg and the leukopenic mice were infected with 1 × 106 CFUs of A. baumannii. The effectiveness of free TQ or Lip-TQ against A. baumannii infection was assessed by analyzing the survival rate and bacterial burden. Moreover, the efficacy of Lip-TQ was also studied by examining the systemic inflammatory markers and the histological changes in the lung tissues. The results showed that the mice in the group treated with Lip-TQ at a dose of 10 mg/kg exhibited a 60% survival rate on day 40 post-infection, whereas all the mice treated with free TQ at the same dose died within this duration. Likewise, the lowest bacterial burden was found in the lung tissue of mice treated with Lip-TQ (10 mg/kg). Besides, Lip-TQ treatment remarkably alleviated the infection-associated inflammation, oxidative stress, and histological changes in the lung tissues. Based on the findings of the present study, we recommend considering Lip-TQ as a valuable therapeutic formulation in the treatment of A. baumannii-associated pneumonia in immunocompromised subjects.
Collapse
Affiliation(s)
- Khaled S. Allemailem
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.); (F.A.); (A.A.)
| | - Ahmad Almatroudi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.); (F.A.); (A.A.)
| | - Faris Alrumaihi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.); (F.A.); (A.A.)
| | - Aseel Aljaghwani
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (K.S.A.); (A.A.); (F.A.); (A.A.)
| | - Abdullah M. Alnuqaydan
- Department of Medical Biotechnology, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia;
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University, Unaizah 51911, Saudi Arabia;
| | - Hina Younus
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India;
| | - Asmaa M. El-Kady
- Department of Medical Parasitology, Faculty of Medicine, South Valley University, Qena 83523, Egypt;
| | - Fahad M. Aldakheel
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Saud University, Riyadh 11564, Saudi Arabia;
| | - Amjad Ali Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.K.); (A.K.)
| | - Arif Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.K.); (A.K.)
| | - Masood Alam Khan
- Department of Basic Health Sciences, College of Applied Medical Sciences, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.K.); (A.K.)
| |
Collapse
|
13
|
Mat Rahim N, Lee H, Strych U, AbuBakar S. Facing the challenges of multidrug-resistant Acinetobacter baumannii: progress and prospects in the vaccine development. Hum Vaccin Immunother 2021; 17:3784-3794. [PMID: 34106809 PMCID: PMC8437540 DOI: 10.1080/21645515.2021.1927412] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
In 2017, the World Health Organization (WHO) named A. baumannii as one of the three antibiotic-resistant bacterial species on its list of global priority pathogens in dire need of novel and effective treatment. With only polymyxin and tigecycline antibiotics left as last-resort treatments, the need for novel alternative approaches to the control of this bacterium becomes imperative. Vaccines against numerous bacteria have had impressive records in reducing the burden of the respective diseases and addressing antimicrobial resistance; as in the case of Haemophilus influenzae type b . A similar approach could be appropriate for A. baumannii. Toward this end, several potentially protective antigens against A. baumannii were identified and evaluated as vaccine antigen candidates. A licensed vaccine for the bacteria, however, is still not in sight. Here we explore and discuss challenges in vaccine development against A. baumannii and the promising approaches for improving the vaccine development process.
Collapse
Affiliation(s)
- NorAziyah Mat Rahim
- Tropical Infectious Diseases Research and Education Center (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia.,Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA.,Virology Unit, Institute for Medical Research, National Institute of Health Complex, Setia Alam, Malaysia
| | - HaiYen Lee
- Tropical Infectious Diseases Research and Education Center (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia
| | - Ulrich Strych
- Texas Children's Hospital Center for Vaccine Development, Baylor College of Medicine, Houston, TX, USA
| | - Sazaly AbuBakar
- Tropical Infectious Diseases Research and Education Center (TIDREC), Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
14
|
Tsay TB, Chang WH, Hsu CM, Chen LW. Mechanical ventilation enhances Acinetobacter baumannii-induced lung injury through JNK pathways. Respir Res 2021; 22:159. [PMID: 34022899 PMCID: PMC8140754 DOI: 10.1186/s12931-021-01739-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 05/03/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Patients in intensive care units (ICUs) often received broad-spectrum antibiotic treatment and Acinetobacter baumannii (A.b.) and Pseudomonas aeruginosa (P.a.) were the most common pathogens causing ventilator-associated pneumonia (VAP). This study aimed to examine the effects and mechanism of mechanical ventilation (MV) on A.b.-induced lung injury and the involvement of alveolar macrophages (AMs). METHODS C57BL/6 wild-type (WT) and c-Jun N-terminal kinase knockout (JNK1-/-) mice received MV for 3 h at 2 days after nasal instillation of A.b., P.a. (1 × 106 colony-forming unit, CFU), or normal saline. RESULTS Intranasal instillation of 106 CFU A.b. in C57BL/6 mice induced a significant increase in total cells and protein levels in the bronchoalveolar lavage fluid (BALF) and neutrophil infiltration in the lungs. MV after A.b. instillation increases neutrophil infiltration, interleukin (IL)-6 and vascular cell adhesion molecule (VCAM) mRNA expression in the lungs and total cells, IL-6 levels, and nitrite levels in the BALF. The killing activity of AMs against A.b. was lower than against P.a. The diminished killing activity was parallel with decreased tumor necrosis factor-α production by AMs compared with A.b. Inducible nitric oxide synthase inhibitor, S-methylisothiourea, decreased the total cell number in BALF on mice receiving A.b. instillation and ventilation. Moreover, MV decreased the A.b. and P.a. killing activity of AMs. MV after A.b. instillation induced less total cells in the BALF and nitrite production in the serum of JNK1-/- mice than those of WT mice. CONCLUSION A.b. is potent in inducing neutrophil infiltration in the lungs and total protein in the BALF. MV enhances A.b.-induced lung injury through an increase in the expression of VCAM and IL-6 levels in the BALF and a decrease in the bacteria-killing activity of AMs. A lower inflammation level in JNK1-/- mice indicates that A.b.-induced VAP causes lung injury through JNK signaling pathway in the lungs.
Collapse
MESH Headings
- Acinetobacter Infections/enzymology
- Acinetobacter Infections/microbiology
- Acinetobacter Infections/pathology
- Acinetobacter baumannii/pathogenicity
- Animals
- Cells, Cultured
- Disease Models, Animal
- Interleukin-6/genetics
- Interleukin-6/metabolism
- Lung/enzymology
- Lung/microbiology
- Lung/pathology
- Macrophages, Alveolar/enzymology
- Macrophages, Alveolar/microbiology
- Male
- Mice, Inbred C57BL
- Mice, Knockout
- Mitogen-Activated Protein Kinase 8/genetics
- Mitogen-Activated Protein Kinase 8/metabolism
- Neutrophil Infiltration
- Nitric Oxide Synthase Type II/metabolism
- Pneumonia, Ventilator-Associated/enzymology
- Pneumonia, Ventilator-Associated/microbiology
- Pneumonia, Ventilator-Associated/pathology
- Respiration, Artificial/adverse effects
- Signal Transduction
- Tumor Necrosis Factor-alpha/metabolism
- Vascular Cell Adhesion Molecule-1/genetics
- Vascular Cell Adhesion Molecule-1/metabolism
- Ventilator-Induced Lung Injury/enzymology
- Ventilator-Induced Lung Injury/microbiology
- Ventilator-Induced Lung Injury/pathology
- Mice
Collapse
Affiliation(s)
- Tzyy-Bin Tsay
- Department of Surgery, Kaohsiung Armed Forces General Hospital Zuoying Branch, Kaohsiung, Taiwan
| | - Wan-Hsuan Chang
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Ching-Mei Hsu
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan
| | - Lee-Wei Chen
- Department of Biological Sciences, National Sun Yat-Sen University, Kaohsiung, Taiwan.
- Department of Surgery, Kaohsiung Veterans General Hospital, 386, Ta-Chung 1st Road, Kaohsiung, Taiwan.
- Institute of Emergency and Critical Care Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
| |
Collapse
|
15
|
Acinetobacter baumannii: An Ancient Commensal with Weapons of a Pathogen. Pathogens 2021; 10:pathogens10040387. [PMID: 33804894 PMCID: PMC8063835 DOI: 10.3390/pathogens10040387] [Citation(s) in RCA: 115] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/22/2022] Open
Abstract
Acinetobacter baumannii is regarded as a life-threatening pathogen associated with community-acquired and nosocomial infections, mainly pneumonia. The rise in the number of A. baumannii antibiotic-resistant strains reduces effective therapies and increases mortality. Bacterial comparative genomic studies have unraveled the innate and acquired virulence factors of A. baumannii. These virulence factors are involved in antibiotic resistance, environmental persistence, host-pathogen interactions, and immune evasion. Studies on host–pathogen interactions revealed that A. baumannii evolved different mechanisms to adhere to in order to invade host respiratory cells as well as evade the host immune system. In this review, we discuss current data on A. baumannii genetic features and virulence factors. An emphasis is given to the players in host–pathogen interaction in the respiratory tract. In addition, we report recent investigations into host defense systems using in vitro and in vivo models, providing new insights into the innate immune response to A. baumannii infections. Increasing our knowledge of A. baumannii pathogenesis may help the development of novel therapeutic strategies based on anti-adhesive, anti-virulence, and anti-cell to cell signaling pathways drugs.
Collapse
|
16
|
Perera D, Kleinstein SE, Hanson B, Hasturk H, Eveloff R, Freire M, Ramsey M. Impaired host response and the presence of Acinetobacter baumannii in the serum microbiome of type-II diabetic patients. iScience 2021; 24:101941. [PMID: 33426512 PMCID: PMC7779772 DOI: 10.1016/j.isci.2020.101941] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 10/28/2020] [Accepted: 12/10/2020] [Indexed: 12/14/2022] Open
Abstract
Type II diabetes (T2D) affects over 10% of the US population and is a growing disease worldwide that manifests with numerous comorbidities and defects in inflammation. This dysbiotic host response allows for infection of the host by numerous microorganisms. In the course of T2D disease, individuals can develop chronic infections including foot ulcers and periodontitis, which lead to further complications and opportunistic infections in multiple body sites. In this study, we investigated the serum of healthy subjects and patients with T2D with (T2DP) or without periodontitis for both microbiome signatures in addition to cytokine profiles. Surprisingly, we detected the presence of Acinetobacter baumanii in the serum of 23% individuals with T2D/T2DP tested. In T2DP, IL-1β, TNF-α, MCP-1, IL-6, IL-8, and IFN-γ were significantly elevated in ABC-positive subjects. As an emerging pathogen, A. baumanii infection represents a risk for impaired inflammation and the development of comorbidities in subjects with T2D.
Collapse
Affiliation(s)
- Dasith Perera
- The University of Rhode Island, Department of Cell and Molecular Biology, Kingston, RI 02881, USA
| | | | - Benjamin Hanson
- The University of Rhode Island, Department of Cell and Molecular Biology, Kingston, RI 02881, USA
| | | | - Ryan Eveloff
- J. Craig Venter Institute, La Jolla, CA 92037, USA
| | - Marcelo Freire
- J. Craig Venter Institute, La Jolla, CA 92037, USA
- University of California San Diego, School of Medicine, La Jolla, CA 92093, USA
| | - Matthew Ramsey
- The University of Rhode Island, Department of Cell and Molecular Biology, Kingston, RI 02881, USA
| |
Collapse
|
17
|
Chen W. Host Innate Immune Responses to Acinetobacter baumannii Infection. Front Cell Infect Microbiol 2020; 10:486. [PMID: 33042864 PMCID: PMC7521131 DOI: 10.3389/fcimb.2020.00486] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2020] [Accepted: 08/05/2020] [Indexed: 12/23/2022] Open
Abstract
Acinetobacter baumannii has emerged as a major threat to global public health and is one of the key human pathogens in healthcare (nosocomial and community-acquired)-associated infections. Moreover, A. baumannii rapidly develops resistance to multiple antibiotics and is now globally regarded as a serious multidrug resistant pathogen. There is an urgent need to develop novel vaccines and immunotherapeutics as alternatives to antibiotics for clinical management of A. baumannii infection. However, our knowledge of host immune responses to A. baumannii infection and the identification of novel therapeutic targets are significantly lacking. This review highlights the recent advances and critical gaps in our understanding how A. baumannii interacts with the host innate pattern-recognition receptors, induces a cascade of inflammatory cytokine and chemokine responses, and recruits innate immune effectors (such as neutrophils and macrophages) to the site of infection for effective control of the infection. Such knowledge will facilitate the identification of new targets for the design and development of effective therapeutics and vaccines to fight this emerging threat.
Collapse
Affiliation(s)
- Wangxue Chen
- Human Health and Therapeutics (HHT) Research Center, National Research Council Canada, Ottawa, ON, Canada.,Department of Biology, Brock University, St. Catharines, ON, Canada
| |
Collapse
|
18
|
Zeng X, Gu H, Peng L, Yang Y, Wang N, Shi Y, Zou Q. Transcriptome Profiling of Lung Innate Immune Responses Potentially Associated With the Pathogenesis of Acinetobacter baumannii Acute Lethal Pneumonia. Front Immunol 2020; 11:708. [PMID: 32391015 PMCID: PMC7188829 DOI: 10.3389/fimmu.2020.00708] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Accepted: 03/30/2020] [Indexed: 02/05/2023] Open
Abstract
Acinetobacter baumannii is one of the dominating causes of nosocomial pneumonia, however, very little is known about the host immune response associated with pathogenesis of A. baumannii infection. Here, we used a hypervirulent A. baumannii to establish an acute lethal pneumonia, supported by high bacterial burdens, severe inflammatory cells infiltration and lung damage. The lung transcriptome changes in response to A. baumannii lethal pneumonia were detected by RNA sequencing. The results showed that 6,288 host genes changed expression, with 3,313 upregulated genes and 2,975 downregulated genes. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis revealed that genes related to TNF, cytokine-cytokine receptor interaction, Toll-like receptor, NOD-like receptor, NF-κB, Jak-STAT, HIF-1 signaling pathways, apoptosis, and phagosome were significantly upregulated. Whereas, genes associated with PI3K-AKT signaling pathway, glycolysis/gluconeogenesis, amino acid and fatty acid metabolism were downregulated. Immune cell typing highlighted the inflammatory response of innate immune cells headed by neutrophils. The reliability of RNA sequencing results were verified with selected differentially expressed genes by real-time PCR. This work provides an insight into the pathogenesis of lethal A. baumannii lung infection.
Collapse
Affiliation(s)
- Xi Zeng
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Army Medical University, Chongqing, China
| | - Hao Gu
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Army Medical University, Chongqing, China.,Institute of Biopharmaceutical Research, West China Hospital, Sichuan University, Chengdu, China.,Department of Clinical Laboratory, 971st Hospital of People's Liberation Army, Qingdao, China
| | - Liusheng Peng
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Army Medical University, Chongqing, China
| | - Yao Yang
- Institute of Materia Medica, College of Pharmacy, Army Medical University, Chongqing, China
| | - Ning Wang
- Institute of Biopharmaceutical Research, West China Hospital, Sichuan University, Chengdu, China
| | - Yun Shi
- Institute of Biopharmaceutical Research, West China Hospital, Sichuan University, Chengdu, China
| | - Quanming Zou
- Department of Microbiology and Biochemical Pharmacy, National Engineering Research Center of Immunological Products, College of Pharmacy, Army Medical University, Chongqing, China
| |
Collapse
|
19
|
Pires S, Peignier A, Seto J, Smyth DS, Parker D. Biological sex influences susceptibility to Acinetobacter baumannii pneumonia in mice. JCI Insight 2020; 5:132223. [PMID: 32191638 DOI: 10.1172/jci.insight.132223] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2019] [Accepted: 03/11/2020] [Indexed: 12/31/2022] Open
Abstract
Acinetobacter baumannii (A. baumannii) is an extremely versatile multidrug-resistant pathogen with a very high mortality rate; therefore, it has become crucial to understand the host response during its infection. Given the importance of mice for modeling infection and their role in preclinical drug development, equal emphasis should be placed on the use of both sexes. Through our studies using a murine model of acute pneumonia with A. baumannii, we observed that female mice were more susceptible to infection. Likewise, treatment of male mice with estradiol increased their susceptibility to infection. Analysis of the airway compartment revealed enhanced inflammation and reduced neutrophil and alveolar macrophage numbers compared with male mice. Depletion of either neutrophils or alveolar macrophages was important for bacterial clearance; however, depletion of alveolar macrophages further exacerbated female susceptibility because of severe alterations in metabolic homeostasis. Our data highlight the importance of using both sexes when assessing host immune pathways.
Collapse
Affiliation(s)
- Sílvia Pires
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Adeline Peignier
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| | - Jeremy Seto
- Department of Biological Sciences, New York City College of Technology, Brooklyn, New York, New York, USA
| | - Davida S Smyth
- Department of Natural Sciences, Eugene Lang College of Liberal Arts at The New School, New York, New York, USA
| | - Dane Parker
- Department of Pathology, Immunology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey, USA
| |
Collapse
|
20
|
Potential Mechanisms of Mucin-Enhanced Acinetobacter baumannii Virulence in the Mouse Model of Intraperitoneal Infection. Infect Immun 2019; 87:IAI.00591-19. [PMID: 31405959 DOI: 10.1128/iai.00591-19] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Accepted: 08/07/2019] [Indexed: 12/21/2022] Open
Abstract
Porcine mucin has been commonly used to enhance the infectivity of bacterial pathogens, including Acinetobacter baumannii, in animal models, but the mechanisms for enhancement by mucin remain relatively unknown. In this study, using the mouse model of intraperitoneal (i.p.) mucin-enhanced A. baumannii infection, we characterized the kinetics of bacterial replication and dissemination and the host innate immune responses, as well as their potential contribution to mucin-enhanced bacterial virulence. We found that mucin, either admixed with or separately injected with the challenge bacterial inoculum, was able to enhance the tissue and blood burdens of A. baumannii strains of different virulence. Intraperitoneal injection of A. baumannii-mucin or mucin alone induced a significant but comparable reduction of peritoneal macrophages and lymphocytes, accompanied by a significant neutrophil recruitment and early interleukin-10 (IL-10) responses, suggesting that the resulting inflammatory cellular and cytokine responses were largely induced by the mucin. Depletion of peritoneal macrophages or neutralization of endogenous IL-10 activities showed no effect on the mucin-enhanced infectivity. However, pretreatment of mucin with iron chelator DIBI, but not deferoxamine, partially abolished its virulence enhancement ability, and replacement of mucin with iron significantly enhanced the bacterial burdens in the peritoneal cavity and lung. Taken together, our results favor the hypothesis that iron at least partially contributes to the mucin-enhanced infectivity of A. baumannii in this model.
Collapse
|
21
|
Alcántar-Curiel MD, Rosales-Reyes R, Jarillo-Quijada MD, Gayosso-Vázquez C, Fernández-Vázquez JL, Toledano-Tableros JE, Giono-Cerezo S, Garza-Villafuerte P, López-Huerta A, Vences-Vences D, Morfín-Otero R, Rodríguez-Noriega E, López-Álvarez MDR, Espinosa-Sotero MDC, Santos-Preciado JI. Carbapenem-Resistant Acinetobacter baumannii in Three Tertiary Care Hospitals in Mexico: Virulence Profiles, Innate Immune Response and Clonal Dissemination. Front Microbiol 2019; 10:2116. [PMID: 31616391 PMCID: PMC6764332 DOI: 10.3389/fmicb.2019.02116] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2019] [Accepted: 08/28/2019] [Indexed: 01/08/2023] Open
Abstract
Acinetobacter baumannii is one of the most important nosocomial pathogens distributed worldwide. Due to its multidrug-resistance and the propensity for the epidemic spread, the World Health Organization includes this bacterium as a priority health issue for development of new antibiotics. The aims of this study were to investigate the antimicrobial resistance profile, the clonal relatedness, the virulence profiles, the innate host immune response and the clonal dissemination of A. baumannii in Hospital Civil de Guadalajara (HCG), Hospital Regional General Ignacio Zaragoza (HRGIZ) and Pediatric ward of the Hospital General de México Eduardo Liceaga (HGM-P). A total of 252 A. baumannii clinical isolates were collected from patients with nosocomial infections in these hospitals between 2015 and 2016. These isolates showed a multidrug-resistant profile and most of them only susceptible to colistin. Furthermore, 83.3 and 36.9% of the isolates carried the blaOXA–24 and blaTEM–1 genes for resistance to carbapenems and β-lactam antibiotics, respectively. The clonal relatedness assessed by pulsed-field gel electrophoresis (PFGE) and by multi-locus sequence typing (MLST) demonstrated a genetic diversity. Remarkably, the ST136, ST208 and ST369 that belonged to the clonal complex CC92 and ST758 and ST1054 to the CC636 clonal complex were identified. The ST136 was a high-risk persistent clone involved in an outbreak at HCG and ST369 were related to the first carbapenem-resistant A. baumannii outbreak in HRGIZ. Up to 58% isolates were able to attach to A549 epithelial cells and 14.5% of them induced >50% of cytotoxicity. A549 cells infected with A. baumannii produced TNFα, IL-6 and IL-1β and the oxygen and nitrogen reactive species that contributes to the development of an inflammatory immune response. Up to 91.3% of clinical isolates were resistant to normal human serum activity. Finally, 98.5% of the clinical isolates were able to form biofilm over polystyrene tubes. In summary, these results demonstrate the increasingly dissemination of multidrug-resistant A. baumannii clones in three hospitals in Mexico carrying diverse bacterial virulence factors that could contribute to establishment of the innate immune response associated to the fatality risks in seriously ill patients.
Collapse
Affiliation(s)
- María Dolores Alcántar-Curiel
- Laboratorio de Infectología, Microbiología e Inmunología Clínicas, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Roberto Rosales-Reyes
- Laboratorio de Infectología, Microbiología e Inmunología Clínicas, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ma Dolores Jarillo-Quijada
- Laboratorio de Infectología, Microbiología e Inmunología Clínicas, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Catalina Gayosso-Vázquez
- Laboratorio de Infectología, Microbiología e Inmunología Clínicas, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Luis Fernández-Vázquez
- Laboratorio de Infectología, Microbiología e Inmunología Clínicas, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - José Eduardo Toledano-Tableros
- Laboratorio de Infectología, Microbiología e Inmunología Clínicas, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico.,Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Silvia Giono-Cerezo
- Departamento de Microbiología, Escuela Nacional de Ciencias Biológicas, Instituto Politécnico Nacional, Mexico City, Mexico
| | - Paola Garza-Villafuerte
- Laboratorio de Infectología, Microbiología e Inmunología Clínicas, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Arath López-Huerta
- Laboratorio de Infectología, Microbiología e Inmunología Clínicas, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Daniela Vences-Vences
- Laboratorio de Infectología, Microbiología e Inmunología Clínicas, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Rayo Morfín-Otero
- Hospital Civil de Guadalajara Fray Antonio Alcalde, Instituto de Patología Infecciosa y Experimental, UDG, Guadalajara, Mexico
| | - Eduardo Rodríguez-Noriega
- Hospital Civil de Guadalajara Fray Antonio Alcalde, Instituto de Patología Infecciosa y Experimental, UDG, Guadalajara, Mexico
| | | | | | - José Ignacio Santos-Preciado
- Laboratorio de Infectología, Microbiología e Inmunología Clínicas, Unidad de Investigación en Medicina Experimental, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| |
Collapse
|
22
|
Harris G, KuoLee R, Xu HH, Chen W. Acute intraperitoneal infection with a hypervirulent Acinetobacter baumannii isolate in mice. Sci Rep 2019; 9:6538. [PMID: 31024025 PMCID: PMC6484084 DOI: 10.1038/s41598-019-43000-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 04/09/2019] [Indexed: 12/05/2022] Open
Abstract
Acinetobacter baumannii infection has become a major cause of healthcare-associated infection and a critical pathogen in the WHO antimicrobial resistance research and development priority list. Catheter-related septicemia is one of the major clinical manifestations of A. baumannii infection associated with high morbidity and mortality. In this study, we used a clinical A. baumannii strain (LAC-4) that is hypervirulent to immunocompetent C57BL/6 and BALB/c mice and established a mouse model of intraperitoneal (i.p.) A. baumannii infection. Our study showed that i.p. LAC-4 infection of C57BL/6 and BALB/c mice induces a lethal or sublethal infection with high bacterial burdens in peritoneal cavity, blood and tissues and the infected mice either succumbed to the infection within 24 hours or completely recovered from the infection. The infection induces acute peritoneal recruitment of neutrophils and other innate immune cells, and the local and systemic production of proinflammatory cytokines and chemokines (IL-1β, IL-5, IL-6, TNF-α, RANTES, MIP-1β, MCP-1, KC and IL-10). Mechanistic studies suggest an important role of macrophages in the host innate defense in this model in that in vitro stimulation of peritoneal macrophages with killed LAC-4 induced a similar pattern of cytokine/chemokine responses to those in the infected mice, and depletion of peritoneal macrophages rendered the mice significantly more susceptible to the infection. Thus, this mouse infection model will provide an alternative and useful tool for future pathogenesis studies of A. baumannii-associated septicemia and identification and characterization of important virulence factors, as well as serve as a surrogate model for rapid evaluation of novel therapeutics and vaccines for this emerging infectious agent.
Collapse
Affiliation(s)
- Greg Harris
- Human Health Therapeutics Research Center, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada
| | - Rhonda KuoLee
- Human Health Therapeutics Research Center, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada
| | - H Howard Xu
- Department of Biological Sciences, California State University, Los Angeles, Los Angeles, CA, 90032, USA
| | - Wangxue Chen
- Human Health Therapeutics Research Center, National Research Council Canada, 100 Sussex Drive, Ottawa, Ontario, K1A 0R6, Canada. .,Department of Biology, Brock University, St. Catharines, Ontario, L2S 3A1, Canada.
| |
Collapse
|
23
|
Pires S, Parker D. Innate Immune Responses to Acinetobacter baumannii in the Airway. J Interferon Cytokine Res 2019; 39:441-449. [PMID: 31013462 DOI: 10.1089/jir.2019.0008] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Acinetobacter baumannii is an emerging opportunistic pathogen that has risen to become a serious global threat, prevalent in health care settings and the community, which results in high morbidity and mortality rates. Its alarming expansion of antibiotic resistance is one of the most problematic traits of A. baumannii and as so, this bacterium has been classified as a serious threat and high priority target by the CDC. The most common types of infections induced by this pathogen include pneumonia (both hospital and community acquired), bacteremia, skin and soft tissue, urinary tract infections, endocarditis, and meningitis. Nosocomial pneumonia is the most prevalent of these. This review summarizes the current state of the signaling and innate immune components activated in response to A. baumannii infection in the airway.
Collapse
Affiliation(s)
- Sílvia Pires
- Department of Pathology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey
| | - Dane Parker
- Department of Pathology and Laboratory Medicine, Center for Immunity and Inflammation, Rutgers New Jersey Medical School, Newark, New Jersey
| |
Collapse
|
24
|
Harris G, Chen W. Profiling of Cytokine and Chemokine Responses Using Multiplex Bead Array Technology. Methods Mol Biol 2019; 2024:79-94. [PMID: 31364043 DOI: 10.1007/978-1-4939-9597-4_4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Multiplex bead array technology expands upon the principles of the enzyme-linked immunosorbent assay by allowing the simultaneous quantification of a large number of cytokines and chemokines within a single sample. This allows researchers more freedom and opportunities to investigate complex immune responses both in vivo and in vitro. Here we describe and update the detailed assay protocol and technical tips for simultaneous quantification of multiple cytokines and chemokines in mouse biological fluids such as sera, bronchoalveolar lavage fluid, tissue homogenate supernatant, and tissue culture supernatant, using a multiplex bead array assay.
Collapse
Affiliation(s)
- Greg Harris
- Human Health and Therapeutics Research Center, National Research Council of Canada, Ottawa, ON, Canada
| | - Wangxue Chen
- Human Health and Therapeutics Research Center, National Research Council of Canada, Ottawa, ON, Canada.
| |
Collapse
|
25
|
Liu YH, Kuo SC, Yao BY, Fang ZS, Lee YT, Chang YC, Chen TL, Hu CMJ. Colistin nanoparticle assembly by coacervate complexation with polyanionic peptides for treating drug-resistant gram-negative bacteria. Acta Biomater 2018; 82:133-142. [PMID: 30316023 DOI: 10.1016/j.actbio.2018.10.013] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 12/11/2022]
Abstract
Amidst the ever-rising threat of antibiotics resistance, colistin, a decade-old antibiotic with lingering toxicity concern, is increasingly prescribed to treat many drug-resistant, gram-negative bacteria. With the aim of improving the safety profile while preserving the antimicrobial activity of colistin, a nanoformulation is herein developed through coacervate complexation with polyanionic peptides. Upon controlled mixing of cationic colistin with polyglutamic acids, formation of liquid coacervates was demonstrated. Subsequent stabilization by DSPE-PEG and homogenization through micro-fluidization of the liquid coacervates yielded nanoparticles 8 nm in diameter. In vitro assessment showed that the colistin antimicrobial activity against multiple drug-resistant bacterial strains was retained and, in some cases, enhanced following the nanoparticle assembly. In vivo administration in mice demonstrated improved safety of the colistin nanoparticle, which has a maximal tolerated dose of 12.5 mg/kg compared to 10 mg/kg of free colistin. Upon administration over a 7-day period, colistin nanoparticles also exhibited reduced hepatotoxicity as compared to free colistin. In mouse models of Klebsiella pneumoniae bacteremia and Acinetobacter baumannii pneumonia, treatment with colistin nanoparticles showed equivalent efficacy to free colistin. These results demonstrate coacervation-induced nanoparticle assembly as a promising approach towards improving colistin treatments against bacterial infections. STATEMENT OF SIGNIFICANCE: Improving the safety of colistin while retaining its antimicrobial activity has been a highly sought-after objective toward enhancing antibacterial treatments. Herein, we demonstrate formation of stabilized colistin nanocomplexes in the presence of anionic polypeptides and DSPE-PEG stabilizer. The nanocomplexes retain colistin's antimicrobial activity while demonstrating improved safety upon in vivo administration. The supramolecular nanoparticle assembly of colistin presents a unique approach towards designing antimicrobial nanoparticles.
Collapse
|
26
|
Dikshit N, Kale SD, Khameneh HJ, Balamuralidhar V, Tang CY, Kumar P, Lim TP, Tan TT, Kwa AL, Mortellaro A, Sukumaran B. NLRP3 inflammasome pathway has a critical role in the host immunity against clinically relevant Acinetobacter baumannii pulmonary infection. Mucosal Immunol 2018; 11:257-272. [PMID: 28612844 DOI: 10.1038/mi.2017.50] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2017] [Accepted: 04/15/2017] [Indexed: 02/04/2023]
Abstract
The opportunistic Gram-negative bacterium Acinetobacter baumannii (AB) is a leading cause of life-threatening nosocomial pneumonia. Outbreaks of multidrug resistant (MDR)-AB belonging to international clones (ICs) I and II with limited treatment options are major global health threats. However, the pathogenesis mechanisms of various AB clonal groups are understudied. Although inflammation-associated interleukin-1β (IL-1β) levels and IL-1 receptor antagonist polymorphisms were previously implicated in MDR-AB-related pneumonia in patients, whether inflammasomes has any role in the host defense and/or pathogenesis of clinically relevant A. baumannii infection is unknown. Using a sublethal mouse pneumonia model, we demonstrate that an extensively drug-resistant clinical isolate (ICII) of A. baumannii exhibits reduced/delayed early pulmonary neutrophil recruitment, higher lung persistence, and, most importantly, elicits enhanced IL-1β/IL-18 production and lung damage through NLRP3 inflammasome, in comparison with A. baumannii-type strain. A. baumannii infection-induced IL-1β/IL-18 production is entirely dependent on NLRP3-ASC-caspase-1/caspase-11 pathway. Using Nlrp3-/- mice infection models, we further show that while NLRP3 inflammasome pathway contributes to host defense against A. baumannii clinical isolate, it is dispensable for protection against A. baumannii-type strain. Our study reveals a novel differential role for NLRP3 inflammasome pathway in the immunity against clinically relevant A. baumannii infections, and highlights inflammasome pathway as a potential immunomodulatory target.
Collapse
Affiliation(s)
- N Dikshit
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - S D Kale
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - H J Khameneh
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - V Balamuralidhar
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - C Y Tang
- Life Sciences Institute, National University of Singapore, Singapore, Singapore
| | - P Kumar
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| | - T P Lim
- Department of Pharmacy, Singapore General Hospital, Singapore.,Sing Health Duke-NUS Medicine Academic Clinical Programme (MED ACP), Singapore, Singapore
| | - T T Tan
- Department of Infectious Diseases, Singapore General Hospital, Singapore, Singapore
| | - A L Kwa
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore.,Department of Pharmacy, Singapore General Hospital, Singapore.,Sing Health Duke-NUS Medicine Academic Clinical Programme (MED ACP), Singapore, Singapore.,Department of Pharmacy, National University of Singapore, Singapore, Singapore
| | - A Mortellaro
- Singapore Immunology Network (SIgN), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - B Sukumaran
- Program in Emerging Infectious Diseases, Duke-NUS Medical School, Singapore, Singapore
| |
Collapse
|
27
|
Clinical and Pathophysiological Overview of Acinetobacter Infections: a Century of Challenges. Clin Microbiol Rev 2017; 30:409-447. [PMID: 27974412 DOI: 10.1128/cmr.00058-16] [Citation(s) in RCA: 733] [Impact Index Per Article: 91.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Acinetobacter is a complex genus, and historically, there has been confusion about the existence of multiple species. The species commonly cause nosocomial infections, predominantly aspiration pneumonia and catheter-associated bacteremia, but can also cause soft tissue and urinary tract infections. Community-acquired infections by Acinetobacter spp. are increasingly reported. Transmission of Acinetobacter and subsequent disease is facilitated by the organism's environmental tenacity, resistance to desiccation, and evasion of host immunity. The virulence properties demonstrated by Acinetobacter spp. primarily stem from evasion of rapid clearance by the innate immune system, effectively enabling high bacterial density that triggers lipopolysaccharide (LPS)-Toll-like receptor 4 (TLR4)-mediated sepsis. Capsular polysaccharide is a critical virulence factor that enables immune evasion, while LPS triggers septic shock. However, the primary driver of clinical outcome is antibiotic resistance. Administration of initially effective therapy is key to improving survival, reducing 30-day mortality threefold. Regrettably, due to the high frequency of this organism having an extreme drug resistance (XDR) phenotype, early initiation of effective therapy is a major clinical challenge. Given its high rate of antibiotic resistance and abysmal outcomes (up to 70% mortality rate from infections caused by XDR strains in some case series), new preventative and therapeutic options for Acinetobacter spp. are desperately needed.
Collapse
|
28
|
Harris G, KuoLee R, Xu HH, Chen W. Mouse Models of Acinetobacter baumannii Infection. ACTA ACUST UNITED AC 2017; 46:6G.3.1-6G.3.23. [PMID: 28800159 DOI: 10.1002/cpmc.36] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
This unit describes basic protocols for infecting mice through intranasal and intraperitoneal routes with Acinetobacter baumannii to induce associated pneumonia and sepsis, the two most common manifestations of clinical infections with this pathogen. By selecting the appropriate protocols and bacterial strains of different virulence, these mouse models provide an opportunity to study the infection pathogenesis and host-immune responses, and to evaluate the efficacies of prophylactic and therapeutic anti-A. baumannii candidates. © 2017 by John Wiley & Sons, Inc.
Collapse
Affiliation(s)
- Greg Harris
- Human Health and Therapeutics, National Research Council Canada, Ottawa, Ontario, Canada
| | - Rhonda KuoLee
- Human Health and Therapeutics, National Research Council Canada, Ottawa, Ontario, Canada
| | - H Howard Xu
- Department of Biological Sciences, California State University, Los Angeles, California
| | - Wangxue Chen
- Human Health and Therapeutics, National Research Council Canada, Ottawa, Ontario, Canada.,Department of Biological Sciences, Brock University, St. Catharines, Ontario, Canada
| |
Collapse
|
29
|
García-Patiño MG, García-Contreras R, Licona-Limón P. The Immune Response against Acinetobacter baumannii, an Emerging Pathogen in Nosocomial Infections. Front Immunol 2017; 8:441. [PMID: 28446911 PMCID: PMC5388700 DOI: 10.3389/fimmu.2017.00441] [Citation(s) in RCA: 59] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 03/29/2017] [Indexed: 12/18/2022] Open
Abstract
Acinetobacter baumannii is the etiologic agent of a wide range of nosocomial infections, including pneumonia, bacteremia, and skin infections. Over the last 45 years, an alarming increase in the antibiotic resistance of this opportunistic microorganism has been reported, a situation that hinders effective treatments. In order to develop effective therapies against A. baumannii it is crucial to understand the basis of host–bacterium interactions, especially those concerning the immune response of the host. Different innate immune cells such as monocytes, macrophages, dendritic cells, and natural killer cells have been identified as important effectors in the defense against A. baumannii; among them, neutrophils represent a key immune cell indispensable for the control of the infection. Several immune strategies to combat A. baumannii have been identified such as recognition of the bacteria by immune cells through pattern recognition receptors, specifically toll-like receptors, which trigger bactericidal mechanisms including oxidative burst and cytokine and chemokine production to amplify the immune response against the pathogen. However, a complete picture of the protective immune strategies activated by this bacteria and its potential therapeutic use remains to be determined and explored.
Collapse
Affiliation(s)
- María Guadalupe García-Patiño
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Rodolfo García-Contreras
- Facultad de Medicina, Departamento de Microbiología y Parasitología, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| | - Paula Licona-Limón
- Departamento de Biología Celular y del Desarrollo, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, Mexico
| |
Collapse
|
30
|
Sato Y, Unno Y, Kawakami S, Ubagai T, Ono Y. Virulence characteristics of Acinetobacter baumannii clinical isolates vary with the expression levels of omps. J Med Microbiol 2017; 66:203-212. [PMID: 27902395 DOI: 10.1099/jmm.0.000394] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
PURPOSE We investigated the expression levels of virulence factors (ompA, omp33-36 and carO) in five clinical isolates and in a standard ATCC 19606 strain of Acinetobacter baumannii to determine their effect on the virulence characteristics of the isolates. METHODOLOGY The mRNA levels of omps and proinflammatory cytokines were analyzed by quantitative real-time PCR. For adherence assay, after human lung epithelial cells (A549) were co-cultured with A. baumannii at 37 °C for 2 h, the cell-adherent bacteria was counted. Pearson correlation analysis was used to compare the omps mRNA levels, the proinflammatory cytokines and the number of adherent bacteria. RESULTS The mRNA levels of ompA in the clinical isolates were higher and similar compared with those in ATCC 19606, whereas the mRNA levels of omp33-36 in the clinical isolates were lower and similar compared with those in ATCC 19606. The mRNA levels of carO in the clinical isolates were significantly higher than those in ATCC 19606. The number of cell-adherent clinical isolates was higher than that of cell-adherent ATCC 19606. Furthermore, the number of cell-adherent clinical isolates was positively and significantly correlated with ompA mRNA level. The mRNA levels of TNF-α, IL-6 and IL-8 in A549 cells co-cultured with the clinical isolates were lower than those in A549 cells co-cultured with ATCC 19606. Moreover, the mRNA levels of TNF-α, IL-6 and IL-8 were negatively and significantly correlated with those of carO in the isolates. CONCLUSION These results provide insights into the renewed virulence characteristics of A. baumannii clinical isolates that depend on cell adherence capacity and the expression level of omp mRNAs.
Collapse
Affiliation(s)
- Yoshinori Sato
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Yuka Unno
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Sayoko Kawakami
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Tsuneyuki Ubagai
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| | - Yasuo Ono
- Department of Microbiology and Immunology, Teikyo University School of Medicine, 2-11-1 Kaga, Itabashi-ku, Tokyo 173-8605, Japan
| |
Collapse
|
31
|
Efficacy of Lysophosphatidylcholine in Combination with Antimicrobial Agents against Acinetobacter baumannii in Experimental Murine Peritoneal Sepsis and Pneumonia Models. Antimicrob Agents Chemother 2016; 60:4464-70. [PMID: 27161639 DOI: 10.1128/aac.02708-15] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2015] [Accepted: 04/28/2016] [Indexed: 11/20/2022] Open
Abstract
Immune response stimulation to prevent infection progression may be an adjuvant to antimicrobial treatment. Lysophosphatidylcholine (LPC) is an immunomodulator involved in immune cell recruitment and activation. In this study, we aimed to evaluate the efficacy of LPC in combination with colistin, tigecycline, or imipenem in experimental murine models of peritoneal sepsis and pneumonia. We used Acinetobacter baumannii strain Ab9, which is susceptible to colistin, tigecycline, and imipenem, and multidrug-resistant strain Ab186, which is susceptible to colistin and resistant to tigecycline and imipenem. Pharmacokinetic and pharmacodynamic parameters for colistin, tigecycline, and imipenem and the 100% minimal lethal dose (MLD100) were determined for both strains. The therapeutic efficacies of LPC, colistin (60 mg/kg of body weight/day), tigecycline (10 mg/kg/day), and imipenem (180 mg/kg/day), alone or in combination, were assessed against Ab9 and Ab186 at the MLD100 in murine peritoneal sepsis and pneumonia models. The levels of pro- and anti-inflammatory cytokines, i.e., tumor necrosis factor alpha (TNF-α) and interleukin-10 (IL-10), were determined by enzyme-linked immunosorbent assay (ELISA) for the same experimental models after inoculating mice with the MLD of both strains. LPC in combination with colistin, tigecycline, or imipenem markedly enhanced the bacterial clearance of Ab9 and Ab186 from the spleen and lungs and reduced bacteremia and mouse mortality rates (P < 0.05) compared with those for colistin, tigecycline, and imipenem monotherapies. Moreover, at 4 h post-bacterial infection, Ab9 induced higher TNF-α and lower IL-10 levels than those with Ab186 (4 μg/ml versus 3 μg/ml [P < 0.05] and 2 μg/ml versus 3.4 μg/ml [P < 0.05], respectively). LPC treatment combined with colistin, tigecycline, or imipenem modestly reduced the severity of infection by A. baumannii strains with different resistance phenotypes compared to LPC monotherapy in both experimental models.
Collapse
|
32
|
Chen W. Current advances and challenges in the development of Acinetobacter vaccines. Hum Vaccin Immunother 2016; 11:2495-500. [PMID: 26158773 DOI: 10.1080/21645515.2015.1052354] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Acinetobacter baumannii is a major cause of healthcare-associated infections worldwide with high morbidity and mortality. The clinical treatment of A. baumannii infections has become increasingly difficult because of the rapid emerging of multidrug and extremely drug resistant strains. Thus, there is an urgent need for the development of novel intervention strategies to combat this multidrug-resistant pathogen. Vaccine is one of the most effective medical measures for infection control and is likely to overcome the development of multidrug resistance by A. baumannii. Here we discussed the recent advances and potential challenges in development of A. baumannii vaccines with a focus on the 3 most important steps in the preclinical vaccine development: antigen selection, immune correlates of protection, and animal models for efficacy evaluation.
Collapse
Affiliation(s)
- Wangxue Chen
- a Human Health Therapeutics; National Research Council Canada ; Ottawa, Ontario , Canada.,b Department of Biology ; Brock University ; St. Catharines , Ontario , Canada
| |
Collapse
|
33
|
Grguric-Smith LM, Lee HH, Gandhi JA, Brennan MB, DeLeon-Rodriguez CM, Coelho C, Han G, Martinez LR. Neutropenia exacerbates infection by Acinetobacter baumannii clinical isolates in a murine wound model. Front Microbiol 2015; 6:1134. [PMID: 26528277 PMCID: PMC4607880 DOI: 10.3389/fmicb.2015.01134] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2015] [Accepted: 10/02/2015] [Indexed: 01/21/2023] Open
Abstract
The Gram negative coccobacillus Acinetobacter baumannii has become an increasingly prevalent cause of hospital-acquired infections in recent years. The majority of clinical A. baumannii isolates display high-level resistance to antimicrobials, which severely compromises our capacity to care for patients with A. baumannii disease. Neutrophils are of major importance in the host defense against microbial infections. However, the contribution of these cells of innate immunity in host resistance to cutaneous A. baumannii infection has not been directly investigated. Hence, we hypothesized that depletion of neutrophils increases severity of bacterial disease in an experimental A. baumannii murine wound model. In this study, the Ly-6G-specific monoclonal antibody (mAb), 1A8, was used to generate neutropenic mice and the pathogenesis of several A. baumannii clinical isolates on wounded cutaneous tissue was investigated. We demonstrated that neutrophil depletion enhances bacterial burden using colony forming unit determinations. Also, mAb 1A8 reduces global measurements of wound healing in A. baumannii-infected animals. Interestingly, histological analysis of cutaneous tissue excised from A. baumannii-infected animals treated with mAb 1A8 displays enhanced collagen deposition. Furthermore, neutropenia and A. baumannii infection alter pro-inflammatory cytokine release leading to severe microbial disease. Our findings provide a better understanding of the impact of these innate immune cells in controlling A. baumannii skin infections.
Collapse
Affiliation(s)
| | - Hiu H Lee
- Department of Biomedical Sciences, Long Island University-Post Brookville, NY, USA ; Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology Old Westbury, NY, USA
| | - Jay A Gandhi
- Department of Biomedical Sciences, Long Island University-Post Brookville, NY, USA
| | - Melissa B Brennan
- Department of Biomedical Sciences, Long Island University-Post Brookville, NY, USA
| | | | - Carolina Coelho
- Centre for Molecular & Cellular Biology of Inflammation, Kings College London, UK
| | - George Han
- Montefiore Medical Center, Division of Dermatology, Department of Medicine Bronx, NY, USA
| | - Luis R Martinez
- Department of Biomedical Sciences, College of Osteopathic Medicine, New York Institute of Technology Old Westbury, NY, USA
| |
Collapse
|
34
|
Toll-Like Receptor 9 Contributes to Defense against Acinetobacter baumannii Infection. Infect Immun 2015; 83:4134-41. [PMID: 26238713 DOI: 10.1128/iai.00410-15] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Accepted: 07/30/2015] [Indexed: 12/18/2022] Open
Abstract
Acinetobacter baumannii is a common nosocomial pathogen capable of causing severe diseases associated with significant morbidity and mortality in impaired hosts. Pattern recognition receptors, such as the Toll-like receptors (TLRs), play a key role in pathogen detection and function to alert the immune system to infection. Here, we examine the role for TLR9 signaling in response to A. baumannii infection. In a murine model of A. baumannii pneumonia, TLR9(-/-) mice exhibit significantly increased bacterial burdens in the lungs, increased extrapulmonary bacterial dissemination, and more severe lung pathology compared with those in wild-type mice. Following systemic A. baumannii infection, TLR9(-/-) mice have significantly increased bacterial burdens in the lungs, as well as decreased proinflammatory cytokine and chemokine production. These results demonstrate that TLR9-mediated pathogen detection is important for host defense against the opportunistic pathogen Acinetobacter baumannii.
Collapse
|
35
|
He S, He H, Chen Y, Chen Y, Wang W, Yu D. In vitro and in vivo analysis of antimicrobial agents alone and in combination against multi-drug resistant Acinetobacter baumannii. Front Microbiol 2015; 6:507. [PMID: 26074898 PMCID: PMC4444844 DOI: 10.3389/fmicb.2015.00507] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2015] [Accepted: 05/08/2015] [Indexed: 11/13/2022] Open
Abstract
Objective: To investigate the in vitro and in vivo antibacterial activities of tigecycline and other 13 common antimicrobial agents, alone or in combination, against multi-drug resistant Acinetobacter baumannii. Methods: An in vitro susceptibility test of 101 A. baumannii was used to detect minimal inhibitory concentrations (MICs). A mouse lung infection model of multi-drug resistant A. baumannii, established by the ultrasonic atomization method, was used to define in vivo antimicrobial activities. Results: Multi-drug resistant A. baumannii showed high sensitivity to tigecycline (98% inhibition), polymyxin B (78.2% inhibition), and minocycline (74.2% inhibition). However, the use of these antimicrobial agents in combination with other antimicrobial agents produced synergistic or additive effects. In vivo data showed that white blood cell (WBC) counts in drug combination groups C (minocycline + amikacin) and D (minocycline + rifampicin) were significantly higher than in groups A (tigecycline) and B (polymyxin B) (P < 0.05), after administration of the drugs 24 h post-infection. Lung tissue inflammation gradually increased in the model group during the first 24 h after ultrasonic atomization infection; vasodilation, congestion with hemorrhage were observed 48 h post infection. After 3 days of anti-infective therapy in groups A, B, C, and D, lung tissue inflammation in each group gradually recovered with clear structures. The mortality rates in drug combination groups(groups C and D) were much lower than in groups A and B. Conclusion: The combination of minocycline with either rifampicin or amikacin is more effective against multi-drug resistant A. baumannii than single-agent tigecycline or polymyxin B. In addition, the mouse lung infection by ultrasonic atomization is a suitable model for drug screening and analysis of infection mechanism.
Collapse
Affiliation(s)
- Songzhe He
- The Affiliated First Hospital of Hangzhou, Zhejiang Chinese Medical University Hangzhou, China ; Department of Clinical Laboratories, Hangzhou First People's Hospital Hangzhou, China
| | - Hui He
- The Affiliated First Hospital of Hangzhou, Zhejiang Chinese Medical University Hangzhou, China ; Department of Clinical Laboratories, Hangzhou First People's Hospital Hangzhou, China
| | - Yi Chen
- The Affiliated First Hospital of Hangzhou, Zhejiang Chinese Medical University Hangzhou, China ; Department of Clinical Laboratories, Hangzhou First People's Hospital Hangzhou, China
| | - Yueming Chen
- Department of Clinical Laboratories, Hangzhou First People's Hospital Hangzhou, China
| | - Wei Wang
- Department of Clinical Laboratories, Hangzhou First People's Hospital Hangzhou, China
| | - Daojun Yu
- The Affiliated First Hospital of Hangzhou, Zhejiang Chinese Medical University Hangzhou, China ; Department of Clinical Laboratories, Hangzhou First People's Hospital Hangzhou, China
| |
Collapse
|
36
|
Acinetobacter baumannii universal stress protein A plays a pivotal role in stress response and is essential for pneumonia and sepsis pathogenesis. Int J Med Microbiol 2014; 305:114-23. [PMID: 25466824 DOI: 10.1016/j.ijmm.2014.11.008] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/14/2014] [Accepted: 11/09/2014] [Indexed: 01/15/2023] Open
Abstract
Acinetobacter baumannii is one of the most significant threats to global public health. This threat is compounded by the fact that A. baumannii is rapidly becoming resistant to all relevant antimicrobials. Identifying key microbial factors through which A. baumannii resists hostile host environment is paramount to the development of novel antimicrobials targeting infections caused by this emerging pathogen. An attractive target could be a molecule that plays a role in the pathogenesis and stress response of A. baumannii. Accordingly, the universal stress protein A (UspA) was chosen to be fully investigated in this study. A platform of A. baumannii constructs, expressing various levels of the uspA gene ranging from zero to thirteen folds of wild-type level, and a recombinant E. coli strain, were employed to investigate the role of UspA in vitro stress and in vivo pathogenesis. The UspA protein plays a significant role in protecting A. baumannii from H(2)O(2), low pH, and the respiratory toxin 2,4-DNP. A. baumannii UspA protein plays an essential role in two of the deadliest types of infection caused by A. baumannii; pneumonia and sepsis. This distinguishes A. baumannii UspA from its closely related homolog, the Staphylococcus aureus Usp2, as well as from the less similar Burkholderia glumae Usps. Heterologous and overexpression experiments suggest that UspA mediates its role via an indirect mechanism. Our study highlights the role of UspA as an important contributor to the A. baumannii stress and virulence machineries, and polishes it as a plausible target for new therapeutics.
Collapse
|
37
|
Ketter PM, Guentzel MN, Schaffer B, Herzig M, Wu X, Montgomery RK, Parida BK, Fedyk CG, Yu JJ, Jorgensen J, Chambers JP, Cap AP, Arulanandam BP. Severe Acinetobacter baumannii sepsis is associated with elevation of pentraxin 3. Infect Immun 2014; 82:3910-8. [PMID: 25001601 PMCID: PMC4187799 DOI: 10.1128/iai.01958-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 06/27/2014] [Indexed: 12/18/2022] Open
Abstract
Multidrug-resistant Acinetobacter baumannii is among the most prevalent bacterial pathogens associated with trauma-related wound and bloodstream infections. Although septic shock and disseminated intravascular coagulation have been reported following fulminant A. baumannii sepsis, little is known about the protective host immune response to this pathogen. In this study, we examined the role of PTX3, a soluble pattern recognition receptor with reported antimicrobial properties and stored within neutrophil granules. PTX3 production by murine J774a.1 macrophages was assessed following challenge with A. baumannii strains ATCC 19606 and clinical isolates (CI) 77, 78, 79, 80, and 86. Interestingly, only CI strains 79, 80, and 86 induced PTX3 synthesis in murine J774a.1 macrophages, with greatest production observed following CI 79 and 86 challenge. Subsequently, C57BL/6 mice were challenged intraperitoneally with CI 77 and 79 to assess the role of PTX3 in vivo. A. baumannii strain CI 79 exhibited significantly (P < 0.0005) increased mortality, with an approximate 50% lethal dose (LD50) of 10(5) CFU, while an equivalent dose of CI 77 exhibited no mortality. Plasma leukocyte chemokines (KC, MCP-1, and RANTES) and myeloperoxidase activity were also significantly elevated following challenge with CI 79, indicating neutrophil recruitment/activation associated with significant elevation in serum PTX3 levels. Furthermore, 10-fold-greater PTX3 levels were observed in mouse serum 12 h postchallenge, comparing CI 79 to CI 77 (1,561 ng/ml versus 145 ng/ml), with concomitant severe pathology (liver and spleen) and coagulopathy. Together, these results suggest that elevation of PTX3 is associated with fulminant disease during A. baumannii sepsis.
Collapse
Affiliation(s)
| | | | - Beverly Schaffer
- United States Army Institute for Surgical Research, San Antonio Military Medical Center, San Antonio, Texas, USA
| | - Maryanne Herzig
- United States Army Institute for Surgical Research, San Antonio Military Medical Center, San Antonio, Texas, USA
| | - Xiaowu Wu
- United States Army Institute for Surgical Research, San Antonio Military Medical Center, San Antonio, Texas, USA
| | - Robbie K Montgomery
- United States Army Institute for Surgical Research, San Antonio Military Medical Center, San Antonio, Texas, USA
| | - Bijaya K Parida
- United States Army Institute for Surgical Research, San Antonio Military Medical Center, San Antonio, Texas, USA
| | - Chriselda G Fedyk
- United States Army Institute for Surgical Research, San Antonio Military Medical Center, San Antonio, Texas, USA
| | - Jieh-Juen Yu
- University of Texas at San Antonio, San Antonio, Texas, USA
| | - James Jorgensen
- University of Texas Health Science Center, San Antonio, Texas, USA
| | | | - Andrew P Cap
- United States Army Institute for Surgical Research, San Antonio Military Medical Center, San Antonio, Texas, USA
| | | |
Collapse
|
38
|
Abstract
Currently, Acinetobacter baumannii is recognized as one of the major pathogens seriously threatening our health care delivery system. Aspects of the innate immune response to A. baumannii infection are not yet well understood. Human β-defensins (hBDs) are epithelial cell-derived cationic antimicrobial peptides (AMPs) that also function to bridge the innate and adaptive immune system. We tested the induction of hBD-2 and -3 by A. baumannii on primary oral and skin epithelial cells and found that A. baumannii induces hBD-3 transcripts to a greater extent than it induces hBD-2 transcripts on both types of cells. In addition, we found that A. baumannii is susceptible to hBD-2 and -3 killing at submicromolar concentrations. Moreover, hBD-3 induction by A. baumannii was found to be dependent on epidermal growth factor receptor (EGFR) signaling. Inhibition of mitogen-activated protein kinase resulted in reduced expression of both hBD-2 and -3. Lastly, a disintegrin and metalloprotease 17 (ADAM17; also known as TACE) was found to be critical for hBD-3 induction, while ADAM10 and dual oxidase 1 (Duox1) were not required for hBD-3 induction. Induction of AMPs is an important component of innate sensing of pathogens and may play an important role in triggering systemic immune responses to A. baumannii infection. Further studies on the interactions between epithelial cells and A. baumannii will help us understand early stages of infection and may shed light on why some individuals are more vulnerable to A. baumannii infection.
Collapse
|
39
|
Serum resistance, gallium nitrate tolerance and extrapulmonary dissemination are linked to heme consumption in a bacteremic strain of Acinetobacter baumannii. Int J Med Microbiol 2014; 304:360-9. [DOI: 10.1016/j.ijmm.2013.12.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2013] [Revised: 12/03/2013] [Accepted: 12/08/2013] [Indexed: 11/19/2022] Open
|
40
|
Harris G, Chen W. Profiling of cytokine and chemokine responses using multiplex bead array technology. Methods Mol Biol 2014; 1061:265-78. [PMID: 23963943 DOI: 10.1007/978-1-62703-589-7_16] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023]
Abstract
Multiplex bead array technology expands upon the principles of the enzyme-linked immunosorbent assay by allowing the simultaneous quantification of a large number of cytokines and chemokines within a single sample. This allows for the researcher more freedom to investigate complex immune responses both in vivo and in vitro. Here we describe the detailed assay protocol and technical tips for simultaneous quantification of multiple cytokines and chemokines in mouse biological fluids such as sera, bronchoalveolar lavage fluid, tissue homogenate supernatant, and tissue culture supernatant, using a multiplex bead array assay.
Collapse
Affiliation(s)
- Greg Harris
- Human Health Therapeutics Portfolio, National Research Council Canada, Ottawa, ON, Canada
| | | |
Collapse
|
41
|
KIM CHANGHWAN, KIM DONGJAE, LEE SANGJIN, JEONG YUJIN, KANG MINJUNG, LEE JUNYOUNG, CHOI JINA, KWON SUNJUNG, PARK JAEHAK, PARK JONGHWAN. Toll-like receptor 2 promotes bacterial clearance during the initial stage of pulmonary infection with Acinetobacter baumannii. Mol Med Rep 2014; 9:1410-4. [DOI: 10.3892/mmr.2014.1966] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2013] [Accepted: 02/05/2014] [Indexed: 11/06/2022] Open
|
42
|
Loss of mitochondrial protein Fus1 augments host resistance to Acinetobacter baumannii infection. Infect Immun 2013; 81:4461-9. [PMID: 24042119 DOI: 10.1128/iai.00771-13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Fus1 is a tumor suppressor protein with recently described immunoregulatory functions. Although its role in sterile inflammation is being elucidated, its role in regulating immune responses to infectious agents has not been examined. We used here a murine model of Acinetobacter baumannii pneumonia to identify the role of Fus1 in antibacterial host defenses. We found that the loss of Fus1 in mice results in significantly increased resistance to A. baumannii pneumonia. We observed earlier and more robust recruitment of neutrophils and macrophages to the lungs of infected Fus1(-/-) mice, with a concomitant increase in phagocytosis of invading bacteria and more rapid clearance. Such a prompt and enhanced immune response to bacterial infection in Fus1(-/-) mice stems from early activation of proinflammatory pathways (NF-κB and phosphatidylinositol 3-kinase/Akt/mammalian target of rapamycin [mTOR]), most likely due to significantly increased mitochondrial membrane potential and mitochondrial reactive oxygen species production. Significant early upregulation of interleukin-17 (IL-17) in Fus1(-/-) immune cells was also observed, together with significant downregulation of IL-10. Depletion of neutrophils eliminates the enhanced antibacterial defenses of the Fus1(-/-) mice, suggesting that ultimately it is the enhanced immune cell recruitment that mediates the increased resistance of Fus1(-/-) mice to A. baumannii pneumonia. Taken together, our data define the novel role for Fus1 in the immune response to A. baumannii pneumonia and highlight new avenues for immune modulating therapeutic targets for this treatment-resistant nosocomial pathogen.
Collapse
|
43
|
A mouse model of Acinetobacter baumannii-associated pneumonia using a clinically isolated hypervirulent strain. Antimicrob Agents Chemother 2013; 57:3601-13. [PMID: 23689726 DOI: 10.1128/aac.00944-13] [Citation(s) in RCA: 102] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Acinetobacter baumannii is an important emerging pathogen in health care-acquired infections and is responsible for severe nosocomial and community-acquired pneumonia. Currently available mouse models of A. baumannii pneumonia show poor colonization with little to no extrapulmonary dissemination. Here, we describe a mouse model of A. baumannii pneumonia using a clinical isolate (LAC-4 strain) that reliably reproduces the most relevant features of human pulmonary A. baumannii infection and pathology. Using this model, we have shown that LAC-4 infection induced rapid bacterial replication in the lungs, significant extrapulmonary dissemination, and severe bacteremia by 24 h postintranasal inoculation. Infected mice showed severe bronchopneumonia and dilatation and inflammatory cell infiltration in the perivascular space. More significantly, 100% of C57BL/6 and BALB/c mice succumbed to 10(8) CFU of LAC-4 inoculation within 48 h. When this model was used to assess the efficacy of antimicrobials, all mice treated with imipenem and tigecycline survived a lethal intranasal challenge, with minimal clinical signs and body weight loss. Moreover, intranasal immunization of mice with formalin-fixed LAC-4 protected 40% of mice from a lethal (100× 100% lethal dose) intraperitoneal challenge. Thus, this model offers a reproducible acute course of A. baumannii pneumonia without requiring additional manipulation of host immune status, which will facilitate the development of therapeutic agents and vaccines against A. baumannii pneumonia in humans.
Collapse
|
44
|
Abstract
The continued development of nuclear weapons and the potential for thermonuclear injury necessitates the further understanding of the immune consequences after radiation combined with injury (RCI). We hypothesized that sublethal ionization radiation exposure combined with a full-thickness thermal injury would result in the production of immature myeloid cells. Mice underwent either a full-thickness contact burn of 20% total body surface area or sham procedure followed by a single whole-body dose of 5-Gy radiation. Serum, spleen, and peripheral lymph nodes were harvested at 3 and 14 days after injury. Flow cytometry was performed to identify and characterize adaptive and innate cell compartments. Elevated proinflammatory and anti-inflammatory serum cytokines and profound leukopenia were observed after RCI. A population of cells with dual expression of the cell surface markers Gr-1 and CD11b were identified in all experimental groups, but were significantly elevated after burn alone and RCI at 14 days after injury. In contrast to the T-cell-suppressive nature of myeloid-derived suppressor cells found after trauma and sepsis, myeloid cells after RCI augmented T-cell proliferation and were associated with a weak but significant increase in interferon γ and a decrease in interleukin 10. This is consistent with previous work in burn injury indicating that a myeloid-derived suppressor cell-like population increases innate immunity. Radiation combined injury results in the increase in distinct populations of Gr-1CD11b cells within the secondary lymphoid organs, and we propose these immature inflammatory myeloid cells provide innate immunity to the severely injured and immunocompromised host.
Collapse
|
45
|
Lipopolysaccharide-deficient Acinetobacter baumannii shows altered signaling through host Toll-like receptors and increased susceptibility to the host antimicrobial peptide LL-37. Infect Immun 2012; 81:684-9. [PMID: 23250952 DOI: 10.1128/iai.01362-12] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Infections caused by multidrug-resistant Acinetobacter baumannii have emerged as a serious global health problem. We have shown previously that A. baumannii can become resistant to the last-line antibiotic colistin via the loss of lipopolysaccharide (LPS), including the lipid A anchor, from the outer membrane (J. H. Moffatt, M. Harper, P. Harrison, J. D. Hale, E. Vinogradov, T. Seemann, R. Henry, B. Crane, F. St. Michael, A. D. Cox, B. Adler, R. L. Nation, J. Li, and J. D. Boyce, Antimicrob. Agents Chemother. 54:4971-4977, 2010). Here, we show how these LPS-deficient bacteria interact with components of the host innate immune system. LPS-deficient A. baumannii stimulated 2- to 4-fold lower levels of NF-κB activation and tumor necrosis factor alpha (TNF-α) secretion from immortalized murine macrophages, but it still elicited low levels of TNF-α secretion via a Toll-like receptor 2-dependent mechanism. Furthermore, we show that while LPS-deficient A. baumannii was not altered in its resistance to human serum, it showed increased susceptibility to the human antimicrobial peptide LL-37. Thus, LPS-deficient, colistin-resistant A. baumannii shows significantly altered activation of the host innate immune inflammatory response.
Collapse
|
46
|
Jacqueline C, Roquilly A, Desessard C, Boutoille D, Broquet A, Le Mabecque V, Amador G, Potel G, Caillon J, Asehnoune K. Efficacy of ceftolozane in a murine model of Pseudomonas aeruginosa acute pneumonia: in vivo antimicrobial activity and impact on host inflammatory response. J Antimicrob Chemother 2012; 68:177-83. [DOI: 10.1093/jac/dks343] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
47
|
Baquir B, Lemaire S, Van Bambeke F, Tulkens PM, Lin L, Spellberg B. Macrophage killing of bacterial and fungal pathogens is not inhibited by intense intracellular accumulation of the lipoglycopeptide antibiotic oritavancin. Clin Infect Dis 2012; 54 Suppl 3:S229-32. [PMID: 22431853 DOI: 10.1093/cid/cir921] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Intact phagocytic effector function is fundamental to host defense against microbial pathogens. Concern has been raised regarding the potential that accumulation of certain agents, including cationic amphiphilic antibiotics, within macrophages could cause a mixed-lipid storage disorder, resulting in macrophage dysfunction in recipients. The ability of 2 macrophage cell lines (HL-60; RAW 264.7) to kill archetypal Gram-positive (Staphylococcus aureus), Gram-negative (Acinetobacter baumannii), and fungal (Candida albicans) pathogens was tested following exposure of the macrophages to the lipoglycopeptide antibiotic oritavancin. Oritavancin did not affect killing of C. albicans but markedly enhanced killing of S. aureus by both macrophages. Oritavancin modestly reduced killing of A. baumannii by HL-60 cells but not by RAW 264.7 cells. Thus, macrophage killing of microbes remains intact despite substantial intracellular accumulation with a lipoglycopeptide antibiotic.
Collapse
Affiliation(s)
- Beverlie Baquir
- Division of General Internal Medicine, Los Angeles Biomedical Research Institute at Harbor-University of California at Los Angeles (UCLA) Medical Center, Torrance, CA 90502, USA
| | | | | | | | | | | |
Collapse
|
48
|
McConnell MJ, Actis L, Pachón J. Acinetobacter baumannii: human infections, factors contributing to pathogenesis and animal models. FEMS Microbiol Rev 2012; 37:130-55. [PMID: 22568581 DOI: 10.1111/j.1574-6976.2012.00344.x] [Citation(s) in RCA: 389] [Impact Index Per Article: 29.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2011] [Revised: 04/30/2012] [Accepted: 05/03/2012] [Indexed: 11/30/2022] Open
Abstract
Acinetobacter baumannii has emerged as a medically important pathogen because of the increasing number of infections produced by this organism over the preceding three decades and the global spread of strains with resistance to multiple antibiotic classes. In spite of its clinical relevance, until recently, there have been few studies addressing the factors that contribute to the pathogenesis of this organism. The availability of complete genome sequences, molecular tools for manipulating the bacterial genome, and animal models of infection have begun to facilitate the identification of factors that play a role in A. baumannii persistence and infection. This review summarizes the characteristics of A. baumannii that contribute to its pathogenesis, with a focus on motility, adherence, biofilm formation, and iron acquisition. In addition, the virulence factors that have been identified to date, which include the outer membrane protein OmpA, phospholipases, membrane polysaccharide components, penicillin-binding proteins, and outer membrane vesicles, are discussed. Animal models systems that have been developed during the last 15 years for the study of A. baumannii infection are overviewed, and the recent use of these models to identify factors involved in virulence and pathogenesis is highlighted.
Collapse
Affiliation(s)
- Michael J McConnell
- Unit of Infectious Disease, Microbiology, and Preventive Medicine, Institute of Biomedicine of Sevilla (IBiS), University Hospital Virgen del Rocío/CSIC/University of Sevilla, Sevilla, Spain.
| | | | | |
Collapse
|
49
|
Tsuchiya T, Nakao N, Yamamoto S, Hirai Y, Miyamoto K, Tsujibo H. NK1.1+ cells regulate neutrophil migration in mice with Acinetobacter baumannii pneumonia. Microbiol Immunol 2012; 56:107-16. [DOI: 10.1111/j.1348-0421.2011.00402.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
50
|
de Breij A, Eveillard M, Dijkshoorn L, van den Broek PJ, Nibbering PH, Joly-Guillou ML. Differences in Acinetobacter baumannii strains and host innate immune response determine morbidity and mortality in experimental pneumonia. PLoS One 2012; 7:e30673. [PMID: 22347396 PMCID: PMC3275605 DOI: 10.1371/journal.pone.0030673] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 12/20/2011] [Indexed: 11/18/2022] Open
Abstract
Despite many reports documenting its epidemicity, little is known on the interaction of Acinetobacter baumannii with its host. To deepen our insight into this relationship, we studied persistence of and host response to different A. baumannii strains including representatives of the European (EU) clones I–III in a mouse pneumonia model. Neutropenic mice were inoculated intratracheally with five A. baumannii strains and an A. junii strain and at several days morbidity, mortality, bacterial counts, airway inflammation, and chemo- and cytokine production in lungs and blood were determined. A. baumannii RUH875 and RUH134 (EU clone I and II, respectively) and sporadic strain LUH8326 resulted in high morbidity/mortality, whereas A. baumannii LUH5875 (EU clone III, which is less widespread than clone I and II) caused less symptoms. A. baumannii type strain RUH3023T and A. junii LUH5851 did not cause disease. All strains, except A. baumannii RUH3023T and A. junii LUH5851, survived and multiplied in the lungs for several days. Morbidity and mortality were associated with the severity of lung pathology and a specific immune response characterized by low levels of anti-inflammatory (IL-10) and specific pro-inflammatory (IL-12p40 and IL-23) cytokines at the first day of infection. Altogether, a striking difference in behaviour among the A. baumannii strains was observed with the clone I and II strains being most virulent, whereas the A. baumannii type strain, which is frequently used in virulence studies appeared harmless.
Collapse
Affiliation(s)
- Anna de Breij
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands.
| | | | | | | | | | | |
Collapse
|