1
|
Rocabert A, Martín-Pérez J, Pareras L, Egea R, Alaraby M, Cabrera-Gumbau JM, Sarmiento I, Martínez-Urtaza J, Rubio L, Barguilla I, Marcos R, García-Rodríguez A, Hernández A. Nanoplastic exposure affects the intestinal microbiota of adult Drosophila flies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2025; 980:179545. [PMID: 40311335 DOI: 10.1016/j.scitotenv.2025.179545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/27/2025] [Accepted: 04/24/2025] [Indexed: 05/03/2025]
Abstract
Micro- and nanoplastics (MNPLs) are emerging environmental pollutants that have garnered significant attention over the past few decades due to their detrimental effects on human health through various exposure pathways. This study investigates the impact of MNPLs on gut microbiota, utilizing Drosophila melanogaster as a model organism. Drosophila was selected for its microbiota's similarities to humans and its established role as an accessible and well-characterized model system. To analyze microbiota, full-length 16S rRNA gene sequencing was performed using the Nanopore sequencing platform, enabling comprehensive profiling of the microbial populations present in the samples. As models of MNPLs, two commercial polystyrene nanoplastics (PS-NPLs, 61.20 and 415.22 nm) and one lab-made polylactic acid nanoplastic (PLA-NPLs, 463.90 nm) were selected. As a positive control, zinc oxide nanoparticles (ZnO-NPs) were used. The observed findings revealed that exposure to MNPLs induced notable alterations in gut microbiota, including a reduction in bacterial abundance and shifts in species composition. These results suggest that MNPLs exposure can lead to microbial dysbiosis and potential gut health disruptions through its interaction, either with the gut epithelial barrier or directly with the resident microorganisms.
Collapse
Affiliation(s)
- Arnau Rocabert
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Joan Martín-Pérez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Laia Pareras
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Raquel Egea
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Mohamed Alaraby
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Jordi Manuel Cabrera-Gumbau
- Group of Genomics, Bioinformatics & Evolutionary Biology, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Iris Sarmiento
- Group of Genomics, Bioinformatics & Evolutionary Biology, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Jaime Martínez-Urtaza
- Group of Genomics, Bioinformatics & Evolutionary Biology, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Laura Rubio
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Irene Barguilla
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Ricard Marcos
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain
| | - Alba García-Rodríguez
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| | - Alba Hernández
- Group of Mutagenesis, Department of Genetics and Microbiology, Faculty of Biosciences, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Spain.
| |
Collapse
|
2
|
Vale PF. Providencia rettgeri. Trends Microbiol 2025:S0966-842X(25)00138-6. [PMID: 40374466 DOI: 10.1016/j.tim.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Revised: 04/16/2025] [Accepted: 04/23/2025] [Indexed: 05/17/2025]
Affiliation(s)
- Pedro F Vale
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
3
|
Hamed SM, Darwish MM, Monir R, Taweel AA, Ghanem AI, Hanna IN, Amer MA. Providencia pseudovermicola sp. nov.: redefining Providencia vermicola and unveiling multidrug-resistant strains from diabetic foot ulcers in Egypt. BMC Microbiol 2025; 25:238. [PMID: 40269694 PMCID: PMC12016157 DOI: 10.1186/s12866-025-03927-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Accepted: 03/24/2025] [Indexed: 04/25/2025] Open
Abstract
BACKGROUND Providencia species are concerning due to their intrinsic resistance to colistin and tigecycline, complicating the treatment of multidrug-resistant (MDR) infections. METHODS In the current study, two MDR isolates, DFU6 and DFU52T, were recovered from infected diabetic foot ulcers in Egypt in 2024. Following their initial identification as Providencia stuartii using VITEK® 2 and MALDI-TOF-MS, the isolates were subjected to whole-genome sequencing via DNBseq. RESULTS While the 16S rRNA gene showed 100% similarity to that of Providencia vermicola, phylogenomic analysis against the type strains in the TYGS database, including P. vermicola DSM 17385T confirmed that these isolates represent a distinct species within the genus, further supported by overall genome-relatedness indices (ORGIs). This discrepancy prompted us to revise the taxonomy of all published genomes of P. vermicola strains (n = 59) which revealed misidentification of at least 56 strains that are unrelated to the type strain of this species. DFU6 and DFU52T carried novel sequence types (ST29 and ST41, submitted to PubMLST) and harbored multiple resistance genes. Both strains contained the qnrD1 gene on a small, non-mobilizable plasmid. DFU52T possessed a conjugative plasmid encoding blaCMY-6, blaNDM-1, rmtC, aac(6')-Ib10, sul1, aph(3')-Ia, and qacEΔ1. DFU6 carried an ISEcp1-associated blaCTX-M-14, along with aadA, dfrA1, lnuF in a class 2 integron, and armA, msrE, and mphE on a resistance plasmid. Both isolates also featured a pathogenicity island (PAI) integrated into the pheV gene with fimbriae-encoding genes. CONCLUSION Following our reassessment of the taxonomic classification of all P. vermicola strains with published genomes, we propose reclassifying certain strains, including DFU6 and DFU52T, into distinct species for which we propose the name Providencia pseudovermicola sp. nov. We recommend DFU52T (= CCASU-2024-72) as the type strain for the novel species. We also shed light on the public health threat of this novel species as a human pathogen that harbours carbapenem and aminoglycoside resistance genes on mobile genetic elements.
Collapse
Affiliation(s)
- Samira M Hamed
- Microbiology and Immunology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt.
| | - Manal M Darwish
- Microbiology and Immunology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
- Medical Microbiology and Immunology, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Reham Monir
- National Institute of Diabetes and Endocrinology (NIDE), Cairo, Egypt
| | - Ahmed Al Taweel
- National Institute of Diabetes and Endocrinology (NIDE), Cairo, Egypt
| | - Ayat I Ghanem
- National Institute of Diabetes and Endocrinology (NIDE), Cairo, Egypt
| | - Ihab N Hanna
- National Institute of Diabetes and Endocrinology (NIDE), Cairo, Egypt
| | - Mai A Amer
- Microbiology and Immunology Department, Faculty of Pharmacy, October University for Modern Sciences and Arts (MSA), Giza, Egypt
| |
Collapse
|
4
|
Sarkar S, Shit B, Bose J, De S, Kawecki TJ, Khan I. Evolutionary History With Chronic Malnutrition Enhances Pathogen Susceptibility at Older Ages. Ecol Evol 2025; 15:e71070. [PMID: 40190800 PMCID: PMC11968410 DOI: 10.1002/ece3.71070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 01/27/2025] [Accepted: 02/19/2025] [Indexed: 04/09/2025] Open
Abstract
Juvenile malnutrition is a global public health concern that negatively impacts the development and maturation of the immune system, leading to increased susceptibility to infectious diseases. Such adverse effects on immunity might increase with ageing, worsening disease conditions later in life. Furthermore, malnutrition may persist across generations, imposing strong natural selection to survive the nutrient shortage. However, it is unclear how the evolutionary history of ancestral generations with chronic malnutrition could influence pathogen resistance and infection susceptibility, as well as their age-specific changes in extant generations. To address this, we used Drosophila melanogaster populations adapted to chronic juvenile malnutrition and exposed them to a bacterial pathogen, Providencia rettgeri, during their early and late adulthood. Surprisingly, we observed that in populations adapted to chronic malnutrition, young flies survived infection better by tolerating the infection, while control flies displayed higher infection susceptibility despite carrying a similar pathogen load. However, this pattern in post-infection survival is reversed with ageing. There was no change in pathogen resistance, but evolved flies succumbed more to infection than control flies regardless of the input infection doses. Our study thus revealed new evolutionary insights into the development of contrasting early-late-life immune strategies and age-specific vulnerabilities to infection as a function of early-life malnutrition.
Collapse
Affiliation(s)
- Saubhik Sarkar
- Department of BiologyAshoka UniversitySonipatHaryanaIndia
| | - Biswajit Shit
- Department of BiologyAshoka UniversitySonipatHaryanaIndia
| | - Joy Bose
- Department of BiologyAshoka UniversitySonipatHaryanaIndia
| | - Souvik De
- Department of BiologyAshoka UniversitySonipatHaryanaIndia
| | - Tadeusz J. Kawecki
- Department of Ecology and EvolutionUniversity of LausanneLausanneSwitzerland
| | - Imroze Khan
- Department of BiologyAshoka UniversitySonipatHaryanaIndia
| |
Collapse
|
5
|
Niosi A, Võ NH, Sundaramurthy P, Welch C, Penn A, Yuldasheva Y, Alfareh A, Rausch K, Amin-Rahbar T, Cavanaugh J, Yadav P, Peterson S, Brown R, Hu A, Ardon-Castro A, Nguyen D, Crawford R, Lee W, Morris EJ, Jensen MH, Mulligan K. Kismet/CHD7/CHD8 affects gut microbiota, mechanics, and the gut-brain axis in Drosophila melanogaster. Biophys J 2025; 124:933-941. [PMID: 38902926 PMCID: PMC11947469 DOI: 10.1016/j.bpj.2024.06.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/17/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024] Open
Abstract
The gut microbiome affects brain and neuronal development and may contribute to the pathophysiology of neurodevelopmental disorders. However, it is unclear how risk genes associated with such disorders affect gut physiology in a manner that could impact microbial colonization and how the mechanical properties of the gut tissue might play a role in gut-brain bidirectional communication. To address this, we used Drosophila melanogaster with a null mutation in the gene kismet, an ortholog of chromodomain helicase DNA-binding protein (CHD) family members CHD7 and CHD8. In humans, these are risk genes for neurodevelopmental disorders with co-occurring gastrointestinal symptoms. We found that kismet mutant flies have a significant increase in gastrointestinal transit time, indicating the functional homology of kismet with CHD7/CHD8 in vertebrates. Rheological characterization of dissected gut tissue revealed significant changes in the mechanics of kismet mutant gut elasticity, strain stiffening behavior, and tensile strength. Using 16S rRNA metagenomic sequencing, we also found that kismet mutants have reduced diversity and abundance of gut microbiota at every taxonomic level. To investigate the connection between the gut microbiome and behavior, we depleted gut microbiota in kismet mutant and control flies and quantified the flies' courtship behavior. Depletion of gut microbiota rescued courtship defects of kismet mutant flies, indicating a connection between gut microbiota and behavior. In striking contrast, depletion of the gut microbiome in the control strain reduced courtship activity, demonstrating that antibiotic treatment can have differential impacts on behavior and may depend on the status of microbial dysbiosis in the gut prior to depletion. We propose that Kismet influences multiple gastrointestinal phenotypes that contribute to the gut-microbiome-brain axis to influence behavior. We also suggest that gut tissue mechanics should be considered as an element in the gut-brain communication loop, both influenced by and potentially influencing the gut microbiome and neurodevelopment.
Collapse
Affiliation(s)
- Angelo Niosi
- Department of Biological Sciences, California State University, Sacramento, California
| | - Nguyên Henry Võ
- Department of Biological Sciences, California State University, Sacramento, California
| | | | - Chloe Welch
- Department of Biological Sciences, California State University, Sacramento, California
| | - Aliyah Penn
- Department of Biological Sciences, California State University, Sacramento, California
| | - Yelena Yuldasheva
- Department of Biological Sciences, California State University, Sacramento, California
| | - Adam Alfareh
- Department of Biological Sciences, California State University, Sacramento, California
| | - Kaitlyn Rausch
- Department of Biological Sciences, California State University, Sacramento, California
| | - Takhmina Amin-Rahbar
- Department of Biological Sciences, California State University, Sacramento, California
| | - Jeffery Cavanaugh
- Department of Physics and Astronomy, California State University, Sacramento, California
| | - Prince Yadav
- Department of Physics and Astronomy, California State University, Sacramento, California
| | - Stephanie Peterson
- Department of Biological Sciences, California State University, Sacramento, California
| | - Raina Brown
- Department of Biological Sciences, California State University, Sacramento, California
| | - Alain Hu
- Department of Biological Sciences, California State University, Sacramento, California
| | - Any Ardon-Castro
- Department of Biological Sciences, California State University, Sacramento, California
| | - Darren Nguyen
- Department of Biological Sciences, California State University, Sacramento, California
| | - Robert Crawford
- Department of Biological Sciences, California State University, Sacramento, California
| | - Wendy Lee
- Department of Computer Science, San Jose State University, San Jose, California
| | - Eliza J Morris
- Department of Physics and Astronomy, California State University, Sacramento, California
| | - Mikkel Herholdt Jensen
- Department of Physics and Astronomy, California State University, Sacramento, California.
| | - Kimberly Mulligan
- Department of Biological Sciences, California State University, Sacramento, California.
| |
Collapse
|
6
|
Forfar M, Feudale CR, Shaffer LE, Ginder GM, Duval ME, Vovsha M, Smith QB, Chambers MC, Smith SJ. Single Amino Acid Changes Impact the Ability of Drosophila melanogaster Cecropins to Inhibit Growth of Providencia Pathogens. ACS OMEGA 2025; 10:5403-5414. [PMID: 39989784 PMCID: PMC11840601 DOI: 10.1021/acsomega.4c07262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 01/14/2025] [Accepted: 01/27/2025] [Indexed: 02/25/2025]
Abstract
As antibiotic-resistant bacteria spread worldwide, the need to develop novel antimicrobial agents is urgent. One rich source of potential antimicrobials is the insect immune system, as insects produce a wide range of antimicrobial peptides (AMPs) with diverse sequences and structures. Insects also encounter many bacterial pathogens, some of which are closely related to pathogens of clinical relevance. However, despite interest in AMPs as therapeutics, the relationships between the amino acid sequence, biophysical properties, antimicrobial activity, and specificity are still not generalizable. To improve our understanding of these relationships, we assessed how single amino acid changes in cecropin AMPs produced by the fruit fly, Drosophila melanogaster, impact both their structure and their ability to inhibit the growth of Providencia species isolated from wild-caught D. melanogaster. These pathogens are of particular interest as they have a range of virulence in fruit flies, and work in vivo suggests that differences in virulence could be partially attributable to differential susceptibility to AMPs. D. melanogaster cecropins are 40 amino acids long but vary at only 5 residues with largely conservative changes. We found that these changes could impact inhibitory concentrations by up to 8-fold against Providencia species. Our investigation focused on a single amino acid position due to the importance of a flexible "hinge" in cecropin function. We found that altering the identity of this amino acid alone greatly impacted antimicrobial activity, changing bacterial susceptibility up to 16-fold. Generally, Providencia species that are less virulent in vivo are more susceptible to cecropin AMPs in vitro. We also observed differences in the kinetics of permeabilization and bacterial killing between species, suggesting that peptide-membrane interactions were differently affected by single amino acid changes and that bacteria in this genus may vary in their membrane composition.
Collapse
Affiliation(s)
- Marla
J. Forfar
- Department
of Chemistry, Bucknell University, 1 Dent Dr., Lewisburg, Pennsylvania 17837, United States
| | - Christopher R. Feudale
- Program
in Cell Biology and Biochemistry, Bucknell
University, 1 Dent Dr., Lewisburg, Pennsylvania 17837, United States
| | - Lauren E. Shaffer
- Department
of Biology, Bucknell University, 1 Dent Dr., Lewisburg, Pennsylvania 17837, United States
| | - Grace M. Ginder
- Department
of Biology, Bucknell University, 1 Dent Dr., Lewisburg, Pennsylvania 17837, United States
| | - Marion E. Duval
- Program
in Cell Biology and Biochemistry, Bucknell
University, 1 Dent Dr., Lewisburg, Pennsylvania 17837, United States
| | - Michelle Vovsha
- Department
of Biology, Bucknell University, 1 Dent Dr., Lewisburg, Pennsylvania 17837, United States
| | - Quinn B. Smith
- Program
in Neuroscience, Bucknell University, 1 Dent Dr., Lewisburg, Pennsylvania 17837, United States
| | - Moria C. Chambers
- Program
in Cell Biology and Biochemistry, Bucknell
University, 1 Dent Dr., Lewisburg, Pennsylvania 17837, United States
- Department
of Biology, Bucknell University, 1 Dent Dr., Lewisburg, Pennsylvania 17837, United States
| | - Sarah J. Smith
- Department
of Chemistry, Bucknell University, 1 Dent Dr., Lewisburg, Pennsylvania 17837, United States
- Program
in Cell Biology and Biochemistry, Bucknell
University, 1 Dent Dr., Lewisburg, Pennsylvania 17837, United States
| |
Collapse
|
7
|
Singh A, Basu A, Shit B, Hegde T, Bansal N, Prasad NG. Experimental adaptation to singular pathogen challenge reduces susceptibility to novel pathogens in Drosophila melanogaster. CURRENT RESEARCH IN INSECT SCIENCE 2024; 7:100105. [PMID: 39866524 PMCID: PMC11757221 DOI: 10.1016/j.cris.2024.100105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/31/2023] [Revised: 12/20/2024] [Accepted: 12/24/2024] [Indexed: 01/28/2025]
Abstract
Hosts often encounter and must respond to novel pathogens in the wild, that is pathogens that they have not encountered in recent evolutionary history, and therefore are not adapted to. How hosts respond to these novel pathogens and the outcome of such infections can be shaped by the host's evolutionary history, especially by how well adapted the host is to its native pathogens, that is pathogens they have evolved with. Host adaptation to one pathogen can either increase its susceptibility to a novel pathogen, due to specialization of immune defenses and trade-offs between different arms of the immune system, or can decrease susceptibility to novel pathogens by virtue of cross-resistance. Using laboratory Drosophila melanogaster populations, we explore if hosts experimentally adapted to surviving infection challenges by a single bacterial pathogen are also better at surviving infection challenges by novel bacterial pathogens. We found that such hosts can survive infection challenges by multiple novel pathogens, with the expanse of cross-resistance determined by the identity of the native pathogen and sex of the host. Therefore, we have demonstrated that cross-resistance can evolve in host populations by virtue of adaptation to a single pathogen. This observation has important ecological consequences, especially in the modern era where spillover of novel pathogens is a common occurrence due to various factors, including climate change.
Collapse
Affiliation(s)
- Aparajita Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, India
| | | | | | | | | | - Nagaraj Guru Prasad
- Department of Biological Sciences, Indian Institute of Science Education and Research (IISER) Mohali, India
| |
Collapse
|
8
|
Monteith KM, Thornhill P, Vale PF. Genetic Variation in Trophic Avoidance Behaviour Shows Fruit Flies are Generally Attracted to Bacterial Substrates. Ecol Evol 2024; 14:e70541. [PMID: 39524313 PMCID: PMC11550905 DOI: 10.1002/ece3.70541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 10/22/2024] [Accepted: 10/25/2024] [Indexed: 11/16/2024] Open
Abstract
Pathogen avoidance behaviours are often assumed to be an adaptive host defence. However, there is limited experimental data on heritable, intrapopulation phenotypic variation for avoidance, a strong prerequisite for adaptive responses to selection. We investigated trophic pathogen avoidance in 122 inbred Drosophila melanogaster lines, and in a derived outbred population. Using the FlyPAD system, we tracked the feeding choice that flies made between substrates that were either clean or contained a bacterial pathogen. We uncovered significant, but weakly heritable variation in the preference index amongst fly lines. However, instead of avoidance, most lines demonstrated a preference for substrates containing several bacterial pathogens, showing avoidance only for extremely high bacterial concentrations. Bacterial preference was not associated with susceptibility to infection and was retained in flies with disrupted immune signalling. Phenotype-genotype association analysis indicated several novel genes (CG2321, CG2006, and ptp99A) associated with increased preference for the bacterial substrate, while the amino-acid transporter sobremesa was associated with greater aversion. Given the known fitness benefits of consuming high-protein diets, our results suggest that bacterial attraction may instead reflect a dietary preference for protein over carbohydrate. More work quantifying intrapopulation variation in avoidance behaviours is needed to fully assess its importance in host-pathogen evolutionary ecology.
Collapse
Affiliation(s)
- Katy M. Monteith
- Institute of Ecology and Evolution, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Phoebe Thornhill
- Institute of Ecology and Evolution, School of Biological SciencesUniversity of EdinburghEdinburghUK
| | - Pedro F. Vale
- Institute of Ecology and Evolution, School of Biological SciencesUniversity of EdinburghEdinburghUK
| |
Collapse
|
9
|
Go W, Ishak IH, Zarkasi KZ, Azzam G. Salvianolic acids modulate lifespan and gut microbiota composition in amyloid-β-expressing Drosophila melanogaster. World J Microbiol Biotechnol 2024; 40:358. [PMID: 39428437 DOI: 10.1007/s11274-024-04163-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Alzheimer's disease (AD), a form of neurodegenerative disorder characterized by the accumulation of amyloid-β (Aβ), hyperphosphorylated Tau, and neuroinflammation. The increasing population affected by AD urges for the development of effective treatments. The correlation between AD and gut microbiome remains underexplored, potentially providing a better understanding of the disease. Salvianolic acid A (Sal A) and salvianolic acid B (Sal B) are the active components extracted from Salvia miltiorrhiza (Danshen), and their antioxidant, anti-inflammation and Aβ inhibition activities were shown previously. In this study, these compounds were used to investigate their effects on Aβ toxicity, using Drosophila melanogaster expressing human Aβ42 as the model organism, by examining their lifespan and changes in gut bacterial communities. The study used two batches of flies, reared on food with or without methylparaben (MP) supplementation to evaluate the influence of MP on this animal model during pharmacological studies. MP is a common antimicrobial agent used in flies' food. The treatment of Sal A prolonged the lifespan of Aβ-expressing flies reared on MP-supplemented food significantly (P < 0.001), but not those without MP. The lifespan of Sal B-treated flies did not show a significant difference compared to untreated flies for both groups reared on food with and without MP. Sal A-treated flies in the presence of MP exhibited a lower abundance of Corynebacterium and Enterococcus than the untreated flies, while Lactiplantibacillus was the most dominant taxa. Urea cycle was predicted to be predominant in this group compared to the untreated group. The control group, Aβ-expressing flies treated with Sal A and Sal B on MP-supplemented food had improved lifespan compared to their respective groups reared on food without MP, while untreated Aβ-expressing flies was the exception. The gut microbiota composition of flies reared on MP-supplemented food was also significantly different from those without MP (P < 0.001).
Collapse
Affiliation(s)
- Wenchen Go
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Intan Haslina Ishak
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia
| | - Kamarul Zaman Zarkasi
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia.
| | - Ghows Azzam
- School of Biological Sciences, Universiti Sains Malaysia, 11800, Minden, Pulau Pinang, Malaysia.
| |
Collapse
|
10
|
Klein JA, Predeus AV, Greissl AR, Clark-Herrera MM, Cruz E, Cundiff JA, Haeberle AL, Howell M, Lele A, Robinson DJ, Westerman TL, Wrande M, Wright SJ, Green NM, Vallance BA, McClelland M, Mejia A, Goodman AG, Elfenbein JR, Knodler LA. Pathogenic diversification of the gut commensal Providencia alcalifaciens via acquisition of a second type III secretion system. Infect Immun 2024; 92:e0031424. [PMID: 39254346 PMCID: PMC11477908 DOI: 10.1128/iai.00314-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 08/13/2024] [Indexed: 09/11/2024] Open
Abstract
Providencia alcalifaciens is a Gram-negative bacterium found in various water and land environments and organisms, including insects and mammals. Some P. alcalifaciens strains encode gene homologs of virulence factors found in pathogenic Enterobacterales members, such as Salmonella enterica serovar Typhimurium and Shigella flexneri. Whether these genes are pathogenic determinants in P. alcalifaciens is not known. In this study, we investigated P. alcalifaciens-host interactions at the cellular level, focusing on the role of two type III secretion systems (T3SS) belonging to the Inv-Mxi/Spa family. T3SS1b is widespread in Providencia spp. and encoded on the chromosome. A large plasmid that is present in a subset of P. alcalifaciens strains, primarily isolated from diarrheal patients, encodes for T3SS1a. We show that P. alcalifaciens 205/92 is internalized into eukaryotic cells, lyses its internalization vacuole, and proliferates in the cytosol. This triggers caspase-4-dependent inflammasome responses in gut epithelial cells. The requirement for the T3SS1a in entry, vacuole lysis, and cytosolic proliferation is host cell type-specific, playing a more prominent role in intestinal epithelial cells than in macrophages or insect cells. In a bovine ligated intestinal loop model, P. alcalifaciens colonizes the intestinal mucosa and induces mild epithelial damage with negligible fluid accumulation in a T3SS1a- and T3SS1b-independent manner. However, T3SS1b was required for the rapid killing of Drosophila melanogaster. We propose that the acquisition of two T3SS has allowed P. alcalifaciens to diversify its host range, from a highly virulent pathogen of insects to an opportunistic gastrointestinal pathogen of animals.
Collapse
Affiliation(s)
- Jessica A. Klein
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | | | - Aimee R. Greissl
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Mattie M. Clark-Herrera
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Eddy Cruz
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Jennifer A. Cundiff
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Amanda L. Haeberle
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Maya Howell
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Aaditi Lele
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Donna J. Robinson
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Trina L. Westerman
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Marie Wrande
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Sarah J. Wright
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Nicole M. Green
- Public Health Laboratory, Los Angeles County Department of Public Health, Downey, California, USA
| | - Bruce A. Vallance
- Division of Gastroenterology, Hepatology and Nutrition, BC Children’s Hospital and the University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael McClelland
- Department of Microbiology and Molecular Genetics, University of California, Irvine, California, USA
| | - Andres Mejia
- Comparative Pathology Laboratory, Research Animal Resources and Compliance, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Alan G. Goodman
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- School of Molecular Biosciences, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
| | - Johanna R. Elfenbein
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Clinical Sciences, College of Veterinary Medicine, North Carolina State University, Raleigh, North Carolina, USA
| | - Leigh A. Knodler
- Paul G. Allen School for Global Health, College of Veterinary Medicine, Washington State University, Pullman, Washington, USA
- Department of Microbiology and Molecular Genetics, Robert Larner College of Medicine at The University of Vermont, Burlington, Vermont, USA
| |
Collapse
|
11
|
Klein JA, Predeus AV, Greissl AR, Clark-Herrera MM, Cruz E, Cundiff JA, Haeberle AL, Howell M, Lele A, Robinson DJ, Westerman TL, Wrande M, Wright SJ, Green NM, Vallance BA, McClelland M, Mejia A, Goodman AG, Elfenbein JR, Knodler LA. Pathogenic diversification of the gut commensal Providencia alcalifaciens via acquisition of a second type III secretion system. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.07.595826. [PMID: 38895369 PMCID: PMC11185699 DOI: 10.1101/2024.06.07.595826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Providencia alcalifaciens is a Gram-negative bacterium found in a wide variety of water and land environments and organisms. It has been isolated as part of the gut microbiome of animals and insects, as well as from stool samples of patients with diarrhea. Specific P. alcalifaciens strains encode gene homologs of virulence factors found in other pathogenic members of the same Enterobacterales order, such as Salmonella enterica serovar Typhimurium and Shigella flexneri. Whether these genes are also pathogenic determinants in P. alcalifaciens is not known. Here we have used P. alcalifaciens 205/92, a clinical isolate, with in vitro and in vivo infection models to investigate P. alcalifaciens -host interactions at the cellular level. Our particular focus was the role of two type III secretion systems (T3SS) belonging to the Inv-Mxi/Spa family. T3SS 1b is widespread in Providencia spp. and encoded on the chromosome. T3SS 1a is encoded on a large plasmid that is present in a subset of P. alcalifaciens strains, which are primarily isolates from diarrheal patients. Using a combination of electron and fluorescence microscopy and gentamicin protection assays we show that P. alcalifaciens 205/92 is internalized into eukaryotic cells, rapidly lyses its internalization vacuole and proliferates in the cytosol. This triggers caspase-4 dependent inflammasome responses in gut epithelial cells. The requirement for the T3SS 1a in entry, vacuole lysis and cytosolic proliferation is host-cell type specific, playing a more prominent role in human intestinal epithelial cells as compared to macrophages. In a bovine ligated intestinal loop model, P. alcalifaciens colonizes the intestinal mucosa, inducing mild epithelial damage with negligible fluid accumulation. No overt role for T3SS 1a or T3SS 1b was seen in the calf infection model. However, T3SS 1b was required for the rapid killing of Drosophila melanogaster . We propose that the acquisition of two T3SS by horizontal gene transfer has allowed P. alcalifaciens to diversify its host range, from a highly virulent pathogen of insects to an opportunistic gastrointestinal pathogen of animals.
Collapse
|
12
|
Aziz RA, Ramesh P, Suchithra KV, Stothard P, Narayana VK, Raghu SV, Shen FT, Young CC, Prasad TSK, Hameed A. Comprehensive insights into the impact of bacterial indole-3-acetic acid on sensory preferences in Drosophila melanogaster. Sci Rep 2024; 14:8311. [PMID: 38594449 PMCID: PMC11003987 DOI: 10.1038/s41598-024-58829-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/03/2024] [Indexed: 04/11/2024] Open
Abstract
Several bacteria of environmental and clinical origins, including some human-associated strains secrete a cross-kingdom signaling molecule indole-3-acetic acid (IAA). IAA is a tryptophan (trp) derivative mainly known for regulating plant growth and development as a hormone. However, the nutritional sources that boost IAA secretion in bacteria and the impact of secreted IAA on non-plant eukaryotic hosts remained less explored. Here, we demonstrate significant trp-dependent IAA production in Pseudomonas juntendi NEEL19 when provided with ethanol as a carbon source in liquid cultures. IAA was further characterized to modulate the odor discrimination, motility and survivability in Drosophila melanogaster. A detailed analysis of IAA-fed fly brain proteome using high-resolution mass spectrometry showed significant (fold change, ± 2; p ≤ 0.05) alteration in the proteins governing neuromuscular features, audio-visual perception and energy metabolism as compared to IAA-unfed controls. Sex-wise variations in differentially regulated proteins were witnessed despite having similar visible changes in chemo perception and psychomotor responses in IAA-fed flies. This study not only revealed ethanol-specific enhancement in trp-dependent IAA production in P. juntendi, but also showed marked behavioral alterations in flies for which variations in an array of proteins governing odor discrimination, psychomotor responses, and energy metabolism are held responsible. Our study provided novel insights into disruptive attributes of bacterial IAA that can potentially influence the eukaryotic gut-brain axis having broad environmental and clinical implications.
Collapse
Affiliation(s)
- Raifa Abdul Aziz
- Neurogenetics Lab, Department of Applied Zoology, Mangalore University, Mangalagangothri, Konaje, Mangalore, 574199, India
| | - Poornima Ramesh
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575018, India
| | - Kokkarambath Vannadil Suchithra
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, India
| | - Paul Stothard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB T6G 2P5, Canada
| | - Vanya Kadla Narayana
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575018, India
| | - Shamprasad Varija Raghu
- Neurogenetics Lab, Department of Applied Zoology, Mangalore University, Mangalagangothri, Konaje, Mangalore, 574199, India
- Division of Neuroscience, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, India
| | - Fo-Ting Shen
- Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 402, Taiwan.
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, 402, Taiwan.
| | - Chiu-Chung Young
- Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 402, Taiwan
- Innovation and Development Center of Sustainable Agriculture, National Chung Hsing University, Taichung, 402, Taiwan
| | - T S Keshava Prasad
- Center for Systems Biology and Molecular Medicine, Yenepoya Research Centre, Yenepoya (Deemed to be University), Deralakatte, Mangalore, 575018, India.
| | - Asif Hameed
- Division of Microbiology and Biotechnology, Yenepoya Research Centre, Yenepoya (Deemed to Be University), Deralakatte, Mangalore, 575018, India.
- Department of Soil & Environmental Sciences, College of Agriculture and Natural Resources, National Chung Hsing University, Taichung, 402, Taiwan.
| |
Collapse
|
13
|
Yakovleva E, Danilova I, Maximova I, Shabaev A, Dmitrieva A, Belov A, Klyukina A, Perfilieva K, Bonch-Osmolovskaya E, Markov A. Salt concentration in substrate modulates the composition of bacterial and yeast microbiomes of Drosophila melanogaster. MICROBIOME RESEARCH REPORTS 2024; 3:19. [PMID: 38846022 PMCID: PMC11153085 DOI: 10.20517/mrr.2023.56] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 02/07/2024] [Accepted: 02/26/2024] [Indexed: 06/09/2024]
Abstract
Aim: Microbiomes influence the physiology and behavior of multicellular organisms and contribute to their adaptation to changing environmental conditions. However, yeast and bacterial microbiota have usually been studied separately; therefore, the interaction between bacterial and yeast communities in the gut of Drosophila melanogaster (D. melanogaster) is often overlooked. In this study, we investigate the correlation between bacterial and yeast communities in the gut of D. melanogaster. Methods: We studied the shifts in the joint microbiome of Drosophila melanogaster, encompassing both yeasts and bacteria, during adaptation to substrate with varying salt concentrations (0%, 2%, 4%, and 7%) using plating for both yeasts and bacteria and NGS-sequencing of variable 16S rRNA gene regions for bacteria. Results: The microbiome of flies and their substrates was gradually altered at moderate NaCl concentrations (2% and 4% compared with the 0% control) and completely transformed at high salt concentrations (7%). The relative abundance of Acetobacter, potentially beneficial to D. melanogaster, decreased as NaCl concentration increased, whereas the relative abundance of the more halotolerant lactobacilli first increased, peaking at 4% NaCl, and then declined dramatically at 7%. At this salinity level, potentially pathogenic bacteria of the genera Leuconostoc and Providencia were dominant. The yeast microbiome of D. melanogaster also undergoes significant changes with an increase in salt concentration in the substrate. The total yeast abundance undergoes nonlinear changes: it is lowest at 0% salt concentration and highest at 2%-4%. At a 7% concentration, the yeast abundance in flies and their substrate is lower than at 2%-4% but significantly higher than at 0%. Conclusions: The abundance and diversity of bacteria that are potentially beneficial to the flies decreased, while the proportion of potential pathogens, Leuconostoc and Providencia, increased with an increase in salt concentration in the substrate. In samples with a relatively high abundance and/or diversity of yeasts, the corresponding indicators for bacteria were often lowered, and vice versa. This may be due to the greater halotolerance of yeasts compared to bacteria and may also indicate antagonism between these groups of microorganisms.
Collapse
Affiliation(s)
- Ekaterina Yakovleva
- Biological Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Irina Danilova
- Biological Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Irina Maximova
- Faculty of Soil Science, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexander Shabaev
- A.N. Bach Institute of Biochemistry, Research Center of Biotechnology, Russian Academy of Sciences, Moscow 119071, Russia
| | - Anastasia Dmitrieva
- Biological Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Andrey Belov
- Faculty of Soil Science, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Alexandra Klyukina
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow 117312, Russia
| | - Ksenia Perfilieva
- Biological Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
| | - Elizaveta Bonch-Osmolovskaya
- Biological Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
- Winogradsky Institute of Microbiology, Federal Research Center of Biotechnology, Russian Academy of Sciences, Moscow 117312, Russia
| | - Alexander Markov
- Biological Faculty, Lomonosov Moscow State University, Moscow 119991, Russia
- Borisyak Paleontological Institute, Russian Academy of Sciences, Moscow 117997, Russia
| |
Collapse
|
14
|
Lu W, Zhou S, Ma X, Xu N, Liu D, Zhang K, Zheng Y, Wu S. fosA11, a novel chromosomal-encoded fosfomycin resistance gene identified in Providencia rettgeri. Microbiol Spectr 2024; 12:e0254223. [PMID: 38149860 PMCID: PMC10846113 DOI: 10.1128/spectrum.02542-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 11/29/2023] [Indexed: 12/28/2023] Open
Abstract
This study investigated resistance genes corresponding to the fosfomycin resistance phenotype in clinical isolate Providencia rettgeri W986, as well as characterizing the enzymatic activity of FosA11 and the genetic environment. Antimicrobial susceptibility testing was performed using the agar microdilution method based on the Clinical and Laboratory Standards Institute guidelines. The whole genomic sequence of Providencia rettgeri W986 was obtained using Illumina sequencing and the PacBio platform. The fosA-11 gene was amplified by PCR and cloned into the pUCP20 vector. The recombinant strain pCold1-fosA11-BL21 was expressed to extract the target protein, and absorbance photometry was applied for enzymatic parameter determination. Minimal inhibitory concentration (MIC) tests showed that W986 conferred fosfomycin resistance and was inhibited by phosphonoformate, thereby indicating the presence of a FosA protein. A novel resistance gene designated as fosA11 was identified by whole-genome sequencing and bioinformatics analysis, and it shared 54.41%-64.23% amino acid identity with known FosA proteins. Cloning fosA11 into Escherichia coli obtained a significant increase (32-fold) in the MIC with fosfomycin. Determination of the enzyme kinetics showed that FosA11 had a high catalytic effect on fosfomycin, with Km = 18 ± 4 and Kcat = 56.1 ± 3.2. We also found that fosA11 was located on the chromosome, but the difference in the GC content between the chromosome and fosA11 was dubious, and thus further investigation is required. In this study, we identified and characterized a novel fosfomycin inactivation enzyme called FosA11. The origin and prevalence of the fosA11 gene in other bacteria require further investigation.IMPORTANCEFosfomycin is an effective antimicrobial agent against Enterobacterales strains. However, the resistance rate of fosfomycin is increasing year by year. Therefore, it is necessary to study the deep molecular mechanism of bacterial resistance to fosfomycin. We identified a novel chromosomal fosfomycin glutathione S-transferase, FosA11 from Providencia rettgeri, which shares a very low identity (54.41%-64.23%) with the previously known FosA and exhibits highly efficient catalytic ability against fosfomycin. Analysis of the genetic context and origin of fosA11 displays that the gene and its surrounding environments are widely conserved in Providencia and no mobile elements are discovered, implying that FosA11 may be broadly important in the natural resistance to fosfomycin of Providencia species.
Collapse
Affiliation(s)
- Wei Lu
- Department of Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- The Fourth School of Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Shihan Zhou
- The Fourth School of Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Xueli Ma
- Department of Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Nuo Xu
- The Fourth School of Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| | - Dongxin Liu
- Department of Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Keqing Zhang
- Department of Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Yongke Zheng
- The Fourth School of Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
- Department of Intensive Care Unit, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
| | - Shenghai Wu
- Department of Laboratory, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China
- The Fourth School of Medicine Affiliated to Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
15
|
Zhang K, Wang S, Li Y, Yin Y, Zhang X, Zhang Q, Kong X, Liu W, Yao D, Zhang R, Zhang Z. Application of bacteria and bacteriophage cocktails for biological control of houseflies. Parasit Vectors 2024; 17:22. [PMID: 38233948 PMCID: PMC10795258 DOI: 10.1186/s13071-023-06082-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/04/2023] [Indexed: 01/19/2024] Open
Abstract
BACKGROUND Houseflies, Musca domestica L., are an ubiquitous pest that can transmit numerous diseases and threaten human health. Increasing insecticide resistance shown by houseflies necessitates the develop new control alternatives. The housefly gut is densely colonized with microorganisms that interact with each other dynamically and benefit the host's health. However, the impact of multiple symbiotic bacteria on the composition of housefly gut microbiota and the host's activities remains unclear. METHODS We isolated and cultured 12 bacterial species from the intestines of housefly larvae. We also isolated seven bacteriophages to precisely target the regulation of certain bacterial species. Using 16S rRNA high-throughput gene sequencing, we analyzed the bacterial diversity after orally administering bacteria/phage cocktails to houseflies. RESULTS Our results showed that larval growth was promoted, the abundance of beneficial bacteria, such as Klebsiella and Enterobacter, was increased and the abundance of harmful bacteria, such as Providencia, Morganella and Pseudomonas, was decreased in housefly larvae fed with the beneficial bacteria cocktail. However, oral administration of both beneficial and harmful bacterial phage cocktails inhibited larval growth, probably due to the drastic alteration of gut flora. Untargeted metabolomics using liquid chromatography-mass spectrometry showed that disturbances in gut microbiota changed the larval metabolite profiles. Feeding experiments revealed that disrupting the intestinal flora suppressed the beneficial bacteria and increased the harmful bacteria, causing changes in the metabolites and inhibiting larval growth. CONCLUSIONS Based on our results, bacteria/phage cocktails are effective tools for regulating the intestinal flora of insects and have a high potential as a biological control agent for incorporation into an integrated pest management program.
Collapse
Affiliation(s)
- Kexin Zhang
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, China
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Shumin Wang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- School of Life Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
| | - Ying Li
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- School of Clinical and Basic Medical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Yansong Yin
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- School of Clinical and Basic Medical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xinyu Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Qian Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- School of Clinical and Basic Medical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Xinxin Kong
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- School of Clinical and Basic Medical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Wenjuan Liu
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China
- Department of Laboratory Medicine, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Shanwei, China
| | - Dawei Yao
- Shandong Institute of Endocrine and Metabolic Diseases, Shandong First Medical University, Jinan, Shandong, China.
| | - Ruiling Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University and Shandong Academy of Medical Sciences, Taian, China.
- School of Clinical and Basic Medical Science, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China.
| | - Zhong Zhang
- School of Life Science, Weifang Medical University, Weifang, China.
- Medical Science and Technology Innovation Center, The First Affiliated Hospital of Shandong First Medical University, Jinan, China.
| |
Collapse
|
16
|
Liu Y, Luo R, Bai S, Lemaitre B, Zhang H, Li X. Pathobiont and symbiont contribute to microbiota homeostasis through Malpighian tubules-gut countercurrent flow in Bactrocera dorsalis. THE ISME JOURNAL 2024; 18:wrae221. [PMID: 39530356 PMCID: PMC11697180 DOI: 10.1093/ismejo/wrae221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 09/18/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Host-gut microbiota interactions are more complex than good or bad. Both gut symbiotic bacteria and pathobionts can provide essential functions to their host in one scenario and yet be detrimental to host health in another. So, these gut-dwelling bacteria must be tightly controlled to avoid harmful effects on the host. However, how pathobionts and other symbiotic bacteria coordinate to establish a host immune defense system remains unclear. Here, using a Tephritidae fruit fly Bactrocera dorsalis, we report that both pathobionts and other gut symbiotic bacteria release tyramine, which is recognized by the host insects. These tyramines induce the formation of insect-conserved Malpighian tubules-gut countercurrent flow upon bacterial infection, which requires tyramine receptors and aquaporins. At the same time, pathobionts but not gut symbiotic bacteria induce the generation of reactive oxygen species, which are preserved by the countercurrent flow, promoting bacteria elimination through increasing gut peristalsis. More importantly, our results show that the Malpighian tubules-gut countercurrent flow maintains proper microbiota composition. Our work suggests a model where pathobiont-induced reactive oxygen species are preserved by Malpighian tubules-gut countercurrent flow involving both pathobionts and symbiotic bacteria. Furthermore, our work provides a Malpighian tubules-gut interaction that ensures efficient maintenance of the gut microbiota.
Collapse
Affiliation(s)
- Yanning Liu
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China–Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Rengang Luo
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China–Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Shuai Bai
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China–Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Bruno Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), Station 19, 1015, Lausanne, Switzerland
| | - Hongyu Zhang
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China–Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| | - Xiaoxue Li
- National Key Laboratory for Germplasm Innovation and Utilization for Fruit and Vegetable Horticultural Crops, Hubei Hongshan Laboratory, China–Australia Joint Research Centre for Horticultural and Urban Pests, Institute of Urban and Horticultural Entomology, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province 430070, China
| |
Collapse
|
17
|
Qush A, Al Khatib HA, Rachid H, Al-Tamimi H, Al-Eshaq A, Al-Adwi S, Yassine HM, Kamareddine L. Intake of caffeine containing sugar diet remodels gut microbiota and perturbs Drosophila melanogaster immunity and lifespan. Microbes Infect 2023; 25:105149. [PMID: 37169244 DOI: 10.1016/j.micinf.2023.105149] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 04/30/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023]
Abstract
The diet-microbiome-immunity axis is one among the many arms that draw up the "we are what we intake" proclamation. As such, studies on the effect of food and beverage intake on the gut environment and microbiome and on modulating immunological responses and the host's susceptibility to pathogens are on the rise. A typical accompaniment in different sustenance we consume on daily basis is the trimethylxanthine alkaloid caffeine. Being a chief component in our regular aliment, a better understanding of the effect of caffeine containing food and beverages on our gut-microbiome-immunity axis and henceforth on our health is much needed. In this study, we shed more light on the effect of oral consumption of caffeine supplemented sugar diet on the gut environment, specifically on the gut microbiota, innate immunity and host susceptibility to pathogens using the Drosophila melanogaster model organism. Our findings reveal that the oral intake of a dose-specific caffeine containing sucrose/agarose sugar diet causes a significant alteration within the fly gut milieu demarcated by microbial dysbiosis and an elevation in the production of reactive oxygen species and expression of immune-deficiency (Imd) pathway-dependent antimicrobial peptide genes. The oral intake of caffeine containing sucrose/agarose sugar diet also renders the flies more susceptible to bacterial infection and shortens their lifespan in both infection and non-infection settings. Our findings set forth additional insight into the potentiality of diet to alter the gut milieu and highlight the importance of dietary control on health.
Collapse
Affiliation(s)
- Abeer Qush
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Hebah A Al Khatib
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar; Biomedical Research Center, Qatar University, Doha, Qatar
| | - Hajar Rachid
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Hend Al-Tamimi
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Alyaa Al-Eshaq
- Department of Basic Medical Sciences, College of Medicine, QU Health, Qatar University, Doha, Qatar
| | - Shaima Al-Adwi
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar
| | - Hadi M Yassine
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar; Biomedical Research Center, Qatar University, Doha, Qatar
| | - Layla Kamareddine
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha, Qatar; Biomedical Research Center, Qatar University, Doha, Qatar.
| |
Collapse
|
18
|
Radhika R, Lazzaro BP. No evidence for trans-generational immune priming in Drosophila melanogaster. PLoS One 2023; 18:e0288342. [PMID: 37440541 DOI: 10.1371/journal.pone.0288342] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Most organisms are under constant and repeated exposure to pathogens, leading to perpetual natural selection for more effective ways to fight-off infections. This could include the evolution of memory-based immunity to increase protection from repeatedly-encountered pathogens both within and across generations. There is mixed evidence for intra- and trans-generational priming in non-vertebrates, which lack the antibody-mediated acquired immunity characteristic of vertebrates. In this work, we tested for trans-generational immune priming in adult offspring of the fruit fly, Drosophila melanogaster, after maternal challenge with 10 different bacterial pathogens. We focused on natural opportunistic pathogens of Drosophila spanning a range of virulence from 10% to 100% host mortality. We infected mothers via septic injury and tested for enhanced resistance to infection in their adult offspring, measured as the ability to suppress bacterial proliferation and survive infection. We categorized the mothers into four classes for each bacterium tested: those that survived infection, those that succumbed to infection, sterile-injury controls, and uninjured controls. We found no evidence for trans-generational priming by any class of mother in response to any of the bacteria.
Collapse
Affiliation(s)
- R Radhika
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
| | - Brian P Lazzaro
- Department of Entomology, Cornell University, Ithaca, New York, United States of America
- Cornell Institute of Host-Microbe Interactions and Disease, Cornell University, Ithaca, New York, United States of America
| |
Collapse
|
19
|
Li Y, Wang S, Zhang K, Yin Y, Zhang X, Zhang Q, Kong X, Tang L, Zhang R, Zhang Z. Serratia marcescens in the intestine of housefly larvae inhibits host growth by interfering with gut microbiota. Parasit Vectors 2023; 16:196. [PMID: 37301969 DOI: 10.1186/s13071-023-05781-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 04/20/2023] [Indexed: 06/12/2023] Open
Abstract
BACKGROUND The structure of gut microbiota is highly complex. Insects have ubiquitous associations with intestinal symbiotic bacteria, which play essential roles. Thus, understanding how changes in the abundance of a single bacterium interfere with bacterial interactions in the insect's gut is important. METHODS Here, we analyzed the effects of Serratia marcescens on the growth and development of housefly larvae using phage technology. We used 16S rRNA gene sequencing technology to explore dynamic diversity and variation in gut bacterial communities and performed plate confrontation assays to study the interaction between S. marcescens and intestinal microorganisms. Furthermore, we performed phenoloxidase activity assay, crawling assay, and trypan blue staining to explore the negative effects of S. marcescens on housefly larvae's humoral immunity, motility, and intestinal organization. RESULTS The growth and development of housefly larvae were inhibited after feeding on S. marcescens, and their intestinal bacterial composition changed with increasing abundance of Providencia and decreasing abundance of Enterobacter and Klebsiella. Meanwhile, the depletion of S. marcescens by phages promoted the reproduction of beneficial bacteria. CONCLUSIONS In our study, using phage as a tool to regulate the abundance of S. marcescens, we highlighted the mechanism by which S. marcescens inhibits the growth and development of housefly larvae and illustrated the importance of intestinal flora for larval development. Furthermore, by studying the dynamic diversity and variation in gut bacterial communities, we improved our understanding of the possible relationship between the gut microbiome and housefly larvae when houseflies are invaded by exogenous pathogenic bacteria.
Collapse
Affiliation(s)
- Ying Li
- School of Basic Medical Science, (Shandong Academy of Medical Sciences), Shandong First Medical University, Taian, 271016, Shandong, China
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, (Shandong Academy of Medical Sciences), Shandong First Medical University, No. 619, Changchen Road, Taian, 271016, Shandong, China
| | - Shumin Wang
- School of Basic Medical Science, (Shandong Academy of Medical Sciences), Shandong First Medical University, Taian, 271016, Shandong, China
- School of Life Science, (Shandong Academy of Medical Sciences), Shandong First Medical University, Taian, 271016, Shandong, China
| | - Kexin Zhang
- School of Basic Medical Science, (Shandong Academy of Medical Sciences), Shandong First Medical University, Taian, 271016, Shandong, China
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, (Shandong Academy of Medical Sciences), Shandong First Medical University, No. 619, Changchen Road, Taian, 271016, Shandong, China
| | - Yansong Yin
- School of Basic Medical Science, (Shandong Academy of Medical Sciences), Shandong First Medical University, Taian, 271016, Shandong, China
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, (Shandong Academy of Medical Sciences), Shandong First Medical University, No. 619, Changchen Road, Taian, 271016, Shandong, China
| | - Xinyu Zhang
- School of Basic Medical Science, (Shandong Academy of Medical Sciences), Shandong First Medical University, Taian, 271016, Shandong, China
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, (Shandong Academy of Medical Sciences), Shandong First Medical University, No. 619, Changchen Road, Taian, 271016, Shandong, China
| | - Qian Zhang
- School of Basic Medical Science, (Shandong Academy of Medical Sciences), Shandong First Medical University, Taian, 271016, Shandong, China
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, (Shandong Academy of Medical Sciences), Shandong First Medical University, No. 619, Changchen Road, Taian, 271016, Shandong, China
| | - Xinxin Kong
- School of Basic Medical Science, (Shandong Academy of Medical Sciences), Shandong First Medical University, Taian, 271016, Shandong, China
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, (Shandong Academy of Medical Sciences), Shandong First Medical University, No. 619, Changchen Road, Taian, 271016, Shandong, China
| | - Luyao Tang
- Weifang Medical University, Weifang, 261021, Shandong, China
| | - Ruiling Zhang
- School of Basic Medical Science, (Shandong Academy of Medical Sciences), Shandong First Medical University, Taian, 271016, Shandong, China.
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, (Shandong Academy of Medical Sciences), Shandong First Medical University, No. 619, Changchen Road, Taian, 271016, Shandong, China.
| | - Zhong Zhang
- Weifang Medical University, Weifang, 261021, Shandong, China.
- The First Affiliated Hospital of Shandong First Medical University, Jinan, 250014, Shandong, China.
| |
Collapse
|
20
|
Chen G, Zhang K, Tang W, Li Y, Pang J, Yuan X, Song X, Jiang L, Yu X, Zhu H, Wang J, Zhang J, Zhang X. Feed nutritional composition affects the intestinal microbiota and digestive enzyme activity of black soldier fly larvae. Front Microbiol 2023; 14:1184139. [PMID: 37293219 PMCID: PMC10244541 DOI: 10.3389/fmicb.2023.1184139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 04/25/2023] [Indexed: 06/10/2023] Open
Abstract
Introduction Using black soldier fly larvae (BSFLs) to treat food waste is one of the most promising environmental protection technologies. Methods We used high-throughput sequencing to study the effects of different nutritional compositions on the intestinal microbiota and digestive enzymes of BSF. Results Compared with standard feed (CK), high-protein feed (CAS), high-fat feed (OIL) and high-starch feed (STA) had different effects on the BSF intestinal microbiota. CAS significantly reduced the bacterial and fungal diversity in the BSF intestinal tract. At the genus level, CAS, OIL and STA decreased the Enterococcus abundance compared with CK, CAS increased the Lysinibacillus abundance, and OIL increased the Klebsiella, Acinetobacter and Bacillus abundances. Diutina, Issatchenkia and Candida were the dominant fungal genera in the BSFL gut. The relative abundance of Diutina in the CAS group was the highest, and that of Issatchenkia and Candida in the OIL group increased, while STA decreased the abundance of Diutina and increased that of Issatchenkia. The digestive enzyme activities differed among the four groups. The α-amylase, pepsin and lipase activities in the CK group were the highest, and those in the CAS group were the lowest or the second lowest. Correlation analysis of environmental factors showed a significant correlation between the intestinal microbiota composition and digestive enzyme activity, especially α-amylase activity, which was highly correlated with bacteria and fungi with high relative abundances. Moreover, the mortality rate of the CAS group was the highest, and that of the OIL group was the lowest. Discussion In summary, different nutritional compositions significantly affected the community structure of bacteria and fungi in the BSFL intestinal tract, affected digestive enzyme activity, and ultimately affected larval mortality. The high oil diet gave the best results in terms of growth, survival and intestinal microbiota diversity, although the digestive enzymes activities were not the highest.
Collapse
Affiliation(s)
- Guozhong Chen
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji'nan, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
| | - Kai Zhang
- School of Life Sciences, Ludong University, Yantai, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
- Shandong Breeding Environmental Control Engineering Laboratory, Yantai, Shandong, China
| | - Wenli Tang
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji'nan, China
- Shandong Breeding Environmental Control Engineering Laboratory, Yantai, Shandong, China
| | - Youzhi Li
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji'nan, China
| | - Junyi Pang
- School of Life Sciences, Ludong University, Yantai, China
| | - Xin Yuan
- School of Life Sciences, Ludong University, Yantai, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
| | - Xiangbin Song
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji'nan, China
- Shandong Breeding Environmental Control Engineering Laboratory, Yantai, Shandong, China
| | - Linlin Jiang
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji'nan, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
- Shandong Breeding Environmental Control Engineering Laboratory, Yantai, Shandong, China
| | - Xin Yu
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji'nan, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
- Shandong Breeding Environmental Control Engineering Laboratory, Yantai, Shandong, China
| | - Hongwei Zhu
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji'nan, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
- Shandong Breeding Environmental Control Engineering Laboratory, Yantai, Shandong, China
| | - Jiao Wang
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji'nan, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
| | - Jianlong Zhang
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji'nan, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
- Shandong Breeding Environmental Control Engineering Laboratory, Yantai, Shandong, China
| | - Xingxiao Zhang
- School of Life Sciences, Ludong University, Yantai, China
- Shandong Provincial Key Laboratory of Quality Safety Monitoring and Risk Assessment for Animal Products, Ji'nan, China
- Yantai Key Laboratory of Animal Pathogenetic Microbiology and Immunology, Yantai, China
- Shandong Breeding Environmental Control Engineering Laboratory, Yantai, Shandong, China
| |
Collapse
|
21
|
Salas B, Conway HE, Vacek DC, Vitek C, Schuenzel EL. Pathogenicity of multiple Providencia species (Enterobacteriales: Morganellaceae) to the mass-reared Mexican fruit fly (Diptera: Tephritidae). JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:4. [PMID: 37220089 PMCID: PMC10469543 DOI: 10.1093/jisesa/iead024] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 03/22/2023] [Accepted: 04/28/2023] [Indexed: 05/25/2023]
Abstract
Mexican fruit fly (Anastrepha ludens (Loew)) (Diptera: Tephritidae) represents a major threat to fruit production in the Western Hemisphere. Sterile insect technique is used to suppress and eradicate wild populations. Success of this control method necessitates weekly production of hundreds of millions of flies, their sterilization by irradiation, and their aerial release. Diet needed to produce large fly numbers are conducive to the spread of bacteria. Pathogenic bacteria were isolated from 3 rearing facilities and from multiple sources: eggs, larvae, pupae and spent diet, and were found to include some isolates identified to the genus Providencia (Enterobacteriales: Morganellaceae). We identified 41 Providencia isolates and tested their pathogenicity to A. ludens. Based on 16s rRNA sequences, 3 groups were clustered into several species of Providencia with varying capacities to affect the Mexican fruit fly production. Isolates putatively identified as P. alcalifaciens/P. rustigianii were all pathogenic causing larval and pupal yield reduction of 46-64% and 37-57%, respectively. Among them, Providencia isolate 3006 was the most pathogenic reducing larval and pupae yield by 73 and 81%, respectively. Isolates identified as P. sneebia were not pathogenic. The final cluster, P. rettgeri/P. vermicola, were variable in pathogenicity with 3 isolates yielding like the control and the rest causing larval and pupal yield reduction of 26-53% and 23-51%, respectively. Isolates putatively identified as P. alcalifaciens/P. rustigianii were more virulent than P. rettgeri/P. vermicola. Accurate identification of species is needed to diagnose and monitor pathogenic versus nonpathogenic Providencia strains.
Collapse
Affiliation(s)
- Bacilio Salas
- United States Department of Agriculture, Animal and Plant Health Inspection Services, Plant Protection and Quarantine, Mission Laboratory, 22675 N. Moorefield Road, Moore Airbase, Building 6417, Edinburg, TX 78541, USA
| | - Hugh E Conway
- United States Department of Agriculture, Animal and Plant Health Inspection Services, Plant Protection and Quarantine, Mission Laboratory, 22675 N. Moorefield Road, Moore Airbase, Building 6417, Edinburg, TX 78541, USA
| | - Don C Vacek
- United States Department of Agriculture, Animal and Plant Health Inspection Services, Plant Protection and Quarantine, Mission Laboratory, 22675 N. Moorefield Road, Moore Airbase, Building 6417, Edinburg, TX 78541, USA
| | - Cristopher Vitek
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
- Center for Vector-Borne Disease, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| | - Erin L Schuenzel
- Department of Biology, University of Texas Rio Grande Valley, Edinburg, TX 78539, USA
| |
Collapse
|
22
|
Radhika R, Lazzaro BP. No evidence for trans-generational immune priming in Drosophila melanogaster. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.25.538340. [PMID: 37163106 PMCID: PMC10168321 DOI: 10.1101/2023.04.25.538340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/11/2023]
Abstract
Most organisms are under constant and repeated exposure to pathogens, leading to perpetual natural selection for more effective ways to fight-off infections. This could include the evolution of memory-based immunity to increase protection from repeatedly-encountered pathogens both within and across generations. There is mixed evidence for intra- and trans-generational priming in non-vertebrates, which lack the antibody-mediated acquired immunity characteristic of vertebrates. In this work, we tested for trans-generational immune priming in adult offspring of the fruit fly, Drosophila melanogaster , after maternal challenge with 10 different bacterial pathogens. We focused on natural opportunistic pathogens of Drosophila spanning a range of virulence from 10% to 100% host mortality. We infected mothers via septic injury and tested for enhanced resistance to infection in their adult offspring, measured as the ability to suppress bacterial proliferation and survive infection. We categorized the mothers into four classes for each bacterium tested: those that survived infection, those that succumbed to infection, sterile-injury controls, and uninjured controls. We found no evidence for trans-generational priming by any class of mother in response to any of the bacteria.
Collapse
|
23
|
Wukitch AM, Lawrence MM, Satriale FP, Patel A, Ginder GM, Van Beek EJ, Gilani O, Chambers MC. Impact of Chronic Infection on Resistance and Tolerance to Secondary Infection in Drosophila melanogaster. Infect Immun 2023; 91:e0036022. [PMID: 36794959 PMCID: PMC10016074 DOI: 10.1128/iai.00360-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/17/2023] Open
Abstract
Prior exposure to a pathogen can greatly influence the outcome of a secondary infection, and although invertebrates lack classically defined adaptive immunity, their immune response is still influenced by prior immune challenges. While the strength and specificity of such immune priming depends highly on the host organism and infecting microbe, chronic bacterial infection of the fruit fly Drosophila melanogaster with species isolated from wild-caught fruit flies provides broad nonspecific protection against a later secondary bacterial infection. To determine how chronic infection influences progression of secondary infection, we specifically tested how chronic infection with Serratia marcescens and Enterococcus faecalis impacted both resistance and tolerance to a secondary infection with an unrelated bacterium, Providencia rettgeri, by simultaneously tracking survival and bacterial load postinfection across a range of infectious doses. We found that these chronic infections increased both tolerance and resistance to P. rettgeri. Further investigation of S. marcescens chronic infection also revealed robust protection against the highly virulent Providencia sneebia, and that protection was dependent on the initial infectious dose for S. marcescens with protective doses corresponding with significantly increased diptericin expression. While the increased expression of this antimicrobial peptide gene likely explains the increased resistance, increased tolerance is likely due to other alterations in organismal physiology, such as increased negative regulation of immunity or tolerance of ER stress. These findings provide a foundation for future studies on how chronic infection influences tolerance to secondary infection.
Collapse
Affiliation(s)
- Abigail M. Wukitch
- Department of Biology, Bucknell University, Lewisburg, Pennsylvania, USA
| | | | | | - Alexa Patel
- Department of Biology, Bucknell University, Lewisburg, Pennsylvania, USA
| | - Grace M. Ginder
- Department of Biology, Bucknell University, Lewisburg, Pennsylvania, USA
| | - Emily J. Van Beek
- Department of Biology, Bucknell University, Lewisburg, Pennsylvania, USA
| | - Owais Gilani
- Department of Mathematics, Bucknell University, Lewisburg, Pennsylvania, USA
| | - Moria C. Chambers
- Department of Biology, Bucknell University, Lewisburg, Pennsylvania, USA
| |
Collapse
|
24
|
Awad M, Ben Gharsa H, ElKraly OA, Leclerque A, Elnagdy SM. COI Haplotyping and Comparative Microbiomics of the Peach Fruit Fly, an Emerging Pest of Egyptian Olive Orchards. BIOLOGY 2022; 12:biology12010027. [PMID: 36671720 PMCID: PMC9855353 DOI: 10.3390/biology12010027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/12/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022]
Abstract
The peach fruit fly, Bactrocera zonata (Tephritidae), is economically relevant as a highly polyphagous pest infesting over 50 host plants including commercial fruit and horticultural crops. As an invasive species, B. zonata was firmly established in Egypt and holds potential to spread further across the Mediterranean basin. The present study demonstrated that the peach fruit fly was found multiplying in olive orchards at two distant locations in Egypt. This is the first report of B. zonata developing in olives. COI barcoding has revealed evidence for high diversity across these peach fruit fly populations. These data are consistent with multiple rather than a single event leading to both peach fruit fly invasion to Egypt and its adaptation to olive. Comparative microbiomics data for B. zonata developing on different host plants were indicative for microbiome dynamics being involved in the adaptation to olive as a new niche with a potential adaptive role for Erwinia or Providencia bacteria. The possibility of symbiont transfer from the olive fruit fly to the peach fruit fly is discussed. Potentially host switch relevant bacterial symbionts might be preferred targets of symbiosis disruption strategies for integrated pest management or biological control of B. zonata.
Collapse
Affiliation(s)
- Mona Awad
- Department of Economic Entomology and Pesticides, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
- Correspondence: (M.A.); (A.L.); or (S.M.E.)
| | - Haifa Ben Gharsa
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
| | - Omnia Abdullah ElKraly
- Bioinsecticides Production Unit, Plant Protection Research Institute, Agriculture Research Center, Ministry of Agriculture, Giza 13611, Egypt
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt
| | - Andreas Leclerque
- Department of Biology, Technische Universität Darmstadt, 64287 Darmstadt, Germany
- Correspondence: (M.A.); (A.L.); or (S.M.E.)
| | - Sherif M. Elnagdy
- Department of Botany and Microbiology, Faculty of Science, Cairo University, Giza 12613, Egypt
- Correspondence: (M.A.); (A.L.); or (S.M.E.)
| |
Collapse
|
25
|
Shit B, Prakash A, Sarkar S, Vale PF, Khan I. Ageing leads to reduced specificity of antimicrobial peptide responses in Drosophila melanogaster. Proc Biol Sci 2022; 289:20221642. [PMID: 36382522 PMCID: PMC9667363 DOI: 10.1098/rspb.2022.1642] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 10/24/2022] [Indexed: 11/17/2022] Open
Abstract
Evolutionary theory predicts a late-life decline in the force of natural selection, possibly leading to late-life deregulations of the immune system. A potential outcome of such deregulations is the inability to produce specific immunity against target pathogens. We tested this possibility by infecting multiple Drosophila melanogaster lines (with bacterial pathogens) across age groups, where either individual or different combinations of Imd- and Toll-inducible antimicrobial peptides (AMPs) were deleted using CRISPR gene editing. We show a high degree of non-redundancy and pathogen-specificity of AMPs in young flies: in some cases, even a single AMP could confer complete resistance. However, ageing led to drastic reductions in such specificity to target pathogens, warranting the action of multiple AMPs across Imd and Toll pathways. Moreover, use of diverse AMPs either lacked survival benefits or even accompanied survival costs post-infection. These features were also sexually dimorphic: females required a larger repertoire of AMPs than males but extracted equivalent survival benefits. Finally, age-specific expansion of the AMP-repertoire was accompanied with ageing-induced downregulation of negative-regulators of the Imd pathway and damage to renal function post-infection, as features of poorly regulated immunity. Overall, we could highlight the potentially non-adaptive role of ageing in producing less-specific AMP responses, across sexes and pathogens.
Collapse
Affiliation(s)
- Biswajit Shit
- Ashoka University, Plot No. 2, Rajiv Gandhi Education City, National Capital Region P.O. Rai, Sonepat, Haryana-131029, India
| | - Arun Prakash
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Saubhik Sarkar
- Ashoka University, Plot No. 2, Rajiv Gandhi Education City, National Capital Region P.O. Rai, Sonepat, Haryana-131029, India
| | - Pedro F. Vale
- Institute of Ecology and Evolution, School of Biological Sciences, University of Edinburgh, Edinburgh EH9 3FL, UK
| | - Imroze Khan
- Ashoka University, Plot No. 2, Rajiv Gandhi Education City, National Capital Region P.O. Rai, Sonepat, Haryana-131029, India
| |
Collapse
|
26
|
Qiu M, Xiao X, Xiao Y, Ma J, Yang H, Jiang H, Dong Q, Wang W. Dynamic Changes of Bacterial Communities and Microbial Association Networks in Ready-to-Eat Chicken Meat during Storage. Foods 2022; 11:foods11223733. [PMID: 36429325 PMCID: PMC9689599 DOI: 10.3390/foods11223733] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/15/2022] [Accepted: 11/18/2022] [Indexed: 11/22/2022] Open
Abstract
Ready-to-eat (RTE) chicken is a popular food in China, but its lack of food safety due to bacterial contamination remains a concern, and the dynamic changes of microbial association networks during storage are not fully understood. This study investigated the impact of storage time and temperature on bacterial compositions and microbial association networks in RTE chicken using 16S rDNA high-throughput sequencing. The results show that the predominant phyla present in all samples were Proteobacteria and Firmicutes, and the most abundant genera were Weissella, Pseudomonas and Proteus. Increased storage time and temperature decreased the richness and diversity of the microorganisms of the bacterial communities. Higher storage temperatures impacted the bacterial community composition more significantly. Microbial interaction analyses showed 22 positive and 6 negative interactions at 4 °C, 30 positive and 12 negative interactions at 8 °C and 44 positive and 45 negative interactions at 22 °C, indicating an increase in the complexity of interaction networks with an increase in the storage temperature. Enterobacter dominated the interactions during storage at 4 and 22 °C, and Pseudomonas did so at 22 °C. Moreover, interactions between pathogenic and/or spoilage bacteria, such as those between Pseudomonas fragi and Weissella viridescens, Enterobacter unclassified and Proteus unclassified, or those between Enterobacteriaceae unclassified and W.viridescens, were observed. This study provides insight into the process involved in RTE meat spoilage and can aid in improving the quality and safety of RTE meat products to reduce outbreaks of foodborne illness.
Collapse
Affiliation(s)
- Mengjia Qiu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xingning Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Yingping Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Jiele Ma
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Hua Yang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Han Jiang
- Key Laboratory of Specialty Agri-Products Quality and Hazard Controlling Technology of Zhejiang Province, College of Life Sciences, China Jiliang University, Hangzhou 310018, China
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- Correspondence: (Q.D.); (W.W.)
| | - Wen Wang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-Products, MOA Laboratory of Quality & Safety Risk Assessment for Agro-Products (Hangzhou), Institute of Agro-Product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
- Correspondence: (Q.D.); (W.W.)
| |
Collapse
|
27
|
Lipopolysaccharide -mediated resistance to host antimicrobial peptides and hemocyte-derived reactive-oxygen species are the major Providencia alcalifaciens virulence factors in Drosophila melanogaster. PLoS Pathog 2022; 18:e1010825. [PMID: 36084158 PMCID: PMC9491580 DOI: 10.1371/journal.ppat.1010825] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/21/2022] [Accepted: 08/23/2022] [Indexed: 02/07/2023] Open
Abstract
Bacteria from the genus Providencia are ubiquitous Gram-negative opportunistic pathogens, causing “travelers’ diarrhea”, urinary tract, and other nosocomial infections in humans. Some Providencia strains have also been isolated as natural pathogens of Drosophila melanogaster. Despite clinical relevance and extensive use in Drosophila immunity research, little is known about Providencia virulence mechanisms and the corresponding insect host defenses. To close this knowledge gap, we investigated the virulence factors of a representative Providencia species—P. alcalifaciens which is highly virulent to fruit flies and amenable to genetic manipulations. We generated a P. alcalifaciens transposon mutant library and performed an unbiased forward genetics screen in vivo for attenuated mutants. Our screen uncovered 23 mutants with reduced virulence. The vast majority of them had disrupted genes linked to lipopolysaccharide (LPS) synthesis or modifications. These LPS mutants were sensitive to cationic antimicrobial peptides (AMPs) in vitro and their virulence was restored in Drosophila mutants lacking most AMPs. Thus, LPS-mediated resistance to host AMPs is one of the virulence strategies of P. alcalifaciens. Another subset of P. alcalifaciens attenuated mutants exhibited increased susceptibility to reactive oxygen species (ROS) in vitro and their virulence was rescued by chemical scavenging of ROS in flies prior to infection. Using genetic analysis, we found that the enzyme Duox specifically in hemocytes is the source of bactericidal ROS targeting P. alcalifaciens. Consistently, the virulence of ROS-sensitive P. alcalifaciens mutants was rescued in flies with Duox knockdown in hemocytes. Therefore, these genes function as virulence factors by helping bacteria to counteract the ROS immune response. Our reciprocal analysis of host-pathogen interactions between D. melanogaster and P. alcalifaciens identified that AMPs and hemocyte-derived ROS are the major defense mechanisms against P. alcalifaciens, while the ability of the pathogen to resist these host immune responses is its major virulence mechanism. Thus, our work revealed a host-pathogen conflict mediated by ROS and AMPs. Pathogens express special molecules or structures called virulence factors to successfully infect a host. By identifying these factors, we can learn how hosts fight and how pathogens cause infections. Here, we identified virulence factors of the human and fruit fly pathogen Providencia alcalifaciens, by infecting flies with a series of mutants of this pathogen. In this way, we detected 23 mutants that were less virulent. Some of these less virulent mutants were hypersensitive to fruit fly immune defense molecules called antimicrobial peptides (AMPs), while others were sensitive to reactive oxygen species (ROS) produced by the immune cells. Notably, AMPs-sensitive mutants remained virulent in a Drosophila mutant that lacks AMPs, while pathogens sensitive to oxidative stress retained their virulence in a fruit fly mutant devoid of oxidative species. These results suggest that the ability of P. alcalifaciens to resist two major host immune molecules, namely AMPs and ROS, is the major virulence mechanism. Overall, our systematic analysis of P. alcalifaciens virulence factors has identified the major defense mechanisms of the fruit fly against this pathogen and the bacterial mechanisms to combat these immune responses.
Collapse
|
28
|
IJdema F, De Smet J, Crauwels S, Lievens B, Van Campenhout L. Meta-analysis of larvae of the black soldier fly (Hermetia illucens) microbiota based on 16S rRNA gene amplicon sequencing. FEMS Microbiol Ecol 2022; 98:fiac094. [PMID: 35977400 PMCID: PMC9453823 DOI: 10.1093/femsec/fiac094] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 05/16/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022] Open
Abstract
Black soldier fly larvae (BSFL) belong to the most widely reared insects as an alternative protein source at industrial scale. Bacteria in the larval gut can provide benefits for the animal, though some bacteria can also be pathogenic for the insect. Accurate characterization of the BSFL microbiota is important for the production of BSFL in terms of yield and microbiological safety. In this study, 16S ribosomal RNA gene sequence data sets from 11 studies were re-analysed to gain better insights in the BSFL gut microbiota, potential factors that influence their composition, and differences between the gut and the whole larvae microbiota. A core gut microbiota was found consisting of members of Enterococcus, Klebsiella, Morganella, Providencia, and Scrofimicrobium. Further, the factors 'Study', 'Age' and 'Feed' (i.e. rearing substrate of the larvae) significantly affected the microbiota gut composition. When compared to whole larvae, a significantly lower diversity was found for gut samples, suggesting that the larvae harboured additional microbes on their cuticle or in the insect body. Universal choices in insect sample type, primer selection and bio-informatics analysis pipeline can strengthen future meta-analyses and improve our understanding of the BSFL gut microbiota towards the optimization of insect rearing conditions and substrates.
Collapse
Affiliation(s)
- Freek IJdema
- CLMT Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (MS), KU Leuven, B-3001, Campus Geel, Geel, B-2440, Belgium
- KU Leuven, Leuven Food Science and Nutrition Research Centre (LFoRCe), Leuven, B-3001, Belgium
| | - Jeroen De Smet
- CLMT Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (MS), KU Leuven, B-3001, Campus Geel, Geel, B-2440, Belgium
- KU Leuven, Leuven Food Science and Nutrition Research Centre (LFoRCe), Leuven, B-3001, Belgium
| | - Sam Crauwels
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M²S), KU Leuven, Leuven, B-3001, Belgium
| | - Bart Lievens
- CMPG Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems (M²S), KU Leuven, Leuven, B-3001, Belgium
- Leuven Plant Institute (LPI), KU Leuven, Leuven, B-3001, Belgium
| | - Leen Van Campenhout
- CLMT Research Group for Insect Production and Processing, Department of Microbial and Molecular Systems (MS), KU Leuven, B-3001, Campus Geel, Geel, B-2440, Belgium
- KU Leuven, Leuven Food Science and Nutrition Research Centre (LFoRCe), Leuven, B-3001, Belgium
| |
Collapse
|
29
|
Weber M, Fuchs TM. Metabolism in the Niche: a Large-Scale Genome-Based Survey Reveals Inositol Utilization To Be Widespread among Soil, Commensal, and Pathogenic Bacteria. Microbiol Spectr 2022; 10:e0201322. [PMID: 35924911 PMCID: PMC9430895 DOI: 10.1128/spectrum.02013-22] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 07/22/2022] [Indexed: 11/20/2022] Open
Abstract
Phytate is the main phosphorus storage molecule of plants and is therefore present in large amounts in the environment and in the diet of humans and animals. Its dephosphorylated form, the polyol myo-inositol (MI), can be used by bacteria as a sole carbon and energy source. The biochemistry and regulation of MI degradation were deciphered in Bacillus subtilis and Salmonella enterica, but a systematic survey of this catabolic pathway has been missing until now. For a comprehensive overview of the distribution of MI utilization, we analyzed 193,757 bacterial genomes, representing a total of 24,812 species, for the presence, organization, and taxonomic prevalence of inositol catabolic gene clusters (IolCatGCs). The genetic capacity for MI degradation was detected in 7,384 (29.8%) of all species for which genome sequences were available. IolCatGC-positive species were particularly found among Actinobacteria and Proteobacteria and to a much lesser extent in Bacteroidetes. IolCatGCs are very diverse in terms of gene number and functions, whereas the order of core genes is highly conserved on the phylum level. We predict that 111 animal pathogens, more than 200 commensals, and 430 plant pathogens or rhizosphere bacteria utilize MI, underscoring that IolCatGCs provide a growth benefit within distinct ecological niches. IMPORTANCE This study reveals that the capacity to utilize inositol is unexpectedly widespread among soil, commensal, and pathogenic bacteria. We assume that this yet-neglected metabolism plays a pivotal role in the microbial turnover of phytate and inositols. The bioinformatic tool established here enables predicting to which extent and genetic variance a bacterial determinant is present in all genomes sequenced so far.
Collapse
Affiliation(s)
- Michael Weber
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany
| | - Thilo M. Fuchs
- Friedrich-Loeffler-Institut/Federal Research Institute for Animal Health, Institute of Molecular Pathogenesis, Jena, Germany
| |
Collapse
|
30
|
Decomposing virulence to understand bacterial clearance in persistent infections. Nat Commun 2022; 13:5023. [PMID: 36028497 PMCID: PMC9418333 DOI: 10.1038/s41467-022-32118-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 07/15/2022] [Indexed: 11/08/2022] Open
Abstract
Following an infection, hosts cannot always clear the pathogen, instead either dying or surviving with a persistent infection. Such variation is ecologically and evolutionarily important because it can affect infection prevalence and transmission, and virulence evolution. However, the factors causing variation in infection outcomes, and the relationship between clearance and virulence are not well understood. Here we show that sustained persistent infection and clearance are both possible outcomes across bacterial species showing a range of virulence in Drosophila melanogaster. Variation in virulence arises because of differences in the two components of virulence: bacterial infection intensity inside the host (exploitation), and the amount of damage caused per bacterium (per parasite pathogenicity). As early-phase exploitation increased, clearance rates later in the infection decreased, whereas there was no apparent effect of per parasite pathogenicity on clearance rates. Variation in infection outcomes is thereby determined by how virulence - and its components - relate to the rate of pathogen clearance. Taken together we demonstrate that the virulence decomposition framework is broadly applicable and can provide valuable insights into host-pathogen interactions.
Collapse
|
31
|
Liu T, Klammsteiner T, Dregulo AM, Kumar V, Zhou Y, Zhang Z, Awasthi MK. Black soldier fly larvae for organic manure recycling and its potential for a circular bioeconomy: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 833:155122. [PMID: 35405225 DOI: 10.1016/j.scitotenv.2022.155122] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 03/30/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
Livestock farming and its products provide a diverse range of benefits for our day-to-day life. However, the ever-increasing demand for farmed animals has raised concerns about waste management and its impact on the environment. Worldwide, cattle produce enormous amounts of manure, which is detrimental to soil properties if poorly managed. Waste management with insect larvae is considered one of the most efficient techniques for resource recovery from manure. In recent years, the use of black soldier fly larvae (BSFL) for resource recovery has emerged as an effective method. Using BSFL has several advantages over traditional methods, as the larvae produce a safe compost and extract trace elements like Cu and Zn. This paper is a comprehensive review of the potential of BSFL for recycling organic wastes from livestock farming, manure bioconversion, parameters affecting the BSFL application on organic farming, and process performance of biomolecule degradation. The last part discusses the economic feasibility, lifecycle assessment, and circular bioeconomy of the BSFL in manure recycling. Moreover, it discusses the future perspectives associated with the application of BSFL. Specifically, this review discusses BSFL cultivation and its impact on the larvae's physiology, gut biochemical physiology, gut microbes and metabolic pathways, nutrient conservation and global warming potential, microbial decomposition of organic nutrients, total and pathogenic microbial dynamics, and recycling of rearing residues as fertilizer.
Collapse
Affiliation(s)
- Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Thomas Klammsteiner
- Department of Microbiology, University of Innsbruck, Technikerstrasse 25d, 6020 Innsbruck, Austria
| | - Andrei Mikhailovich Dregulo
- Federal State Budgetary Educational Institution of Higher Education "Saint-Petersburg State University" 7-9 Universitetskaya emb., 199034, Saint- Petersburg, Russia.
| | - Vinay Kumar
- Department of Biotechnology, Indian Institute of Technology (IIT) Roorkee, Roorkee 247667, Uttarakhand, India
| | - Yuwen Zhou
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| |
Collapse
|
32
|
Zhang Q, Wang S, Zhang X, Zhang K, Li Y, Yin Y, Zhang R, Zhang Z. Beneficial Bacteria in the Intestines of Housefly Larvae Promote Larval Development and Humoral Phenoloxidase Activity, While Harmful Bacteria do the Opposite. Front Immunol 2022; 13:938972. [PMID: 35874711 PMCID: PMC9299419 DOI: 10.3389/fimmu.2022.938972] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 06/08/2022] [Indexed: 11/24/2022] Open
Abstract
The gut microenvironment of houseflies provides unique conditions for microbial colonization. Some gut microorganisms provide benefits for the development of the host by regulating the interaction between the host and intestinal pathogens. Gut microbial alterations can stimulate the host’s immune mechanism to resist pathogen invasion and affect the development of insects. In this study, we isolated 10 bacterial strains from housefly larval intestines. The isolated bacteria were added to the larval diet to analyze the effects of microecological regulation of gut bacteria on larval development. Dynamic changes in gut flora composition after oral administration of specific bacteria were analyzed although 16S rRNA gene high-throughput sequencing technology. To explore the interaction between gut bacteria and the host, the immune response of larvae against the invasion of foreign microorganisms was observed through a phenoloxidase activity experiment. Our results showed that the oral administration of various isolated bacteria had different effects on larval development. Oral administration of beneficial bacteria, including Enterobacter hormaechei, Klebsiella pneumoniae, Acinetobacter bereziniae, Enterobacter cloacae, Lysinibacillus fusiformis and Bacillus safensis, promoted larval development by increasing gut community diversity and the humoral immunity of larvae, while harmful bacteria, including Pseudomonas aeruginosa, Providencia stuartii and Providencia vermicola, influenced larval development by inhibiting the growth of beneficial bacteria and reducing the humoral immunity of larvae. The beneficial bacteria isolated in our research could be applied as good probiotic additives for the intensive feeding of larvae, while isolation of the harmful bacteria provides a basis for the development of pest inhibitors. Furthermore, our research revealed the immune response of housefly phenoloxidase to exogenous microorganism stimulation, providing richer and more comprehensive knowledge of the larval innate immune response.
Collapse
Affiliation(s)
- Qian Zhang
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Shumin Wang
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Xinyu Zhang
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Kexin Zhang
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Ying Li
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Yansong Yin
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Ruiling Zhang
- School of Basic Medical Science, Shandong First Medical University (Shandong Academy of Medical Sciences), Taian, China
| | - Zhong Zhang
- The First Affiliated Hospital of Shandong First Medical University, Jinan, China
| |
Collapse
|
33
|
Li XY, Mei C, Luo XY, Wulamu D, Zhan S, Huang YP, Yang H. Dynamics of the intestinal bacterial community in black soldier fly larval guts and its influence on insect growth and development. INSECT SCIENCE 2022. [PMID: 35811567 DOI: 10.1111/1744-7917.13095] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Revised: 06/05/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
Black soldier fly (BSF), Hermetia illucens (Diptera: Stratiomyidae), is a prominent insect for the bioconversion of various organic wastes. As a saprotrophic insect, the BSF inhabits microbe-rich environments. However, the influences of the intestinal microorganisms on BSF growth and development are not very clear. In this study, the dynamics of the intestinal bacterial community of BSF larvae (BSFL) were analyzed using pyrosequencing. Actinobacteria, Bacteroidetes, Firmicutes, and Proteobacteria were the most prevalent bacterial phyla in the intestines of all larval instars. The dynamic changes in bacterial community compositions among different larval instars were striking at the genus level. Klebsiella, Clostridium, Providencia, and Dysgonomonas were the relatively most abundant bacteria in the 1st- to 4th-instar BSFL, respectively. Dysgonomonas and Providencia also dominated the 5th- and 6th-instar larvae, at ratios of 31.1% and 47.2%, respectively. In total, 148 bacterial strains affiliated with 20 genera were isolated on different media under aerobic and anaerobic conditions. Among them, 6 bacteria, BSF1-BSF6, were selected for further study. The inoculation of the 6 isolates independently into germ-free BSFL feeding on an artificial diet showed that all the bacteria, except BSF4, significantly promoted BSF growth and development compared with the germ-free control. Citrobacter, Dysgonomonas, Klebsiella, Ochrobactrum, and Providencia promoted BSF development significantly by increasing the weight gains of larvae and pupae, as well as increasing the prepupae and eclosion rates. In addition, Citrobacter, Klebsiella and Providencia shortened the BSF life cycle significantly. The results illustrate the promotive effects of intestinal bacteria on BSF growth and development.
Collapse
Affiliation(s)
- Xin-Yu Li
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Cheng Mei
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Xing-Yu Luo
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Dilinuer Wulamu
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, China
| | - Shuai Zhan
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yong-Ping Huang
- CAS Key Laboratory of Insect Developmental and Evolutionary Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Hong Yang
- Hubei Key Laboratory of Genetic Regulation and Integrative Biology, Institute of Entomology, School of Life Sciences, Central China Normal University, Wuhan, China
| |
Collapse
|
34
|
Gordon KE, Wolfner MF, Lazzaro BP. A single mating is sufficient to induce persistent reduction of immune defense in mated female Drosophila melanogaster. JOURNAL OF INSECT PHYSIOLOGY 2022; 140:104414. [PMID: 35728669 PMCID: PMC10162487 DOI: 10.1016/j.jinsphys.2022.104414] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 05/07/2023]
Abstract
In many species, female reproductive investment comes at a cost to immunity and resistance to infection. Mated Drosophila melanogaster females are more susceptible to bacterial infection than unmated females. Transfer of the male seminal fluid protein Sex Peptide reduces female post-mating immune defense. Sex Peptide is known to cause both short- and long-term changes to female physiology and behavior. While previous studies showed that females were less resistant to bacterial infection as soon as 2.5 h and as long as 26.5 h after mating, it is unknown whether this is a binary switch from mated to unmated state or whether females can recover to unmated levels of immunity. It is additionally unknown whether repeated mating causes progressive reduction in defense capacity. We compared the immune defense of mated females when infected at 2, 4, 7, or 10 days after mating to that of unmated females and saw no recovery of immune capacity regardless of the length of time between mating and infection. Because D. melanogaster females can mate multiply, we additionally tested whether a second mating, and therefore a second transfer of seminal fluids, caused deeper reduction in immune performance. We found that females mated either once or twice before infection survived at equal proportions, both with significantly lower probability than unmated females. We conclude that a single mating event is sufficient to persistently suppress the female immune system. Interestingly, we observed that induced levels of expression of genes encoding antimicrobial peptides (AMPs) decreased with age in both experiments, partially obscuring the effects of mating. Collectively, the data indicate that being reproductively active versus reproductively inactive are alternative binary states with respect to female D. melanogaster immunity. The establishment of a suppressed immune status in reproductively active females can inform our understanding of the regulation of immune defense and the mechanisms of physiological trade-offs.
Collapse
Affiliation(s)
- Kathleen E Gordon
- Field of Genetics, Genomics, and Development, Cornell University, Ithaca, NY 14853, USA; Department of Entomology, Cornell University, Ithaca, NY 14853, USA.
| | - Mariana F Wolfner
- Field of Genetics, Genomics, and Development, Cornell University, Ithaca, NY 14853, USA; Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| | - Brian P Lazzaro
- Field of Genetics, Genomics, and Development, Cornell University, Ithaca, NY 14853, USA; Department of Entomology, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
35
|
Zeng T, Su HA, Liu YL, Li JF, Jiang DX, Lu YY, Qi YX. Serotonin modulates insect gut bacterial community homeostasis. BMC Biol 2022; 20:105. [PMID: 35550116 PMCID: PMC9103294 DOI: 10.1186/s12915-022-01319-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 04/29/2022] [Indexed: 01/12/2023] Open
Abstract
Background Metazoan guts are in permanent contact with microbial communities. However, the host mechanisms that have developed to manage the dynamic changes of these microorganisms and maintain homeostasis remain largely unknown. Results Serotonin (5-hydroxytryptamine [5-HT]) was found to modulate gut microbiome homeostasis via regulation of a dual oxidase (Duox) gene expression in both Bactrocera dorsalis and Aedes aegypti. The knockdown of the peripheral 5-HT biosynthetic gene phenylalanine hydroxylase (TPH) increased the expression of Duox and the activity of reactive oxygen species, leading to a decrease in the gut microbiome load. Moreover, the TPH knockdown reduced the relative abundance of the bacterial genera Serratia and Providencia, including the opportunistic pathogens, S. marcescens and P. alcalifaciens in B. dorsalis. Treatment with 5-hydroxytryptophan, a precursor of 5-HT synthesis, fully rescued the TPH knockdown-induced phenotype. Conclusions The findings reveal the important contribution of 5-HT in regulating gut homeostasis, providing new insights into gut–microbe interactions in metazoans. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-022-01319-x.
Collapse
Affiliation(s)
- Tian Zeng
- Department of Entomology, College of Plant Protection, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642, China
| | - Hong-Ai Su
- Department of Entomology, College of Plant Protection, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642, China
| | - Ya-Lan Liu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642, China
| | - Jian-Fang Li
- Department of Entomology, College of Plant Protection, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642, China
| | - Ding-Xin Jiang
- Key Laboratory of Natural Pesticide and Chemical Biology, Ministry of Education, Laboratory of Insect Toxicology, South China Agricultural University, Guangzhou, China
| | - Yong-Yue Lu
- Department of Entomology, College of Plant Protection, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642, China.
| | - Yi-Xiang Qi
- Department of Entomology, College of Plant Protection, South China Agricultural University, Wushan Road 483, Tianhe District, Guangzhou, 510642, China.
| |
Collapse
|
36
|
Acuña Hidalgo B, Armitage SAO. Host Resistance to Bacterial Infection Varies Over Time, but Is Not Affected by a Previous Exposure to the Same Pathogen. Front Physiol 2022; 13:860875. [PMID: 35388288 PMCID: PMC8979062 DOI: 10.3389/fphys.2022.860875] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Immune priming describes the phenomenon whereby after a primary pathogen exposure, a host more effectively fights a lethal secondary exposure (challenge) to the same pathogen. Conflicting evidence exists for immune priming in invertebrates, potentially due to heterogeneity across studies in the pathogen species tested, the antigen preparation for the primary exposure, and the phenotypic trait used to test for priming. To explore these factors, we injected Drosophila melanogaster with one of two bacterial species, Lactococcus lactis or Providencia burhodogranariea, which had either been heat-killed or inactivated with formaldehyde, or we injected a 1:1 mixture of the two inactivation methods. Survival and resistance (the inverse of bacterial load) were assessed after a live bacterial challenge. In contrast to our predictions, none of the primary exposure treatments provided a survival benefit after challenge compared to the controls. Resistance in the acute phase, i.e., 1 day post-challenge, separated into a lower- and higher-load group, however, neither group varied according to the primary exposure. In the chronic phase, i.e., 7 days post-challenge, resistance did not separate into two groups, and it was also unaffected by the primary exposure. Our multi-angled study supports the view that immune priming may require specific circumstances to occur, rather than it being a ubiquitous aspect of insect immunity.
Collapse
|
37
|
Neophytou C, Pitsouli C. Biotin controls intestinal stem cell mitosis and host-microbiome interactions. Cell Rep 2022; 38:110505. [PMID: 35263602 DOI: 10.1016/j.celrep.2022.110505] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Revised: 12/11/2021] [Accepted: 02/16/2022] [Indexed: 12/12/2022] Open
Abstract
Diet is a key regulator of metabolism and interacts with the intestinal microbiome. Here, we study the role of the Drosophila intestinal stem cell (ISC)-specific biotin transporter Smvt in midgut homeostasis, infection-induced regeneration, and tumorigenesis. We show that Smvt-transported biotin in ISCs is necessary for ISC mitosis. Smvt deficiency impairs intestinal maintenance, which can be rescued by the human Smvt, encoded by SLC5A6. ISC-specific, Smvt-silenced flies exhibit microbial dysbiosis, whereby the growth of Providencia sneebia, an opportunistic pathogen, is favored. Dysbiosis correlates with increased Nox expression, reactive oxygen species (ROS), and enterocyte apoptosis. Flies acquire biotin from their diet and microbiota. We show that, when dietary biotin is scarce, biotin-producing commensals, e.g., E. coli, can rescue reduced ISC mitosis. Smvt and commensals also control intestinal tumor growth. Our findings suggest that direct modification of the gut microbiome by biotin can serve as an approach for the treatment of dysbiosis-promoted diseases and tumorigenesis control.
Collapse
Affiliation(s)
- Constantina Neophytou
- Department of Biological Sciences, University of Cyprus, 1 University Avenue, Aglantzia 2109, Cyprus
| | - Chrysoula Pitsouli
- Department of Biological Sciences, University of Cyprus, 1 University Avenue, Aglantzia 2109, Cyprus.
| |
Collapse
|
38
|
Carboni AL, Hanson MA, Lindsay SA, Wasserman SA, Lemaitre B. Cecropins contribute to Drosophila host defense against a subset of fungal and Gram-negative bacterial infection. Genetics 2022; 220:iyab188. [PMID: 34791204 PMCID: PMC8733632 DOI: 10.1093/genetics/iyab188] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/15/2021] [Indexed: 11/14/2022] Open
Abstract
Cecropins are small helical secreted peptides with antimicrobial activity that are widely distributed among insects. Genes encoding Cecropins are strongly induced upon infection, pointing to their role in host defense. In Drosophila, four cecropin genes clustered in the genome (CecA1, CecA2, CecB, and CecC) are expressed upon infection downstream of the Toll and Imd pathways. In this study, we generated a short deletion ΔCecA-C removing the whole cecropin locus. Using the ΔCecA-C deficiency alone or in combination with other antimicrobial peptide (AMP) mutations, we addressed the function of Cecropins in the systemic immune response. ΔCecA-C flies were viable and resisted challenge with various microbes as wild-type. However, removing ΔCecA-C in flies already lacking 10 other AMP genes revealed a role for Cecropins in defense against Gram-negative bacteria and fungi. Measurements of pathogen loads confirm that Cecropins contribute to the control of certain Gram-negative bacteria, notably Enterobacter cloacae and Providencia heimbachae. Collectively, our work provides the first genetic demonstration of a role for Cecropins in insect host defense and confirms their in vivo activity primarily against Gram-negative bacteria and fungi. Generation of a fly line (ΔAMP14) that lacks 14 immune inducible AMPs provides a powerful tool to address the function of these immune effectors in host-pathogen interactions and beyond.
Collapse
Affiliation(s)
- Alexia L Carboni
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Mark A Hanson
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| | - Scott A Lindsay
- Division of Biological Sciences, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Steven A Wasserman
- Division of Biological Sciences, University of California San Diego (UCSD), La Jolla, CA 92093, USA
| | - Bruno Lemaitre
- Global Health Institute, School of Life Science, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland
| |
Collapse
|
39
|
Taleb M. Effectiveness of broad-spectrum antiseptics in production of disinfected maggots of Lucilia sericata for use in wound debridement therapy. Wound Repair Regen 2021; 29:1017-1023. [PMID: 34633134 DOI: 10.1111/wrr.12968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 08/14/2021] [Accepted: 09/02/2021] [Indexed: 11/28/2022]
Abstract
The establishment of low-cost, effective, safe and practical methods is necessary to increase the use of larval therapy in wound care. Although studies on external disinfection of calliphorid eggs have been reported, many studies lack data on the effect of disinfection on egg viability and the microorganisms found before disinfection. Therefore, the main objective of this study was to compare three antiseptic solutions, that is, chlorhexidine (5%), Dakin's solution (0.5% NaOCl) and povidone-iodine (10%), in terms of their ability to disinfect Lucilia sericata eggs. Egg viability after disinfection and microorganisms present on the eggs and larvae before and after treatment were also examined. None of the antiseptics had a significant effect on egg viability. Disinfection of L. sericata eggs with 0.5% NaOCl was the best method, as sterility tests showed no contamination. Escherichia coli, Bacillus subtilis and Proteus mirabilis were present in all cultures isolated from the non-disinfected eggs and larvae, while Enterococcus faecium, Enterococcus faecalis, Morganella morganii, Corynebacterium spp. and Providencia stuartii were isolated from more than half of the same cultures. Sterility testing of medicinal maggots after disinfection is crucial to prevent secondary infections and achieve a positive therapeutic outcome.
Collapse
Affiliation(s)
- Meriem Taleb
- Department of Biology, Faculty of Nature and Life Sciences, University of Blida 1, Blida, Algeria
| |
Collapse
|
40
|
Andolfo G, Schuster C, Gharsa HB, Ruocco M, Leclerque A. Genomic analysis of the nomenclatural type strain of the nematode-associated entomopathogenic bacterium Providencia vermicola. BMC Genomics 2021; 22:708. [PMID: 34598677 PMCID: PMC8487129 DOI: 10.1186/s12864-021-08027-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 09/20/2021] [Indexed: 12/18/2022] Open
Abstract
Background Enterobacteria of the genus Providencia are mainly known as opportunistic human pathogens but have been isolated from highly diverse natural environments. The species Providencia vermicola comprises insect pathogenic bacteria carried by entomoparasitic nematodes and is investigated as a possible insect biocontrol agent. The recent publication of several genome sequences from bacteria assigned to this species has given rise to inconsistent preliminary results. Results The genome of the nematode-derived P. vermicola type strain DSM_17385 has been assembled into a 4.2 Mb sequence comprising 5 scaffolds and 13 contigs. A total of 3969 protein-encoding genes were identified. Multilocus sequence typing with different marker sets revealed that none of the previously published presumed P. vermicola genomes represents this taxonomic species. Comparative genomic analysis has confirmed a close phylogenetic relationship of P. vermicola to the P. rettgeri species complex. P. vermicola DSM_17385 carries a type III secretion system (T3SS-1) with probable function in host cell invasion or intracellular survival. Potentially antibiotic resistance-associated genes comprising numerous efflux pumps and point-mutated house-keeping genes, have been identified across the P. vermicola genome. A single small (3.7 kb) plasmid identified, pPVER1, structurally belongs to the qnrD-type family of fluoroquinolone resistance conferring plasmids that is prominent in Providencia and Proteus bacteria, but lacks the qnrD resistance gene. Conclusions The sequence reported represents the first well-supported published genome for the taxonomic species P. vermicola to be used as reference in further comparative genomics studies on Providencia bacteria. Due to a striking difference in the type of injectisome encoded by the respective genomes, P. vermicola might operate a fundamentally different mechanism of entomopathogenicity when compared to insect-pathogenic Providencia sneebia or Providencia burhodogranariea. The complete absence of antibiotic resistance gene carrying plasmids or mobile genetic elements as those causing multi drug resistance phenomena in clinical Providencia strains, is consistent with the invertebrate pathogen P. vermicola being in its natural environment efficiently excluded from the propagation routes of multidrug resistance (MDR) carrying genetic elements operating between human pathogens. Susceptibility to MDR plasmid acquisition will likely become a major criterion in the evaluation of P. vermicola for potential applications in biological pest control. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-08027-w.
Collapse
Affiliation(s)
- Giuseppe Andolfo
- Department of Agricultural Sciences, University of Naples "Federico II", Via Università 100, 80055, Portici, Italy.
| | - Christina Schuster
- Department of Biology, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287, Darmstadt, Germany
| | - Haifa Ben Gharsa
- Department of Biology, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287, Darmstadt, Germany
| | - Michelina Ruocco
- Istituto per la Protezione Sostenibile delle Piante (IPSP), Consiglio Nazionale delle Ricerche (CNR), Piazzale Enrico Fermi 1, 80055, Portici, Italy
| | - Andreas Leclerque
- Department of Biology, Technische Universität Darmstadt, Schnittspahnstraße 10, 64287, Darmstadt, Germany. .,Istituto per la Protezione Sostenibile delle Piante (IPSP), Consiglio Nazionale delle Ricerche (CNR), Piazzale Enrico Fermi 1, 80055, Portici, Italy.
| |
Collapse
|
41
|
Horizontal gene transfer-mediated bacterial strain variation affects host fitness in Drosophila. BMC Biol 2021; 19:187. [PMID: 34565363 PMCID: PMC8474910 DOI: 10.1186/s12915-021-01124-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 08/13/2021] [Indexed: 02/07/2023] Open
Abstract
Background How microbes affect host fitness and environmental adaptation has become a fundamental research question in evolutionary biology. To better understand the role of microbial genomic variation for host fitness, we tested for associations of bacterial genomic variation and Drosophila melanogaster offspring number in a microbial Genome Wide Association Study (GWAS). Results We performed a microbial GWAS, leveraging strain variation in the genus Gluconobacter, a genus of bacteria that are commonly associated with Drosophila under natural conditions. We pinpoint the thiamine biosynthesis pathway (TBP) as contributing to differences in fitness conferred to the fly host. While an effect of thiamine on fly development has been described, we show that strain variation in TBP between bacterial isolates from wild-caught D. melanogaster contributes to variation in offspring production by the host. By tracing the evolutionary history of TBP genes in Gluconobacter, we find that TBP genes were most likely lost and reacquired by horizontal gene transfer (HGT). Conclusion Our study emphasizes the importance of strain variation and highlights that HGT can add to microbiome flexibility and potentially to host adaptation. Supplementary Information The online version contains supplementary material available at 10.1186/s12915-021-01124-y.
Collapse
|
42
|
Shumo M, Khamis FM, Ombura FL, Tanga CM, Fiaboe KKM, Subramanian S, Ekesi S, Schlüter OK, van Huis A, Borgemeister C. A Molecular Survey of Bacterial Species in the Guts of Black Soldier Fly Larvae ( Hermetia illucens) Reared on Two Urban Organic Waste Streams in Kenya. Front Microbiol 2021; 12:687103. [PMID: 34630342 PMCID: PMC8493336 DOI: 10.3389/fmicb.2021.687103] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 08/13/2021] [Indexed: 11/28/2022] Open
Abstract
Globally, the expansion of livestock and fisheries production is severely constrained due to the increasing costs and ecological footprint of feed constituents. The utilization of black soldier fly (BSF) as an alternative protein ingredient to fishmeal and soybean in animal feed has been widely documented. The black soldier fly larvae (BSFL) used are known to voraciously feed and grow in contaminated organic wastes. Thus, several concerns about their safety for inclusion into animal feed remain largely unaddressed. This study evaluated both culture-dependent sequence-based and 16S rDNA amplification analysis to isolate and identify bacterial species associated with BSFL fed on chicken manure (CM) and kitchen waste (KW). The bacteria species from the CM and KW were also isolated and investigated. Results from the culture-dependent isolation strategies revealed that Providencia sp. was the most dominant bacterial species detected from the guts of BSFL reared on CM and KW. Morganella sp. and Brevibacterium sp. were detected in CM, while Staphylococcus sp. and Bordetella sp. were specific to KW. However, metagenomic studies showed that Providencia and Bordetella were the dominant genera observed in BSFL gut and processed waste substrates. Pseudomonas and Comamonas were recorded in the raw waste substrates. The diversity of bacterial genera recorded from the fresh rearing substrates was significantly higher compared to the diversity observed in the gut of the BSFL and BSF frass (leftovers of the rearing substrates). These findings demonstrate that the presence and abundance of microbiota in BSFL and their associated waste vary considerably. However, the presence of clinically pathogenic strains of bacteria in the gut of BSFL fed both substrates highlight the biosafety risk of potential vertical transmission that might occur, if appropriate pre-and-postharvest measures are not enforced.
Collapse
Affiliation(s)
- Marwa Shumo
- Leibniz-Institute for Agricultural Engineering Potsdam-Bornim (ATB), Potsdam, Germany
- Department of Ecology and Natural Resources Management, Center for Development Research (ZEF), Bonn, Germany
- Plant Health Unit, International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
- Hermetia Baruth GmbH, Insect Technology Center (ITC), Berlin, Germany
| | - Fathiya M. Khamis
- Plant Health Unit, International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Fidelis Levi Ombura
- Plant Health Unit, International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Chrysantus M. Tanga
- Plant Health Unit, International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Komi K. M. Fiaboe
- Plant Health Unit, International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
- IPM Department, The International Institute of Tropical Agriculture, Yaoundé, Cameroon
| | - Sevgan Subramanian
- Plant Health Unit, International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Sunday Ekesi
- Plant Health Unit, International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Oliver K. Schlüter
- Leibniz-Institute for Agricultural Engineering Potsdam-Bornim (ATB), Potsdam, Germany
| | - Arnold van Huis
- Laboratory of Entomology, Wageningen University & Research, Wageningen, Netherlands
| | - Christian Borgemeister
- Department of Ecology and Natural Resources Management, Center for Development Research (ZEF), Bonn, Germany
| |
Collapse
|
43
|
Zhou H, Li S, Wu S, Jin P, Ma F. LncRNA-CR11538 Decoys Dif/Dorsal to Reduce Antimicrobial Peptide Products for Restoring Drosophila Toll Immunity Homeostasis. Int J Mol Sci 2021; 22:ijms221810117. [PMID: 34576280 PMCID: PMC8468853 DOI: 10.3390/ijms221810117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2021] [Revised: 09/12/2021] [Accepted: 09/17/2021] [Indexed: 11/29/2022] Open
Abstract
Avoiding excessive or insufficient immune responses and maintaining homeostasis are critical for animal survival. Although many positive or negative modulators involved in immune responses have been identified, little has been reported to date concerning whether the long non-coding RNA (lncRNA) can regulate Drosophila immunity response. In this study, we firstly discover that the overexpression of lncRNA-CR11538 can inhibit the expressions of antimicrobial peptides Drosomycin (Drs) and Metchnikowin (Mtk) in vivo, thereby suppressing the Toll signaling pathway. Secondly, our results demonstrate that lncRNA-CR11538 can interact with transcription factors Dif/Dorsal in the nucleus based on both subcellular localization and RIP analyses. Thirdly, our findings reveal that lncRNA-CR11538 can decoy Dif/Dorsal away from the promoters of Drs and Mtk to repress their transcriptions by ChIP-qPCR and dual luciferase report experiments. Fourthly, the dynamic expression changes of Drs, Dif, Dorsal and lncRNA-CR11538 in wild-type flies (w1118) at different time points after M. luteus stimulation disclose that lncRNA-CR11538 can help Drosophila restore immune homeostasis in the later period of immune response. Overall, our study reveals a novel mechanism by which lncRNA-CR11538 serves as a Dif/Dorsal decoy to downregulate antimicrobial peptide expressions for restoring Drosophila Toll immunity homeostasis, and provides a new insight into further studying the complex regulatory mechanism of animal innate immunity.
Collapse
Affiliation(s)
- Hongjian Zhou
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China; (H.Z.); (S.L.); (S.W.); (F.M.)
| | - Shengjie Li
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China; (H.Z.); (S.L.); (S.W.); (F.M.)
- Jiangsu Provincial Key Construction Laboratory of Special Biomass Byproduct Resource Utilization, School of Food Science, Nanjing Xiaozhuang University, Nanjing 211171, China
| | - Shanshan Wu
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China; (H.Z.); (S.L.); (S.W.); (F.M.)
| | - Ping Jin
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China; (H.Z.); (S.L.); (S.W.); (F.M.)
- Correspondence: ; Tel.: +86-25-85891050
| | - Fei Ma
- Laboratory for Comparative Genomics and Bioinformatics & Jiangsu Key Laboratory for Biodiversity and Biotechnology, College of Life Science, Nanjing Normal University, Nanjing 210046, China; (H.Z.); (S.L.); (S.W.); (F.M.)
| |
Collapse
|
44
|
Aluja M, Zamora-Briseño JA, Pérez-Brocal V, Altúzar-Molina A, Guillén L, Desgarennes D, Vázquez-Rosas-Landa M, Ibarra-Laclette E, Alonso-Sánchez AG, Moya A. Metagenomic Survey of the Highly Polyphagous Anastrepha ludens Developing in Ancestral and Exotic Hosts Reveals the Lack of a Stable Microbiota in Larvae and the Strong Influence of Metamorphosis on Adult Gut Microbiota. Front Microbiol 2021; 12:685937. [PMID: 34413837 PMCID: PMC8367737 DOI: 10.3389/fmicb.2021.685937] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 06/21/2021] [Indexed: 12/17/2022] Open
Abstract
We studied the microbiota of a highly polyphagous insect, Anastrepha ludens (Diptera: Tephritidae), developing in six of its hosts, including two ancestral (Casimiroa edulis and C. greggii), three exotic (Mangifera indica cv. Ataulfo, Prunus persica cv. Criollo, and Citrus x aurantium) and one occasional host (Capsicum pubescens cv. Manzano), that is only used when extreme drought conditions limit fruiting by the common hosts. One of the exotic hosts (“criollo” peach) is rife with polyphenols and the occasional host with capsaicinoids exerting high fitness costs on the larvae. We pursued the following questions: (1) How is the microbial composition of the larval food related to the composition of the larval and adult microbiota, and what does this tell us about transience and stability of this species’ gut microbiota? (2) How does metamorphosis affect the adult microbiota? We surveyed the microbiota of the pulp of each host fruit, as well as the gut microbiota of larvae and adult flies and found that the gut of A. ludens larvae lacks a stable microbiota, since it was invariably associated with the composition of the pulp microbiota of the host plant species studied and was also different from the microbiota of adult flies indicating that metamorphosis filters out much of the microbiota present in larvae. The microbiota of adult males and females was similar between them, independent of host plant and was dominated by bacteria within the Enterobacteriaceae. We found that in the case of the “toxic” occasional host C. pubescens the microbiota is enriched in potentially deleterious genera that were much less abundant in the other hosts. In contrast, the pulp of the ancestral host C. edulis is enriched in several bacterial groups that can be beneficial for larval development. We also report for the first time the presence of bacteria within the Arcobacteraceae family in the gut microbiota of A. ludens stemming from C. edulis. Based on our findings, we conclude that changes in the food-associated microbiota dictate major changes in the larval microbiota, suggesting that most larval gut microbiota is originated from the food.
Collapse
Affiliation(s)
- Martín Aluja
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, AC-INECOL, Clúster Científico y Tecnológico BioMimic®, Xalapa, Mexico
| | - Jesús Alejandro Zamora-Briseño
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, AC-INECOL, Clúster Científico y Tecnológico BioMimic®, Xalapa, Mexico
| | - Vicente Pérez-Brocal
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain
| | - Alma Altúzar-Molina
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, AC-INECOL, Clúster Científico y Tecnológico BioMimic®, Xalapa, Mexico
| | - Larissa Guillén
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, AC-INECOL, Clúster Científico y Tecnológico BioMimic®, Xalapa, Mexico
| | - Damaris Desgarennes
- Red de Biodiversidad y Sistemática, Instituto de Ecología, AC-INECOL, Clúster Científico y Tecnológico BioMimic®, Xalapa, Mexico
| | - Mirna Vázquez-Rosas-Landa
- Red de Manejo Biorracional de Plagas y Vectores, Instituto de Ecología, AC-INECOL, Clúster Científico y Tecnológico BioMimic®, Xalapa, Mexico
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, AC-INECOL, Clúster Científico y Tecnológico BioMimic®, Xalapa, Mexico
| | - Alexandro G Alonso-Sánchez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología, AC-INECOL, Clúster Científico y Tecnológico BioMimic®, Xalapa, Mexico
| | - Andrés Moya
- Fundación para el Fomento de la Investigación Sanitaria y Biomédica de la Comunitat Valenciana (FISABIO), Valencia, Spain.,Instituto de Biología Integrativa de Sistemas (I2Sysbio), Universidad de Valencia-CSIC, Valencia, Spain
| |
Collapse
|
45
|
McMullen JG, Bueno E, Blow F, Douglas AE. Genome-Inferred Correspondence between Phylogeny and Metabolic Traits in the Wild Drosophila Gut Microbiome. Genome Biol Evol 2021; 13:evab127. [PMID: 34081101 PMCID: PMC8358223 DOI: 10.1093/gbe/evab127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2021] [Indexed: 12/03/2022] Open
Abstract
Annotated genome sequences provide valuable insight into the functional capabilities of members of microbial communities. Nevertheless, most studies on the microbiome in animal guts use metagenomic data, hampering the assignment of genes to specific microbial taxa. Here, we make use of the readily culturable bacterial communities in the gut of the fruit fly Drosophila melanogaster to obtain draft genome sequences for 96 isolates from wild flies. These include 81 new de novo assembled genomes, assigned to three orders (Enterobacterales, Lactobacillales, and Rhodospirillales) with 80% of strains identified to species level using average nucleotide identity and phylogenomic reconstruction. Based on annotations by the RAST pipeline, among-isolate variation in metabolic function partitioned strongly by bacterial order, particularly by amino acid metabolism (Rhodospirillales), fermentation, and nucleotide metabolism (Lactobacillales) and arginine, urea, and polyamine metabolism (Enterobacterales). Seven bacterial species, comprising 2-3 species in each order, were well-represented among the isolates and included ≥5 strains, permitting analysis of metabolic functions in the accessory genome (i.e., genes not present in every strain). Overall, the metabolic function in the accessory genome partitioned by bacterial order. Two species, Gluconobacter cerinus (Rhodospirillales) and Lactiplantibacillus plantarum (Lactobacillales) had large accessory genomes, and metabolic functions were dominated by amino acid metabolism (G. cerinus) and carbohydrate metabolism (La. plantarum). The patterns of variation in metabolic capabilities at multiple phylogenetic scales provide the basis for future studies of the ecological and evolutionary processes shaping the diversity of microorganisms associated with natural populations of Drosophila.
Collapse
Affiliation(s)
- John G McMullen
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Eduardo Bueno
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Frances Blow
- Department of Entomology, Cornell University, Ithaca, New York, USA
| | - Angela E Douglas
- Department of Entomology, Cornell University, Ithaca, New York, USA
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
| |
Collapse
|
46
|
Zhang Q, Wang S, Zhang X, Zhang R, Zhang Z. Negative Impact of Pseudomonas aeruginosa Y12 on Its Host Musca domestica. Front Microbiol 2021; 12:691158. [PMID: 34335517 PMCID: PMC8317488 DOI: 10.3389/fmicb.2021.691158] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Accepted: 06/22/2021] [Indexed: 12/29/2022] Open
Abstract
High concentrations of Pseudomonas aeruginosa Y12 significantly inhibit the development of housefly larvae and accelerate larvae death. In this study, the dynamic distribution of the gut microbiota of housefly larvae fed different concentrations of P. aeruginosa Y12 was investigated. Compared with low-concentration P. aeruginosa diets, orally administered high-concentration P. aeruginosa diets caused higher mortality and had a greater impact on the community structure and interaction network of intestinal flora in housefly larvae. The bacterial community of the gut microbiota in housefly larvae was reconstructed in 4 days. Bacterial abundance and diversity were significantly reduced in housefly larvae fed high concentrations of P. aeruginosa. With the growth of larvae, the relative abundances of Providencia, Proteus, Myroides, Klebsiella, and Alcaligenes increased significantly in housefly larvae fed with high concentrations of P. aeruginosa, while the relative abundances of Bordetella, Enterobacter, Morganella, Ochrobactrum, Alcaligenaceae, and Empedobacter were significantly reduced. To analyze the role of the gut microorganisms played on housefly development, a total of 10 cultivable bacterial species belonging to 9 genera were isolated from the intestine of housefly larvae among which Enterobacter hormaechei, Klebsiella pneumoniae, Enterobacter cloacae, Lysinibacillus fusiformis, and Bacillus safensis promoted the growth of larvae through feeding experiments. This study is the first to analyze the influence of high concentrations of P. aeruginosa on the gut microbiota of houseflies. Our study provides a basis for exploring the pathogenic mechanism of high concentrations of P. aeruginosa Y12 in houseflies.
Collapse
Affiliation(s)
- Qian Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.,School of Basic Medical Sciences, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China
| | - Shumin Wang
- School of Basic Medical Sciences, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China
| | - Xinyu Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.,School of Basic Medical Sciences, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China
| | - Ruiling Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.,School of Basic Medical Sciences, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China
| | - Zhong Zhang
- Collaborative Innovation Center for the Origin and Control of Emerging Infectious Diseases, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China.,School of Basic Medical Sciences, Shandong First Medical University (Shandong Academy of Medical Sciences), Tai'an, China
| |
Collapse
|
47
|
Asimakis E, Stathopoulou P, Sapounas A, Khaeso K, Batargias C, Khan M, Tsiamis G. New Insights on the Zeugodacus cucurbitae (Coquillett) Bacteriome. Microorganisms 2021; 9:microorganisms9030659. [PMID: 33810199 PMCID: PMC8004655 DOI: 10.3390/microorganisms9030659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 12/19/2022] Open
Abstract
Various factors, including the insect host, diet, and surrounding ecosystem can shape the structure of the bacterial communities of insects. We have employed next generation, high-throughput sequencing of the 16S rRNA to characterize the bacteriome of wild Zeugodacus (Bactrocera) cucurbitae (Coquillett) flies from three regions of Bangladesh. The tested populations developed distinct bacterial communities with differences in bacterial composition, suggesting that geography has an impact on the fly bacteriome. The dominant bacteria belonged to the families Enterobacteriaceae, Dysgomonadaceae and Orbaceae, with the genera Dysgonomonas, Orbus and Citrobacter showing the highest relative abundance across populations. Network analysis indicated variable interactions between operational taxonomic units (OTUs), with cases of mutual exclusion and copresence. Certain bacterial genera with high relative abundance were also characterized by a high degree of interactions. Interestingly, genera with a low relative abundance like Shimwellia, Gilliamella, and Chishuiella were among those that showed abundant interactions, suggesting that they are also important components of the bacterial community. Such knowledge could help us identify ideal wild populations for domestication in the context of the sterile insect technique or similar biotechnological methods. Further characterization of this bacterial diversity with transcriptomic and metabolic approaches, could also reveal their specific role in Z. cucurbitae physiology.
Collapse
Affiliation(s)
- Elias Asimakis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St., 30100 Agrinio, Greece; (E.A.); (P.S.); (K.K.)
| | - Panagiota Stathopoulou
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St., 30100 Agrinio, Greece; (E.A.); (P.S.); (K.K.)
| | - Apostolis Sapounas
- Laboratory of Applied Genetics and Fish Breeding, Department of Animal Production, Fisheries and Aquaculture, University of Patras, Nea Ktiria, 30200 Messolonghi, Greece; (A.S.); (C.B.)
| | - Kanjana Khaeso
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St., 30100 Agrinio, Greece; (E.A.); (P.S.); (K.K.)
| | - Costas Batargias
- Laboratory of Applied Genetics and Fish Breeding, Department of Animal Production, Fisheries and Aquaculture, University of Patras, Nea Ktiria, 30200 Messolonghi, Greece; (A.S.); (C.B.)
| | - Mahfuza Khan
- Institute of Food and Radiation Biology (IFRB), Atomic Energy Research Establishment (AERE), Ganak bari, Savar, Dhaka 1349, Bangladesh;
| | - George Tsiamis
- Laboratory of Systems Microbiology and Applied Genomics, Department of Environmental Engineering, University of Patras, 2 Seferi St., 30100 Agrinio, Greece; (E.A.); (P.S.); (K.K.)
- Correspondence: ; Tel.: +30-264-107-4149
| |
Collapse
|
48
|
Tanga CM, Waweru JW, Tola YH, Onyoni AA, Khamis FM, Ekesi S, Paredes JC. Organic Waste Substrates Induce Important Shifts in Gut Microbiota of Black Soldier Fly ( Hermetia illucens L.): Coexistence of Conserved, Variable, and Potential Pathogenic Microbes. Front Microbiol 2021; 12:635881. [PMID: 33643270 PMCID: PMC7907179 DOI: 10.3389/fmicb.2021.635881] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 01/04/2021] [Indexed: 11/13/2022] Open
Abstract
The sustainable utilization of black soldier fly (BSF) for recycling organic waste into nutrient-rich biomass, such as high-quality protein additive, is gaining momentum, and its microbiota is thought to play important roles in these processes. Several studies have characterized the BSF gut microbiota in different substrates and locations; nonetheless, in-depth knowledge on community stability, consistency of member associations, pathogenic associations, and microbe-microbe and host-microbe interactions remains largely elusive. In this study, we characterized the bacterial and fungal communities of BSF larval gut across four untreated substrates (brewers' spent grain, kitchen food waste, poultry manure, and rabbit manure) using 16S and ITS2 amplicon sequencing. Results demonstrated that substrate impacted larval weight gain from 30 to 100% gain differences among diets and induced an important microbial shift in the gut of BSF larvae: fungal communities were highly substrate dependent with Pichia being the only prevalent genus across 96% of the samples; bacterial communities also varied across diets; nonetheless, we observed six conserved bacterial members in 99.9% of our samples, namely, Dysgonomonas, Morganella, Enterococcus, Pseudomonas, Actinomyces, and Providencia. Among these, Enterococcus was highly correlated with other genera including Morganella and Providencia. Additionally, we showed that diets such as rabbit manure induced a dysbiosis with higher loads of the pathogenic bacteria Campylobacter. Together, this study provides the first comprehensive analysis of bacterial and fungal communities of BSF gut across untreated substrates and highlights conserved members, potential pathogens, and their interactions. This information will contribute to the establishment of safety measures for future processing of BSF larval meals and the creation of legislation to regulate their use in animal feeds.
Collapse
Affiliation(s)
- Chrysantus M Tanga
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | | | - Yosef Hamba Tola
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya.,Department of Biochemistry, Genetics, and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa
| | - Abel Anyega Onyoni
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Fathiya M Khamis
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Sunday Ekesi
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| | - Juan C Paredes
- International Centre of Insect Physiology and Ecology (ICIPE), Nairobi, Kenya
| |
Collapse
|
49
|
Hamden H, MSaad Guerfali M, Charaabi K, Djobbi W, Fadhl S, Mahjoubi M, Mnasri K, Najjari A, Saidi M, Chevrier C, Cherif A. Screening and selection of potential probiotic strains from the Mediterranean fruit fly (Ceratitis capitata) guts origin based on SIT application. JOURNAL OF RADIATION RESEARCH AND APPLIED SCIENCES 2020. [DOI: 10.1080/16878507.2020.1848010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- H. Hamden
- Laboratory of Biotechnology and Nuclear Technologies LR16CNSTN01, National Center of Nuclear Sciences and Technologies, Technopole Sidi Thabet 2020, Ariana, Tunisia
| | - Meriem MSaad Guerfali
- Laboratory of Biotechnology and Nuclear Technologies LR16CNSTN01, National Center of Nuclear Sciences and Technologies, Technopole Sidi Thabet 2020, Ariana, Tunisia
| | - K. Charaabi
- Laboratory of Biotechnology and Nuclear Technologies LR16CNSTN01, National Center of Nuclear Sciences and Technologies, Technopole Sidi Thabet 2020, Ariana, Tunisia
| | - W. Djobbi
- Laboratory of Biotechnology and Nuclear Technologies LR16CNSTN01, National Center of Nuclear Sciences and Technologies, Technopole Sidi Thabet 2020, Ariana, Tunisia
| | - S. Fadhl
- Laboratory of Biotechnology and Nuclear Technologies LR16CNSTN01, National Center of Nuclear Sciences and Technologies, Technopole Sidi Thabet 2020, Ariana, Tunisia
| | - M. Mahjoubi
- Isbst, BVBGR-LR11ES31, University of Manouba, Technopole Sidi Thabet 2020, Ariana, Tunisia
| | - K. Mnasri
- Isbst, BVBGR-LR11ES31, University of Manouba, Technopole Sidi Thabet 2020, Ariana, Tunisia
| | - A. Najjari
- Isbst, BVBGR-LR11ES31, University of Manouba, Technopole Sidi Thabet 2020, Ariana, Tunisia
| | - M. Saidi
- Laboratory of Biotechnology and Nuclear Technologies LR16CNSTN01, National Center of Nuclear Sciences and Technologies, Technopole Sidi Thabet 2020, Ariana, Tunisia
| | - C. Chevrier
- IRBI, University of Tours UMR CNRS, 7261, Tours, France
| | - A. Cherif
- Isbst, BVBGR-LR11ES31, University of Manouba, Technopole Sidi Thabet 2020, Ariana, Tunisia
| |
Collapse
|
50
|
Ferraresso J, Lawton B, Bayliss S, Sheppard S, Cardazzo B, Gaze W, Buckling A, Vos M. Determining the prevalence, identity and possible origin of bacterial pathogens in soil. Environ Microbiol 2020; 22:5327-5340. [PMID: 32990385 DOI: 10.1111/1462-2920.15243] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 09/15/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022]
Abstract
Soil biomes are vast, exceptionally diverse and crucial to the health of ecosystems and societies. Soils also contain an appreciable, but understudied, diversity of opportunistic human pathogens. With climate change and other forms of environmental degradation potentially increasing exposure risks to soilborne pathogens, it is necessary to gain a better understanding of their ecological drivers. Here we use the Galleria mellonella insect virulence model to selectively isolate pathogenic bacteria from soils in Cornwall (UK). We find a high prevalence of pathogenic soil bacteria with two genera, Providencia and Serratia, being especially common. Providencia alcalifaciens, P. rustigianii, Serratia liquefaciens and S. plymuthica strains were studied in more detail using phenotypic virulence and antibiotic resistance assays and whole-genome sequencing. Both genera displayed low levels of antibiotic resistance and antibiotic resistance gene carriage. However, Serratia isolates were found to carry the recently characterized metallo-β-lactamase blaSPR-1 that, although not conferring high levels of resistance in these strains, poses a potential risk of horizontal transfer to other pathogens where it could be fully functional. The Galleria assay can be a useful approach to uncover the distribution and identity of pathogenic bacteria in the environment, as well as uncover resistance genes with an environmental origin.
Collapse
Affiliation(s)
- Jacopo Ferraresso
- European Centre for Environment and Human Health, Environment and Sustainability Institute, University of Exeter Medical School, Exeter, UK.,Department of Comparative Biomedicine and Food Science, University of Padova, Bologna, Italy
| | - Benedict Lawton
- European Centre for Environment and Human Health, Environment and Sustainability Institute, University of Exeter Medical School, Exeter, UK
| | - Sion Bayliss
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Samuel Sheppard
- The Milner Centre for Evolution, Department of Biology and Biochemistry, University of Bath, Bath, UK
| | - Barbara Cardazzo
- Department of Comparative Biomedicine and Food Science, University of Padova, Bologna, Italy
| | - Will Gaze
- European Centre for Environment and Human Health, Environment and Sustainability Institute, University of Exeter Medical School, Exeter, UK
| | - Angus Buckling
- Department of Biosciences, University of Exeter, Exeter, UK
| | - Michiel Vos
- European Centre for Environment and Human Health, Environment and Sustainability Institute, University of Exeter Medical School, Exeter, UK
| |
Collapse
|