1
|
Abbasnia S, Hashem Asnaashari AM, Sharebiani H, Soleimanpour S, Mosavat A, Rezaee SA. Mycobacterium tuberculosis and host interactions in the manifestation of tuberculosis. J Clin Tuberc Other Mycobact Dis 2024; 36:100458. [PMID: 38983441 PMCID: PMC11231606 DOI: 10.1016/j.jctube.2024.100458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024] Open
Abstract
The final step of epigenetic processes is changing the gene expression in a new microenvironment in the body, such as neuroendocrine changes, active infections, oncogenes, or chemical agents. The case of tuberculosis (TB) is an outcome of Mycobacterium tuberculosis (M.tb) and host interaction in the manifestation of active and latent TB or clearance. This comprehensive review explains and interprets the epigenetics findings regarding gene expressions on the host-pathogen interactions in the development and progression of tuberculosis. This review introduces novel insights into the complicated host-pathogen interactions, discusses the challengeable results, and shows the gaps in the clear understanding of M.tb behavior. Focusing on the biological phenomena of host-pathogen interactions, the epigenetic changes, and their outcomes provides a promising future for developing effective TB immunotherapies when converting gene expression toward appropriate host immune responses gradually becomes attainable. Overall, this review may shed light on the dark sides of TB pathogenesis as a life-threatening disease. Therefore, it may support effective planning and implementation of epigenetics approaches for introducing proper therapies or effective vaccines.
Collapse
Affiliation(s)
- Shadi Abbasnia
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Hiva Sharebiani
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture, and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Immunology Research Center, Inflammation and Inflammatory Diseases Division, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
2
|
Karbalaei M, Mosavat A, Soleimanpour S, Farsiani H, Ghazvini K, Amini AA, Sankian M, Rezaee SA. Production and Evaluation of Ag85B:HspX:hFcγ1 Immunogenicity as an Fc Fusion Recombinant Multi-Stage Vaccine Candidate Against Mycobacterium tuberculosis. Curr Microbiol 2024; 81:127. [PMID: 38575759 DOI: 10.1007/s00284-024-03655-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 02/29/2024] [Indexed: 04/06/2024]
Abstract
An urgent need is to introduce an effective vaccine against Mycobacterium tuberculosis (M.tb) infection. In the present study, a multi-stage M.tb immunodominant Fcγ1 fusion protein (Ag85B:HspX:hFcγ1) was designed and produced, and the immunogenicity of purified protein was evaluated. This recombinant fusion protein was produced in the Pichia pastoris expression system. The HiTrap-rPA column affinity chromatography purified and confirmed the fusion protein using ELISA and Western blotting methods. The co-localisation assay was used to confirm its proper folding and function. IFN-γ, IL-12, IL-4, and TGF-β expression in C57BL/6 mice then evaluated the immunogenicity of the construct in the presence and absence of BCG. After expression optimisation, medium-scale production and the Western blotting test confirmed suitable production of Ag85B:HspX:hFcγ1. The co-localisation results on antigen-presenting cells (APCs) showed that Ag85B:HspX:hFcγ1 properly folded and bound to hFcγRI. This strong co-localisation with its receptor can confirm inducing proper Th1 responses. The in vivo immunisation assay showed no difference in the expression of IL-4 but a substantial increase in the expression of IFN-γ and IL-12 (P ≤ 0.02) and a moderate increase in TGF-β (P = 0.05). In vivo immunisation assay revealed that Th1-inducing pathways have been stimulated, as IFN-γ and IL-12 strongly, and TGF-β expression moderately increased in Ag85B:HspX:hFcγ1 group and Ag85B:HspX:hFcγ1+BCG. Furthermore, the production of IFN-γ from splenocytes in the Ag85B:HspX:hFcγ1 group was enormously higher than in other treatments. Therefore, this Fc fusion protein can make a selective multi-stage delivery system for inducing appropriate Th1 responses and is used as a subunit vaccine alone or in combination with others.
Collapse
Affiliation(s)
- Mohsen Karbalaei
- Department of Microbiology and Virology, School of Medicine, Jiroft University of Medical Sciences, Jiroft, Iran
| | - Arman Mosavat
- Blood Borne Infections Research Center, Academic Center for Education, Culture, and Research (ACECR), Razavi Khorasan, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Farsiani
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Abbas Ali Amini
- Cancer and Immunology Research Center, Research Institute for Health Development, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mojtaba Sankian
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Inflammation and Inflammatory Diseases Division, Faculty of Medicine, Immunology Research Center, Mashhad University of Medical Sciences, Azadi-Square, Medical Campus, Mashhad, 9177948564, Iran.
| |
Collapse
|
3
|
Gairola A, Benjamin A, Weatherston JD, Cirillo JD, Wu HJ. Recent Developments in Drug Delivery for Treatment of Tuberculosis by Targeting Macrophages. ADVANCED THERAPEUTICS 2022; 5:2100193. [PMID: 36203881 PMCID: PMC9531895 DOI: 10.1002/adtp.202100193] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Indexed: 11/10/2022]
Abstract
Tuberculosis (TB) is among the greatest public health and safety concerns in the 21st century, Mycobacterium tuberculosis, which causes TB, infects alveolar macrophages and uses these cells as one of its primary sites of replication. The current TB treatment regimen, which consist of chemotherapy involving a combination of 3-4 antimicrobials for a duration of 6-12 months, is marked with significant side effects, toxicity, and poor compliance. Targeted drug delivery offers a strategy that could overcome many of the problems of current TB treatment by specifically targeting infected macrophages. Recent advances in nanotechnology and material science have opened an avenue to explore drug carriers that actively and passively target macrophages. This approach can increase the drug penetration into macrophages by using ligands on the nanocarrier that interact with specific receptors for macrophages. This review encompasses the recent development of drug carriers specifically targeting macrophages actively and passively. Future directions and challenges associated with development of effective TB treatment is also discussed.
Collapse
Affiliation(s)
- Anirudh Gairola
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Aaron Benjamin
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Joshua D Weatherston
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| | - Jeffrey D Cirillo
- Department of Microbial Pathogenesis and Immunology, Texas A&M University Health Science Center, Bryan, Texas, USA
| | - Hung-Jen Wu
- Department of Chemical Engineering, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
4
|
Yousefi Avarvand A, Meshkat Z, Khademi F, Tafaghodi M. Immunogenicity of HspX/EsxS fusion protein of Mycobacterium tuberculosis along with ISCOMATRIX and PLUSCOM nano-adjuvants after subcutaneous administration in animal model. Microb Pathog 2021; 154:104842. [PMID: 33762199 DOI: 10.1016/j.micpath.2021.104842] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 11/05/2020] [Accepted: 02/25/2021] [Indexed: 10/21/2022]
Abstract
BACKGROUND Tuberculosis (TB), caused by Mycobacterium tuberculosis (M. tuberculosis), is one of the most common and dangerous infectious diseases in the world. Despite vaccination with BCG, it is still considered as a major health problem. Therefore, design and production of an effective novel vaccine against TB is necessary. Our aim was to evaluate immunogenicity of HspX/EsxS fusion protein of M. tuberculosis along with ISCOMATRIX, PLUSCOM nano-adjuvants and MPLA through the subcutaneous route in mice model. METHODS HspX/EsxS fused protein of M. tuberculosis was cloned, expressed and purified in the prokaryotic system. ISCOMATRIX and PLUSCOM nano-adjuvants were prepared by film hydration method. Subcutaneous immunization of BALB/c mice was performed by different formulations. IFN-γ, IL-4, IL-17 and TGF-β cytokines levels as well as serum IgG1, IgG2a. RESULTS Our results showed that subcutaneous administration of mice with HspX/EsxS along with three adjuvants, ISCOMATRIX, PLUSCOM and MPLA increased immunogenicity of multi-stage fusion protein of M. tuberculosis. Additionally, HspX/EsxS protein + ISCOMATRIX or + PLUSCOM nano-adjuvants induced stronger Th1, IgG2a and IgG1 immune responses compared to MPLA adjuvant. Totally, HspX/EsxS/ISCOMATRIX/MPLA, HspX/EsxS/PLUSCOM/MPLA and two BCG booster groups could significantly induce higher Th1 and IgG2a immune responses. CONCLUSION With regard to ability of ISCOMATRIX, PLUSCOM and MPLA adjuvants to increase immunogenicity of HspX/EsxS protein through induction of IFN-γ and IgG2a immune responses, it seems that these adjuvants and especially ISCOMATRIX and PLUSCOM, could also improve BCG efficacy as a BCG booster.
Collapse
Affiliation(s)
- Arshid Yousefi Avarvand
- Department of Laboratory Sciences, School of Allied Medical Sciences, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran.
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Department of Medical Bacteriology and Virology, Qaem University Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Farzad Khademi
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran.
| | - Mohsen Tafaghodi
- Nanotechnology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
5
|
Nazeri S, Zakeri S, Mehrizi AA, Sardari S, Djadid ND. Measuring of IgG2c isotype instead of IgG2a in immunized C57BL/6 mice with Plasmodium vivax TRAP as a subunit vaccine candidate in order to correct interpretation of Th1 versus Th2 immune response. Exp Parasitol 2020; 216:107944. [PMID: 32619431 DOI: 10.1016/j.exppara.2020.107944] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2019] [Revised: 05/25/2020] [Accepted: 06/22/2020] [Indexed: 01/23/2023]
Abstract
Evaluation of the murine isotype antibodies is essential in subunit vaccine development because inbred mouse strains with diverse genetic backgrounds respond different to recombinant proteins. In this regard, the main goal of this study was to measuring and comparing the profile of IgG isotype responses in C57BL/6 mice. For this purpose, the extracellular region of plasmodium vivax thrombospondin-related adhesive protein (PvTRAP) gene was expressed in Escherichia coli Rosetta (DE3)-pET23a. Then, the recombinant PvTRAP alone or emulsified with Freund's complete adjuvant were applied for immunization of the C57BL/6 mice. The role of antibodies and cellular immune responses induced by recombinant PvTRAP were evaluated. The results showed the level of anti-rPvTRAP IgG2c was significantly higher than IgG2a in the groups that received rPvTRAP alone (mean OD490 = 0.798 ± 0.12 and 0.39 ± 0.1, respectively) and emulsified with CFA/IFA (mean OD490 = 1.48 ± 0.07 and 0.605 ± 0.13, respectively; P < 0.05, independent sample t-test). Additionally, the immunized mice with rPvTRAP and rPvTRAP + CFA/IFA had an intermediate-avidity IgG2a antibody but high-avidity IgG2c antibody as well as the mean of serum antibody titers results exhibited that in both rPvTRAP and rPvTRAP + CFA/IFA mouse groups, IgG2a end-point titer (1:3200 and 1:25,600, respectively) was noteworthy lower than IgG2c (1:25,600 and 1:102,400, respectively). Moreover, the results revealed the eliciting significant levels of IFN-γ (P < 0.05, independent sample t-test) and no detectable level of IL-4 in the mouse groups received rPvTRAP alone and emulsified with CFA/IFA as compared to the mouse control groups. In general, our results showed that for correctly interpreting of Th1 immune responses in C57BL/6 mouse strain it is critical to measure IgG2c instead of IgG2a along with IFN-γ.
Collapse
Affiliation(s)
- Saeed Nazeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran.
| | - Sedigheh Zakeri
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Akram Abouie Mehrizi
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Soroush Sardari
- Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| | - Navid Dinparast Djadid
- Malaria and Vector Research Group (MVRG), Biotechnology Research Center (BRC), Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
6
|
Antigen-Specific IFN-γ/IL-17-Co-Producing CD4 + T-Cells Are the Determinants for Protective Efficacy of Tuberculosis Subunit Vaccine. Vaccines (Basel) 2020; 8:vaccines8020300. [PMID: 32545304 PMCID: PMC7350228 DOI: 10.3390/vaccines8020300] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 05/23/2020] [Accepted: 06/09/2020] [Indexed: 01/05/2023] Open
Abstract
The antigen-specific Th17 responses in the lungs for improved immunity against Mycobacterium tuberculosis (Mtb) infection are incompletely understood. Tuberculosis (TB) vaccine candidate HSP90-ESAT-6 (E6), given as a Bacillus Calmette-Guérin (BCG)-prime boost regimen, confers superior long-term protection against the hypervirulent Mtb HN878 infection, compared to BCG or BCG-E6. Taking advantage of protective efficacy lead-out, we found that ESAT-6-specific multifunctional CD4+IFN-γ+IL-17+ T-cells optimally correlated with protection level against Mtb infection both pre-and post-challenge. Macrophages treated with the supernatant of re-stimulated lung cells from HSP90-E6-immunised mice significantly restricted Mtb growth, and this phenomenon was abrogated by neutralising anti-IFN-γ and/or anti-IL-17 antibodies. We identified a previously unrecognised role for IFN-γ/IL-17 synergism in linking anti-mycobacterial phagosomal activity to enhance host control against Mtb infection. The implications of our findings highlight the fundamental rationale for why and how Th17 responses are essential in the control of Mtb, and for the development of novel anti-TB subunit vaccines.
Collapse
|
7
|
Bouzeyen R, Haoues M, Barbouche MR, Singh R, Essafi M. FOXO3 Transcription Factor Regulates IL-10 Expression in Mycobacteria-Infected Macrophages, Tuning Their Polarization and the Subsequent Adaptive Immune Response. Front Immunol 2019; 10:2922. [PMID: 31921181 PMCID: PMC6927284 DOI: 10.3389/fimmu.2019.02922] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Accepted: 11/28/2019] [Indexed: 12/24/2022] Open
Abstract
Alveolar Macrophages play a key role in the development of a robust adaptive immune response against the agent of Tuberculosis (TB), Mycobacterium tuberculosis (M.tb). However, macrophage response is often hampered by the production of IL-10, a potent suppressor of the host immune response. The secretion of IL-10 correlates with TB pathogenesis and persistence in host tissues. Concordantly, inhibition of IL-10 signaling, during BCG vaccination, confers higher protection against M.tb through a sustained Th1 and Th17 responses. Therefore, uncovering host effectors, underlying mycobacteria-induced expression of IL-10, may be beneficial toward the development of IL-10-blocking tools to be used either as adjuvants in preventive vaccination or as adjunct during standard treatment of TB. Here, we investigated the role of FOXO3 transcription factor in mycobacteria-induced secretion of IL-10. We observed that PI3K/Akt/FOXO3 axis regulates IL-10 expression in human macrophages. Knocking down of FOXO3 expression resulted in an increase of IL-10 production in BCG-infected macrophages. The gene reporter assay further confirmed the transcriptional regulation of IL-10 by FOXO3. In silico analysis identified four Forkhead binding motifs on the human IL-10 promoter, from which the typical FOXO3 one at position -203 was the major target as assessed by mutagenesis and CHIP binding assays. Further, we also observed a decrease in gene expression levels of the M1 typical markers (i.e., CD80 and CD86) in SiFOXO3-transfected macrophages while activation of FOXO3 led to the increase in the expression of CD86, MHCI, and MHCII. Finally, co-culture of human lymphocytes with siFOXO3-transfected macrophages, loaded with mycobacterial antigens, showed decreased expression of Th1/Th17 specific markers and a simultaneous increase in expression of IL-4 and IL-10. Taken together, we report for the first time that FOXO3 modulates IL-10 secretion in mycobacteria-infected macrophage, driving their polarization and the subsequent adaptive immune response. This work proposes FOXO3 as a potential target for the development of host-directed strategies for better treatment or prevention of TB.
Collapse
Affiliation(s)
- Rania Bouzeyen
- Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Laboratoire de Recherche 11 (LR11), Institut Pasteur de Tunis (IPT), Tunis, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
| | - Meriam Haoues
- Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Laboratoire de Recherche 11 (LR11), Institut Pasteur de Tunis (IPT), Tunis, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
| | - Mohamed-Ridha Barbouche
- Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Laboratoire de Recherche 11 (LR11), Institut Pasteur de Tunis (IPT), Tunis, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad, India
| | - Makram Essafi
- Laboratory of Transmission, Control and Immunobiology of Infections (LTCII), Laboratoire de Recherche 11 (LR11), Institut Pasteur de Tunis (IPT), Tunis, Tunisia
- Université Tunis El Manar, Tunis, Tunisia
| |
Collapse
|
8
|
Carvalho Dos Santos C, Rodriguez D, Kanno Issamu A, Cezar De Cerqueira Leite L, Pereira Nascimento I. Recombinant BCG expressing the LTAK63 adjuvant induces increased early and long-term immune responses against Mycobacteria. Hum Vaccin Immunother 2019; 16:673-683. [PMID: 31665996 PMCID: PMC7227645 DOI: 10.1080/21645515.2019.1669414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The development of more effective vaccines against Mycobacterium tuberculosis has become a world priority. Previously, we have shown that a recombinant BCG expressing the LTAK63 adjuvant (rBCG-LTAK63) displayed higher protection than BCG against tuberculosis challenge in mice. In order to elucidate the immune effector mechanisms induced by rBCG-LTAK63, we evaluated the immune response before and after challenge. The potential to induce an innate immune response was investigated by intraperitoneal immunization with BCG or rBCG-LTAK63: both displayed increased cellular infiltration in the peritoneum with high numbers of neutrophils at 24 h and macrophages at 7 d. The rBCG-LTAK63-immunized mice displayed increased production of Nitric Oxide at 24 h and Hydrogen Peroxide at 7 d. The number of lymphocytes was higher in the rBCG-LTAK63 group when compared to BCG. Immunophenotyping of lymphocytes showed that rBCG-LTAK63 immunization increased CD4+ and CD8+ T cells. An increased long-term Th1/Th17 cytokine profile was observed 90 d after subcutaneous immunization with rBCG-LTAK63. The evaluation of immune responses at 15 d after challenge showed that rBCG-LTAK63-immunized mice displayed increased TNF-α-secreting CD4+ T cells and multifunctional IL-2+ TNF-α+ CD4+ T cells as compared to BCG-immunized mice. Our results suggest that immunization with rBCG-LTAK63 induces enhanced innate and long-term immune responses as compared to BCG. These results can be correlated with the superior protection induced against TB.
Collapse
Affiliation(s)
- Carina Carvalho Dos Santos
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil.,Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, Brazil
| | - Dunia Rodriguez
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Alex Kanno Issamu
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil
| | - Luciana Cezar De Cerqueira Leite
- Laboratório de Desenvolvimento de Vacinas, Instituto Butantan, São Paulo, Brazil.,Programa de Pós-Graduação Interunidades em Biotecnologia, Universidade de São Paulo, São Paulo, Brazil
| | | |
Collapse
|
9
|
Solodushko V, Bitko V, Barrington R, Fouty B. A DNA Vaccine in Which the RSV-F Ectodomain Is Covalently Linked to the Burkholderia pseudomallei Antigens TssM and Hcp1 Augments the Humoral and Cytotoxic Response in Mice. Front Immunol 2019; 10:2411. [PMID: 31681300 PMCID: PMC6797551 DOI: 10.3389/fimmu.2019.02411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022] Open
Abstract
DNA vaccines have great potential to control infectious disease, particularly those caused by intracellular organisms. They are inexpensive to produce and can be quickly modified to combat emerging infectious threats, but often fail to generate a strong immunologic response limiting enthusiasm for their use in humans and animals. To improve the immunogenic response, we developed a DNA vaccine in which the F protein ectodomain of Respiratory Syncytial Virus (RSV-F) was covalently linked to specific antigens of interest. The presence of the RSV-F ectodomain allowed secretion of the translated fusion product out of the originally transfected cells followed by its active binding to adjacent cells. This allowed the targeting of a greater number of cells than those originally transfected, enhancing both humoral and cytotoxic immune responses against the expressed antigen(s). We developed an engrafted mouse model that used antigen-expressing tumor cells to assess the in vivo cytotoxic immune response to specific antigens. We then used this model to demonstrate that a DNA vaccine in which the RSV-F ectodomain is fused to two antigens expressed by Burkholderia pseudomallei, the intracellular gram-negative organism that causes melioidosis, generated a stronger cytotoxic response than a DNA vaccine that lacked the RSV-F sequence while still generating a robust humoral response.
Collapse
Affiliation(s)
- Victor Solodushko
- Department of Pharmacology, University of South Alabama School of Medicine, Mobile, AL, United States.,Center for Lung Biology, University of South Alabama School of Medicine, Mobile, AL, United States
| | - Vira Bitko
- Emergent BioSolutions, Gaithersburg, MD, United States
| | - Robert Barrington
- Center for Lung Biology, University of South Alabama School of Medicine, Mobile, AL, United States.,Department of Microbiology and Immunology, University of South Alabama School of Medicine, Mobile, AL, United States
| | - Brian Fouty
- Department of Pharmacology, University of South Alabama School of Medicine, Mobile, AL, United States.,Center for Lung Biology, University of South Alabama School of Medicine, Mobile, AL, United States.,Department of Internal Medicine, University of South Alabama School of Medicine, Mobile, AL, United States
| |
Collapse
|
10
|
Kiravu A, Osawe S, Happel AU, Nundalall T, Wendoh J, Beer S, Dontsa N, Alinde OB, Mohammed S, Datong P, Cameron DW, Rosenthal K, Abimiku A, Jaspan HB, Gray CM. Bacille Calmette-Guérin Vaccine Strain Modulates the Ontogeny of Both Mycobacterial-Specific and Heterologous T Cell Immunity to Vaccination in Infants. Front Immunol 2019; 10:2307. [PMID: 31649662 PMCID: PMC6793433 DOI: 10.3389/fimmu.2019.02307] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/12/2019] [Indexed: 01/24/2023] Open
Abstract
Differences in Bacille Calmette-Guérin (BCG) immunogenicity and efficacy have been reported, but various strains of BCG are administered worldwide. Since BCG immunization may also provide protection against off-target antigens, we sought to identify the impact of different BCG strains on the ontogeny of vaccine-specific and heterologous vaccine immunogenicity in the first 9 months of life, utilizing two African birth cohorts. A total of 270 infants were studied: 84 from Jos, Nigeria (vaccinated with BCG-Bulgaria) and 187 from Cape Town, South Africa (154 vaccinated with BCG-Denmark and 33 with BCG-Russia). Infant whole blood was taken at birth, 7, 15, and 36 weeks and short-term stimulated (12 h) in vitro with BCG, Tetanus and Pertussis antigens. Using multiparameter flow cytometry, CD4+ T cell memory subset polyfunctionality was measured by analyzing permutations of TNF-α, IL-2, and IFN-γ expression at each time point. Data was analyzed using FlowJo, SPICE, R, and COMPASS. We found that infants vaccinated with BCG-Denmark mounted significantly higher frequencies of BCG-stimulated CD4+ T cell responses, peaking at week 7 after immunization, and possessed durable polyfunctional CD4+ T cells that were in a more early differentiated memory stage when compared with either BCG-Bulgaria and BCG-Russia strains. The latter responses had lower polyfunctional scores and tended to accumulate in a CD4+ T cell naïve-like state (CD45RA+CD27+). Notably, BCG-Denmark immunization resulted in higher magnitudes and polyfunctional cytokine responses to heterologous vaccine antigens (Tetanus and Pertussis). Collectively, our data show that BCG strain was the strongest determinant of both BCG-stimulated and heterologous vaccine stimulated T cell magnitude and polyfunctionality. These findings have implications for vaccine policy makers, manufacturers and programs worldwide and also suggest that BCG-Denmark, the first vaccine received in many African infants, has both specific and off-target effects in the first few months of life, which may provide an immune priming benefit to other EPI vaccines.
Collapse
Affiliation(s)
- Agano Kiravu
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sophia Osawe
- Institute of Human Virology Nigeria, Abuja, Nigeria
| | - Anna-Ursula Happel
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Trishana Nundalall
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Jerome Wendoh
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sophie Beer
- Faculty of Biological Sciences, Friedrich Schiller University, Jena, Germany
| | - Nobomi Dontsa
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Olatogni Berenice Alinde
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | | | - Pam Datong
- Institute of Human Virology Nigeria, Abuja, Nigeria
| | - D William Cameron
- Divisions of Infectious Diseases and Respirology, University of Ottawa at the Ottawa Hospital, Ottawa, ON, Canada
| | - Kenneth Rosenthal
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON, Canada
| | - Alash'le Abimiku
- Institute of Human Virology Nigeria, Abuja, Nigeria.,Institute of Human Virology, Department of Epidemiology and Prevention, University of Maryland School of Medicine, Baltimore, MD, United States
| | - Heather B Jaspan
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,Department of Paediatrics and Global Health, University of Washington, Seattle, WA, United States
| | - Clive M Gray
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine, Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa.,National Health Laboratory Services, Groote Schuur Hospital, Cape Town, South Africa
| |
Collapse
|
11
|
Fayez EA, Koohini Z, Koohini Z, Zamanzadeh H, de Boer M, Roos D, Teimourian S. Characterization of two novel mutations in IL-12R signaling in MSMD patients. Pathog Dis 2019; 77:ftz030. [PMID: 31158284 DOI: 10.1093/femspd/ftz030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 05/31/2019] [Indexed: 12/17/2023] Open
Abstract
Mendelian Susceptibility to Mycobacterial Disease (MSMD) is a rare syndrome with infections-among other complications-after Bacillus Calmette-Guerin (BCG) vaccination in children. We focused on the IL-12/IFN-γ pathway to identify new mutations in our patients. This study included 20 patients by vulnerability to mycobacteria and clinical manifestations of severe, recurrent infections. Blood samples were activated with BCG, BCG + IL-12 and BCG + IFN-γ. Cytokine levels were analyzed by ELISA. Measurements of IL-12Rβ1 and IL-12Rβ2 on the surface of peripheral blood mononuclear cells were performed by flow cytometry. To detect genetic defects, next-generation sequencing was performed by Thermo Fisher immunodeficiency panel. Flow cytometry analysis of 20 patients indicated reduction in IL-12R (β1/β2) expression in seven patients who showed incomplete production of IFN-γ by ELISA. In the patient with reduced IL-12 production, IFN-γR and IL-12R (β1/β2) expression levels were normal. Mutation analysis showed three previously reported mutations, two novel mutations in IL-12 R (β1/β2), and one previously reported mutation in IL-12.
Collapse
Affiliation(s)
- Elham Alipour Fayez
- Department of Immunology, School of Medicine, Iran University of Medical Sciences Tehran, Iran
| | - Zahra Koohini
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Zohreh Koohini
- Department of Immunology, School of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Hossein Zamanzadeh
- Department of biology, School of basic sciences, University of Sistan and Balouchestan, Zahedan, Iran
| | - Martin de Boer
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Dirk Roos
- Sanquin Research, and Landsteiner Laboratory, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Shahram Teimourian
- Department of Medical Genetics, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
12
|
Kim WS, Kim H, Kwon KW, Cho SN, Shin SJ. Immunogenicity and Vaccine Potential of InsB, an ESAT-6-Like Antigen Identified in the Highly Virulent Mycobacterium tuberculosis Beijing K Strain. Front Microbiol 2019; 10:220. [PMID: 30809214 PMCID: PMC6379281 DOI: 10.3389/fmicb.2019.00220] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2018] [Accepted: 01/28/2019] [Indexed: 12/13/2022] Open
Abstract
Our group recently identified InsB, an ESAT-6-like antigen belonging to the Mtb9.9 subfamily within the Esx family, in the Mycobacterium tuberculosis Korean Beijing strain (Mtb K) via a comparative genomic analysis with that of the reference Mtb H37Rv and characterized its immunogenicity and its induced immune response in patients with tuberculosis (TB). However, the vaccine potential of InsB has not been fully elucidated. In the present study, InsB was evaluated as a subunit vaccine in comparison with the most well-known ESAT-6 against the hypervirulent Mtb K. Mice immunized with InsB/MPL-DDA exhibited an antigen-specific IFN-γ response along with antigen-specific effector/memory T cell expansion in the lungs and spleen upon antigen restimulation. In addition, InsB immunization markedly induced multifunctional Th1-type CD4+ T cells coexpressing TNF-α, IL-2, and IFN-γ in the lungs following Mtb K challenge. Finally, we found that InsB immunization conferred long-term protection against Mtb K comparable to that conferred by ESAT-6 immunization, as evidenced by a similar level of CFU reduction in the lung and spleen and reduced lung inflammation. These results suggest that InsB may be an excellent vaccine antigen component for developing a multiantigenic Mtb subunit vaccine by generating Th1-biased memory T cells with a multifunctional capacity and may confer durable protection against the highly virulent Mtb K.
Collapse
Affiliation(s)
- Woo Sik Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Hongmin Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Kee Woong Kwon
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sang-Nae Cho
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| |
Collapse
|
13
|
Pourakbari B, Hosseinpour Sadeghi R, Mahmoudi S, Parvaneh N, Keshavarz Valian S, Mamishi S. Evaluation of interleukin-12 receptor β1 and interferon gamma receptor 1 deficiency in patients with disseminated BCG infection. Allergol Immunopathol (Madr) 2019; 47:38-42. [PMID: 30268380 DOI: 10.1016/j.aller.2018.06.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Revised: 06/09/2018] [Accepted: 06/26/2018] [Indexed: 11/18/2022]
Abstract
INTRODUCTION Disseminated BCG infections among other complications of Bacillus Calmette-Guérin (BCG) vaccine are rare and have occurred in children with immunodeficiency disorders such as mendelian susceptibility to mycobacterial disease (MSMD) which could be due to defects in some elements of IL-12/IFN-γ axis. MSMD-causing mutations have been identified in 10 genes during the last two decades. Among them, mutations in the IL12Rβ1 and IFNγR1 genes constitute about 80% of recorded cases of MSMD syndrome. The aim of this study was to investigate IL-12Rβ1 and IFN-γR1 deficiencies in patients with disseminated BCG infection. METHODS This study was performed on 31 children with disseminated BCG infections who referred to children's medical center. Whole blood cell culture was performed in presence of BCG, IL-12 and IFN-γ stimulators. The supernatants were assayed for IFN-γ and IL-12p70 by ELISA method. In order to evaluate IL12Rβ1 and IFN-γR1 receptors expression, flow cytometry staining was performed on the patients' T-cells stimulated with PHA. RESULTS Flow cytometry staining of 31 Iranian patients with disseminated BCG infections with the average age of 43 months showed lack of the expression of IL-12Rβ1 and IFN-γR1 genes in PHA-T-cells of the nine and one patients, respectively in whom the incomplete production of IFN-γ and IL-12 was reported by ELISA. Among these 10 patients, eight cases had related parents (80%). CONCLUSION It is recommended that to avoid BCG complications, screening be performed for MSMD before BCG inoculation in individuals with positive family history of primary immunodeficiency diseases and inhabitants of areas with high frequency of consanguinity.
Collapse
Affiliation(s)
- B Pourakbari
- Pediatric Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - R Hosseinpour Sadeghi
- Pediatric Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - S Mahmoudi
- Pediatric Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - N Parvaneh
- Pediatric Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - S Mamishi
- Pediatric Infectious Disease Research Center, Tehran University of Medical Sciences, Tehran, Iran; Department of Infectious Diseases, Pediatrics Center of Excellence, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
14
|
Kim WS, Kim JS, Kim HM, Kwon KW, Eum SY, Shin SJ. Comparison of immunogenicity and vaccine efficacy between heat-shock proteins, HSP70 and GrpE, in the DnaK operon of Mycobacterium tuberculosis. Sci Rep 2018; 8:14411. [PMID: 30258084 PMCID: PMC6158166 DOI: 10.1038/s41598-018-32799-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 09/13/2018] [Indexed: 12/17/2022] Open
Abstract
Antigens (Ags) in Mycobacterium tuberculosis (Mtb) that are constitutively expressed, overexpressed during growth, essential for survival, and highly conserved may be good vaccine targets if they induce the appropriate anti-Mtb Th1 immune response. In this context, stress response-related antigens of Mtb might serve as attractive targets for vaccine development as they are rapidly expressed and are up-regulated during Mtb infection in vivo. Our group recently demonstrated that GrpE, encoded by rv0351 as a cofactor of heat-shock protein 70 (HSP70) in the DnaK operon, is a novel immune activator that interacts with DCs to generate Th1-biased memory T cells in an antigen-specific manner. In this study, GrpE was evaluated as a subunit vaccine in comparison with the well-known HSP70 against the hyper-virulent Mtb Beijing K-strain. Both HSP70- and GrpE-specific effector/memory T cells expanded to a similar extent as those stimulated with ESAT-6 in the lung and spleen of Mtb-infected mice, but GrpE only produced a similar level of IFN-γ to that produced by ESAT-6 stimulation during the late phase and the early phase of Mtb K infection, indicating that GrpE is highly-well recognised by the host immune system as a T cell antigen. Mice immunised with the GrpE subunit vaccine displayed enhanced antigen-specific IFN-γ and serum IgG2c responses along with antigen-specific effector/memory T cell expansion in the lungs. In addition, GrpE-immunisation markedly induced multifunctional Th1-type CD4+ T cells co-expressing IFN-γ, TNF-α, and IL-2 in the lungs of Mtb K-infected mice, whereas HSP70-immunisation induced mixed Th1/Th2 immune responses. GrpE-immunisation conferred a more significant protective effect than that of HSP70-immunisation in terms of bacterial reduction and improved inflammation, accompanied by the remarkable persistence of GrpE-specific multifunctional CD4+ T cells. These results suggest that GrpE is an excellent vaccine antigen component for the development of a multi-antigenic Mtb subunit vaccine by generating Th1-biased memory T cells with multifunctional capacity, and confers durable protection against the highly virulent Mtb K.
Collapse
Affiliation(s)
- Woo Sik Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute, Jeongeup, South Korea
| | - Jong-Seok Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.,Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, South Korea
| | - Hong Min Kim
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Kee Woong Kwon
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea
| | - Seok-Yong Eum
- Division of Immunopathology and Cellular Immunology, International Tuberculosis Research Center, Changwon, South Korea
| | - Sung Jae Shin
- Department of Microbiology, Institute for Immunology and Immunological Disease, Brain Korea 21 PLUS Project for Medical Science, Yonsei University College of Medicine, Seoul, South Korea.
| |
Collapse
|
15
|
Can Fusion Proteins Be Considered a New Candidate for Tuberculosis Vaccine? ACTA ACUST UNITED AC 2018. [DOI: 10.5812/gct.79943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
A multi-antigenic MVA vaccine increases efficacy of combination chemotherapy against Mycobacterium tuberculosis. PLoS One 2018; 13:e0196815. [PMID: 29718990 PMCID: PMC5931632 DOI: 10.1371/journal.pone.0196815] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Accepted: 04/22/2018] [Indexed: 12/13/2022] Open
Abstract
Despite the existence of the prophylactic Bacille Calmette-Guérin (BCG) vaccine, infection by Mycobacterium tuberculosis (Mtb) remains a major public health issue causing up to 1.8 million annual deaths worldwide. Increasing prevalence of Mtb strains resistant to antibiotics represents an urgent threat for global health that has prompted a search for alternative treatment regimens not subject to development of resistance. Immunotherapy constitutes a promising approach to improving current antibiotic treatments through engagement of the host’s immune system. We designed a multi-antigenic and multiphasic vaccine, based on the Modified Vaccinia Ankara (MVA) virus, denoted MVATG18598, which expresses ten antigens classically described as representative of each of different phases of Mtb infection. In vitro analysis coupled with multiple-passage evaluation demonstrated that this vaccine is genetically stable, i.e. fit for manufacturing. Using different mouse strains, we show that MVATG18598 vaccination results in both Th1-associated T-cell responses and cytolytic activity, targeting all 10 vaccine-expressed Mtb antigens. In chronic post-exposure mouse models, MVATG18598 vaccination in combination with an antibiotic regimen decreases the bacterial burden in the lungs of infected mice, compared with chemotherapy alone, and is associated with long-lasting antigen-specific Th1-type T cell and antibody responses. In one model, co-treatment with MVATG18598 prevented relapse of the disease after treatment completion, an important clinical goal. Overall, results demonstrate the capacity of the therapeutic MVATG18598 vaccine to improve efficacy of chemotherapy against TB. These data support further development of this novel immunotherapeutic in the treatment of Mtb infections.
Collapse
|
17
|
Khademi F, Taheri RA, Momtazi-Borojeni AA, Farnoosh G, Johnston TP, Sahebkar A. Potential of Cationic Liposomes as Adjuvants/Delivery Systems for Tuberculosis Subunit Vaccines. Rev Physiol Biochem Pharmacol 2018; 175:47-69. [PMID: 29700609 DOI: 10.1007/112_2018_9] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Abstract
The weakness of the BCG vaccine and its highly variable protective efficacy in controlling tuberculosis (TB) in different age groups as well as in different geographic areas has led to intense efforts towards the development and design of novel vaccines. Currently, there are several strategies to develop novel TB vaccines. Each strategy has its advantages and disadvantages. However, the most important of these strategies is the development of subunit vaccines. In recent years, the use of cationic liposome-based vaccines has been considered due to their capacity to elicit strong humoral and cellular immune responses against TB infections. In this review, we aim to evaluate the potential for cationic liposomes to be used as adjuvants/delivery systems for eliciting immune responses against TB subunit vaccines. The present review shows that cationic liposomes have extensive applications either as adjuvants or delivery systems, to promote immune responses against Mycobacterium tuberculosis (Mtb) subunit vaccines. To overcome several limitations of these particles, they were used in combination with other immunostimulatory factors such as TDB, MPL, TDM, and Poly I:C. Cationic liposomes can provide long-term storage of subunit TB vaccines at the injection site, confer strong electrostatic interactions with APCs, potentiate both humoral and cellular (CD4 and CD8) immune responses, and induce a strong memory response by the immune system. Therefore, cationic liposomes can increase the potential of different TB subunit vaccines by serving as adjuvants/delivery systems. These properties suggest the use of cationic liposomes to produce an efficient vaccine against TB infections.
Collapse
Affiliation(s)
- Farzad Khademi
- Department of Microbiology, School of Medicine, Ardabil University of Medical Sciences, Ardabil, Iran
| | - Ramezan Ali Taheri
- Nanobiotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | - Amir Abbas Momtazi-Borojeni
- Nanotechnology Research Center, Student Research Committee, Department of Medical Biotechnology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gholamreza Farnoosh
- Applied Biotechnology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Thomas P Johnston
- Division of Pharmaceutical Sciences, University of Missouri-Kansas City, Kansas City, MO, USA
| | - Amirhossein Sahebkar
- Neurogenic Inflammation Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran.
- School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
18
|
Xu K, Liang ZC, Ding X, Hu H, Liu S, Nurmik M, Bi S, Hu F, Ji Z, Ren J, Yang S, Yang YY, Li L. Nanomaterials in the Prevention, Diagnosis, and Treatment of Mycobacterium Tuberculosis Infections. Adv Healthc Mater 2018; 7. [PMID: 28941042 DOI: 10.1002/adhm.201700509] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 06/23/2017] [Indexed: 11/10/2022]
Abstract
Despite the tremendous advancements that have been made in biomedical research, Mycobacterium tuberculosis (TB) still remains one of the top 10 causes of death worldwide, outpacing the Human Immunodeficiency Virus as a leading cause of death from an infectious disease. In the light of such significant disease burden, tremendous efforts have been made worldwide to stem this burgeoning spread of disease. The use of nanomaterials in TB management has increased in the past decade, particularly in the areas of early TB detection, prevention, and treatment. Nanomaterials have been proven to be efficacious in the rapid and accurate detection of TB pathogens. Novel nanocarriers have also shown tremendous promise in improving drug delivery, potentially enhancing drug concentrations in target organs while at the same time, reducing treatment frequency. In addition, the engineering of antigen nanocarriers represents an exciting front in TB research, potentially paving the way for the successful development of a new class of effective TB vaccines. This article discusses epidemiology and pathogenesis of TB infections, current TB therapeutics, advanced nanomaterials for anti-TB drug delivery, and TB vaccines. In addition, challenges and future perspectives in developing safe and effective nanomaterials in TB diagnosis and therapy are also presented.
Collapse
Affiliation(s)
- Kaijin Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; The First Affiliated Hospital; College of Medicine; Zhejiang University; Hangzhou 310003 P. R. China
| | - Zhen Chang Liang
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way The Nanos 138669 Singapore
| | - Xin Ding
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way The Nanos 138669 Singapore
| | - Haiyang Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; The First Affiliated Hospital; College of Medicine; Zhejiang University; Hangzhou 310003 P. R. China
| | - Shaoqiong Liu
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way The Nanos 138669 Singapore
| | - Martin Nurmik
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way The Nanos 138669 Singapore
| | - Sheng Bi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; The First Affiliated Hospital; College of Medicine; Zhejiang University; Hangzhou 310003 P. R. China
| | - Feishu Hu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; The First Affiliated Hospital; College of Medicine; Zhejiang University; Hangzhou 310003 P. R. China
| | - Zhongkang Ji
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; The First Affiliated Hospital; College of Medicine; Zhejiang University; Hangzhou 310003 P. R. China
| | - Jingjing Ren
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; The First Affiliated Hospital; College of Medicine; Zhejiang University; Hangzhou 310003 P. R. China
| | - Shigui Yang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; The First Affiliated Hospital; College of Medicine; Zhejiang University; Hangzhou 310003 P. R. China
| | - Yi Yan Yang
- Institute of Bioengineering and Nanotechnology; 31 Biopolis Way The Nanos 138669 Singapore
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases; Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases; The First Affiliated Hospital; College of Medicine; Zhejiang University; Hangzhou 310003 P. R. China
| |
Collapse
|
19
|
Verma D, Parasa VR, Raffetseder J, Martis M, Mehta RB, Netea M, Lerm M. Anti-mycobacterial activity correlates with altered DNA methylation pattern in immune cells from BCG-vaccinated subjects. Sci Rep 2017; 7:12305. [PMID: 28951586 PMCID: PMC5615063 DOI: 10.1038/s41598-017-12110-2] [Citation(s) in RCA: 87] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/05/2017] [Indexed: 12/28/2022] Open
Abstract
The reason for the largely variable protective effect against TB of the vaccine Bacille Calmette-Guerin (BCG) is not understood. In this study, we investigated whether epigenetic mechanisms are involved in the response of immune cells to the BCG vaccine. We isolated peripheral blood mononuclear cells (PBMCs) from BCG-vaccinated subjects and performed global DNA methylation analysis in combination with functional assays representative of innate immunity against Mycobacterium tuberculosis infection. Enhanced containment of replication was observed in monocyte-derived macrophages from a sub-group of BCG-vaccinated individuals (identified as ‘responders’). A stable and robust differential DNA methylation pattern in response to BCG could be observed in PBMCs isolated from the responders but not from the non-responders. Gene ontology analysis revealed that promoters with altered DNA methylation pattern were strongly enriched among genes belonging to immune pathways in responders, however no enrichments could be observed in the non-responders. Our findings suggest that BCG-induced epigenetic reprogramming of immune cell function can enhance anti-mycobacterial immunity in macrophages. Understanding why BCG induces this response in responders but not in non-responders could provide clues to improvement of TB vaccine efficacy.
Collapse
Affiliation(s)
- Deepti Verma
- Division of Microbiology and Molecular Medicine, Linköping University, SE-58185, Linköping, Sweden
| | - Venkata Ramanarao Parasa
- Division of Microbiology and Molecular Medicine, Linköping University, SE-58185, Linköping, Sweden
| | - Johanna Raffetseder
- Division of Microbiology and Molecular Medicine, Linköping University, SE-58185, Linköping, Sweden
| | - Mihaela Martis
- NBIS (National Bioinformatics Infrastructure Sweden), ScilifeLab, Division of Cell Biology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, SE-581 85, Linköping, Sweden
| | - Ratnesh B Mehta
- Clinical Immunology, Department of Clinical and Experimental Medicine, Faculty of Medicine and Health Sciences, Linköping University, SE-58185, Linköping, Sweden
| | - Mihai Netea
- Department of Internal Medicine, Radboud University Medical Center, Geert Grooteplein 8, Nijmegen, The Netherlands
| | - Maria Lerm
- Division of Microbiology and Molecular Medicine, Linköping University, SE-58185, Linköping, Sweden.
| |
Collapse
|
20
|
Immune regulation of miR-30 on the Mycobacterium tuberculosis-induced TLR/MyD88 signaling pathway in THP-1 cells. Exp Ther Med 2017; 14:3299-3303. [PMID: 28912881 DOI: 10.3892/etm.2017.4872] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2016] [Accepted: 04/07/2017] [Indexed: 12/23/2022] Open
Abstract
The present study aimed to examine the expression of microRNA (miR)-30 family members in THP-1 human monocytes cells during Mycobacterium tuberculosis (MTB) H37Rv infection, and to investigate the role of miR-30 in the regulation of MTB-induced Toll-like receptor (TLR)/myeloid differentiation factor 88 (MyD88) activation and cytokine expression. The THP-1 cells were infected with MTB H37Rv and the expression of miR-30 family members was determined by reverse transcription-quantitative polymerase chain reaction analysis. In addition, miR-30a and miR-30e mimics were transfected into THP-1 cells to overexpress miR-30a and miR-30e. The expression of TLR2, TLR4 and MyD88 was determined by western blot analysis, and the expression of the cytokines tumor necrosis factor-α, interleukin (IL)-6, and IL-8 was determined using ELISA assays. A luciferase reporter assay was used to identify the target gene of miR-30a. MTB infection was demonstrated to significantly induce miR-30a and miR-30e expression in THP-1 cells in a time-dependent manner. Forced overexpression of miR-30a, but not miR-30e, exhibited an inhibitory effect on TLR/MyD88 activation and cytokine expression in the uninfected and MTB-infected THP-1 cells. The luciferase reporter assay demonstrated that miR-30a directly regulates the transcriptional activity of the MyD88 3'-untranslated region. In conclusion, the present study, to the best of our knowledge, is the first to demonstrate that miR-30a suppresses TLR/MyD88 activation and cytokine expression in THP-1 cells during MTB H37Rv infection, and that MyD88 is a direct target of miR-30a. The current study may aid in the development of novel therapeutic approaches for treating MTB.
Collapse
|
21
|
Abstract
Immunity against Mycobacterium tuberculosis requires a balance between adaptive immune responses to constrain bacterial replication and the prevention of potentially damaging immune activation. Regulatory T (Treg) cells express the transcription factor Foxp3+ and constitute an essential counterbalance of inflammatory Th1 responses and are required to maintain immune homeostasis. The first reports describing the presence of Foxp3-expressing CD4+ Treg cells in tuberculosis (TB) emerged in 2006. Different Treg cell subsets, most likely specialized for different tissues and microenvironments, have been shown to expand in both human TB and animal models of TB. Recently, additional functional roles for Treg cells have been demonstrated during different stages and spectrums of TB disease. Foxp3+ regulatory cells can quickly expand during early infection and impede the onset of cellular immunity and persist during chronic TB infection. Increased frequencies of Treg cells have been associated with a detrimental outcome of active TB, and may be dependent on the M. tuberculosis strain, animal model, local environment, and the stage of infection. Some investigations also suggest that Treg cells are required together with effector T cell responses to obtain reduced pathology and sterilizing immunity. In this review, we will first provide an overview of the regulatory cells and mechanisms that control immune homeostasis. Then, we will review what is known about the phenotype and function of Treg cells from studies in human TB and experimental animal models of TB. We will discuss the potential role of Treg cells in the progression of TB disease and the relevance of this knowledge for future efforts to prevent, modulate, and treat TB.
Collapse
|
22
|
Dai FY, Wang JF, Gong XL, Bao L. Immunogenicity and protective efficacy of recombinant Bacille Calmette-Guerin strains expressing mycobacterium antigens Ag85A, CFP10, ESAT-6, GM-CSF and IL-12p70. Hum Vaccin Immunother 2017; 13:1-8. [PMID: 28301284 DOI: 10.1080/21645515.2017.1279771] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
OBJECTIVE This study aimed to evaluate the immunogenicity and protective efficacy of recombinant bacille calmette-guerin (rBCG) strains expressing Ag85A (A), CFP10 (C), ESAT6 (E), IL-12p70 (I), and fusion protein GM-CSF (G). METHOD rBCGs were established by integrating of A, C, E, I, G, AE, CE, IE, GC, GE and GCE into Mycobacterium bovis BCG-1173 and BCG-SH. The macro-effects of rBCGs on mice were evaluated by phenotype and weight. The immunogenicity of rBCGs was analyzed by lgG, lgG1 and lgG2a antibody titers, and IFN-γ and IL-4 contents through Enzyme-linked immunosorbent assay (ELISA). Meanwhile, the proportions of CD4+ and CD8+ T splenic lymphocytes were determined using flow cytometry. The protective efficacy of rBCGs was evaluated by bacterial load in spleen and lung tissues from immunized mice. RESULTS rBCGs exhibited no obvious side effects on mice. The antibody titers of lgG, lgG1 and lgG2a, proportion of CD4+ and CD8+ T cells, and concentrations of IFN-γ were found to be significantly higher in multiple-gene rBCGs than that in single-gene rBCGs (P < 0.05). Bacterial load in both spleen and lung tissues from mice infected with M. tuberculosis H37Rv were significantly reduced by rBCGs. A significantly lower bacterial load was revealed in rBCG-1173:A compared with multiple-gene rBCGs (P < 0.05). CONCLUSION Immunogenicity was better on multiple-gene rBCGs than on single-gene rBCGs, while excellent protective efficacy was exhibited on rBCG-1173:A and BCG-1173.
Collapse
Affiliation(s)
- Fu-Ying Dai
- a Laboratory of Infection and Immunity, West China Center of Medical Science , Sichuan University , Chengdu , China.,b Department of Pathogenic Biology , School of Basic Medical Science, Chengdu Medical College , Chengdu , China
| | - Jun-Fang Wang
- a Laboratory of Infection and Immunity, West China Center of Medical Science , Sichuan University , Chengdu , China
| | - Xue-Li Gong
- a Laboratory of Infection and Immunity, West China Center of Medical Science , Sichuan University , Chengdu , China
| | - Lang Bao
- a Laboratory of Infection and Immunity, West China Center of Medical Science , Sichuan University , Chengdu , China
| |
Collapse
|
23
|
Montes de Oca M, Kumar R, Rivera FDL, Amante FH, Sheel M, Faleiro RJ, Bunn PT, Best SE, Beattie L, Ng SS, Edwards CL, Boyle GM, Price RN, Anstey NM, Loughland JR, Burel J, Doolan DL, Haque A, McCarthy JS, Engwerda CR. Type I Interferons Regulate Immune Responses in Humans with Blood-Stage Plasmodium falciparum Infection. Cell Rep 2016; 17:399-412. [PMID: 27705789 PMCID: PMC5082731 DOI: 10.1016/j.celrep.2016.09.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 07/19/2016] [Accepted: 09/04/2016] [Indexed: 12/14/2022] Open
Abstract
The development of immunoregulatory networks is important to prevent disease. However, these same networks allow pathogens to persist and reduce vaccine efficacy. Here, we identify type I interferons (IFNs) as important regulators in developing anti-parasitic immunity in healthy volunteers infected for the first time with Plasmodium falciparum. Type I IFNs suppressed innate immune cell function and parasitic-specific CD4+ T cell IFNγ production, and they promoted the development of parasitic-specific IL-10-producing Th1 (Tr1) cells. Type I IFN-dependent, parasite-specific IL-10 production was also observed in P. falciparum malaria patients in the field following chemoprophylaxis. Parasite-induced IL-10 suppressed inflammatory cytokine production, and IL-10 levels after drug treatment were positively associated with parasite burdens before anti-parasitic drug administration. These findings have important implications for understanding the development of host immune responses following blood-stage P. falciparum infection, and they identify type I IFNs and related signaling pathways as potential targets for therapies or vaccine efficacy improvement.
Collapse
Affiliation(s)
- Marcela Montes de Oca
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia; School of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| | - Rajiv Kumar
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia; Department of Biochemistry, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Fabian de Labastida Rivera
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia
| | - Fiona H Amante
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia
| | - Meru Sheel
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia
| | - Rebecca J Faleiro
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia; Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, QLD 4059, Australia
| | - Patrick T Bunn
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia; Institute of Glycomics, Griffith University, Gold Coast, Southport, QLD 4215, Australia
| | - Shannon E Best
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia
| | - Lynette Beattie
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia
| | - Susanna S Ng
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia; School of Natural Sciences, Griffith University, Nathan, QLD 4111, Australia
| | - Chelsea L Edwards
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia; School of Medicine, University of Queensland, Brisbane, QLD 4072, Australia
| | - Glen M Boyle
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia
| | - Ric N Price
- Menzies School of Health Research, Darwin, NT 0811, Australia; Charles Darwin University, Darwin, NT 0810, Australia; Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford OX3 7BN, UK
| | - Nicholas M Anstey
- Menzies School of Health Research, Darwin, NT 0811, Australia; Charles Darwin University, Darwin, NT 0810, Australia
| | - Jessica R Loughland
- Menzies School of Health Research, Darwin, NT 0811, Australia; Charles Darwin University, Darwin, NT 0810, Australia
| | - Julie Burel
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia
| | - Denise L Doolan
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia
| | - Ashraful Haque
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia
| | - James S McCarthy
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia; School of Medicine, University of Queensland, Brisbane, QLD 4072, Australia.
| | - Christian R Engwerda
- QIMR Berghofer Medical Research Institute, Royal Brisbane and Women's Hospital, Brisbane, QLD 4006, Australia.
| |
Collapse
|
24
|
Induction of Unconventional T Cells by a Mutant Mycobacterium bovis BCG Strain Formulated in Cationic Liposomes Correlates with Protection against Mycobacterium tuberculosis Infections of Immunocompromised Mice. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2016; 23:638-47. [PMID: 27226281 DOI: 10.1128/cvi.00232-16] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2016] [Accepted: 05/18/2016] [Indexed: 02/08/2023]
Abstract
Earlier studies aimed at defining protective immunity induced by Mycobacterium bovis BCG immunization have largely focused on the induction of antituberculosis CD4(+) and CD8(+) T cell responses. Here we describe a vaccine consisting of a BCGΔmmaA4 deletion mutant formulated in dimethyl dioctadecyl-ammonium bromide (DDA) with d-(+)-trehalose 6,6'-dibehenate (TDB) (DDA/TDB) adjuvant (A4/Adj) that protected TCRδ(-/-) mice depleted of CD4(+), CD8(+), and NK1.1(+) T cells against an aerosol challenge with M. tuberculosis These mice were significantly protected relative to mice immunized with a nonadjuvanted BCGΔmmaA4 (BCG-A4) mutant and nonvaccinated controls at 2 months and 9 months postvaccination. In the absence of all T cells following treatment with anti-Thy1.2 antibody, the immunized mice lost the ability to control the infection. These results indicate that an unconventional T cell population was mediating protection in the absence of CD4(+), CD8(+), NK1.1(+), and TCRγδ T cells and could exhibit memory. Focusing on CD4(-) CD8(-) double-negative (DN) T cells, we found that these cells accumulated in the lungs postchallenge significantly more in A4/Adj-immunized mice and induced significantly greater frequencies of pulmonary gamma interferon (IFN-γ)-producing cells than were seen in the nonvaccinated or nonadjuvanted BCG control groups. Moreover, pulmonary DN T cells from the A4/Adj group exhibited significantly higher IFN-γ integrated median fluorescence intensity (iMFI) values than were seen in the control groups. We also showed that enriched DN T cells from mice immunized with A4/Adj could control mycobacterial growth in vitro significantly better than naive whole-spleen cells. These results suggest that formulating BCG in DDA/TDB adjuvant confers superior protection in immunocompromised mice and likely involves the induction of long-lived memory DN T cells.
Collapse
|
25
|
Costa A, Pinheiro M, Magalhães J, Ribeiro R, Seabra V, Reis S, Sarmento B. The formulation of nanomedicines for treating tuberculosis. Adv Drug Deliv Rev 2016; 102:102-115. [PMID: 27108703 DOI: 10.1016/j.addr.2016.04.012] [Citation(s) in RCA: 72] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 03/08/2016] [Accepted: 04/13/2016] [Indexed: 12/30/2022]
Abstract
Recent estimates indicate that tuberculosis (TB) is the leading cause of death worldwide, alongside the human immunodeficiency virus (HIV) infection. The current treatment is effective, but is associated with severe adverse-effects and noncompliance to prescribed regimens. An alternative route of drug delivery may improve the performance of existing drugs, which may have a key importance in TB control and eradication. Recent advances and emerging technologies in nanoscale systems, particularly nanoparticles (NPs), have the potential to transform such approach to human health and disease. Until now, several nanodelivery systems for the pulmonary administration of anti-TB drugs have been intensively studied and their utility as an alternative to the classical TB treatment has been suggested. In this context, this review provides a comprehensive analysis of recent progress in nanodelivery systems for pulmonary administration of anti-TB drugs. Additionally, more convenient and cost-effective alternatives for the lung delivery, different types of NPs for oral and topical are also being considered, and summarized in this review. Lastly, the future of this growing field and its potential impact will be discussed.
Collapse
Affiliation(s)
- Ana Costa
- ICBAS - Instituto Ciências Biomédicas Abel Salazar,University of Porto,Rua de Jorge Viterbo Ferreira 228,4050-313 Porto,Portugal; I3S,Instituto de Investigação e Inovação em Saúde, INEB-Instituto de Engenharia Biomédica,Universidade do Porto,Rua Alfredo Allen 208,4200-135 Porto,Portugal; CESPU,Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde,Rua Central de Gandra 1317,4585-116 Gandra,Portugal
| | - Marina Pinheiro
- REQUIMTE,Department of Chemical Sciences - Applied Chemistry Lab,Faculty of Pharmacy,University of Porto,Rua de Jorge Viterbo Ferreira 228,4050-313 Porto,Portugal
| | - Joana Magalhães
- REQUIMTE,Department of Chemical Sciences - Applied Chemistry Lab,Faculty of Pharmacy,University of Porto,Rua de Jorge Viterbo Ferreira 228,4050-313 Porto,Portugal
| | - Ricardo Ribeiro
- REQUIMTE,Department of Chemical Sciences - Applied Chemistry Lab,Faculty of Pharmacy,University of Porto,Rua de Jorge Viterbo Ferreira 228,4050-313 Porto,Portugal
| | - Vitor Seabra
- CESPU,Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde,Rua Central de Gandra 1317,4585-116 Gandra,Portugal
| | - Salette Reis
- REQUIMTE,Department of Chemical Sciences - Applied Chemistry Lab,Faculty of Pharmacy,University of Porto,Rua de Jorge Viterbo Ferreira 228,4050-313 Porto,Portugal
| | - Bruno Sarmento
- I3S,Instituto de Investigação e Inovação em Saúde, INEB-Instituto de Engenharia Biomédica,Universidade do Porto,Rua Alfredo Allen 208,4200-135 Porto,Portugal; CESPU,Instituto de Investigação e Formação Avançada em Ciências e Tecnologias da Saúde,Rua Central de Gandra 1317,4585-116 Gandra,Portugal; Universidade Estadual do Oeste do Paraná,Centro de Ciências Médicas e Farmacêuticas,Rua Universitária,2069 Cascavel,Paraná, Brazil.
| |
Collapse
|
26
|
Parumasivam T, Chang RYK, Abdelghany S, Ye TT, Britton WJ, Chan HK. Dry powder inhalable formulations for anti-tubercular therapy. Adv Drug Deliv Rev 2016; 102:83-101. [PMID: 27212477 DOI: 10.1016/j.addr.2016.05.011] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 05/13/2016] [Accepted: 05/14/2016] [Indexed: 12/31/2022]
Abstract
Tuberculosis (TB) is an intracellular infectious disease caused by the airborne bacterium, Mycobacterium tuberculosis. Despite considerable research efforts, the treatment of TB continues to be a great challenge in part due to the requirement of prolonged therapy with multiple high-dose drugs and associated side effects. The delivery of pharmacological agents directly to the respiratory system, following the natural route of infection, represents a logical therapeutic approach for treatment or vaccination against TB. Pulmonary delivery is non-invasive, avoids first-pass metabolism in the liver and enables targeting of therapeutic agents to the infection site. Inhaled delivery also potentially reduces the dose requirement and the accompanying side effects. Dry powder is a stable formulation of drug that can be stored without refrigeration compared to liquids and suspensions. The dry powder inhalers are easy to use and suitable for high-dose formulations. This review focuses on the current innovations of inhalable dry powder formulations of drug and vaccine delivery for TB, including the powder production method, preclinical and clinical evaluations of inhaled dry powder over the last decade. Finally, the risks associated with pulmonary therapy are addressed. A novel dry powder formulation with high percentages of respirable particles coupled with a cost effective inhaler device is an appealing platform for TB drug delivery.
Collapse
Affiliation(s)
- Thaigarajan Parumasivam
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Rachel Yoon Kyung Chang
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Sharif Abdelghany
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, University of Jordan, Amman 1192, Jordan
| | - Tian Tian Ye
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, NSW 2006, Australia
| | - Warwick John Britton
- Tuberculosis Research Program, Centenary Institute, The University of Sydney, NSW 2006, Australia; Infectious Diseases and Immunology, Sydney Medical School, The University of Sydney, NSW 2006, Australia
| | - Hak-Kim Chan
- Advanced Drug Delivery Group, Faculty of Pharmacy, The University of Sydney, NSW 2006, Australia.
| |
Collapse
|
27
|
Differences between Mycobacterium-Host Cell Relationships in Latent Tuberculous Infection of Mice Ex Vivo and Mycobacterial Infection of Mouse Cells In Vitro. J Immunol Res 2016; 2016:4325646. [PMID: 27066505 PMCID: PMC4811625 DOI: 10.1155/2016/4325646] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2015] [Revised: 02/07/2016] [Accepted: 02/23/2016] [Indexed: 12/22/2022] Open
Abstract
The search for factors that account for the reproduction and survival of mycobacteria, including vaccine strains, in host cells is the priority for studies on tuberculosis. A comparison of BCG-mycobacterial loads in granuloma cells obtained from bone marrow and spleens of mice with latent tuberculous infection and cells from mouse bone marrow and peritoneal macrophage cultures infected with the BCG vaccine in vitro has demonstrated that granuloma macrophages each normally contained a single BCG-Mycobacterium, while those acutely infected in vitro had increased mycobacterial loads and death rates. Mouse granuloma cells were observed to produce the IFNγ, IL-1α, GM-CSF, CD1d, CD25, CD31, СD35, and S100 proteins. None of these activation markers were found in mouse cell cultures infected in vitro or in intact macrophages. Lack of colocalization of lipoarabinomannan-labeled BCG-mycobacteria with the lysosomotropic LysoTracker dye in activated granuloma macrophages suggests that these macrophages were unable to destroy BCG-mycobacteria. However, activated mouse granuloma macrophages could control mycobacterial reproduction in cells both in vivo and in ex vivo culture. By contrast, a considerable increase in the number of BCG-mycobacteria was observed in mouse bone marrow and peritoneal macrophages after BCG infection in vitro, when no expression of the activation-related molecules was detected in these cells.
Collapse
|
28
|
Mosavat A, Soleimanpour S, Farsiani H, Sadeghian H, Ghazvini K, Sankian M, Jamehdar SA, Rezaee SA. Fused Mycobacterium tuberculosis multi-stage immunogens with an Fc-delivery system as a promising approach for the development of a tuberculosis vaccine. INFECTION GENETICS AND EVOLUTION 2016; 39:163-172. [PMID: 26835592 DOI: 10.1016/j.meegid.2016.01.027] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2015] [Revised: 01/23/2016] [Accepted: 01/29/2016] [Indexed: 12/16/2022]
Abstract
Tuberculosis (TB) remains a major health problem worldwide. Currently, the Bacilli Calmette-Guérin (BCG) is the only available licensed TB vaccine, which has low efficacy in protection against adult pulmonary TB. Therefore, the development of a safe and effective vaccine against TB needs global attention. In the present study, a novel multi-stage subunit vaccine candidate from culture filtrate protein-10 (CFP-10) and heat shock protein X (HspX) of Mycobacterium tuberculosis fused to the Fc domain of mouse IgG2a as a selective delivery system for antigen-presenting cells (APCs) was produced and its immunogenicity assessed. The optimized gene constructs were introduced into pPICZαA expression vectors, and the resultant plasmids (pPICZαA-CFP-10:Hspx:Fcγ2a and pPICZαA-CFP-10:Hspx:His) were transferred into Pichia pastoris by electroporation. The identification of both purified recombinant fusion proteins was evaluated by SDS-PAGE and immunoblotting. Then the immunogenicity of the recombinant proteins with and without BCG was evaluated in BALB/c mice by assessing the level of IFN-γ, IL-12, IL-4, IL-17 and TGF-β cytokines. Both multi-stage vaccines (CFP-10:HspX:Fcγ2a and CFP-10:HspX:His) induced Th1-type cellular responses by producing high level of IFN-γ (272 pg/mL, p<0.001) and IL-12 (191 pg/mL, p<0.001). However, the Fc-tagged recombinant protein induced more effective Th1-type cellular responses with a low level of IL-4 (10 pg/mL) compared to the CFP-10:HspX:His group. The production of IFN-γ to CFP-10:HspX:Fcγ2a was markedly consistent and showed an increasing trend for IL-12 compared with the BCG or CFP-10:HspX:His primed and boosted groups. Findings revealed that CFP-10:Hspx:Fcγ2a fusion protein can elicit strong Th1 antigen-specific immune responses in favor of protective immunity in mice and could provide new insight for introducing an effective multi-stage subunit vaccine against TB.
Collapse
Affiliation(s)
- Arman Mosavat
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Farsiani
- Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Sadeghian
- Department of Laboratory Sciences, School of Paramedical Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- Immunobiochemistry Lab, Immunology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saeid Amel Jamehdar
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Inflammation and Inflammatory Diseases Research Centre, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
29
|
Ziraldo C, Gong C, Kirschner DE, Linderman JJ. Strategic Priming with Multiple Antigens can Yield Memory Cell Phenotypes Optimized for Infection with Mycobacterium tuberculosis: A Computational Study. Front Microbiol 2016; 6:1477. [PMID: 26779136 PMCID: PMC4701940 DOI: 10.3389/fmicb.2015.01477] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 12/08/2015] [Indexed: 12/16/2022] Open
Abstract
Lack of an effective vaccine results in 9 million new cases of tuberculosis (TB) every year and 1.8 million deaths worldwide. Although many infants are vaccinated at birth with BCG (an attenuated M. bovis), this does not prevent infection or development of TB after childhood. Immune responses necessary for prevention of infection or disease are still unknown, making development of effective vaccines against TB challenging. Several new vaccines are ready for human clinical trials, but these trials are difficult and expensive; especially challenging is determining the appropriate cellular response necessary for protection. The magnitude of an immune response is likely key to generating a successful vaccine. Characteristics such as numbers of central memory (CM) and effector memory (EM) T cells responsive to a diverse set of epitopes are also correlated with protection. Promising vaccines against TB contain mycobacterial subunit antigens (Ag) present during both active and latent infection. We hypothesize that protection against different key immunodominant antigens could require a vaccine that produces different levels of EM and CM for each Ag-specific memory population. We created a computational model to explore EM and CM values, and their ratio, within what we term Memory Design Space. Our model captures events involved in T cell priming within lymph nodes and tracks their circulation through blood to peripheral tissues. We used the model to test whether multiple Ag-specific memory cell populations could be generated with distinct locations within Memory Design Space at a specific time point post vaccination. Boosting can further shift memory populations to memory cell ratios unreachable by initial priming events. By strategically varying antigen load, properties of cellular interactions within the LN, and delivery parameters (e.g., number of boosts) of multi-subunit vaccines, we can generate multiple Ag-specific memory populations that cover a wide range of Memory Design Space. Given a set of desired characteristics for Ag-specific memory populations, we can use our model as a tool to predict vaccine formulations that will generate those populations.
Collapse
Affiliation(s)
- Cordelia Ziraldo
- Department of Chemical Engineering, University of Michigan, Ann ArborMI, USA; Department of Microbiology and Immunology, University of Michigan Medical School, Ann ArborMI, USA
| | - Chang Gong
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann ArborMI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan, Ann ArborMI, USA
| | - Denise E Kirschner
- Department of Microbiology and Immunology, University of Michigan Medical School, Ann Arbor MI, USA
| | - Jennifer J Linderman
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor MI, USA
| |
Collapse
|
30
|
Bettencourt P, Pires D, Anes E. Immunomodulating microRNAs of mycobacterial infections. Tuberculosis (Edinb) 2015; 97:1-7. [PMID: 26980489 DOI: 10.1016/j.tube.2015.12.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2015] [Revised: 11/17/2015] [Accepted: 12/21/2015] [Indexed: 12/13/2022]
Abstract
MicroRNAs are a class of small non-coding RNAs that have emerged as key regulators of gene expression at the post-transcriptional level by sequence-specific binding to target mRNAs. Some microRNAs block translation, while others promote mRNA degradation, leading to a reduction in protein availability. A single miRNA can potentially regulate the expression of multiple genes and their encoded proteins. Therefore, miRNAs can influence molecular signalling pathways and regulate many biological processes in health and disease. Upon infection, host cells rapidly change their transcriptional programs, including miRNA expression, as a response against the invading microorganism. Not surprisingly, pathogens can also alter the host miRNA profile to their own benefit, which is of major importance to scientists addressing high morbidity and mortality infectious diseases such as tuberculosis. In this review, we present recent findings on the miRNAs regulation of the host response against mycobacterial infections, providing new insights into host-pathogen interactions. Understanding these findings and its implications could reveal new opportunities for designing better diagnostic tools, therapies and more effective vaccines.
Collapse
Affiliation(s)
- Paulo Bettencourt
- Research Institute for Medicines, iMed-ULisboa, Faculdade de Farmácia da Universidade de Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| | - David Pires
- Research Institute for Medicines, iMed-ULisboa, Faculdade de Farmácia da Universidade de Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| | - Elsa Anes
- Research Institute for Medicines, iMed-ULisboa, Faculdade de Farmácia da Universidade de Lisboa, Portugal; Instituto de Medicina Molecular, Faculdade de Medicina da Universidade de Lisboa, Lisboa, Portugal.
| |
Collapse
|
31
|
A Novel MVA-Based Multiphasic Vaccine for Prevention or Treatment of Tuberculosis Induces Broad and Multifunctional Cell-Mediated Immunity in Mice and Primates. PLoS One 2015; 10:e0143552. [PMID: 26599077 PMCID: PMC4658014 DOI: 10.1371/journal.pone.0143552] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2015] [Accepted: 11/05/2015] [Indexed: 02/06/2023] Open
Abstract
Bacille Calmette-Guérin (BCG) vaccination of new born babies can protect children against tuberculosis (TB), but fails to protect adults consistently against pulmonary TB underlying the urgent need to develop novel TB vaccines. Majority of first generation TB vaccine candidates have relied on a very limited number of antigens typically belonging to the active phase of infection. We have designed a multi-antigenic and multiphasic vaccine, based on the Modified Vaccinia Ankara virus (MVA). Up to fourteen antigens representative of the three phases of TB infection (active, latent and resuscitation) were inserted into MVA. Using three different strains of mouse (BALB/c, C57BL/6 and C3H/HeN), we show that a single vaccination results in induction of both CD4 and CD8 T cells, displaying capacity to produce multiple cytokines together with cytolytic activity targeting a large array of epitopes. As expected, dominance of responses was linked to the mouse haplotype although for a given haplotype, responses specific of at least one antigen per phase could always be detected. Vaccination of non-human primates with the 14 antigens MVA-TB candidate resulted in broad and potent cellular-based immunogenicity. The remarkable plasticity of MVA opens the road to development of a novel class of highly complex recombinant TB vaccines to be evaluated in both prophylactic and therapeutic settings.
Collapse
|
32
|
Soleimanpour S, Farsiani H, Mosavat A, Ghazvini K, Eydgahi MRA, Sankian M, Sadeghian H, Meshkat Z, Rezaee SA. APC targeting enhances immunogenicity of a novel multistage Fc-fusion tuberculosis vaccine in mice. Appl Microbiol Biotechnol 2015; 99:10467-80. [PMID: 26373723 DOI: 10.1007/s00253-015-6952-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 08/12/2015] [Accepted: 08/22/2015] [Indexed: 10/23/2022]
Abstract
Numerous studies have demonstrated that targeting immunogens to FcγR on antigen-presenting cells (APCs) can selectively uptake and increase cellular immunity in vitro and in vivo. Therefore, the present study was conducted to evaluate immunogenicity of a novel multistage tuberculosis vaccine, a combination of an early and a dormant immunogenic protein, ESAT6 and HspX, fused to Fcγ2a fragment of mouse IgG2a to target all forms of tuberculosis. Codon-optimized genes consisting of ESAT6, a linker, and HspX fused either to mouse Fcγ2a (ESAT6:HspX:mFcγ2a) or 6× His-tag (ESAT6:HspX:His) were synthesized. The resulting proteins were then produced in Pichia pastoris. The fusion proteins were separately emulsified in dimethyldioctadecylammonium bromide(DDA)-trehalose-6,6-dibehenate(TDB) adjuvant, and their immunogenicity with and without bacille Calmette-Guérin (BCG) was assessed in C57BL/6 mice. Th1, Th2, Th17, and T-reg cytokine patterns were evaluated using the ELISA method. Both multistage vaccines induced very strong IL-12 and IFN-γ secretion from splenic cells; the Fc-tagged subunit vaccine induced a more effective Th1 immune response (IFN-γ, 910 pg/mL, and IL-12, 854 pg/mL) with a very low increase in IL-17 (∼0.1 pg/mL) and IL-4 (37 pg/mL) and a mild increase in TGF-β (543 pg/mL) compared to the BCG or ESAT6:HspX:His primed and boosted groups. The production of IFN-γ to ESAT6:HspX:Fcγ2a was very consistent and showed an increasing trend for IL-12 compared to the BCG or ESAT6:HspX:His primed and boosted groups. Fcγ2a used as a delivery vehicle supported the idea of selective uptake, inducing cross-presentation and forming a proper anti-tuberculosis response in context of Th1/Th2 and Th17/T-reg balances, which is important for protection and prevention of damage.
Collapse
Affiliation(s)
- Saman Soleimanpour
- Microbiology & Virology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hadi Farsiani
- Biotechnology Research Center, Semnan University of Medical Sciences, Semnan, Iran
| | - Arman Mosavat
- Microbiology & Virology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Microbiology & Virology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Mojtaba Sankian
- Immunobiochemistry Lab, Immunology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamid Sadeghian
- Organic Chemistry, Department of Laboratory Sciences, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Meshkat
- Microbiology & Virology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Abdolrahim Rezaee
- Microbiology & Virology Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran. .,Inflammation and Inflammatory Diseases Research Center, Medical School, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
33
|
Correlates of Vaccine-Induced Protection against Mycobacterium tuberculosis Revealed in Comparative Analyses of Lymphocyte Populations. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2015; 22:1096-108. [PMID: 26269537 DOI: 10.1128/cvi.00301-15] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2015] [Accepted: 08/09/2015] [Indexed: 12/16/2022]
Abstract
A critical hindrance to the development of a novel vaccine against Mycobacterium tuberculosis is a lack of understanding of protective correlates of immunity and of host factors involved in a successful adaptive immune response. Studies from our group and others have used a mouse-based in vitro model system to assess correlates of protection. Here, using this coculture system and a panel of whole-cell vaccines with varied efficacy, we developed a comprehensive approach to understand correlates of protection. We compared the gene and protein expression profiles of vaccine-generated immune peripheral blood lymphocytes (PBLs) to the profiles found in immune splenocytes. PBLs not only represent a clinically relevant cell population, but comparing the expression in these populations gave insight into compartmentally specific mechanisms of protection. Additionally, we performed a direct comparison of host responses induced when immune cells were cocultured with either the vaccine strain Mycobacterium bovis BCG or virulent M. tuberculosis. These comparisons revealed host-specific and bacterium-specific factors involved in protection against virulent M. tuberculosis. Most significantly, we identified a set of 13 core molecules induced in the most protective vaccines under all of the conditions tested. Further validation of this panel of mediators as a predictor of vaccine efficacy will facilitate vaccine development, and determining how each promotes adaptive immunity will advance our understanding of antimycobacterial immune responses.
Collapse
|
34
|
Villarreal DO, Walters J, Laddy DJ, Yan J, Weiner DB. Multivalent TB vaccines targeting the esx gene family generate potent and broad cell-mediated immune responses superior to BCG. Hum Vaccin Immunother 2015; 10:2188-98. [PMID: 25424922 DOI: 10.4161/hv.29574] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Development of a broad-spectrum synthetic vaccine against TB would represent an important advance to the limited vaccine armamentarium against TB. It is believed that the esx family of TB antigens may represent important vaccine candidates. However, only 4 esx antigens have been studied as potential vaccine antigens. The challenge remains to develop a vaccine that simultaneously targets all 23 members of the esx family to induce enhanced broad-spectrum cell-mediated immunity. We sought to investigate if broader cellular immune responses could be induced using a multivalent DNA vaccine representing the esx family protein members delivered via electroporation. In this study, 15 designed esx antigens were created to cross target all members of the esx family. They were distributed into groups of 3 self-processing antigens each, resulting in 5 trivalent highly optimized DNA plasmids. Vaccination with all 5 constructs elicited robust antigen-specific IFN-γ responses to all encoded esx antigens and induced multifunctional CD4 Th1 and CD8 T cell responses. Importantly, we show that when all constructs are combined into a cocktail, the RSQ-15 vaccine, elicited substantial broad Ag-specific T cell responses to all esx antigens as compared with vaccination with BCG. Moreover, these vaccine-induced responses were highly cross-reactive with BCG encoded esx family members and were highly immune effective in a BCG DNA prime-boost format. Furthermore, we demonstrate the vaccine potential and immunopotent profile of several novel esx antigens never previously studied. These data highlight the likely importance of these novel immunogens for study as preventative or therapeutic synthetic TB vaccines in combination or as stand alone antigens.
Collapse
Affiliation(s)
- Daniel O Villarreal
- a Department of Pathology and Laboratory Medicine; University of Pennsylvania School of Medicine; Philadelphia, PA USA
| | | | | | | | | |
Collapse
|
35
|
Abstract
SUMMARY Tuberculosis (TB) is a leading cause of death worldwide despite the availability of effective chemotherapy for over 60 years. Although Mycobacterium bovis bacillus Calmette-Guérin (BCG) vaccination protects against active TB disease in some populations, its efficacy is suboptimal. Development of an effective TB vaccine is a top global priority that has been hampered by an incomplete understanding of protective immunity to TB. Thus far, preventing TB disease, rather than infection, has been the primary target for vaccine development. Several areas of research highlight the importance of including preinfection vaccines in the development pipeline. First, epidemiology and mathematical modeling studies indicate that a preinfection vaccine would have a high population-level impact for control of TB disease. Second, immunology studies support the rationale for targeting prevention of infection, with evidence that host responses may be more effective during acute infection than during chronic infection. Third, natural history studies indicate that resistance to TB infection occurs in a small percentage of the population. Fourth, case-control studies of BCG indicate that it may provide protection from infection. Fifth, prevention-of-infection trials would have smaller sample sizes and a shorter duration than disease prevention trials and would enable opportunities to search for correlates of immunity as well as serve as a criterion for selecting a vaccine product for testing in a larger TB disease prevention trial. Together, these points support expanding the focus of TB vaccine development efforts to include prevention of infection as a primary goal along with vaccines or other interventions that reduce the rate of transmission and reactivation.
Collapse
|
36
|
Monosodium Urate Crystals Promote Innate Anti-Mycobacterial Immunity and Improve BCG Efficacy as a Vaccine against Tuberculosis. PLoS One 2015; 10:e0127279. [PMID: 26023779 PMCID: PMC4449037 DOI: 10.1371/journal.pone.0127279] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Accepted: 04/13/2015] [Indexed: 11/29/2022] Open
Abstract
A safer and more effective anti-Tuberculosis vaccine is still an urgent need. We probed the effects of monosodium urate crystals (MSU) on innate immunity to improve the Bacille Calmette-Guerin (BCG) vaccination. Results showed that in vitro MSU cause an enduring macrophage stimulation of the anti-mycobacterial response, measured as intracellular killing, ROS production and phagolysosome maturation. The contribution of MSU to anti-mycobacterial activity was also shown in vivo. Mice vaccinated in the presence of MSU showed a lower number of BCG in lymph nodes draining the vaccine inoculation site, in comparison to mice vaccinated without MSU. Lastly, we showed that MSU improved the efficacy of BCG vaccination in mice infected with Mycobacterium tuberculosis (MTB), measured in terms of lung and spleen MTB burden. These results demonstrate that the use of MSU as adjuvant may represent a novel strategy to enhance the efficacy of BCG vaccination.
Collapse
|
37
|
von Both U, Kaforou M, Levin M, Newton SM. Understanding immune protection against tuberculosis using RNA expression profiling. Vaccine 2015; 33:5289-93. [PMID: 26006085 PMCID: PMC4582769 DOI: 10.1016/j.vaccine.2015.05.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Revised: 04/24/2015] [Accepted: 05/08/2015] [Indexed: 11/30/2022]
Abstract
A major limitation in the development and testing of new tuberculosis (TB) vaccines is the current inadequate understanding of the nature of the immune response required for protection against either infection with Mycobacterium tuberculosis (MTB) or progression to disease. Genome wide RNA expression analysis has provided a new tool with which to study the inflammatory and immunological response to mycobacteria. To explore how currently available transcriptomic data might be used to understand the basis of protective immunity to MTB, we analysed and reviewed published RNA expression studies to (1) identify a “susceptible” immune response in patients with acquired defects in the interferon gamma pathway; (2) identify the “failing” transcriptomic response in patients with TB as compared with latent TB infection (LTBI); and (3) identify elements of the “protective” response in healthy latently infected and healthy uninfected individuals.
Collapse
Affiliation(s)
- Ulrich von Both
- Section of Paediatrics and Wellcome Trust Centre for Clinical Tropical Medicine, Division of Infectious Diseases, Department of Medicine, Imperial College London, United Kingdom
| | - Myrsini Kaforou
- Section of Paediatrics and Wellcome Trust Centre for Clinical Tropical Medicine, Division of Infectious Diseases, Department of Medicine, Imperial College London, United Kingdom; Department of Genomics of Common Disease, School of Public Health, Imperial College London, London, United Kingdom
| | - Michael Levin
- Section of Paediatrics and Wellcome Trust Centre for Clinical Tropical Medicine, Division of Infectious Diseases, Department of Medicine, Imperial College London, United Kingdom.
| | - Sandra M Newton
- Section of Paediatrics and Wellcome Trust Centre for Clinical Tropical Medicine, Division of Infectious Diseases, Department of Medicine, Imperial College London, United Kingdom
| |
Collapse
|
38
|
Mycobacterium-Host Cell Relationships in Granulomatous Lesions in a Mouse Model of Latent Tuberculous Infection. BIOMED RESEARCH INTERNATIONAL 2015; 2015:948131. [PMID: 26064970 PMCID: PMC4433666 DOI: 10.1155/2015/948131] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 10/21/2014] [Indexed: 12/24/2022]
Abstract
Tuberculosis (TB) is a dangerous infectious disease characterized by a tight interplay between mycobacteria and host cells in granulomatous lesions (granulomas) during the latent, asymptomatic stage of infection. Mycobacterium-host cell relationships were analyzed in granulomas obtained from various organs of BALB/c mice with chronic TB infection caused by in vivo exposure to the Bacillus Calmette-Guérin (BCG) vaccine. Acid-fast BCG-mycobacteria were found to be morphologically and functionally heterogeneous (in size, shape, and replication rates in colonies) in granuloma macrophages, dendritic cells, and multinucleate Langhans giant cells. Cord formation by BCG-mycobacteria in granuloma cells has been observed. Granuloma macrophages retained their ability to ingest damaged lymphocytes and thrombocytes in the phagosomes; however, their ability to destroy BCG-mycobacteria contained in these cells was compromised. No colocalization of BCG-mycobacteria and the LysoTracker dye was observed in the mouse cells. Various relationships between granuloma cells and BCG-mycobacteria were observed in different mice belonging to the same line. Several mice totally eliminated mycobacterial infection. Granulomas in the other mice had mycobacteria actively replicating in cells of different types and forming cords, which is an indicator of mycobacterial virulence and, probably, a marker of the activation of tuberculous infection in animals.
Collapse
|
39
|
Chatterjee D, Pramanik AK. Tuberculosis in the African continent: A comprehensive review. ACTA ACUST UNITED AC 2015; 22:73-83. [PMID: 25620557 DOI: 10.1016/j.pathophys.2014.12.005] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2014] [Revised: 12/27/2014] [Accepted: 12/30/2014] [Indexed: 02/01/2023]
Abstract
Tuberculosis continues to be a major global health problem, causing an estimated 8.8 million new cases and 1.45 million deaths annually. New drugs in the 1940s made it possible to beat the disease, and consequently, the number of cases reduced drastically. Fast-forward a few decades, drugresistant strains of varied virulence are reported consistently, disease is again on the rise and the treatment has not kept pace. Tuberculosis is the leading cause of death among HIV-infected persons in many resource-constrained settings however, it is curable and preventable. The unprecedented growth of the tuberculosis epidemic in Africa is attributable to several factors, the most important being the HIV epidemic. Analysis of molecular-based data have shown diverse genetic backgrounds among both drug-sensitive and MDR TB isolates in Africa presumably due to underlying genetic and environmental differences. The good news is that there have been important advances recently in TB drugs and diagnostics. Despite the availability of revolutionary tests that allow for faster diagnosis and of new drugs and regimens that offer better and safer treatment it is now becoming clearer that national efforts on TB control should be enhanced and focus on improving the quality of prevention, diagnosis, treatment and care services; strengthening program management, implementation and supervision. This review is an assessment of the trend in TB in Africa.
Collapse
Affiliation(s)
- Delphi Chatterjee
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO 80523-1682, USA.
| | - Arun K Pramanik
- Department of Pediatrics/Neonatology, Louisiana State University Health Sciences Center, 1501 Kings Hwy, Shreveport, LA 71103-4228, USA
| |
Collapse
|
40
|
Ni G, Wang T, Walton S, Zhu B, Chen S, Wu X, Wang Y, Wei MQ, Liu X. Manipulating IL-10 signalling blockade for better immunotherapy. Cell Immunol 2015; 293:126-9. [PMID: 25596475 DOI: 10.1016/j.cellimm.2014.12.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2014] [Accepted: 12/29/2014] [Indexed: 01/21/2023]
Abstract
Interleukin 10 is a cytokine with the ability to reduce or terminate inflammation. Chronic viral infection, such as infection of chronic hepatitis B, hepatitis C and HIV, has increased levels of interleukin 10 in peripheral blood. Serum IL-10 levels are also high in certain cancers. Blocking IL-10 signalling at the time of immunisation clears chronic viral infection and prevents tumour growth in animal models. We review recent advances in this area, with the emphasis on potential use of this novel strategy to treat chronic viral infection and cancer in human.
Collapse
Affiliation(s)
- Guoying Ni
- School of Medical Science, Griffith Health Institute, Griffith University, Gold Coast, QLD 4222, Australia
| | - Tianfang Wang
- Genecology Research Centre, University of Sunshine Coast, Sippy Downs 4556, QLD, Australia
| | - Shelley Walton
- Inflammation and Healing Research Cluster, University of Sunshine Coast, Sippy Downs 4556, Australia
| | - Bin Zhu
- Cancer Research Institute, Foshan First People's Hospital, Foshan, Guangdong 528000, China
| | - Shu Chen
- Cancer Research Institute, Foshan First People's Hospital, Foshan, Guangdong 528000, China
| | - Xiaolian Wu
- Cancer Research Institute, Foshan First People's Hospital, Foshan, Guangdong 528000, China
| | - Yuejian Wang
- Cancer Research Institute, Foshan First People's Hospital, Foshan, Guangdong 528000, China.
| | - Ming Q Wei
- School of Medical Science, Griffith Health Institute, Griffith University, Gold Coast, QLD 4222, Australia.
| | - Xiaosong Liu
- Inflammation and Healing Research Cluster, University of Sunshine Coast, Sippy Downs 4556, Australia; Cancer Research Institute, Foshan First People's Hospital, Foshan, Guangdong 528000, China.
| |
Collapse
|
41
|
Flórido M, Pillay R, Gillis CM, Xia Y, Turner SJ, Triccas JA, Stambas J, Britton WJ. Epitope-specific CD4+, but not CD8+, T-cell responses induced by recombinant influenza A viruses protect against Mycobacterium tuberculosis infection. Eur J Immunol 2014; 45:780-93. [PMID: 25430701 DOI: 10.1002/eji.201444954] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 10/29/2014] [Accepted: 11/24/2014] [Indexed: 02/01/2023]
Abstract
Tuberculosis remains a global health problem, in part due to failure of the currently available vaccine, BCG, to protect adults against pulmonary forms of the disease. We explored the impact of pulmonary delivery of recombinant influenza A viruses (rIAVs) on the induction of Mycobacterium tuberculosis (M. tuberculosis)-specific CD4(+) and CD8(+) T-cell responses and the resultant protection against M. tuberculosis infection in C57BL/6 mice. Intranasal infection with rIAVs expressing a CD4(+) T-cell epitope from the Ag85B protein (PR8.p25) or CD8(+) T-cell epitope from the TB10.4 protein (PR8.TB10.4) generated strong T-cell responses to the M. tuberculosis-specific epitopes in the lung that persisted long after the rIAVs were cleared. Infection with PR8.p25 conferred protection against subsequent M. tuberculosis challenge in the lung, and this was associated with increased levels of poly-functional CD4(+) T cells at the time of challenge. By contrast, infection with PR8.TB10.4 did not induce protection despite the presence of IFN-γ-producing M. tuberculosis-specific CD8(+) T cells in the lung at the time of challenge and during infection. Therefore, the induction of pulmonary M. tuberculosis epitope-specific CD4(+), but not CD8(+) T cells, is essential for protection against acute M. tuberculosis infection in the lung.
Collapse
Affiliation(s)
- Manuela Flórido
- Tuberculosis Research Program, Centenary Institute, Newtown, NSW, Australia
| | | | | | | | | | | | | | | |
Collapse
|
42
|
Urdahl KB. Understanding and overcoming the barriers to T cell-mediated immunity against tuberculosis. Semin Immunol 2014; 26:578-87. [PMID: 25453230 PMCID: PMC4314386 DOI: 10.1016/j.smim.2014.10.003] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2014] [Revised: 10/02/2014] [Accepted: 10/03/2014] [Indexed: 12/13/2022]
Abstract
Despite the overwhelming success of immunization in reducing, and even eliminating, the global threats posed by a wide spectrum of infectious diseases, attempts to do the same for tuberculosis (TB) have failed to date. While most effective vaccines act by eliciting neutralizing antibodies, T cells are the primary mediators of adaptive immunity against TB. Unfortunately, the onset of the T cell response after aerosol infection with Mycobacterium tuberculosis (Mtb), the bacterium that causes TB, is exceedingly slow, and systemically administered vaccines only modestly accelerate the recruitment of effector T cells to the lungs. This delay seems to be orchestrated by Mtb itself to prolong the period of unrestricted bacterial replication in the lung that characterizes the innate phase of the response. When T cells finally arrive at the site of infection, multiple layers of regulation have been established that limit the ability of T cells to control or eradicate Mtb. From this understanding, emerges a strategy for achieving immunity. Lung resident memory T cells may recognize Mtb-infected cells shortly after infection and confer protection before regulatory networks are allowed to develop. Early studies using vaccines that elicit lung resident T cells by targeting the lung mucosa have been promising, but many questions remain. Due to the fundamental nature of these questions, and the need to understand and manipulate the early events in the lung after aerosol infection, only coordinated approaches that utilize tractable animal models to inform human TB vaccine trials will move the field toward its goal.
Collapse
Affiliation(s)
- Kevin B Urdahl
- Seattle Biomedical Research Institute, Seattle, WA, USA; Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA; Department of Global Health, University of Washington School of Medicine, Seattle, WA, USA; Department of Pediatrics, University of Washington School of Medicine, Seattle, WA, USA.
| |
Collapse
|
43
|
Olaru ID, von Groote-Bidlingmaier F, Heyckendorf J, Yew WW, Lange C, Chang KC. Novel drugs against tuberculosis: a clinician's perspective. Eur Respir J 2014; 45:1119-31. [PMID: 25431273 DOI: 10.1183/09031936.00162314] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The United Nations Millennium Development Goal of reversing the global spread of tuberculosis by 2015 has been offset by the rampant re-emergence of drug-resistant tuberculosis, in particular fluoroquinolone-resistant multidrug-resistant and extensively drug-resistant tuberculosis. After decades of quiescence in the development of antituberculosis medications, bedaquiline and delamanid have been conditionally approved for the treatment of drug-resistant tuberculosis, while several other novel compounds (AZD5847, PA-824, SQ109 and sutezolid) have been evaluated in phase II clinical trials. Before novel drugs can find their place in the battle against drug-resistant tuberculosis, linezolid has been compassionately used with success in the treatment of fluoroquinolone-resistant multidrug-resistant tuberculosis. This review largely discusses six novel drugs that have been evaluated in phase II and III clinical trials, with focus on the clinical evidence for efficacy and safety, potential drug interactions, and prospect for using multiple novel drugs in new regimens.
Collapse
Affiliation(s)
- Ioana Diana Olaru
- Division of Clinical Infectious Diseases, Research Center Borstel, German Center for Infection Research, Clinical Tuberculosis Center, Borstel, Germany
| | | | - Jan Heyckendorf
- Division of Clinical Infectious Diseases, Research Center Borstel, German Center for Infection Research, Clinical Tuberculosis Center, Borstel, Germany
| | - Wing Wai Yew
- Stanley Ho Centre for Emerging Infectious Diseases, The Chinese University of Hong Kong, Hong Kong, China
| | - Christoph Lange
- Division of Clinical Infectious Diseases, Research Center Borstel, German Center for Infection Research, Clinical Tuberculosis Center, Borstel, Germany International Health/Infectious Diseases, University of Lübeck, Lübeck, Germany Dept of Internal Medicine, University of Namibia School of Medicine, Windhoek, Namibia Dept of Medicine, Karolinska Institute, Stockholm, Sweden
| | - Kwok Chiu Chang
- Tuberculosis and Chest Service, Dept of Health, Hong Kong, China
| |
Collapse
|
44
|
Cruz A, Torrado E, Carmona J, Fraga AG, Costa P, Rodrigues F, Appelberg R, Correia-Neves M, Cooper AM, Saraiva M, Pedrosa J, Castro AG. BCG vaccination-induced long-lasting control of Mycobacterium tuberculosis correlates with the accumulation of a novel population of CD4⁺IL-17⁺TNF⁺IL-2⁺ T cells. Vaccine 2014; 33:85-91. [PMID: 25448107 DOI: 10.1016/j.vaccine.2014.11.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2014] [Revised: 11/07/2014] [Accepted: 11/10/2014] [Indexed: 11/30/2022]
Abstract
Mycobacterium bovis Bacille Calmette-Guerin (BCG) is the only vaccine in use to prevent Mycobacterium tuberculosis (Mtb) infection. Here we analyzed the protective efficacy of BCG against Mtb challenges 21 or 120 days after vaccination. Only after 120 days post-vaccination were mice able to efficiently induce early Mtb growth arrest and maintain long-lasting control of Mtb. This protection correlated with the accumulation of CD4(+) T cells expressing IL-17(+)TNF(+)IL-2(+). In contrast, mice challenged with Mtb 21 days after BCG vaccination exhibited only a mild and transient protection, associated with the accumulation of CD4(+) T cells that were mostly IFN-γ(+)TNF(+) and to a lesser extent IFN-γ(+)TNF(+)IL-2(+). These data suggest that the memory response generated by BCG vaccination is functionally distinct depending upon the temporal proximity to BCG vaccination. Understanding how these responses are generated and maintained is critical for the development of novel vaccination strategies against tuberculosis.
Collapse
Affiliation(s)
- Andrea Cruz
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Egídio Torrado
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jenny Carmona
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Alexandra G Fraga
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrício Costa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Fernando Rodrigues
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Rui Appelberg
- Institute for Molecular and Cell Biology (IBMC), University of Porto, Porto, Portugal
| | - Margarida Correia-Neves
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | | - Margarida Saraiva
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Jorge Pedrosa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - António G Castro
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Braga, Portugal; ICVS/3B's-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
45
|
Differential Mycobacterium bovis BCG vaccine-derived efficacy in C3Heb/FeJ and C3H/HeOuJ mice exposed to a clinical strain of Mycobacterium tuberculosis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 22:91-8. [PMID: 25392011 DOI: 10.1128/cvi.00466-14] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The global epidemic caused by the bacterial pathogen Mycobacterium tuberculosis continues unabated. Moreover, the only available vaccine against tuberculosis, Mycobacterium bovis bacillus Calmette-Guérin (BCG), demonstrates variable efficacy. To respond to this global threat, new animal models that mimic the pathological disease process in humans are required for vaccine testing. One new model, susceptible C3Heb/FeJ mice, is similar to human tuberculosis in that these animals are capable of forming necrotic tubercle granulomas, in contrast to resistant C3H/HeOuJ mice. In this study, we evaluated the impact of prior BCG vaccination of C3Heb/FeJ and C3H/HeOuJ mice on exposure to a low-dose aerosol of Mycobacterium tuberculosis W-Beijing strain SA161. Both BCG-vaccinated murine strains demonstrated reduced bacterial loads 25 days after infection compared to controls, indicating vaccine efficacy. However, during chronic infection, vaccine efficacy waned in C3H/HeOuJ but not in C3Heb/FeJ mice. Protection in vaccinated C3Heb/FeJ mice was associated with reduced numbers of CD11b(+) Gr1(+) cells, increased numbers of effector and memory T cells, and an absence of necrotic granulomas. BCG vaccine efficacy waned in C3H/HeOuJ mice, as indicated by reduced expression of gamma interferon (IFN-γ) and increased expressions of interleukin-17 (IL-17), IL-10, and Foxp3 by T cells compared to C3Heb/FeJ mice. This is the first murine vaccine model system described to date that can be utilized to dissect differential vaccine-derived immune efficacy.
Collapse
|
46
|
van Dissel JT, Joosten SA, Hoff ST, Soonawala D, Prins C, Hokey DA, O'Dee DM, Graves A, Thierry-Carstensen B, Andreasen LV, Ruhwald M, de Visser AW, Agger EM, Ottenhoff THM, Kromann I, Andersen P. A novel liposomal adjuvant system, CAF01, promotes long-lived Mycobacterium tuberculosis-specific T-cell responses in human. Vaccine 2014; 32:7098-107. [PMID: 25454872 DOI: 10.1016/j.vaccine.2014.10.036] [Citation(s) in RCA: 186] [Impact Index Per Article: 16.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2014] [Revised: 09/08/2014] [Accepted: 10/17/2014] [Indexed: 02/08/2023]
Abstract
Here, we report on a first-in-man trial where the tuberculosis (TB) vaccine Ag85B-ESAT-6 (H1) was adjuvanted with escalating doses of a novel liposome adjuvant CAF01. On their own, protein antigens cannot sufficiently induce immune responses in humans, and require the addition of an adjuvant system to ensure appropriate delivery and concomitant immune activation. To date no approved adjuvants are available for induction of cellular immunity, which seems essential for a number of vaccines, including vaccines against TB. We vaccinated four groups of human volunteers: a non-adjuvanted H1 group, followed by three groups with escalating doses of CAF01-adjuvanted H1 vaccine. All subjects were vaccinated at 0 and 8 weeks and followed up for 150 weeks. Vaccination did not cause local or systemic adverse effects besides transient soreness at the injection site. Two vaccinations elicited strong antigen-specific T-cell responses which persisted after 150 weeks follow-up, indicating the induction of a long-lasting memory response in the vaccine recipients. These results show that CAF01 is a safe and tolerable, Th1-inducing adjuvant for human TB vaccination trials and for vaccination studies in general where cellular immunity is required.
Collapse
Affiliation(s)
- Jaap T van Dissel
- Leiden University Medical Center (LUMC), Department of Infectious Diseases, Leiden, The Netherlands.
| | - Simone A Joosten
- Leiden University Medical Center (LUMC), Department of Infectious Diseases, Leiden, The Netherlands
| | - Søren T Hoff
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, Copenhagen 2300s, Denmark
| | - Darius Soonawala
- Leiden University Medical Center (LUMC), Department of Infectious Diseases, Leiden, The Netherlands
| | - Corine Prins
- Leiden University Medical Center (LUMC), Department of Infectious Diseases, Leiden, The Netherlands
| | | | | | | | - Birgit Thierry-Carstensen
- Statens Serum Institut, Department of Vaccine Development, Artillerivej 5, Copenhagen 2300s, Denmark
| | - Lars V Andreasen
- Statens Serum Institut, Department of Vaccine Development, Artillerivej 5, Copenhagen 2300s, Denmark
| | - Morten Ruhwald
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, Copenhagen 2300s, Denmark
| | - Adriëtte W de Visser
- Leiden University Medical Center (LUMC), Department of Infectious Diseases, Leiden, The Netherlands
| | - Else Marie Agger
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, Copenhagen 2300s, Denmark
| | - Tom H M Ottenhoff
- Leiden University Medical Center (LUMC), Department of Infectious Diseases, Leiden, The Netherlands
| | - Ingrid Kromann
- Statens Serum Institut, Department of Vaccine Development, Artillerivej 5, Copenhagen 2300s, Denmark
| | - Peter Andersen
- Statens Serum Institut, Department of Infectious Disease Immunology, Artillerivej 5, Copenhagen 2300s, Denmark.
| |
Collapse
|
47
|
Marinova D, Gonzalo-Asensio J, Aguilo N, Martin C. Recent developments in tuberculosis vaccines. Expert Rev Vaccines 2014; 12:1431-48. [PMID: 24195481 DOI: 10.1586/14760584.2013.856765] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Substantial efforts have been made over the past decade to develop vaccines against tuberculosis. We review recent developments in tuberculosis vaccines in the global portfolio, including those designed for use in a prophylactic setting, either alone or as boosts to Bacille Calmette-Guérin, and therapeutic vaccines designed to improve chemotherapy. While there is no doubt that progress is still being made, there are limitations to our animal model screening processes, which are further amplified by the lack of understanding of the immunological responses involved and the precise type of long-lived immunity that new vaccines need to induce. The challenge ahead is to optimize the planning for advanced clinical trials in poor endemic settings, which could be greatly facilitated by identifying correlates of protection.
Collapse
Affiliation(s)
- Dessislava Marinova
- Grupo de Genética de Micobacterias, Dpto. Microbiología, Medicina Preventiva y Salud Pública, Universidad de Zaragoza, C/ Domingo Miral s/n, 50009 Zaragoza, Spain
| | | | | | | |
Collapse
|
48
|
Blankley S, Berry MPR, Graham CM, Bloom CI, Lipman M, O'Garra A. The application of transcriptional blood signatures to enhance our understanding of the host response to infection: the example of tuberculosis. Philos Trans R Soc Lond B Biol Sci 2014; 369:20130427. [PMID: 24821914 PMCID: PMC4024221 DOI: 10.1098/rstb.2013.0427] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Despite advances in antimicrobials, vaccination and public health measures, infectious diseases remain a leading cause of morbidity and mortality worldwide. With the increase in antimicrobial resistance and the emergence of new pathogens, there remains a need for new and more accurate diagnostics, the ability to monitor adequate treatment response as well as the ability to predict prognosis for an individual. Transcriptional approaches using blood signatures have enabled a better understanding of the host response to diseases, leading not only to new avenues of basic research, but also to the identification of potential biomarkers for use in diagnosis, prognosis and treatment monitoring.
Collapse
Affiliation(s)
- Simon Blankley
- Division of Immunoregulation, MRC National Institute for Medical Research, , London NW7 1AA, UK
| | | | | | | | | | | |
Collapse
|
49
|
Griffiths KL, Khader SA. Novel vaccine approaches for protection against intracellular pathogens. Curr Opin Immunol 2014; 28:58-63. [PMID: 24608070 DOI: 10.1016/j.coi.2014.02.003] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2013] [Revised: 02/04/2014] [Accepted: 02/05/2014] [Indexed: 12/21/2022]
Abstract
Vaccination against intracellular pathogens requires generation of a pool of memory T cells able to respond upon infection and mediate either killing of the infected cell or induce killing mechanisms in the infected cell. T cell-inducing vaccines must aim to target the antigen to antigen-presenting cells (APCs) so that it can be presented on MHC molecules on the cell surface. Methods to do this include making use of vectors such as plasmid DNA or viruses, live attenuated pathogens or subunit vaccines targeted and enhanced using adjuvants. The choice of approach should be guided by the phenotype and localization of the desired T cell response. This review will discuss current approaches in the pipeline for the development of T cell-inducing vaccines, including vectored, live attenuated, and subunit vaccines.
Collapse
Affiliation(s)
- Kristin L Griffiths
- Department of Molecular Microbiology, Campus Box 8230, 660 South Euclid Avenue, St. Louis, MO 63110-1093, USA
| | - Shabaana A Khader
- Department of Molecular Microbiology, Campus Box 8230, 660 South Euclid Avenue, St. Louis, MO 63110-1093, USA.
| |
Collapse
|
50
|
Santos AR, Pereira VB, Barbosa E, Baumbach J, Pauling J, Röttger R, Turk MZ, Silva A, Miyoshi A, Azevedo V. Mature Epitope Density--a strategy for target selection based on immunoinformatics and exported prokaryotic proteins. BMC Genomics 2013; 14 Suppl 6:S4. [PMID: 24564223 PMCID: PMC3908659 DOI: 10.1186/1471-2164-14-s6-s4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background Current immunological bioinformatic approaches focus on the prediction of allele-specific epitopes capable of triggering immunogenic activity. The prediction of major histocompatibility complex (MHC) class I epitopes is well studied, and various software solutions exist for this purpose. However, currently available tools do not account for the concentration of epitope products in the mature protein product and its relation to the reliability of target selection. Results We developed a computational strategy based on measuring the epitope's concentration in the mature protein, called Mature Epitope Density (MED). Our method, though simple, is capable of identifying promising vaccine targets. Our online software implementation provides a computationally light and reliable analysis of bacterial exoproteins and their potential for vaccines or diagnosis projects against pathogenic organisms. We evaluated our computational approach by using the Mycobacterium tuberculosis (Mtb) H37Rv exoproteome as a gold standard model. A literature search was carried out on 60 out of 553 Mtb's predicted exoproteins, looking for previous experimental evidence concerning their possible antigenicity. Half of the 60 proteins were classified as highest scored by the MED statistic, while the other half were classified as lowest scored. Among the lowest scored proteins, ~13% were confirmed as not related to antigenicity or not contributing to the bacterial pathogenicity, and 70% of the highest scored proteins were confirmed as related. There was no experimental evidence of antigenic or pathogenic contributions for three of the highest MED-scored Mtb proteins. Hence, these three proteins could represent novel putative vaccine and drug targets for Mtb. A web version of MED is publicly available online at http://med.mmci.uni-saarland.de/. Conclusions The software presented here offers a practical and accurate method to identify potential vaccine and diagnosis candidates against pathogenic bacteria by "reading" results from well-established reverse vaccinology software in a novel way, considering the epitope's concentration in the mature portion of the protein.
Collapse
|