1
|
Zhegalova I, Ulianov S, Galitsyna A, Pletenev I, Tsoy O, Luzhin A, Vasiluev P, Bulavko E, Ivankov D, Gavrilov A, Khrameeva E, Gelfand M, Razin S. Convergent pairs of highly transcribed genes restrict chromatin looping in Dictyostelium discoideum. Nucleic Acids Res 2025; 53:gkaf006. [PMID: 39844457 PMCID: PMC11754127 DOI: 10.1093/nar/gkaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 12/25/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
Dictyostelium discoideum is a unicellular slime mold, developing into a multicellular fruiting body upon starvation. Development is accompanied by large-scale shifts in gene expression program, but underlying features of chromatin spatial organization remain unknown. Here, we report that the Dictyostelium 3D genome is organized into positionally conserved, largely consecutive, non-hierarchical and weakly insulated loops at the onset of multicellular development. The transcription level within the loop interior tends to be higher than in adjacent regions. Loop interiors frequently contain functionally linked genes and genes which coherently change expression level during development. Loop anchors are predominantly positioned by the genes in convergent orientation. Results of polymer simulations and Hi-C-based observations suggest that the loop profile may arise from the interplay between transcription and extrusion-driven chromatin folding. In this scenario, a convergent gene pair serves as a bidirectional extrusion barrier or a 'diode' that controls passage of the cohesin extruder by relative transcription level of paired genes.
Collapse
Affiliation(s)
- Irina V Zhegalova
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30, bld. 1, 121205 Moscow, Russia
| | - Sergey V Ulianov
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie gory, 1, bld. 12, 119991 Moscow, Russia
| | - Aleksandra A Galitsyna
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30, bld. 1, 121205 Moscow, Russia
| | - Ilya A Pletenev
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30, bld. 1, 121205 Moscow, Russia
| | - Olga V Tsoy
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30, bld. 1, 121205 Moscow, Russia
| | - Artem V Luzhin
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Petr A Vasiluev
- Research Centre for Medical Genetics, 1 Moskvorechye St., 115522 Moscow, Russia
| | - Egor S Bulavko
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30, bld. 1, 121205 Moscow, Russia
- Laboratory of Bioelectrochemistry, A.N. Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 31/4 Leninskiy Prospekt, 119071 Moscow, Russia
| | - Dmitry N Ivankov
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30, bld. 1, 121205 Moscow, Russia
| | - Alexey A Gavrilov
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
| | - Ekaterina E Khrameeva
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30, bld. 1, 121205 Moscow, Russia
| | - Mikhail S Gelfand
- Center for Molecular and Cellular Biology, Skolkovo Institute of Science and Technology, Bolshoy Boulevard, 30, bld. 1, 121205 Moscow, Russia
| | - Sergey V Razin
- Laboratory of Structural and Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov St., 119334 Moscow, Russia
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, Leninskie gory, 1, bld. 12, 119991 Moscow, Russia
| |
Collapse
|
2
|
Zhou M, Ma L, Wang Z, Li S, Cai Y, Li M, Zhang L, Wang C, Wu B, Yan Q, He Z, Shu L. Nano- and microplastics drive the dynamic equilibrium of amoeba-associated bacteria and antibiotic resistance genes. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:134958. [PMID: 38905974 DOI: 10.1016/j.jhazmat.2024.134958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 06/23/2024]
Abstract
As emerging pollutants, microplastics have become pervasive on a global scale, inflicting significant harm upon ecosystems. However, the impact of these microplastics on the symbiotic relationship between protists and bacteria remains poorly understood. In this study, we investigated the mechanisms through which nano- and microplastics of varying sizes and concentrations influence the amoeba-bacterial symbiotic system. The findings reveal that nano- and microplastics exert deleterious effects on the adaptability of the amoeba host, with the magnitude of these effects contingent upon particle size and concentration. Furthermore, nano- and microplastics disrupt the initial equilibrium in the symbiotic relationship between amoeba and bacteria, with nano-plastics demonstrating a reduced ability to colonize symbiotic bacteria within the amoeba host when compared to their microplastic counterparts. Moreover, nano- and microplastics enhance the relative abundance of antibiotic resistance genes and heavy metal resistance genes in the bacteria residing within the amoeba host, which undoubtedly increases the potential transmission risk of both human pathogens and resistance genes within the environment. In sum, the results presented herein provide a novel perspective and theoretical foundation for the study of interactions between microplastics and microbial symbiotic systems, along with the establishment of risk assessment systems for ecological environments and human health.
Collapse
Affiliation(s)
- Min Zhou
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Lu Ma
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zihe Wang
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Shicheng Li
- School of Chemistry, Sun Yat-sen University, Guangzhou 510006, China
| | - Yijun Cai
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Meicheng Li
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Lin Zhang
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Cheng Wang
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Bo Wu
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Qingyun Yan
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhili He
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China
| | - Longfei Shu
- School of Environmental Science and Engineering, Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, State Key Laboratory for Biocontrol, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
3
|
Soleymani E, Fakhar M, Davoodi L, Motavallihaghi S, Sharifpour A, Maghsood AH. Isolation, characterization, and pathogenicity assay of Acanthamoeba and its endosymbionts in respiratory disorders and COVID-19 hospitalized patients, northern Iran. Exp Parasitol 2024; 262:108774. [PMID: 38754618 DOI: 10.1016/j.exppara.2024.108774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 04/16/2024] [Accepted: 05/09/2024] [Indexed: 05/18/2024]
Abstract
Acanthamoeba spp., are common free-living amoebae found in nature that can serve as reservoirs for certain microorganisms. The SARS-CoV-2 virus is a newly emerged respiratory infection, and the investigation of parasitic infections remains an area of limited research. Given that Acanthamoeba can act as a host for various endosymbiotic microbial pathogens and its pathogenicity assay is not fully understood, this study aimed to identify Acanthamoeba and its bacterial and fungal endosymbionts in patients with chronic respiratory disorders and hospitalized COVID-19 patients in northern Iran. Additionally, a pathogenicity assay was conducted on Acanthamoeba isolates. Urine, nasopharyngeal swab, and respiratory specimens were collected from two groups, and each sample was cultured on 1.5% non-nutrient agar medium. The cultures were then incubated at room temperature and monitored daily for a period of two weeks. Eight Acanthamoeba isolates were identified, and PCR was performed to confirm the presence of amoebae and identify their endosymbionts. Four isolates were found to have bacterial endosymbionts, including Stenotrophomonas maltophilia and Achromobacter sp., while two isolates harbored fungal endosymbionts, including an uncultured fungus and Gloeotinia sp. In the pathogenicity assay, five isolates exhibited a higher degree of pathogenicity compared to the other three. This study provides significant insights into the comorbidity of acanthamoebiasis and COVID-19 on a global scale, and presents the first evidence of Gloeotinia sp. as a fungal endosymbiont. Nevertheless, further research is required to fully comprehend the symbiotic patterns and establish effective treatment protocols.
Collapse
Affiliation(s)
- Eissa Soleymani
- Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Mahdi Fakhar
- Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Lotfollah Davoodi
- Department of Infectious Diseases, Antimicrobial Resistance Research Center, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran
| | - Seyedmousa Motavallihaghi
- Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Sharifpour
- Department of Internal Ward, Pulmonary and Critical Care Division, Iranian National Registry Center for Lophomoniasis and Toxoplasmosis, Imam Khomeini Hospital, Mazandaran University of Medical Sciences, Sari, Iran
| | - Amir Hossein Maghsood
- Department of Medical Parasitology and Mycology, School of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran.
| |
Collapse
|
4
|
Conco-Biyela T, Malla MA, Olatunji Awolusi O, Allam M, Ismail A, Stenström TA, Bux F, Kumari S. Metagenomics insights into microbiome and antibiotic resistance genes from free living amoeba in chlorinated wastewater effluents. Int J Hyg Environ Health 2024; 258:114345. [PMID: 38471337 DOI: 10.1016/j.ijheh.2024.114345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 02/15/2024] [Accepted: 02/24/2024] [Indexed: 03/14/2024]
Abstract
Free living amoeba (FLA) are among the organisms commonly found in wastewater and are well-established hosts for diverse microbial communities. Despite its clinical significance, there is little knowledge on the FLA microbiome and resistome, with previous studies relying mostly on conventional approaches. In this study we comprehensively analyzed the microbiome, antibiotic resistome and virulence factors (VFs) within FLA isolated from final treated effluents of two wastewater treatment plants (WWTPs) using shotgun metagenomics. Acanthamoeba has been identified as the most common FLA, followed by Entamoeba. The bacterial diversity showed no significant difference (p > 0.05) in FLA microbiomes obtained from the two WWTPs. At phylum level, the most dominant taxa were Proteobacteria, followed by Firmicutes and Actinobacteria. The most abundant genera identified were Enterobacter followed by Citrobacter, Paenibacillus, and Cupriavidus. The latter three genera are reported here for the first time in Acanthamoeba. In total, we identified 43 types of ARG conferring resistance to cephalosporins, phenicol, streptomycin, trimethoprim, quinolones, cephalosporins, tigecycline, rifamycin, and kanamycin. Similarly, a variety of VFs in FLA metagenomes were detected which included flagellar proteins, Type IV pili twitching motility proteins (pilH and rpoN), alginate biosynthesis genes AlgI, AlgG, AlgD and AlgW and Type VI secretion system proteins and general secretion pathway proteins (tssM, tssA, tssL, tssK, tssJ, fha, tssG, tssF, tssC and tssB, gspC, gspE, gspD, gspF, gspG, gspH, gspI, gspJ, gspK, and gspM). To the best of our knowledge, this is the first study of its kind to examine both the microbiomes and resistome in FLA, as well as their potential pathogenicity in treated effluents. Additionally, this study showed that FLA can host a variety of potentially pathogenic bacteria including Paenibacillus, and Cupriavidus that had not previously been reported, indicating that their relationship may play a role in the spread and persistence of antibiotic resistant bacteria (ARBs) and antibiotic resistance genes (ARGs) as well as the evolution of novel pathogens.
Collapse
Affiliation(s)
- Thobela Conco-Biyela
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, Kwa-Zulu Natal, South Africa
| | - Muneer Ahmad Malla
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, Kwa-Zulu Natal, South Africa
| | - Oluyemi Olatunji Awolusi
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, Kwa-Zulu Natal, South Africa
| | - Mushal Allam
- NICD Sequencing Core Facility, National Institute for Communicable Diseases, Sandringham, 2192, Pretoria, South Africa; Department of Genetics and Genomics, College of Medicine and Health Sciences, United Arab Emirates
| | - Arshad Ismail
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, Kwa-Zulu Natal, South Africa; NICD Sequencing Core Facility, National Institute for Communicable Diseases, Sandringham, 2192, Pretoria, South Africa
| | - Thor A Stenström
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, Kwa-Zulu Natal, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, Kwa-Zulu Natal, South Africa
| | - Sheena Kumari
- Institute for Water and Wastewater Technology, Durban University of Technology, Durban, 4001, Kwa-Zulu Natal, South Africa.
| |
Collapse
|
5
|
Cha GY, Seo H, Oh J, Kim BJ, Kim BJ. Potential Use of Mycobacterium paragordonae for Antimycobacterial Drug Screening Systems. J Microbiol 2023; 61:121-129. [PMID: 36719620 DOI: 10.1007/s12275-022-00009-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 10/20/2022] [Accepted: 11/25/2022] [Indexed: 02/01/2023]
Abstract
Our recent genome-based study indicated that Mycobacterium paragordonae (Mpg) has evolved to become more adapted to an intracellular lifestyle within free-living environmental amoeba and its enhanced intracellular survival within Acanthamoeba castellanii was also proved. Here, we sought to investigate potential use of Mpg for antimycobacterial drug screening systems. Our data showed that Mpg is more susceptible to various antibiotics compared to the close species M. marinum (Mmar) and M. gordonae, further supporting its intracellular lifestyle in environments, which would explain its protection from environmental insults. In addition, we developed two bacterial whole-cell-based drug screening systems using a recombinant Mpg stain harboring a luciferase reporter vector (rMpg-LuxG13): one for direct application to rMpg-LuxG13 and the other for drug screening via the interaction of rMpg-LuxG13 with A. castellanii. Direct application to rMpg-LuxG13 showed lower inhibitory concentration 50 (IC50) values of rifampin, isoniazid, clarithromycin, and ciprofloxacin against Mpg compared to Mmar. Application of drug screening system via the interaction of rMpg-LuxG13 with A. castellanii also exhibited lower IC50 values for rifampin against Mpg compared to Mmar. In conclusion, our data indicate that Mpg is more susceptible to various antibiotics than other strains. In addition, our data also demonstrate the feasibility of two whole cell-based drug screening systems using rMpg-LuxG13 strain for the discovery of novel anti-mycobacterial drugs.
Collapse
Affiliation(s)
- Ga-Yeong Cha
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- BK21 Four Biomedical Science Project, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Hyejun Seo
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jaehun Oh
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea
- BK21 Four Biomedical Science Project, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Byoung-Jun Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea
| | - Bum-Joon Kim
- Department of Microbiology and Immunology, College of Medicine, Seoul National University, Seoul, Republic of Korea.
- Department of Biomedical Sciences, College of Medicine, Seoul National University, Seoul, Republic of Korea.
- Liver Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea.
- Cancer Research Institute, College of Medicine, Seoul National University, Seoul, Republic of Korea.
- Institute of Endemic Diseases, Seoul National University Medical Research Center (SNUMRC), Seoul, Republic of Korea.
- BK21 Four Biomedical Science Project, College of Medicine, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
6
|
Jin C, Mo Y, Zhao L, Xiao Z, Zhu S, He Z, Chen Z, Zhang M, Shu L, Qiu R. Host-Endosymbiont Relationship Impacts the Retention of Bacteria-Containing Amoeba Spores in Porous Media. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:12347-12357. [PMID: 35916900 DOI: 10.1021/acs.est.2c02899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Amoebae are protists that are commonly found in water, soil, and other habitats around the world and have complex interactions with other microorganisms. In this work, we investigated how host-endosymbiont interactions between amoebae and bacteria impacted the retention behavior of amoeba spores in porous media. A model amoeba species, Dictyostelium discoideum, and a representative bacterium, Burkholderia agricolaris B1qs70, were used to prepare amoeba spores that carried bacteria. After interacting with B. agricolaris, the retention of D. discoideum spores was enhanced compared to noninfected spores. Diverse proteins, especially proteins contributing to the looser exosporium structure and cell adhesion functionality, are secreted in higher quantities on the exosporium surface of infected spores compared to that of noninfected ones. Comprehensive examinations using a quartz crystal microbalance with dissipation (QCM-D), a parallel plate chamber, and a single-cell force microscope present coherent evidence that changes in the exosporium of D. discoideum spores due to infection by B. agricolaris enhance the connections between spores in the suspension and the spores that were previously deposited on the collector surface, thus resulting in more retention compared to the uninfected ones in porous media. This work provides novel insight into the retention of amoeba spores after bacterial infection in porous media and suggests that the host-endosymbiont relationship regulates the fate of biocolloids in drinking water systems, groundwater, and other porous environments.
Collapse
Affiliation(s)
- Chao Jin
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Yijun Mo
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Lingan Zhao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Zihan Xiao
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Shishu Zhu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Zhenzhen He
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Zijian Chen
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Miaoyue Zhang
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Longfei Shu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-Sen University, Guangzhou 510006, P. R. China
| | - Rongliang Qiu
- School of Environmental Science and Engineering, Sun Yat-Sen University, Guangzhou 510006, P. R. China
- Guangdong Laboratory for Lingnan Modern Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, P. R. China
- Guangdong Provincial Key Laboratory of Agricultural & Rural Pollution Abatement and Environmental Safety, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, P. R. China
| |
Collapse
|
7
|
He Z, Zheng N, Zhang L, Tian Y, Hu Z, Shu L. Efficient inactivation of intracellular bacteria in dormant amoeba spores by FeP. JOURNAL OF HAZARDOUS MATERIALS 2022; 425:127996. [PMID: 34902724 DOI: 10.1016/j.jhazmat.2021.127996] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/26/2021] [Accepted: 12/03/2021] [Indexed: 06/14/2023]
Abstract
Waterborne pathogens and related diseases are a severe public health threat worldwide. Recent studies suggest that microbial interactions among infectious agents can significantly disrupt the disinfection processes, and current disinfection methods cannot inactivate intracellular pathogens effectively, posing an emerging threat to the safety of drinking water. This study developed a novel strategy, the FeP/persulfate (PS) system, to effectively inactivate intracellular bacteria within the amoeba spore. We found that the sulfate radical (SO4•-) produced by the FeP/PS system can be quickly converted into hydroxyl radicals (•OH), and •OH can penetrate the amoeba spores and inactivate the bacteria hidden inside amoeba spores. Therefore, this study proposes a novel technique to overcome the protective effects of microbial interactions and provides a new direction to inactivate intracellular pathogens efficiently.
Collapse
Affiliation(s)
- Zhenzhen He
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Ningchao Zheng
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Lin Zhang
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Yuehui Tian
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Zhuofeng Hu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| | - Longfei Shu
- Environmental Microbiomics Research Center, School of Environmental Science and Engineering, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
8
|
Haselkorn TS, Jimenez D, Bashir U, Sallinger E, Queller DC, Strassmann JE, DiSalvo S. Novel Chlamydiae and Amoebophilus endosymbionts are prevalent in wild isolates of the model social amoeba Dictyostelium discoideum. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:708-719. [PMID: 34159734 PMCID: PMC8518690 DOI: 10.1111/1758-2229.12985] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Accepted: 06/12/2021] [Indexed: 05/24/2023]
Abstract
Amoebae interact with bacteria in multifaceted ways. Amoeba predation can serve as a selective pressure for the development of bacterial virulence traits. Bacteria may also adapt to life inside amoebae, resulting in symbiotic relationships. Indeed, particular lineages of obligate bacterial endosymbionts have been found in different amoebae. Here, we screened an extensive collection of Dictyostelium discoideum wild isolates for the presence of these bacterial symbionts using endosymbiont specific PCR primers. We find that these symbionts are surprisingly common, identified in 42% of screened isolates (N = 730). Members of the Chlamydiae phylum are particularly prevalent, occurring in 27% of the amoeba isolated. They are novel and phylogenetically distinct from other Chlamydiae. We also found Amoebophilus symbionts in 8% of screened isolates (N = 730). Antibiotic-cured amoebae behave similarly to their Chlamydiae or Amoebophilus-infected counterparts, suggesting that these endosymbionts do not significantly impact host fitness, at least in the laboratory. We found several natural isolates were co-infected with multiple endosymbionts, with no obvious fitness effect of co-infection under laboratory conditions. The high prevalence and novelty of amoeba endosymbiont clades in the model organism D. discoideum opens the door to future research on the significance and mechanisms of amoeba-symbiont interactions.
Collapse
Affiliation(s)
- Tamara S. Haselkorn
- Department of BiologyUniversity of Central Arkansas201 Donaghey Avenue, ConwayAR72035USA
| | - Daniela Jimenez
- Department of BiologyWashington University in St. LouisOne Brookings Drive St. LouisMO63130USA
| | - Usman Bashir
- Department of BiologyWashington University in St. LouisOne Brookings Drive St. LouisMO63130USA
| | - Eleni Sallinger
- Department of BiologyUniversity of Central Arkansas201 Donaghey Avenue, ConwayAR72035USA
| | - David C. Queller
- Department of BiologyWashington University in St. LouisOne Brookings Drive St. LouisMO63130USA
| | - Joan E. Strassmann
- Department of BiologyWashington University in St. LouisOne Brookings Drive St. LouisMO63130USA
| | - Susanne DiSalvo
- Department of Biological SciencesSouthern Illinois University Edwardsville44 Circle Drive, EdwardsvilleIL62026USA
| |
Collapse
|
9
|
He Z, Wang L, Ge Y, Zhang S, Tian Y, Yang X, Shu L. Both viable and inactivated amoeba spores protect their intracellular bacteria from drinking water disinfection. JOURNAL OF HAZARDOUS MATERIALS 2021; 417:126006. [PMID: 33984787 DOI: 10.1016/j.jhazmat.2021.126006] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 04/29/2021] [Accepted: 04/29/2021] [Indexed: 05/21/2023]
Abstract
In drinking water systems, waterborne pathogens constitute a significant threat. While most studies focus on a single infectious agent, such as bacteria, fungi, viruses, and protists, the effect of interactions among these infectious agents on disinfection treatment has largely been ignored. In this study, we find that dormant amoeba spores, a frequently found protist in drinking water systems, can protect their intracellular bacteria from drinking water disinfection. Bacteria-containing amoeba spores were constructed and treated with various disinfection techniques (Cl2, ClO2, and UV254). The three disinfection methods could kill the bacteria alone efficiently (6-log inactivation). However, the inactivation efficiency of bacteria that hid within amoeba spore was significantly inhibited (2-3-log inactivation). We also found that inactivated amoeba spores can still protect their intracellular bacteria. This study provides direct evidence that viable and inactivated amoeba spores can protect their hitchhiking bacteria from disinfection treatment, which is crucial for future decision-making about the dosage for sufficient bacterial disinfection in drinking water systems.
Collapse
Affiliation(s)
- Zhenzhen He
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Luting Wang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Yuexian Ge
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China
| | - Siyi Zhang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Yuehui Tian
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China
| | - Xin Yang
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China.
| | - Longfei Shu
- School of Environmental Science and Engineering, Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou 510006, China; Environmental Microbiomics Research Center, Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Sun Yat-sen University, Guangzhou 510006, China.
| |
Collapse
|
10
|
Amaro F, Martín-González A. Microbial warfare in the wild-the impact of protists on the evolution and virulence of bacterial pathogens. Int Microbiol 2021; 24:559-571. [PMID: 34365574 DOI: 10.1007/s10123-021-00192-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/03/2021] [Accepted: 06/28/2021] [Indexed: 01/01/2023]
Abstract
During the long history of co-evolution with protists, bacteria have evolved defense strategies to avoid grazing and survive phagocytosis. These mechanisms allow bacteria to exploit phagocytic cells as a protective niche in which to escape from environmental stress and even replicate. Importantly, these anti-grazing mechanisms can function as virulence factors when bacteria infect humans. Here, we discuss how protozoan predation exerts a selective pressure driving bacterial virulence and shaping their genomes, and how bacteria-protist interactions might contribute to the spread of antibiotic resistance as well. We provide examples to demonstrate that besides being voracious bacterial predators, protozoa can serve as melting pots where intracellular organisms exchange genetic information, or even "training grounds" where some pathogens become hypervirulent after passing through. In this special issue, we would like to emphasize the tremendous impact of bacteria-protist interactions on human health and the potential of amoebae as model systems to study biology and evolution of a variety of pathogens. Besides, a better understanding of bacteria-protist relationships will help us expand our current understanding of bacterial virulence and, likely, how pathogens emerge.
Collapse
Affiliation(s)
- Francisco Amaro
- Department of Genetics, Physiology and Microbiology, School of Biology, Complutense University of Madrid, 28040, Madrid, Spain.
| | - Ana Martín-González
- Department of Genetics, Physiology and Microbiology, School of Biology, Complutense University of Madrid, 28040, Madrid, Spain
| |
Collapse
|
11
|
Amoebae as Targets for Toxins or Effectors Secreted by Mammalian Pathogens. Toxins (Basel) 2021; 13:toxins13080526. [PMID: 34437397 PMCID: PMC8402458 DOI: 10.3390/toxins13080526] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/26/2021] [Accepted: 07/26/2021] [Indexed: 11/28/2022] Open
Abstract
Numerous microorganisms, pathogenic for mammals, come from the environment where they encounter predators such as free-living amoebae (FLA). The selective pressure due to this interaction could have generated virulence traits that are deleterious for amoebae and represents a weapon against mammals. Toxins are one of these powerful tools that are essential for bacteria or fungi to survive. Which amoebae are used as a model to study the effects of toxins? What amoeba functions have been reported to be disrupted by toxins and bacterial secreted factors? Do bacteria and fungi effectors affect eukaryotic cells similarly? Here, we review some studies allowing to answer these questions, highlighting the necessity to extend investigations of microbial pathogenicity, from mammals to the environmental reservoir that are amoebae.
Collapse
|
12
|
Boysen JM, Saeed N, Hillmann F. Natural products in the predatory defence of the filamentous fungal pathogen Aspergillus fumigatus. Beilstein J Org Chem 2021; 17:1814-1827. [PMID: 34394757 PMCID: PMC8336654 DOI: 10.3762/bjoc.17.124] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 07/14/2021] [Indexed: 11/30/2022] Open
Abstract
The kingdom of fungi comprises a large and highly diverse group of organisms that thrive in diverse natural environments. One factor to successfully confront challenges in their natural habitats is the capability to synthesize defensive secondary metabolites. The genetic potential for the production of secondary metabolites in fungi is high and numerous potential secondary metabolite gene clusters have been identified in sequenced fungal genomes. Their production may well be regulated by specific ecological conditions, such as the presence of microbial competitors, symbionts or predators. Here we exemplarily summarize our current knowledge on identified secondary metabolites of the pathogenic fungus Aspergillus fumigatus and their defensive function against (microbial) predators.
Collapse
Affiliation(s)
- Jana M Boysen
- Junior Research Group Evolution of Microbial Interactions, Leibniz-Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Nauman Saeed
- Junior Research Group Evolution of Microbial Interactions, Leibniz-Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Falk Hillmann
- Junior Research Group Evolution of Microbial Interactions, Leibniz-Institute for Natural Product Research and Infection Biology – Hans Knöll Institute (HKI), Beutenbergstr. 11a, 07745 Jena, Germany
| |
Collapse
|
13
|
Chalmers JD, van Ingen J, van der Laan R, Herrmann JL. Liposomal drug delivery to manage nontuberculous mycobacterial pulmonary disease and other chronic lung infections. Eur Respir Rev 2021; 30:30/161/210010. [PMID: 34289985 PMCID: PMC9488898 DOI: 10.1183/16000617.0010-2021] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/01/2021] [Indexed: 12/20/2022] Open
Abstract
Nontuberculous mycobacterial (NTM) pulmonary disease is a chronic respiratory infection associated with declining lung function, radiological deterioration and significantly increased morbidity and mortality. Patients often have underlying lung conditions, particularly bronchiectasis and COPD. NTM pulmonary disease is difficult to treat because mycobacteria can evade host defences and antimicrobial therapy through extracellular persistence in biofilms and sequestration into macrophages. Management of NTM pulmonary disease remains challenging and outcomes are often poor, partly due to limited penetration of antibiotics into intracellular spaces and biofilms. Efficient drug delivery to the site of infection is therefore a key objective of treatment, but there is high variability in lung penetration by antibiotics. Inhalation is the most direct route of delivery and has demonstrated increased efficacy of antibiotics like amikacin compared with systemic administration. Liposomes are small, artificial, enclosed spherical vesicles, in which drug molecules can be encapsulated to provide controlled release, with potentially improved pharmacokinetics and reduced toxicity. They are especially useful for drugs where penetration of cell membranes is essential. Inhaled delivery of liposomal drug solutions can therefore facilitate direct access to macrophages in the lung where the infecting NTM may reside. A range of liposomal drugs are currently being evaluated in respiratory diseases. Liposome-encapsulated antibiotics can optimise respiratory disease treatment. Amikacin liposomal inhalation suspension is effective in nontuberculous mycobacterial pulmonary disease that has failed to convert following oral guideline-based therapy.https://bit.ly/3f3ixIu
Collapse
Affiliation(s)
- James D Chalmers
- Scottish Centre for Respiratory Research, University of Dundee, Ninewells Hospital and Medical School, Dundee, UK
| | - Jakko van Ingen
- Dept of Medical Microbiology, Radboudumc Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| | | | - Jean-Louis Herrmann
- Université Paris-Saclay, UVSQ, INSERM, Infection and Inflammation, Montigny-le-Bretonneux, France.,APHP, Groupe Hospitalo-Universitaire Paris-Saclay, Hôpital Raymond Poincaré, Garches, France
| |
Collapse
|
14
|
Abstract
Amoebae are protists that have complicated relationships with bacteria, covering the whole spectrum of symbiosis. Amoeba-bacterium interactions contribute to the study of predation, symbiosis, pathogenesis, and human health. Given the complexity of their relationships, it is necessary to understand the ecology and evolution of their interactions. In this paper, we provide an updated review of the current understanding of amoeba-bacterium interactions. We start by discussing the diversity of amoebae and their bacterial partners. We also define three types of ecological interactions between amoebae and bacteria and discuss their different outcomes. Finally, we focus on the implications of amoeba-bacterium interactions on human health, horizontal gene transfer, drinking water safety, and the evolution of symbiosis. In conclusion, amoeba-bacterium interactions are excellent model systems to investigate a wide range of scientific questions. Future studies should utilize advanced techniques to address research gaps, such as detecting hidden diversity, lack of amoeba genomes, and the impacts of amoeba predation on the microbiome.
Collapse
|
15
|
de Faria LV, do Carmo PHF, da Costa MC, Peres NTA, Rodrigues Chagas IA, Furst C, Ferreira GF, Costa AO, Santos DA. Acanthamoeba castellanii as an alternative interaction model for the dermatophyte Trichophyton rubrum. Mycoses 2020; 63:1331-1340. [PMID: 32869415 DOI: 10.1111/myc.13173] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022]
Abstract
BACKGROUND Trichophyton rubrum (Tr) is the main aetiological agent of human dermatophytosis, being isolated from the environment and keratinised tissues. In the environment, Tr can interact with other organisms, such as free-living amoebas (FLA), which can act as an alternative host system to study the interaction between microbes and phagocytic cells. OBJECTIVES To characterise the Acanthamoeba castellanii (ALX)-Tr interaction. METHODS Interaction was characterised in three conditions: trophozoites (PYG), late (PYG/NES) and early (NES) encystation stimulus, evaluating encystation kinetics, phagocytosis, exocytosis and fungicidal activity dynamics. RESULTS Tr was able to induce ALX encystation and be internalised by ALX. The number of internalised conidia was high at 1 hour, and ALX presented fungicidal activity with increased intracellular ROS production and exocytosis. In PYG/NES, phagocytosis and ROS production were reduced, with decreased ALX's fungicidal activity. However, in NES there was an increased fungal engulfment, and a reduced ROS production and higher fungal burden. Furthermore, exogenous mannose decreased phagocytosis of Tr conidia, and divalent cations induced ROS production and increased ALX's fungicidal activity. Interestingly, phagocytosis was reduced in the presence of cytoskeleton inhibitor, but exocytosis was increased, suggesting that Tr conidia may have alternative pathways to escape ALX's cells. CONCLUSION A castellanii is a proper model for studying Tr-FLA interaction, since ALX can engulf, produce ROS and kill Tr, and all these parameters are influenced by an encystation stimulus and divalent cations. Moreover, this interaction is likely to occur in the environment implicating in the adaptation to environmental stressful conditions in both organisms.
Collapse
Affiliation(s)
- Lucas V de Faria
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Paulo H F do Carmo
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marliete C da Costa
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Nalu T A Peres
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Isabela A Rodrigues Chagas
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Cinthia Furst
- Departamento de Patologia, Centro Ciências da Saúde, Universidade Federal do Espírito Santo, Vitoria, Brazil
| | - Gabriella F Ferreira
- Programa Multicêntrico de Pós Graduação em Bioquímica e Biologia Molecular, Universidade Federal de Juiz de Fora, Governador Valadares, Brazil
| | - Adriana O Costa
- Departamento de Análises Clínicas e Toxicológicas, Faculdade de Farmácia, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniel A Santos
- Laboratório de Micologia, Departamento de Microbiologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
16
|
Slinger J, Adams MB, Wynne JW. Bacteriomic Profiling of Branchial Lesions Induced by Neoparamoeba perurans Challenge Reveals Commensal Dysbiosis and an Association with Tenacibaculum dicentrarchi in AGD-Affected Atlantic Salmon ( Salmo salar L.). Microorganisms 2020; 8:E1189. [PMID: 32764238 PMCID: PMC7464746 DOI: 10.3390/microorganisms8081189] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/28/2020] [Accepted: 07/31/2020] [Indexed: 12/22/2022] Open
Abstract
Amoebic gill disease is a parasitic condition that commonly affects marine farmed Atlantic salmon. The causative agent, Neoparamoeba perurans, induces a marked proliferation of the gill mucosa and focal superficial necrosis upon branchial lesions. The effect that amoebic branchialitis has upon gill associated commensal bacteria is unknown. A 16S rRNA sequencing approach was employed to profile changes in bacterial community composition, within amoebic gill disease (AGD)-affected and non-affected gill tissue. The bacterial diversity of biopsies with and without diseased tissue was significantly lower in the AGD-affected fish compared to uninfected fish. Furthermore, within the AGD-affected tissue, lesions appeared to contain a significantly higher abundance of the Flavobacterium, Tenacibaculum dicentrarchi compared to adjunct unaffected tissues. Quantitative PCR specific to both N. perurans and T. dicentrarchi was used to further examine the co-abundance of these known fish pathogens. A moderate positive correlation between these pathogens was observed. Taken together, the present study sheds new light on the complex interaction between the host, parasite and bacterial communities during AGD progression. The role that T. dicentrarchi may play in this complex relationship requires further investigation.
Collapse
Affiliation(s)
- Joel Slinger
- CSIRO Agriculture and Food, Aquaculture Program, Bribie Island, QLD 4507, Australia
- Institute of Marine and Antarctic Studies, University of Tasmania, Launceston, TAS 7250, Australia;
| | - Mark B. Adams
- Institute of Marine and Antarctic Studies, University of Tasmania, Launceston, TAS 7250, Australia;
| | - James W. Wynne
- CSIRO Agriculture and Food, Aquaculture Program, Hobart, TAS 7000, Australia;
| |
Collapse
|
17
|
Brock DA, Noh S, Hubert AN, Haselkorn TS, DiSalvo S, Suess MK, Bradley AS, Tavakoli-Nezhad M, Geist KS, Queller DC, Strassmann JE. Endosymbiotic adaptations in three new bacterial species associated with Dictyostelium discoideum: Paraburkholderia agricolaris sp. nov., Paraburkholderia hayleyella sp. nov., and Paraburkholderia bonniea sp. nov. PeerJ 2020; 8:e9151. [PMID: 32509456 PMCID: PMC7247526 DOI: 10.7717/peerj.9151] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Accepted: 04/17/2020] [Indexed: 12/24/2022] Open
Abstract
Here we give names to three new species of Paraburkholderia that can remain in symbiosis indefinitely in the spores of a soil dwelling eukaryote, Dictyostelium discoideum. The new species P. agricolaris sp. nov., P. hayleyella sp. nov., and P. bonniea sp. nov. are widespread across the eastern USA and were isolated as internal symbionts of wild-collected D. discoideum. We describe these sp. nov. using several approaches. Evidence that they are each a distinct new species comes from their phylogenetic position, average nucleotide identity, genome-genome distance, carbon usage, reduced length, cooler optimal growth temperature, metabolic tests, and their previously described ability to invade D. discoideum amoebae and form a symbiotic relationship. All three of these new species facilitate the prolonged carriage of food bacteria by D. discoideum, though they themselves are not food. Further studies of the interactions of these three new species with D. discoideum should be fruitful for understanding the ecology and evolution of symbioses.
Collapse
Affiliation(s)
- Debra A. Brock
- Department of Biology, Washington University in St. Louis, St Louis, MO, United States of America
| | - Suegene Noh
- Department of Biology, Colby College, Waterville, ME, United States of America
| | - Alicia N.M. Hubert
- Department of Biology, Washington University in St. Louis, St Louis, MO, United States of America
| | - Tamara S. Haselkorn
- Department of Biology, University of Central Arkansas, Conway, AR, United States of America
| | - Susanne DiSalvo
- Department of Biological Sciences, Southern Illinois University at Edwardsville, Edwardsville, IL, United States of America
| | - Melanie K. Suess
- Department of Earth and Planetary Sciences, Washington University in St. Louis, St Louis, MO, United States of America
| | - Alexander S. Bradley
- Department of Earth and Planetary Sciences, Division of Biology and Biomedical Sciences, Washington University in St. Louis, St Louis, MO, United States of America
| | | | - Katherine S. Geist
- Department of Biology, Washington University in St. Louis, St Louis, MO, United States of America
| | - David C. Queller
- Department of Biology, Washington University in St. Louis, St Louis, MO, United States of America
| | - Joan E. Strassmann
- Department of Biology, Washington University in St. Louis, St Louis, MO, United States of America
| |
Collapse
|
18
|
Francis R, Scola BL, Khalil JY. Coculture at the crossroads of the new microbiology techniques for the isolation of strict intracellular bacteria. Future Microbiol 2020; 15:287-298. [PMID: 32271109 DOI: 10.2217/fmb-2019-0228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Coculture played a major role in clinical microbiology by elucidating strict intracellular bacteria era. Since some of these bacteria are human pathogens, in-depth studies at the strain level are necessary to better understand their pathologies and treatment. Over the last decades, culture-independent tools have taken over the diagnostic procedure at the expense of coculture. These tools, although proven to be rapid and efficient, cannot overcome the need to culture the bacteria, as strain isolation remains a key factor to understanding its epidemiology, virulence and antibiotic susceptibility testing. Moreover, strain availability allows the development of molecular and serological tools, and remains crucial for taxonomy. This review revisits the current status of culture, its advantages, drawbacks and future needs.
Collapse
Affiliation(s)
- Rania Francis
- Institut Hospitalo-Universitaire Méditerranée-Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), UMR Microbes Evolution Phylogeny & Infections (MEPHI), 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Bernard La Scola
- Institut Hospitalo-Universitaire Méditerranée-Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France.,Aix-Marseille Université, Institut de Recherche pour le Développement (IRD), UMR Microbes Evolution Phylogeny & Infections (MEPHI), 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| | - Jacques Yb Khalil
- Institut Hospitalo-Universitaire Méditerranée-Infection, 19-21 Boulevard Jean Moulin, 13005, Marseille, France
| |
Collapse
|
19
|
Hanna N, Kicka S, Chiriano G, Harrison C, Sakouhi HO, Trofimov V, Kranjc A, Nitschke J, Pagni M, Cosson P, Hilbi H, Scapozza L, Soldati T. Identification of Anti- Mycobacterium and Anti- Legionella Compounds With Potential Distinctive Structural Scaffolds From an HD-PBL Using Phenotypic Screens in Amoebae Host Models. Front Microbiol 2020; 11:266. [PMID: 32153546 PMCID: PMC7047896 DOI: 10.3389/fmicb.2020.00266] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/05/2020] [Indexed: 12/22/2022] Open
Abstract
Tubercular Mycobacteria and Legionella pneumophila are the causative agents of potentially fatal respiratory diseases due to their intrinsic pathogenesis but also due to the emergence of antibiotic resistance that limits treatment options. The aim of our study was to explore the antimicrobial activity of a small ligand-based chemical library of 1255 structurally diverse compounds. These compounds were screened in a combination of three assays, two monitoring the intracellular growth of the pathogenic bacteria, Mycobacterium marinum and L. pneumophila, and one assessing virulence of M. marinum. We set up these assays using two amoeba strains, the genetically tractable social amoeba Dictyostelium discoideum and the free-living amoeba Acanthamoeba castellanii. In summary, 64 (5.1%) compounds showed anti-infective/anti-virulence activity in at least one of the three assays. The intracellular assays hit rate varied between 1.7% (n = 22) for M. marinum and 2.8% (n = 35) for L. pneumophila with seven compounds in common for both pathogens. In parallel, 1.2% (n = 15) of the tested compounds were able to restore D. discoideum growth in the presence of M. marinum spiked in a lawn of food bacteria. We also validated the generality of the hits identified in the A. castellanii–M. marinum anti-infective screen using the D. discoideum–M. marinum host–pathogen model. The characterization of anti-infective and antibacterial hits in the latter infection model revealed compounds able to reduce intracellular growth more than 50% at 30 μM. Moreover, the chemical space and physico-chemical properties of the anti-M. marinum hits were compared to standard and candidate Mycobacterium tuberculosis (Mtb) drugs using ChemGPS-NP. A principle component analysis identified separate clusters for anti-M. marinum and anti-L. pneumophila hits unveiling the potentially new physico-chemical properties of these hits compared to standard and candidate M. tuberculosis drugs. Our studies underscore the relevance of using a combination of low-cost and low-complexity assays with full 3R compliance in concert with a rationalized focused library of compounds to identify new chemical scaffolds and to dissect some of their properties prior to taking further steps toward compound development.
Collapse
Affiliation(s)
- Nabil Hanna
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Sébastien Kicka
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Gianpaolo Chiriano
- Pharmaceutical Biochemistry/Chemistry, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Christopher Harrison
- Max von Pettenkofer Institute, Ludwig Maximilian University of Munich, Munich, Germany
| | - Hajer Ouertatani Sakouhi
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Valentin Trofimov
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Agata Kranjc
- Pharmaceutical Biochemistry/Chemistry, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Jahn Nitschke
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | - Marco Pagni
- Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Pierre Cosson
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | - Hubert Hilbi
- Institute of Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Leonardo Scapozza
- Pharmaceutical Biochemistry/Chemistry, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| |
Collapse
|
20
|
Mannan T, Rafique MW, Bhatti MH, Matin A, Ahmad I. Type 1 Fimbriae and Motility Play a Pivotal Role During Interactions of Salmonella typhimurium with Acanthamoeba castellanii (T4 Genotype). Curr Microbiol 2020; 77:836-845. [PMID: 31932998 DOI: 10.1007/s00284-019-01868-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 12/30/2019] [Indexed: 12/13/2022]
Abstract
Amoebic bacterial interactions are the most ancient form of host pathogen interactions. Here, we investigate the fate of Salmonella typhimurium and Acanthamoeba castellanii T4 genotype upon mutual interactions in a nutrition free environment. The role of type 1 fimbriae and motility of S. typhimurium during interactions with A. castellanii has also been investigated. Deletion of genes encoding the type 1 fimbriae subunit FimA, type 1 fimbriae tip protein FimH, chemotaxis regulatory proteins CheA and CheY and major flagella subunits FliC and FljB was performed through homologous recombination. In vitro association, invasion and survival assays of S. typhimurium wild-type and mutant strains were performed upon co-incubation of bacteria with A. castellanii trophozoites in a nutrition free environment. The deletion gene encoding type 1 fimbriae subunit FimA reduced, whereas the deletion of genes encoding flagella subunits FliC and FljB of flagella enhanced the association capability of S. typhimurium with A. castellanii. Invasion of A. castellanii by Salmonella was significantly reduced upon the loss of type 1 fimbriae subunit FimA and type 1 fimbriae tip protein FimH. Co-incubation of S. typhimurium with A. castellanii in phosphate buffered saline medium stimulated the growth of S. typhimurium wild-type and mutant strains. Viable A. castellanii trophozoites count became significantly reduced upon co-incubation with S. typhimurium within 48 h. Type 1 fimbriae play a pivotal role in the adherence of S. typhimurium to the A. castellanii cell surface. Subsequently, this interaction provides S. typhimurium an advantage in growth.
Collapse
Affiliation(s)
- Talha Mannan
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences Lahore, Lahore, 54600, Pakistan
| | - Muhammad Wasim Rafique
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences Lahore, Lahore, 54600, Pakistan
| | - Muhammad Haroon Bhatti
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences Lahore, Lahore, 54600, Pakistan
| | - Abdul Matin
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah, 11952, Saudi Arabia.,Department of Medical Laboratory Technology, University of Haripur, Hattar Road, Haripur, Khyber Pakhtunkhwa, 22620, Pakistan
| | - Irfan Ahmad
- Institute of Biomedical and Allied Health Sciences, University of Health Sciences Lahore, Lahore, 54600, Pakistan.
| |
Collapse
|
21
|
A predation assay using amoebae to screen for virulence factors unearthed the first W. chondrophila inclusion membrane protein. Sci Rep 2019; 9:19485. [PMID: 31862969 PMCID: PMC6925127 DOI: 10.1038/s41598-019-55511-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Accepted: 11/11/2019] [Indexed: 01/21/2023] Open
Abstract
Waddlia chondrophila is an intracellular bacterium phylogenetically related to the well-studied human and animal pathogens of the Chlamydiaceae family. In the last decade, W. chondrophila was convincingly demonstrated to be associated with adverse pregnancy outcomes in humans and abortions in animals. All members of the phylum Chlamydiae possess a Type Three Secretion System that they use for delivering virulence proteins into the host cell cytosol to modulate their environment and create optimal conditions to complete their life cycle. To identify W. chondrophila virulence proteins, we used an original screening approach that combines a cosmid library with an assay monitoring resistance to predation by phagocytic amoebae. This technique combined with bioinformatic data allowed the identification of 28 candidate virulence proteins, including Wimp1, the first identified inclusion membrane protein of W. chondrophila.
Collapse
|
22
|
Tyml T, Date SV, Woyke T. A single-cell genome perspective on studying intracellular associations in unicellular eukaryotes. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190082. [PMID: 31587647 PMCID: PMC6792452 DOI: 10.1098/rstb.2019.0082] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Single-cell genomics (SCG) methods provide a unique opportunity to analyse whole genome information at the resolution of an individual cell. While SCG has been extensively used to investigate bacterial and archaeal genomes, the technique has been rarely used to access the genetic makeup of uncultivated microbial eukaryotes. In this regard, the use of SCG can provide a wealth of information; not only do the methods allow exploration of the genome, they can also help elucidate the relationship between the cell and intracellular entities extant in nearly all eukaryotes. SCG enables the study of total eukaryotic cellular DNA, which in turn allows us to better understand the evolutionary history and diversity of life, and the physiological interactions that define complex organisms. This article is part of a discussion meeting issue ‘Single cell ecology’.
Collapse
Affiliation(s)
- Tomáš Tyml
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA.,Global Viral, San Francisco, CA, USA
| | | | - Tanja Woyke
- U.S. Department of Energy, Joint Genome Institute, Walnut Creek, CA, USA
| |
Collapse
|
23
|
Gonçalves DDS, Ferreira MDS, Guimarães AJ. Extracellular Vesicles from the Protozoa Acanthamoeba castellanii: Their Role in Pathogenesis, Environmental Adaptation and Potential Applications. Bioengineering (Basel) 2019; 6:bioengineering6010013. [PMID: 30717103 PMCID: PMC6466093 DOI: 10.3390/bioengineering6010013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/22/2019] [Accepted: 01/26/2019] [Indexed: 12/11/2022] Open
Abstract
Extracellular vesicles (EVs) are membranous compartments of distinct cellular origin and biogenesis, displaying different sizes and include exosomes, microvesicles, and apoptotic bodies. The EVs have been described in almost every living organism, from simple unicellular to higher evolutionary scale multicellular organisms, such as mammals. Several functions have been attributed to these structures, including roles in energy acquisition, cell-to-cell communication, gene expression modulation and pathogenesis. In this review, we described several aspects of the recently characterized EVs of the protozoa Acanthamoeba castellanii, a free-living amoeba (FLA) of emerging epidemiological importance, and compare their features to other parasites' EVs. These A. castellanii EVs are comprised of small microvesicles and exosomes and carry a wide range of molecules involved in many biological processes like cell signaling, carbohydrate metabolism and proteolytic activity, such as kinases, glucanases, and proteases, respectively. Several biomedical applications of these EVs have been proposed lately, including their use in vaccination, biofuel production, and the pharmaceutical industry, such as platforms for drug delivery.
Collapse
Affiliation(s)
- Diego de Souza Gonçalves
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Rio de Janeiro 24210-130, Brazil.
| | - Marina da Silva Ferreira
- Departamento de Imunologia, Instituto de Microbiologia Professor Paulo de Góes, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-970, Brazil.
| | - Allan J Guimarães
- Departamento de Microbiologia e Parasitologia, Instituto Biomédico, Universidade Federal Fluminense, Rio de Janeiro 24210-130, Brazil.
| |
Collapse
|
24
|
Shu L, Zhang B, Queller DC, Strassmann JE. Burkholderia bacteria use chemotaxis to find social amoeba Dictyostelium discoideum hosts. THE ISME JOURNAL 2018; 12:1977-1993. [PMID: 29795447 PMCID: PMC6052080 DOI: 10.1038/s41396-018-0147-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Revised: 02/05/2018] [Accepted: 03/28/2018] [Indexed: 12/15/2022]
Abstract
A key question in cooperation is how to find the right partners and maintain cooperative relationships. This is especially challenging for horizontally transferred bacterial symbionts where relationships must be repeatedly established anew. In the social amoeba Dictyostelium discoideum farming symbiosis, two species of inedible Burkholderia bacteria (Burkholderia agricolaris and Burkholderia hayleyella) initiate stable associations with naive D. discoideum hosts and cause carriage of additional bacterial species. However, it is not clear how the association between D. discoideum and its carried Burkholderia is formed and maintained. Here, we look at precisely how Burkholderia finds its hosts. We found that both species of Burkholderia clones isolated from D. discoideum, but not other tested Burkholderia species, are attracted to D. discoideum supernatant, showing that the association is not simply the result of haphazard engulfment by the amoebas. The chemotactic responses are affected by both partners. We find evidence that B. hayleyella prefers D. discoideum clones that currently or previously carried Burkholderia, while B. agricolaris does not show this preference. However, we find no evidence of Burkholderia preference for their own host clone or for other hosts of their own species. We further investigate the chemical differences of D. discoideum supernatants that might explain the patterns shown above using a mass spectrometry based metabolomics approach. These results show that these bacterial symbionts are able to preferentially find and to some extent choose their unicellular partners. In addition, this study also suggests that bacteria can actively search for and target phagocytic cells, which may help us better understand how bacteria interact with immune systems.
Collapse
Affiliation(s)
- Longfei Shu
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA.
| | - Bojie Zhang
- Department of Chemistry, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - David C Queller
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| | - Joan E Strassmann
- Department of Biology, Washington University in St. Louis, St. Louis, MO, 63130, USA
| |
Collapse
|
25
|
Lima WC, Pillonel T, Bertelli C, Ifrid E, Greub G, Cosson P. Genome sequencing and functional characterization of the non-pathogenic Klebsiella pneumoniae KpGe bacteria. Microbes Infect 2018; 20:293-301. [PMID: 29753816 DOI: 10.1016/j.micinf.2018.04.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2017] [Revised: 03/30/2018] [Accepted: 04/03/2018] [Indexed: 01/26/2023]
Abstract
Klebsiella pneumoniae is an extensively studied human pathogen responsible for a wide variety of infections. Dictyostelium discoideum is a model host organism employed to study many facets of the complex interactions between phagocytic cells and bacteria. Historically, a non-pathogenic strain of K. pneumoniae has been used to feed Dictyostelium amoebae, and more recently to study cellular mechanisms involved in bacterial recognition, ingestion and killing. Here we provide the full genome sequence and functional characterization of this non-pathogenic KpGe strain.
Collapse
Affiliation(s)
- Wanessa C Lima
- Cell Physiology and Metabolism Dpt, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland.
| | - Trestan Pillonel
- Institute of Microbiology, University of Lausanne and University Hospital Center, 48 rue du Bugnon, CH-1011, Lausanne, Switzerland
| | - Claire Bertelli
- Institute of Microbiology, University of Lausanne and University Hospital Center, 48 rue du Bugnon, CH-1011, Lausanne, Switzerland
| | - Estelle Ifrid
- Cell Physiology and Metabolism Dpt, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University of Lausanne and University Hospital Center, 48 rue du Bugnon, CH-1011, Lausanne, Switzerland
| | - Pierre Cosson
- Cell Physiology and Metabolism Dpt, Faculty of Medicine, University of Geneva, 1 rue Michel Servet, CH-1211, Geneva 4, Switzerland
| |
Collapse
|
26
|
Trofimov V, Kicka S, Mucaria S, Hanna N, Ramon-Olayo F, Del Peral LVG, Lelièvre J, Ballell L, Scapozza L, Besra GS, Cox JAG, Soldati T. Antimycobacterial drug discovery using Mycobacteria-infected amoebae identifies anti-infectives and new molecular targets. Sci Rep 2018; 8:3939. [PMID: 29500372 PMCID: PMC5834492 DOI: 10.1038/s41598-018-22228-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 02/06/2018] [Indexed: 12/12/2022] Open
Abstract
Tuberculosis remains a serious threat to human health world-wide, and improved efficiency of medical treatment requires a better understanding of the pathogenesis and the discovery of new drugs. In the present study, we performed a whole-cell based screen in order to complete the characterization of 168 compounds from the GlaxoSmithKline TB-set. We have established and utilized novel previously unexplored host-model systems to characterize the GSK compounds, i.e. the amoeboid organisms D. discoideum and A. castellanii, as well as a microglial phagocytic cell line, BV2. We infected these host cells with Mycobacterium marinum to monitor and characterize the anti-infective activity of the compounds with quantitative fluorescence measurements and high-content microscopy. In summary, 88.1% of the compounds were confirmed as antibiotics against M. marinum, 11.3% and 4.8% displayed strong anti-infective activity in, respectively, the mammalian and protozoan infection models. Additionally, in the two systems, 13–14% of the compounds displayed pro-infective activity. Our studies underline the relevance of using evolutionarily distant pathogen and host models in order to reveal conserved mechanisms of virulence and defence, respectively, which are potential “universal” targets for intervention. Subsequent mechanism of action studies based on generation of over-expresser M. bovis BCG strains, generation of spontaneous resistant mutants and whole genome sequencing revealed four new molecular targets, including FbpA, MurC, MmpL3 and GlpK.
Collapse
Affiliation(s)
- Valentin Trofimov
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland.,Institut Pasteur de Lille, Lille, France
| | - Sébastien Kicka
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | - Sabrina Mucaria
- Pharmaceutical Biochemistry/Chemistry, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Nabil Hanna
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland
| | | | | | - Joël Lelièvre
- GSK, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Lluís Ballell
- GSK, Severo Ochoa 2, 28760 Tres Cantos, Madrid, Spain
| | - Leonardo Scapozza
- Pharmaceutical Biochemistry/Chemistry, School of Pharmaceutical Sciences, University of Geneva, Geneva, Switzerland
| | - Gurdyal S Besra
- School of Biosciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - Jonathan A G Cox
- School of Life & Health Sciences, Aston University, Birmingham, UK.
| | - Thierry Soldati
- Department of Biochemistry, Faculty of Science, University of Geneva, Geneva, Switzerland.
| |
Collapse
|
27
|
Abstract
Nontuberculous mycobacteria (NTM) include species that colonize human epithelia, as well as species that are ubiquitous in soil and aquatic environments. NTM that primarily inhabit soil and aquatic environments include the Mycobacterium avium complex (MAC, M. avium and Mycobacterium intracellulare) and the Mycobacterium abscessus complex (MABSC, M. abscessus subspecies abscessus, massiliense, and bolletii), and can be free-living, biofilm-associated, or amoeba-associated. Although NTM are rarely pathogenic in immunocompetent individuals, those who are immunocompromised - due to either an inherited or acquired immunodeficiency - are highly susceptible to NTM infection (NTMI). Several characteristics such as biofilm formation and the ability of select NTM species to form distinct colony morphotypes all may play a role in pathogenesis not observed in the related, well-characterized pathogen Mycobacterium tuberculosis The recognition of different morphotypes of NTM has been established and characterized since the 1950s, but the mechanisms that underlie colony phenotype change and subsequent differences in pathogenicity are just beginning to be explored. Advances in genomic analysis have led to progress in identifying genes important to the pathogenesis and persistence of MAC disease as well as illuminating genetic aspects of different colony morphotypes. Here we review recent literature regarding NTM ecology and transmission, as well as the factors which regulate colony morphotype and pathogenicity.
Collapse
Affiliation(s)
- Tiffany A Claeys
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Richard T Robinson
- Department of Microbiology and Immunology, Medical College of Wisconsin, Milwaukee, Wisconsin, USA.
| |
Collapse
|
28
|
Varas MA, Riquelme-Barrios S, Valenzuela C, Marcoleta AE, Berríos-Pastén C, Santiviago CA, Chávez FP. Inorganic Polyphosphate Is Essential for Salmonella Typhimurium Virulence and Survival in Dictyostelium discoideum. Front Cell Infect Microbiol 2018; 8:8. [PMID: 29441327 PMCID: PMC5797601 DOI: 10.3389/fcimb.2018.00008] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 01/09/2018] [Indexed: 01/26/2023] Open
Abstract
Inorganic polyphosphate (polyP) deficiency in enteric bacterial pathogens reduces their ability to invade and establish systemic infections in different hosts. For instance, inactivation of the polyP kinase gene (ppk) encoding the enzyme responsible for polyP biosynthesis reduces invasiveness and intracellular survival of Salmonella enterica serovar Typhimurium (S. Typhimurium) in epithelial cells and macrophages in vitro. In addition, the virulence in vivo of a S. Typhimurium Δppk mutant is significantly reduced in a murine infection model. In spite of these observations, the role played by polyP during the Salmonella-host interaction is not well understood. The social amoeba Dictyostelium discoideum has proven to be a useful model for studying relevant aspects of the host-pathogen interaction. In fact, many intracellular pathogens can survive within D. discoideum cells using molecular mechanisms also required to survive within macrophages. Recently, we established that S. Typhimurium is able to survive intracellularly in D. discoideum and identified relevant genes linked to virulence that are crucial for this process. The aim of this study was to determine the effect of a polyP deficiency in S. Typhimurium during its interaction with D. discoideum. To do this, we evaluated the intracellular survival of wild-type and Δppk strains of S. Typhimurium in D. discoideum and the ability of these strains to delay the social development of the amoeba. In contrast to the wild-type strain, the Δppk mutant was unable to survive intracellularly in D. discoideum and enabled the social development of the amoeba. Both phenotypes were complemented using a plasmid carrying a copy of the ppk gene. Next, we simultaneously evaluated the proteomic response of both S. Typhimurium and D. discoideum during host-pathogen interaction via global proteomic profiling. The analysis of our results allowed the identification of novel molecular signatures that give insight into Salmonella-Dictyostelium interaction. Altogether, our results indicate that inorganic polyP is essential for S. Typhimurium virulence and survival in D. discoideum. In addition, we have validated the use of global proteomic analyses to simultaneously evaluate the host-pathogen interaction of S. Typhimurium and D. discoideum. Furthermore, our infection assays using these organisms can be exploited to screen for novel anti-virulence molecules targeting inorganic polyP biosynthesis.
Collapse
Affiliation(s)
- Macarena A Varas
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Sebastián Riquelme-Barrios
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Camila Valenzuela
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Andrés E Marcoleta
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Camilo Berríos-Pastén
- Laboratorio de Biología Estructural y Molecular, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| | - Carlos A Santiviago
- Laboratorio de Microbiología, Departamento de Bioquímica y Biología Molecular, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Francisco P Chávez
- Laboratorio de Microbiología de Sistemas, Departamento de Biología, Facultad de Ciencias, Universidad de Chile, Santiago, Chile
| |
Collapse
|
29
|
Buracco S, Peracino B, Andreini C, Bracco E, Bozzaro S. Differential Effects of Iron, Zinc, and Copper on Dictyostelium discoideum Cell Growth and Resistance to Legionella pneumophila. Front Cell Infect Microbiol 2018; 7:536. [PMID: 29379774 PMCID: PMC5770829 DOI: 10.3389/fcimb.2017.00536] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Accepted: 12/26/2017] [Indexed: 12/29/2022] Open
Abstract
Iron, zinc, and copper play fundamental roles in eucaryotes and procaryotes, and their bioavailability regulates host-pathogen interactions. For intracellular pathogens, the source of metals is the cytoplasm of the host, which in turn manipulates intracellular metal traffic following pathogen recognition. It is established that iron is withheld from the pathogen-containing vacuole, whereas for copper and zinc the evidence is unclear. Most infection studies in mammals have concentrated on effects of metal deficiency/overloading at organismal level. Thus, zinc deficiency or supplementation correlate with high risk of respiratory tract infection or recovery from severe infection, respectively. Iron, zinc, and copper deficiency or overload affects lymphocyte proliferation/maturation, and thus the adaptive immune response. Whether they regulate innate immunity at macrophage level is open, except for iron. The early identification in a mouse mutant susceptible to mycobacterial infection of the iron transporter Nramp1 allowed dissecting Nramp1 role in phagocytes, from the social amoeba Dictyostelium to macrophages. Nramp1 regulates iron efflux from the phagosomes, thus starving pathogenic bacteria for iron. Similar studies for zinc or copper are scant, due to the large number of copper and zinc transporters. In Dictyostelium, zinc and copper transporters include 11 and 6 members, respectively. To assess the role of zinc or copper in Dictyostelium, cells were grown under conditions of metal depletion or excess and tested for resistance to Legionella pneumophila infection. Iron shortage or overload inhibited Dictyostelium cell growth within few generations. Surprisingly, zinc or copper depletion failed to affect growth. Zinc or copper overloading inhibited cell growth at, respectively, 50- or 500-fold the physiological concentration, suggesting very efficient control of their homeostasis, as confirmed by Inductively Coupled Plasma Mass Spectrometry quantification of cellular metals. Legionella infection was inhibited or enhanced in cells grown under iron shortage or overload, respectively, confirming a major role for iron in controlling resistance to pathogens. In contrast, zinc and copper depletion or excess during growth did not affect Legionella infection. Using Zinpyr-1 as fluorescent sensor, we show that zinc accumulates in endo-lysosomal vesicles, including phagosomes, and the contractile vacuole. Furthermore, we provide evidence for permeabilization of the Legionella-containing vacuole during bacterial proliferation.
Collapse
Affiliation(s)
- Simona Buracco
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Barbara Peracino
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| | - Claudia Andreini
- Magnetic Resonance Center (CERM), University of Florence, Florence, Italy
| | - Enrico Bracco
- Department of Oncology, University of Torino, Turin, Italy
| | - Salvatore Bozzaro
- Department of Clinical and Biological Sciences, University of Torino, Turin, Italy
| |
Collapse
|
30
|
Cardenal-Muñoz E, Barisch C, Lefrançois LH, López-Jiménez AT, Soldati T. When Dicty Met Myco, a (Not So) Romantic Story about One Amoeba and Its Intracellular Pathogen. Front Cell Infect Microbiol 2018; 7:529. [PMID: 29376033 PMCID: PMC5767268 DOI: 10.3389/fcimb.2017.00529] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Accepted: 12/18/2017] [Indexed: 01/06/2023] Open
Abstract
In recent years, Dictyostelium discoideum has become an important model organism to study the cell biology of professional phagocytes. This amoeba not only shares many molecular features with mammalian macrophages, but most of its fundamental signal transduction pathways are conserved in humans. The broad range of existing genetic and biochemical tools, together with its suitability for cell culture and live microscopy, make D. discoideum an ideal and versatile laboratory organism. In this review, we focus on the use of D. discoideum as a phagocyte model for the study of mycobacterial infections, in particular Mycobacterium marinum. We look in detail at the intracellular cycle of M. marinum, from its uptake by D. discoideum to its active or passive egress into the extracellular medium. In addition, we describe the molecular mechanisms that both the mycobacterial invader and the amoeboid host have developed to fight against each other, and compare and contrast with those developed by mammalian phagocytes. Finally, we introduce the methods and specific tools that have been used so far to monitor the D. discoideum-M. marinum interaction.
Collapse
Affiliation(s)
- Elena Cardenal-Muñoz
- Department of Biochemistry, Sciences II, Faculty of Sciences, University of Geneva, Geneva, Switzerland
| | | | | | | | | |
Collapse
|
31
|
Novohradská S, Ferling I, Hillmann F. Exploring Virulence Determinants of Filamentous Fungal Pathogens through Interactions with Soil Amoebae. Front Cell Infect Microbiol 2017; 7:497. [PMID: 29259922 PMCID: PMC5723301 DOI: 10.3389/fcimb.2017.00497] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 11/20/2017] [Indexed: 01/15/2023] Open
Abstract
Infections with filamentous fungi are common to all animals, but attention is rising especially due to the increasing incidence and high mortality rates observed in immunocompromised human individuals. Here, Aspergillus fumigatus and other members of its genus are the leading causative agents. Attributes like their saprophytic life-style in various ecological niches coupled with nutritional flexibility and a broad host range have fostered the hypothesis that environmental predators could have been the actual target for some of their virulence determinants. In this mini review, we have merged the recent findings focused on the potential dual-use of fungal defense strategies against innate immune cells and soil amoebae as natural phagocytes. Well-established virulence attributes like the melanized surface of fungal conidia or their capacity to produce toxic secondary metabolites have also been found to be protective against the model amoeba Dictyostelium discoideum. Some of the recent advances during interaction studies with human cells have further promoted the adaptation of other amoeba infection models, including the wide-spread generalist Acanthamoeba castellanii, or less prominent representatives like Vermamoeba vermiformis. We further highlight prospects and limits of these natural phagocyte models with regard to the infection biology of filamentous fungi and in comparison to the phagocytes of the innate immune system.
Collapse
Affiliation(s)
- Silvia Novohradská
- Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Iuliia Ferling
- Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
- Institute of Microbiology, Friedrich Schiller University Jena, Jena, Germany
| | - Falk Hillmann
- Evolution of Microbial Interactions, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, Jena, Germany
| |
Collapse
|
32
|
Mathavarajah S, Flores A, Huber RJ. Dictyostelium discoideum
: A Model System for Cell and Developmental Biology. ACTA ACUST UNITED AC 2017. [DOI: 10.1002/cpet.15] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Affiliation(s)
| | - Ana Flores
- Department of Biology, Trent University Peterborough Ontario Canada
| | - Robert J. Huber
- Department of Biology, Trent University Peterborough Ontario Canada
| |
Collapse
|
33
|
CmeABC Multidrug Efflux Pump Contributes to Antibiotic Resistance and Promotes Campylobacter jejuni Survival and Multiplication in Acanthamoeba polyphaga. Appl Environ Microbiol 2017; 83:AEM.01600-17. [PMID: 28916560 PMCID: PMC5666138 DOI: 10.1128/aem.01600-17] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Accepted: 09/09/2017] [Indexed: 12/30/2022] Open
Abstract
Campylobacter jejuni is a foodborne pathogen that is recognized as the leading cause of human bacterial gastroenteritis. The widespread use of antibiotics in medicine and in animal husbandry has led to an increased incidence of antibiotic resistance in Campylobacter In addition to a role in multidrug resistance (MDR), the Campylobacter CmeABC resistance-nodulation-division (RND)-type efflux pump may be involved in virulence. As a vehicle for pathogenic microorganisms, the protozoan Acanthamoeba is a good model for investigations of bacterial survival in the environment and the molecular mechanisms of pathogenicity. The interaction between C. jejuni 81-176 and Acanthamoeba polyphaga was investigated in this study by using a modified gentamicin protection assay. In addition, a possible role for the CmeABC MDR pump in this interaction was explored. Here we report that this MDR pump is beneficial for the intracellular survival and multiplication of C. jejuni in A. polyphaga but is dispensable for biofilm formation and motility.IMPORTANCE The endosymbiotic relationship between amoebae and microbial pathogens may contribute to persistence and spreading of the latter in the environment, which has significant implications for human health. In this study, we found that Campylobacter jejuni was able to survive and to multiply inside Acanthamoeba polyphaga; since these microorganisms can coexist in the same environment (e.g., on poultry farms), the latter may increase the risk of infection with Campylobacter Our data suggest that, in addition to its role in antibiotic resistance, the CmeABC MDR efflux pump plays a role in bacterial survival within amoebae. Furthermore, we demonstrated synergistic effects of the CmeABC MDR efflux pump and TetO on bacterial resistance to tetracycline. Due to its role in both the antibiotic resistance and the virulence of C. jejuni, the CmeABC MDR efflux pump could be considered a good target for the development of antibacterial drugs against this pathogen.
Collapse
|
34
|
Abstract
Long before bacteria infected humans, they infected amoebas, which remain a potentially important reservoir for human disease. Diverse soil amoebas including Dictyostelium and Acanthamoeba can host intracellular bacteria. Though the internal environment of free-living amoebas is similar in many ways to that of mammalian macrophages, they differ in a number of important ways, including temperature. A new study in PLOS Biology by Taylor-Mulneix et al. demonstrates that Bordetella bronchiseptica has two different gene suites that are activated depending on whether the bacterium finds itself in a hot mammalian or cool amoeba host environment. This study specifically shows that B. bronchiseptica not only inhabits amoebas but can persist and multiply through the social stage of an amoeba host, Dictyostelium discoideum.
Collapse
|
35
|
An observational study of phagocytes and Klebsiella pneumoniae relationships: different behaviors. Microbes Infect 2017; 19:259-266. [DOI: 10.1016/j.micinf.2016.12.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2016] [Revised: 10/20/2016] [Accepted: 12/21/2016] [Indexed: 12/21/2022]
|
36
|
Buse HY, Schaefer III FW, Rice EW. Enhanced survival but not amplification of Francisella spp. in the presence of free-living amoebae. Acta Microbiol Immunol Hung 2017; 64:17-36. [PMID: 27929353 DOI: 10.1556/030.63.2016.015] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Transmission of Francisella tularensis, the etiologic agent of tularemia, has been associated with various water sources. Survival of many waterborne pathogens within free-living amoeba (FLA) is well documented; however, the role of amoebae in the environmental persistence of F. tularensis is unclear. In this study, axenic FLA cultures of Acanthamoeba castellanii, Acanthamoeba polyphaga, and Vermamoeba vermiformis were each inoculated with virulent strains of F. tularensis (Types A and B), the attenuated live vaccine strain, and Francisella novicida. Experimental parameters included low and high multiplicity of infection and incubation temperatures of 25 and 30 °C for 0-10 days. Francisella spp. survival was enhanced by the presence of FLA; however, bacterial growth and protozoa infectivity were not observed. In contrast, co-infections of A. polyphaga and Legionella pneumophila, used as an amoeba pathogen control, resulted in bacterial proliferation, cytopathic effects, and amoebal lysis. Collectively, even though short-term incubation with FLA was beneficial, the long-term effects on Francisella survival are unknown, especially given the expenditure of available amoebal derived nutrients and the fastidious nature of Francisella spp. These factors have clear implications for the role of FLA in Francisella environmental persistence.
Collapse
Affiliation(s)
- Helen Y. Buse
- 1 National Homeland Security Research Center, US Environmental Protection Agency, Cincinnati, OH, USA
| | - Frank W. Schaefer III
- 1 National Homeland Security Research Center, US Environmental Protection Agency, Cincinnati, OH, USA
| | - Eugene W. Rice
- 1 National Homeland Security Research Center, US Environmental Protection Agency, Cincinnati, OH, USA
| |
Collapse
|
37
|
Aqeel Y, Rodriguez R, Chatterjee A, Ingalls RR, Samuelson J. Killing of diverse eye pathogens (Acanthamoeba spp., Fusarium solani, and Chlamydia trachomatis) with alcohols. PLoS Negl Trop Dis 2017; 11:e0005382. [PMID: 28182670 PMCID: PMC5321442 DOI: 10.1371/journal.pntd.0005382] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Revised: 02/22/2017] [Accepted: 02/02/2017] [Indexed: 12/18/2022] Open
Abstract
Background Blindness is caused by eye pathogens that include a free-living protist (Acanthamoeba castellanii, A. byersi, and/or other Acanthamoeba spp.), a fungus (Fusarium solani), and a bacterium (Chlamydia trachomatis). Hand-eye contact is likely a contributor to the spread of these pathogens, and so hand washing with soap and water or alcohol–based hand sanitizers (when water is not available) might reduce their transmission. Recently we showed that ethanol and isopropanol in concentrations present in hand sanitizers kill walled cysts of Giardia and Entamoeba, causes of diarrhea and dysentery, respectively. The goal here was to determine whether these alcohols might kill infectious forms of representative eye pathogens (trophozoites and cysts of Acanthamoeba, conidia of F. solani, or elementary bodies of C. trachomatis). Methodology/Principal findings We found that treatment with 63% ethanol or 63% isopropanol kills >99% of Acanthamoeba trophozoites after 30 sec exposure, as shown by labeling with propidium iodide (PI) and failure to grow in culture. In contrast, Acanthamoeba cysts, which contain cellulose fibers in their wall, are relatively more resistant to these alcohols, particularly isopropanol. Depending upon the strain tested, 80 to 99% of Acanthamoeba cysts were killed by 63% ethanol after 2 min and 95 to 99% were killed by 80% ethanol after 30 sec, as shown by PI labeling and reduced rates of excystation in vitro. Both ethanol and isopropanol (63% for 30 sec) kill >99% of F. solani conidia, which have a wall of chitin and glucan fibrils, as demonstrated by PI labeling and colony counts on nutrient agar plates. Both ethanol and isopropanol (63% for 60 sec) inactivate 96 to 99% of elementary bodies of C. trachomatis, which have a wall of lipopolysaccharide but lack peptidoglycan, as measured by quantitative cultures to calculate inclusion forming units. Conclusions/Significance In summary, alcohols kill infectious forms of Acanthamoeba, F. solani, and C. trachomatis, although longer times and higher ethanol concentrations are necessary for Acanthamoeba cysts. These results suggest the possibility that expanded use of alcohol-based hand sanitizers in places where water is not easily available might reduce transmission of these important causes of blindness. Hand washing with soap and water is an important public health tool for reducing transmission of viruses, bacteria, fungi, and protists. Alcohol-based hand sanitizers, which are widely dispensed in hospitals and public places, kill many of these same pathogens. What is not known is how effectively the alcohol-based hand sanitizers kill protists, fungi, or bacteria that cause eye disease. Here we show ethanol and isopropanol penetrate the walls and kill a free-living protist (Acanthamoeba castellanii, A. byersi, and other Acanthamoeba spp.), and a fungus (Fusarium solani), each of which causes keratitis, as well as a bacterium (Chlamydia trachomatis) that causes trachoma. These results suggest the possible benefit of hand sanitizers in the prevention of these eye pathogens.
Collapse
Affiliation(s)
- Yousuf Aqeel
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Raquel Rodriguez
- Department of Medicine, Section of Infectious Diseases, Boston Medical Center, Boston, Massachusetts, United States of America
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Aparajita Chatterjee
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
| | - Robin R. Ingalls
- Department of Medicine, Section of Infectious Diseases, Boston Medical Center, Boston, Massachusetts, United States of America
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - John Samuelson
- Department of Molecular and Cell Biology, Boston University Goldman School of Dental Medicine, Boston, Massachusetts, United States of America
- Department of Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
38
|
Koller B, Schramm C, Siebert S, Triebel J, Deland E, Pfefferkorn AM, Rickerts V, Thewes S. Dictyostelium discoideum as a Novel Host System to Study the Interaction between Phagocytes and Yeasts. Front Microbiol 2016; 7:1665. [PMID: 27818653 PMCID: PMC5073093 DOI: 10.3389/fmicb.2016.01665] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2016] [Accepted: 10/05/2016] [Indexed: 01/26/2023] Open
Abstract
The social amoeba Dictyostelium discoideum is a well-established model organism to study the interaction between bacteria and phagocytes. In contrast, research using D. discoideum as a host model for fungi is rare. We describe a comprehensive study, which uses D. discoideum as a host model system to investigate the interaction with apathogenic (Saccharomyces cerevisiae) and pathogenic (Candida sp.) yeast. We show that Dictyostelium can be co-cultivated with yeasts on solid media, offering a convenient test to study the interaction between fungi and phagocytes. We demonstrate that a number of D. discoideum mutants increase (atg1-, kil1-, kil2-) or decrease (atg6-) the ability of the amoebae to predate yeast cells. On the yeast side, growth characteristics, reduced phagocytosis rate, as well as known virulence factors of C. albicans (EFG1, CPH1, HGC1, ICL1) contribute to the resistance of yeast cells against predation by the amoebae. Investigating haploid C. albicans strains, we suggest using the amoebae plate test for screening purposes after random mutagenesis. Finally, we discuss the potential of our adapted amoebae plate test to use D. discoideum for risk assessment of yeast strains.
Collapse
Affiliation(s)
- Barbara Koller
- Department of Biology, Chemistry, Pharmacy, Institute for Biology - Microbiology, Freie Universität Berlin Berlin, Germany
| | - Christin Schramm
- Department of Biology, Chemistry, Pharmacy, Institute for Biology - Microbiology, Freie Universität BerlinBerlin, Germany; FG16, Robert Koch InstituteBerlin, Germany
| | - Susann Siebert
- Department of Biology, Chemistry, Pharmacy, Institute for Biology - Microbiology, Freie Universität Berlin Berlin, Germany
| | - János Triebel
- Department of Biology, Chemistry, Pharmacy, Institute for Biology - Microbiology, Freie Universität Berlin Berlin, Germany
| | - Eric Deland
- Department of Biology, Chemistry, Pharmacy, Institute for Biology - Microbiology, Freie Universität Berlin Berlin, Germany
| | - Anna M Pfefferkorn
- Department of Biology, Chemistry, Pharmacy, Institute for Biology - Microbiology, Freie Universität Berlin Berlin, Germany
| | | | - Sascha Thewes
- Department of Biology, Chemistry, Pharmacy, Institute for Biology - Microbiology, Freie Universität Berlin Berlin, Germany
| |
Collapse
|
39
|
Hao X, Lüthje F, Rønn R, German NA, Li X, Huang F, Kisaka J, Huffman D, Alwathnani HA, Zhu YG, Rensing C. A role for copper in protozoan grazing - two billion years selecting for bacterial copper resistance. Mol Microbiol 2016; 102:628-641. [PMID: 27528008 DOI: 10.1111/mmi.13483] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/12/2016] [Indexed: 12/28/2022]
Abstract
The Great Oxidation Event resulted in integration of soft metals in a wide range of biochemical processes including, in our opinion, killing of bacteria by protozoa. Compared to pressure from anthropologic copper contamination, little is known on impacts of protozoan predation on maintenance of copper resistance determinants in bacteria. To evaluate the role of copper and other soft metals in predatory mechanisms of protozoa, we examined survival of bacteria mutated in different transition metal efflux or uptake systems in the social amoeba Dictyostelium discoideum. Our data demonstrated a strong correlation between the presence of copper/zinc efflux as well as iron/manganese uptake, and bacterial survival in amoebae. The growth of protozoa, in turn, was dependent on bacterial copper sensitivity. The phagocytosis of bacteria induced upregulation of Dictyostelium genes encoding the copper uptake transporter p80 and a triad of Cu(I)-translocating PIB -type ATPases. Accumulated Cu(I) in Dictyostelium was monitored using a copper biosensor bacterial strain. Altogether, our data demonstrate that Cu(I) is ultimately involved in protozoan predation of bacteria, supporting our hypothesis that protozoan grazing selected for the presence of copper resistance determinants for about two billion years.
Collapse
Affiliation(s)
- Xiuli Hao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Freja Lüthje
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Regin Rønn
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Nadezhda A German
- Department of Pharmaceutical Sciences, Texas Tech University Health Sciences Center, Amarillo, TX, USA
| | - Xuanji Li
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Fuyi Huang
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Javan Kisaka
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, USA
| | - David Huffman
- Department of Chemistry, Western Michigan University, Kalamazoo, MI, USA
| | - Hend A Alwathnani
- Department of Botany and Microbiology, King Saud University, Riyadh, Saudi Arabia
| | - Yong-Guan Zhu
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China
| | - Christopher Rensing
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen, China.,J. Craig Venter Institute, La Jolla, CA, USA
| |
Collapse
|
40
|
Lin T, Chen W, Cai B. Inactivation mechanism of chlorination in Escherichia coli internalized in Limnoithona sinensis and Daphnia magna. WATER RESEARCH 2016; 89:20-27. [PMID: 26624518 DOI: 10.1016/j.watres.2015.11.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Revised: 11/05/2015] [Accepted: 11/06/2015] [Indexed: 06/05/2023]
Abstract
Zooplankton may harbor microorganisms in the aquatic environment, thus protecting them from disinfection during drinking water treatment. However, few studies have evaluated the protective effect of internalization by zooplankton against bacterial disinfection. In this study, we investigated the role of zooplankton (Limnoithona sinensis and Daphnia magna) as a refuge for ingested bacteria against inactivation by chlorination. Only 30% of chlorine reached the internalized bacteria inside the digestive tract of zooplankton. However, this was sufficient to achieve 1.4 log inactivation of internalized Escherichia coli in L. sinensis and 1.2 log inactivation in D. magna at Ct values of 80 mg min/L. Inactivation of internalized bacteria was achieved through the active transfer of free chlorine in the bulk water into the zooplankton digestive tract during grazing activity. D. magna was more sensitive to hypochlorous acid than L. sinensis, and its grazing behavior was inhibited during the inactivation experiment.
Collapse
Affiliation(s)
- Tao Lin
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Wei Chen
- Ministry of Education Key Laboratory of Integrated Regulation and Resource Development on Shallow Lakes, Hohai University, Nanjing 210098, PR China; College of Environment, Hohai University, Nanjing 210098, PR China.
| | - Bo Cai
- College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
41
|
Mohandas P, Budell WC, Mueller E, Au A, Bythrow GV, Quadri LEN. Pleiotropic consequences of gene knockouts in the phthiocerol dimycocerosate and phenolic glycolipid biosynthetic gene cluster of the opportunistic human pathogen Mycobacterium marinum. FEMS Microbiol Lett 2016; 363:fnw016. [PMID: 26818253 DOI: 10.1093/femsle/fnw016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/23/2016] [Indexed: 11/14/2022] Open
Abstract
Phthiocerol dimycocerosates (PDIMs) and phenolic glycolipids (PGLs) contribute to the pathogenicity of several mycobacteria. Biosynthesis of these virulence factors requires polyketide synthases and other enzymes that represent potential targets for the development of adjuvant antivirulence drugs. We used six isogenic Mycobacterium marinum mutants, each with a different gene knockout in the PDIM/PGL biosynthetic pathway, to probe the pleiotropy of mutations leading to PDIM(-) PGL(-), PDIM(+) PGL(-) or PDIM(-) PGL(+) phenotypes. We evaluated the M. marinum mutants for changes in antibiotic susceptibility, cell envelope permeability, biofilm formation, surface properties, sliding motility and virulence in an amoeba model. The analysis also permitted us to begin exploring the hypothesis that different gene knockouts rendering the same PDIM and/or PGL deficiency phenotypes lead to M. marinum mutants with equivalent pleiotropic profiles. Overall, the results of our study revealed a complex picture of pleiotropic patterns emerging from different gene knockouts, uncovered unexpected phenotypic inequalities between mutants, and provided new insight into the phenotypic consequences of gene knockouts in the PDIM/PGL biosynthetic pathway.
Collapse
Affiliation(s)
- Poornima Mohandas
- Biology Department, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA Biology Program, Graduate Center, City University of New York, NY 10016, USA
| | - William C Budell
- Biology Department, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA Biology Program, Graduate Center, City University of New York, NY 10016, USA
| | - Emily Mueller
- Biology Department, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA
| | - Andrew Au
- Biology Department, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA
| | - Glennon V Bythrow
- Biology Department, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA Biology Program, Graduate Center, City University of New York, NY 10016, USA
| | - Luis E N Quadri
- Biology Department, Brooklyn College, City University of New York, Brooklyn, NY 11210, USA Biology Program, Graduate Center, City University of New York, NY 10016, USA
| |
Collapse
|
42
|
Lamoth F, Pillonel T, Greub G. Waddlia: An emerging pathogen and a model organism to study the biology of chlamydiae. Microbes Infect 2015; 17:732-7. [PMID: 26432516 DOI: 10.1016/j.micinf.2015.09.021] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2015] [Revised: 09/16/2015] [Accepted: 09/18/2015] [Indexed: 10/23/2022]
Abstract
Waddlia chondrophila is an emerging pathogen associated with abortion in cattle. In humans, a growing body of evidence supports its pathogenic role in miscarriage and in respiratory tract infection. The human pathogenicity of W. chondrophila is further supported by the presence of several virulence factors including a catalase, a functional T3SS and several adhesins. Despite this medical importance, no commercial tests are available and diagnostic of this strict intracellular bacterium mainly relies on serology, PCR and immunohistochemistry. So far, the epidemiology of W. chondrophila remains largely unexplored and zoonotic, waterborne or interhuman transmission has been considered. Apart from its pathogenic role, chlamydiologists are also interested in W. chondrophila in order to better understand biological mechanisms conserved and shared with Chlamydia spp. Indeed, W. chondrophila proved to be a useful model organism to study the pathobiology of chlamydiae thanks to its rapid replication, its large size allowing precise subcellular protein localization, as well as its growth in Dictyostelium amoebae.
Collapse
Affiliation(s)
- Fréderic Lamoth
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Trestan Pillonel
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland
| | - Gilbert Greub
- Institute of Microbiology, University of Lausanne and University Hospital Center, Lausanne, Switzerland.
| |
Collapse
|
43
|
Schulz F, Tyml T, Pizzetti I, Dyková I, Fazi S, Kostka M, Horn M. Marine amoebae with cytoplasmic and perinuclear symbionts deeply branching in the Gammaproteobacteria. Sci Rep 2015; 5:13381. [PMID: 26303516 PMCID: PMC4642509 DOI: 10.1038/srep13381] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 07/24/2015] [Indexed: 12/31/2022] Open
Abstract
Amoebae play an important ecological role as predators in microbial communities. They also serve as niche for bacterial replication, harbor endosymbiotic bacteria and have contributed to the evolution of major human pathogens. Despite their high diversity, marine amoebae and their association with bacteria are poorly understood. Here we describe the isolation and characterization of two novel marine amoebae together with their bacterial endosymbionts, tentatively named 'Candidatus Occultobacter vannellae' and 'Candidatus Nucleophilum amoebae'. While one amoeba strain is related to Vannella, a genus common in marine habitats, the other represents a novel lineage in the Amoebozoa. The endosymbionts showed only low similarity to known bacteria (85-88% 16S rRNA sequence similarity) but together with other uncultured marine bacteria form a sister clade to the Coxiellaceae. Using fluorescence in situ hybridization and transmission electron microscopy, identity and intracellular location of both symbionts were confirmed; one was replicating in host-derived vacuoles, whereas the other was located in the perinuclear space of its amoeba host. This study sheds for the first time light on a so far neglected group of protists and their bacterial symbionts. The newly isolated strains represent easily maintainable model systems and pave the way for further studies on marine associations between amoebae and bacterial symbionts.
Collapse
Affiliation(s)
- Frederik Schulz
- Department of Microbiology and Ecosystem Sience, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| | - Tomáš Tyml
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Department of Botany and Zoology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic
| | - Ilaria Pizzetti
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Via Salaria Km 29,300, 00015 Monterotondo - Roma, Italy
| | - Iva Dyková
- Department of Botany and Zoology, Faculty of Science, Masaryk University, 61137 Brno, Czech Republic
| | - Stefano Fazi
- Water Research Institute, National Research Council of Italy (IRSA-CNR), Via Salaria Km 29,300, 00015 Monterotondo - Roma, Italy
| | - Martin Kostka
- Faculty of Science, University of South Bohemia, Branišovská 31, 370 05 České Budějovice, Czech Republic
- Institute of Parasitology, Biology Centre CAS, Branišovská 31, 370 05 České Budějovice, Czech Republic
| | - Matthias Horn
- Department of Microbiology and Ecosystem Sience, University of Vienna, Althanstraße 14, A-1090 Vienna, Austria
| |
Collapse
|
44
|
Affiliation(s)
- Helene C Eisenman
- a Department of Natural Sciences ; Baruch College and Graduate Center ; The City University of New York ; New York , NY USA
| |
Collapse
|
45
|
Raoult D. Special section: methods in pathogen discovery. Microb Pathog 2014; 77:113. [PMID: 25481241 DOI: 10.1016/j.micpath.2014.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Affiliation(s)
- Didier Raoult
- URMITE UMR 7278, Faculté de Médecine, 27 Boulevard Jean Moulin, 13005 Marseille, France.
| |
Collapse
|