1
|
Sui MZ, Wan KC, Chen YL, Li HL, Wang SS, Chen ZF. Fatal hemophagocytic lymphohistiocytosis-induced multiorgan dysfunction secondary to Burkholderia pseudomallei sepsis: A case report. World J Clin Cases 2023; 11:7372-7379. [PMID: 37969441 PMCID: PMC10643077 DOI: 10.12998/wjcc.v11.i30.7372] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/24/2023] [Accepted: 10/08/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND Burkholderia pseudomallei (B. pseudomallei) is a short, straight, medium-sized Gram-negative bacterium that mostly exists alone, without a capsule or spores, has more than three flagella at one end, and actively moves. B. pseudomallei confers high morbidity and mortality, with frequent granulocytopenia in B. pseudomallei sepsis-related deaths. However, mortality may be related to hemophagocytic lymphohistiocytosis (HLH) secondary to B. pseudomallei infection. CASE SUMMARY A 12-year-old female was referred from a local hospital to the pediatric intensive care unit with suspected septic shock and fever, cough, dyspnea, and malaise. After admission, supportive symptomatic treatments including fluid resuscitation, anti-infective therapy, mechanical ventilation, and a vasoactive drug maintenance cycle were carefully initiated. The patient became unconscious, her blood pressure could not be maintained even under the exposure of vasoactive drugs, and she experienced cardiorespiratory arrest. The patient died due to ineffective high-quality in-hospital cardiopulmonary resuscitation. A subsequent bone marrow smear examination revealed extensive phagocytosis, and the blood culture was positive for B. pseudomallei. Family history revealed a sibling death from B. pseudomallei sepsis 5 years earlier. CONCLUSION The higher mortality rate in patients with B. pseudomallei sepsis may be related to secondary HLH after infection, wherein multiorgan dysfunction syndrome may be directly related to infection or immune damage caused by secondary HLH. Patients with B. pseudomallei can be asymptomatic and can become an infective source.
Collapse
Affiliation(s)
- Ming-Ze Sui
- Department of Pulmonary and Critical Care Medicine, Kunming Children’s Hospital, Yunnan Key Laboratory of Children’s Major Disease Research, Kunming 650034, Yunnan Province, China
| | - Ke-Cheng Wan
- Department of Pediatrics, Hainan General Hospital, Haikou 570311, Hainan Province, China
| | - Yuan-Lu Chen
- Department of Pediatrics, Hainan General Hospital, Haikou 570311, Hainan Province, China
| | - Huan-Long Li
- Department of Pediatrics, Hainan General Hospital, Haikou 570311, Hainan Province, China
| | - Shan-Shan Wang
- Department of Pediatrics, Hainan General Hospital, Haikou 570311, Hainan Province, China
| | - Ze-Fu Chen
- Department of Pediatrics, Hainan General Hospital, Haikou 570311, Hainan Province, China
| |
Collapse
|
2
|
Nelson M, Barnes KB, Davies CH, Cote CK, Meinig JM, Biryukov SS, Dyer DN, Frick O, Heine H, Pfefferle DA, Horstman-Smith A, Barbaras J, Harding SV. The BALB/c Mouse Model for the Evaluation of Therapies to Treat Infections with Aerosolized Burkholderia pseudomallei. Antibiotics (Basel) 2023; 12:antibiotics12030506. [PMID: 36978372 PMCID: PMC10044689 DOI: 10.3390/antibiotics12030506] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/24/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
Burkholderia pseudomallei, the causative agent of the disease melioidosis, has been isolated from the environment in 45 countries. The treatment of melioidosis is complex, requiring lengthy antibiotic regimens, which can result in the relapse of the disease following treatment cessation. It is important that novel therapies to treat infections with B. pseudomallei be assessed in appropriate animal models, and discussions regarding the different protocols used between laboratories are critical. A ‘deep dive’ was held in October 2020 focusing on the use of the BALB/c mouse model and the inhalational route of infection to evaluate new antibiotic therapies.
Collapse
Affiliation(s)
- Michelle Nelson
- Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK
| | - Kay B. Barnes
- Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK
| | - Carwyn H. Davies
- Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK
| | - Christopher K. Cote
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - J. Matthew Meinig
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Sergei S. Biryukov
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - David N. Dyer
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Ondraya Frick
- United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD 21702, USA
| | - Henry Heine
- Institute for Therapeutic Innovation, University of Florida, Orlando, FL 32827, USA
| | | | | | - Julie Barbaras
- Defense Threat Reduction Agency, Fort Belvoir, VA 22060, USA
| | - Sarah V. Harding
- Defence Science and Technology Laboratory, Porton Down, Salisbury SP4 0JQ, UK
- School of Respiratory Sciences, University of Leicester, Leicester LE1 7RH, UK
- Correspondence:
| |
Collapse
|
3
|
Klimko CP, Shoe JL, Rill NO, Hunter M, Dankmeyer JL, Talyansky Y, Schmidt LK, Orne CE, Fetterer DP, Biryukov SS, Burtnick MN, Brett PJ, DeShazer D, Cote CK. Layered and integrated medical countermeasures against Burkholderia pseudomallei infections in C57BL/6 mice. Front Microbiol 2022; 13:965572. [PMID: 36060756 PMCID: PMC9432870 DOI: 10.3389/fmicb.2022.965572] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Accepted: 07/18/2022] [Indexed: 11/13/2022] Open
Abstract
Burkholderia pseudomallei, the gram-negative bacterium that causes melioidosis, is notoriously difficult to treat with antibiotics. A significant effort has focused on identifying protective vaccine strategies to prevent melioidosis. However, when used as individual medical countermeasures both antibiotic treatments (therapeutics or post-exposure prophylaxes) and experimental vaccine strategies remain partially protective. Here we demonstrate that when used in combination, current vaccine strategies (recombinant protein subunits AhpC and/or Hcp1 plus capsular polysaccharide conjugated to CRM197 or the live attenuated vaccine strain B. pseudomallei 668 ΔilvI) and co-trimoxazole regimens can result in near uniform protection in a mouse model of melioidosis due to apparent synergy associated with distinct medical countermeasures. Our results demonstrated significant improvement when examining several suboptimal antibiotic regimens (e.g., 7-day antibiotic course started early after infection or 21-day antibiotic course with delayed initiation). Importantly, this combinatorial strategy worked similarly when either protein subunit or live attenuated vaccines were evaluated. Layered and integrated medical countermeasures will provide novel treatment options for melioidosis as well as diseases caused by other pathogens that are refractory to individual strategies, particularly in the case of engineered, emerging, or re-emerging bacterial biothreat agents.
Collapse
Affiliation(s)
- Christopher P. Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Jennifer L. Shoe
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Nathaniel O. Rill
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Melissa Hunter
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Jennifer L. Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Yuli Talyansky
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Lindsey K. Schmidt
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
| | - Caitlyn E. Orne
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
| | - David P. Fetterer
- Biostatistics Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Sergei S. Biryukov
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Mary N. Burtnick
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Paul J. Brett
- Department of Microbiology and Immunology, University of Nevada, Reno School of Medicine, Reno, NV, United States
- Department of Microbiology and Immunology, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - David DeShazer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| | - Christopher K. Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Frederick, MD, United States
| |
Collapse
|
4
|
Amemiya K, Dankmeyer JL, Bernhards RC, Fetterer DP, Waag DM, Worsham PL, DeShazer D. Activation of Toll-Like Receptors by Live Gram-Negative Bacterial Pathogens Reveals Mitigation of TLR4 Responses and Activation of TLR5 by Flagella. Front Cell Infect Microbiol 2021; 11:745325. [PMID: 34888257 PMCID: PMC8650638 DOI: 10.3389/fcimb.2021.745325] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2021] [Accepted: 10/18/2021] [Indexed: 12/27/2022] Open
Abstract
Successful bacterial pathogens have evolved to avoid activating an innate immune system in the host that responds to the pathogen through distinct Toll-like receptors (TLRs). The general class of biochemical components that activate TLRs has been studied extensively, but less is known about how TLRs interact with the class of compounds that are still associated with the live pathogen. Accordingly, we examined the activation of surface assembled TLR 2, 4, and 5 with live Tier 1 Gram-negative pathogens that included Yersinia pestis (plague), Burkholderia mallei (glanders), Burkholderia pseudomallei (melioidosis), and Francisella tularensis (tularemia). We found that Y. pestis CO92 grown at 28°C activated TLR2 and TLR4, but at 37°C the pathogen activated primarily TLR2. Although B. mallei and B. pseudomallei are genetically related, the former microorganism activated predominately TLR4, while the latter activated predominately TLR2. The capsule of wild-type B. pseudomallei 1026b was found to mitigate the activation of TLR2 and TLR4 when compared to a capsule mutant. Live F. tularensis (Ft) Schu S4 did not activate TLR2 or 4, although the less virulent Ft LVS and F. novicida activated only TLR2. B. pseudomallei purified flagellin or flagella attached to the microorganism activated TLR5. Activation of TLR5 was abolished by an antibody to TLR5, or a mutation of fliC, or elimination of the pathogen by filtration. In conclusion, we have uncovered new properties of the Gram-negative pathogens, and their interaction with TLRs of the host. Further studies are needed to include other microorganism to extend our observations with their interaction with TLRs, and to the possibility of leading to new efforts in therapeutics against these pathogens.
Collapse
Affiliation(s)
- Kei Amemiya
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Jennifer L Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Robert C Bernhards
- Edgewood Chemical Biological Centre, Aberdeen Proving Ground, Edgewood, MD, United States
| | - David P Fetterer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - David M Waag
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - Patricia L Worsham
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| | - David DeShazer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, United States
| |
Collapse
|
5
|
Trevino SR, Dankmeyer JL, Fetterer DP, Klimko CP, Raymond JLW, Moreau AM, Soffler C, Waag DM, Worsham PL, Amemiya K, Ruiz SI, Cote CK, Krakauer T. Comparative virulence of three different strains of Burkholderia pseudomallei in an aerosol non-human primate model. PLoS Negl Trop Dis 2021; 15:e0009125. [PMID: 33571211 PMCID: PMC7904162 DOI: 10.1371/journal.pntd.0009125] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 02/24/2021] [Accepted: 01/11/2021] [Indexed: 01/19/2023] Open
Abstract
Melioidosis, caused by the Gram-negative bacterium Burkholderia pseudomallei, is a major cause of sepsis and mortality in endemic regions of Southeast Asia and Northern Australia. B. pseudomallei is a potential bioterrorism agent due to its high infectivity, especially via inhalation, and its inherent resistance to antimicrobials. There is currently no vaccine for melioidosis and antibiotic treatment can fail due to innate drug resistance, delayed diagnosis and treatment, or insufficient duration of treatment. A well-characterized animal model that mimics human melioidosis is needed for the development of new medical countermeasures. This study first characterized the disease progression of melioidosis in the African green monkey (AGM) and rhesus macaque (RM) for non-human primate model down-selection. All AGMs developed acute lethal disease similar to that described in human acute infection following exposure to aerosolized B. pseudomallei strain HBPUB10134a. Only 20% of RMs succumbed to acute disease. Disease progression, immune response and pathology of two other strains of B. pseudomallei, K96243 and MSHR5855, were also compared using AGMs. These three B. pseudomallei strains represent a highly virulent strain from Thailand (HBPUB101034a), a highly virulent strains from Australia (MSHR5855), and a commonly used laboratory strains originating from Thailand (K96243). Animals were observed for clinical signs of infection and blood samples were analyzed for cytokine responses, blood chemistry and leukocyte changes in order to characterize bacterial infection. AGMs experienced fever after exposure to aerosolized B. pseudomallei at the onset of acute disease. Inflammation, abscesses and/or pyogranulomas were observed in lung with all three strains of B. pseudomallei. Inflammation, abscesses and/or pyogranulomas were observed in lymph nodes, spleen, liver and/or kidney with B. pseudomallei, HBPUB10134a and K96243. Additionally, the Australian strain MSHR5855 induced brain lesions in one AGM similar to clinical cases of melioidosis seen in Australia. Elevated serum levels of IL-1β, IL-1 receptor antagonist, IL-6, MCP-1, G-CSF, HGF, IFNγ, MIG, I-TAC, and MIP-1β at terminal end points can be significantly correlated with non-survivors with B. pseudomallei infection in AGM. The AGM model represents an acute model of B. pseudomallei infection for all three strains from two geographical locations and will be useful for efficacy testing of vaccines and therapeutics against melioidosis. In summary, a dysregulated immune response leading to excessive persistent inflammation and inflammatory cell death is the key driver of acute melioidosis. Early intervention in these pathways will be necessary to counter B. pseudomallei and mitigate the pathological consequences of melioidosis. Melioidosis, caused by the Gram-negative bacterium Burkholderia pseudomallei, is endemic in tropical regions globally and is an emerging threat in non-tropical areas worldwide. Its mortality rate is high in endemic areas due to its high infectivity, antimicrobial resistance, lack of available vaccines and limited treatment options. Animal model development and pathogenicity studies of various isolates are critical for the development of countermeasures against this pathogen. In this study, we compared the virulence of three different isolates of B. pseudomallei from two geographical locations in an aerosol non-human primate model. We found that early elevations of both pro-inflammatory and anti-inflammatory mediators, as well as the persistence of these mediators in the terminal phase of bacterial infection correlate with mortality. Histopathological analysis showed that the severity of lesions in various organs also correlates with the virulence of the B. pseudomallei strains, HBPUB10134a, MSHR5855 and K96243. Thus, a dysregulated immune response leading to excessive IL-1β and IL-6 at terminal end points and necrosis are key drivers of acute melioidosis. Development of drugs targeting these host response processes will be necessary to counter B. pseudomallei and mitigate the pathological consequences of melioidosis. This non-human primate model will facilitate the screening of vaccines and novel therapeutics.
Collapse
Affiliation(s)
- Sylvia R. Trevino
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Jennifer L. Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - David P. Fetterer
- Biostatistics Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Christopher P. Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Jo Lynne W. Raymond
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Alicia M. Moreau
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Carl Soffler
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - David M. Waag
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Patricia L. Worsham
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Kei Amemiya
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Sara I. Ruiz
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
| | - Christopher K. Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
- * E-mail: (CKC); (TK)
| | - Teresa Krakauer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, Maryland, United States of America
- * E-mail: (CKC); (TK)
| |
Collapse
|
6
|
The Impact of Age and Sex on Mouse Models of Melioidosis. Pathogens 2020; 9:pathogens9020113. [PMID: 32054106 PMCID: PMC7168040 DOI: 10.3390/pathogens9020113] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2020] [Revised: 01/29/2020] [Accepted: 02/04/2020] [Indexed: 12/15/2022] Open
Abstract
Mouse models have been used to generate critical data for many infectious diseases. In the case of Burkholderia pseudomallei, mouse models have been invaluable for bacterial pathogenesis studies as well as for testing novel medical countermeasures including both vaccines and therapeutics. Mouse models of melioidosis have also provided a possible way forward to better understand the chronicity associated with this infection, as it appears that BALB/c mice develop an acute infection with B. pseudomallei, whereas the C57BL/6 model is potentially more suggestive of a chronic infection. Several unanswered questions, however, persist around this model. In particular, little attention has been paid to the effect of age or sex on the disease outcome in these animal models. In this report, we determined the LD50 of the B. pseudomallei K96243 strain in both female and male BALB/c and C57BL/6 mice in three distinct age groups. Our data demonstrated a modest increase in susceptibility associated with sex in this model, and we documented important histopathological differences associated with the reproductive systems of each sex. There was a statistically significant inverse correlation between age and susceptibility. The older mice, in most cases, were more susceptible to the infection. Additionally, our retrospective analyses suggested that the impact of animal supplier on disease outcome in mice may be minimal. These observations were consistent regardless of whether the mice were injected with bacteria intraperitoneally or if they were exposed to aerosolized bacteria. All of these factors should be considered when designing experiments using mouse models of melioidosis.
Collapse
|
7
|
Amemiya K, Dankmeyer JL, Bearss JJ, Zeng X, Stonier SW, Soffler C, Cote CK, Welkos SL, Fetterer DP, Chance TB, Trevino SR, Worsham PL, Waag DM. Dysregulation of TNF-α and IFN-γ expression is a common host immune response in a chronically infected mouse model of melioidosis when comparing multiple human strains of Burkholderia pseudomallei. BMC Immunol 2020; 21:5. [PMID: 32013893 PMCID: PMC6998218 DOI: 10.1186/s12865-020-0333-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Melioidosis is endemic in Southeast Asia and Northern Australia and is caused by the Gram-negative, facultative intracellular pathogen Burkholderia pseudomallei. Diagnosis of melioidosis is often difficult because of the protean clinical presentation of the disease, and it may mimic other diseases, such as tuberculosis. There are many different strains of B. pseudomallei that have been isolated from patients with melioidosis, but it was not clear if they could cause a similar disease in a chronic BALB/c murine model of melioidosis. Hence, we wanted to examine chronically infected mice exposed to different strains of B. pseudomallei to determine if there were differences in the host immune response to the pathogen. RESULTS We identified common host immune responses exhibited in chronically infected BALB/c mice, although there was some heterogeneity in the host response in chronically infected mice after exposure to different strains of B. pseudomallei. They all displayed pyogranulomatous lesions in their spleens with a large influx of monocytes/macrophages, NK cells, and neutrophils identified by flow cytometry. Sera from chronically infected mice by ELISA exhibited elevated IgG titers to the pathogen, and we detected by Luminex micro-bead array technology a significant increase in the expression of inflammatory cytokines/chemokines, such as IFN-γ, IL-1α, IL-1β, KC, and MIG. By immunohistochemical and in situ RNA hybridization analysis we found that the increased expression of proinflammatory cytokines (IL-1α, IL-1β, TNF-α, IFN-γ) was confined primarily to the area with the pathogen within pyogranulomatous lesions. We also found that cultured splenocytes from chronically infected mice could express IFN-γ, TNF-α, and MIP-1α ex vivo without the need for additional exogenous stimulation. In addition by flow cytometry, we detected significant amounts of intracellular expression of TNF-α and IFN-γ without a protein transport blocker in monocytes/macrophages, NK cells, and neutrophils but not in CD4+ or CD8+ T cells in splenocytes from chronically infected mice. CONCLUSION Taken together the common features we have identified in chronically infected mice when 10 different human clinical strains of B. pseudomallei were examined could serve as biomarkers when evaluating potential therapeutic agents in mice for the treatment of chronic melioidosis in humans.
Collapse
Affiliation(s)
- Kei Amemiya
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA.
| | - Jennifer L Dankmeyer
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Jeremy J Bearss
- Pathology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Xiankun Zeng
- Pathology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Spencer W Stonier
- Virology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Carl Soffler
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Christopher K Cote
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Susan L Welkos
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - David P Fetterer
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Taylor B Chance
- Pathology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Sylvia R Trevino
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - Patricia L Worsham
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| | - David M Waag
- Bacteriology Division, US Army Medical Research Institute of Infectious Diseases, Fort Detrick, Frederick, MD, USA
| |
Collapse
|
8
|
An in situ high-throughput screen identifies inhibitors of intracellular Burkholderia pseudomallei with therapeutic efficacy. Proc Natl Acad Sci U S A 2019; 116:18597-18606. [PMID: 31439817 PMCID: PMC6744847 DOI: 10.1073/pnas.1906388116] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Burkholderia pseudomallei, the etiologic agent of melioidosis, is an environmental organism that inhabits tropical soils and kills an estimated 90,000 people each year. Caused by an intracellular and often drug-resistant pathogen, melioidosis is notoriously difficult to treat, with mortality rates approaching 50% in some settings despite appropriate diagnosis and clinical management. Using a high-throughput, cell-based phenotypic screen we have discovered 2 antibiotic candidates with improved in vivo efficacy compared to the current standard of care: a fluoroquinolone analog, burkfloxacin, and an FDA-approved antifungal drug, flucytosine. As a widely used antifungal with a well-known safety profile, the potential to repurpose flucytosine for treating melioidosis may represent a rapid route to clinical translation. Burkholderia pseudomallei (Bp) and Burkholderia mallei (Bm) are Tier-1 Select Agents that cause melioidosis and glanders, respectively. These are highly lethal human infections with limited therapeutic options. Intercellular spread is a hallmark of Burkholderia pathogenesis, and its prominent ties to virulence make it an attractive therapeutic target. We developed a high-throughput cell-based phenotypic assay and screened ∼220,000 small molecules for their ability to disrupt intercellular spread by Burkholderia thailandensis, a closely related BSL-2 surrogate. We identified 268 hits, and cross-species validation found 32 hits that also disrupt intercellular spread by Bp and/or Bm. Among these were a fluoroquinolone analog, which we named burkfloxacin (BFX), which potently inhibits growth of intracellular Burkholderia, and flucytosine (5-FC), an FDA-approved antifungal drug. We found that 5-FC blocks the intracellular life cycle at the point of type VI secretion system 5 (T6SS-5)-mediated cell–cell spread. Bacterial conversion of 5-FC to 5-fluorouracil and subsequently to fluorouridine monophosphate is required for potent and selective activity against intracellular Burkholderia. In a murine model of fulminant respiratory melioidosis, treatment with BFX or 5-FC was significantly more effective than ceftazidime, the current antibiotic of choice, for improving survival and decreasing bacterial counts in major organs. Our results demonstrate the utility of cell-based phenotypic screening for Select Agent drug discovery and warrant the advancement of BFX and 5-FC as candidate therapeutics for melioidosis in humans.
Collapse
|
9
|
Funnell SGP, Tree JA, Hatch GJ, Bate SR, Hall G, Pearson G, Rayner EL, Roberts ADG, Vipond J. Dose-dependant acute or subacute disease caused by Burkholderia pseudomallei strain NCTC 13392 in a BALB/c aerosol model of infection. J Appl Microbiol 2019; 127:1224-1235. [PMID: 31330088 PMCID: PMC6747009 DOI: 10.1111/jam.14396] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/21/2019] [Accepted: 06/25/2019] [Indexed: 01/26/2023]
Abstract
AIMS The goal of this study was to examine, for the first time, the virulence and pathogenicity of aerosolized Burkholderia pseudomallei, strain NCTC 13392, in BALB/c mice in order to develop an animal model for testing novel medical countermeasures (MCMs) for the treatment of human acute and subacute (a disease state between acute and chronic) melioidosis. METHODS AND RESULTS BALB/c mice were exposed to varying doses of aerosolized bacteria. Acute disease was seen in animals exposed to a very-high dose (≥103 CFU per animal) and death occurred 3-4 days postchallenge (pc). Bacteria were detected in the lungs, liver, kidney and spleen. In contrast, animals exposed to a low dose (<10 CFU per animal) survived to the end of the study (day 30 pc) but developed weight loss, a bacterial tissue burden and increasing clinical signs of infection from day 20 pc onwards, mimicking a subacute form of the disease. Pathological changes in the tissues mirrored these findings. CONCLUSIONS This proof of concept study has shown that B. pseudomallei strain NCTC 13392 is virulent and pathogenic in BALB/c mice, when delivered by aerosol. By varying the doses of aerosolized bacteria it was possible to mimic characteristics of both human acute and subacute melioidosis, at the same time, within the same study. SIGNIFICANCE AND IMPACT OF THE STUDY Burkholderia pseudomallei, the aetiological agent of melioidosis, causes a serious and often fatal disease in humans and animals. Novel MCMs are urgently needed for both public health and biodefense purposes. The present model provides a useful tool for the assessment and evaluation of new MCMs (e.g. therapeutics and vaccines) and offers the potential for testing new treatments for both subacute to chronic and acute melioidosis prior to human clinical trials.
Collapse
Affiliation(s)
- S G P Funnell
- National Infection Service, Public Health England (PHE), Salisbury, Wiltshire, UK
| | - J A Tree
- National Infection Service, Public Health England (PHE), Salisbury, Wiltshire, UK
| | - G J Hatch
- National Infection Service, Public Health England (PHE), Salisbury, Wiltshire, UK
| | - S R Bate
- National Infection Service, Public Health England (PHE), Salisbury, Wiltshire, UK
| | - G Hall
- National Infection Service, Public Health England (PHE), Salisbury, Wiltshire, UK
| | - G Pearson
- National Infection Service, Public Health England (PHE), Salisbury, Wiltshire, UK
| | - E L Rayner
- National Infection Service, Public Health England (PHE), Salisbury, Wiltshire, UK
| | - A D G Roberts
- National Infection Service, Public Health England (PHE), Salisbury, Wiltshire, UK
| | - J Vipond
- National Infection Service, Public Health England (PHE), Salisbury, Wiltshire, UK
| |
Collapse
|
10
|
DeShazer D, Lovett S, Richardson J, Koroleva G, Kuehl K, Amemiya K, Sun M, Worsham P, Welkos S. Bacteriophage-associated genes responsible for the widely divergent phenotypes of variants of Burkholderia pseudomallei strain MSHR5848. J Med Microbiol 2019; 68:263-278. [PMID: 30628877 DOI: 10.1099/jmm.0.000908] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Burkholderia pseudomallei, the tier 1 agent of melioidosis, is a saprophytic microbe that causes endemic infections in tropical regions such as South-East Asia and Northern Australia. It is globally distributed, challenging to diagnose and treat, infectious by several routes including inhalation, and has potential for adversarial use. B. pseudomallei strain MSHR5848 produces two colony variants, smooth (S) and rough (R), which exhibit a divergent range of morphological, biochemical and metabolic phenotypes, and differ in macrophage and animal infectivity. We aimed to characterize two major phenotypic differences, analyse gene expression and study the regulatory basis of the variation. METHODOLOGY Phenotypic expression was characterized by DNA and RNA sequencing, microscopy, and differential bacteriology. Regulatory genes were identified by cloning and bioinformatics.Results/Key findings. Whereas S produced larger quantities of extracellular DNA, R was upregulated in the production of a unique chromosome 1-encoded Siphoviridae-like bacteriophage, φMSHR5848. Exploratory transcriptional analyses revealed significant differences in variant expression of genes encoding siderophores, pili assembly, type VI secretion system cluster 4 (T6SS-4) proteins, several exopolysaccharides and secondary metabolites. A single 3 base duplication in S was the only difference that separated the variants genetically. It occurred upstream of a cluster of bacteriophage-associated genes on chromosome 2 that were upregulated in S. The first two genes were involved in regulating expression of the multiple phenotypes distinguishing S and R. CONCLUSION Bacteriophage-associated proteins have a major role in the phenotypic expression of MSHR5848. The goals are to determine the regulatory basis of this phenotypic variation and its role in pathogenesis and environmental persistence of B. pseudomallei.
Collapse
Affiliation(s)
- David DeShazer
- 1Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Sean Lovett
- 2Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Joshua Richardson
- 2Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Galina Koroleva
- 2Center for Genome Sciences, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA.,†Present address: Room 7N109, Center for Human Immunology, Autoimmunity and Inflammation, National Institute of Allergy and Infectious Diseases, 10 Center Drive, Bethesda, MD 20814, USA
| | - Kathleen Kuehl
- 3Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Kei Amemiya
- 1Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Mei Sun
- 4United States Army Medical Research and Materiel Command (USAMRMC), Frederick, MD, USA
| | - Patricia Worsham
- 1Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| | - Susan Welkos
- 1Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Frederick, MD, USA
| |
Collapse
|
11
|
Saikh KU, Dankmeyer JL, Zeng X, Ulrich RG, Amemiya K. An increase in intracellular p62/NBR1 and persistence of Burkholderia mallei and B. pseudomallei in infected mice linked to autophagy deficiency. IMMUNITY INFLAMMATION AND DISEASE 2018; 7:7-21. [PMID: 30569531 PMCID: PMC6416765 DOI: 10.1002/iid3.239] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 10/22/2018] [Accepted: 10/26/2018] [Indexed: 12/30/2022]
Abstract
Introduction Burkholderia mallei (B. mallei) and Burkholderia pseudomallei (B. pseudomallei), causative agents of glanders and melioidosis, respectively, are invasive intracellular pathogens that actively multiply in phagocytic and non‐phagocytic cells. Activation of cell‐autonomous autophagy mechanism eliminate intracellular pathogens in which p62 a cytosolic cargo protein is selectively degraded, and an accumulation of this marker occurs if autophagy is deficient. Recurrent, relapsed and reinfection of B. pseudomallei in melioidosis patients in endemic area indicative of lack of complete of clearance and persistence of the pathogen. Reasoning that abundance in the levels of p62 may provide an indication of the intracellular infection, we sought to examine whether increase in intracellular p62 and bacterial burden with Burkholderia infection are linked to autophagy deficiency. Methods In this study, we investigated cell culture and mouse models of disease to identify an association between autophagy biomarkers (p62/NBR1) accumulation and intracellular persistence of B. mallei and B. pseudomallei. Results We demonstrate, that elevated levels of intracellular p62/NBR1 correlated with bacterial persistence, while pre‐treatment with a pharmacological inducer of autophagy, rapamycin, reduced both intracellular p62, and bacterial survival. Our results showed an elevated p62 levels (2‐5 fold) in spleen and liver cells of Burkholderia‐infected BALB/c mice, as well as in spleen cells of Burkholderia‐infected C57BL/6 mice, suggesting that an increase in p62/NBR1 was due to an autophagy deficiency. Similar to p62, cytosolic LC3‐I levels were also elevated, while the characteristic conversion to the autophagosome‐associated membrane bound form LC3‐II was low in spleens of the infected mice further supporting the conclusion that autophagy was deficient. Conclusion Taken together, our results suggest that an increase in intracellular p62/NBR1 may be a potential host cell biomarker of B. mallei or B. pseudomallei infections, and identifying autophagy manipulation may potentially aid to therapeutic approach for complete clearance of the pathogen.
Collapse
Affiliation(s)
- Kamal U Saikh
- Department of Immunology, Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Jennifer L Dankmeyer
- Department of Bacteriology, Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Xiankun Zeng
- Department of Pathology, Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Robert G Ulrich
- Department of Immunology, Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| | - Kei Amemiya
- Department of Bacteriology, Army Medical Research Institute of Infectious Diseases, Frederick, Maryland, USA
| |
Collapse
|
12
|
Trevino SR, Klimko CP, Reed MC, Aponte-Cuadrado MJ, Hunter M, Shoe JL, Meyer JR, Dankmeyer JL, Biryukov SS, Quirk AV, Fritts KA, Kern SJ, Fetterer DP, Kohler LJ, Toothman RG, Bozue JA, Schellhase CW, Kreiselmeier N, Daye SP, Welkos SL, Soffler C, Worsham PL, Waag DM, Amemiya K, Cote CK. Disease progression in mice exposed to low-doses of aerosolized clinical isolates of Burkholderia pseudomallei. PLoS One 2018; 13:e0208277. [PMID: 30500862 PMCID: PMC6267979 DOI: 10.1371/journal.pone.0208277] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 11/14/2018] [Indexed: 01/02/2023] Open
Abstract
Mouse models have been essential to generate supporting data for the research of infectious diseases. Burkholderia pseudomallei, the etiological agent of melioidosis, has been studied using mouse models to investigate pathogenesis and efficacy of novel medical countermeasures to include both vaccines and therapeutics. Previous characterization of mouse models of melioidosis have demonstrated that BALB/c mice present with an acute infection, whereas C57BL/6 mice have shown a tendency to be more resistant to infection and may model chronic disease. In this study, either BALB/c or C57BL/6 mice were exposed to aerosolized human clinical isolates of B. pseudomallei. The bacterial strains included HBPUB10134a (virulent isolate from Thailand), MSHR5855 (virulent isolate from Australia), and 1106a (relatively attenuated isolate from Thailand). The LD50 values were calculated and serial sample collections were performed in order to examine the bacterial burdens in tissues, histopathological features of disease, and the immune response mounted by the mice after exposure to aerosolized B. pseudomallei. These data will be important when utilizing these models for testing novel medical countermeasures. Additionally, by comparing highly virulent strains with attenuated isolates, we hope to better understand the complex disease pathogenesis associated with this bacterium.
Collapse
Affiliation(s)
- Sylvia R. Trevino
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States of America
| | - Christopher P. Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States of America
| | - Matthew C. Reed
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States of America
| | - Michael J. Aponte-Cuadrado
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States of America
| | - Melissa Hunter
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States of America
| | - Jennifer L. Shoe
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States of America
| | - Joshua R. Meyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States of America
| | - Jennifer L. Dankmeyer
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States of America
| | - Sergei S. Biryukov
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States of America
| | - Avery V. Quirk
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States of America
| | - Kristen A. Fritts
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States of America
| | - Steven J. Kern
- BioStatisitics Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States of America
| | - David P. Fetterer
- BioStatisitics Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States of America
| | - Lara J. Kohler
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States of America
| | - Ronald G. Toothman
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States of America
| | - Joel A. Bozue
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States of America
| | - Christopher W. Schellhase
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States of America
| | - Norman Kreiselmeier
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States of America
| | - Sharon P. Daye
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States of America
| | - Susan L. Welkos
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States of America
| | - Carl Soffler
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States of America
| | - Patricia L. Worsham
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States of America
| | - David M. Waag
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States of America
| | - Kei Amemiya
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States of America
| | - Christopher K. Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States of America
- * E-mail:
| |
Collapse
|
13
|
|
14
|
Hsueh PT, Liu CL, Wang HH, Ni WF, Chen YL, Liu JK. A comparison of the immunological potency of Burkholderia lipopolysaccharides in endotoxemic BALB/c mice. Microbiol Immunol 2017; 60:725-739. [PMID: 27862204 DOI: 10.1111/1348-0421.12450] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 10/25/2016] [Accepted: 11/04/2016] [Indexed: 11/29/2022]
Abstract
Lipopolysaccharide is one of the virulence factors of the soil-borne pathogens Burkholderia pseudomallei, B. thailandensis, B. cenocepacia and B. multivorans, which cause septic melioidosis (often in B. pseudomallei infections but rarely in B. thailandensis infections) or cepacia syndromes (commonly in B. cenocepacia infections but rarely in B. multivorans infections). The inflammatory responses in Burkholderia LPS-induced endotoxemia were evaluated in this study. Prior to induction, the conserved structures and functions of each purified LPS were determined using electrophoretic phenotypes, the ratios of 3-hydroxytetradecanoic to 3-hydroxyhexadecanoic acid and endotoxin units. In an in vitro assay, cytokine expression of myeloid differentiation primary response gene 88 and Toll/IL-1 receptor domain containing adapter-inducing INF-β-dependent signaling-dependent signaling differed when stimulated by different LPS. Endotoxemia was induced in mice by s.c. injection as evidenced by increasing serum concentrations of 3-hydroxytetradecanoic acid and the septic prognostic markers CD62E and ICAM-1. During endotoxemia, splenic CD11b+ I-A+ , CD11b+ CD80+ , CD11b+ CD86+ and CD11b+ CD11c+ subpopulations increased. After induction with B. pseudomallei LPS, there were significant increases in splenic CD49b NK cells and CD14 macrophages. The inflamed CD11b+ CCR2+ , CD11b+ CD31+ , CD11b+ CD14+ , resident CD11b+ CX3 CR1+ and progenitor CD11b+ CD34+ cells showed delayed increases in bone marrow. B. multivorans LPS was the most potent inducer of serum cytokines and chemokines, whereas B. cenocepacia LPS induced relatively low concentrations of the chemokines MIP-1α and MIP-1β. Endotoxin activities did not correlate with the virulence of Burkholderia strains. Thus factors other than LPS and/or other mechanisms of low activity LPS must mediate the pathogenicity of highly virulent Burkholderia strains.
Collapse
Affiliation(s)
- Pei-Tan Hsueh
- Department of Biological Sciences, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung 80424, Taiwan
| | - Chiu-Lin Liu
- Department of Biotechnology, National Kaohsiung Normal University, 60 Shenjhong Rd., 82446, Kaohsiung, Taiwan
| | - Hsuan-Han Wang
- Department of Biotechnology, National Kaohsiung Normal University, 60 Shenjhong Rd., 82446, Kaohsiung, Taiwan
| | - Wei-Fen Ni
- Department of Biotechnology, National Kaohsiung Normal University, 60 Shenjhong Rd., 82446, Kaohsiung, Taiwan
| | - Ya-Lei Chen
- Department of Biotechnology, National Kaohsiung Normal University, 60 Shenjhong Rd., 82446, Kaohsiung, Taiwan
| | - Jong-Kang Liu
- Department of Biological Sciences, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung 80424, Taiwan
| |
Collapse
|
15
|
Bearss JJ, Hunter M, Dankmeyer JL, Fritts KA, Klimko CP, Weaver CH, Shoe JL, Quirk AV, Toothman RG, Webster WM, Fetterer DP, Bozue JA, Worsham PL, Welkos SL, Amemiya K, Cote CK. Characterization of pathogenesis of and immune response to Burkholderia pseudomallei K96243 using both inhalational and intraperitoneal infection models in BALB/c and C57BL/6 mice. PLoS One 2017; 12:e0172627. [PMID: 28235018 PMCID: PMC5325312 DOI: 10.1371/journal.pone.0172627] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 02/07/2017] [Indexed: 01/02/2023] Open
Abstract
Burkholderia pseudomallei, the etiologic agent of melioidosis, is a Gram negative bacterium designated as a Tier 1 threat. This bacterium is known to be endemic in Southeast Asia and Northern Australia and can infect humans and animals by several routes. Inhalational melioidosis has been associated with monsoonal rains in endemic areas and is also a significant concern in the biodefense community. There are currently no effective vaccines for B. pseudomallei and antibiotic treatment can be hampered by non-specific symptomology and also the high rate of naturally occurring antibiotic resistant strains. Well-characterized animal models will be essential when selecting novel medical countermeasures for evaluation prior to human clinical trials. Here, we further characterize differences between the responses of BALB/c and C57BL/6 mice when challenged with low doses of a low-passage and well-defined stock of B. pseudomallei K96243 via either intraperitoneal or aerosol routes of exposure. Before challenge, mice were implanted with a transponder to collect body temperature readings, and daily body weights were also recorded. Mice were euthanized on select days for pathological analyses and determination of the bacterial burden in selected tissues (blood, lungs, liver, and spleen). Additionally, spleen homogenate and sera samples were analyzed to better characterize the host immune response after infection with aerosolized bacteria. These clinical, pathological, and immunological data highlighted and confirmed important similarities and differences between these murine models and exposure routes.
Collapse
Affiliation(s)
- Jeremy J. Bearss
- Pathology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), Fort Detrick, Frederick, MD, United States of America
| | - Melissa Hunter
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Jennifer L. Dankmeyer
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Kristen A. Fritts
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Christopher P. Klimko
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Chris H. Weaver
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Jennifer L. Shoe
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Avery V. Quirk
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Ronald G. Toothman
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Wendy M. Webster
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - David P. Fetterer
- BioStatisitics Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Joel A. Bozue
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Patricia L. Worsham
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Susan L. Welkos
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Kei Amemiya
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| | - Christopher K. Cote
- Bacteriology Division, USAMRIID, Fort Detrick, Frederick, MD, United States of America
| |
Collapse
|
16
|
Calprotectin as a Biomarker for Melioidosis Disease Progression and Management. J Clin Microbiol 2017; 55:1205-1210. [PMID: 28179407 DOI: 10.1128/jcm.02284-16] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2016] [Accepted: 02/01/2017] [Indexed: 01/03/2023] Open
Abstract
Melioidosis is a neglected tropical disease that is caused by the bacterium Burkholderia pseudomallei and is underreported in many countries where the disease is endemic. A long and costly administration of antibiotics is needed to clear infections, and there is an unmet need for biomarkers to guide antibiotic treatment and increase the number of patients that complete therapy. We identified calprotectin as a lead biomarker of B. pseudomallei infections and examined correlations between this serum protein and the antibiotic treatment outcomes of patients with melioidosis. Serum levels of calprotectin and C-reactive protein were significantly higher in patients with melioidosis and nonmelioidosis sepsis than in healthy controls. Median calprotectin levels were higher in patients with melioidosis than in those with nonmelioidosis sepsis, whereas C-reactive protein levels were similar in both groups. Notably, intensive intravenous antibiotic treatment of patients with melioidosis resulted in lower levels of calprotectin and C-reactive protein (P < 0.0001), coinciding with recovery. The median percent reduction of calprotectin and C-reactive protein was 71% for both biomarkers after antibacterial therapy. In contrast, we found no significant differences in calreticulin levels between the two melioidosis treatment phases. Thus, reductions in serum calprotectin levels were linked to therapeutic responses to antibiotics. Our results suggest that calprotectin may be a sensitive indicator of melioidosis disease activity and illustrate the potential utility of this biomarker in guiding the duration of antibiotic therapy.
Collapse
|
17
|
Bernhards RC, Cote CK, Amemiya K, Waag DM, Klimko CP, Worsham PL, Welkos SL. Characterization of in vitro phenotypes of Burkholderia pseudomallei and Burkholderia mallei strains potentially associated with persistent infection in mice. Arch Microbiol 2016; 199:277-301. [PMID: 27738703 PMCID: PMC5306356 DOI: 10.1007/s00203-016-1303-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2016] [Revised: 09/18/2016] [Accepted: 09/29/2016] [Indexed: 12/29/2022]
Abstract
Burkholderia pseudomallei (Bp) and Burkholderia mallei (Bm), the agents of melioidosis and glanders, respectively, are Tier 1 biothreats. They infect humans and animals, causing disease ranging from acute and fatal to protracted and chronic. Chronic infections are especially challenging to treat, and the identification of in vitro phenotypic markers which signal progression from acute to persistent infection would be extremely valuable. First, a phenotyping strategy was developed employing colony morphotyping, chemical sensitivity testing, macrophage infection, and lipopolysaccharide fingerprint analyses to distinguish Burkholderia strains. Then mouse spleen isolates collected 3–180 days after infection were characterized phenotypically. Isolates from long-term infections often exhibited increased colony morphology differences and altered patterns of antimicrobial sensitivity and macrophage infection. Some of the Bp and Bm persistent infection isolates clearly displayed enhanced virulence in mice. Future studies will evaluate the potential role and significance of these phenotypic markers in signaling the establishment of a chronic infection.
Collapse
Affiliation(s)
- R C Bernhards
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
- Present Address: Edgewood Chemical Biological Centre, Aberdeen Proving Ground, Edgewood, MD, 21010-5424, USA
| | - C K Cote
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - K Amemiya
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - D M Waag
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - C P Klimko
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - P L Worsham
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA
| | - S L Welkos
- Bacteriology Division, United States Army Medical Research Institute of Infectious Diseases (USAMRIID), 1425 Porter Street, Fort Detrick, Frederick, MD, 21702-5011, USA.
| |
Collapse
|
18
|
Lewis ERG, Torres AG. The art of persistence-the secrets to Burkholderia chronic infections. Pathog Dis 2016; 74:ftw070. [PMID: 27440810 DOI: 10.1093/femspd/ftw070] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2016] [Indexed: 12/11/2022] Open
Abstract
The Gram-negative proteobacteria genus Burkholderia encompasses multiple bacterial species that are pathogenic to humans and other vertebrates. Two pathogenic species of interest within this genus are Burkholderia pseudomallei (Bpm) and the B. cepacia complex (Bcc); the former is the causative agent of melioidosis in humans and other mammals, and the latter is associated with pneumonia in immunocompromised patients. One understudied and shared characteristic of these two pathogenic groups is their ability to persist and establish chronic infection within the host. In this review, we will explore the depth of knowledge about chronic infections caused by persistent Bpm and Bcc. We examine the host risk factors and immune responses associated with more severe chronic infections. We also discuss host adaptation and phenotypes associated with persistent Burkholderia species. Lastly, we survey how other intracellular bacteria associated with chronic infections are combatted and explore possible future applications to target Burkholderia Our goal is to highlight understudied areas that should be addressed for a more thorough understanding of chronic Burkholderia infections and how to combat them.
Collapse
Affiliation(s)
- Eric R G Lewis
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA
| | - Alfredo G Torres
- Department of Microbiology and Immunology, University of Texas Medical Branch, Galveston, TX 77555-1070, USA Department of Pathology, Sealy Center for Vaccine Development, University of Texas Medical Branch, Galveston, TX 7555-1070, USA
| |
Collapse
|