1
|
Prapasawat W, Rawangkan A, Suwancharoen C, Yosboonruang A, Kiddee A, Laenoi W, Wiriyasirivaj S, Suthienkul O, Siriphap A. Occurrence and characterization of Salmonella isolates from commercial eggs in Phayao Province, Thailand. Vet World 2025; 18:705-714. [PMID: 40342750 PMCID: PMC12056898 DOI: 10.14202/vetworld.2025.705-714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Accepted: 02/25/2025] [Indexed: 05/11/2025] Open
Abstract
Background and Aim Salmonella contamination in eggs poses a significant public health risk, particularly in alternative egg production systems where contamination and antimicrobial resistance remain underexplored. This study aimed to determine the occurrence of Salmonella contamination in three different egg production systems in Phayao, Thailand, and analyze serovar diversity, antimicrobial resistance, virulence genes, and genetic profiles. Materials and Methods A total of 750 eggs were sampled from cage, free-range, and organic egg production systems, purchased from supermarkets in Phayao Province. Eggshells and contents were separately analyzed using conventional microbiological methods to isolate Salmonella. Phenotypic identification, serotyping, and antimicrobial susceptibility testing were performed. Genotypic characterization, including virulence and antimicrobial resistance gene detection, was conducted using polymerase chain reaction. Multilocus sequence typing (MLST) was employed to determine genetic diversity. Results Salmonella contamination was detected in three eggshell samples (0.4%), with one positive sample from each production system. The identified serovars were Salmonella Mbandaka (cage eggs), Salmonella Corvallis (free-range eggs), and Salmonella Cerro (organic eggs). Antimicrobial resistance was observed in only one isolate, S. Mbandaka, which exhibited resistance to sulfamethoxazole/trimethoprim and carried the sul1 and sul2 genes. All Salmonella isolates harbored virulence genes (invA, sopB, and stn). MLST analysis identified three distinct sequence types (ST413, ST1541, and ST1593) corresponding to the detected serovars. Conclusion This study demonstrates a low occurrence of Salmonella contamination in eggshells across different production systems, with no contamination detected in egg contents. The presence of distinct serovars and genetic types suggests varying contamination sources. Although antimicrobial resistance was minimal, the presence of virulence genes in all isolates highlights the potential risk of infection. Continuous monitoring and improved biosecurity measures in egg production and distribution are recommended to enhance food safety and public health.
Collapse
Affiliation(s)
- Watsawan Prapasawat
- Department of Clinic, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, 10530, Thailand
| | - Anchalee Rawangkan
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
- Unit of Excellence on Research and Application of Natural Products for Health and Well-Being, University of Phayao, Phayao, 56000, Thailand
| | - Chittakun Suwancharoen
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
- Unit of Excellence on Research and Application of Natural Products for Health and Well-Being, University of Phayao, Phayao, 56000, Thailand
| | - Atchariya Yosboonruang
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
- Unit of Excellence on Research and Application of Natural Products for Health and Well-Being, University of Phayao, Phayao, 56000, Thailand
| | - Anong Kiddee
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
- Unit of Excellence on Research and Application of Natural Products for Health and Well-Being, University of Phayao, Phayao, 56000, Thailand
| | - Watchara Laenoi
- Division of Animal Science, School of Agriculture and Natural Resources, University of Phayao, Phayao, 56000, Thailand
| | - Sirikarn Wiriyasirivaj
- Department of Clinic, Faculty of Veterinary Medicine, Mahanakorn University of Technology, Bangkok, 10530, Thailand
| | - Orasa Suthienkul
- Department of Microbiology, Faculty of Public Health, Mahidol University, Bangkok, 10400, Thailand
| | - Achiraya Siriphap
- Division of Microbiology and Parasitology, School of Medical Sciences, University of Phayao, Phayao, 56000, Thailand
- Unit of Excellence on Research and Application of Natural Products for Health and Well-Being, University of Phayao, Phayao, 56000, Thailand
| |
Collapse
|
2
|
Xu Y, Yu Z, Wu S, Song M, Cui L, Sun S, Wu J. Pathogenicity of Multidrug-Resistant Salmonella typhimurium Isolated from Ducks. Microorganisms 2024; 12:1359. [PMID: 39065127 PMCID: PMC11279134 DOI: 10.3390/microorganisms12071359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/28/2024] Open
Abstract
Salmonella typhimurium (S. typhimurium) is one of the most common Salmonella serotypes in epidemiological surveys of poultry farms in recent years. It causes growth retardation, mortality, and significant economic losses. The extensive use of antibiotics has led to the emergence of multi-drug resistance (MDR) in Salmonella, which has become a significant global problem and long-term challenge. In this study, we investigated the prevalence and features of S. typhimurium strains in duck embryos and cloacal swabs from large-scale duck farms in Shandong, China, including drug resistance and virulence genes and the pathogenicity of an S. typhimurium strain by animal experiment. The results demonstrated that a total of 8 S. typhimurium strains were isolated from 13,621 samples. The drug resistance results showed that three of the eight S. typhimurium strains were MDR with the dominant resistance profile of CTX-DX-CTR-TE-AMX-AMP-CAZ. In particular, the virulence genes invA, hilA, pefA, rck, and sefA showed high positive rates. Based on the analysis of the biological characteristics of bacterial biofilm formation and mobility, a strain of S. typhimurium with the strongest biofilm formation ability, designated 22SD07, was selected for animal infection experiments with broiler ducklings. The results of animal experiments demonstrated that infection with 22SD07 reduced body weight and bursa index but increased heart and liver indexes compared to the control group. Histological examination revealed desquamation of the intestinal villous epithelium, the presence of large aggregates of lymphocytes, and a decrease in goblet cells following infection. Furthermore, the expression of IL-10 was significantly increased in the liver at 3 dpi, while TNF-α was significantly increased in the spleen at 7 dpi. The above results indicate that S. typhimurium may pose a potential threat to human health through the food chain. This helps us to understand the frequency and characteristics of S. typhimurium in duck farms and emphasizes the urgent need to strengthen and implement effective continuous monitoring to control its infection and transmission.
Collapse
Affiliation(s)
- Yulin Xu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| | - Zhitong Yu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (Z.Y.); (S.W.); (M.S.); (L.C.)
| | - Shaopeng Wu
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (Z.Y.); (S.W.); (M.S.); (L.C.)
| | - Mengze Song
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (Z.Y.); (S.W.); (M.S.); (L.C.)
| | - Lulu Cui
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (Z.Y.); (S.W.); (M.S.); (L.C.)
| | - Shuhong Sun
- Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai’an 271000, China; (Z.Y.); (S.W.); (M.S.); (L.C.)
| | - Jiaqiang Wu
- Shandong Key Laboratory of Animal Disease Control and Breeding, Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan 250100, China;
- Key Laboratory of Livestock and Poultry Multi-Omics of MARA, Jinan 250100, China
| |
Collapse
|
3
|
Hua MM, Li J, Zheng J, Wang JJ, Liu C, Zhang Y, Zhang ZF, Cao XL, Shen H. Molecular Characteristics of Salmonella Spp. Responsible for Bloodstream Infections in a Tertiary Hospital in Nanjing, China, 2019-2021. Infect Drug Resist 2024; 17:2363-2377. [PMID: 38894888 PMCID: PMC11182758 DOI: 10.2147/idr.s459941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 05/20/2024] [Indexed: 06/21/2024] Open
Abstract
Objective To investigate the clinical and molecular characteristics of Salmonella spp. causing bloodstream infections (BSIs) in our hospital. Methods We studied 22 clinical Salmonella isolates from BSIs and 16 from non-BSIs, performing antimicrobial susceptibility testing (AST) and whole genome sequencing (WGS). The analysis included serovars, antibiotic resistance genes (ARGs), virulence factors (VFs), sequence types (STs), plasmid replicons, and genetic relationships. We also assessed pathogenicity of the isolates causing BSIs through growth, biofilm formation, and anti-serum killing assays. Results WGS analysis identified 13 Salmonella serovars, with four responsible for BSIs. S. Enteritidis was the most prevalent serovar, involved in 19 (50.0%) cases. BSIs were caused by 17S. Enteritidis, two S. Typhimurium, two S. Munster and one S. Diguel. Of the 38 isolates, 27 (71.1%) exhibited high resistance to ampicillin, and 24 (63.2%) to ampicillin/sulbactam. Thirty-six types of ARGs were identified, with blaTEM-1B (n = 25, 65.8%) being the most frequent. Ten plasmid replicons were found; the combination of IncFIB(S)-IncFII(S)-IncX1 was the most common in S. Enteritidis (94.7%). Fifteen STs were identified, among which ST11 was the most prevalent and clonally disseminated, primarily responsible for BSIs. A total of 333 different VFs were detected, 177 of which were common across all strains. No significant differences were observed between the BSI and non-BSI isolates in terms of resistance rates, ARGs, plasmid replicons, and VFs, except for seven VFs. No strong pathogenicity was observed in the BSI-causing isolates. Conclusion BSIs were predominantly caused by clonally disseminated S. Enteritidis ST11, the majority of which carried multiple ARGs, VFs and plasmid replicons. This study provides the first data on clonally disseminated S. Enteritidis ST11 causing BSIs, highlighting the urgent need for enhanced infection control measures.
Collapse
Affiliation(s)
- Miao-Miao Hua
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, People’s Republic of China
| | - Jia Li
- Department of Laboratory Medicine, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, People’s Republic of China
| | - Jie Zheng
- Department of Laboratory Medicine, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, People’s Republic of China
| | - Jing-Jing Wang
- Department of Laboratory Medicine, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, People’s Republic of China
| | - Chang Liu
- Department of Laboratory Medicine, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, People’s Republic of China
| | - Yan Zhang
- Department of Laboratory Medicine, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, People’s Republic of China
| | - Zhi-Feng Zhang
- Department of Laboratory Medicine, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, People’s Republic of China
| | - Xiao-Li Cao
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, People’s Republic of China
- Department of Laboratory Medicine, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, People’s Republic of China
| | - Han Shen
- Department of Laboratory Medicine, Nanjing Drum Tower Hospital Clinical College of Jiangsu University, Nanjing, People’s Republic of China
- Department of Laboratory Medicine, Nanjing University Medical School Affiliated Nanjing Drum Tower Hospital, Nanjing, People’s Republic of China
| |
Collapse
|
4
|
Maestre‐Carballa L, Navarro‐López V, Martinez‐Garcia M. Metagenomic airborne resistome from urban hot spots through the One Health lens. ENVIRONMENTAL MICROBIOLOGY REPORTS 2024; 16:e13306. [PMID: 38923122 PMCID: PMC11194455 DOI: 10.1111/1758-2229.13306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/31/2024] [Indexed: 06/28/2024]
Abstract
Human activities are a significant contributor to the spread of antibiotic resistance genes (ARGs), which pose a serious threat to human health. These ARGs can be transmitted through various pathways, including air, within the context of One Health. This study used metagenomics to monitor the resistomes in urban air from two critical locations: a wastewater treatment plant and a hospital, both indoor and outdoor. The presence of cell-like structures was confirmed through fluorescence microscopy. The metagenomic analysis revealed a wide variety of ARGs and a high diversity of antibiotic-resistant bacteria in the airborne particles collected. The wastewater treatment plant showed higher relative abundances with 32 ARG hits per Gb and m3, followed by the main entrance of the hospital (indoor) with ≈5 ARG hits per Gb and m3. The hospital entrance exhibited the highest ARG richness, with a total of 152 different ARGs classified into nine categories of antibiotic resistance. Common commensal and pathogenic bacteria carrying ARGs, such as Moraxella, Staphylococcus and Micrococcus, were detected in the indoor airborne particles of the hospital. Interestingly, no ARGs were shared among all the samples analysed, indicating a highly variable dynamic of airborne resistomes. Furthermore, the study found no ARGs in the airborne viral fractions analysed, suggesting that airborne viruses play a negligible role in the dissemination of ARGs.
Collapse
Affiliation(s)
- Lucia Maestre‐Carballa
- Department of Physiology, Genetics, and MicrobiologyUniversity of AlicanteAlicanteSpain
- Instituto Multidisciplinar Para el Estudio del Medio Ramon MargalefUniversity of AlicanteAlicanteSpain
| | - Vicente Navarro‐López
- Clinical Microbiology and Infectious Disease UnitHospital Universitario VinalopóElcheSpain
| | - Manuel Martinez‐Garcia
- Department of Physiology, Genetics, and MicrobiologyUniversity of AlicanteAlicanteSpain
- Instituto Multidisciplinar Para el Estudio del Medio Ramon MargalefUniversity of AlicanteAlicanteSpain
| |
Collapse
|
5
|
Cossi MVC, Polveiro RC, Yamatogi RS, Camargo AC, Nero LA. Multi-locus sequence typing, antimicrobials resistance and virulence profiles of Salmonella enterica isolated from bovine carcasses in Minas Gerais state, Brazil. Braz J Microbiol 2024; 55:1773-1781. [PMID: 38702536 PMCID: PMC11153481 DOI: 10.1007/s42770-024-01341-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 04/08/2024] [Indexed: 05/06/2024] Open
Abstract
The aim of this study was to identify virulence and antimicrobial resistance profiles and determine the sequence type (ST) by multilocus sequence typing (MLST) of Salmonella enterica isolates from bovine carcasses from slaughterhouse located in Minas Gerais state, Brazil, and its relationship with bovine isolates obtained on the American continent based on sequence type profile. The MLST results were compared with all Salmonella STs associated with cattle on American continent, and a multi-locus sequence tree (MS tree) was built. Among the 17 S. enterica isolates, five ST profiles identified, and ST10 were the most frequent, grouping seven (41.2%) isolates. The isolates presented 11 different profiles of virulence genes, and six different antibiotics resistance profiles. The survey on Enterobase platform showed 333 Salmonella STs from American continent, grouped into four different clusters. Most of the isolates in the present study (13/17), were concentrated in a single cluster (L4) composed by 74 STs. As a conclusion, five different STs were identified, with ST10 being the most common. The isolates showed great diversity of virulence genes and antibiotics resistance profiles. Most of the isolates of this study were grouped into a single cluster composed by 74 STs formed by bovine isolates obtained on the American continent.
Collapse
Affiliation(s)
| | - Richard Costa Polveiro
- Departamento de Veterinária, Universidade Federal de Viçosa, Campus Universitário, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Ricardo Seiti Yamatogi
- Departamento de Veterinária, Universidade Federal de Viçosa, Campus Universitário, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Anderson Carlos Camargo
- Departamento de Veterinária, Universidade Federal de Viçosa, Campus Universitário, Viçosa, Minas Gerais, 36570-000, Brazil
| | - Luís Augusto Nero
- Departamento de Veterinária, Universidade Federal de Viçosa, Campus Universitário, Viçosa, Minas Gerais, 36570-000, Brazil
| |
Collapse
|
6
|
Ali S, Aslam MA, Kanwar R, Mehmood Z, Arshad MI, Hussain S. Phage-antibiotic synergism against Salmonella typhi isolated from stool samples of typhoid patients. Ir J Med Sci 2024; 193:1377-1384. [PMID: 38158479 DOI: 10.1007/s11845-023-03599-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 12/19/2023] [Indexed: 01/03/2024]
Abstract
BACKGROUND Typhoid fever is a fatal disease in humans that is caused by Salmonella typhi. S. typhi infections need immediate antibiotic therapy, and their extensive use has led to multidrug-resistant (MDR) pathogens. The use of bacteriophages is becoming a new way to treat these resistant bacteria. This research was directed to bacteriophage isolation against S. typhi and to determine phage-antibiotic synergism. AIMS To isolate bacteriophages targeting S. typhi, the causative agent of typhoid fever, and investigate their potential synergistic effects when combined with antibiotics. STUDY DESIGN A cross-sectional study. METHODS The Widal test was positive; twenty diarrheal stool samples were taken, and for confirmation of S. typhi, different biochemical tests were performed. The disc-diffusion technique was used to determine antimicrobial resistance, and the double agar overlay method was used for bacteriophage isolation from sewage water against S. typhi. To test antibiotic-phage synergism, the S. typhi bacteria was treated by phages together with varying antibiotic concentrations. RESULTS Eleven samples were positive for S. typhi with black colonies on SS-agar. These were catalase and MR positive with alkali butt on TSI. Clear plaques were observed after the agar overlay. Isolated phages were stable at various pH and temperature levels. Synergism was observed on agar plate. The zone was enlarged when phages were combined with bacterial lawn culture and ciprofloxacin disk. Bacterial growth inhibition had a significant p-value of 0.03 in titration plates, with the phage-ciprofloxacin combination being more effective than the phage and antibiotic alone. CONCLUSION The study highlights the synergistic effects of isolated bacteriophages with antibiotics, which are not only effective against S. typhi infection but also decrease antibiotic resistance.
Collapse
Affiliation(s)
- Saqib Ali
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Aamir Aslam
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Rabia Kanwar
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Zain Mehmood
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Muhammad Imran Arshad
- Institute of Microbiology, University of Agriculture Faisalabad, Faisalabad, 38000, Pakistan
| | - Sarfaraz Hussain
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo, 255049, Shandong, People's Republic of China.
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing, 100193, People's Republic of China.
| |
Collapse
|
7
|
Kgoale DM, Duvenage S, Du Plessis EM, Gokul JK, Korsten L. Serotype Distribution, Antimicrobial Resistance, Virulence Genes, and Genetic Diversity of Salmonella spp. Isolated from small-scale Leafy Green Vegetable Supply Chains in South Africa. J Food Prot 2024; 87:100195. [PMID: 37977503 DOI: 10.1016/j.jfp.2023.100195] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 09/27/2023] [Accepted: 11/13/2023] [Indexed: 11/19/2023]
Abstract
Salmonella have been implicated in foodborne disease outbreaks globally and is a pressing concern in the South African small-scale sector due to inadequate hygiene standards and limited regulatory oversight, leading to a higher risk of foodborne diseases. By investigating irrigation water and leafy green vegetables produced by small-scale growers and sold through unregulated supply chains, this study was able to determine the presence, serotype distribution, virulence gene profiles, antibiotic resistance, and genetic diversity of Salmonella isolated from these sources. From 426 samples, 21 Salmonella-positive samples were identified, providing 53 Salmonella isolates. Of these, six different Salmonella serotypes and sequence types (STs) were identified, including Salmonella II 42:r: ST1208 (33.96%; n = 18), Salmonella Enteritidis: ST11 (22.64%; n = 12), Salmonella II 42:z29: ST4395 (16.98%; n = 9), Salmonella Havana: ST1524 (15.09%; n = 8), Salmonella Typhimurium: ST19 (9.43%; n = 5), and Salmonella IIIb 47:i:z: ST7890 (1.89%; n = 1). A total of 92.45% of the isolates were found to be multidrug-resistant, showing high rates of resistance to aztreonam (88.68%; n = 47), ceftazidime (86.79%; n = 46), nalidixic acid (77.36%; n = 41), cefotaxime (75.47%; n = 40), cefepime (71.70%; n = 38), and streptomycin (69.81%; n = 37). All isolates possessed the aac(6')-Iaa antimicrobial resistance gene, with a range of between 9 and 256 virulence genes. Eleven cluster patterns were observed from Enterobacterial Repetitive Intergenic Consensus sequence analyses, demonstrating high diversity among the Salmonella spp., with water and fresh produce isolates clustering, suggesting water as a potential contamination source. Plasmid replicon types were identified in 41.51% (n = 22) of the isolates, including Col(pHAD28) in Salmonella Havana (5.66%; n = 3), Col156 in Salmonella II 42:z29:- (1.89%; n = 1) and both IncFIB(S) and IncFII(S) in Salmonella Enteritidis (22.64; n = 12), Salmonella Typhimurium (9.43%; n = 5), and Salmonella Havana (1.89%; n = 1). This study highlights the presence of multidrug-resistant and multivirulent Salmonella spp. in the small-scale leafy green vegetable supply chains, underscoring the need for the development of a "fit-for-purpose" food safety management system within this system.
Collapse
Affiliation(s)
- Degracious M Kgoale
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria, South Africa; Department of Science and Innovation-National Research Foundation Centre of Excellence in Food Security, South Africa
| | - Stacey Duvenage
- Department of Science and Innovation-National Research Foundation Centre of Excellence in Food Security, South Africa; Food and Markets Department, Natural Resources Institute, University of Greenwich, Chatham Maritime, United Kingdom
| | - Erika M Du Plessis
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria, South Africa; Department of Science and Innovation-National Research Foundation Centre of Excellence in Food Security, South Africa
| | - Jarishma K Gokul
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria, South Africa
| | - Lise Korsten
- Department of Plant and Soil Sciences, University of Pretoria, Hatfield, Pretoria, South Africa; Department of Science and Innovation-National Research Foundation Centre of Excellence in Food Security, South Africa.
| |
Collapse
|
8
|
Soltan Dallal MM, Zeynali Kelishomi F, Nikkhahi F, Zahraei Salehi T, Fardsanei F, Peymani A. Biofilm formation, antimicrobial resistance genes, and genetic diversity of Salmonella enterica subspecies enterica serotype Enteritidis isolated from food and animal sources in Iran. J Glob Antimicrob Resist 2023; 34:240-246. [PMID: 37567468 DOI: 10.1016/j.jgar.2023.08.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 07/20/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023] Open
Abstract
OBJECTIVES Salmonella enterica serovar Entritidis is an important pathogen in foodborne diseases and causes gastroenteritis. Several studies have investigated the genetic diversity of the strains of this bacterium. However, our knowledge of the discriminatory power of the molecular methods is limited. METHODS In total, 34 strains of S. enteritidis were isolated from food related to animals. Antibiotic resistance of the strains, antibiotic resistance genes, and biofilm formation capacity of the strains were evaluated. For the genetic analysis of the strains, PFGE was performed using AvrII restriction enzyme. RESULTS Among the tested antibiotics, cefuroxime, nalidixic acid, and ciprofloxacin showed the highest resistance rates (79.4%, 47%, and 44.2%, respectively). Only three antibiotic-resistance genes were identified in these strains (blaTEM: 67.6%, tetA: 9%, and sul2: 3%). In total, 91% of the strains were biofilm producers. Clustering of strains using AvrII for 26 samples with the same XbaI PFGE profile showed that these strains were in one clone and had high homogeneity. CONCLUSIONS In conclusion, it is better to use a combination of several typing methods for typing strains that are genetically very close so that the results are reliable.
Collapse
Affiliation(s)
- Mohammad Mehdi Soltan Dallal
- Division of Food Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran; Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Farhad Nikkhahi
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| | - Taghi Zahraei Salehi
- Department of Microbiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Fatemeh Fardsanei
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran.
| | - Amir Peymani
- Medical Microbiology Research Center, Qazvin University of Medical Sciences, Qazvin, Iran
| |
Collapse
|
9
|
Yan S, Jiang Z, Zhang W, Liu Z, Dong X, Li D, Liu Z, Li C, Liu X, Zhu L. Genomes-based MLST, cgMLST, wgMLST and SNP analysis of Salmonella Typhimurium from animals and humans. Comp Immunol Microbiol Infect Dis 2023; 96:101973. [PMID: 36989679 DOI: 10.1016/j.cimid.2023.101973] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 03/19/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023]
Abstract
Salmonella Typhimurium (S. Typhimurium) is an important food-borne and zoonotic pathogen that causes salmonellosis. With the development of whole genome sequencing (WGS), genome-based typing has been widely applied to bacteriology. In this study, we investigated genotyping and phylogenetic clusters of S. Typhimurium isolates from humans and animals in different provinces (including Beijing, Shandong, Guangxi, Shaanxi, Henan, and Shanghai) of China during 2009-2018 using multi locus sequence typing (MLST), core genome MLST (cgMLST), whole genome MLST (wgMLST) and single nucleotide polymorphism (SNP) based on WGS. 29 S. Typhimurium isolates from chicken (n = 22), sick pigeon (n = 2), patients (n = 4) and sick swine (n = 1) were tested. MLST analysis showed S. Typhimurium strains were divided into four STs, namely ST19 (n = 14), ST34 (n = 12), ST128 (n = 2) and ST1544 (n = 1). cgMLST and wgMLST divided 29 strains into 27 cgSTs and 29 wgST, respectively. Phylogenetic clustering showed that all isolates were divided into 4 clusters and 4 singletons. SNP analysis was used to examine MLST, cgMLST, wgMLST analysis. Finally, comparisons of MLST, cgMLST, wgMLST, and SNP were analyzed and the results showed their precision increased in order. In summary, genomic typing and phylogenetic relationships of 29 S. Typhimurium strains from different sources in China were analyzed. These findings were beneficial to investigate molecular pathogenesis, bacterial diversity, and traceability analysis of Salmonella.
Collapse
Affiliation(s)
- Shigan Yan
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Zhaoxu Jiang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Wencheng Zhang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Zhenhai Liu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Xiaorui Dong
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Donghui Li
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Zijun Liu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Chengyu Li
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Xu Liu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China
| | - Liping Zhu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, PR China.
| |
Collapse
|
10
|
Lu Y, Sun P, Shao W, Yang C, Chen L, Zhu A, Pan Z. Detection and Molecular Identification of Salmonella Pathogenic Islands and Virulence Plasmid Genes of Salmonella in Xuzhou Raw Meat Products. J Food Prot 2022; 85:1790-1796. [PMID: 36150093 DOI: 10.4315/jfp-22-169] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/16/2022] [Indexed: 11/11/2022]
Abstract
ABSTRACT Virulence genes expressed in Salmonella are a primary contributing factor leading to the high morbidity and mortality of salmonellosis in humans. The pathogenicity of Salmonella is mainly determined by the specific virulence factors that it carries. These factors also confer greater virulence and play a role in infection of a host and transmission of disease, and most Salmonella enterica can cause cross-infections between humans and animals. In this study, 265 samples in total were collected from a farmer's market and two supermarkets in Xuzhou, Jiangsu province, China, including 205 pork samples and 60 chicken samples. The suspected Salmonella isolates were isolated and identified using microbiological and molecular methods, and the confirmed isolates were used for serovar analysis and antimicrobial susceptibility testing. The virulence genes of Salmonella pathogenic islands (SPIs) and Salmonella virulence plasmids (Spv) in Salmonella-positive isolates were subsequently detected. Salmonella was isolated from 29.0% of samples, and all isolates were confirmed by PCR targeting the stn gene. Among the Salmonella isolates, resistance was most frequently observed against ciprofloxacin (84.4%), followed by tetracycline (71.4%) and streptomycin (68.8%). Resistance to amoxicillin-clavulanic acid (6.3%) and aztreonam (5%) was less commonly detected. The presence of the following virulence genes was determined by specific PCRs: hilA (SPI-1), sifA (SPI-2), misL (SPI-3), siiE (SPI-4), sopB (SPI-5), and spvC. The detection rate for SPI-1 to SPI-5 was 93.5, 87.0, 97.4, 97.4, and 97.4%, respectively. In addition, the detection rate of the spvC gene was 96.1%. Except for sopB (94.7%), all isolates of the dominant serovar S. enterica subsp.. enterica serovar Enteritidis contained all virulence genes from SPI-1 to SPI-5. This study demonstrated the epidemiological status of Salmonella in raw meat products in Xuzhou, and the complex antibiotic resistance and high isolation rate of virulence genes observed reveal many potential risks of which the findings presented herein will provide orientation to improve public health safeguards. HIGHLIGHTS
Collapse
Affiliation(s)
- Yingyun Lu
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221003, People's Republic of China
| | - Peng Sun
- Xuzhou Vocational College of Bioengineering, Xuzhou, Jiangsu 221003, People's Republic of China
| | - Wangfeng Shao
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221003, People's Republic of China
| | - Cheng Yang
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221003, People's Republic of China
| | - Lingxiao Chen
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221003, People's Republic of China
| | - Aihua Zhu
- Jiangsu Engineering Research Center of Cardiovascular Drugs Targeting Endothelial Cells, College of Health Sciences, School of Life Sciences, Jiangsu Normal University, Xuzhou, Jiangsu 221003, People's Republic of China
| | - Zhiming Pan
- College of Arts and Sciences, Suqian University, Suqian 223800, Jiangsu, People's Republic of China
| |
Collapse
|
11
|
Wójcicki M, Chmielarczyk A, Świder O, Średnicka P, Strus M, Kasperski T, Shymialevich D, Cieślak H, Emanowicz P, Kowalczyk M, Sokołowska B, Juszczuk-Kubiak E. Bacterial Pathogens in the Food Industry: Antibiotic Resistance and Virulence Factors of Salmonella enterica Strains Isolated from Food Chain Links. Pathogens 2022; 11:1323. [PMID: 36365074 PMCID: PMC9692263 DOI: 10.3390/pathogens11111323] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 10/13/2023] Open
Abstract
Salmonella is one of the most important foodborne pathogens. Fifty-three strains of Salmonella deposited in the Culture Collection of Industrial Microorganisms-Microbiological Resources Center (IAFB) were identified using molecular and proteomic analyses. Moreover, the genetic similarity of the tested strains was determined using the PFGE method. Main virulence genes were identified, and phenotypical antibiotic susceptibility profiles and prevalence of resistance genes were analyzed. Subsequently, the occurrence of the main mechanisms of β-lactam resistance was determined. Virulence genes, invA, fimA, and stn were identified in all tested strains. Phenotypic tests, including 28 antibiotics, showed that 50.9% of the strains were MDR. The tet genes associated with tetracyclines resistance were the most frequently identified genes. Concerning the genes associated with ESBL-producing Salmonella, no resistance to the TEM and CTX-M type was identified, and only two strains (KKP 1597 and KKP 1610) showed resistance to SHV. No strains exhibited AmpC-type resistance but for six Salmonella strains, the efflux-related resistance of PSE-1 was presented. The high number of resistant strains in combination with multiple ARGs in Salmonella indicates the possible overuse of antibiotics. Our results showed that it is necessary to monitor antimicrobial resistance profiles in all food chain links constantly and to implement a policy of proper antibiotic stewardship to contain or at least significantly limit the further acquisition of antibiotic resistance among Salmonella strains.
Collapse
Affiliation(s)
- Michał Wójcicki
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Agnieszka Chmielarczyk
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland
| | - Olga Świder
- Department of Food Safety and Chemical Analysis, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Paulina Średnicka
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Magdalena Strus
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland
| | - Tomasz Kasperski
- Department of Microbiology, Faculty of Medicine, Jagiellonian University Medical College, Czysta 18 Street, 31-121 Cracow, Poland
| | - Dziyana Shymialevich
- Culture Collection of Industrial Microorganisms—Microbiological Resources Center, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Hanna Cieślak
- Culture Collection of Industrial Microorganisms—Microbiological Resources Center, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Paulina Emanowicz
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Monika Kowalczyk
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Barbara Sokołowska
- Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| | - Edyta Juszczuk-Kubiak
- Laboratory of Biotechnology and Molecular Engineering, Department of Microbiology, Prof. Waclaw Dabrowski Institute of Agricultural and Food Biotechnology—State Research Institute, Rakowiecka 36 Street, 02-532 Warsaw, Poland
| |
Collapse
|
12
|
Yan S, Liu X, Li C, Jiang Z, Li D, Zhu L. Genomic virulence genes profile analysis of Salmonella enterica isolates from animal and human in China from 2004 to 2019. Microb Pathog 2022; 173:105808. [PMID: 36183957 DOI: 10.1016/j.micpath.2022.105808] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 09/07/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
Abstract
Salmonella is a momentously zoonotic and food-borne pathogen that seriously threats human and animal health around the world. Salmonella pathogenicity is closely related to its virulence genes profile. However, conventional virulence gene analysis methods cannot truly reveal whole virulence genes carried by Salmonella. In this study, whole genome sequencing in combination with Virulence Factor Database were applied to investigate whole virulence gene profiles of 243 Salmonella isolates from animals and humans in China from 2004 to 2019. The results showed that a total of 670 virulence genes were identified in Salmonella, among them, 319 virulence genes were found in all the Salmonella tested isolates, and 9 virulence genes were unique to Salmonella. The 670 virulence genes were classified into 14 categories according to their functions, and the genes related to adherence, effector delivery system, immune modulation, motility and nutritional/metabolic factors accounted for 84.63%. Relationships between virulence genes and serovars, sequence types indicated that strains belonged to the same serovar or sequence type had similar virulence genes profiles, however, isolates from different sources, years and locations of isolation had variable virulence gene profiles. In addition, copy number of virulence genes and homologous virulence genes shared with other pathogens were also analyzed in this study. In summary, we investigated pan-genomic virulence gene profiles and molecular epidemiology of Salmonella isolates from humans and animals in China from 2004 to 2019. These findings are beneficial for pathogenic monitoring, investigation of virulence evolution as well as prevention and control of Salmonella.
Collapse
Affiliation(s)
- Shigan Yan
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 25053, China
| | - Xu Liu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 25053, China
| | - Chengyu Li
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 25053, China
| | - Zhaoxu Jiang
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 25053, China
| | - Donghui Li
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 25053, China
| | - Liping Zhu
- School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan, 25053, China.
| |
Collapse
|
13
|
Frequency of Salmonella serotypes among children in Iran: antimicrobial susceptibility, biofilm formation, and virulence genes. BMC Pediatr 2022; 22:557. [PMID: 36131275 PMCID: PMC9490922 DOI: 10.1186/s12887-022-03614-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 09/15/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND/SIGNIFICANCE Salmonella gastroenteritis causes significant morbidity among pediatric patients, mainly in developing world, such as the Middle East and North Africa (MENA) region. Concurrently, data from MENA countries like Iran, regarding prevalence of Salmonella serotypes, antimicrobial susceptibility, and biofilm production is scarce. MATERIAL & METHODS Slide agglutination was used to determine the serogroup of 140 Salmonella isolates recovered from 4477 stool specimens collected from children with gastroenteritis, and isolates were serotyped by PCR assay. The antimicrobial susceptibility of isolates to five first line drugs was assessed by disk diffusion assay using CLSI guidelines. Semi-quantitative evaluation of biofilm production was done by microtiter plate assay followed by PCR detection of biofilm-associated virulence genes csgD, pefA, and bcsA for each isolate. RESULTS Nearly 94% of Salmonella isolates were recovered from ≤ 5-year-old patients, and 99% of isolates were non-typhoidal. While we found extensive diversity among Salmonella isolates, serogroup D (46%) predominated, and Salmonella Enteritidis (41%) was the most common serotype that showed the highest antimicrobial susceptibility rate (> 96%). For the first time in Iran, S. Newport serotype from human specimens was isolated. Most isolates were sensitive to all test antimicrobials, but 35% of isolates were not-typed (NT) that showed the highest resistance with 48% being resistant to ≥ 1 test antimicrobial. Majority of isolates made weak (or no) biofilm, and we found a weak association between antimicrobial susceptibility, biofilm production, or virulence genes csgD, pefA, and bcsA. CONCLUSIONS The most effective measure that may control pediatric salmonellosis outbreaks is raising awareness of parents of preschoolers about food safety. Isolation of highly diverse Salmonella serotypes, including many commonly isolated from animals, indicates widespread contamination of the food chain. Majority of serotypes were sensitive to first-line antimicrobials, thus presently, pediatric Salmonella infections in this region may be controlled by conventional antimicrobials. However, despite the current trend, an imminent emergence of resistant Salmonella strains is foreseen, since various serotypes resistant to > 1 antimicrobial agent are typically associated with animals. Our results warrant further investigation that includes correlation analysis of clinical data regarding treatment outcomes, and serotype attributes like virulence genes.
Collapse
|
14
|
Martins Morasi R, Zimbardi da Silva A, Thais Alves Dantas S, Faganello C, Cristina Bastos Juliano L, Lúcia Mores Rall V, Ribeiro Tiba-Casas M, Pantoja JC, Ferreira Amarante A, Cristina Cirone Silva N. Overview of antimicrobial resistance and virulence factors in Salmonella spp. isolated in the last two decades from chicken in Brazil. Food Res Int 2022; 162:111955. [DOI: 10.1016/j.foodres.2022.111955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 07/29/2022] [Accepted: 09/16/2022] [Indexed: 11/29/2022]
|
15
|
ADETUNJI IA, AJAYI A, ADELEYE AI, PELLICANO R, SMITH SI. Characterization of some virulence genes in non-typhoidal Salmonella isolated from food animals and handlers in Lagos. MINERVA BIOTECHNOLOGY AND BIOMOLECULAR RESEARCH 2022; 34. [DOI: 10.23736/s2724-542x.21.02862-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/09/2025]
|
16
|
El Hage R, El Rayess Y, Bonifait L, El Hafi B, Baugé L, Viscogliosi E, Hamze M, Mathieu F, Matar GM, Chemaly M. A national study through a 'Farm-to-fork' Approach to determine Salmonella dissemination along with the Lebanese poultry production chain. Zoonoses Public Health 2022; 69:499-513. [PMID: 35301827 DOI: 10.1111/zph.12939] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 02/13/2022] [Accepted: 03/06/2022] [Indexed: 01/26/2023]
Abstract
This cross-sectional study was conducted to determine the prevalence of Salmonella at different stages of the broiler production chain and layer flocks in addition to their antibiotic resistance profile and molecular patterns. Over a period of 3 years, different sample matrices were collected from Lebanese farms, slaughterhouses and retail markets. Out of 672 Salmonella serotyped, 514 were analysed for antimicrobial resistance and 214 for clonality using Pulsed-field gel electrophoresis (PFGE). The results highlighted an important prevalence of Salmonella, 30% in farms, 35.8% in slaughterhouses and 22.4% at retail level. A large diversity of serotypes was identified with predominance among Salmonella Infantis (32.9%), Salmonella Enteritidis (28.4%) and Salmonella Kentucky (21.4%). High resistance to nalidixic acid was revealed in all the isolates. The most prominent resistance was exhibited in S. Kentucky and S. Infantis. The latter was resistant to tetracycline (99%), streptomycin (88.2%) and remarkable multi-drug resistance (MDR) (89.7%). All S. Kentucky isolates were resistant to ciprofloxacin, MDR (62.4%) and 6% were resistant to extended-spectrum cephalosporin (ESCs). One persistent clone of S. Enteritidis was found common between poultry and humans. Similar genomic profiles were detected between farms, slaughterhouses and retail suggesting the dissemination of identical clones throughout the food chain possibly due to weak barriers preventing such transmission.
Collapse
Affiliation(s)
- Rima El Hage
- Fanar Station, Food Microbiology Laboratory, Lebanese Agricultural Research Institute (LARI), Jdeideh El-Metn, Lebanon.,Laboratoire de Génie Chimique, UMR 5503 CNRS/INPT/UPS, INP-ENSAT, Université de Toulouse, Castanet-Tolosan, France
| | - Youssef El Rayess
- Department of Agriculture and Food Engineering, School of Engineering, Holy Spirit University of Kaslik, Jounieh, Lebanon
| | - Laetitia Bonifait
- French Agency for Food Environmental and Occupational Health & Safety (ANSES), Unit of Hygiene and Quality of Poultry & Pork Products, Laboratory of Ploufragan-Plouzané, Ploufragan, France
| | - Bassam El Hafi
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Louise Baugé
- French Agency for Food Environmental and Occupational Health & Safety (ANSES), Unit of Hygiene and Quality of Poultry & Pork Products, Laboratory of Ploufragan-Plouzané, Ploufragan, France
| | - Eric Viscogliosi
- CNRS, Inserm, CHU Lille, Institut Pasteur de Lille, U1019 - UMR 8204 - CIIL - Centre d'Infection et d'Immunité de Lille, Université de Lille, Lille, France
| | - Mounzer Hamze
- Faculté de Santé Publique, Laboratoire Microbiologie Santé Environnement (LMSE), Ecole Doctorale des Sciences et de Technologie, Université Libanaise, Tripoli, Lebanon
| | - Florence Mathieu
- Laboratoire de Génie Chimique, UMR 5503 CNRS/INPT/UPS, INP-ENSAT, Université de Toulouse, Castanet-Tolosan, France
| | - Ghassan M Matar
- Department of Experimental Pathology, Immunology and Microbiology, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Marianne Chemaly
- French Agency for Food Environmental and Occupational Health & Safety (ANSES), Unit of Hygiene and Quality of Poultry & Pork Products, Laboratory of Ploufragan-Plouzané, Ploufragan, France
| |
Collapse
|
17
|
Haubert L, Maia DSV, Rauber Würfel SDF, Vaniel C, da Silva WP. Virulence genes and sanitizers resistance in Salmonella isolates from eggs in southern Brazil. JOURNAL OF FOOD SCIENCE AND TECHNOLOGY 2022; 59:1097-1103. [PMID: 35153327 PMCID: PMC8814091 DOI: 10.1007/s13197-021-05113-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Revised: 11/09/2020] [Accepted: 11/18/2020] [Indexed: 11/25/2022]
Abstract
Salmonella spp. causes foodborne diseases related to the consumption of contaminated foods, especially poultry products. This study aimed to investigate the occurrence of Salmonella spp. serovars in raw eggs from supermarkets and street food markets in southern Brazil, to analyze virulence genes, resistance profiling to antimicrobials and sanitizers, and to determine the susceptibility of the isolates to Butia odorata extract. Among 160 samples analyzed, just two (1.25%) were positive for Salmonella spp.. One positive sample was from egg yolk (S. enterica serovar Gallinarum, isolate S28), and another one was from eggshell (S. enterica serovar Panama, isolate S37). Regarding the virulence genes, the isolate S37 harbored all the genes evaluated (hilA, invA, spvC, sefA, and pefA), while the isolate S28 did not harbor the pefA gene. The isolate S28 was resistant to tobramycin, azithromycin, and trimethoprim, while the isolate S37 showed resistance profile just to nalidixic acid. However, none of the resistance genes evaluated were identified. Both isolates showed resistance to benzalkonium chloride, chlorhexidine digluconate, sodium hypochlorite, and peracetic acid, presenting high MIC values for these sanitizers. In contrast, B. odorata extract showed antimicrobial activity against the isolates S28 and S37, however, more studies are needed to prove its potential as a natural antimicrobial compound.
Collapse
Affiliation(s)
- Louise Haubert
- Departamento de Ciência E Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas (UFPel), Pelotas, RS Brazil
| | - Darla Silveira Volcan Maia
- Departamento de Ciência E Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas (UFPel), Pelotas, RS Brazil
| | | | - Cristiane Vaniel
- Departamento de Ciência E Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas (UFPel), Pelotas, RS Brazil
| | - Wladimir Padilha da Silva
- Departamento de Ciência E Tecnologia Agroindustrial, Faculdade de Agronomia Eliseu Maciel, Universidade Federal de Pelotas (UFPel), Pelotas, RS Brazil
- Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas (UFPel), Pelotas, RS Brazil
| |
Collapse
|
18
|
KEYVAN E, KAHRAMAN HA, TUTUN H, DONMEZ S, SEN E, DEMIRTAS A, AKYUZ AO. Inactivation efficacy of 405 nm light emitting diodes (LEDs) on Salmonella Enteritidis at different illumination temperatures. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.08721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
| | | | | | | | - Erdi SEN
- Burdur Mehmet Akif Ersoy University, Turkey
| | | | | |
Collapse
|
19
|
Alsayeqh AF, Baz AHA, Darwish WS. Antimicrobial-resistant foodborne pathogens in the Middle East: a systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:68111-68133. [PMID: 34668139 DOI: 10.1007/s11356-021-17070-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 10/12/2021] [Indexed: 06/13/2023]
Abstract
Foodborne pathogens are known as significant public health hazards worldwide, particularly in the Middle East region. Antimicrobial resistance (AMR) among foodborne pathogens becomes one of the top challenges for the environment, public health, and food safety sectors. However, less is known about antimicrobial-resistant foodborne pathogens in the Middle East region. Possibly because of the lack of surveillance, documentation, and reporting. This review focuses on the current status of antimicrobial resistance profiling among foodborne pathogens in the Middle East. Therefore, PubMed and other relevant databases were searched following PRISMA guidelines. Subject heading and texts were searched for "antimicrobial resistances," "foodborne," and "Middle East" to identify observational studies on AMR foodborne pathogens published during the last 10 years (2011 to 2020). Article retrieval and screening were done using a structured search string and strict inclusion/exclusion criteria. Median and interquartile ranges of percent resistance were calculated for each antibiotic-bacterium combination. A total of 249 articles were included in the final analysis from ten countries, where only five countries had more than 85% of the included articles. The most commonly reported pathogens were Escherichia coli, Salmonella spp. Staphylococcus aureus, and Listeria spp. An apparent rise in drug resistance among foodborne pathogens was recorded particularly against amoxicillin-clavulanic acid, ampicillin, nalidixic acid, streptomycin, and tetracycline that are commonly prescribed in most countries in the Middle East. Besides, there is a lack of standardization and quality control for microbiological identification and susceptibility testing methods in many of the Middle East countries.
Collapse
Affiliation(s)
- Abdullah F Alsayeqh
- Veterinary Medicine, College of Agriculture and Veterinary Medicine, Qassim University, Buraidah, 662251452, Saudi Arabia
| | | | - Wageh Sobhy Darwish
- Food Control Department, Faculty of Veterinary Medicine, Zagazig University, Zagazig, 44519, Egypt.
| |
Collapse
|
20
|
Fardsanei F, Soltan Dallal MM, Zahraei Salehi T, Douraghi M, Memariani M, Memariani H. Antimicrobial resistance patterns, virulence gene profiles, and genetic diversity of Salmonella enterica serotype Enteritidis isolated from patients with gastroenteritis in various Iranian cities. IRANIAN JOURNAL OF BASIC MEDICAL SCIENCES 2021; 24:914-921. [PMID: 34712421 PMCID: PMC8528249 DOI: 10.22038/ijbms.2021.54019.12142] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Accepted: 06/22/2021] [Indexed: 12/19/2022]
Abstract
Objectives This study aimed to evaluate antibiotic resistance profiles and presence of virulence genes among Salmonella enterica serovar Enteritidis (S. Enteritidis) isolated from patients with gastroenteritis in various regions of Iran. Moreover, genetic relatedness among the strains was assessed by pulsed-field gel electrophoresis (PFGE). Materials and Methods From April through September 2017, 59 Salmonella strains were isolated from 2116 stool samples. Of these strains, 27 S. Enteritidis were recovered. These strains were subjected to disk diffusion tests, polymerase chain reaction (PCR) for detection of virulence genes (invA, hilA, pefA, rck, stn, ssrA, ssaR, sefA, spvC, sipA, sipC, sopB, sopE, and sopE2), and PFGE. Results High prevalence of resistance towards cefuroxime (n = 20, 74.1%) and ciprofloxacin (n = 13, 48.2%) were demonstrated. All tested strains possessed invA, hilA, sefA, sipA, sopB, and sopE. The least prevalent virulence gene was rck (n = 6; 22.2%). Based on combinations of virulence genes, 12 virulotypes were observed. The most common virulotype was VP2 (n = 12; 44.4%), harboring all of the virulence genes except for rck. PFGE typing showed only two distinct fingerprints among tested strains. Each fingerprint had completely different virulotypes. Notably, VP4 (harboring all genes except for rck and spvC) was only presented in pulsotype A, while VP2 was confined to pulsotype B. Conclusion S. Enteritidis strains were derived from a limited number of clones, suggesting that it is highly homogenous. Future works should consider combinations of other genotyping methods together with larger sample sizes from more diverse sources.
Collapse
Affiliation(s)
- Fatemeh Fardsanei
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Mehdi Soltan Dallal
- Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran.,Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Science, Tehran, Iran
| | - Taghi Zahraei Salehi
- Department of Microbiology, Faculty of Veterinary Medicine, University of Tehran, Iran
| | - Masoumeh Douraghi
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Science, Tehran, Iran
| | - Mojtaba Memariani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Department of Bacteriology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hamed Memariani
- Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.,Biotechnology Research Center, Pasteur Institute of Iran, Tehran, Iran
| |
Collapse
|
21
|
Dhital R, Shen Z, Zhang S, Mustapha A. Detection of virulence and extended spectrum β-lactamase genes in Salmonella by multiplex high-resolution melt curve real-time PCR assay. J Appl Microbiol 2021; 132:2355-2367. [PMID: 34689400 DOI: 10.1111/jam.15334] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Revised: 09/29/2021] [Accepted: 10/17/2021] [Indexed: 11/29/2022]
Abstract
AIMS Develop and standardize multiplex high-resolution melt curve (HRM) real-time PCR assays for simultaneous detection of Salmonella virulence and extended spectrum β-lactamase (ESBL) genes in food. METHODS AND RESULTS Two sets of multiplex real-time PCR assays targeting six virulence and three ESBL genes with internal amplification control were standardized. The first assay detected hilA, fimH, sipA, blaTEM and blaSHV, and the second detected invA, fimA, stn and blaCMY . The PCR assays were validated with DNA samples from 77 different Salmonella strains. The assay specificity was tested with DNA from 47 non-Salmonella strains. Melt curve analyses showed distinct, well-separated melting peaks of each target gene detected by their respective melting temperatures (Tm ). Different food samples were spiked with 10, 102 and 103 CFU/ml of Salmonella. The optimized assays were able to detect all target genes in concentrations of as low as 10 CFU/ml in 25 g foods within 10 h of enrichment. CONCLUSIONS Multiplex HRM real-time PCR assays can be used as rapid detection methods for detecting Salmonella in foods. SIGNIFICANCE AND IMPACT OF STUDY The assays developed in this study will allow for accurate detection of virulence and ESBL genes in Salmonella that are present in low concentrations in food samples.
Collapse
Affiliation(s)
- Rajiv Dhital
- Food Science Program, University of Missouri, Columbia, Missouri, USA
| | - Zhenyu Shen
- Veterinary Diagnostic Laboratory, University of Missouri, Columbia, Missouri, USA
| | - Shuping Zhang
- Veterinary Diagnostic Laboratory, University of Missouri, Columbia, Missouri, USA
| | - Azlin Mustapha
- Food Science Program, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
22
|
Dróżdż M, Małaszczuk M, Paluch E, Pawlak A. Zoonotic potential and prevalence of Salmonella serovars isolated from pets. Infect Ecol Epidemiol 2021; 11:1975530. [PMID: 34531964 PMCID: PMC8439213 DOI: 10.1080/20008686.2021.1975530] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Salmonellosis is a global health problem, affecting approximately 1.3 billion people annually. Most of these cases are related to food contamination. However, although the majority of Salmonella serovars are pathogenic to humans, animals can be asymptomatic carriers of these bacteria. Nowadays, a wide range of animals is present in human households as pets, including reptiles, amphibians, dogs, cats, ornamental birds, and rodents. Pets contaminate the environment of their owners by shedding the bacteria intermittently in their feaces. In consequence, theyare thought to cause salmonellosis through pet-to-human transmission. Each Salmonella serovar has a different zoonotic potential, which is strongly regulated by stress factors such as transportation, crowding, food deprivation, or temperature. In this review, we summarize the latest reports concerning Salmonella-prevalence and distribution in pets as well as the risk factors and means of prevention of human salmonellosis caused by contact with their pets. Our literature analysis (based on PubMed and Google Scholar databases) is limited to the distribution of Salmonella serovars found in commonly owned pet species. We collected the recent results of studies concerning testing for Salmonella spp. in biological samples, indicating their prevalence in pets, with regard to clinical cases of human salmonellosis.
Collapse
Affiliation(s)
- Mateusz Dróżdż
- Freie Universität Berlin, Institute of Chemistry and Biochemistry, Laboratory of Rna Biochemistry, Berlin, Germany
| | | | - Emil Paluch
- Department of Microbiology, Faculty of Medicine, Wroclaw Medical University, Wrocław, Poland
| | | |
Collapse
|
23
|
Yang Z, Ma X, Li Y, Xu H, Han X, Wang R, Zhao P, Li Z, Shi C. Antimicrobial Activity and Antibiofilm Potential of Coenzyme Q 0 against Salmonella Typhimurium. Foods 2021; 10:foods10061211. [PMID: 34071975 PMCID: PMC8230291 DOI: 10.3390/foods10061211] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 05/19/2021] [Accepted: 05/24/2021] [Indexed: 12/11/2022] Open
Abstract
Coenzyme Q0 (CoQ0) has anti-inflammatory and anti-tumor effects; however, the antimicrobial and antibiofilm activities of CoQ0 against Salmonella enterica serovar Typhimurium are unknown. Thus, we investigated the bacteriostatic and antibiofilm activities, along with the underlying mechanism, of CoQ0 against S. Typhimurium. The minimum inhibitory concentration (MIC) of CoQ0 against S. enterica serovars Typhimurium was 0.1–0.2 mg/mL (549–1098 µM), and CoQ0 at MIC and 2MIC decreased viable S. Typhimurium counts below detectable limits within 6 and 4 h, respectively. CoQ0 at 20MIC (4 mg/mL) reduced S. Typhimurium on raw chicken by 1.5 log CFU/cm3 within 6 h. CoQ0 effectively disrupted cell membrane integrity and induced morphological changes in the cell, resulting in hyperpolarization, decreased intracellular ATP concentrations, and cellular constituents leakage. Biofilm-associated S. Typhimurium cells were killed by CoQ0 treatment. These findings suggest that CoQ0 could be applied as a natural antibacterial substance for use against S. Typhimurium by the food industry.
Collapse
Affiliation(s)
- Zhuokai Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Z.Y.); (X.M.); (X.H.); (R.W.); (P.Z.)
| | - Xiaoyu Ma
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Z.Y.); (X.M.); (X.H.); (R.W.); (P.Z.)
| | - Yan Li
- College of Innovation and Experiment, Northwest A&F University, Yangling 712100, China; (Y.L.); (H.X.); (Z.L.)
| | - Huidong Xu
- College of Innovation and Experiment, Northwest A&F University, Yangling 712100, China; (Y.L.); (H.X.); (Z.L.)
| | - Xinyi Han
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Z.Y.); (X.M.); (X.H.); (R.W.); (P.Z.)
| | - Ruixia Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Z.Y.); (X.M.); (X.H.); (R.W.); (P.Z.)
| | - Pengyu Zhao
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Z.Y.); (X.M.); (X.H.); (R.W.); (P.Z.)
| | - Ziyi Li
- College of Innovation and Experiment, Northwest A&F University, Yangling 712100, China; (Y.L.); (H.X.); (Z.L.)
| | - Chao Shi
- College of Food Science and Engineering, Northwest A&F University, Yangling 712100, China; (Z.Y.); (X.M.); (X.H.); (R.W.); (P.Z.)
- Correspondence: ; Tel.: +86-29-8709-2486; Fax: +86-29-8709-1391
| |
Collapse
|
24
|
Soltan Dallal MM, Abdi M, Khalilian M, Rajabi Z, Bakhtiari R, Sharifi Yazdi MK, Yaslianifard S, Abrishamchian Langroudi SM. Isolation, Identification, and Antibiotic Susceptibility Testing of Salmonella Isolated from Foodborne Outbreaks. INTERNATIONAL JOURNAL OF ENTERIC PATHOGENS 2020. [DOI: 10.34172/ijep.2020.18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Background: Foodborne diseases are a major problem worldwide. The epidemiological investigations in many parts of the world have shown an increase in infections caused by Salmonella serovars. Furthermore, the emergence of drug resistance among them has become a major global concern and awareness of the resistance patterns of Salmonella could be very useful in treatment of diseases. Objective: This study aimed to investigate Salmonella serotypes in foodborne outbreaks by sequencing of ITS region of 16S-23SrRNA gene and to determine their antimicrobial susceptibility pattern. Materials and Methods: A total of 614 diarrheal stool samples were collected from 173 foodborne outbreaks in different provinces of Iran during one year. Identification of Salmonella was carried out by phenotypic and molecular (16s-23srRNA gene detection) methods and antibiotic susceptibility was performed using disc diffusion method. Results: Out of 614 samples, 18 isolates were identified as Salmonella of which 16 (88.9%) isolates were Salmonella Enteritidis and 2 (11.1%) isolates as Salmonella Paratyphi A. All isolates were sensitive to ceftazidime, and high resistance was seen with nalidixic acid with 14 (77.8%) isolates. Conclusion: Increasing antibiotic resistance in many bacterial pathogens such as Salmonella has been a major threat for human health. Therefore, identifying the antibiotic resistance patterns of Salmonella serovars may help in treatment of the associated infections.
Collapse
Affiliation(s)
- Mohammad Mehdi Soltan Dallal
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
- Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Milad Abdi
- Student Research Committee, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Department of Microbiology, Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahya Khalilian
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Zahra Rajabi
- Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Ronak Bakhtiari
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Somayeh Yaslianifard
- Department of Microbiology, Medical School, Alborz University of Medical Sciences, Karaj, Iran
| | | |
Collapse
|
25
|
Song Y, Wang F, Liu Y, Song Y, Zhang L, Zhang F, Gu X, Sun S. Occurrence and Characterization of Salmonella Isolated From Chicken Breeder Flocks in Nine Chinese Provinces. Front Vet Sci 2020; 7:479. [PMID: 32903795 PMCID: PMC7438879 DOI: 10.3389/fvets.2020.00479] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 06/29/2020] [Indexed: 01/23/2023] Open
Abstract
We investigated the prevalence of salmonellosis on 17 poultry breeding farms in nine Chinese provinces (Shandong, Jiangsu, Anhui, Zhejiang, Fujian, Guangdong, Yunnan, Sichuan, and Chongqing). Altogether, 3,508 samples from poultry breeding farms were collected in 2019, including 1,400 from cloaca swabs, 210 from feed, 1,688 from chicken embryos, and 210 from water. All the samples were subjected to bacterial isolation and culture, and bacterial species were identified by polymerase chain reaction. Serotyping, multilocus sequence typing (MLST), and drug-resistance phenotyping were performed on the isolates identified as Salmonella. Altogether, 126 Salmonella strains were detected in the 3,508 samples and the positivity rate for the samples was 3.59%. Among all the strains, 95 Salmonella isolates were selected for antimicrobial susceptibility test, resistance gene detection, serotyping, and genotyping. S. gallinarum-pullorum (57/95, 60.00%), S. enteritidis (22/95, 23.16%), and S. agona (16/95, 16.84%) serotypes were identified. The MLST classification showed that the 95 Salmonella strains fell into the following five sequence types (STs): ST92 (37/95, 38.95%), ST11 (22/95, 23.16%), ST2151 (19/95, 20.00%), ST13 (16/95, 16.84%), and ST470 (1/95, 1.05%). Apart from ST13, the other four STs shared close genetic relationships, and the genetic direction was ST11-ST470-ST92-ST2151. The resistance rates in the 95 isolates were 100% (95/95) for erythromycin, 68.42% (65/95) for tetracycline, and 53.68% (51/95) for streptomycin and ampicillin, respectively. The isolates were sensitive to polymyxin and sulfamethoxazole. Multi-drug resistance was seen in 70.53% (67/95) of the isolates. β-lactam-, aminoglycoside- and sulfonamide-encoding resistance genes were detected by PCR. The detection rate for bla TEM and sul3 was 100% (95/95), whereas sul2 and aaC4 had rates of 52.63 and 23.16%, respectively. These results indicate that some of the salmonellosis seen in Chinese breeding chicken farms may be caused by infection with S. gallinarum-pullorum, S. enteritidis, and S. agona. They also show that some Salmonella isolates have multi-drug resistance phenotypes and carry multi-drug resistance genes.
Collapse
Affiliation(s)
- Yan Song
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Fangkun Wang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Yang Liu
- China Animal Disease Control Center, Beijing, China
| | - Yanying Song
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Lin Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Fuyou Zhang
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| | - Xiaoxue Gu
- China Animal Disease Control Center, Beijing, China
| | - Shuhong Sun
- Department of Preventive Veterinary Medicine, College of Veterinary Medicine, Shandong Agricultural University, Taian, China.,Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Agricultural University, Taian, China
| |
Collapse
|
26
|
Li W, Li H, Zheng S, Wang Z, Sheng H, Shi C, Shi X, Niu Q, Yang B. Prevalence, Serotype, Antibiotic Susceptibility, and Genotype of Salmonella in Eggs From Poultry Farms and Marketplaces in Yangling, Shaanxi Province, China. Front Microbiol 2020; 11:1482. [PMID: 32903897 PMCID: PMC7438954 DOI: 10.3389/fmicb.2020.01482] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 06/08/2020] [Indexed: 01/31/2023] Open
Abstract
Poultry products such as eggs provide essential nutrients to the human body and thus play vital roles in the human food network. Salmonella is one of the most notorious foodborne pathogens and has been found to be prevalent in eggs. To better understand the characteristics of Salmonella in eggs, we investigated the prevalence of Salmonella spp. in 814 fresh eggs collected from poultry farms and retail marketplaces in Yangling, Shaanxi Province, China. The serotype, genotype, and antibiotic susceptibilities of 61 Salmonella isolates recovered from the eggs were analyzed. The average detection rate of Salmonella-positive eggs was 5.6%, with 6.6% of the eggs collected from poultry farms and 5.1% from marketplaces. Thirteen serotypes were identified from the 61 isolates, among which Salmonella Typhimurium (24.5%) and Salmonella Indiana (22.9%) were the most prevalent serotypes. Other dominant serotypes included Salmonella Thompson (13.1%) and Salmonella Enteritidis (11.4%), with the remaining nine serotypes detected at low rates (1.6-4.9%). All the Salmonella isolates tested were resistant to sulfisoxazole (100.0%). The majority (77.1%) of the isolates were resistant to nalidixic acid, amoxicillin-clavulanate, and ampicillin, while nearly two-thirds (63.9-68.9%) were resistant to trimethoprim-sulfamethoxazole, kanamycin, tetracyclines, and chloramphenicol. The rate of resistance to ciprofloxacin was 40.1%; the resistance rates to streptomycin, ceftiofur, and ceftriaxone ranged from 21.3 to 26.2%; and those to gentamicin, amikacin, and cefoxitin were relatively low (3.3-16.4%). Forty-nine (80.3%) Salmonella isolates exhibited resistance to multiple antibiotics, 20 (32.8%) of which were resistant to at least 10 antibiotics. Subtyping by pulse-field gel electrophoresis revealed a close genetic relatedness of Salmonella isolates from poultry farms, in striking contrast to the high diversity of the isolates obtained from marketplaces. Isolates of the same serotype always shared identical genotype and antibiotic resistance profiles, even the ones that were recovered from eggs sampled at different locations and times. These findings indicate that diverse Salmonella spp. with high rates of multidrug resistance are prevalent in fresh eggs in the study area. More attention should be paid to egg production, transportation, and storage to prevent foodborne outbreaks caused by Salmonella.
Collapse
Affiliation(s)
- Wei Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Hao Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Shujuan Zheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Zewei Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Huanjing Sheng
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Chunlei Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Xianming Shi
- MOST-USDA Joint Research Center for Food Safety, School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | - Qinya Niu
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| | - Baowei Yang
- College of Food Science and Engineering, Northwest A&F University, Yangling, China
| |
Collapse
|
27
|
de Alcântara Rodrigues I, Ferrari RG, Panzenhagen PHN, Mano SB, Conte-Junior CA. Antimicrobial resistance genes in bacteria from animal-based foods. ADVANCES IN APPLIED MICROBIOLOGY 2020; 112:143-183. [PMID: 32762867 DOI: 10.1016/bs.aambs.2020.03.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Antimicrobial resistance is a worldwide public health threat. Farm animals are important sources of bacteria containing antimicrobial resistance genes (ARGs). Although the use of antimicrobials in aquaculture and livestock has been reduced in several countries, these compounds are still routinely applied in animal production, and contribute to ARGs emergence and spread among bacteria. ARGs are transmitted to humans mainly through the consumption of products of animal origin (PAO). Bacteria can present intrinsic resistance, and once antimicrobials are administered, this resistance may be selected and multiply. The exchange of genetic material is another mechanism used by bacteria to acquire resistance. Some of the main ARGs found in bacteria present in PAO are the bla, mcr-1, cfr and tet genes, which are directly associated to antibiotic resistance in the human clinic.
Collapse
Affiliation(s)
- Isadora de Alcântara Rodrigues
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil
| | - Rafaela Gomes Ferrari
- Chemistry Institute, Food Science Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| | | | - Sergio Borges Mano
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil
| | - Carlos Adam Conte-Junior
- Molecular and Analytical Laboratory Center, Department of Food Technology, Faculty of Veterinary, Universidade Federal Fluminense, Niterói, Brazil; Chemistry Institute, Food Science Program, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil; National Institute of Health Quality Control, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
28
|
Li Q, Yin J, Li Z, Li Z, Du Y, Guo W, Bellefleur M, Wang S, Shi H. Serotype distribution, antimicrobial susceptibility, antimicrobial resistance genes and virulence genes of Salmonella isolated from a pig slaughterhouse in Yangzhou, China. AMB Express 2019; 9:210. [PMID: 31884559 PMCID: PMC6935380 DOI: 10.1186/s13568-019-0936-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Accepted: 12/17/2019] [Indexed: 11/21/2022] Open
Abstract
Salmonella is an important food-borne pathogen associated with public health and high economic losses. To investigate the prevalence and the characteristics of Salmonella in a pig slaughterhouse in Yangzhou, a total of 80 Salmonella isolates were isolated from 459 (17.43%) samples in 2016–2017. S. Derby (35/80, 43.75%) was the most prevalent, followed by S. Rissen (16/80, 20.00%) and S. Newlands (11/80, 13.75%). The highest rates of susceptibility were observed to cefoxitin (80/80, 100.0%) and amikacin (80/80, 100.0%), followed by aztreonam (79/80, 98.75%) and nitrofurantoin (79/80, 98.75%). The highest resistance rate was detected for tetracycline (65/80, 81.25%), followed by ampicillin (60/80, 75.00%), bactrim (55/80, 68.75%), and sulfisoxazole (54/80, 67.50%). Overall, 91.25% (73/80) of the isolates were resistant to at least one antibiotic, while 71.25% (57/80) of the isolate strains were multidrug resistant in the antimicrobial susceptibility tested. In addition, 86.36% (19/22) of the 22 antimicrobial resistance genes in the isolates were identified. Our data indicated that the resistance to certain antimicrobials was significantly associated, in part, with antimicrobial resistance genes. Furthermore, 81.25% (65/80) isolates harbored the virulence gene of mogA, of which 2 Salmonella Typhimurium isolates carried the mogA, spvB and spvC virulence genes at the same time. The results showed that swine products in the slaughterhouse were contaminated with multidrug resistant Salmonella commonly, especially some isolates carry the spv virulence genes. The virulence genes might facilitate the dissemination of the resistance genes to consumers along the production chain, suggesting the importance of controlling Salmonella during slaughter for public health.
Collapse
|
29
|
Dantas STA, Camargo CH, Tiba-Casas MR, Vivian RC, Pinto JPAN, Pantoja JCF, Hernandes RT, Fernandes Júnior A, Rall VLM. Environmental persistence and virulence of Salmonella spp. Isolated from a poultry slaughterhouse. Food Res Int 2019; 129:108835. [PMID: 32036904 DOI: 10.1016/j.foodres.2019.108835] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Revised: 11/12/2019] [Accepted: 11/18/2019] [Indexed: 02/07/2023]
Abstract
Salmonella spp. is responsible for severe foodborne disease, and is one of the main agents involved in foodborne outbreaks worldwide. Contamination occurs mainly as a result of poultry and egg consumption since they can carry some serotypes pathogenic to humans. The aim of the study was to evaluate the persistence and pathogenic potential of Salmonella spp. (n = 40) isolated from poultry slaughterhouse mats, using adhesion and invasion assays, antimicrobial susceptibility by disc diffusion, and biofilm production as phenotypic tests and genotypic analyses. Polystyrene mats presented 3.2 times greater chance of isolating Salmonella than canvas mats. Besides, we observed resistance to tetracycline (17.5%), ampicillin (10%), cefotaxime (7.5%), trimethoprim-sulfamethoxazole (5%), and chloramphenicol (2.5%). All strains possessed the invA, sipB, sipD, ssaR, sifA, sitC, iroN, tolC, flgK, fljB, and flgL genes. The genes sopB and sipA were both present in 92.5% of the isolates, while sopD and spvB were observed in 90% and 32.5% of strains, respectively. All strains adhered to and invaded HeLa cells. Regarding biofilm production, 31 (77.5%) strains were able to produce biofilm on polystyrene microplates. Using PFGE, we detected the persistence of clones in the environment for up to 18 fromthe 20 weeks. The ability of these strains to produce a biofilm and thus persist in the environment and disperse through contact surfaces in the processing plant favors the contamination of food, aggravated by the pathogenic potential of these isolates demonstrated by their adhesion capacity, invasion and resistance to various antibiotic agents.
Collapse
Affiliation(s)
- Stéfani T A Dantas
- Department of Microbiology and Immunology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Carlos H Camargo
- Adolfo Lutz Institute Bacteriology Division, São Paulo, SP, Brazil
| | | | - Ricardo C Vivian
- Departament of Veterinary Hygiene and Public Health, Faculty of Veterinary Medicine, São Paulo State University, Botucatu, SP, Brazil
| | - José P A N Pinto
- Departament of Veterinary Hygiene and Public Health, Faculty of Veterinary Medicine, São Paulo State University, Botucatu, SP, Brazil
| | - José C F Pantoja
- Departament of Veterinary Hygiene and Public Health, Faculty of Veterinary Medicine, São Paulo State University, Botucatu, SP, Brazil
| | - Rodrigo T Hernandes
- Department of Microbiology and Immunology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Ary Fernandes Júnior
- Department of Microbiology and Immunology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil
| | - Vera L M Rall
- Department of Microbiology and Immunology, Institute of Biosciences, São Paulo State University, Botucatu, SP, Brazil.
| |
Collapse
|
30
|
Dallal MMS, Nikkhahi F, Alimohammadi M, Douraghi M, Rajabi Z, Foroushani AR, Azimi A, Fardsanei F. Phage Therapy as an Approach to Control Salmonella enterica serotype Enteritidis Infection in Mice. Rev Soc Bras Med Trop 2019; 52:e20190290. [PMID: 31778422 DOI: 10.1590/0037-8682-0290-2019] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2019] [Accepted: 10/04/2019] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Salmonella enterica serotype Enteritidis (S. Enteritidis) is a cause of food-borne human illness. Given the prevalence of antibiotic resistance of Salmonella Enteritidis and the lack of antibiotic efficacy in future years, its replacement with other agents is necessary. One of the most useful agents is bacteriophages. METHODS S. Enteritidis was identified using a multiplex polymerase chain reaction assay. The effective bacteriophages were isolated from hospital wastewater samples. The effects of the bacteriophages were evaluated both in vitro and in vivo. RESULTS The phage SE20 belonged to the Podoviridae family, and the genome size was 40 kb. The evaluation of phage SE20 at variable pH ranges showed its susceptibility to pH < 3 and pH > 12. The animal model showed that mice infected with S. Enteritidis developed hepatomegaly and splenomegaly, but did not experience gastrointestinal complications after receiving the bacteriophages. CONCLUSIONS The results of this study suggest that phage SE20 is a promising candidate for controlling salmonellosis caused by Salmonella Enteritidis.
Collapse
Affiliation(s)
- Mohammad Mehdi Soltan Dallal
- Division of Food Microbiology, Department of Pathobiology, School of Public Health (TUMS), Tehran, Iran.,Food Microbiology Research Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Farhad Nikkhahi
- Division of Medical Bacteriology, Department of Pathobiology, School of Public Health (TUMS), Tehran, Iran.,Medical Microbiology Research Center, Qazvin University of Medical Science, Qazvin, Iran
| | - Mahmoud Alimohammadi
- Environmental Health Engineering Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Masoumeh Douraghi
- Food Microbiology Research Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Division of Medical Bacteriology, Department of Pathobiology, School of Public Health (TUMS), Tehran, Iran
| | - Zahra Rajabi
- Food Microbiology Research Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran
| | - Abbas Rahimi Foroushani
- Department of Epidemiology and Biostatistics, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Akram Azimi
- Food Microbiology Research Center, Tehran University of Medical Sciences (TUMS), Tehran, Iran.,Medical Microbiology Research Center, Qazvin University of Medical Science, Qazvin, Iran
| | - Fatemeh Fardsanei
- Division of Medical Bacteriology, Department of Pathobiology, School of Public Health (TUMS), Tehran, Iran
| |
Collapse
|
31
|
Maia DSV, Haubert L, Würfel SDFR, Kroning IS, Cardoso MRDI, Lopes GV, Fiorentini ÂM, da Silva WP. Listeria monocytogenes in sliced cheese and ham from retail markets in southern Brazil. FEMS Microbiol Lett 2019; 366:5675628. [PMID: 31834356 DOI: 10.1093/femsle/fnz249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 12/11/2019] [Indexed: 01/11/2023] Open
Abstract
The aims of this study were to evaluate the occurrence of Listeria monocytogenes and Salmonella spp. in sliced cheese and ham from retail markets in southern Brazil, as well as to perform molecular characterization and to assess the antimicrobial resistance profile of the isolates. Samples (n = 160) of sliced cheese and ham were collected at retail level from the city of Pelotas, Brazil. The isolation of L. monocytogenes and Salmonella spp. was performed and the isolates were confirmed by PCR, submitted to antimicrobial susceptibility testing and pulsed-field gel electrophoresis (PFGE). Listeria monocytogenes was found in 9.4% (15/160) of the samples. All L. monocytogenes isolates were positive for the prs, inlA, inlC and inlJ genes. Salmonella spp. was not isolated. Regarding the antimicrobial susceptibility, one (6.6%) L. monocytogenes isolate was resistant to streptomycin and four (26.6%) to clindamycin. Macrorestriction analysis with ApaI and AscI enzymes yielded two major PFGE groups I and II. All L. monocytogenes isolates showed virulence genes, and some of them were resistant to clinically used antimicrobials, representing a risk to public health. Moreover, PFGE patterns with high similarity were visualized in L. monocytogenes isolates at different times, demonstrating adaptability of the pathogen at retail level in the region.
Collapse
Affiliation(s)
| | - Louise Haubert
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas,Pelotas, Brazil
| | | | - Isabela Schneid Kroning
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas,Pelotas, Brazil
| | | | - Graciela Völz Lopes
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas,Pelotas, Brazil
| | - Ângela Maria Fiorentini
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas,Pelotas, Brazil
| | - Wladimir Padilha da Silva
- Departamento de Ciência e Tecnologia Agroindustrial, Universidade Federal de Pelotas,Pelotas, Brazil.,Núcleo de Biotecnologia, Centro de Desenvolvimento Tecnológico, Universidade Federal de Pelotas, Pelotas, Brazil
| |
Collapse
|
32
|
Zhang D, Zhuang L, Wang C, Zhang P, Zhang T, Shao H, Han X, Gong J. Virulence Gene Distribution of Salmonella Pullorum Isolates Recovered from Chickens in China (1953-2015). Avian Dis 2019; 62:431-436. [PMID: 31119928 DOI: 10.1637/11927-071318-resnote.1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 11/05/2022]
Abstract
Salmonella enterica subspecies enterica serovar Gallinarum biovar Pullorum (Salmonella Pullorum) has strict host specificity for poultry, and pullorum disease seriously threatens the poultry industry. Virulence genes play a central role in Salmonella pathogenicity, but very few reports are available on the distribution of virulence genes in Salmonella Pullorum. In this study, we investigated 304 Salmonella Pullorum isolates recovered from chickens in China between 1953 and 2015 for the presence of 25 Salmonella virulence genes (invA, orgA, prgH, sitC, spaN, sifA, spiA, ttrC, mgtB, misL, siiE, spi4D, pipA, sipB, sopB, sefA, cdtB, pagC, shdA, msgA, lpfC, tolC, iroN, pefA, and spvB), including pathogenicity island genes, fimbriae genes, and virulence plasmid genes. PCR showed that 15 of the 25 virulence genes were present in all isolates tested, whereas cdtB was not present in any isolate. The presence rates of the remaining genes ranged from 97.7% to 99.7%. The variation rates of these virulence genes was low, and no significant differences were identified in the distribution of virulence genes over time. On the basis of the distribution of these virulence genes, the 304 Salmonella Pullorum isolates were divided into 10 virulence genotypes. The major genotype, which comprised 93.4% of all isolates, included isolates that carried 24 of the virulence genes assessed. The results of this study will help in the characterization of Salmonella Pullorum and in the study of the correlation between virulence genotypes and pathogenicity.
Collapse
Affiliation(s)
- Di Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, China.,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225002, China
| | - Linlin Zhuang
- State Key Laboratory of Bioelectronics, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Chengming Wang
- Department of Pathobiology, Auburn University College of Veterinary Medicine, Auburn AL 36849
| | - Ping Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, China
| | - Tengfei Zhang
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Huabin Shao
- Key Laboratory of Prevention and Control Agents for Animal Bacteriosis, Institute of Animal Husbandry and Veterinary, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
| | - Xiangan Han
- Shanghai Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Shanghai 200241, China,
| | - Jiansen Gong
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu 225125, China, .,Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonoses, Yangzhou University, Yangzhou, Jiangsu 225002, China,
| |
Collapse
|
33
|
Yang J, Ju Z, Yang Y, Zhao X, Jiang Z, Sun S. Serotype, antimicrobial susceptibility and genotype profiles of Salmonella isolated from duck farms and a slaughterhouse in Shandong province, China. BMC Microbiol 2019; 19:202. [PMID: 31477003 PMCID: PMC6720067 DOI: 10.1186/s12866-019-1570-z] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Accepted: 08/12/2019] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Salmonella has been considered as one of the most important foodborne pathogens that threatened breeding industry and public health. To investigate the prevalence and characterization of Salmonella isolated from duck farms and a slaughterhouse in Shandong province, a total of 49 Salmonella strains were isolated from 2342 samples from four duck farms and one duck slaughterhouse in Jinan and Tai'an, Shandong province, China. RESULTS Among the isolates, S. Enteritidis (20/49, 40.8%) and S. Anatum (10/49, 20.4%) were the most prevalent, and high resistance rates were detected for erythromycin (49/49, 100.0%) and nalidixic acid (47/49, 95.9%). Class I integrons were detected in 17 isolates (34.7%17/49), which contained gene cassettes aadA7 + aac3-Id(15/17) and aadA5 + dfrA17 (2/17). Eleven different kinds of resistance genes were detected while blaTEM(36/49, 73.5%) was the most prevalent, followed by sul2(14/49, 28.6%). Thirteen virulence genes were tested, and all of the strains carried invA, hilA and sipA. Multilocus sequence typing (MLST) results showed that seven sequence types (STs) were identified; ST11 was the most prevalent ST (20/49, 40.8%), followed by ST2441 (10/49, 20.4%). There was a strong correlation between STs and serovars. The results of pulsed field gel electrophoresis(PFGE) showed that 39 PFGE patterns were generated from 49 Salmonella strains. PFGE patterns were mostly diverse and revealed high similarity between the isolates from the same sampling sites. CONCLUSIONS The presence of Salmonella infections among duck farms revealed that ducks could also be potential reservoirs for Salmonella. The high resistance rates against commonly used antimicrobials suggested a need for more reasonable use of antimicrobials, as well as for investigating substitutes for antimicrobials.
Collapse
Affiliation(s)
- Jie Yang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Daizong Street 61, Tai’an, 271018 China
| | - Zijing Ju
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Daizong Street 61, Tai’an, 271018 China
| | - Yi Yang
- College of Veterinary Medicine, Yangzhou University, Yangzhou, 225009 China
| | - Xiaonan Zhao
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Daizong Street 61, Tai’an, 271018 China
| | - Zhiyu Jiang
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Daizong Street 61, Tai’an, 271018 China
| | - Shuhong Sun
- College of Animal Science and Technology, Shandong Provincial Key Laboratory of Animal Biotechnology and Disease Control and Prevention, Shandong Provincial Engineering Technology Research Center of Animal Disease Control and Prevention, Shandong Agricultural University, Daizong Street 61, Tai’an, 271018 China
| |
Collapse
|
34
|
González F, Araque M. Molecular typing, antibiotic resistance profiles and biocide susceptibility in Salmonella enterica serotypes isolated from raw chicken meat marketed in Venezuela. Germs 2019; 9:81-88. [PMID: 31341835 DOI: 10.18683/germs.2019.1161] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 05/13/2019] [Accepted: 05/23/2019] [Indexed: 11/08/2022]
Abstract
Introduction Salmonella is a common bacterial cause of foodborne diarrhea worldwide. The purpose of this study was to characterize antimicrobial resistance and susceptibility to biocides in Salmonella enterica serotypes isolated from raw chicken meat, as well as to study the genetic relationship between strains and virulence profiles. Methods Nine Salmonella enterica strains (5 S. Heidelberg; 2 S. Enteritidis; 1 S. Typhimurium and 1 S. Meleagridis) recovered from raw chicken meat marketed in the urban area of Mérida, Venezuela, were studied. Phenotypic characterization was based on antimicrobial susceptibility testing as well as detection of extended-spectrum β-lactamases (ESBLs) by double-disc synergy. The susceptibility to biocides was determined using the dilution-neutralization methods. The detection of quinolone resistance-determining regions of gyrA, gyrB, and parC genes, bla ESBLs genes, plasmid-mediated quinolone resistance determinants and virulence genes (invA and spvC) was carried out by PCR. All strains were typed using PFGE. Results Multidrug-resistance was evident in 6 of 9 strains studied. However, all Salmonella serotypes were susceptible to the tested biocides. Genotypic characterization determined that 5 strains harbored the bla CTXM-2, 4 bla TEM-1 and 3 qnrB19 genes. All strains were positive for the invA gene. The spvC gene was detected in 4 of them. PFGE grouped Salmonella strains into 4 different patterns that represented individual serotypes. Conclusions This study provides valuable information on antibiotic resistance, biocide susceptibility profiles, virulence gene content and genetic diversity of Salmonella enterica serotypes isolated from raw chicken meat marketed in Venezuela, and evidenced a health risk for consumers.
Collapse
Affiliation(s)
- Fanny González
- MSc, Laboratorio de Microbiología Molecular, Departamento de Microbiología, Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida 5101, Venezuela
| | - María Araque
- MD, PhD, Laboratorio de Microbiología Molecular, Departamento de Microbiología, Facultad de Farmacia y Bioanálisis, Universidad de Los Andes, Mérida 5101, Venezuela
| |
Collapse
|
35
|
Eshaghi Zadeh SH, Fahimi H, Fardsanei F, Soltan Dallal MM. Antimicrobial Resistance and Presence of Class 1 Integrons Among Different Serotypes of Salmonella spp. Recovered From Children with Diarrhea in Tehran, Iran. Infect Disord Drug Targets 2019; 20:160-166. [PMID: 30706828 DOI: 10.2174/1871526519666190130171020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 12/24/2018] [Accepted: 01/23/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Salmonellosis is a major food-borne disease worldwide. The increasing prevalence of antimicrobial resistance among food-borne pathogens such as Salmonella spp. is concerning. OBJECTIVE The main objective of this study is to identify class 1 integron genes and to determine antibiotic resistance patterns among Salmonella isolates from children with diarrhea. METHODS A total of 30 Salmonella isolates were recovered from children with diarrhea. The isolates were characterized for antimicrobial susceptibility and screened for the presence of class 1 integron genes (i.e. intI1, sulI1, and qacEΔ1). RESULTS The most prevalent serotype was Enteritidis 36.7%, followed by Paratyphi C (30%), and Typhimurium (16.7%). The highest rates of antibiotic resistance were obtained for nalidixic acid (53.3%), followed by streptomycin (40%), and tetracycline (36.7%). Regarding class 1 integrons, 36.7%, 26.7%, and 33.3% of the isolates carried intI1, SulI, and qacEΔ1, respectively, most of which (81.8%) were multidrug-resistant (MDR). Statistical analysis revealed that the presence of class 1 integron was significantly associated with resistance to streptomycin and tetracycline (p = 0.042). However, there was no association between class 1 integron and other antibiotics used in this study (p > 0.05). CONCLUSION The high frequency of integron class 1 gene in MDR Salmonella strains indicates that these mobile genetic elements are versatile among different Salmonella serotypes, and associated with reduced susceptibility to many antimicrobials.
Collapse
Affiliation(s)
- Seyedeh Hanieh Eshaghi Zadeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hossein Fahimi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Fardsanei
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Science, Tehran, Iran
| | - Mohammad Mehdi Soltan Dallal
- Division of Microbiology, Department of Pathobiology, School of Public Health, Tehran University of Medical Science, Tehran, Iran.,Food Microbiology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
36
|
Antibiotic susceptibility and molecular characterization of Salmonella enterica serovar Paratyphi B isolated from vegetables and processing environment in Malaysia. Int J Food Microbiol 2019; 290:180-183. [DOI: 10.1016/j.ijfoodmicro.2018.09.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Revised: 08/16/2018] [Accepted: 09/21/2018] [Indexed: 12/21/2022]
|
37
|
Van Ba H, Seo HW, Seong PN, Kang SM, Cho SH, Kim YS, Park BY, Moon SS, Kang SJ, Choi YM, Kim JH. The fates of microbial populations on pig carcasses during slaughtering process, on retail cuts after slaughter, and intervention efficiency of lactic acid spraying. Int J Food Microbiol 2019; 294:10-17. [PMID: 30711888 DOI: 10.1016/j.ijfoodmicro.2019.01.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 12/27/2018] [Accepted: 01/24/2019] [Indexed: 11/26/2022]
Abstract
This study was conducted to detect and identify microbial populations on pig carcasses at different slaughtering stages and on retail pork cuts at 24 h after slaughter as well as to evaluate the intervention efficiency of sprays containing different concentrations (2% and 4%) of lactic acid. The sprays were applied to the carcass surfaces at the end of the slaughter line. Microbial samples were collected from carcass surfaces after bleeding and after eviscerating, and from retail cuts at 24 h after chilling/spraying. The detected microorganisms were identified through using a Microflex identification instrument and 16S rRNA gene sequencing. The diversity of the bacterial genera; Staphylococcus, Salmonella, Shigella, Enterococci, Escherichia, Acinetobacter and Corynebacterium spp. showed counts ranging from 2.70 to 4.91 log10 cfu/100 cm2 on the carcasses during slaughter. Most of these genera were also detected on the carcasses after 24 h of chilling. Three species (Staphylococcus hyicus, Acinetobacter albensis, and Corynebacterium xerosis) were also found on the retail cuts of non-sprayed carcasses but not on those of the sprayed groups. Significantly greater reductions in all bacterial species were observed on the carcasses and retail cuts that were sprayed with lactic acid, particularly at the 4% level. Thus, spraying with 4% lactic acid may be an effective intervention for controlling bacterial contamination on pig carcasses to improve the microbiological safety of pork meat.
Collapse
Affiliation(s)
- Hoa Van Ba
- National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Hyun-Woo Seo
- National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Pil-Nam Seong
- National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Sun-Moon Kang
- National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Soo-Huyn Cho
- National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Yoon-Seok Kim
- National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Beom-Young Park
- National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea
| | - Sung-Sil Moon
- Sunjin Meat Research Center, Ansung 17532, Republic of Korea
| | - Se-Ju Kang
- National Institute of Agricultural Sciences, RDA, Wanju 55365, Republic of Korea
| | - Yong-Min Choi
- National Institute of Agricultural Sciences, RDA, Wanju 55365, Republic of Korea
| | - Jin-Hyoung Kim
- National Institute of Animal Science, Rural Development Administration, Wanju 55365, Republic of Korea.
| |
Collapse
|
38
|
Fang LX, Deng GH, Jiang Q, Cen DJ, Yang RS, Feng YY, Xia J, Sun J, Liu YH, Zhang Q, Liao XP. Clonal expansion and horizontal transmission of epidemic F2:A1:B1 plasmids involved in co-spread ofrmtBwithqepAandblaCTX-M-27 in extensively drug-resistantSalmonella entericaserovar Indiana isolates. J Antimicrob Chemother 2018; 74:334-341. [DOI: 10.1093/jac/dky441] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Accepted: 09/27/2018] [Indexed: 12/19/2022] Open
Affiliation(s)
- Liang-Xing Fang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| | - Guo-Hui Deng
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| | - Qi Jiang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| | - Dao-Ji Cen
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| | - Run-Shi Yang
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| | - Yun-Yun Feng
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| | - Jing Xia
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| | - Jian Sun
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| | - Ya-Hong Liu
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| | - Qijing Zhang
- Department of Veterinary Microbiology and Preventive Medicine, College of Veterinary Medicine, Iowa State University, Ames, IA, USA
| | - Xiao-Ping Liao
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou, P. R. China
- Laboratory of Veterinary Pharmacology, College of Veterinary Medicine, South China Agricultural University, Guangzhou, P. R. China
| |
Collapse
|
39
|
Development of a Capture ELISA for Rapid Detection of Salmonella enterica in Food Samples. FOOD ANAL METHOD 2018. [DOI: 10.1007/s12161-018-1363-2] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
40
|
Barilli E, Bacci C, StellaVilla Z, Merialdi G, D’Incau M, Brindani F, Vismarra A. Antimicrobial resistance, biofilm synthesis and virulence genes in Salmonella isolated from pigs bred on intensive farms. Ital J Food Saf 2018; 7:7223. [PMID: 30046559 PMCID: PMC6036996 DOI: 10.4081/ijfs.2018.7223] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 02/19/2018] [Accepted: 02/28/2018] [Indexed: 11/23/2022] Open
Abstract
Salmonella is the second cause of food-borne infection in humans in the USA and Europe. Pigs represent the second most important reservoir for the pathogen and the consumption of pork meat is a major risk factor for human salmonellosis. Here, we evaluated the virulence patterns of eleven Salmonella isolated from pigs (carcasses and faces) bred in intensive farms in the north of Italy. The two serotypes identified were S. Typhimurium and its monophasic variant 1,4,5,12:i:-. None of the isolates was an ESBL producer, as confirmed also by PCR. However, the presence of a multi-drug resistant pattern was evident, with all the isolates being resistant to at least to five antimicrobial agents belonging to various classes. Moreover, six out of eleven isolates showed important resistance profiles, such as resistance against colistin and ciprofloxacin, with nine to twelve recorded resistances. The isolates were negative for the biofilm synthesis test, while four different virulotypes were characterized. All the isolates showed the presence of invA, hilA, stn, ssrA, sipC. One sample also harbored ssaR and spvC genes. One strain was positive for all the virulence genes tested and was resistant to 12 antimicrobial agents. The present study contributes new data to the surveillance program for antibiotic resistance. Furthermore, the presence of eleven highly virulent isolates poses concern for human health in relation to their diffusion in the environment.
Collapse
Affiliation(s)
- Elena Barilli
- Department of Veterinary Sciences, University of Parma
| | | | | | - Giuseppe Merialdi
- Istituto Zooprofilattico Sperimentale della Lombardia, Emilia Romagna, Bologna
| | - Mario D’Incau
- Istituto Zooprofilattico Sperimentale della Lombardia, Emilia Romagna, Brescia, Italy
| | | | | |
Collapse
|
41
|
The effects of pre-and post-slaughter spray application with organic acids on microbial population reductions on beef carcasses. Meat Sci 2018; 137:16-23. [DOI: 10.1016/j.meatsci.2017.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 10/27/2017] [Accepted: 11/02/2017] [Indexed: 11/16/2022]
|
42
|
Soto MJ, Retamales J, Palza H, Bastías R. Encapsulation of specific Salmonella Enteritidis phage f3αSE on alginate-spheres as a method for protection and dosification. ELECTRON J BIOTECHN 2018. [DOI: 10.1016/j.ejbt.2017.11.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
|