1
|
Cornejo S, Barber C, Thoresen M, Lawrence M, Seo KS, Woolums A. Synthetic antimicrobial peptides Bac-5, BMAP-28, and Syn-1 can inhibit bovine respiratory disease pathogens in vitro. Front Vet Sci 2024; 11:1430919. [PMID: 39188903 PMCID: PMC11345158 DOI: 10.3389/fvets.2024.1430919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 07/25/2024] [Indexed: 08/28/2024] Open
Abstract
Mass treatment with antibiotics at arrival has been the mainstay for bovine respiratory disease (BRD) control but there is an increase in antimicrobial-resistant bacteria being shed from treated cattle. BRD is a disease complex that results from the interaction of viruses or bacteria and susceptible animals with inappropriate immunity. With bacteria being the only feasibly treatable agent and the emergence of antimicrobial resistance, decreased efficacy of commonly used antibiotics could threaten livestock health. There is a need for new antimicrobial alternatives that could be used to control disease. Naturally occurring antimicrobial peptides (AMP) have been proposed to address this need. Here we tested the effect of bovine myeloid antimicrobial peptide-28 (BMAP-28), a synthetic BMAP-28 analog Syn-1, and bactenecin 5 (Bac-5) on Mannheimia haemolytica (Mh) using a quantitative culture method and the broth microdilution method to determine minimum inhibitory and bactericidal concentrations (MIC and MBC). We also tested the antiviral effect of these AMP against bovine herpes-1 (BHV-1) and bovine respiratory syncytial virus (BRSV) using the Reed and Muench method to calculate the viral titers after treatment. We demonstrated that BMAP-28 and Syn-1 can inhibit Mh growth and BMAP-28 can inhibit replication of BHV-1 and BRSV. Moreover, we showed that BMAP-28 and Bac-5 can be used together to inhibit Mh growth. When used alone, the MIC of BMAP-28 and Bac-5 was 64 and 128 μg/mL respectively, but when applied together, their MIC ranged from 0.25-16 for BMAP-28 and 8-64 μg/mL for Bac-5, resulting in a decrease in concentration of up to 256 and 16-fold, respectively. The synergistic interaction between those peptides resulted in concentrations that could be well tolerated by cells. Our results demonstrate that bovine cathelicidins could be used as alternatives to antimicrobials against BRD pathogens. These findings introduce a path to discovering new antimicrobials and determining how these peptides could be tailored to improve cattle health.
Collapse
Affiliation(s)
- Santiago Cornejo
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Cassandra Barber
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Merrilee Thoresen
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Mark Lawrence
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Keun Seok Seo
- Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| | - Amelia Woolums
- Department of Pathobiology and Population Medicine, College of Veterinary Medicine, Mississippi State University, Mississippi State, MS, United States
| |
Collapse
|
2
|
Ruiz-Mazón L, Ramírez-Rico G, de la Garza M. Lactoferrin Affects the Viability of Bacteria in a Biofilm and the Formation of a New Biofilm Cycle of Mannheimia haemolytica A2. Int J Mol Sci 2024; 25:8718. [PMID: 39201405 PMCID: PMC11355051 DOI: 10.3390/ijms25168718] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 07/30/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Respiratory diseases in ruminants are responsible for enormous economic losses for the dairy and meat industry. The main causative bacterial agent of pneumonia in ovine is Mannheimia haemolytica A2. Due to the impact of this disease, the effect of the antimicrobial protein, bovine lactoferrin (bLf), against virulence factors of this bacterium has been studied. However, its effect on biofilm formation has not been reported. In this work, we evaluated the effect on different stages of the biofilm. Our results reveal a decrease in biofilm formation when bacteria were pre-incubated with bLf. However, when bLf was added at the start of biofilm formation and on mature biofilm, an increase was observed, which was visualized by greater bacterial aggregation and secretion of biofilm matrix components. Additionally, through SDS-PAGE, a remarkable band of ~80 kDa was observed when bLf was added to biofilms. Therefore, the presence of bLf on the biofilm was determined through the Western blot and Microscopy techniques. Finally, by using Live/Dead staining, we observed that most of the bacteria in a biofilm with bLf were not viable. In addition, bLf affects the formation of a new biofilm cycle. In conclusion, bLf binds to the biofilm of M. haemolytica A2 and affects the viability of bacteria and the formation a new biofilm cycle.
Collapse
Affiliation(s)
- Lucero Ruiz-Mazón
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico 07360, Mexico; (L.R.-M.); (G.R.-R.)
| | - Gerardo Ramírez-Rico
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico 07360, Mexico; (L.R.-M.); (G.R.-R.)
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Km 2.5 Carretera Cuautitlán-Teoloyucan, Cuautitlán Izcalli 54714, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ciudad de Mexico 07360, Mexico; (L.R.-M.); (G.R.-R.)
| |
Collapse
|
3
|
Ramírez-Rico G, Ruiz-Mazón L, Reyes-López M, Rivillas Acevedo L, Serrano-Luna J, de la Garza M. Apo-Lactoferrin Inhibits the Proteolytic Activity of the 110 kDa Zn Metalloprotease Produced by Mannheimia haemolytica A2. Int J Mol Sci 2024; 25:8232. [PMID: 39125801 PMCID: PMC11311601 DOI: 10.3390/ijms25158232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Mannheimia haemolytica is the main etiological bacterial agent in ruminant respiratory disease. M. haemolytica secretes leukotoxin, lipopolysaccharides, and proteases, which may be targeted to treat infections. We recently reported the purification and in vivo detection of a 110 kDa Zn metalloprotease with collagenase activity (110-Mh metalloprotease) in a sheep with mannheimiosis, and this protease may be an important virulence factor. Due to the increase in the number of multidrug-resistant strains of M. haemolytica, new alternatives to antibiotics are being explored; one option is lactoferrin (Lf), which is a multifunctional iron-binding glycoprotein from the innate immune system of mammals. Bovine apo-lactoferrin (apo-bLf) possesses many properties, and its bactericidal and bacteriostatic effects have been highlighted. The present study was conducted to investigate whether apo-bLf inhibits the secretion and proteolytic activity of the 110-Mh metalloprotease. This enzyme was purified and sublethal doses of apo-bLf were added to cultures of M. haemolytica or co-incubated with the 110-Mh metalloprotease. The collagenase activity was evaluated using zymography and azocoll assays. Our results showed that apo-bLf inhibited the secretion and activity of the 110-Mh metalloprotease. Molecular docking and overlay assays showed that apo-bLf bound near the active site of the 110-Mh metalloprotease, which affected its enzymatic activity.
Collapse
Affiliation(s)
- Gerardo Ramírez-Rico
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Estado de México 54714, Mexico;
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (L.R.-M.); (M.R.-L.); (J.S.-L.)
| | - Lucero Ruiz-Mazón
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (L.R.-M.); (M.R.-L.); (J.S.-L.)
| | - Magda Reyes-López
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (L.R.-M.); (M.R.-L.); (J.S.-L.)
| | - Lina Rivillas Acevedo
- Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca 62209, Mexico;
| | - Jesús Serrano-Luna
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (L.R.-M.); (M.R.-L.); (J.S.-L.)
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 07360, Mexico; (L.R.-M.); (M.R.-L.); (J.S.-L.)
| |
Collapse
|
4
|
Rosales-Islas V, Ramírez-Paz-Y-Puente GA, Montes-García F, Vázquez-Cruz C, Sánchez-Alonso P, Zenteno E, Negrete-Abascal E. Isolation and characterization of a Mannheimiahaemolytica secreted serine protease that degrades sheep and bovine fibrinogen. Microb Pathog 2024; 192:106706. [PMID: 38763316 DOI: 10.1016/j.micpath.2024.106706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
Mannheimiahaemolytica is an opportunistic agent of the respiratory tract of bovines, a member of the Pasteurellaceae family, and the causal agent of fibrinous pleuropneumonia. This bacterium possesses different virulence factors, allowing it to colonize and infect its host. The present work describes the isolation and characterization of a serine protease secreted by M. haemolytica serotype 1. This protease was isolated from M. haemolytica cultured media by precipitation with 50 % methanol and ion exchange chromatography on DEAE-cellulose. It is a 70-kDa protease able to degrade sheep and bovine fibrinogen or porcine gelatin but not bovine IgG, hemoglobin, or casein. Mass spectrometric analysis indicates its identity with protease IV of M. haemolytica. The proteolytic activity was active between pH 5 and 9, with an optimal pH of 8. It was stable at 50 °C for 10 min but inactivated at 60 °C. The sera of bovines with chronic or acute pneumonia recognized this protease. Still, it showed no cross-reactivity with rabbit hyperimmune serum against the secreted metalloprotease from Actinobacilluspleuropneumoniae, another member of the Pasteurellaceae family. M. haemolytica secreted proteases could contribute to the pathogenesis of this bacterium through fibrinogen degradation, a characteristic of this fibrinous pleuropneumonia.
Collapse
Affiliation(s)
- Verónica Rosales-Islas
- Facultad de Estudios Superiores Iztacala, UNAM, Av. De Los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Edo de México, Mexico
| | | | - Fernando Montes-García
- Facultad de Estudios Superiores Iztacala, UNAM, Av. De Los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Edo de México, Mexico
| | | | | | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Erasmo Negrete-Abascal
- Facultad de Estudios Superiores Iztacala, UNAM, Av. De Los Barrios 1, Los Reyes Iztacala, 54090, Tlalnepantla, Edo de México, Mexico.
| |
Collapse
|
5
|
Ramírez-Rico G, Martinez-Castillo M, Ruiz-Mazón L, Meneses-Romero EP, Palacios JAF, Díaz-Aparicio E, Abascal EN, de la Garza M. Identification, Biochemical Characterization, and In Vivo Detection of a Zn-Metalloprotease with Collagenase Activity from Mannheimia haemolytica A2. Int J Mol Sci 2024; 25:1289. [PMID: 38279292 PMCID: PMC10816954 DOI: 10.3390/ijms25021289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/14/2024] [Accepted: 01/18/2024] [Indexed: 01/28/2024] Open
Abstract
Respiratory diseases in ruminants are a main cause of economic losses to farmers worldwide. Approximately 25% of ruminants experience at least one episode of respiratory disease during the first year of life. Mannheimia haemolytica is the main etiological bacterial agent in the ruminant respiratory disease complex. M. haemolytica can secrete several virulence factors, such as leukotoxin, lipopolysaccharide, and proteases, that can be targeted to treat infections. At present, little information has been reported on the secretion of M. haemolytica A2 proteases and their host protein targets. Here, we obtained evidence that M. haemolytica A2 proteases promote the degradation of hemoglobin, holo-lactoferrin, albumin, and fibrinogen. Additionally, we performed biochemical characterization for a specific 110 kDa Zn-dependent metalloprotease (110-Mh metalloprotease). This metalloprotease was purified through ion exchange chromatography and characterized using denaturing and chaotropic agents and through zymography assays. Furthermore, mass spectrometry identification and 3D modeling were performed. Then, antibodies against the 110 kDa-Mh metalloprotease were produced, which achieved great inhibition of proteolytic activity. Finally, the antibodies were used to perform immunohistochemical tests on postmortem lung samples from sheep with suggestive histology data of pneumonic mannheimiosis. Taken together, our results strongly suggest that the 110-Mh metalloprotease participates as a virulence mechanism that promotes damage to host tissues.
Collapse
Affiliation(s)
- Gerardo Ramírez-Rico
- Faculty of Professional Studies Cuautitlan, Autonomous National University of Mexico (UNAM), Mexico City 54714, Mexico;
- Department of Cell Biology, Center for Research and Advanced Studies, Mexico City 07360, Mexico;
| | - Moises Martinez-Castillo
- Liver, Pancreas and Motility Laboratory, Unit of Research in Experimental Medicine, School of Medicine, Autonomous National University of Mexico (UNAM), Mexico City 06726, Mexico;
| | - Lucero Ruiz-Mazón
- Department of Cell Biology, Center for Research and Advanced Studies, Mexico City 07360, Mexico;
| | | | | | - Efrén Díaz-Aparicio
- National Center for Disciplinary Research in Animal Health and Safety, National Institute of Forestry, Agricultural and Livestock Research (INIFAP), Mexico City 05110, Mexico
| | - Erasmo Negrete Abascal
- Faculty of Professional Studies Iztacala, Autonomous National University of Mexico (UNAM), Mexico City 54090, Mexico;
| | - Mireya de la Garza
- Department of Cell Biology, Center for Research and Advanced Studies, Mexico City 07360, Mexico;
| |
Collapse
|
6
|
Jiao Z, Jiang J, Meng Y, Wu G, Tang J, Chen T, Fu Y, Chen Y, Zhang Z, Gao H, Man C, Chen Q, Du L, Wang F, Chen S. Immune Cells in the Spleen of Mice Mediate the Inflammatory Response Induced by Mannheimia haemolytica A2 Serotype. Animals (Basel) 2024; 14:317. [PMID: 38275777 PMCID: PMC10812571 DOI: 10.3390/ani14020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 12/27/2023] [Accepted: 01/17/2024] [Indexed: 01/27/2024] Open
Abstract
(1) Background: Mannheimia haemolytica (M. haemolytica) is an opportunistic pathogen and is mainly associated with respiratory diseases in cattle, sheep, and goats. (2) Methods: In this study, a mouse infection model was established using a M. haemolytica strain isolated from goats. Histopathological observations were conducted on various organs of the mice, and bacterial load determination and RNA-seq analysis were specifically performed on the spleens of the mice. (3) Results: The findings of this study suggest that chemokines, potentially present in the spleen of mice following a M. haemolytica challenge, may induce the migration of leukocytes to the spleen and suppress the release of pro-inflammatory factors through a negative feedback regulation mechanism. Additionally, an interesting observation was made regarding the potential of hematopoietic stem/progenitor cells congregating in the spleen to differentiate into immune cells, which could potentially collaborate with leukocytes in their efforts to counteract M. haemolytica invasion. (4) Conclusions: This study revealed the immune regulation mechanism induced by M. haemolytica in the mouse spleen, providing valuable insights into host-pathogen interactions and offering a theoretical basis for the prevention, control, and treatment of mannheimiosis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | - Fengyang Wang
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Z.J.); (J.J.); (Y.M.); (G.W.); (J.T.); (T.C.); (Y.F.); (Y.C.); (Z.Z.); (H.G.); (C.M.); (Q.C.); (L.D.)
| | - Si Chen
- Hainan Key Lab of Tropical Animal Reproduction, Breeding and Epidemic Disease Research, Animal Genetic Engineering Key Lab of Haikou, School of Tropical Agriculture and Forestry, Hainan University, Haikou 570228, China; (Z.J.); (J.J.); (Y.M.); (G.W.); (J.T.); (T.C.); (Y.F.); (Y.C.); (Z.Z.); (H.G.); (C.M.); (Q.C.); (L.D.)
| |
Collapse
|
7
|
Zhang X, Wang Y, Fan R, Zhang L, Li Z, Zhang Y, Zheng W, Wang L, Liu B, Quan C. Quantitative Proteomic Analysis of Outer Membrane Vesicles from Fusobacterium nucleatum Cultivated in the Mimic Cancer Environment. Microbiol Spectr 2023; 11:e0039423. [PMID: 37341631 PMCID: PMC10434195 DOI: 10.1128/spectrum.00394-23] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 05/25/2023] [Indexed: 06/22/2023] Open
Abstract
Fusobacterium nucleatum is a Gram-negative bacterium that has been identified as an important pathogenic gut bacterium associated with colorectal cancer. Compared with the normal intestine, the pH value of the tumor microenvironment is weakly acidic. The metabolic changes of F. nucleatum in the tumor microenvironment, especially the protein composition of its outer membrane vesicles, remain unclear. Here, we systematically analyzed the effect of environmental pH on the proteome of outer membrane vesicles (OMVs) from F. nucleatum by tandem mass tag (TMT) labeling-high-resolution liquid chromatography-tandem mass spectrometry (LC-MS/MS) analysis. A total of 991 proteins were identified in acidic OMVs (aOMVs) and neutral OMVs (nOMVs), including known virulence proteins and putative virulence proteins. Finally, 306 upregulated proteins and 360 downregulated proteins were detected in aOMVs, and approximately 70% of the expression of OMV proteins was altered under acidic conditions. A total of 29 autotransporters were identified in F. nucleatum OMVs, and 13 autotransporters were upregulated in aOMVs. Interestingly, three upregulated autotransporters (D5REI9, D5RD69, and D5RBW2) show homology to the known virulence factor Fap2, suggesting that they may be involved in various pathogenic pathways such as the pathway for binding with colorectal cancer cells. Moreover, we found that more than 70% of MORN2 domain-containing proteins may have toxic effects on host cells. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses demonstrated that a number of proteins were significantly enriched in multiple pathways involving fatty acid synthesis and butyrate synthesis. Seven metabolic enzymes involved in fatty acid metabolism pathways were identified in the proteomic data, of which 5 were upregulated and 2 were downregulated in aOMVs, while 14 metabolic enzymes involved in the butyric acid metabolic pathway were downregulated in aOMVs. In conclusion, we found a key difference in virulence proteins and pathways in the outer membrane vesicles of F. nucleatum between the tumor microenvironment pH and normal intestinal pH, which provides new clues for the prevention and treatment of colorectal cancer. IMPORTANCE F. nucleatum is an opportunistic pathogenic bacterium that can be enriched in colorectal cancer tissues, affecting multiple stages of colorectal cancer development. OMVs have been demonstrated to play key roles in pathogenesis by delivering toxins and other virulence factors to host cells. By employing quantitative proteomic analysis, we found that the pH conditions could affect the protein expression of the outer membrane vesicles of F. nucleatum. Under acidic conditions, approximately 70% of the expression of proteins in OMVs was altered. Several virulence factors, such as type 5a secreted autotransporter (T5aSSs) and membrane occupation and recognition nexus (MORN) domain-containing proteins, were upregulated under acidic conditions. A large number of proteins showed significant enrichments in multiple pathways involving fatty acid synthesis and butyrate synthesis. Proteomics analysis of the outer membrane vesicles secreted by pathogenic bacteria in the acidic tumor microenvironment is of great significance for elucidating the pathogenicity mechanism and its application in vaccine and drug delivery vehicles.
Collapse
Affiliation(s)
- Xuqiang Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of the Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
| | - Yuxin Wang
- Key Laboratory of Biotechnology and Bioresources Utilization of the Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
| | - Ruochen Fan
- Key Laboratory of Biotechnology and Bioresources Utilization of the Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | - Liying Zhang
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | - Zhuting Li
- Key Laboratory of Biotechnology and Bioresources Utilization of the Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
| | - Yanmei Zhang
- Key Laboratory of Biotechnology and Bioresources Utilization of the Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
| | - Wei Zheng
- Key Laboratory of Biotechnology and Bioresources Utilization of the Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
| | - Lulu Wang
- Key Laboratory of Biotechnology and Bioresources Utilization of the Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
- School of Life Science and Biotechnology, Dalian University of Technology, Dalian, Liaoning, China
| | - Baoquan Liu
- Key Laboratory of Biotechnology and Bioresources Utilization of the Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
| | - Chunshan Quan
- Key Laboratory of Biotechnology and Bioresources Utilization of the Ministry of Education, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
- Department of Bioengineering, College of Life Science, Dalian Minzu University, Dalian, Liaoning, China
| |
Collapse
|
8
|
Poonsuk K, Kordik C, Hille M, Cheng TY, Crosby WB, Woolums AR, Clawson ML, Chitko-McKown C, Brodersen B, Loy JD. Detection of Mannheimia haemolytica-Specific IgG, IgM and IgA in Sera and Their Relationship to Respiratory Disease in Cattle. Animals (Basel) 2023; 13:ani13091531. [PMID: 37174567 PMCID: PMC10177094 DOI: 10.3390/ani13091531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 04/22/2023] [Accepted: 04/25/2023] [Indexed: 05/15/2023] Open
Abstract
Mannheimia haemolytica is one of the major causes of bovine respiratory disease in cattle. The organism is the primary bacterium isolated from calves and young cattle affected with enzootic pneumonia. Novel indirect ELISAs were developed and evaluated to enable quantification of antibody responses to whole cell antigens using M. haemolytica A1 strain P1148. In this study, the ELISAs were initially developed using sera from both M. haemolytica-culture-free and clinically infected cattle, then the final prototypes were tested in the validation phase using a larger set of known-status M. haemolytica sera (n = 145) collected from feedlot cattle. The test showed good inter-assay and intra-assay repeatability. Diagnostic sensitivity and specificity were estimated at 91% and 87% for IgG at a cutoff of S/P ≥ 0.8. IgM diagnostic sensitivity and specificity were 91% and 81% at a cutoff of sample to positive (S/P) ratio ≥ 0.8. IgA diagnostic sensitivity was 89% whereas specificity was 78% at a cutoff of S/P ≥ 0.2. ELISA results of all isotypes were related to the diagnosis of respiratory disease and isolation of M. haemolytica (p-value < 0.05). These data suggest that M. haemolytica ELISAs can be adapted to the detection and quantification of antibody in serum specimens and support the use of these tests for the disease surveillance and disease prevention research in feedlot cattle.
Collapse
Affiliation(s)
- Korakrit Poonsuk
- Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - Carita Kordik
- Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - Matthew Hille
- Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - Ting-Yu Cheng
- Department of Veterinary Preventive Medicine, College of Veterinary Medicine, The Ohio State University, Columbus, OH 43210, USA
| | - William B Crosby
- Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Amelia R Woolums
- Department of Pathobiology and Population Medicine, Mississippi State University, Mississippi State, MS 39762, USA
| | - Michael L Clawson
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), United States Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Carol Chitko-McKown
- United States Department of Agriculture (USDA), Agricultural Research Service (ARS), United States Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Bruce Brodersen
- Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| | - John Dustin Loy
- Nebraska Veterinary Diagnostic Center, School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE 68503, USA
| |
Collapse
|
9
|
Azhar NA, Paul BT, Jesse FFA, Chung ELT, Kamarulrizal MI, Mohd Lila MA. Seminal and histopathological alterations in bucks challenged with Mannheimia haemolytica serotype a2 and its LPS endotoxin. Trop Anim Health Prod 2022; 54:265. [PMID: 35962250 DOI: 10.1007/s11250-022-03262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 07/29/2022] [Indexed: 11/30/2022]
Abstract
Pneumonic mannheimiosis is a widespread respiratory bacterial disease of small ruminants caused by Mannheimia haemolytica serotype A2. The disease is known to affect the respiratory organs of infected animals, but its effect on other vital and reproductive organs has not been fully explored. Previous studies have demonstrated increased serum pro-inflammatory cytokine concentration post-challenge with M. haemolytica A2 and its LPS, indicating systemic inflammation in the host. This study determined the potential tissue changes and alterations of sperm parameters due to infection of M. haemolytica A2 and its LPS endotoxin. In this study, twelve experimental bucks were randomly assigned to three groups of four bucks each: group 1 (control group) were intranasally inoculated with 2 mL of PBS pH 7.0, group 2 received 2 mL of 1.2 × 109 CFU/mL M. haemolytica A2 intranasally, and group 3 received 2 mL of LPS extracted from 1.2 × 109 CFU/mL of M. haemolytica A2 intravenously. Semen samples were collected at pre-determined intervals using an electro-ejaculator and analysed immediately after collection. All experimental bucks were slaughtered via exsanguination on day 60 to collect their vital and reproductive organs at necropsy, and the samples were processed and analysed for histopathological changes. The current study has revealed that bucks challenged with M. haemolytica A2 and its LPS exhibited alterations in semen parameters such as motility, wave pattern, viability, and morphological abnormalities. Mild to moderate histopathological changes of the lung, liver, testis, epididymis, vas deferens, prostate, and lymph nodes were also observed in both challenged groups. Therefore, this study revealed the potential harmful effects of respiratory mannheimiosis on the reproductive organs of the infected bucks and sheds light on the expanse of systemic effects of this disease.
Collapse
Affiliation(s)
- Nur Amira Azhar
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia
| | - Bura Thlama Paul
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.,Veterinary Teaching Hospital, Faculty of Veterinary Medicine, University of Maiduguri, Maiduguri, 600230, Borno State, Nigeria
| | - Faez Firdaus Abdullah Jesse
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia. .,Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Eric Lim Teik Chung
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia.,Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia
| | - Mat Isa Kamarulrizal
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Mohd Azmi Mohd Lila
- Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, UPM Serdang, 43400, Selangor, Malaysia
| |
Collapse
|
10
|
Ahmed S, Nemr WA, Mohamed WAA, Mohamed AM, Mahmoud MAEF. Evaluation of room temperature (30°C to 35°C) lyophilized vaccine with radio inactivated Mannheimia haemolytica whole cells isolated from infected sheep. Vet World 2022; 15:1261-1268. [PMID: 35765479 PMCID: PMC9210829 DOI: 10.14202/vetworld.2022.1261-1268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 03/29/2022] [Indexed: 11/30/2022] Open
Abstract
Background and Aim Vaccines are one of the important tools for fighting diseases and limiting their spread. The development of vaccines with high efficacy against diseases is essential. Ionizing radiation is the method used for the preparation of the irradiated gamma Mannheimia haemolytica vaccine. The study aimed to measure the metabolic activity and electron microscopic examination of the irradiated bacterial cells and immunological efficiency of different preparations of the irradiated M. haemolytica vaccine. Materials and Methods The irradiated vaccines were prepared in three forms at a dose of 2×109 colony-forming unit (CFU) (irradiated M. haemolytica, trehalose irradiated M. haemolytica, and trehalose lyophilized irradiated M. haemolytica). The formalin-killed vaccine was prepared at a dose of 2×109 CFU. Scanning electron microscopy was used to determine the difference between the non-irradiated bacterial cells and the bacterial cells exposed to gamma radiation. The metabolic activity of the irradiated bacterial cells was measured using the Alamar blue technique. Rabbits were divided into five groups (control, vaccinated groups with the formalin-killed vaccine, irradiated bacterial cells without trehalose, trehalose irradiated bacteria, and trehalose lyophilized irradiated bacterial cells). The rabbits were subcutaneously inoculated twice in 2-week intervals. Enzyme-linked immunosorbent assay, interferon-gamma (IFNγ), and interleukin 4 (IL4) assays were used to evaluate the vaccines' immunological efficiency in rabbits. Results The metabolic activity tests showed that the bacterial cells exposed to gamma radiation at the lowest lethal dose have metabolic activity. The difference in the metabolic activity between preparations of the irradiated bacterial cells varied according to the cell concentration and incubation time. The highest level of metabolic activity was 8 h after incubation in the nutrient broth medium compared with 4 and 18 h. The scanning electron microscopy of irradiated bacterial cells showed a cavity at the bacterial cell center without rupture of the surrounding cell membrane compared to the non-irradiated bacterial cells. The antibody level in the groups vaccinated with the different preparations of the irradiated bacterial cells was high compared with the control and formalin-killed vaccine groups. The level of the IFNγ showed an increase after the second dose in the group vaccinated with irradiated bacterial cells without trehalose compared with the other groups. The IL4 level in the vaccinated groups with the irradiated bacterial cells without trehalose, irradiated bacterial cells with trehalose, and trehalose lyophilized irradiated bacterial cells were at a high level when compared with the formalin-killed vaccinated group and control group after the second inoculation. Conclusion The irradiated M. haemolytica vaccine provides a wide range of humoral and cellular immunity. This study showed high immunological efficiency in rabbits inoculated with the irradiated M. haemolytica vaccine that was shown in the high levels of antibodies (IFNγ and IL4) compared with the group treated with the formalin-killed vaccine. The second dose of irradiated M. haemolytica vaccine is an immune booster that gives the irradiated vaccine a long-acting immunological efficiency.
Collapse
Affiliation(s)
- Sahar Ahmed
- Department of Cell Biology, Biotechnology Research Institute, National Research Centre, 12622 Dokki, Giza, Egypt
| | - Waleed Abdelgaber Nemr
- Department of Radiation Microbiology, National Centre for Radiation Research and Technology, Egyptian Atomic Energy Authority, Egypt
| | | | - Amany Mohamed Mohamed
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre. Dokki Giza, Egypt
| | - Mohamed Abd El-Fatah Mahmoud
- Department of Parasitology and Animal Diseases, Veterinary Research Institute, National Research Centre. Dokki Giza, Egypt
| |
Collapse
|
11
|
Ramírez-Rico G, Martinez-Castillo M, Avalos-Gómez C, de la Garza M. Bovine apo-lactoferrin affects the secretion of proteases in Mannheimia haemolytica A2. Access Microbiol 2021; 3:000269. [PMID: 34816089 PMCID: PMC8604176 DOI: 10.1099/acmi.0.000269] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 08/23/2021] [Indexed: 02/05/2023] Open
Abstract
Mannheimia haemolytica serotype A2 is the main bacterial causative agent of ovine mannheimiosis, a disease that leads to substantial economic losses for livestock farmers. Several virulence factors allow M. haemolytica to colonize the lungs and establish infection. Virulence factors can be directly secreted into the environment by bacteria but are also released through outer membrane vesicles (OMVs). In addition, due to the abuse of antibiotics in the treatment of this disease, multidrug-resistant bacterial strains of M. haemolytica have emerged. One therapeutic alternative to antibiotics or an adjuvant to be used in combination with antibiotics could be lactoferrin (Lf), a multifunctional cationic glycoprotein of the mammalian innate immune system to which no bacterial resistance has been reported. The aim of this work was to determine the effect of bovine iron-free Lf (apo-BLf) on the production and secretion of proteases into culture supernatant (CS) and on their release in OMVs. Zymography assays showed that addition of sub-MIC concentrations of apo-BLf to M. haemolytica cultures inhibited protease secretion without affecting culture growth. Biochemical characterization revealed that these proteases were mainly cysteine- and metalloproteases. The secretion of a 100 kDa metalloprotease was inhibited by sub-MIC concentrations of apo-BLf since this protease was present in the cytoplasm and OMVs but not in CS proteins, as corroborated by Western blotting. On the other hand, proteases produced by M. haemolytica caused cleavage of apo-BLf. However, when Lf is cleaved, peptides known as lactoferricins, which are more bactericidal than natural Lf, can be produced. M. haemolytica A2 protease-mediated degradation of host tissue proteins could be an important virulence factor during the infectious process of pneumonia in ovines. The mechanism of M. haemolytica protease secretion could be inhibited by treatment with apo-BLf in animals.
Collapse
Affiliation(s)
- Gerardo Ramírez-Rico
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, CdMx 07360, Mexico
- Present address: Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), Km 2.5 Carretera Cuautitlán-Teoloyucan, Cuautitlán Izcalli, 54714, Mexico
| | - Moises Martinez-Castillo
- Laboratorio de Hígado, Páncreas y Motilidad (HIPAM). Unidad de Investigación en Medicina Experimental, Facultad de Medicina, UNAM. Hospital General de México, Col Doctores, CdMx 06726, Mexico
| | - Christian Avalos-Gómez
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, CdMx 07360, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Av. IPN 2508, CdMx 07360, Mexico
| |
Collapse
|
12
|
Criscitiello MF, Kraev I, Lange S. Post-Translational Protein Deimination Signatures in Serum and Serum-Extracellular Vesicles of Bos taurus Reveal Immune, Anti-Pathogenic, Anti-Viral, Metabolic and Cancer-Related Pathways for Deimination. Int J Mol Sci 2020; 21:E2861. [PMID: 32325910 PMCID: PMC7215346 DOI: 10.3390/ijms21082861] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 12/14/2022] Open
Abstract
The bovine immune system is known for its unusual traits relating to immunoglobulin and antiviral responses. Peptidylarginine deiminases (PADs) are phylogenetically conserved enzymes that cause post-translational deimination, contributing to protein moonlighting in health and disease. PADs also regulate extracellular vesicle (EV) release, forming a critical part of cellular communication. As PAD-mediated mechanisms in bovine immunology and physiology remain to be investigated, this study profiled deimination signatures in serum and serum-EVs in Bos taurus. Bos EVs were poly-dispersed in a 70-500 nm size range and showed differences in deiminated protein cargo, compared with whole sera. Key immune, metabolic and gene regulatory proteins were identified to be post-translationally deiminated with some overlapping hits in sera and EVs (e.g., immunoglobulins), while some were unique to either serum or serum-EVs (e.g., histones). Protein-protein interaction network analysis of deiminated proteins revealed KEGG pathways common for serum and serum-EVs, including complement and coagulation cascades, viral infection (enveloped viruses), viral myocarditis, bacterial and parasitic infections, autoimmune disease, immunodeficiency intestinal IgA production, B-cell receptor signalling, natural killer cell mediated cytotoxicity, platelet activation and hematopoiesis, alongside metabolic pathways including ferroptosis, vitamin digestion and absorption, cholesterol metabolism and mineral absorption. KEGG pathways specific to EVs related to HIF-1 signalling, oestrogen signalling and biosynthesis of amino acids. KEGG pathways specific for serum only, related to Epstein-Barr virus infection, transcription mis-regulation in cancer, bladder cancer, Rap1 signalling pathway, calcium signalling pathway and ECM-receptor interaction. This indicates differences in physiological and pathological pathways for deiminated proteins in serum-EVs, compared with serum. Our findings may shed light on pathways underlying a number of pathological and anti-pathogenic (viral, bacterial, parasitic) pathways, with putative translatable value to human pathologies, zoonotic diseases and development of therapies for infections, including anti-viral therapies.
Collapse
Affiliation(s)
- Michael F. Criscitiello
- Comparative Immunogenetics Laboratory, Department of Veterinary Pathobiology, College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA;
- Department of Microbial Pathogenesis and Immunology, College of Medicine, Texas A&M Health Science Center, Texas A&M University, College Station, TX 77843, USA
| | - Igor Kraev
- Electron Microscopy Suite, Faculty of Science, Technology, Engineering and Mathematics, Open University, Milton Keynes MK7 6AA, UK;
| | - Sigrun Lange
- Tissue Architecture and Regeneration Research Group, School of Life Sciences, University of Westminster, London W1W 6XH, UK
| |
Collapse
|
13
|
Avalos-Gómez C, Reyes-López M, Ramírez-Rico G, Díaz-Aparicio E, Zenteno E, González-Ruiz C, de la Garza M. Effect of apo-lactoferrin on leukotoxin and outer membrane vesicles of Mannheimia haemolytica A2. Vet Res 2020; 51:36. [PMID: 32138772 PMCID: PMC7059318 DOI: 10.1186/s13567-020-00759-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/17/2020] [Indexed: 01/17/2023] Open
Abstract
Mannheimia haemolytica serotype A2 is the principal cause of pneumonic mannheimiosis in ovine and caprine livestock; this disease is a consequence of immune suppression caused by stress and associated viruses and is responsible for significant economic losses in farm production worldwide. Gram-negative bacteria such as M. haemolytica produce outer membrane (OM)-derived spherical structures named outer membrane vesicles (OMVs) that contain leukotoxin and other biologically active virulence factors. In the present study, the relationship between M. haemolytica A2 and bovine lactoferrin (BLf) was studied. BLf is an 80 kDa glycoprotein that possesses bacteriostatic and bactericidal properties and is part of the mammalian innate immune system. Apo-BLf (iron-free) showed a bactericidal effect against M. haemolytica A2, with an observed minimal inhibitory concentration (MIC) of 16 µM. Sublethal doses (2–8 µM) of apo-BLf increased the release of OMVs, which were quantified by flow cytometry. Apo-BLf modified the normal structure of the OM and OMVs, as observed through transmission electron microscopy. Apo-BLf also induced lipopolysaccharide (LPS) release from bacteria, disrupting OM permeability and functionality, as measured by silver staining and SDS and polymyxin B cell permeability assays. Western blot results showed that apo-BLf increased the secretion of leukotoxin in M. haemolytica A2 culture supernatants, possibly through its iron-chelating activity. In contrast, holo-BLf (with iron) did not have this effect, possibly due to differences in the tertiary structure between these proteins. In summary, apo-BLf affected the levels of several M. haemolytica virulence factors and could be evaluated for use in animals as an adjuvant in the treatment of ovine mannheimiosis.
Collapse
Affiliation(s)
- Christian Avalos-Gómez
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autónoma de México (UNAM), 04510, Coyoacán, CdMx, Mexico.,Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ave. Instituto Politécnico Nacional 2508, Zacatenco, 07360, CdMx, Mexico
| | - Magda Reyes-López
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ave. Instituto Politécnico Nacional 2508, Zacatenco, 07360, CdMx, Mexico
| | - Gerardo Ramírez-Rico
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), 54714, Cuautitlán Izcalli, Estado de México, Mexico
| | - Efrén Díaz-Aparicio
- Centro Nacional de Investigación Disciplinaria en Salud animal e inocuidad, Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (INIFAP), 05110, Cuajimalpa, CdMx, Mexico
| | - Edgar Zenteno
- Departamento de Bioquímica, Facultad de Medicina, Universidad Nacional Autónoma de México (UNAM), 04510, Coyoacán, CdMx, Mexico
| | - Cynthia González-Ruiz
- Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México (UNAM), 54714, Cuautitlán Izcalli, Estado de México, Mexico
| | - Mireya de la Garza
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Ave. Instituto Politécnico Nacional 2508, Zacatenco, 07360, CdMx, Mexico.
| |
Collapse
|
14
|
Mannheimia haemolytica in bovine respiratory disease: immunogens, potential immunogens, and vaccines. Anim Health Res Rev 2019; 19:79-99. [PMID: 30683173 DOI: 10.1017/s1466252318000142] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mannheimia haemolytica is the major cause of severe pneumonia in bovine respiratory disease (BRD). Early M. haemolytica bacterins were either ineffective or even enhanced disease in vaccinated cattle, which led to studies of the bacterium's virulence factors and potential immunogens to determine ways to improve vaccines. Studies have focused on the capsule, lipopolysaccharide, various adhesins, extracellular enzymes, outer membrane proteins, and leukotoxin (LKT) resulting in a strong database for understanding immune responses to the bacterium and production of more efficacious vaccines. The importance of immunity to LKT and to surface antigens in stimulating immunity led to studies of individual native or recombinant antigens, bacterial extracts, live-attenuated or mutant organisms, culture supernatants, combined bacterin-toxoids, outer membrane vesicles, and bacterial ghosts. Efficacy of several of these potential vaccines can be shown following experimental M. haemolytica challenge; however, efficacy in field trials is harder to determine due to the complexity of factors and etiologic agents involved in naturally occurring BRD. Studies of potential vaccines have led current commercial vaccines, which are composed primarily of culture supernatant, bacterin-toxoid, or live mutant bacteria. Several of those can be augmented experimentally by addition of recombinant LKT or outer membrane proteins.
Collapse
|
15
|
Jesse FFA, Amira NA, Isa KM, Maqbool A, Ali NM, Chung ELT, Lila MAM. Association between Mannheimia haemolytica infection with reproductive physiology and performance in small ruminants: A review. Vet World 2019; 12:978-983. [PMID: 31528021 PMCID: PMC6702557 DOI: 10.14202/vetworld.2019.978-983] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 05/28/2019] [Indexed: 11/16/2022] Open
Abstract
Mannheimiosis or pneumonic pasteurellosis commonly occurs in small ruminants. Mannheimiosis is caused by Mannheimia haemolytica (M. haemolytica) a Gram-negative coccobacillus producing acute febrile and infectious condition resulting in death of animal if not diagnosed and treated promptly. M. haemolytica serotype A2 is a commensal of the nasopharynx, gaining access to the lungs when host defenses are compromised by stress or infection in small ruminants. Till date, there is a vast literature and research that has been conducted on the pathogenesis of M. haemolytica invariably on respiratory system and its related immune system and mechanisms. From the clinical point of view, infection or diseases involving vital organs will systemically affect the production and performance of the infected animal. Therefore, there is a huge gap of knowledge and research to answer the question whether there is any association between M. haemolytica infection with reproductive physiology and performance in small ruminants and how it affects the productivity level. This review will explore the possibilities of involvement and new potential research to be carried out to determine the involvement of male and female reproductive system with M. haemolytica infection among small ruminants.
Collapse
Affiliation(s)
- Faez Firdaus Abdullah Jesse
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.,Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Nur Azhar Amira
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Kamarulrizal Mat Isa
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Arsalan Maqbool
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Naveed Mohamad Ali
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Eric Lim Teik Chung
- Institute of Tropical Agriculture and Food Security, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia.,Department of Animal Science, Faculty of Agriculture, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | - Mohd Azmi Mohd Lila
- Department of Veterinary Clinical Studies, Faculty of Veterinary Medicine, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| |
Collapse
|
16
|
Karthikeyan R, Gayathri P, Gunasekaran P, Jagannadham MV, Rajendhran J. Comprehensive proteomic analysis and pathogenic role of membrane vesicles of Listeria monocytogenes serotype 4b reveals proteins associated with virulence and their possible interaction with host. Int J Med Microbiol 2019; 309:199-212. [PMID: 30962079 DOI: 10.1016/j.ijmm.2019.03.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2018] [Revised: 03/19/2019] [Accepted: 03/25/2019] [Indexed: 02/07/2023] Open
Abstract
Membrane vesicles (MVs) are produced by various Gram positive and Gram negative pathogenic bacteria and play an important role in virulence. In this study, the membrane vesicles (MVs) of L. monocytogenes were isolated from the culture supernatant. High-resolution electron microscopy and dynamic light scattering analysis revealed that L. monocytogenes MVs are spherical with a diameter of 200 to 300 nm in size. Further, comprehensive proteomic analyses of MVs and whole cells of L. monocytogenes were performed using LC/MS/MS. A total of 1355 and 312 proteins were identified in the L. monocytogenes cells and MVs, respectively. We identified that 296 proteins are found in both whole cells, and MV proteome and 16 proteins were identified only in the MVs. Also, we have identified the virulence factors such as listeriolysin O (LLO), internalin B (InlB), autolysin, p60, NLP/P60 family protein, UPF0356 protein, and PLC-A in MVs. Computational prediction of host-MV interactions revealed a total of 1841 possible interactions with the host involving 99 MV proteins and 1513 host proteins. We elucidated the possible pathway that mediates internalization of L. monocytogenes MV to host cells and the subsequent pathogenesis mechanisms. The in vitro infection assays showed that the purified MVs could induce cytotoxicity in Caco-2 cells. Using endocytosis inhibitors, we demonstrated that MVs are internalized via actin-mediated endocytosis. These results suggest that L. monocytogenes MVs can interact with host cell and contribute to the pathogenesis of L. monocytogenes during infection.
Collapse
Affiliation(s)
- Raman Karthikeyan
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India
| | - Pratapa Gayathri
- CSIR - Centre for Cellular and Molecular Biology, Tarnaka, Hyderabad, 500007, India
| | | | | | - Jeyaprakash Rajendhran
- Department of Genetics, School of Biological Sciences, Madurai Kamaraj University, Madurai, 625021, Tamil Nadu, India.
| |
Collapse
|