1
|
Lin P, Shi M, Wang F, Lin Y, Zheng Y. The α-Glucosidase Inhibition Activities of Phaeochromycins D and E Isolated from Marine Streptomyces sp. FJ0218. Molecules 2025; 30:1993. [PMID: 40363799 PMCID: PMC12073238 DOI: 10.3390/molecules30091993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2025] [Revised: 04/17/2025] [Accepted: 04/27/2025] [Indexed: 05/15/2025] Open
Abstract
Marine Streptomyces are an important source of naturally occurring active compounds. Out of 23 marine Streptomyces strains, 1 strain of Streptomyces sp. FJ0218 was selected for its high activity in inhibiting α-glucosidase. Two polyketides, phaeochromycins D (2) and E (1), were isolated from the fermentation broth of this strain using bioactivity-guided column chromatography over RP-18, Sephadex LH-20, and silica gel. Their structures were determined using NMR data, HR-EI-MS, and single-crystal X-ray crystallography. Phaeochromycins D (2) and E (1) exhibited inhibitory activity against α-glucosidase, with IC50 values of 10 mM and 25 mM, respectively. Lineweaver-Burk plots revealed that phaeochromycin E (1) acts as an uncompetitive inhibitor, while phaeochromycin D (2) acts as a non-competitive inhibitor. These findings suggest that there is potential for the pharmacological regulation of glucose levels through the use of polyketide phaeochromycins, emphasizing their significant impact on glucose management.
Collapse
Affiliation(s)
- Pingfa Lin
- School of Pharmacy, Fujian Health College, Fuzhou 350101, China;
| | - Mianmian Shi
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Feifei Wang
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| | - Yong Lin
- School of Pharmacy, Fujian Health College, Fuzhou 350101, China;
| | - Yongbiao Zheng
- College of Life Sciences, Fujian Normal University, Fuzhou 350117, China
| |
Collapse
|
2
|
Hou L, Wang S, Zhang Y, Yang X, Chen Z, Gao Y, Li W. Targeted discovery of diterpene compounds ostamycins with anti-influenza a viral activity from a deepsea-derived Streptomyces strain. Bioorg Chem 2025; 157:108268. [PMID: 39986106 DOI: 10.1016/j.bioorg.2025.108268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Revised: 02/06/2025] [Accepted: 02/10/2025] [Indexed: 02/24/2025]
Abstract
Heterologous expression of a nonconventional terpene biosynthetic gene cluster from the deepsea-derived Streptomyces amphotericinicus DS22-01 led to the production of a novel cyclic diterpene, ostamycin A (1). Anti-influenza A virus activity evaluation revealed that compound 1 showed significant activity with an IC50 value of 4.72 μM, which was much stronger than that of the positive control ribavirin (IC50 = 20.80 μM). Inspired by its intriguing activity, yield optimization was achieved through a combined approach involving promoter engineering and codon modification in a stepwise manner. This strategy led to a ∼ 13-fold increase in the production of ostamycin A (1), as well as the concurrent accumulation of another novel cyclic diterpene, ostamycin B (2), which also displayed anti-influenza A virus activity with an IC50 value of 195.59 μM. The planar structures and stereochemistry of compounds 1 and 2 were established through extensive MS and NMR spectroscopic analyses together with ECD calculations. Further investigations revealed that compound 1 inhibits the influenza A virus (A/Puerto Rico/8/34) replication by directly targeting the nucleoprotein (NP). These findings highlight compound 1 as a promising lead for the development of novel influenza virus inhibitors.
Collapse
Affiliation(s)
- Lukuan Hou
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Shuyao Wang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Yuanhang Zhang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Xue Yang
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Zihui Chen
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-Lane Xiangshan, Hangzhou 310024, China.
| | - Yuxuan Gao
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shannxi 712100, China.
| | - Wenli Li
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Shaanxi Key Laboratory of Natural Products & Chemical Biology, College of Chemistry & Pharmacy, Northwest A&F University, Yangling, Shannxi 712100, China.
| |
Collapse
|
3
|
Helmi NR. Exploring the diversity and antimicrobial potential of actinomycetes isolated from different environments in Saudi Arabia: a systematic review. Front Microbiol 2025; 16:1568899. [PMID: 40207161 PMCID: PMC11979186 DOI: 10.3389/fmicb.2025.1568899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 03/13/2025] [Indexed: 04/11/2025] Open
Abstract
The increasing prevalence of antimicrobial resistance (AMR) presents a significant global health challenge, underscoring the urgent need for novel antimicrobial agents. Actinomycetes, particularly Streptomyces species, are well known for synthesizing bioactive compounds with antibacterial, antifungal, and antiviral properties. This review explores the diversity and antimicrobial potential of actinomycetes from Saudi Arabia's unique ecosystems, including terrestrial (soil, rhizosphere), aquatic (marine, freshwater), extreme (deserts, caves, hot springs, mountains, and mangroves), and other unique environments. The adaptation of these microorganisms to harsh environmental conditions has driven the evolution of unique strains with enhanced biosynthetic capacities. Several studies have demonstrated their antimicrobial efficacy against multidrug-resistant pathogens, including methicillin-resistant Staphylococcus aureus (MRSA), extended-spectrum beta-lactamase (ESBL)-producing Enterobacteriaceae, Pseudomonas aeruginosa, and Candida albicans. However, challenges in actinomycete research persist, including difficulties in culturing rare strains, limited genomic characterization, and high production costs. Recent advancements, such as genome mining, metagenomics, AI-driven bioinformatics, and CRISPR-based gene activation, offer promising avenues for unlocking novel antimicrobial compounds. Additionally, synthetic biology, advanced fermentation technologies, and nanotechnology-based drug delivery systems are enhancing the industrial scalability of actinomycete-derived antibiotics. Beyond antimicrobials, actinomycete-derived compounds show potential applications in oncology, immunotherapy, and agriculture. Alternative therapeutic strategies, including quorum sensing inhibitors, phage therapy, and combination therapies, are being explored to combat AMR. Cutting-edge analytical techniques, such as mass spectrometry, liquid chromatography, and nuclear magnetic resonance spectroscopy (NMR), are essential for structural elucidation and mechanism characterization of new bioactive compounds. To harness Saudi Arabia's microbial biodiversity effectively, interdisciplinary collaborations between microbiologists, biotechnologists, and pharmaceutical industries are crucial. Sustainable bioprospecting and advanced bioprocessing strategies will facilitate the translation of actinomycete-derived bioactive compounds into clinically viable therapeutics. Expanding research efforts into underexplored Saudi ecosystems can lead to groundbreaking discoveries in antibiotic development and beyond.
Collapse
Affiliation(s)
- Noof Refat Helmi
- Department of Clinical Microbiology and Immunology, Faculty of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
4
|
Patel S, Naik L, Rai A, Palit K, Kumar A, Das M, Nayak DK, Dandsena PK, Mishra A, Singh R, Dhiman R, Das S. Diversity of secondary metabolites from marine Streptomyces with potential anti-tubercular activity: a review. Arch Microbiol 2025; 207:64. [PMID: 39961874 DOI: 10.1007/s00203-024-04233-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/18/2024] [Accepted: 12/30/2024] [Indexed: 03/04/2025]
Abstract
The bacterial genus Streptomyces is known for the prolific production of secondary metabolites, which exhibit remarkable structural diversity and potent biological activities. Tuberculosis (TB) remains a formidable global health challenge exacerbated by the emergence of antimicrobial resistance (AMR), necessitating the discovery of novel therapeutic agents. The untapped potential of marine Streptomyces-derived secondary metabolites offers a promising avenue for screening anti-tubercular (anti-TB) compounds with unique chemical structures and potential bioactive properties. The review emphasizes the diverse marine habitats and Streptomyces with novel anti-TB bioactive metabolites. It discusses fermentation and bioprocessing strategies for screening anti-TB drugs. This review also covers the chemical diversity, potency, mechanism of action, and structures of about seventy anti-TB compounds discovered from marine Streptomyces. These compounds span various chemical classes, including quinones, macrolactams, macrolides, phenols, esters, anthracyclines, peptides, glycosides, alkaloids, piperidones, thiolopyrrolones, nucleosides, terpenes, flavonoids, polyketides, and actinomycins. It emphasizes the need to explore marine ecosystems to discover more novel anti-TB natural products.
Collapse
Affiliation(s)
- Salina Patel
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Lincoln Naik
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Ankita Rai
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Krishna Palit
- Laboratory of Environmental Microbiology and Ecology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Ashish Kumar
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Mousumi Das
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Dev Kiran Nayak
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Pramathesh Kumar Dandsena
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Jodhpur, 342011, Rajasthan, India
| | - Ramandeep Singh
- Tuberculosis Research Laboratory, Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurugram Expressway, PO Box # 4, Faridabad, 121001, Haryana, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology, Department of Life Science, National Institute of Technology, Rourkela, 769 008, Odisha, India.
| |
Collapse
|
5
|
Xu X, Huang X, Xu W. Marine actinomycetes-derived angucyclines and angucyclinones with biosynthesis and activity--past 10 years (2014-2023). Eur J Med Chem 2025; 283:117161. [PMID: 39700875 DOI: 10.1016/j.ejmech.2024.117161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 11/01/2024] [Accepted: 12/09/2024] [Indexed: 12/21/2024]
Abstract
Actinomycete bacteria derived from marine environments are a good source of natural products with diverse biological activities such as cytotoxicity, antiviral, and antimicrobial actions. This review summarizes 191 angucyclines and angucyclinones derived from marine actinomycetes reported in the literature from 2014 to 2023 and introduced the latest developments in actinomycete-silenced biosynthetic gene cluster activation, including heterologous recombination and in situ activation. The key role of redox post-modifications in the biosynthetic process of atypical angucyclines. This review provides insights into the discovery and biosynthesis of valuable angucyclines and angucyclinones from marine-associated actinomycetes and potential lead compounds for the research and development of new drugs.
Collapse
Affiliation(s)
- Xiao Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China; Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong, 266071, China.
| | - Xiaofei Huang
- Key Laboratory of Marine Drugs, Chinese Ministry of Education, School of Medicine and Pharmacy, Ocean University of China, Qingdao, 266003, China.
| | - Wenhua Xu
- The Affiliated Hospital of Qingdao University, Qingdao University, Qingdao, 266000, China; Institute of Regenerative Medicine and Laboratory Technology Innovation, Qingdao University, Qingdao, Shandong, 266071, China.
| |
Collapse
|
6
|
Bandeira L, Faria C, Cavalcante F, Mesquita A, Martins C, Martins S. Metabarcoding expands knowledge on diversity and ecology of rare actinobacteria in the Brazilian Cerrado. Folia Microbiol (Praha) 2025; 70:159-175. [PMID: 38961050 DOI: 10.1007/s12223-024-01184-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 06/17/2024] [Indexed: 07/05/2024]
Abstract
Rare and unknown actinobacteria from unexplored environments have the potential to produce new bioactive molecules. This study aimed to use 16 s rRNA metabarcoding to determine the composition of the actinobacterial community, particularly focusing on rare and undescribed species, in a nature reserve within the Brazilian Cerrado called Sete Cidades National Park. Since this is an inaccessible area without due legal authorization, it is understudied, and, therefore, its diversity and biotechnological potential are not yet fully understood, and it may harbor species with groundbreaking genetic potential. In total, 543 operational taxonomic units (OTUs) across 14 phyla were detected, with Actinobacteria (41.2%), Proteobacteria (26.5%), and Acidobacteria (14.3%) being the most abundant. Within Actinobacteria, 107 OTUs were found, primarily from the families Mycobacteriaceae, Pseudonocardiaceae, and Streptomycetaceae. Mycobacterium and Streptomyces were the predominant genera across all samples. Seventeen rare OTUs with relative abundance < 0.1% were identified, with 82.3% found in only one sample yet 25.5% detected in all units. Notable rare and transient genera included Salinibacterium, Nocardia, Actinomycetospora_01, Saccharopolyspora, Sporichthya, and Nonomuraea. The high diversity and distribution of Actinobacteria OTUs indicate the area's potential for discovering new rare species. Intensified prospection on underexplored environments and characterization of their actinobacterial diversity could lead to the discovery of new species capable of generating innovative natural products.
Collapse
Affiliation(s)
- Leonardo Bandeira
- Ecology and Natural Resources, Federal University of Ceará, Fortaleza, Brazil.
- Graduate Course of Ecology and Natural Resources, Department of Biology, Campus of Pici, Federal University of Ceará, Fortaleza, 60440-900, Brazil.
| | | | - Fernando Cavalcante
- Ecology and Natural Resources, Federal University of Ceará, Fortaleza, Brazil
| | - Ariel Mesquita
- Biotechnology of Natural Resources, Federal University of Ceará, Fortaleza, Brazil
| | - Claudia Martins
- Graduate Course of Ecology and Natural Resources, Department of Biology, Campus of Pici, Federal University of Ceará, Fortaleza, 60440-900, Brazil
| | - Suzana Martins
- Graduate Course of Ecology and Natural Resources, Department of Biology, Campus of Pici, Federal University of Ceará, Fortaleza, 60440-900, Brazil
| |
Collapse
|
7
|
Hengst MB, Trench S, Alcayaga V, Sepúlveda-Muñoz C, Bórquez J, Simirgiotis M, Valenzuela F, Lody M, Kurte L, Pardo-Esté C. Epibiotic bacterial community composition varies during different developmental stages of Octopus mimus: Study of cultivable representatives and their secondary metabolite production. PLoS One 2024; 19:e0312991. [PMID: 39775278 PMCID: PMC11684682 DOI: 10.1371/journal.pone.0312991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Accepted: 10/16/2024] [Indexed: 01/11/2025] Open
Abstract
Marine microbial communities colonizing the skin of invertebrates constitute the primary barrier between host and environment, potentially exerting beneficial, neutral, or detrimental effects on host fitness. To evaluate the potential contribution of epibiotic bacteria to the survival of early developmental stages of Octopus mimus, bacterial isolates were obtained from eggs, paralarvae, and adults. Their enzymatic activities were determined, and antibacterial properties were assessed against common marine pathogens. The isolates belonged to the phyla Proteobacteria, Actinomycetota, Bacteroidota, and Bacillota, represented by 21 genera and 27 species. Specific taxa were associated with each developmental stage, with only three species shared among different stages: Bacillus pumilus, B. megaterium, and Shewanella algae, which also inhibited the growth of all assayed pathogens. Organic extracts from Bacillus megaterium M8-1 were obtained, and UHPLC-MS analysis detected seventeen putative compounds, including two phenolic acids, three indole derivatives, and twelve oxylipins. Our findings provide novel data on cultivable bacterial representatives isolated from Octopus mimus capable of synthesizing chemical compounds with bioactive properties. These results contribute to a better understanding of the role of microbial communities in the survival of this invertebrate species during critical early life stages.
Collapse
Affiliation(s)
- Martha B. Hengst
- Laboratorio de Ecología Molecular y Microbiología Aplicada, Departamento de Ciencias Farmacéuticas, Universidad Católica del Norte, Antofagasta, Chile
| | - Stephanie Trench
- Laboratorio de Ecología Molecular y Microbiología Aplicada, Departamento de Ciencias Farmacéuticas, Universidad Católica del Norte, Antofagasta, Chile
| | | | - Cristian Sepúlveda-Muñoz
- Laboratorio de Ecología Microbiana, FAREMAR, Centro de Bioinnovación, Universidad de Antofagasta, Antofagasta, Chile
| | - Jorge Bórquez
- Laboratorio de Productos Naturales, Facultad de Ciencias Básicas, Universidad de Antofagasta, Antofagasta, Chile
| | - Mario Simirgiotis
- Institute of Pharmacy, Universidad Austral de Chile, Valdivia, Chile
| | - Fernando Valenzuela
- Laboratorio de Ecología Microbiana, FAREMAR, Centro de Bioinnovación, Universidad de Antofagasta, Antofagasta, Chile
| | - Mario Lody
- Laboratorio de Ecología Microbiana, FAREMAR, Centro de Bioinnovación, Universidad de Antofagasta, Antofagasta, Chile
| | - Lenka Kurte
- Laboratorio de Ecología Molecular y Microbiología Aplicada, Departamento de Ciencias Farmacéuticas, Universidad Católica del Norte, Antofagasta, Chile
| | - Coral Pardo-Esté
- Laboratorio de Ecología Molecular y Microbiología Aplicada, Departamento de Ciencias Farmacéuticas, Universidad Católica del Norte, Antofagasta, Chile
| |
Collapse
|
8
|
Trenozhnikova LP, Baimakhanova GB, Baimakhanova BB, Balgimbayeva AS, Daugaliyeva ST, Faizulina ER, Tatarkina LG, Spankulova GA, Berillo DA, Beutler JA. Beyond traditional screening: Unveiling antibiotic potentials of actinomycetes in extreme environments. Heliyon 2024; 10:e40371. [PMID: 39641013 PMCID: PMC11617725 DOI: 10.1016/j.heliyon.2024.e40371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/09/2024] [Accepted: 11/12/2024] [Indexed: 12/07/2024] Open
Abstract
Extreme ecosystems are a rich source of specialized metabolites that can overcome multidrug resistance. However, the low efficiency of traditional exploratory research in discovering new antibiotics remains a major limitation. We hypothesized that actinomycetes may have the ability to produce antibiotics in the extremes of a changing natural environment. This study introduces a novel approach to screening natural antibiotic producers from extreme habitats based on the relationship between organisms' adaptive traits and their metabolic activities. The antibacterial and antifungal properties of 667 actinomycete isolates, obtained from 160 samples of Kazakhstan's diverse extreme habitats, were studied under neutral, saline, and alkaline conditions against MRSA, E. coli, C. albicans, and A. niger. Among these isolates, 113 exhibited antibacterial properties, and 109 demonstrated antifungal properties. Notably, one-fifth of the antagonist isolates could produce active substances solely under extreme growth conditions. Fifty-three antagonistic actinomycetes, possessing these characteristics, have been categorized into groups and warrant further investigation as potential producers of new natural antibiotics. Molecular genetic analysis of the selected isolates revealed a high prevalence of Streptomyces and Nocardiopsis strains. Furthermore, 83.4 % of obtained isolates demonstrated the ability to thrive in all studied habitats-neutral, saline, and alkaline. 96.3 % of actinomycetes isolated from extreme environments exhibited adaptation to neutral conditions, highlighting their inherent versatility. Our findings underscore the nearly complete potential (99.7 %) of isolates to overcome the salinity barrier of 3.5 % NaCl, indicating their capacity to inhabit oceanic environments. We assert that actinomycetes should be perceived as a cohesive, globally adaptive group, capable of migrating between changing conditions or remaining stable within them. These studies lay the groundwork for the development of a new platform for screening natural antibiotics.
Collapse
Affiliation(s)
- Lyudmila P. Trenozhnikova
- LLP Research and Production Center for Microbiology and Virology, Almaty, Republic of Kazakhstan, Kazakhstan
| | - Gul B. Baimakhanova
- LLP Research and Production Center for Microbiology and Virology, Almaty, Republic of Kazakhstan, Kazakhstan
| | - Baiken B. Baimakhanova
- LLP Research and Production Center for Microbiology and Virology, Almaty, Republic of Kazakhstan, Kazakhstan
| | - Assya S. Balgimbayeva
- LLP Research and Production Center for Microbiology and Virology, Almaty, Republic of Kazakhstan, Kazakhstan
| | - Saule T. Daugaliyeva
- LLP Research and Production Center for Microbiology and Virology, Almaty, Republic of Kazakhstan, Kazakhstan
| | - Elmira R. Faizulina
- LLP Research and Production Center for Microbiology and Virology, Almaty, Republic of Kazakhstan, Kazakhstan
| | - Larisa G. Tatarkina
- LLP Research and Production Center for Microbiology and Virology, Almaty, Republic of Kazakhstan, Kazakhstan
| | - Gulzhan A. Spankulova
- LLP Research and Production Center for Microbiology and Virology, Almaty, Republic of Kazakhstan, Kazakhstan
| | - Dmitriy A. Berillo
- Department of Chemistry and Biochemical Engineering, Satbayev University, Almaty, Republic of Kazakhstan, Kazakhstan
- Department of Biochemistry, Asfendiyarov Kazakh National Medical University, Almaty, Republic of Kazakhstan, Kazakhstan
| | - John A. Beutler
- Molecular Targets Program, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD, USA
| |
Collapse
|
9
|
Kim JH, Lee JY, Lee J, Hillman PF, Lee J, Choi B, Paik MJ, Lee S, Nam SJ. Three New Depsipeptides, Homiamides A-C, Isolated from Streptomyces sp., ROA-065. Molecules 2024; 29:5539. [PMID: 39683698 DOI: 10.3390/molecules29235539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/18/2024] [Accepted: 11/21/2024] [Indexed: 12/18/2024] Open
Abstract
Three new depsipeptides, homiamides A-C (1-3), were isolated from a marine sediment-derived strain of Streptomyces sp., ROA-065. The planar structures of homiamides A-C (1-3) were elucidated using mass spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopic data. The absolute configurations of 1-3 were deduced from the application of the Marfey's method and GC-MS analysis after formation of the O-trifluoroacetylated (S)-(+)-methyl-2-butyl ester derivatives of amino acids. Compounds 1-3 exhibited weak anti-bacterial activities against both Gram-positive bacteria and Gram-negative bacteria, with compound 1 showing MIC values of 32-64 μg/mL. In antifouling assays, compounds 1 and 2 displayed moderate activity against Micrococcus luteus KCTC 3063, while compound 3 exhibited weak activity against all tested bacteria.
Collapse
Affiliation(s)
- Jeong-Hyeon Kim
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Ji Young Lee
- Institute of Sustainable Earth and Environmental Dynamics (SEED), Pukyong National University, 365 Sinseon-ro, Nam-gu, Busan 48547, Republic of Korea
| | - Juri Lee
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Prima F Hillman
- Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas Andalas, Kampus Limau Manis, Padang 25163, Indonesia
| | - Jihye Lee
- Laboratories of Marine New Drugs, Redone Technologies Co., Ltd., Jangseong-gun 57247, Republic of Korea
| | - Byeongchan Choi
- College of Pharmacy, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Man-Jeong Paik
- College of Pharmacy, Sunchon National University, Suncheon 57922, Republic of Korea
| | - Songyi Lee
- Department of Chemistry, Pukyong National University, Busan 48513, Republic of Korea
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea
| | - Sang-Jip Nam
- Department of Chemistry and Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
10
|
Kanchanasin P, Salahong T, Sripreechasak P, Suriyachadkun C, Harunari E, Igarashi Y, Tanasupawat S, Tawinwung S, Vimolmangkang S, Chaotham C, Phongsopitanun W. Discovery of two new actinobacteria, Micromonospora palythoicola sp. nov. and Streptomyces poriticola sp. nov., isolated from marine invertebrates. Sci Rep 2024; 14:22140. [PMID: 39333582 PMCID: PMC11436869 DOI: 10.1038/s41598-024-73040-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 09/12/2024] [Indexed: 09/29/2024] Open
Abstract
Marine invertebrates represent an underexplored reservoir for actinobacteria, which are known to synthesize novel bioactive compounds. This study isolated 37 actinobacterial strains from five distinct marine invertebrate hosts, namely Chondrilla australiensis, Palythoa sp., Favia sp., Porites lutea, and Acropora cervicornis, while no strains were obtained from Lissoclinum sp. and Lithophyllon sp. These isolates were taxonomically classified into six genera: Gordonia, Microbacterium, Micromonospora, Nocardia, Rhodococcus, and Streptomyces, with Streptomyces and Micromonospora being notably predominant. Comparative genomic analysis facilitated the identification of two novel species: Micromonospora palythoicola sp. nov. (strain S2-005T = TBRC 18343T and NBRC 116545T) and Streptomyces poriticola sp. nov. (strain C6-003T, =TBRC 17807T and NBRC 116425T). Both species exhibited substantial genetic differences from their nearest known species as demonstrated by digital DNA-DNA hybridization and average nucleotide identity scores, which fell below the thresholds of 70% and 95%, respectively. Streptomyces poriticola C6-003T displayed significant antimicrobial activity and selective cytotoxicity against human breast cancer MCF-7 cells, with reduced toxicity towards human dermal papilla cells. Micromonospora palythoicola S2-005T manifested antimicrobial properties against Streptococcus mutans and Kocuria rhizophila. These findings highlight the considerable diversity of actinobacteria within marine invertebrates and underscore their potential as a source of new species with promising biological properties for therapeutic applications.
Collapse
Affiliation(s)
- Pawina Kanchanasin
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Thanarat Salahong
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Paranee Sripreechasak
- Office of Educational Affairs, Faculty of Science, Burapha University, Chonburi, 20131, Thailand
| | - Chanwit Suriyachadkun
- Thailand Bioresource Research Center (TBRC), National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Klong Luang, Pathumthani, 12120, Thailand
| | - Enjuro Harunari
- Biotechnology Research Center, Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center, Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama, 939-0398, Japan
| | - Somboon Tanasupawat
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Supannikar Tawinwung
- Department of Pharmacology and Physiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Sornkanok Vimolmangkang
- Department of Pharmacognosy and Phamaceutical Botany, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Chatchai Chaotham
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand
| | - Wongsakorn Phongsopitanun
- Department of Biochemistry and Microbiology, Faculty of Pharmaceutical Sciences, Chulalongkorn University, Bangkok, Thailand.
- Center of Excellence in Natural Products and Nanoparticles (RP2), Chulalongkorn University, Bangkok, Thailand.
| |
Collapse
|
11
|
Khaochamnan R, Suanyuk N, Lertcanawanichakul M, Pedpradab P. Biological characteristics of marine Streptomyces SK3 and optimization of cultivation conditions for production of compounds against Vibiriosis pathogen isolated from cultured white shrimp ( Litopenaeus vannamei). PeerJ 2024; 12:e18053. [PMID: 39346038 PMCID: PMC11430173 DOI: 10.7717/peerj.18053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 08/16/2024] [Indexed: 10/01/2024] Open
Abstract
Antibiotic resistance in shrimp farms has emerged as an extremely serious situation worldwide. The main aim of this study was to optimize the cultural conditions for producing new antibiotic agents from marine Streptomyces species. Streptomyces SK3 was isolated from marine sediment and was identified by its 16S rDNA as well as biochemical characteristics. This microbe produced the highest concentration of bioactive secondary metabolites (BSMs) when cultured in YM medium (YM/2). It produced the maximum total protein (41.8 ± 6.36 mg/ml) during the late lag phase period. The optimum incubation temperature was recorded at 30 °C; BSMs were not produced at ≤10 °C within an incubation period of 3-4 days. The suitable agitation speed was found to be 200 rpm with pH 7.00. The proper carbon, nitrogen, and trace elements supplementation consisted of starch, malt extract, calcium carbonate (CaCO3), and magnesium sulfate (MgSO4). The ethyl acetate extract was found to act strongly against three vibriosis pathogens, Vibrio harveyi, Vibrio parahaemolyticus, and Vibrio vunificus, as indicated by the inhibition zones at 34.5, 35.4, and 34.3 mm, respectively. The extract showed the strongest anti-V. harveyi activity, as indicated by minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values of 0.101 ± 0.02 and 0.610 ± 0.04 mg/ml, respectively. Basic chemical investigation of the crude extract using thin layer chromatography (TLC), bioautography, liquid chromatography tandem mass spectrometry (LC‒MS/MS), Fourier transform infrared spectroscopy (FTIR), and proton nuclear magnetic resonance (1H-NMR) revealed that the active components were the terpenoid and steroid groups of compounds. They showed carboxylic acid and ester functions in their molecules.
Collapse
Affiliation(s)
- Rachow Khaochamnan
- Department of Aquatic Sciences, Faculty of Natural Resources, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| | - Naraid Suanyuk
- Department of Aquatic Sciences, Faculty of Natural Resources, Prince of Songkla University, Hat-Yai, Songkhla, Thailand
| | | | - Patchara Pedpradab
- Department of Marine Science, Faculty of Sciences and Fishery Technology, Rajamangala University of Technology Srivijaya, Sikao, Trang, Thailand
| |
Collapse
|
12
|
Liu Q, Li X, Mao H, Zuo T, Zhang Y, Gou T, Chen J, Li L. The antagonistic activity of Streptomyces spiroverticillatus (No. HS1) against of poplar canker pathogen Botryosphaeria dothidea. BMC Microbiol 2024; 24:343. [PMID: 39271969 PMCID: PMC11401387 DOI: 10.1186/s12866-024-03494-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 09/03/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Poplar canker caused by Botryosphaeria dothidea is one of the most severe plant disease of poplars worldwide. In our study, we aimed to investigate the modes of antagonism by fermentation broth supernatant (FBS) of Streptomyces spiroverticillatus HS1 against B. dothidea. RESULTS In vitro, the strain and FBS of S. spiroverticillatus HS1 significantly inhibited mycelial growth and biomass accumulation, and also disrupted the mycelium morphology of B. dothidea. On the 3rd day after treatment, the inhibition rates of colony growth and dry weight were 80.72% and 52.53%, respectively. In addition, FBS treatment damaged the plasma membrane of B. dothidea based on increased electrical conductivity in the culture medium, and malondialdehyde content of B. dothidea mycelia. Notably, the analysis of key enzymes in glycolysis pathway showed that the activity of hexokinase (HK), phosphofructokinase (PFK), and pyruvate kinase (PK), Ca2+Mg2+-ATPase were significantly increased after FBS treatment. But the glucose contents were significantly reduced, and pyruvate contents were significantly increased in B. dothidea after treatment with FBS. CONCLUSIONS The inhibitory mechanism of S. spiroverticillatus HS1 against B. dothidea was a complex process, which was associated with multiple levels of mycelial growth, cell membrane structure, material and energy metabolism. The FBS of S. spiroverticillatus HS1 could provide an alternative approach to biological control strategies against B. dothidea.
Collapse
Affiliation(s)
- Qingzhen Liu
- Jilin Provincial Academy of Forestry Science, Changchun, 130033, China
| | - Xin Li
- Dalian Customs Technology Center, Dalian, 116001, China
| | - He Mao
- Jilin Provincial Academy of Forestry Science, Changchun, 130033, China
| | - Tongtong Zuo
- Jilin Provincial Academy of Forestry Science, Changchun, 130033, China
| | - Yang Zhang
- Jilin Provincial Academy of Forestry Science, Changchun, 130033, China
| | - Tianbing Gou
- Jilin Provincial Academy of Forestry Science, Changchun, 130033, China
| | - Jingsheng Chen
- College of Biology and Food Engineering, Chongqing Three Gorges University, Wanzhou, 404010, China.
| | - Limei Li
- Jilin Provincial Academy of Forestry Science, Changchun, 130033, China.
| |
Collapse
|
13
|
Pan J, Geng X, Cai Y, Yu Y, Hou Y, Liu Y, Ya C, Liu Q. Identification, fermentation optimization, and biocontrol efficacy of actinomycete YG-5 for the prevention of Alternaria leaf spot disease in star anise. Sci Rep 2024; 14:18621. [PMID: 39127793 PMCID: PMC11316780 DOI: 10.1038/s41598-024-69733-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 08/08/2024] [Indexed: 08/12/2024] Open
Abstract
Star anise (Illicium verum), a valuable spice tree, faces significant threats from fungal diseases, particularly Alternaria leaf spot. This study investigates the potential of a soil-derived actinomycete strain, YG-5, as a biocontrol agent against Alternaria tenuissima, the causative pathogen on Alternaria leaf spot in star anise. Through comprehensive morphology, physiology, biochemistry, and genetic analyses, we identified the isolate as Streptomyces sp. YG-5. The strain exhibited broad-spectrum antimicrobial activity against several plant pathogens, with inhibition rates ranging between 36.47 to 80.34%. We systematically optimized the fermentation conditions for YG-5, including medium composition and cultivation parameters. The optimized process resulted in an 89.56% inhibition rate against A. tenuissima, a 14.72% improvement over non-optimized conditions. Notably, the antimicrobial compounds produced by YG-5 demonstrated stability across various temperatures, pH levels, and UV irradiation. In vivo efficacy trials showed promising results, with YG-5 fermentation broth reducing Alternaria leaf spot incidence on star anise leaves by 56.95%. These findings suggest that Streptomyces sp. YG-5 holds significant potential as a biocontrol agent against Alternaria leaf spot in star anise cultivation, offering a sustainable approach to disease management in this valuable crop.
Collapse
Affiliation(s)
- Jieming Pan
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China
- Guangxi Agricultural Vocational Technical University, Nanning, 530007, Guangxi, China
| | - Xiaoshan Geng
- Guangxi Agricultural Vocational Technical University, Nanning, 530007, Guangxi, China
| | - Yujing Cai
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China
| | - Ye Yu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China
| | - Yanrong Hou
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China
| | - Yao Liu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China
| | - Caina Ya
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China
| | - Qin Liu
- Guangxi Key Laboratory of Agricultural Resources Chemistry and Biotechnology, Yulin Normal University, Yulin, 537000, China.
- Guangxi Agricultural Vocational Technical University, Nanning, 530007, Guangxi, China.
| |
Collapse
|
14
|
Liu T, Gui X, Zhang G, Luo L, Zhao J. Streptomyces-Fungus Co-Culture Enhances the Production of Borrelidin and Analogs: A Genomic and Metabolomic Approach. Mar Drugs 2024; 22:302. [PMID: 39057412 PMCID: PMC11278061 DOI: 10.3390/md22070302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 06/27/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
The marine Streptomyces harbor numerous biosynthetic gene clusters (BGCs) with exploitable potential. However, many secondary metabolites cannot be produced under laboratory conditions. Co-culture strategies of marine microorganisms have yielded novel natural products with diverse biological activities. In this study, we explored the metabolic profiles of co-cultures involving Streptomyces sp. 2-85 and Cladosporium sp. 3-22-derived from marine sponges. Combining Global Natural Products Social (GNPS) Molecular Networking analysis with natural product database mining, 35 potential antimicrobial metabolites annotated were detected, 19 of which were exclusive to the co-culture, with a significant increase in production. Notably, the Streptomyces-Fungus interaction led to the increased production of borrelidin and the discovery of several analogs via molecular networking. In this study, borrelidin was first applied to combat Saprolegnia parasitica, which caused saprolegniosis in aquaculture. We noted its superior inhibitory effects on mycelial growth with an EC50 of 0.004 mg/mL and on spore germination with an EC50 of 0.005 mg/mL compared to the commercial fungicide, preliminarily identifying threonyl-tRNA synthetase as its target. Further analysis of the associated gene clusters revealed an incomplete synthesis pathway with missing malonyl-CoA units for condensation within this strain, hinting at the presence of potential compensatory pathways. In conclusion, our findings shed light on the metabolic changes of marine Streptomyces and fungi in co-culture, propose the potential of borrelidin in the control of aquatic diseases, and present new prospects for antifungal applications.
Collapse
Affiliation(s)
- Tan Liu
- College of Ocean and Earth Science, Xiamen University, Xiamen 361005, China; (T.L.); (X.G.)
| | - Xi Gui
- College of Ocean and Earth Science, Xiamen University, Xiamen 361005, China; (T.L.); (X.G.)
| | - Gang Zhang
- Xiamen Key Laboratory of Marine Medicinal Natural Product Resources, Xiamen Medical College, Xiamen 361005, China; (G.Z.); (L.L.)
| | - Lianzhong Luo
- Xiamen Key Laboratory of Marine Medicinal Natural Product Resources, Xiamen Medical College, Xiamen 361005, China; (G.Z.); (L.L.)
| | - Jing Zhao
- College of Ocean and Earth Science, Xiamen University, Xiamen 361005, China; (T.L.); (X.G.)
| |
Collapse
|
15
|
Lee J, Hwang JY, Oh D, Oh DC, Park HG, Shin J, Oh KB. Tunicamycins from Marine-Derived Streptomyces bacillaris Inhibit MurNAc-Pentapeptide Translocase in Staphylococcus aureus. Mar Drugs 2024; 22:293. [PMID: 39057401 PMCID: PMC11277991 DOI: 10.3390/md22070293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 06/21/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Four tunicamycin class compounds, tunicamycin VII (1), tunicamycin VIII (2), corynetoxin U17a (3), and tunicamycin IX (4), were isolated from the culture broth of the marine-derived actinomycete Streptomyces sp. MBTG32. The strain was identified using the 16S rDNA sequencing technique, and the isolated strain was closely related to Streptomyces bacillaris. The structures of the isolated compounds were elucidated based on spectroscopic data and comparisons with previously reported NMR data. Compounds 1-4 showed potent antibacterial activities against Gram-positive bacteria, especially Staphylococcus aureus, with MIC values of 0.13-0.25 µg/mL. Through a recombinant enzyme assay and overexpression analysis, we found that the isolated compounds exerted potent inhibitory effects on S. aureus MurNAc-pentapeptide translocase (MraY), with IC50 values of 0.08-0.21 µg/mL. The present results support that the underlying mechanism of action of tunicamycins isolated from marine-derived Streptomyces sp. is also associated with the inhibition of MraY enzyme activity in S. aureus.
Collapse
Affiliation(s)
- Jayho Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea;
| | - Ji-Yeon Hwang
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; (J.-Y.H.); (D.-C.O.)
| | - Daehyun Oh
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; (D.O.); (H.-g.P.)
| | - Dong-Chan Oh
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; (J.-Y.H.); (D.-C.O.)
| | - Hyeung-geun Park
- Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; (D.O.); (H.-g.P.)
| | - Jongheon Shin
- Natural Products Research Institute, College of Pharmacy, Seoul National University, Seoul 08826, Republic of Korea; (J.-Y.H.); (D.-C.O.)
| | - Ki-Bong Oh
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea;
| |
Collapse
|
16
|
Li X, Cui Y, Wu W, Zhang Z, Fang J, Yu X, Cao J. Characterization and Biosynthetic Regulation of Isoflavone Genistein in Deep-Sea Actinomycetes Microbacterium sp. B1075. Mar Drugs 2024; 22:276. [PMID: 38921587 PMCID: PMC11205022 DOI: 10.3390/md22060276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/07/2024] [Accepted: 06/11/2024] [Indexed: 06/27/2024] Open
Abstract
Deep-sea environments, as relatively unexplored extremes within the Earth's biosphere, exhibit notable distinctions from terrestrial habitats. To thrive in these extreme conditions, deep-sea actinomycetes have evolved unique biochemical metabolisms and physiological capabilities to ensure their survival in this niche. In this study, five actinomycetes strains were isolated and identified from the Mariana Trench via the culture-dependent method and 16S rRNA sequencing approach. The antimicrobial activity of Microbacterium sp. B1075 was found to be the most potent, and therefore, it was selected as the target strain. Molecular networking analysis via the Global Natural Products Social Molecular Networking (GNPS) platform identified 25 flavonoid compounds as flavonoid secondary metabolites. Among these, genistein was purified and identified as a bioactive compound with significant antibacterial activity. The complete synthesis pathway for genistein was proposed within strain B1075 based on whole-genome sequencing data, with the key gene being CHS (encoding chalcone synthase). The expression of the gene CHS was significantly regulated by high hydrostatic pressure, with a consequent impact on the production of flavonoid compounds in strain B1075, revealing the relationship between actinomycetes' synthesis of flavonoid-like secondary metabolites and their adaptation to high-pressure environments at the molecular level. These results not only expand our understanding of deep-sea microorganisms but also hold promise for providing valuable insights into the development of novel pharmaceuticals in the field of biopharmaceuticals.
Collapse
Affiliation(s)
- Xin Li
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (X.L.); (Y.C.); (W.W.); (J.F.)
| | - Yukun Cui
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (X.L.); (Y.C.); (W.W.); (J.F.)
| | - Weichao Wu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (X.L.); (Y.C.); (W.W.); (J.F.)
| | - Zhizhen Zhang
- Ocean College, Zhoushan Campus, Zhejiang University, Zhoushan 316021, China;
| | - Jiasong Fang
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (X.L.); (Y.C.); (W.W.); (J.F.)
| | - Xi Yu
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (X.L.); (Y.C.); (W.W.); (J.F.)
| | - Junwei Cao
- College of Oceanography and Ecological Science, Shanghai Ocean University, Shanghai 201306, China; (X.L.); (Y.C.); (W.W.); (J.F.)
| |
Collapse
|
17
|
Lee J, Choi JH, Lee J, Cho E, Lee YJ, Lee HS, Oh KB. Halenaquinol Blocks Staphylococcal Protein A Anchoring on Cell Wall Surface by Inhibiting Sortase A in Staphylococcus aureus. Mar Drugs 2024; 22:266. [PMID: 38921577 PMCID: PMC11204543 DOI: 10.3390/md22060266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/05/2024] [Accepted: 06/08/2024] [Indexed: 06/27/2024] Open
Abstract
Sortase A (SrtA) is a cysteine transpeptidase that binds to the periplasmic membrane and plays a crucial role in attaching surface proteins, including staphylococcal protein A (SpA), to the peptidoglycan cell wall. Six pentacyclic polyketides (1-6) were isolated from the marine sponge Xestospongia sp., and their structures were elucidated using spectroscopic techniques and by comparing them to previously reported data. Among them, halenaquinol (2) was found to be the most potent SrtA inhibitor, with an IC50 of 13.94 μM (4.66 μg/mL). Semi-quantitative reverse transcription PCR data suggest that halenaquinol does not inhibit the transcription of srtA and spA, while Western blot analysis and immunofluorescence microscopy images suggest that it blocks the cell wall surface anchoring of SpA by inhibiting the activity of SrtA. The onset and magnitude of the inhibition of SpA anchoring on the cell wall surface in S. aureus that has been treated with halenaquinol at a value 8× that of the IC50 of SrtA are comparable to those for an srtA-deletion mutant. These findings contribute to the understanding of the mechanism by which marine-derived pentacyclic polyketides inhibit SrtA, highlighting their potential as anti-infective agents targeting S. aureus virulence.
Collapse
Affiliation(s)
- Jaepil Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea; (J.L.); (J.L.); (E.C.)
| | - Jae-Hyeong Choi
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea; (J.-H.C.); (Y.-J.L.)
- Department of Applied Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Jayho Lee
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea; (J.L.); (J.L.); (E.C.)
| | - Eunji Cho
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea; (J.L.); (J.L.); (E.C.)
| | - Yeon-Ju Lee
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea; (J.-H.C.); (Y.-J.L.)
- Department of Applied Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Hyi-Seung Lee
- Marine Natural Products Chemistry Laboratory, Korea Institute of Ocean Science and Technology, Busan 49111, Republic of Korea; (J.-H.C.); (Y.-J.L.)
- Department of Applied Ocean Science, University of Science and Technology, Daejeon 34113, Republic of Korea
| | - Ki-Bong Oh
- Department of Agricultural Biotechnology, College of Agriculture and Life Sciences and Natural Products Research Institute, Seoul National University, Seoul 08826, Republic of Korea; (J.L.); (J.L.); (E.C.)
| |
Collapse
|
18
|
Wissner JL, Parada-Fabián JC, Márquez-Velázquez NA, Escobedo-Hinojosa W, Gaudêncio SP, Prieto-Davó A. Diversity and Bioprospection of Gram-positive Bacteria Derived from a Mayan Sinkhole. MICROBIAL ECOLOGY 2024; 87:77. [PMID: 38806738 PMCID: PMC11133088 DOI: 10.1007/s00248-024-02392-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024]
Abstract
Water-filled sinkholes known locally as cenotes, found on the Yucatán Peninsula, have remarkable biodiversity. The primary objective of this study was to explore the biotechnological potential of Gram-positive cultivable bacteria obtained from sediment samples collected at the coastal cenote Pol-Ac in Yucatán, Mexico. Specifically, the investigation aimed to assess production of hydrolytic enzymes and antimicrobial compounds. 16 S rRNA gene sequencing led to the identification of 49 Gram-positive bacterial isolates belonging to the phyla Bacillota (n = 29) and Actinomycetota (n = 20) divided into the common genera Bacillus and Streptomyces, as well as the genera Virgibacillus, Halobacillus, Metabacillus, Solibacillus, Neobacillus, Rossellomorea, Nocardiopsis and Corynebacterium. With growth at 55ºC, 21 of the 49 strains were classified as moderately thermotolerant. All strains were classified as halotolerant and 24 were dependent on marine water for growth. Screening for six extracellular hydrolytic enzymes revealed gelatinase, amylase, lipase, cellulase, protease and chitinase activities in 93.9%, 67.3%, 63.3%, 59.2%, 59.2% and 38.8%, of isolated strains, respectively. The genes for polyketide synthases type I, were detected in 24 of the strains. Of 18 strains that achieved > 25% inhibition of growth in the bacterial pathogen Staphylococcus aureus ATCC 6538, 4 also inhibited growth in Escherichia coli ATCC 35,218. Isolates Streptomyces sp. NCA_378 and Bacillus sp. NCA_374 demonstrated 50-75% growth inhibition against at least one of the two pathogens tested, along with significant enzymatic activity across all six extracellular enzymes. This is the first comprehensive report on the biotechnological potential of Gram-positive bacteria isolated from sediments in the cenotes of the Yucatán Peninsula.
Collapse
Affiliation(s)
- Julian L Wissner
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de abrigo s/n, Sisal, Yucatán, 97356, México
| | - José Carlos Parada-Fabián
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de abrigo s/n, Sisal, Yucatán, 97356, México
| | - Norma Angélica Márquez-Velázquez
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de abrigo s/n, Sisal, Yucatán, 97356, México
| | - Wendy Escobedo-Hinojosa
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de abrigo s/n, Sisal, Yucatán, 97356, México
| | - Susana P Gaudêncio
- Associate Laboratory i4HB, Institute for Health and Bioeconomy, NOVA Faculty of Sciences and Technology, NOVA University of Lisbon, Lisbon, 2819-516, Portugal
- Applied Molecular Biosciences Unit, Chemistry and Life Sciences Departments, NOVA Faculty of Sciences and Technology, UCIBIO, NOVA University of Lisbon, Lisbon, 2819-516, Portugal
| | - Alejandra Prieto-Davó
- Unidad de Química en Sisal, Facultad de Química, Universidad Nacional Autónoma de México, Puerto de abrigo s/n, Sisal, Yucatán, 97356, México.
| |
Collapse
|
19
|
Xue Y, Zhou Z, Feng F, Zhao H, Tan S, Li J, Wu S, Ju Z, He S, Ding L. Genomic Analysis of Kitasatospora setae to Explore Its Biosynthetic Potential Regarding Secondary Metabolites. Antibiotics (Basel) 2024; 13:459. [PMID: 38786187 PMCID: PMC11117518 DOI: 10.3390/antibiotics13050459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Actinomycetes have long been recognized as important sources of clinical antibiotics. However, the exploration of rare actinomycetes, despite their potential for producing bioactive molecules, has remained relatively limited compared to the extensively studied Streptomyces genus. The extensive investigation of Streptomyces species and their natural products has led to a diminished probability of discovering novel bioactive compounds from this group. Consequently, our research focus has shifted towards less explored actinomycetes, beyond Streptomyces, with particular emphasis on Kitasatospora setae (K. setae). The genome of K. setae was annotated and analyzed through whole-genome sequencing using multiple bio-informatics tools, revealing an 8.6 Mbp genome with a 74.42% G + C content. AntiSMASH analysis identified 40 putative biosynthetic gene clusters (BGCs), approximately half of which were recessive and unknown. Additionally, metabolomic mining utilizing mass spectrometry demonstrated the potential for this rare actinomycete to generate numerous bioactive compounds such as glycosides and macrolides, with bafilomycin being the major compound produced. Collectively, genomics- and metabolomics-based techniques confirmed K. setae's potential as a bioactive secondary metabolite producer that is worthy of further exploration.
Collapse
Affiliation(s)
- Yutong Xue
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China; (Y.X.); (F.F.); (H.Z.); (S.T.); (J.L.)
| | - Zhiyan Zhou
- School of Pharmacy, Ningbo University, Ningbo 315211, China;
| | - Fangjian Feng
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China; (Y.X.); (F.F.); (H.Z.); (S.T.); (J.L.)
| | - Hang Zhao
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China; (Y.X.); (F.F.); (H.Z.); (S.T.); (J.L.)
| | - Shuangling Tan
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China; (Y.X.); (F.F.); (H.Z.); (S.T.); (J.L.)
| | - Jinling Li
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China; (Y.X.); (F.F.); (H.Z.); (S.T.); (J.L.)
| | - Sitong Wu
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (S.W.); (Z.J.)
| | - Zhiran Ju
- School of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, China; (S.W.); (Z.J.)
| | - Shan He
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China; (Y.X.); (F.F.); (H.Z.); (S.T.); (J.L.)
- School of Pharmacy, Ningbo University, Ningbo 315211, China;
| | - Lijian Ding
- Li Dak Sum Yip Yio Chin Kenneth Li Marine Biopharmaceutical Research Center, Ningbo University, Ningbo 315211, China; (Y.X.); (F.F.); (H.Z.); (S.T.); (J.L.)
- School of Pharmacy, Ningbo University, Ningbo 315211, China;
| |
Collapse
|
20
|
Li Y, Ding W, Yin J, Li X, Tian X, Xiao Z, Wang F, Yin H. 2,3-Dimethoxycinnamic Acid from a Marine Actinomycete, a Promising Quorum Sensing Inhibitor in Chromobacterium violaceum. Mar Drugs 2024; 22:177. [PMID: 38667794 PMCID: PMC11051081 DOI: 10.3390/md22040177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/09/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
An ethyl acetate extract of a marine actinomycete strain, Nocardiopsis mentallicus SCSIO 53858, isolated from a deep-sea sediment sample in the South China Sea, exhibited anti-quorum-sensing (QS) activity against Chromobacterium violaceum CV026. Guided by the anti-QS activity, a novel active compound was isolated and purified from the extract and was identified as 2,3-dimethoxycinnamic acid (2,3-DCA) through spectral data analysis. At a concentration of 150 μg/mL, 2,3-DCA exhibited robust inhibitory effects on three QS-regulated traits of C. violaceum CV026: violacein production, swarming motility, and biofilm formation, with inhibition rates of 73.9%, 65.9%, and 37.8%, respectively. The quantitative reverse transcription polymerase chain reaction results indicated that 2,3-DCA can disrupt the QS system in C. violaceum CV026 by effectively suppressing the expression of QS-related genes, including cviR, vioA, vioB, and vioE. Molecular docking analysis revealed that 2,3-DCA hinders the QS system by competitively binding to the same binding pocket on the CviR receptor as the natural signal molecule N-hexanoyl-L-homoserine lactone. Collectively, these findings suggest that 2,3-DCA exhibits promising potential as an inhibitor of QS systems, providing a potential solution to the emerging problem of bacterial resistance.
Collapse
Affiliation(s)
- Yanqun Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.L.); (W.D.); (J.Y.); (X.L.); (X.T.); (Z.X.); (F.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenping Ding
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.L.); (W.D.); (J.Y.); (X.L.); (X.T.); (Z.X.); (F.W.)
| | - Jiajia Yin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.L.); (W.D.); (J.Y.); (X.L.); (X.T.); (Z.X.); (F.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xingyu Li
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.L.); (W.D.); (J.Y.); (X.L.); (X.T.); (Z.X.); (F.W.)
| | - Xinpeng Tian
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.L.); (W.D.); (J.Y.); (X.L.); (X.T.); (Z.X.); (F.W.)
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572025, China
| | - Zhihui Xiao
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.L.); (W.D.); (J.Y.); (X.L.); (X.T.); (Z.X.); (F.W.)
| | - Fazuo Wang
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.L.); (W.D.); (J.Y.); (X.L.); (X.T.); (Z.X.); (F.W.)
| | - Hao Yin
- CAS Key Laboratory of Tropical Marine Bio-Resources and Ecology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China; (Y.L.); (W.D.); (J.Y.); (X.L.); (X.T.); (Z.X.); (F.W.)
- University of Chinese Academy of Sciences, Beijing 100049, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Sanya Institute of Ocean Eco-Environmental Engineering, Sanya 572025, China
| |
Collapse
|
21
|
Ngema SS, Madoroba E. A Mini-Review of Anti-Listerial Compounds from Marine Actinobacteria (1990-2023). Antibiotics (Basel) 2024; 13:362. [PMID: 38667038 PMCID: PMC11047329 DOI: 10.3390/antibiotics13040362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 03/17/2024] [Accepted: 04/04/2024] [Indexed: 04/29/2024] Open
Abstract
Among the foodborne illnesses, listeriosis has the third highest case mortality rate (20-30% or higher). Emerging drug-resistant strains of Listeria monocytogenes, a causative bacterium of listeriosis, exacerbate the seriousness of this public health concern. Novel anti-Listerial compounds are therefore needed to combat this challenge. In recent years, marine actinobacteria have come to be regarded as a promising source of novel antimicrobials. Hence, our aim was to provide a narrative of the available literature and discuss trends regarding bioprospecting marine actinobacteria for new anti-Listerial compounds. Four databases were searched for the review: Academic Search Ultimate, Google Scholar, ScienceDirect, and South African Thesis and Dissertations. The search was restricted to peer-reviewed full-text manuscripts that discussed marine actinobacteria as a source of antimicrobials and were written in English from 1990 to December 2023. In total, for the past three decades (1990-December 2023), only 23 compounds from marine actinobacteria have been tested for their anti-Listerial potential. Out of the 23 reported compounds, only 2-allyoxyphenol, adipostatins E-G, 4-bromophenol, and ansamycins (seco-geldanamycin B, 4.5-dihydro-17-O-demethylgeldanamycin, and seco-geldanamycin) have been found to possess anti-Listerial activity. Thus, our literature survey reveals the scarcity of published assays testing the anti-Listerial capacity of bioactive compounds sourced from marine actinobacteria during this period.
Collapse
Affiliation(s)
| | - Evelyn Madoroba
- Department of Biochemistry and Microbiology, University of Zululand, KwaDlangezwa 3886, South Africa;
| |
Collapse
|
22
|
Butt UD, Khan S, Liu X, Sharma A, Zhang X, Wu B. Present Status, Limitations, and Prospects of Using Streptomyces Bacteria as a Potential Probiotic Agent in Aquaculture. Probiotics Antimicrob Proteins 2024; 16:426-442. [PMID: 36933159 PMCID: PMC10024021 DOI: 10.1007/s12602-023-10053-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2023] [Indexed: 03/19/2023]
Abstract
Streptomyces is a Gram-positive bacterium, belonging to the family Streptomycetaceae and order Streptomycetales. Several strains from different species of Streptomyces can be used to promote the health and growth of artificially cultured fish and shellfish by producing secondary metabolites including antibiotics, anticancer agents, antiparasitic agents, antifungal agents, and enzymes (protease and amylase). Some Streptomyces strains also exhibit antagonistic and antimicrobial activity against aquaculture-based pathogens by producing inhibitory compounds such as bacteriocins, siderophores, hydrogen peroxide, and organic acids to compete for nutrients and attachment sites in the host. The administration of Streptomyces in aquaculture could also induce an immune response, disease resistance, quorum sensing/antibiofilm activity, antiviral activity, competitive exclusion, modification in gastrointestinal microflora, growth enhancement, and water quality amelioration via nitrogen fixation and degradation of organic residues from the culture system. This review provides the current status and prospects of Streptomyces as potential probiotics in aquaculture, their selection criteria, administrative methods, and mechanisms of action. The limitations of Streptomyces as probiotics in aquaculture are highlighted and the solutions to these limitations are also discussed.
Collapse
Affiliation(s)
| | - Sumaikah Khan
- Faculty of Science, Engineering and Computing, Kingston University, London, KT1 2EE UK
| | - Xiaowan Liu
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Awkash Sharma
- Ocean College, Zhejiang University, Zhoushan, 316021 China
| | - Xiaoqin Zhang
- Zhejiang Provincial Key Laboratory of Inheritance and Innovation of She Medicine, Lishui Hospital of Traditional Chinese Medicine, Lishui, 323000 China
| | - Bin Wu
- Ocean College, Zhejiang University, Zhoushan, 316021 China
| |
Collapse
|
23
|
Febriansah R, Hertiani T, Widada J, Taher M, Damayanti E, Mustofa M. Isolation of active compounds from Streptomyces sennicomposti GMY01 and cytotoxic activity on breast cancer cells line. Heliyon 2024; 10:e24195. [PMID: 38293453 PMCID: PMC10826645 DOI: 10.1016/j.heliyon.2024.e24195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 12/25/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
The occurrence of resistance to anticancer and the emergence of serious side effects due to chemotherapy is one of the main problems in cancer treatment, including breast cancer. The need for effective anticancer with a specific target is urgently required. Streptomyces are widely known as the potential producers of new anticancer molecules. Previously reported that the methanol extract of Streptomyces sennicomposti GMY01 isolated from Krakal Coast, Gunungkidul had very strong cytotoxic activity against MCF-7 and T47D breast cancer cells with IC50 values of 0.6 and 1.3 μg/mL, respectively. The following study aimed to isolate and identify active compounds of the S. sennicomposti GMY01 and evaluate its cytotoxic activity. The study was started by re-culturing and re-fermented optimization of S. sennicomposti GMY01 in a larger volume, then the bacteria were extracted using methanol following the bioassay-guided isolation of the extract obtained. The active compounds obtained were then structurally determined using UV/Vis spectroscopy, Fourier Transform-Infrared (FT-IR), Liquid Chromatography-Mass Spectroscopy (LC-MS), 1H NMR, and 13C NMR and analyzed for their cytotoxic activity using MTT assay on MCF-7 and normal Vero cells line. The results showed that the culture of the S. sennicomposti GMY01 using Starch Nitrate Broth (SNB) media yields the best results compared to other culture media. An active anticancer compound namely mannotriose was successfully isolated from the methanol extract with an IC50 value of 5.6 μg/mL and 687 μg/mL against the MCF-7 and Vero cells lines, respectively, indicating that this compound showed strong cytotoxic activity with high selectivity.
Collapse
Affiliation(s)
- Rifki Febriansah
- School of Pharmacy, Faculty of Medicine and Health Sciences, Universitas Muhammadiyah Yogyakarta, Indonesia
| | - Triana Hertiani
- Pharmacognosy and Phytochemistry Laboratory, Pharmaceutical Biology Department, Faculty of Pharmacy, Universitas Gadjah Mada, Yogyakarta, Indonesia 55281
| | - Jaka Widada
- Department of Agricultural Microbiology, Faculty of Agriculture, Universitas Gadjah Mada, Yogyakarta, Indonesia 55281
| | - Muhammad Taher
- Department of Pharmaceutical Technology, Kulliyyah of Pharmacy, International Islamic University Malaysia, Malaysia
| | - Ema Damayanti
- Research Center for Food Technology and Processing, National Research and Innovation Agency (BRIN), Gunungkidul, Yogyakarta, Indonesia 55681
| | - Mustofa Mustofa
- Department of Pharmacology and Therapy, Faculty of Medicine, Public Health and Nursing, Universitas Gadjah Mada, Yogyakarta, Indonesia 55281
| |
Collapse
|
24
|
Kaale SE, Machangu RS, Lyimo TJ. Molecular characterization and phylogenetic diversity of actinomycetota species isolated from Lake Natron sediments at Arusha, Tanzania. Microbiol Res 2024; 278:127543. [PMID: 37950928 DOI: 10.1016/j.micres.2023.127543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/13/2023]
Abstract
Soda lakes are naturally occurring ecosystems characterized by extreme environmental conditions especially high pH and salinity levels but harboring valuable microbial communities with medical and biotechnological potentials. Lake Natron is one of the soda lakes situated in eastern branch of the East African Gregory Rift valley, Tanzania. In this study, the taxonomy and phylogenetic diversity of Actinomycetota species were explored in Lake Natron using molecular techniques. The sequencing of their 16S rRNA gene resulted into 13 genera of phylum Actinomycetota namely Streptomyces, Microbacterium, Nocardiopsis, Gordonia, Dietzia, Micromonospora, Microcella, Pseudarthrobacter, Nocardioides, Actinotalea, Cellulomonas, Isoptericola, and Glutamicibacter. We describe for the first time, the isolation of Streptomyces lasalocidi, S. harbinensis, S. anthocyanicus, Microbacterium aureliae, Pseudarthrobacter sp., Nocardioides sp. and Glutamicibacter mishrai from soda lake habitats. It also reports for the first time, the isolation of Gordonia spp., Microcella sp. and Actinotalea sp. from an East African Soda Lake as well as isolation of S. pseudogriseolus, S. calidiresistens and Micromonospora spp. from a Tanzania soda lake. Furthermore, two putative novel species of the phylum Actinomycetota were identified. Given that Actinomycetota are known potential sources of important biotechnological compounds, we recommend the broadening of the scope of bioprospection in future to include the novel species from Lake Natron.
Collapse
Affiliation(s)
- Sadikiel E Kaale
- Department of Molecular Biology and Biotechnology, University of Dar es Salaam, Dar es Salaam, Tanzania; Department of Biochemistry and Molecular Biology, Saint Francis University College of Health and Allied Sciences, Ifakara-Morogoro, Tanzania
| | - Robert S Machangu
- Department of Microbiology, Saint Francis University College of Health and Allied Sciences, Ifakara-Morogoro, Tanzania
| | - Thomas J Lyimo
- Department of Molecular Biology and Biotechnology, University of Dar es Salaam, Dar es Salaam, Tanzania.
| |
Collapse
|
25
|
Aloufi AS, Habotta OA, Abdelfattah MS, Habib MN, Omran MM, Ali SA, Abdel Moneim AE, Korany SM, Alrajhi AM. Resistomycin Suppresses Prostate Cancer Cell Growth by Instigating Oxidative Stress, Mitochondrial Apoptosis, and Cell Cycle Arrest. Molecules 2023; 28:7871. [PMID: 38067602 PMCID: PMC10708360 DOI: 10.3390/molecules28237871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 11/27/2023] [Accepted: 11/29/2023] [Indexed: 12/18/2023] Open
Abstract
Globally, prostate cancer is among the most threatening and leading causes of death in men. This study, therefore, aimed to search for an ideal antitumor strategy with high efficacy, low drug resistance, and no or few adverse effects. Resistomycin is a natural antibiotic derived from marine actinomycetes, and it possesses various biological activities. Prostate cancer cells (PC3) were treated with resistomycin (IC12.5: 0.65 or IC25: 1.3 µg/mL) or 5-fluorouracil (5-FU; IC25: 7 µg/mL) for 24 h. MTT assay and flow cytometry were utilized to assess cell viability and apoptosis. Oxidative stress, apoptotic-related markers, and cell cycle were also assessed. The results revealed that the IC50 of resistomycin and 5-FU on PC3 cells were 2.63 µg/mL and 14.44 µg/mL, respectively. Furthermore, treated cells with the high dose of resistomycin showed an increased number of apoptotic cells compared to those treated with the lower dose. Remarkable induction of reactive oxygen species generation and lactate dehydrogenase (LDH) leakage with high malondialdehyde (MDA), carbonyl protein (CP), and 8-hydroxyguanosine (8-OHdG) contents were observed in resistomycin-treated cells. In addition, marked declines in glutathione (GSH), superoxide dismutase (SOD), catalase (CAT), and glutathione peroxidase (GPx) in PC3 cells subjected to resistomycin therapy were observed. Resistomycin triggered observable cell apoptosis by increasing Bax, caspase-3, and cytosolic cytochrome c levels and decreasing Bcl-2 levels. In addition, notable downregulation of proliferating cell nuclear antigen (PCNA) and cyclin D1 was observed in resistomycin-treated cancerous cells. According to this evaluation, the antitumor potential of resistomycin, in a concentration-dependent manner, in prostate cancer cells was achieved by triggering oxidative stress, mitochondrial apoptosis, and cell cycle arrest in cancer cells. In conclusion, our investigation suggests that resistomycin can be considered a starting point for developing new chemotherapeutic agents for human prostate cancer.
Collapse
Affiliation(s)
- Abeer S. Aloufi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (A.S.A.); (S.M.K.); (A.M.A.)
| | - Ola A. Habotta
- Department of Forensic Medicine and Toxicology, Faculty of Veterinary Medicine, Mansoura University, Mansoura 35516, Egypt;
| | - Mohamed S. Abdelfattah
- Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt; (M.S.A.); (M.N.H.)
| | - Marina N. Habib
- Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt; (M.S.A.); (M.N.H.)
| | - Mohamed M. Omran
- Chemistry Department, Faculty of Science, Helwan University, Cairo 11795, Egypt; (M.S.A.); (M.N.H.)
| | - Sally A. Ali
- Botany and Microbiology Department, Faculty of Science, Helwan University, Cairo 11795, Egypt;
| | - Ahmed E. Abdel Moneim
- Zoology and Entomology Department, Faculty of Science, Helwan University, Cairo 11795, Egypt
| | - Shereen M. Korany
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (A.S.A.); (S.M.K.); (A.M.A.)
| | - Aisha M. Alrajhi
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia; (A.S.A.); (S.M.K.); (A.M.A.)
| |
Collapse
|
26
|
Sriragavi G, Sangeetha M, Santhakumar M, Lokesh E, Nithyalakshmi M, Saleel CA, Balagurunathan R. Exploring Antibacterial Properties of Bioactive Compounds Isolated from Streptomyces sp. in Bamboo Rhizosphere Soil. ACS OMEGA 2023; 8:36333-36343. [PMID: 37810705 PMCID: PMC10552487 DOI: 10.1021/acsomega.3c04954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023]
Abstract
The increasing concern over multidrug resistance in pathogens has led to an ongoing search for novel antibiotics derived from soil actinobacteria. In this current investigation, actinobacteria were isolated from the rhizosphere of bamboo plants collected within the Megamalai forest of the Western Ghats in the Theni zone of Tamil Nadu, India. These actinobacteria were subjected to characterization, and their growth conditions were optimized to enhance the production of bioactive compounds. To assess antibacterial properties, the isolated Actinobacteria underwent testing using the agar plug method. The strain exhibiting notable antibacterial activity underwent further characterization through 16s rRNA gene sequencing and subsequent phylogenetic analysis. Employing response surface methodology (RSM), cultural conditions were fine-tuned. Bioactive compounds were extracted from the culture medium using ethyl acetate, and their antibacterial and antioxidant effects were evaluated through disc diffusion and DPPH radical scavenging methods, respectively. Ethyl acetate extracts were analyzed by using FT-IR and GC-MS techniques. In total, nine strains of Actinobacteria were isolated from the rhizosphere soil of bamboo. Among these, strain BS-16 displayed remarkable antibacterial activity against three strains: Staphylococcus aureus (19 mm), Bacillus subtilis (12 mm), and Streptococcus pyogenes (10 mm). This strain was identified as Streptomyces sp. The optimal conditions for bioactive compound production were determined as follows: malt extract (10 g), yeast extract (5 g), dextrose (5 g), pH 6.5, and temperature 30 °C. After a 7-day incubation period, the results showed a 6% increase in production. The ethyl acetate fraction derived from strain BS-16 exhibited dose-dependent antibacterial and antioxidant activities. FT-IR and GC-MS analyses revealed the presence of active compounds with antibacterial effects within the extract. Consequently, further investigation into the BS-16 strain holds promise for scaling up the production of bioactive compounds possessing antibacterial and antioxidant properties.
Collapse
Affiliation(s)
- Govindaraj Sriragavi
- Actinobacterial
Research Laboratory, Department of Microbiology, Periyar University, Salem 636011, Tamilnadu, India
| | - Murthy Sangeetha
- Actinobacterial
Research Laboratory, Department of Microbiology, Periyar University, Salem 636011, Tamilnadu, India
| | - Munusamy Santhakumar
- Actinobacterial
Research Laboratory, Department of Microbiology, Periyar University, Salem 636011, Tamilnadu, India
| | - Elumalai Lokesh
- Actinobacterial
Research Laboratory, Department of Microbiology, Periyar University, Salem 636011, Tamilnadu, India
| | - Mohanam Nithyalakshmi
- Actinobacterial
Research Laboratory, Department of Microbiology, Periyar University, Salem 636011, Tamilnadu, India
| | - Chanduveetil Ahamed Saleel
- Department
of Mechanical Engineering, College of Engineering, King Khalid University, P.O. Box 394, Abha 61421, Saudi Arabia
| | - Ramasamy Balagurunathan
- Actinobacterial
Research Laboratory, Department of Microbiology, Periyar University, Salem 636011, Tamilnadu, India
| |
Collapse
|
27
|
Wang HN, Jiang L, Osman G, Chu M, Gu MY, Tang QY, Zhu YL, Zhu J, Zhang ZD. Pontibacter kalidii sp. nov., isolated from rhizosphere soil of Kalidium foliatum. Int J Syst Evol Microbiol 2023; 73. [PMID: 37889260 DOI: 10.1099/ijsem.0.006087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2023] Open
Abstract
A Gram-negative, aerobic, gliding motile, rod-shaped bacterium, designated XAAS-72T, was isolated from the rhizosphere soil of Kalidium foliatum sampled in the Xinjiang Uyghur Autonomous Region, PR China. Cells grew at 4-45 °C, pH 5.0-8.0 and 0-8% NaCl, with optimal growth at 20-30 °C, pH 6.0-7.0 and 1-2 % NaCl. Strain XAAS-72T is closely related to members of the genus Pontibacter, namely Pontibacter korlensis CCTCC AB 206081T (97.6%) and Pontibacter flavimaris ACCC 19859T (97.2 %), and <94.6 % related to other currently described Pontibacter strains. The average nucleotide identity values between XAAS-72T and P. korlensis CCTCC AB 206081T and P. flavimaris ACCC 19859T were 77.9 and 86.9 %, respectively; the corresponding digital DNA-DNA hybridization values were 21.7 and 31.8 %. Menaquinone-7 was the predominant respiratory menaquinone. The polar lipids consisted of phosphatidylethanolamine, two unidentified aminophospholipids, two unidentified glycolipids and five unidentified lipids. The major cellular fatty acids were summed feature 4 (containing iso-C17 : 1 I/anteiso-C17 : 1 B), summed feature 3 (containing C16 : 1 ω7c/C16 : 1 ω6c) and iso-C15 : 0. The genome length of strain XAAS-72T was 5 054 860 bp with a genomic DNA G+C content of 54.5 mol%. The phenotypic and genotypic data suggest that strain XAAS-72T represents a novel species of the genus Pontibacter, for which the name Pontibacter kalidii sp. nov. is proposed. The strain is XAAS-72T (CGMCC 16594T=KCTC 72095T).
Collapse
Affiliation(s)
- Hui-Nan Wang
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences/ Xinjiang Laboratory of Special Environmental Microbiology, Urumqi 830091, Xinjiang, PR China
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, PR China
| | - Ling Jiang
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| | - Ghenijan Osman
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences/ Xinjiang Laboratory of Special Environmental Microbiology, Urumqi 830091, Xinjiang, PR China
| | - Min Chu
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences/ Xinjiang Laboratory of Special Environmental Microbiology, Urumqi 830091, Xinjiang, PR China
| | - Mei-Ying Gu
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences/ Xinjiang Laboratory of Special Environmental Microbiology, Urumqi 830091, Xinjiang, PR China
| | - Qi-Yong Tang
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences/ Xinjiang Laboratory of Special Environmental Microbiology, Urumqi 830091, Xinjiang, PR China
| | - Yan-Lei Zhu
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, PR China
| | - Jing Zhu
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences/ Xinjiang Laboratory of Special Environmental Microbiology, Urumqi 830091, Xinjiang, PR China
| | - Zhi-Dong Zhang
- Institute of Applied Microbiology, Xinjiang Academy of Agricultural Sciences/ Xinjiang Laboratory of Special Environmental Microbiology, Urumqi 830091, Xinjiang, PR China
- College of Life Sciences, Xinjiang Normal University, Urumqi 830054, PR China
- College of Food Science and Light Industry, State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 211816, PR China
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing 211816, PR China
| |
Collapse
|
28
|
Ngamcharungchit C, Chaimusik N, Panbangred W, Euanorasetr J, Intra B. Bioactive Metabolites from Terrestrial and Marine Actinomycetes. Molecules 2023; 28:5915. [PMID: 37570885 PMCID: PMC10421486 DOI: 10.3390/molecules28155915] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 07/27/2023] [Accepted: 08/01/2023] [Indexed: 08/13/2023] Open
Abstract
Actinomycetes inhabit both terrestrial and marine ecosystems and are highly proficient in producing a wide range of natural products with diverse biological functions, including antitumor, immunosuppressive, antimicrobial, and antiviral activities. In this review, we delve into the life cycle, ecology, taxonomy, and classification of actinomycetes, as well as their varied bioactive metabolites recently discovered between 2015 and 2023. Additionally, we explore promising strategies to unveil and investigate new bioactive metabolites, encompassing genome mining, activation of silent genes through signal molecules, and co-cultivation approaches. By presenting this comprehensive and up-to-date review, we hope to offer a potential solution to uncover novel bioactive compounds with essential activities.
Collapse
Affiliation(s)
- Chananan Ngamcharungchit
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Mahidol University and Osaka University Collaborative Research Center on Bioscience and Biotechnology, Bangkok 10400, Thailand
| | - Nutsuda Chaimusik
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Mahidol University and Osaka University Collaborative Research Center on Bioscience and Biotechnology, Bangkok 10400, Thailand
| | - Watanalai Panbangred
- Research, Innovation and Partnerships Office, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
| | - Jirayut Euanorasetr
- Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, Bangkok 10140, Thailand
- Laboratory of Biotechnological Research for Energy and Bioactive Compounds, Department of Microbiology, Faculty of Science, King Mongkut’s University of Technology Thonburi, Khet Thung Khru, Bangkok 10140, Thailand
| | - Bungonsiri Intra
- Department of Biotechnology, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
- Mahidol University and Osaka University Collaborative Research Center on Bioscience and Biotechnology, Bangkok 10400, Thailand
| |
Collapse
|
29
|
Wang N, Zhu K, Bi Y, Liu F, Yu Z. Anti-Aphid Polyketides from Streptomyces sp. SA61. JOURNAL OF NATURAL PRODUCTS 2023; 86:791-796. [PMID: 36988345 DOI: 10.1021/acs.jnatprod.2c00961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
Myzus persicae (Sulzer) is a crop pest causing serious economic losses around the world. For many decades, the management of M. persicae has relied heavily on chemical pesticides, resulting in the development of resistance, and new compounds with activity against M. persicae are needed. Five novel polyketides, strekingmycins A-E (1-5), were isolated from Streptomyces sp. SA61. Their structures were determined based on MS, NMR, and X-ray diffraction data. Strekingmycins were active against M. persicae between 4.4 and 9.4 μg/mL.
Collapse
Affiliation(s)
- Ning Wang
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Kaihui Zhu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Yuhui Bi
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Fei Liu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| | - Zhiguo Yu
- College of Plant Protection, Shenyang Agricultural University, Shenyang 110866, People's Republic of China
| |
Collapse
|
30
|
O’Boyle NM, Helesbeux JJ, Meegan MJ, Sasse A, O’Shaughnessy E, Qaisar A, Clancy A, McCarthy F, Marchand P. 30th Annual GP 2A Medicinal Chemistry Conference. Pharmaceuticals (Basel) 2023; 16:432. [PMID: 36986531 PMCID: PMC10056312 DOI: 10.3390/ph16030432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 01/16/2023] [Indexed: 03/14/2023] Open
Abstract
The Group for the Promotion of Pharmaceutical Chemistry in Academia (GP2A) held their 30th annual conference in August 2022 in Trinity College Dublin, Ireland. There were 9 keynote presentations, 10 early career researcher presentations and 41 poster presentations.
Collapse
Affiliation(s)
- Niamh M. O’Boyle
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | | | - Mary J. Meegan
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Astrid Sasse
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Elizabeth O’Shaughnessy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Alina Qaisar
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Aoife Clancy
- School of Pharmacy and Pharmaceutical Sciences, Panoz Institute and Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 PN40 Dublin, Ireland
| | - Florence McCarthy
- School of Chemistry and ABCRF, University College Cork, T12 K8AF Cork, Ireland
| | - Pascal Marchand
- Cibles et Médicaments des Infections et de l’Immunité, IICiMed, Nantes Université, UR 1155, F-44000 Nantes, France
| |
Collapse
|
31
|
Shokrzadeh Madieh N, Tanna S, Alqurayn NA, Vaideanu A, Schatzlein A, Brucoli F. Aminobenzofuran-containing analogues of proximicins exhibit higher antiproliferative activity against human UG-87 glioblastoma cells compared to temozolomide. RSC Adv 2023; 13:8420-8426. [PMID: 36926006 PMCID: PMC10012336 DOI: 10.1039/d3ra00107e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/08/2023] [Indexed: 03/15/2023] Open
Abstract
A new series of proximicin analogues containing a benzofuran moiety as the replacement of the di-furan scaffold of the parent compound were synthesised and evaluated for their anti-proliferative activities against human glioblastoma cells U-87 MG. Proximicins A, B, and C are secondary metabolites produced by Verrucosispora Fiedleri MG-37, a Gram-positive actinomycete isolated from deep-sea sediment. Proximicins exhibit significant cytotoxic and apoptotic effects in a number of tumour cell lines, although further investigations on these natural products biological activity are hampered by the challenging synthesis of their constitutive di-furan unit. Therefore, the easily-synthesisable benzofuran ring was elected as a replacement of the di-furan platform, and a library of proximicin analogues was prepared in which different substituents were introduced at both the N-terminus and C-terminus of the benzofuran core unit. The novel compounds were tested against U-87 MG, as it was previously found that proximicins targeted this cancerous cell line, and the human healthy cell line WI-38. Temozolomide, the chemotherapeutic agent of choice for the treatment of glioblastoma, was used as a control. Analysis of growth inhibitory concentration values revealed that a number of furan-benzofuran-containing proximicin analogues, including 23(16) (IC50 U-87 MG = 6.54 μg mL-1) exhibited higher antiproliferative activity against glioblastoma cells compared to both proximicins A-C and temozolomide (IC50 U-87 MG = 29.19 μg mL-1) in U-87 MG.
Collapse
Affiliation(s)
| | - Sangeeta Tanna
- Leicester School of Pharmacy, De Montfort University Leicester LE1 9BH UK
| | - Norah Ahmed Alqurayn
- UCL School of Pharmacy, University College London 29/39 Brunswick Square London WC1N 1AX UK
| | - Alexandra Vaideanu
- UCL School of Pharmacy, University College London 29/39 Brunswick Square London WC1N 1AX UK
| | - Andreas Schatzlein
- UCL School of Pharmacy, University College London 29/39 Brunswick Square London WC1N 1AX UK
| | - Federico Brucoli
- Leicester School of Pharmacy, De Montfort University Leicester LE1 9BH UK
| |
Collapse
|
32
|
Takahashi M, Shinohara S, Hamada M, Tamura T, Dohra H, Kodani S, Nakagawa Y, Kokubo S, Hayakawa M, Yamamura H. Streptomyces pacificus sp. nov., a novel spongiicolazolicin-producing actinomycete isolated from a coastal sediment. J Antibiot (Tokyo) 2023; 76:93-100. [PMID: 36564595 DOI: 10.1038/s41429-022-00589-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 11/29/2022] [Indexed: 12/24/2022]
Abstract
A polyphasic approach was used to determine the taxonomic position of a marine actinomycete, designated isolate CWH03T, which we previously reported to produce new linear azole-containing peptides spongiicolazolicins A and B. Strain CWH03T is mesophilic, neutrophilic, and halotolerant streptomycete that forms spiral spore chains on aerial mycelium. Comparative 16S rRNA gene sequencing showed that CWH03T was most closely related to Streptomyces tirandamycinicus HNM0039T (99.7%), Streptomyces spongiicola HNM0071T (99.4%), 'Streptomyces marianii' ICN19T (99.1%) and Streptomyces wuyuanensis CGMCC4.7042T (99.0%). The phylogenetic tree prepared using the 16S rRNA gene, as well as the phylogenomic tree using the genome BLAST distance phylogeny method and 81 core housekeeping genes, respectively, showed that the closest relative of strain CWH03T was S. spongiicola HNM0071T. The average nucleotide identity and digital DNA-DNA hybridization values between strains CWH03T and S. spongiicola HNM0071T were 91.46% and 44.2%, respectively, which were below the thresholds of 96% and 70% for prokaryotic conspecific assignation. The G+C content of the genomic DNA of strain CWH03T was 72.3%. Whole-cell hydrolysates of strain CWH03T contained LL-diaminopimelic acid. The predominant menaquinone was MK-9(H8) (88.3%), and the major fatty acids were iso-C16:0 (28.4%), anteiso-C15:0 (15.0%) and iso-C15:0 (12.9%). The major phospholipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine and an unidentified phospholipid. Based on data obtained from phenotypic, phylogenetic, genomic, and chemotaxonomic analyses, strain CWH03T represents a novel species of the genus Streptomyces, for which the proposed name is Streptomyces pacificus sp. nov. The type strain is CWH03T ( = NBRC 114659T = TBRC 15780T).
Collapse
Affiliation(s)
- Miku Takahashi
- Department of Biotechnology, Faculty of Life and Environmental Sciences, University of Yamanashi, Takeda-4-4-37, Kofu, 400-8510, Japan
| | - Shoya Shinohara
- Department of Biotechnology, Faculty of Life and Environmental Sciences, University of Yamanashi, Takeda-4-4-37, Kofu, 400-8510, Japan
| | - Moriyuki Hamada
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), 2-5-8 Kazusakamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Tomohiko Tamura
- Biological Resource Center, National Institute of Technology and Evaluation (NBRC), 2-5-8 Kazusakamatari, Kisarazu, Chiba, 292-0818, Japan
| | - Hideo Dohra
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
- Research Institute of Green Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Shinya Kodani
- Graduate School of Integrated Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
- Graduate School of Science and Technology, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
- Academic Institute, Shizuoka University, 836 Ohya, Suruga-ku, Shizuoka, 422-8529, Japan
| | - Youji Nakagawa
- Department of Biotechnology, Faculty of Life and Environmental Sciences, University of Yamanashi, Takeda-4-4-37, Kofu, 400-8510, Japan
| | - Susumu Kokubo
- Department of Biotechnology, Faculty of Life and Environmental Sciences, University of Yamanashi, Takeda-4-4-37, Kofu, 400-8510, Japan
| | - Masayuki Hayakawa
- Department of Biotechnology, Faculty of Life and Environmental Sciences, University of Yamanashi, Takeda-4-4-37, Kofu, 400-8510, Japan
- Yamanashi Prefectural University, Iida-5-11-1, Kofu, 400-0035, Japan
| | - Hideki Yamamura
- Department of Biotechnology, Faculty of Life and Environmental Sciences, University of Yamanashi, Takeda-4-4-37, Kofu, 400-8510, Japan.
| |
Collapse
|
33
|
The Diversity of Deep-Sea Actinobacteria and Their Natural Products: An Epitome of Curiosity and Drug Discovery. DIVERSITY 2022. [DOI: 10.3390/d15010030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bioprospecting of novel antibiotics has been the conventional norm of research fostered by researchers worldwide to combat drug resistance. With the exhaustion of incessant leads, the search for new chemical entities moves into uncharted territories such as the deep sea. The deep sea is a furthermost ecosystem with much untapped biodiversity thriving under extreme conditions. Accordingly, it also encompasses a vast pool of ancient natural products. Actinobacteria are frequently regarded as the bacteria of research interest due to their inherent antibiotic-producing capabilities. These interesting groups of bacteria occupy diverse ecological habitats including a multitude of different deep-sea habitats. In this review, we provide a recent update on the novel species and compounds of actinomycetes from the deep-sea environments within a period of 2016–2022. Within this period, a total of 24 new species of actinomycetes were discovered and characterized as well as 101 new compounds of various biological activities. The microbial communities of various deep-sea ecosystems are the emerging frontiers of bioprospecting.
Collapse
|
34
|
Xu D, Metz J, Harmody D, Peterson T, Winder P, Guzmán EA, Russo R, McCarthy PJ, Wright AE, Wang G. Brominated and Sulfur-Containing Angucyclines Derived from a Single Pathway: Identification of Nocardiopsistins D-F. Org Lett 2022; 24:7900-7904. [PMID: 36269561 DOI: 10.1021/acs.orglett.2c02879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
One novel brominated nocardiopsistin D (1) and two new sulfur-containing nocardiopsistins E-F (2-3) were identified from Nocardiopsis sp. HB-J378. The biosynthetic gene cluster ncd featuring a brominase was identified. Compounds 1-3 exhibited significant anti-methicillin-resistant Staphylococcus aureus (anti-MRSA) activities with minimum inhibitory concentrations (MICs) of 0.098, 3.125, and 0.195 μg/mL, respectively. The single bromination in 1 drastically enhanced the anti-MRSA activity by 128-fold without altering cell toxicity and acquired new activities against the bacterial pathogens vancomycin-resistant S. aureus (VRSA), Enterococcus faecium, and Bacillus cereus.
Collapse
Affiliation(s)
- Dongbo Xu
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, Florida 34946, United States
| | - Jackie Metz
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, Florida 34946, United States
| | - Dedra Harmody
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, Florida 34946, United States
| | - Tara Peterson
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, Florida 34946, United States
| | - Priscilla Winder
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, Florida 34946, United States
| | - Esther A Guzmán
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, Florida 34946, United States
| | - Riccardo Russo
- Regional Bio-Containment Laboratory, Department of Medicine, Rutgers University, 225 Warren Street, Newark, New Jersey 07103, United States
| | - Peter J McCarthy
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, Florida 34946, United States
| | - Amy E Wright
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, Florida 34946, United States
| | - Guojun Wang
- Harbor Branch Oceanographic Institute, Florida Atlantic University, 5600 US 1 North, Fort Pierce, Florida 34946, United States
| |
Collapse
|
35
|
Mondal H, Thomas J. Isolation and Characterization of a Novel Actinomycete Isolated from Marine Sediments and Its Antibacterial Activity against Fish Pathogens. Antibiotics (Basel) 2022; 11:1546. [PMID: 36358200 PMCID: PMC9686785 DOI: 10.3390/antibiotics11111546] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 10/21/2022] [Accepted: 11/01/2022] [Indexed: 11/29/2023] Open
Abstract
Marine habitats are especially complex, with a varied diversity of living organisms. Marine organisms, while living in such intense conditions, have developed great physiological and metabolic potential to survive. This has led them to produce several potent metabolites, which their terrestrial counterparts are unable to produce. Over the past few years, marine Actinomycetes have been considered one of the most abundant sources of diverse and novel metabolites. In this work, an attempt was made to isolate Actinomycetes from marine sediments in terms of their ability to produce several novel bioactive compounds. A total of 16 different Actinomycete colonies were obtained from marine sediment samples. Among the 16 Actinomycete isolates, 2 isolates demonstrated in vitro antibacterial activity against Aeromonas hydrophila and Vibrio parahemolyticus. However, among them, only one isolate was found to have potent antibacterial activity, and hence, was taken for further analysis. This isolate was designated as Beijerinickia fluminensis VIT01. The bioactive components obtained were extracted and later subjected to Fourier transform infrared spectroscopy (FTIR) and gas chromatography-mass spectroscopy (GC-MS) analyses for identification. Several novel bioactive compounds were reported from the data obtained and were found to have potent antibacterial activity. Hence, they could be used as an alternative to antibiotics for treating several fish pathogens in the aquaculture industry.
Collapse
Affiliation(s)
| | - John Thomas
- Centre for Nanobiotechnology, Vellore Institute of Technology (VIT), Vellore 632014, India
| |
Collapse
|
36
|
Gao J, Feng W, Yang F, Liu J, Fan W, Wang Y, Zhang Q, Yang W. Effects of water quality and bacterial community composition on dissolved organic matter structure in Daihai lake and the mechanisms. ENVIRONMENTAL RESEARCH 2022; 214:114109. [PMID: 35981612 DOI: 10.1016/j.envres.2022.114109] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/25/2022] [Accepted: 08/10/2022] [Indexed: 06/15/2023]
Abstract
The migration of organic matter in salinized lakes was critical in maintaining ecological balance and material circulation process of inland shallow lakes. To clarify the ecological and microbial mechanism of material transport and transformation, the microbial community structure and the characteristics of dissolved organic matter (DOM) in the sediment of Daihai Lake, a typical saline lake at the Yellow River Basin, were explored with three-dimensional excitation and emission matrix fluorescence (3DEEM), parallel factor analysis (PARAFAC) and 16 S rRNA techniques. The correlation between environmental factors, DOM composition and the bacterial community structure were also studied for identifying the key factors of community formation. DOM in the lake demonstrated both terrigenous and endogenous characteristics. Protein-like materials accounted for 74% of the total fluorescence intensity in the sediment, where 1127 species, 671 genera, 468 families, 157 classes, 317 orders, 59 phyla of microorganisms were detected. Among the top 10 abundant taxa of each level, Firmicutes, Actinobacterota, Acidimicrobiia and Alphaproteobacteria had the greatest influence on the composition and structure of DOM (|R| > 0.7, p < 0.01). Microbial metabolism was a key process of transforming sediment organic matter from terrestrial humic-like to protein-like matter, accounting for 81% of total fluorescence signal in saline lake samples, while salinity, temperature, dissolved oxygen and electrical conductivity also had significant impacts during the process (|R|>0.7, p < 0.05). The research provides fundamental data and enlightenment for the improvement of the saline inland lake environment.
Collapse
Affiliation(s)
- Jiayue Gao
- School of Space and Environment, Beihang University, Beijing, 100191, China
| | - Weiying Feng
- School of Space and Environment, Beihang University, Beijing, 100191, China; Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China.
| | - Fang Yang
- State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing, 100012, China.
| | - Jing Liu
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Wenhong Fan
- School of Space and Environment, Beihang University, Beijing, 100191, China; Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China
| | - Ying Wang
- School of Space and Environment, Beihang University, Beijing, 100191, China; Advanced Innovation Center for Big Data-Based Precision Medicine, Beihang University, Beijing, 100191, China
| | - Qi Zhang
- School of Electronic Engineering, Beijing University of Posts and Telecommunications, Beijing, 100876, China
| | - Wenhuan Yang
- School of Energy and Environment, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| |
Collapse
|
37
|
Chen Y, Wei Y, Cai B, Zhou D, Qi D, Zhang M, Zhao Y, Li K, Wedge DE, Pan Z, Xie J, Wang W. Discovery of Niphimycin C from Streptomyces yongxingensis sp. nov. as a Promising Agrochemical Fungicide for Controlling Banana Fusarium Wilt by Destroying the Mitochondrial Structure and Function. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:12784-12795. [PMID: 36170206 DOI: 10.1021/acs.jafc.2c02810] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Banana Fusarium wilt caused by Fusarium oxysporum f. sp. cubense (Foc) is the most destructive soil-borne fungal disease. Tropical race 4 (Foc TR4), one of the strains of Foc, can infect many commercial cultivars, which represents a threat to global banana production. Currently, there are hardly any effective chemical fungicides to control the disease. To search for natural product-based fungicides for controlling banana Fusarium wilt, we identified a novel strain Streptomyces yongxingensis sp. nov. (JCM 34965) from a marine soft coral, from which a bioactive compound, niphimycin C, was isolated using an activity-guided method. Niphimycin C exhibited a strong antifungal activity against Foc TR4 with a value of 1.20 μg/mL for EC50 and obviously inhibited the mycelial growth and spore germination of Foc TR4. It caused the functional loss of mitochondria and the disorder of metabolism of Foc TR4 cells. Further study showed that niphimycin C reduced key enzyme activities of the tricarboxylic acid (TCA) cycle and the electron transport chain (ETC). It displayed broad-spectrum antifungal activities against the selected 12 phytopathogenic fungi. In pot experiments, niphimycin C reduced the disease indexes in banana plantlets and inhibited the infection of Foc TR4 in roots. Hence, niphimycin C could be a promising agrochemical fungicide for the management of fungal diseases.
Collapse
Affiliation(s)
- Yufeng Chen
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yongzan Wei
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Bingyu Cai
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Dengbo Zhou
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Dengfeng Qi
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Miaoyi Zhang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Yankun Zhao
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Kai Li
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - David E Wedge
- United States Department of Agriculture-Agricultural Research Service, Natural Products Utilization Research Unit, University, Mississippi 38677, United States
| | - Zhiqiang Pan
- United States Department of Agriculture-Agricultural Research Service, Natural Products Utilization Research Unit, University, Mississippi 38677, United States
| | - Jianghui Xie
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| | - Wei Wang
- Key Laboratory of Biology and Genetic Resources of Tropical Crops, Ministry of Agriculture, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou 571101, China
| |
Collapse
|
38
|
Draft Genome Sequence of
Streptomyces
sp. Strain ICN903, Isolated from a Seaweed. Microbiol Resour Announc 2022; 11:e0063522. [PMID: 35980181 PMCID: PMC9476897 DOI: 10.1128/mra.00635-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the whole-genome sequence of the actinomycete Streptomyces sp. strain ICN903, which was isolated from seaweed of the genus Botryocladia. The whole-genome assembly contained 6,122,654 bp with 73% GC content. In total, 19 biosynthetic gene clusters (BGCs), including polyketides and terpenes, were predicted within the sequenced genome.
Collapse
|
39
|
Inferences of actinobacterial metabolites to combat Corona virus. ADVANCES IN TRADITIONAL MEDICINE 2022. [PMCID: PMC9469815 DOI: 10.1007/s13596-022-00661-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
Abstract
The entire globe is reeling under the magnitude of the current corona virus pandemic. This menace has proposed severe health and economic threats for all, thereby challenging our human existence itself. Since its outbreak, it has raised the concern and imperative need of developing novel and effective agents to combat viral diseases and now its variants as well. Despite the sincere and concerted efforts of scientists and pharma giants all over the world, there seems to be no ideal recourse found till date. Natural products are rich sources of novel compounds used in the treatment of infectious and non-infectious diseases. There are reports on natural products from microbes, plants and marine organisms that are active against viral targets. Actinobacteria, the largest phylum under the bacterial kingdom, is known for its secondary metabolite production with diverse bioactive potentials. Nearly 65% of antibiotics used in medicine are contributed by Actinobacteria. Compared to antibacterial and antifungal agents, antiviral compounds from Actinobacteria are less studied. In recent years Actinobacteria from under studied/extreme ecosystems are explored for their antiviral properties. Ivermectin and teicoplanin are examples of Actinobacteria-derived antiviral drugs available for commercial use. This review highlights the importance of actinobacteria as future sources of antiviral drug discovery.
Collapse
|
40
|
Liu C, Zhang Z, Fukaya K, Urabe D, Harunari E, Oku N, Igarashi Y. Catellatolactams A-C, Plant Growth-Promoting Ansamacrolactams from a Rare Actinomycete of the Genus Catellatospora. JOURNAL OF NATURAL PRODUCTS 2022; 85:1993-1999. [PMID: 35948055 DOI: 10.1021/acs.jnatprod.2c00331] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Catellatolactams A-C (1-3), three novel ansamacrolactams, were isolated from the culture extract of an underexplored rare actinomycete of the genus Catellatospora. Spectroscopic and spectrometric analyses by NMR and MS elucidated the structure of 1 to be a lactamized pentaketide presumably extended on a 3-amino-5-hydroxybenzoic acid starter unit. Compounds 2 and 3 further received epoxidation and intramolecular cross-linking to incorporate a 2-indolinone unit, with a 3-amino-5-hydroxybenzoic acid pendant on 3. The absolute configurations of 2 and 3 were unequivocally established to both be 2S,6R,7R by comparison of the experimental NMR chemical shifts and ECD spectra with those predicted by DFT-based quantum chemical calculation. While 1-3 showed no appreciable antimicrobial activity or cytotoxicity, root elongation of germinated lettuce seeds was promoted by 2 and 3 at 1-10 μM.
Collapse
Affiliation(s)
- Chang Liu
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Zhiwei Zhang
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Keisuke Fukaya
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Daisuke Urabe
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Enjuro Harunari
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Naoya Oku
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
41
|
Quyen VT, Minh LTH, Huyen VTT, Anh NM, Hue NT, Dao PT, Linh NT, Van Cuong P, Huong DTM. Antimicrobial Secondary Metabolites from the Marine-Derived Actinomycete Nocardiopsis synnemataformans HT06. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03772-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
42
|
Menasria T, Monteoliva-Sánchez M, Benhadj M, Benammar L, Boukoucha M, Aguilera M. Unraveling the enzymatic and antibacterial potential of rare halophilic actinomycetes from Algerian hypersaline wetland ecosystems. J Basic Microbiol 2022; 62:1202-1215. [PMID: 35945171 DOI: 10.1002/jobm.202200085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2022] [Revised: 06/18/2022] [Accepted: 07/10/2022] [Indexed: 11/07/2022]
Abstract
The study aimed to isolate rare halophilic actinomycetes from hypersaline soils of Algerian inland Wetland Ecosystems "Sebkhas-Chotts" located in arid and hot hyperarid lands with international importance under the Ramsar Convention and to explore their enzyme-producing and antibacterial abilities. The halophilic actinomycetes were selectively isolated using agar-rich media supplemented with 5, 10, and 15% (W/V) of total salts. Thirty-one isolates were obtained and 16S rRNA gene sequencing analysis revealed the presence of members affiliated to rare halophilic actinobacterial genera (Actinopolyspora and Nocardiopsis) accounting for 74.19% (23 isolates out of 31) and 25.8% (8 isolates), respectively. Both phylotypes are alkalitolerant and halophilic thermotolerant actinomycetes displaying significant hydrolytic activities relative to (amylase, asparaginase, cellulase, esterase, glutaminase, inulinase, protease, pectinase, xylanase), and over 96% of tested isolates exhibited all common enzymes, mainly active at 10% of growing salt. In addition, high antibacterial activity was observed against Bacillus cereus, Bacillus subtilis, Micrococcus luteus, and Staphylococcus aureus. The findings showed that saline wetlands ecosystems represent a rich reservoir for the isolation of significant rare halophilic actinomycetes with potential adaptive features and valuable sources for novel bioactive metabolites and biocatalysts of biotechnological interest.
Collapse
Affiliation(s)
- Taha Menasria
- Department of Applied Biology, Faculty of Exact Sciences and Natural and Life Sciences, University of Larbi Tebessi, Tebessa, Algeria.,Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| | | | - Mabrouka Benhadj
- Department of Applied Biology, Faculty of Exact Sciences and Natural and Life Sciences, University of Larbi Tebessi, Tebessa, Algeria
| | - Leyla Benammar
- Department of Microbiology and Biochemistry, Faculty of Natural and Life Sciences University of Batna, Batna, Algeria
| | - Mourad Boukoucha
- Department of Applied Biology, Faculty of Exact Sciences and Natural and Life Sciences, University of Larbi Tebessi, Tebessa, Algeria
| | - Margarita Aguilera
- Department of Microbiology, Faculty of Pharmacy, University of Granada, Granada, Spain
| |
Collapse
|
43
|
Abdelrahman SM, Dosoky NS, Hanora AM, Lopanik NB. Metabolomic Profiling and Molecular Networking of Nudibranch-Associated Streptomyces sp. SCSIO 001680. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27144542. [PMID: 35889415 PMCID: PMC9321954 DOI: 10.3390/molecules27144542] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/13/2022] [Accepted: 07/13/2022] [Indexed: 11/24/2022]
Abstract
Antibiotic-resistant bacteria are the primary source of one of the growing public health problems that requires global attention, indicating an urgent need for new antibiotics. Marine ecosystems are characterized by high biodiversity and are considered one of the essential sources of bioactive chemical compounds. Bacterial associates of marine invertebrates are commonly a source of active medicinal and natural products and are important sources for drug discovery. Hence, marine invertebrate-associated microbiomes are a fruitful resource for excavating novel genes and bioactive compounds. In a previous study, we isolated Streptomyces sp. SCSIO 001680, coded as strain 63, from the Red Sea nudibranch Chromodoris quadricolor, which exhibited antimicrobial and antitumor activity. In addition, this isolate harbors several natural product biosynthetic gene clusters, suggesting it has the potential to produce bioactive natural products. The present study aimed to investigate the metabolic profile of the isolated Streptomyces sp. SCSIO 001680 (strain 63) and to predict their potential role in the host’s survival. The crude metabolic extracts of strain 63 cultivated in two different media were characterized by ultra-high-performance liquid chromatography and high-resolution mass spectrometry. The metabolomics approach provided us with characteristic chemical fingerprints of the cellular processes and the relative abundance of specific compounds. The Global Products Social Molecular Networking database was used to identify the metabolites. While 434 metabolites were detected in the extracts, only a few compounds were identified based on the standards and the public spectral libraries, including desferrioxamines, marineosin A, and bisucaberin, halichoblelide, alternarin A, pachastrelloside A, streptodepsipeptide P1 1B, didemnaketal F, and alexandrolide. This finding suggests that this strain harbors several novel compounds. In addition, the metabolism of the microbiome of marine invertebrates remains poorly represented. Thus, our data constitute a valuable complement to the study of metabolism in the host microbiome.
Collapse
Affiliation(s)
- Samar M. Abdelrahman
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- Department of Botany and Microbiology, Faculty of Science, Suez University, Suez 43518, Egypt
- Correspondence: ; Tel.: +20-103-015-1594
| | | | - Amro M. Hanora
- Department of Microbiology and Immunology, Faculty of Pharmacy, Suez Canal University, Ismailia 41522, Egypt;
| | - Nicole B. Lopanik
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA;
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA 30332, USA
- American Cancer Society, Atlanta, GA 30303, USA
| |
Collapse
|
44
|
Siro G, Pipite A, Christi K, Srinivasan S, Subramani R. Marine Actinomycetes Associated with Stony Corals: A Potential Hotspot for Specialized Metabolites. Microorganisms 2022; 10:1349. [PMID: 35889068 PMCID: PMC9319285 DOI: 10.3390/microorganisms10071349] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 06/29/2022] [Accepted: 07/02/2022] [Indexed: 02/05/2023] Open
Abstract
Microbial secondary metabolites are an important source of antibiotics currently available for combating drug-resistant pathogens. These important secondary metabolites are produced by various microorganisms, including Actinobacteria. Actinobacteria have a colossal genome with a wide array of genes that code for several bioactive metabolites and enzymes. Numerous studies have reported the isolation and screening of millions of strains of actinomycetes from various habitats for specialized metabolites worldwide. Looking at the extent of the importance of actinomycetes in various fields, corals are highlighted as a potential hotspot for untapped secondary metabolites and new bioactive metabolites. Unfortunately, knowledge about the diversity, distribution and biochemistry of marine actinomycetes compared to hard corals is limited. In this review, we aim to summarize the recent knowledge on the isolation, diversity, distribution and discovery of natural compounds from marine actinomycetes associated with hard corals. A total of 11 new species of actinomycetes, representing nine different families of actinomycetes, were recovered from hard corals during the period from 2007 to 2022. In addition, this study examined a total of 13 new compounds produced by five genera of actinomycetes reported from 2017 to 2022 with antibacterial, antifungal and cytotoxic activities. Coral-derived actinomycetes have different mechanisms of action against their competitors.
Collapse
Affiliation(s)
- Galana Siro
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), The University of the South Pacific, Laucala Campus, Suva, Fiji; (G.S.); (K.C.); (R.S.)
| | - Atanas Pipite
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), The University of the South Pacific, Laucala Campus, Suva, Fiji; (G.S.); (K.C.); (R.S.)
| | - Ketan Christi
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), The University of the South Pacific, Laucala Campus, Suva, Fiji; (G.S.); (K.C.); (R.S.)
| | - Sathiyaraj Srinivasan
- Department of Bio & Environmental Technology, Division of Environmental & Life Science, College of Natural Science, Seoul Women’s University, 623 Hwarangno, Nowon-gu, Seoul 01797, Korea
| | - Ramesh Subramani
- School of Agriculture, Geography, Environment, Ocean and Natural Sciences (SAGEONS), The University of the South Pacific, Laucala Campus, Suva, Fiji; (G.S.); (K.C.); (R.S.)
| |
Collapse
|
45
|
Secondary Metabolites and Antifungal Activity of the Endophytic Fungus Streptomyces humidus SCB0232 from Water Chestnut. Chem Nat Compd 2022. [DOI: 10.1007/s10600-022-03689-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
46
|
Naligama KN, Weerasinghe KE, Halmillawewa AP. Characterization of Bioactive Actinomycetes Isolated from Kadolkele Mangrove Sediments, Sri Lanka. Pol J Microbiol 2022; 71:191-204. [PMID: 35676828 PMCID: PMC9252147 DOI: 10.33073/pjm-2022-017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 03/09/2022] [Indexed: 12/04/2022] Open
Abstract
Exploring untapped microbial potentials in previously uncharted environments has become crucial in discovering novel secondary metabolites and enzymes for biotechnological applications. Among prokaryotes, actinomycetes are well recognized for producing a vast range of secondary metabolites and extracellular enzymes. In the present study, we have used surface sediments from ‘Kadolkele’ mangrove ecosystem located in the Negombo lagoon area, Sri Lanka, to isolate actinomycetes with bioactive potentials. A total of six actinomycetes were isolated on modified-starch casein agar and characterized. The isolates were evaluated for their antibacterial activity against four selected bacterial strains and to produce extracellular enzymes: cellulase, amylase, protease, and lipase. Three out of the six isolates exhibited antibacterial activity against Staphylococcus aureus, Escherichia coli, and Bacillus cereus, but not against Listeria monocytogenes. Five strains could produce extracellular cellulase, while all six isolates exhibited amylase activity. Only three of the six isolates were positive for protease and lipase assays separately. Ac-1, Ac-2, and Ac-9, identified as Streptomyces spp. with the 16S rRNA gene sequencing, were used for pigment extraction using four different solvents. Acetone-extracted crude pigments of Ac-1 and Ac-2 were further used in well-diffusion assays, and growth inhibition of test bacteria was observed only with the crude pigment extract of Ac-2. Further, six different commercially available fabrics were dyed with crude pigments of Ac-1. The dyed fabrics retained the yellow color after acid, alkaline, and cold-water treatments suggesting the potential of the Ac-1 pigment to be used in biotechnological applications.
Collapse
Affiliation(s)
- Kishani N Naligama
- Department of Microbiology, Faculty of Science, University of Kelaniya, Kelaniya Sri Lanka
| | - Kavindi E Weerasinghe
- Department of Microbiology, Faculty of Science, University of Kelaniya, Kelaniya Sri Lanka
| | - Anupama P Halmillawewa
- Department of Microbiology, Faculty of Science, University of Kelaniya, Kelaniya Sri Lanka
| |
Collapse
|
47
|
Leetanasaksakul K, Koomsiri W, Suga T, Matsuo H, Hokari R, Wattana-Amorn P, Takahashi YK, Shiomi K, Nakashima T, Inahashi Y, Thamchaipenet A. Sattahipmycin, a Hexacyclic Xanthone Produced by a Marine-Derived Streptomyces. JOURNAL OF NATURAL PRODUCTS 2022; 85:1211-1217. [PMID: 35512262 DOI: 10.1021/acs.jnatprod.1c00870] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Sattahipmycin was isolated from the mycelium of marine-derived Streptomyces sp. GKU 257-1 by following the antibiofilm activity against E. coli NBRC 3972 throughout the purification steps. The structure of sattahipmycin was determined to be a new polycyclic xanthone related to xantholipin but lacking a dioxymethylene and a chlorinated carbon. This compound showed activity toward Gram-positive bacteria and Plasmodium falciparum, antibiofilm formation of Escherichia coli, and cytotoxicity to human cancer cell lines. Using genome sequence data, a biosynthetic pathway leading to sattahipmycin has been proposed involving an uncharacterized type II polyketide synthase biosynthetic gene cluster.
Collapse
Affiliation(s)
- Kantinan Leetanasaksakul
- Department of Genetics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| | - Wilaiwan Koomsiri
- Department of Genetics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| | - Takuya Suga
- Kitasato Institute for Life Sciences (Present: O̅mura Satoshi Memorial Institute), Kitasato University, Tokyo 108-8641, Japan
| | - Hirotaka Matsuo
- Kitasato Institute for Life Sciences (Present: O̅mura Satoshi Memorial Institute), Kitasato University, Tokyo 108-8641, Japan
| | - Rei Hokari
- Kitasato Institute for Life Sciences (Present: O̅mura Satoshi Memorial Institute), Kitasato University, Tokyo 108-8641, Japan
| | - Pakorn Wattana-Amorn
- Department of Chemistry, Special Research Unit for Advanced Magnetic Resonance and Center of Excellence for Innovation in Chemistry, Faculty of Science, Kasetsart University, Bangkok 10900, Thailand
| | - Yo Ko Takahashi
- Kitasato Institute for Life Sciences (Present: O̅mura Satoshi Memorial Institute), Kitasato University, Tokyo 108-8641, Japan
| | - Kazuro Shiomi
- Kitasato Institute for Life Sciences (Present: O̅mura Satoshi Memorial Institute), Kitasato University, Tokyo 108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Takuji Nakashima
- Kitasato Institute for Life Sciences (Present: O̅mura Satoshi Memorial Institute), Kitasato University, Tokyo 108-8641, Japan
- Graduate School of Infection Control Sciences, Kitasato University, Tokyo 108-8641, Japan
| | - Yuki Inahashi
- Kitasato Institute for Life Sciences (Present: O̅mura Satoshi Memorial Institute), Kitasato University, Tokyo 108-8641, Japan
| | - Arinthip Thamchaipenet
- Department of Genetics, Faculty of Science, Kasetsart University, Chatuchak, Bangkok 10900, Thailand
- Omics Center for Agriculture, Bioresources, Food and Health, Kasetsart University (OmiKU), Bangkok 10900, Thailand
| |
Collapse
|
48
|
Amelia-Yap ZH, Azman AS, AbuBakar S, Low VL. Streptomyces derivatives as an insecticide: Current perspectives, challenges and future research needs for mosquito control. Acta Trop 2022; 229:106381. [PMID: 35183537 DOI: 10.1016/j.actatropica.2022.106381] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 12/13/2022]
Abstract
The pervasiveness of arboviruses in wreaking havoc on public health has lingered on international health agendas. A scarcity of mosquito-borne disease vaccines and therapies demands prompt attention, as billions of people worldwide are at risk of infections. It is widely known that vector control continues, and in some diseases, remains the only resort in suppressing disease transmissions we presently possess at its disposal. But the use of commercial insecticides is being crippled by the widespread insecticide resistance, which greatly menaces their efficacies, toxicological repercussions such as environmental pollution and human health risk. Rather, an environmentally benign technique of employing Streptomyces isolates from settings such as terrestrial soils, marine sediments, and mangrove soils for Culicidae management has recently received a lot of positive attention. Streptomyces' capacities to produce a wide range of bioactive secondary metabolites that contribute to pharmaceutical, agricultural and veterinarian, Streptomyces-derived bioactive compounds are increasingly being considered for use in vector control. Herein, we compiled all of the available datasets on the effectiveness of Streptomyces-derived compounds against major mosquito vectors of medical importance. Aedes, Anopheles, and Culex are used to assess the toxicity of crude extracts or fractions. This paper reviewed the promising ovicidal, larvicidal, and pupacidal effects of different Streptomyces strains. Notably, no research into the adulticidal effect of Streptomyces-derived compounds has yet been done. Aside from the genetic makeup, the production of secondary metabolites from Streptomyces depends on the growing conditions. And that, to optimise the maximum yield of highly potent bioactive compounds being extracted, solvents' choice is of paramount importance. Thus, both cultivation parameters and the choice of organic solvents for secondary metabolites extraction will be discussed. Furthermore, biases derived from different studies have implied the need for standardizing experimental procedures. While entomological data should be collected consistently across all studies to expedite evidence-based policymaking of bioinsecticides, the quality of data from vector control interventions - particularly the experimental design, execution, analysis, and presentation of results of vector control studies - will be thoroughly reviewed. Lastly, to promote consistency and reliability, these knowledge gaps are identified, along with a discussion of current perspectives on vector control, global bioinsecticide trends, challenges on commercializing bioinsecticides and future research needs.
Collapse
Affiliation(s)
- Zheng Hua Amelia-Yap
- Higher Institution Centre of Excellence (HICoE), Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Adzzie Shazleen Azman
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway, 47500, Malaysia
| | - Sazaly AbuBakar
- Higher Institution Centre of Excellence (HICoE), Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Van Lun Low
- Higher Institution Centre of Excellence (HICoE), Tropical Infectious Diseases Research and Education Centre (TIDREC), Universiti Malaya, Kuala Lumpur 50603, Malaysia.
| |
Collapse
|
49
|
Zhang Z, In Y, Fukaya K, Yang T, Harunari E, Urabe D, Imada C, Oku N, Igarashi Y. Kumemicinones A-G, Cytotoxic Angucyclinones from a Deep Sea-Derived Actinomycete of the Genus Actinomadura. JOURNAL OF NATURAL PRODUCTS 2022; 85:1098-1108. [PMID: 35343685 DOI: 10.1021/acs.jnatprod.1c01205] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Chemical investigation of the fermentation products of a deep sea water-derived actinomycete, Actinomadura sp. KD439, identified seven new angucyclinones, designated as kumemicinones A-G (1-7), together with the known SF2315B and miaosporone E. NMR and MS spectroscopic analyses, combined with X-ray crystallography and quantum chemical calculations of NMR chemical shifts and electronic circular dichroism (ECD) spectra, uncovered the structures of new angucyclinones as regioisomers of SF2315B at the allyl alcohol unit (1 and 2), an epoxy ring-opened γ-hydroxy enone isomer (3), a B/C-ring-rearranged product (4), or dimers with a new mode of bridging (5-7), adding new structural variation to this antibiotic group. The absolute configuration of SF2315B was also determined by comparison of ECD spectra with those of 1 and 2. All the angucyclinones exhibited cytotoxicity against P388 murine leukemia cells, with IC50 values ranging from 1.8 to 53 μM.
Collapse
Affiliation(s)
- Zhiwei Zhang
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yasuko In
- Department of Physical Chemistry, Faculty of Pharmacy, Osaka Medical and Pharmaceutical University, 4-20-1 Nasahara, Takatsuki City, Osaka 569-1094, Japan
| | - Keisuke Fukaya
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Taehui Yang
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Enjuro Harunari
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Daisuke Urabe
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Chiaki Imada
- Graduate School of Marine Science and Technology, Tokyo University of Marine Science and Technology, 4-5-7, Konan, Minato-ku, Tokyo 108-8477, Japan
| | - Naoya Oku
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| | - Yasuhiro Igarashi
- Biotechnology Research Center and Department of Biotechnology, Toyama Prefectural University, 5180 Kurokawa, Imizu, Toyama 939-0398, Japan
| |
Collapse
|
50
|
Can Aggregate-Associated Organisms Influence the Fouling in a SWRO Desalination Plant? Microorganisms 2022; 10:microorganisms10040682. [PMID: 35456734 PMCID: PMC9032733 DOI: 10.3390/microorganisms10040682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/17/2022] [Accepted: 03/17/2022] [Indexed: 12/10/2022] Open
Abstract
This pilot study investigates the formation of aggregates within a desalination plant, before and after pre-treatment, as well as their potential impact on fouling. The objective is to provide an understanding of the biofouling potential of the feed water within a seawater reverse osmosis (SWRO) desalination plant, due to the limited removal of fouling precursors. The 16S and 18S rRNA was extracted from the water samples, and the aggregates and sequenced. Pre-treatment systems, within the plant remove < 5 µm precursors and organisms; however, smaller size particles progress through the plant, allowing for the formation of aggregates. These become hot spots for microbes, due to their nutrient gradients, facilitating the formation of niche environments, supporting the proliferation of those organisms. Aggregate-associated organisms are consistent with those identified on fouled SWRO membranes. This study examines, for the first time, the factors supporting the formation of aggregates within a desalination system, as well as their microbial communities and biofouling potential.
Collapse
|